全等三角形SSS

合集下载

全等三角形判定方法SSS

全等三角形判定方法SSS

AD=AD
△ABD≌△ACD (SSS)
证明的书写步骤:
①准备条件:证全等时要用的间接 条件要先证好; ②三角形全等书写三步骤:
写出在哪两个三角形中 摆出三个条件用大括号括起来 写出全等结论
如图,AB=AC,AE=AD,BD=CE, A 求证:△AEB ≌ △ ADC。
证明:∵BD=CE
∴ BD-ED=CE-ED, 即BE=CD。 在△ AEB和△ ADC中, AB=AC AE=AD BE=CD ∴ △AEB ≌ △ ADC
60°
2.给出两个条件:
①一边一内角:
30° ②两内角:
30°
30°
30° 50° ③两边:
30°
50° 可以发现按这
些条件画的三 角形都不一定 全等。
2cm
2cm
4cm
4cm
3.给出三个条件
三个角
三条边Байду номын сангаас
两角一边 两边一角
有三边对应相等的两个三角形全等 可以简写成 “边边边” 或“ SSS ”
B E D C
拓展与提高:如图,在四边形ABCD中 D
AB=CD,AD=BC,则∠A= ∠C 请说明理由。
C
解:在 ABD和 CDB中
AB=CD AD=BC (已知) (已知)
A
B
BD=DB (公共边)
∴ ABD ≌ CDB (SSS) ∴ ∠A= ∠C ( 全等三角形的对应角相等 )
议一议: 已知: 如图,AC=AD ,BC=BD.
课堂小结
1.边边边公理:有三边对应相等的两个三角形全等 简写成“边边边”(SSS) 2.边边边公理的发现过程所用到的数学方法(包括画 图、猜想、分析、归纳等.)

全等三角形的判定方法:SSS

全等三角形的判定方法:SSS
1.判定两个三角形全等的方法:
边角边:有__两__边____和__它__们___的__夹__角___对应相等
的两个三角形全等
角边角:有__两__角____和_它__们__的___夹__边____对应相等
的两个三角形全等
角角边:有_两__角_____和________________对应相等
的两个三角形全等 2.等边对等角:在一个三角形中,相等的边所对的
1.如日常生活中的定位锁采用三角形结构, 其道理就是使用三角形的稳定性.
2.房屋的人字梁屋顶采用三角形结构, 其道理就是使用三角形的稳定性.
3.课本88页第7题.
全等三角形的判定方法:SSS
作业布置
课本84页练习2
全等三角形的判定方法:SSS
角相___等_
等角对等边:在一个三角形中,相等的角所对的
边相___等_
提出问题
从前面已经研究过的判定方法来看,两个三角 形必需具备三个元素对应相等才有可能全等. 如果ห้องสมุดไป่ตู้个三角形三边对应相等,这两个三角形 全等吗? 如图,在△ABC和A′ B′ C′ 中,如果AB= A′ B′ BC=B′ C′ ,AC= A′C′ , 那么△ABC和A′ B′ C′ 全等吗? A′
使
△A"B"C"
由点上A的述像变换A"性与质点可A′知△在ABB′C ≌C′A"B的"C两"旁,△ABC
在则AB=A"B"=
A′
B′
,AC=
A"C"=A′C′
A′
上述变换下的像为
B"
c" B′
C′
A"
全等三角形的判定方法:SSS

三角形全等的判定SSS

三角形全等的判定SSS

1. 有两个角对应相等的两个三角形 不一定全等
2. 有两条边对应相等的两个三角形 不一定全等 3. 有一个角和一条边对应相等的两个三角形
不一定全等
300
60o
300
60o
4cm
300
6cm
30o
结论:有两个条件对6c应m 相等不能保证三角形全等.
探究活动
你 能 说 出 有 哪 几 种 可 能 的 情 况 ?
写出在哪两个三角形中 摆出三个条件用大括号括起来 写出全等结论
例2 如图,△ABC是一个钢架,AB=AC, AD是连接点A与BC中点D的支架.
求证:(1)△ABD≌△ACD. (2)∠BAD = ∠CAD.
证明:Q D是BC的中点, BD=CD.
(2)由(1)得△ABD≌△ACD ,
AA ∴ ∠BAD= ∠CAD.
AD=CB(已知)
A
B
BD=DB (公共边)
∴△ABD≌△ACD(SSS)
∴ ∠ A=∠C (全等三角形的对应角相等)
补充练习:
如图,已知AB=CD,AD=CB,E、F分别是AB,CD 的中点,且DE=BF,说出下列判断成立的理由. ①△ADE≌△CBF ②∠A=∠C
解: ①∵E、F分别是AB,CD的中点( 已知 )
如 果 给 出 三 个 条 件 画 三 角 形 ,
三个条件呢?
1. 三个角; 2. 三条边; 3. 两边一角; 4. 两角一边。
探究活动 三个条件呢?
1. 有三个角对应相等的两个三角形
300
60o
300
60o
结论: 三个内角对应相等的三角形 不一定全等。
探究活动 三边对应相等的两个三角形会全等吗?

全等三角形的判定(sss)

全等三角形的判定(sss)

A
A’
B
C B’
C’
图一
图二
AB=A’B’
∠A=∠A’ ΔABC ≌ ∆A’ B’ C’ (SAS) AC=A’C’
A
A’
B
C
B’
C’
∠A=∠A’
AB=A’B’
ΔABC ≌ ∆A’ B’ C’
∠B=∠B’
(ASA)
A
A’
B
C
B’

C’
∠A=∠A’
∠B=∠B’ ΔABC ≌ ∆A’ B’ C’(AAS)
AD=AD(公共边)
∴ △ABD≌ACD(SAS)
总结 上题中应用了哪些性质及定理
性质一:等腰三角形的两底角相等 性质二:等腰三角形的中线、角平分线、高线互相重合。 定理三:在两个三角形中,如果有三条边相等,那么这两个三角形全等。 定理四:在两个三角形中,如果有两个角相等及一条边相等,那么这两个三角形 全等。 定理五:在两个三角形中,如果有两个角相等及所夹的边相等,那么这两个三角 形全等。 定理六:在两个三角形中,如果有两条边相等及所夹的角相等,那么这两个三角 形全等。
作业:课后习题
AC=A’C’
定理的引入 A
C
E
F
B
D
思考
已知:AC=DE AB=DF BC=FE 求证:△ABC≌ △DFE
定理的引入 A
C
D
已知:AC=DC AB=DB 求证:△ABC≌ △DBC
B
证明:连接AD, ∵AC=DC
∴∠CAD= ∠CDA
同理, ∠BAD= ∠BDA
∴ ∠BAC= ∠BDC
∵ AC=DC
答:图中有△ABE≌ACE,△BDE≌CDE △ABD≌ACD。

【数学课件】三角形全等的判定(SSS)

【数学课件】三角形全等的判定(SSS)

如 何 用 符 号 语 言 来 表 达 呢
A
D
B
C
E
F
在△ABC与△DEF中 AB=DE AC=DF BC=EF ∴△ABC≌△DEF(SSS)
思考:你能 用“边边边” 解释三角形 具有稳定性 吗?
例1 已知:如图,AB=AD,BC=CD, 求证:△ABC≌ △ADC
A B D
证明:在△ABC和△ADC中 AB=AD (已知) BC=CD (已知) AC = AC (公共边)
失 败
(2)一个角 (1)两边 4cm
6cm 4cm 6cm
2.给定两个条件: (2)一边一角
30º 6cm
失 败
30º 6cm
(3)两角
30º 20º 30º 20º
俗话说:失败是成功之母! 我们继续探究: 千万别泄气哦! 探究二
(1)三边 给定三个条件: (2)两边一角 (3)一边两角 (4)三角 [动手画一画]
画出一个三角形,使它的三边长分别为3cm、 4cm、6cm , 把你画的三角形与小组内画的进 行比较,它们一定全等吗?
画法: 1.画线段AB=3㎝; 2.分别以A、B为圆心,4㎝和6㎝长为半径画弧,两 弧交于点C; 3. 连接线段AC、BC.
结论:三边对应相等的两个三角形全等. 可ቤተ መጻሕፍቲ ባይዱ写为”边边边”或SSS
课堂小测
2.如图,已知 AB DC,AC DB .求证: △ABC≌△DCB.
A
D
O B C
1.课本P15习题11.2的第1、2题(一号本)
能力提升题:
课本16页第9题(一号本)
1、做老师的只要有一次向学生撒谎撒漏了底,就可能使他的全部教育成果从此为之毁灭。——卢梭 2、教育人就是要形成人的性格。——欧文 3、自我教育需要有非常重要而强有力的促进因素——自尊心、自我尊重感、上进心。——苏霍姆林斯基 4、追求理想是一个人进行自我教育的最初的动力,而没有自我教育就不能想象会有完美的精神生活。我认为,教会学生自己教育自己,这是一种 最高级的技巧和艺术。——苏霍姆林斯基 5、没有时间教育儿子——就意味着没有时间做人。——(前苏联)苏霍姆林斯基 6、教育不是注满一桶水,而且点燃一把火。——叶芝 7、教育技巧的全部奥秘也就在于如何爱护儿童。——苏霍姆林斯基 8、教育的根是苦的,但其果实是甜的。——亚里士多德 9、教育的目的,是替年轻人的终生自修作准备。——R.M.H. 10、教育的目的在于能让青年人毕生进行自我教育。——哈钦斯 11、教育的实质正是在于克服自己身上的动物本能和发展人所特有的全部本性。——(前苏联)苏霍姆林斯基 12、教育的唯一工作与全部工作可以总结在这一概念之中——道德。——赫尔巴特 13、教育儿童通过周围世界的美,人的关系的美而看到的精神的高尚、善良和诚实,并在此基础上在自己身上确立美的品质。——苏霍姆林斯基 14、教育不在于使人知其所未知,而在于按其所未行而行。——园斯金 15、教育工作中的百分之一的废品,就会使国家遭受严重的损失。——马卡连柯 16、教育技巧的全部诀窍就在于抓住儿童的这种上进心,这种道德上的自勉。要是儿童自己不求上进,不知自勉,任何教育者就都不能在他的身 上培养出好的品质。可是只有在集体和教师首先看到儿童优点的那些地方,儿童才会产生上进心。——苏霍姆林斯基 17、教育能开拓人的智力。——贺拉斯 18、作为一个父亲,最大的乐趣就在于:在其有生之年,能够根据自己走过的路来启发教育子女。——蒙田 19、教育上的水是什么就是情,就是爱。教育没有了情爱,就成了无水的池,任你四方形也罢、圆形也罢,总逃不出一个空虚。班主任广博的爱 心就是流淌在班级之池中的水,时刻滋润着学生的心田。——夏丐尊 20、教育不能创造什么,但它能启发儿童创造力以从事于创造工作。——陶行知

12全等三角形判定二(SSS,AAS)(基础)知识讲解

12全等三角形判定二(SSS,AAS)(基础)知识讲解

全等三角形的判定二(SSS ,AAS )【学习目标】1.理解和掌握全等三角形判定方法3——“边边边”,和判定方法4——“角角边”;2.能把证明角相等或线段相等的问题,转化为证明它们所在的两个三角形全等.【要点梳理】要点一、全等三角形判定3——“边边边”全等三角形判定1——“边边边”三边对应相等的两个三角形全等.(可以简写成“边边边”或“SSS ”).要点诠释:如图,如果''A B =AB ,''A C =AC ,''B C =BC ,则△ABC ≌△'''A B C .要点二、全等三角形判定4——“角角边”1.全等三角形判定4——“角角边”两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS ”)要点诠释:由三角形的内角和等于180°可得两个三角形的第三对角对应相等.这样就可由“角边角”判定两个三角形全等,也就是说,用角边角条件可以证明角角边条件,后者是前者的推论.2.三个角对应相等的两个三角形不一定全等.如图,在△ABC 和△ADE 中,如果DE ∥BC ,那么∠ADE =∠B ,∠AED =∠C ,又∠A =∠A ,但△ABC 和△ADE 不全等.这说明,三个角对应相等的两个三角形不一定全等.要点三、判定方法的选择1.选择哪种判定方法,要根据具体的已知条件而定,见下表: 已知条件可选择的判定方法 一边一角对应相等SAS AAS ASA 两角对应相等ASA AAS 两边对应相等 SAS SSS2.如何选择三角形证全等(1)可以从求证出发,看求证的线段或角(用等量代换后的线段、角)在哪两个可能全等的三角形中,可以证这两个三角形全等;(2)可以从已知出发,看已知条件确定证哪两个三角形全等;(3)由条件和结论一起出发,看它们一同确定哪两个三角形全等,然后证它们全等;(4)如果以上方法都行不通,就添加辅助线,构造全等三角形.【典型例题】1、已知:如图,△RPQ 中,RP =RQ ,M 为PQ 的中点.求证:RM 平分∠PRQ .【思路点拨】由中点的定义得PM =QM ,RM 为公共边,则可由SSS 定理证明全等.【答案与解析】证明:∵M 为PQ 的中点(已知),∴PM =QM在△RPM 和△RQM 中,()(),,RP RQ PM QM RM RM ⎧=⎪=⎨⎪=⎩已知公共边 ∴△RPM ≌△RQM (SSS ).∴ ∠PRM =∠QRM (全等三角形对应角相等).即RM 平分∠PRQ.【总结升华】在寻找三角形全等的条件时有的可以从图中直接找到,如:公共边、公共角、对顶角等条件隐含在题目或图形之中. 把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等,综合应用全等三角形的性质和判定.举一反三:【变式】已知:如图,AD =BC ,AC =BD.试证明:∠CAD =∠DBC.【答案】证明:连接DC ,在△ACD 与△BDC 中()AD BC AC BDCD DC ⎧=⎪=⎨⎪=⎩公共边 ∴△ACD≌△BDC(SSS )∴∠CAD =∠DBC (全等三角形对应角相等)2、已知:如图,AB ⊥AE ,AD ⊥AC ,∠E =∠B ,DE =CB .求证:AD =AC .【思路点拨】要证AC =AD ,就是证含有这两个线段的三角形△BAC ≌△EAD.【答案与解析】证明:∵AB ⊥AE ,AD ⊥AC ,∴∠CAD =∠BAE =90°∴∠CAD +∠DAB =∠BAE +∠DAB ,即∠BAC =∠EAD在△BAC 和△EAD 中BAC EAD B E CB=DE ∠=∠⎧⎪∠=∠⎨⎪⎩∴△BAC ≌△EAD (AAS )∴AC =AD【总结升华】我们要善于把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等.举一反三:【变式】如图,AD 是△ABC 的中线,过C 、B 分别作AD 及AD 的延长线的垂线CF 、BE.求证:BE =CF.【答案】证明:∵AD 为△ABC 的中线∴BD =CD∵BE ⊥AD ,CF ⊥AD ,∴∠BED =∠CFD =90°,在△BED 和△CFD 中BED CFD BDE CDFBD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩(对顶角相等) ∴△BED ≌△CFD (AAS )∴BE =CF3、如图:AB=A′B′,∠A=∠A′,若△ABC≌△A′B′C′,则还需添加的一个条件有()种.A.1B. 2C.3D.4【思路点拨】本题要证明△ ABC≌△ A′B′C′,已知了AB=A′B′,∠A=∠ A′,可用的判别方法有ASA,AAS,及SAS,所以可添加一对角∠B=∠B′,或∠C=∠C′,或一对边AC=A′C′,分别由已知与所添的条件即可得证.【答案与解析】解:添加的条件可以为:∠B=∠B′;∠C=∠C′;AC=A′C′,共3种.若添加∠B=∠B′,证明:在△ABC和△A′B′C′中,,∴△ABC≌△A′B′C′(ASA);若添加∠C=∠C′,证明:在△ABC和△A′B′C′中,,∴△ABC≌△A′B′C′(AAS);若添加AC=A′C′,证明:在△ABC和△A′B′C′中,,∴△ABC≌△A′B′C′(SAS).故选C.【总结升华】此题考查了全等三角形的判定,是一道条件开放型问题,需要由因索果,逆向推理,逐步探求使结论成立的条件,解决这类问题要注意挖掘隐含的条件,如公共角、公共边、对顶角相等,这类问题的答案往往不唯一,只有合理即可.熟练掌握全等三角形的判定方法是解本题的关键.类型三、全等三角形判定的实际应用4、“三月三,放风筝”.下图是小明制作的风筝,他根据DE =DF ,EH =FH ,不用度量,就知道∠DEH =∠DFH .请你用所学的知识证明.【答案与解析】证明:在△DEH 和△DFH 中,DE DF EH FH DH DH ⎧⎪⎨⎪=⎩==∴△DEH ≌△DFH(SSS)∴∠DEH =∠DFH .【总结升华】证明△DEH ≌△DFH ,就可以得到∠DEH =∠DFH ,我们要善于从实际问题中抽离出来数学模型,这道题用“SSS ”定理就能解决问题.举一反三:【变式】雨伞的中截面如图所示,伞骨AB=AC ,支撑杆OE=OF ,AE=AB ,AF=AC ,当O 沿AD 滑动时,雨伞开闭,问雨伞开闭过程中,∠BAD 与∠CAD 有何关系?说明理由.【答案】解:雨伞开闭过程中二者关系始终是:∠BAD=∠CAD,理由如下:∵AB=AC,AE=AB ,AF=AC ,∴AE=AF,在△AOE 与△AOF 中,,∴△AOE≌△AOF(SSS ),∴∠BAD=∠CAD.。

全等三角形SSS

全等三角形SSS

三边确定三角形唯一
【昨日复习】:1、能够的两个图形叫全等形。

完全重合指的是形状,大小
2、叫全等三角形。

已知两三角形全等,立即应相到的:
全等三角形的对应边,对应角。

3、全等符号怎样书写?
怎样找对应边对应角?对应边所对的角必是,反之,
【把握今天】:
1、三条线段的长度满足怎样的关系才能围成三角形?你还记得吗?
三角形的任意两边之和必须。

2、请你画出长为6cm,8cm,10cm的三条线段,再画出以它们为边长的三角形。

问:每个同学画出的这样的三角形都全等吗?
3、所以可以得出结论:
三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”)
4、怎样画一个三角形使得它和已知的三角形全等呢?
已知:如图,△ABC,求作△DEF,使得△ABC≌△DEF。

看来:虽然全等三角形的三条边对应相等,三个角对应相等,
但只要满足其中的部分条件就可保证三角形全等。

5、讲例:
例1,如图,△ABC是一个支撑架的一部分,AB=AC,AD是连接A与BC中点D的支柱,求证:△ABD≌△ACD。

分析:因为三边对应相等的两个三角形全等,所以可以看看它们的三条边是否对应相等。

证明:
6、怎样不用量角器,只用圆规和直尺画出已知角的平分线?(可用量角器检验)
已知:如图,∠AOB,求作:∠AOB的平分线。

作法:略
证明:。

人教版全等三角形的判定SSS

人教版全等三角形的判定SSS

AB=AC ,
BF=CD, AF=DE,
∴ △ABF ≌ △ECD (SSS).
∴ ∠B=∠C
例2 已知:∠AOB,求作:∠A′O′B′=∠AOB.
问题4:想一想,为什么这样作出
的∠A′O′B′和∠AOB是相等的?.
课堂小结
• 本节课你学到了什么? • 1.两个三角形全等的判定1: • 三边分别相等的两个三角形全等 • 2.尺规作图
布置作业
• 课本37页练习1,2题
2.有两个条件:
③一条边一个内角对应相等:请你画出一边为
× 3cm,一个内角为30°的三角形。
30° 3cm
30° 3cm
30° 3cm
可以发现按这些条件画的三角形都不
能保证一定全等.
问题3、通过画图可以发现,满足上述的六个条件中的 一个或两个,△ABC 与 △A′B′C′ 不一定全等.如果满 足上述六个条件中的三个,能保证 △ABC 与 △A′B′C′ 全等吗?
12.2三角形全等的判定一(SSS)
一、复习引入
问题1、什么叫做全等三角形? 能够完全重合的两个三角形叫做全 等三角形
全等三角形的对应边相等,对应角相等
问题2、一定要满足三条边分别对应相等, 三个角分别对应相等,才能保证两个三角形 全等吗?
二、探究新知
1. 只有一个条件(一组对应边相等或一组对应角相等).
B
∴AF=DE
在△ABF和△ECD中, AB=AC ,
F
D
C
BF=CD, AF=DE,
∴ △ABF ≌ △ECD (SSS).
变式训练2: 如图,AB=EC,BF=DC,AE=DF,
求证:∠B=∠C .
A
证明:∵ AE=DF E

2.5 第5课时 全等三角形的判定(SSS)

2.5 第5课时 全等三角形的判定(SSS)
AB=AC, BH=CH, AH=AH,
BH=CH, BD=CD, DH=DH,
△ABD≌△ACD(SSS)
A
△ABH≌△ACH(SSS) B
△BDH≌△CDH(SSS)
D HC
课堂小结
三角形全等的“SSS”判定:三 边分别相等的两个三角形全等.
三边分别相等 的两个三角形
三角形的稳定性:三角形三边 长度确定了,这个三角形的形 状和大小就完全确定了.
课后作业
见《名师学案》本课时练习
A
E

D
= ×× =
B D FC
=
=
O
B
×C
2.如图,AB=CD,AD=BC, 则下列结论:
①△ABC≌△CDB;②△ABC≌△CDA;③△ABD
≌△CDB;④BA∥DC. 正确的个数是
( C)
A . 1个 B. 2个 C. 3个 D. 4个
3.如图,桥梁的斜拉钢索是三角形的结构,主要是
为了
(C )
2.如图,工人师傅砌门时,常用木条EF固定门框
ABCD,使其不变形,这种做法的根据是(D )
A.两点之间线段最短
B.三角形两边之和大于第三边
C.长方形的四个角都是直角 A D.三角形的稳定性
E
D
F
B
C
当堂练习
1.如图,D、F是线段BC上的两点,AB=CE,AF=DE,
要使△ABF≌△ECD,还需要条件 BF=CD(答__案_不唯一. )
你能举出一些现实生活中的应用了三角形 稳定性的例子吗?
讨论
观察上面这些图片,你发现了什么? 发现这些物体都用到了三角形,为什么呢?
这说明三角形有它所独有的性质,是什 么呢?我们通过实验来探讨三角形的特性.

第三讲全等三角形判定SSS,ASA

第三讲全等三角形判定SSS,ASA

第三讲:全等三角形的判定探索全等三角形的条件:一个条件:一个角和或者一条边两个条件:两个角、两条边、一边一角三个条件:全等三角形判定一:三边对应相等的两个三角形全等,简写为“边边边”或“SSS ”(即:两个三角形的三边分别对应相等,那么这两个三角形全等)注意:此定理说明:只要三角形三边长度确定,则三角形的形状和大小也就完全确定了。

例1:如图是一个平分角的仪器,其中AB=AD ,BC=DC ,将点A 放在角的顶点,AB 和AD 沿着角的两边放正,沿AC 画一条射线AE ,AE 就是角平分线,请说明它的道理.例2:如图,△ABC 中 AB=AC , D 为BC 中点;求证:①△ABD ≌△ACD ;②∠BAD=∠CAD ;③AD ⊥BC例3:已知AB=DE ,AC=DF ,且BF=CE ,求证∠A=∠DD CB A例4:如图,AC与BD交于点O,AD=CB,E、F是BD上两点,且AE=CF,DE=BF.请推导下列结论:(1)∠D=∠B;(2)AE∥CF.例5:如图,已知AB=CD,AC=BD,求证:∠A=∠D例6:在四边形ABCD中,AB=CD,AD=BC,求证:∠A=∠C由:以上两题,你想到了什么?全等三角形判定二:两角和它们的夹边对应相等的两个三角形全等,简写成“角边角”或“ASA”推论:两角和其中一个角的对边对应相等的两个三角形全等,简写成“角角边”或“AAS”ASA:例1:如图:已知BD=CE,∠B=∠C,△ABD与△ACE全等吗?为什么?ADE例2:如图,AB=DC ,∠A=∠D .试说明:∠1=∠2例3:已知:如图,∠DAB=∠CAB ,∠DBE=∠CBE 。

求证:AC=AD.例4:如图,已知:AE=CE ,∠A=∠C ,∠BED=∠AEC ,且点B 在线段CD 上,求证:∠EBD=∠D例5:(2012•顺义区二模)已知:如图,E ,F 在BC 上,且AE ∥DF ,AB ∥CD ,AB=CD .求证:BF=CE .例6:.(2013•舟山)如图,△ABC 与△DCB 中,AC 与BD 交于点E ,且∠A=∠D ,AB=DC .(1)求证:△ABE ≌DCE ;(2)当∠AEB=50°,求∠EBC 的度数?A B CD O 1 2AAS:例1:(2013•玉林改编)如图,点E在线段BC上,∠B=∠AEB,∠1=∠2,∠C=∠D.求证:△ABC≌△AED.例2:(2012•湘西州)如图,AC与BD相交于点O,AO=DO,∠B=∠C.求证:△ABO≌△DCO.例3:(2012•衡阳)如图,AF=DC,BC∥EF,请只补充一个条件,使得△ABC≌△DEF,并说明理由.例4:(2012•河源)如图,已知AB=CD,∠B=∠C,AC和BD相交于点O,E是AD的中点,连接OE.(1)求证:△AOB≌△DOC;(2)求∠AEO的度数.例5:(2011•泉州)如图,已知点E,C在线段BF上,BE=CF,AB∥DE,∠A=∠D.求证:△ABC≌△DEF.例6:(2013•珠海)如图,已知,EC=AC,∠BCE=∠DCA,∠A=∠E;求证:BC=DC.例7:如图,在△ABC中,∠B=2∠C,AD是△ABC的角平分线,∠1=∠C,求证AC=AB+BD巩固练习:1.(2008•永春县)已知:如图,∠A=∠DCF,F是AC的中点.求证:△AEF≌△CDF.2.如图, AB∥CD, AD、BC交于O点, EF过点O分别交AB、CD于E、F,且AE=DF,求证:O是EF的中点3.如图,∠ABC=∠DCB,∠ACB=∠DCB,试说明△ABC≌△DCB.4.(2005•镇江)如图①,∠ABC=∠DCB,请补充一个条件,使△ABC≌△DCB;并证明。

全等三角形判定的三种类型

全等三角形判定的三种类型

全等三角形判定的三种类型1.SSS判定(边边边)SSS判定是指当两个三角形的三条边分别相等时,它们是全等三角形。

例如,对于两个三角形ABC和DEF,如果AB=DE,BC=EF,AC=DF,则可以通过SSS判定断定三角形ABC和DEF是全等的。

SSS判定的原理是,边长相等可以确保两个三角形的相应边之间的角度也是相等的,根据三角形角度之和为180°的性质,可以推导出它们的角度也是相等的,进而判断三角形全等。

2.SAS判定(边角边)SAS判定是指当两个三角形的两边和夹角分别相等时,它们是全等三角形。

例如,对于两个三角形ABC和DEF,如果AB=DE,∠BAC=∠EDF,BC=EF,则可以通过SAS判定判断三角形ABC和DEF是全等的。

SAS判定的原理是,两个三角形的一边和与这边相邻的两个角相等时,可以确保这两个三角形的三个边都相等,从而判断它们全等。

3.ASA判定(角边角)ASA判定是指当两个三角形的两角和边分别相等时,它们是全等三角形。

例如,对于两个三角形ABC和DEF,如果∠BAC=∠EDF,∠ABC=∠DEF,AC=DF,则可以通过ASA判定判断三角形ABC和DEF是全等的。

ASA判定的原理是,两个三角形的两个角和这两个角所夹的边相等时,可以确保这两个三角形的第三个角也相等,从而判断它们全等。

此外,还有两种特殊情况的判定方法:4.直角全等判定如果两个直角三角形的三个边分别相等,那么它们一定是全等的。

这是因为直角三角形的两个直角以及第三个角也是相等的。

5.等腰全等判定如果两个三角形都为等腰三角形,并且有一个角相等,那么它们一定是全等的。

这是因为等腰三角形的两个底角和底边相等,所以只需要一个额外的角相等即可推断两个等腰三角形全等。

综上所述,全等三角形的判定可以通过SSS、SAS、ASA以及两种特殊情况的判定方法来进行。

这些判定方法不仅可以帮助我们判断三角形的全等性质,而且在数学推导和证明过程中也有重要的应用。

全等三角形SSS

全等三角形SSS

全等三角形SSS在初中数学的几何世界里,全等三角形是一个非常重要的概念,而其中的“SSS”(边边边)判定定理更是基础且关键的一部分。

今天,咱们就来好好聊聊这个“SSS”。

首先,咱们得明白啥是全等三角形。

简单说,就是两个三角形的形状和大小完全一样,放在一起能够完全重合。

那怎么判断两个三角形是不是全等呢?这就轮到“SSS”登场啦。

“SSS”指的是,如果两个三角形的三条边分别对应相等,那么这两个三角形就是全等的。

为啥三条边相等就能判定全等呢?咱们来琢磨琢磨。

想象一下,咱给定了三条确定长度的线段,要拼成一个三角形。

是不是只有一种拼法?因为三角形的三条边长度确定了,它的形状和大小也就固定下来了。

所以,如果两个三角形的三条边都对应相等,那就意味着它们的形状和大小都完全相同,必然是全等的。

比如说,有一个三角形的三条边分别是 3 厘米、4 厘米和 5 厘米。

另一个三角形也有三条边,长度同样是 3 厘米、4 厘米和 5 厘米。

那这两个三角形就是全等的。

在实际解题中,“SSS”判定定理可是大有用处。

比如,给咱两个三角形,告诉咱三条边的长度分别相等,那咱们就可以毫不犹豫地说这两个三角形全等。

再举个例子,在一个几何图形里,已知三角形ABC 和三角形DEF,AB = DE,BC = EF,AC = DF,那就可以得出三角形 ABC 全等于三角形 DEF。

然后,根据全等三角形的性质,对应角也相等。

这就能帮咱们解决很多角度或者线段长度的问题。

而且,“SSS”判定定理还能和其他判定定理(比如 SAS、ASA 等)一起配合使用,让咱们更轻松地解决复杂的几何难题。

学习“SSS”判定定理的时候,大家可得多做些练习题,加深理解和记忆。

比如说,给出两个三角形的三条边长度,让判断是否全等;或者已知两个三角形全等,给出其中一些边的长度,求另一些边的长度。

总之,全等三角形的“SSS”判定定理虽然看起来简单,但其作用可不容小觑。

掌握好了它,咱们在几何的海洋里就能更加游刃有余。

三角形全等的判定(SSS)s

三角形全等的判定(SSS)s

11.2 三角形全等的判定第1课时 三角形全等的判定(SSS )【要点归纳】1.三角形全等的判定(1) 如果两个三角形满足三条边对应相等,三个角对应相等,那么它们全等。

(2) 如果两个三角形满足三边三角六个条件中的一个或者两个对应相等,那么不能保证三角形全等。

(3) 两个三角形全等至少需要三个条件对应相等。

2.三角形全等的“SSS ”判定方法 三边对应相等的两个三角形全等(可以简写成“边边边”或者“SSS ”)【题型归类】类型一:利用“SSS ”证明三角形全等例1. 如图11-2-1。

已知AB=AC ,AE=AD ,BD=CE ,求证:△AEB ≌△ADC.【点拨】此题考查三角形全等条件SSS 的应用.在确定的两个三角形中找全等的条件是证明三角形全等的常用方法.要证明△AEB ≌△ADC,已经具备了两个条件AB=AC ,AE=AD.第三个条件BE=CD 需要由BD=CE 得出.【证明】∵BD=CE,∴BD -ED=CE -ED,即BE=CD,在△AEB 和△ADC 中, AB AC AE AD BE CD =⎧⎪=⎨⎪=⎩∴△AEB ≌△ADC (SSS )类型二:利用三角形全等证明线段(或者角)相等,直线平行例2.如图11-2-2所示,AB=CD ,AE=DF ,CE=BF ,判断EC 与BF 的数量和位置关系,说明理由。

【点拨】此题综合考查全等三角形的判定和性质。

要说明E C ∥BF ,只要∠ACE=∠DBF ,进而考虑证明△AEC ≌△DFB 。

【解】 E C ∥BF ,E C=BF 。

理由:∵AB=CD ,∴AB +BC=CD +BC , 即AC=DB在△ACE 和△DBFC 中AE=DF,AC DB,,EC BF ⎧⎪=⎨⎪=⎩∴△ACE ≌△DBFC (SSS )∴∠ACE=∠DBF ,E C=BF 。

∴E C ∥BF 。

【易错示例】【例】如图11-2-3所示,在△ABC 和△EFD ,AD=FC ,AB=FE ,BC=DE 。

全等三角形的判定sss

全等三角形的判定sss

引言:全等三角形是指在几何学中,具有相同边长和相等内角的两个三角形。

全等三角形的判定是三角形重要的基本理论之一。

在本文中,我们将继续探讨全等三角形的判定方法,并重点讨论sss(两边和夹角对)条件下的判定方法。

概述:全等三角形的判定方法有多种,包括sss、asa、sas、saa等条件。

在前文中,我们已经介绍了sss(两边和夹角对)条件下全等三角形的判定方法,本文将进一步深入探讨并展示具体的例子。

正文内容:一、sss条件下全等三角形的判定方法1.根据sss条件判定两个三角形的三条边相等,即边AB=边DE、边AC=边DF、边BC=边EF。

2.根据sss条件判定两个三角形的夹角相等,即∠BAC=∠EDF、∠ABC=∠EFD、∠ACB=∠DFE。

3.若满足边边边对应相等和夹角夹角夹相等,则可判定两个三角形全等。

4.示例:已知三角形ABC和DEF,满足边AB=边DE、边AC=边DF、边BC=边EF,且∠BAC=∠EDF、∠ABC=∠EFD、∠ACB=∠DFE,可以判定三角形ABC与DEF全等。

二、sss条件判定的注意事项1.注意边边边对应相等的顺序,即需要确保对应的边顺序相同,如边AB=边DE,不能判定边AC=边DF。

2.注意夹角夹角夹相等的顺序,即需要确保对应的夹角顺序相同,如∠BAC=∠EDF,不能判定∠BCA=∠DFE。

三、sss条件下全等三角形的实际应用1.在实际问题中,sss条件往往能够提供便利的判定,尤其适用于已知两个三角形的边长和其中一个内角的情况。

2.示例:在电路板制作中,若已知一个三角形的边长和一个内角,通过sss条件可以很方便地判定另一个三角形是否全等,从而保证电路板的制作精度。

四、sss条件判定的局限性和改进方法1.sss条件只适用于已知所有三条边和它们对应的夹角的情况,若条件不足,则无法判定全等。

五、总结全等三角形的判定是三角形学习中的重要内容之一,sss(两边和夹角对)条件提供了一种方便快捷的判定方法。

全等三角形的四种判定方法

全等三角形的四种判定方法

全等三角形的四种判定方法
1.SSS判定法(边-边-边):
SSS判定法是通过比较两个三角形的边长来判断它们是否全等。

当三
个边的长度完全相等时,两个三角形就是全等的。

这是最直观的方法,也
是最易判定的方法之一
2.SAS判定法(边-角-边):
SAS判定法是通过比较两个三角形的边长和夹角来判断它们是否全等。

当两个三角形的一对相邻边和它们之间的夹角相等时,这两个三角形就是
全等的。

3.ASA判定法(角-边-角):
ASA判定法是通过比较两个三角形的两个角度和它们之间的夹边来判
断它们是否全等。

当两个三角形的两个角度和它们之间的夹边相等时,这
两个三角形就是全等的。

4.AAS判定法(角-角-边):
AAS判定法是通过比较两个三角形的两个角度和一个非夹角边来判断
它们是否全等。

当两个三角形的两个角度和一个非夹角边相等时,这两个
三角形就是全等的。

这些判定方法都基于三角形的重要性质:对于两个全等的三角形,它
们的对应边长相等,对应角度相等。

因此,通过比较两个三角形的边长和
角度可以判断它们是否全等。

在实际应用中,这些判定方法可以用来解决各种问题,比如计算三角形的面积、寻找相似三角形等。

此外,全等三角形的概念也是其他几何学概念的基础,比如正方形和正五边形都是全等三角形的特殊情况。

综上所述,全等三角形的判定方法有四种:SSS、SAS、ASA和AAS。

通过比较边长和角度的相等性可以确定两个三角形是否全等。

这些方法在解决几何问题中非常有用,并且为其他几何学概念的理解提供了基础。

全等三角形 SSS

全等三角形 SSS
∴ ∠ BAC= ∴∠ B= ∠D ∠DAC ∴AC是∠BAD的角平分线
A
D
C
20
练习
课本37页练习题 2题
21
1、三角形全等的判定:SSS
2、尺规作图
22
作业
1、练习册p22-24 2、课本P43复习巩固 1题、9题 注意写清步骤
3、预习37页探究3
23
14
A
D
B
C
E
F
书写格式:在△ABC与△DEF中 AB=DE AC=DF BC=EF ∴△ABC≌△DEF(SSS)
叫判 做断 证两 明个 三三 角角 形形 全全 等等 。的 推 理 过 程 ,
15
如图, △ABC是一个三角形钢架,AB=AC,AD是连接 A与BC中点D的支架,求证: △ ABD ≌△ 求证:∠ 求证: AD B= ⊥ ∠ BC CACD 证明:∵D是BC的中点
知识回顾
1、 什么叫全等三角形?
能够完全重合的两个三角形叫 全等三角形。 2、 全等三角形有什么性质?
A
D
B
C
E
F
①AB=DE ② BC=EF ③ CA=FD ④ ∠A= ∠D ⑤ ∠B=∠E ⑥ ∠C= ∠F
1
A
D
B
①AB=DE
② BC=EF
C
E
③ CA=FD
F
④ ∠A= ∠D
⑤ ∠B=∠E
⑥ ∠C= ∠F
17
C是AB的中点,AD=CE,CD=BE, 求证△ACD≌△CBE
A
C
D
B
E
18
尺规作图
由三边分别相等判定三角形全等 的结论,利用尺规作图作一个角 等于已知角.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

结 论
三边对应相等的两个三角形全等. (简写成“边边边”或“SSS”)
A
A'
B
C
B'
C'
如何用符号语言来表达呢?
在ABC和A' B' C'中 ' ' ' ∴ ∠ A = ∠ ___ A AB A B ∠B = ∠___ B' ' ' BC B C ' ∠ C = ∠ ___ C ' ' CA C A ABC ≌ A' B' C' (SSS)
判断两个三角形全等的推理过程,叫做证明三角形全等。 结论:从这题的证明中可以看出,证明是由已 例 1 已知:如图, AB=AD , BC=CD , 知出发,经过一步步的推理,最后推出结论正 求证:△ABC≌ △ADC 确的过程。 分析:要证明△ ABC≌ △ ADC,首先看这两个三角 形的三条边是否对应相等。
AB=FD (已证), BC=DB(已知), AC=FB (已知), ABC≌ FDB (SSS) .
A
C
D B
E
F
练习1:如图,AB=AC,BD=CD,BH=CH,图中有 几组全等的三角形?它们全等的条件是什么?
解:有三组。 在△ABH和△ACH中, ∵AB=AC,BH=CH,AH=AH, ∴△ABH≌△ACH(SSS); 在△ABD和△ACD中, ∵AB=AC,BD=CD,AD=AD, ∴△ABD≌△ACD(SSS); 在△DBH和△DCH中 ∵BD=CD,BH=CH,DH=DH, ∴△DBH≌△DCH(SSS).
A
B
思 考 A
小明做了一个如图所 示的风筝,他想去验证 B ∠BAC与∠DAC是否相 等,但手头却只有一把 足够长的尺子。你能帮 助他想个方法吗?说明 你这样做的理由。
D
C
如图,AB=AC,AE=AD,BD=CE, A 求证:△AEB ≌ △ ADC。
证明:∵BD=CE
∴ BD-ED=CE-ED, 即BE=CD 在AEB和ADC中, AB=AC(已知)
AB=AC(已知) B D BD=CD(已证) AD=AD(公共边)
C
ABD ≌ ACD(SSS) . B D
C
课 本 P8 工人师傅常用角尺平分一个任意角. 做法如下:如图, AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角 尺,使角尺两边相同的刻度分别与M,N重合. 过角尺顶点C 的射线OC便是AOB的平分线.为什么?
∴△ADE≌△CBF ( SSS ) ∴ ∠A=∠C ( 全等三角形 ) 对应角相等
② ∵ △ADE≌△CBF
例.如图,已知AB=DE,AC=DF,要说明△ABC≌△DEF, 还需增加一个什么条件?
A
D
B
E
C
F
请同学们谈谈本节课的收获与体会
本节课你学到了什么? 发现了什么?
有什么收获? 还存在什么没有解决的问题?
画法:
1. 画线段AB=4cm;
2. 分别以A、B为圆心,5cm、 7cm 长为半径作圆弧,交于点C; 3. 连结AB、AC;
∴△ABC就是所求的三角形.
探究活动 三边相等的两个三角形会全等吗?
先任意画出一个ABC,再画一个A ' B'C', 使A ' B'=AB,B'C'=BC,C' A '=CA. 把画好的 A ' B'C'剪下,放到ABC上,它们全等吗?
例2 如图,△ABC是一个钢架,AB=AC, AD是连接点A与BC中点D的支架. (1)△ABD≌△ACD. 求证: (2)∠BAD = ∠CAD.
证明:Q D是BC的中点, (2)由(1)得△ABD≌△ACD , A A BD=CD. ∴ ∠BAD= ∠CAD. 在ABD和 ACD中, (全等三角形对应角相等)
E D B
C
F
思 考
已知AC=FE,BC=DE,点A、D、 B、 F在一条直线上,AD=FB. 要用“边边边”证明 △ABC ≌△ FDE,除了已知中的AC=FE,BC=DE以外, 还应该有什么条件?怎样才能得到这个条件?
证明: Q AD FB, AD DB FB DB, 即AB FD. 在ABC和 FDB 中,
还需要条件 BF=DC 或 BD=FC. B D F C
练习3、如图,在四边形ABCD中, AB=CD, AD=CB, 求证:∠ A= ∠ C.
你能说明AB∥CD,AD∥BC吗? • 证明:在△ABD和△CDB中 AB=CD (已知) AD=CB (已知)
A B C
BD=DB (公共边) ∴△ABD≌△CDB(SSS) ∴ ∠ A=∠C (全等三角形的对应角相等)
小 结
1. 知道三角形三条边的长度怎样画三角形; 2. 三边对应相等的两个三角形全等
(简写成“边边边” 或“SSS”);
3. 初步学会理解证明的思路, 应用“边边边”证明两个三角形全等.
作业:
1、练习题(选做)
2、笔记补充完整
Over!
证明:在△ABC和△ADC中 AB=AD ( 已知 ) BC=CD (已知 ) AC= AC ( 公共边 )
B
A D
∴ △ABC ≌ △ADC(SSS)
C
证明的书写步骤:
①准备条件: 证全等时要用的间接条件要先证好; ②三角形全等书写三步骤: 写出在哪两个三角形中 摆出三个条件用大括号括起来 写出全等结论
探究活动
你如 能果 说给 出出 有三 哪个 几条 种件 可画 能三 的角 情形 况, ?
三个条件呢?
1. 三个角;
2. 三条边; 3. 两边一角;
4. 两角一边。
探究活动
三个条件呢?
1. 有三个角对应相等的两个三角形
300 300
60o
60o
结论: 三个内角对应相等的三角形 不一定全等。
探究活动 三边对应相等的两个三角形会全等吗? 若已知一个三角形的三条边,你能画出 画一个三角形,使它的三边长分别 这个三角形吗? 为4cm,5cm,7cm.
即:三条边对应相等,三个角对应相等的两个 三角形全等。
A
A
B
B C
C
ABC 与 ABC 满足上述六个条件中的一部 分是否能保证 ABC与 ABC 全等呢?
一个条件可以吗?
两个条件可以吗?
探究活动
一个条件可以吗?
不一定全等 不一定全等
1. 有一条边相等的两个三角形 2. 有一个角相等的两个三角形
画法:1. 画线段B'C'=BC;
2. 分别以B'、C '为圆心, 线段AB、AC为半径画弧, 两弧交于点A ';
你能得出什 么结论?
3. 连接线段A ' B'、A 'C' .
则ΔA ' B'C'为所求作的三角形.
三边对应相等的两个三角形全等,简写 为“边边边”或“SSS”。 用上面的结论可以判定两个三角形全等. 判断两个三角形全等的推理过程,叫做证明 三角形全等.
结论: 有一个条件相等不能保证两个三角形全等.
探究活动
两个条件可以吗?
不一定全等
1. 有两个角对应相等的两个三角形
2. 有两条边对应相等的两个三角形 不一定全等 3. 有一个角和一条边对应相等的两个三角形 不一定全等
300 300
60o
60o
4cm
300 6cm
30o
6cm 结论: 有两个条件对应相等不能保证三角形全等 .
B E D C
AE=AD(已知)
BE=CD(已证)
∴ △AEB ≌ △ ADC (sss)
思 考
已知AC=FE,BC=DE,点A、D、 B、 F在一条直线上,AD=FB. 要用“边边边”证明 △ABC ≌△ FDE,除了已知中的AC=FE,BC=DE以外, 还应该有什么条件?怎样才能得到这个条件? 解:要证明△ABC ≌△ FDE, A 还应该有AB=DF这个条件 ∵AD=FB ∴ AD+DB=FB+DB 即 AB=FD
1. 什么叫全等三角形? 能够完全重合的两个三角形叫 全等三角形。 2.全等三角形有什么性质? 全等三角形的对应边相等,对应角相等
3.已知 ABC ≌ A' B' C' ,试找出其中相等的边与角
A
A'
B
C
B'
C'
因为ABC ≌ A' B' C' ,所以 ( 1 )AB=A ' B' (2)BC=B'C' (3)CA=C' A '
解:在CMO和CNO中,
(已知) OM=ON, C O , CM=CN(已知) N CO=CO, B (公共边) CMO ≌CNO(SSS) . COM=CON.(全等三角形对应角相等)
M
A
OC是AOB的平分线.
例3、已知∠BAC(如图),用直尺和圆规 作∠BAC的平分线AD,并说出该作法正 确的理由。 C
补充练习: 如图,已知AB=CD,AD=CB,E、F分别是AB,CD的中 点,且DE=BF,说出下列判断成立的理由. ①△ADE≌△CBF ②∠A=∠C 解: ①∵E、F分别是AB,CD的中点( 已知 ) 1 1 ∴AE= 2 AB CF= CD( 线段中点的定义 ) 2 又∵AB=CD ∴AE=CF D F C AD = CB DE= BF 在△ADE与△CBF中 A B E AE = CF
(4)A=A ' (5)B=B' (6)C=C'
相关文档
最新文档