2016-2017学年四川省宜宾市宜宾县2017届九年级(上)期中数学试卷含答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016-2017 学年四川省宜宾市宜宾县九年级(上)期中数学试卷
一、选择题:(本大题共 8 小题,每小题 3 分,共 24 分)
1.(3 分)若二次根式
有意义,则 x 的取值范围是( )
A .x >1
B .x ≥1
C .x <1
D .x ≤1
2.(3 分)下列根式中,是最简二次根式的是(
)
A .
B .
C .
D .
3.(3 分)已知 x=1 是关于 x 的一元二次方程 2x ﹣x +a=0 的一个根,则 a 的值是( )
A .2
B .﹣2
C .1
D .﹣1
4.(3 分)一元二次方程 x ﹣2x +m=0 总有实数根,则 m 应满足的条件是( ) A .m >1 B .m=1 C .m <1D .m ≤1
5.(3 分)设 α、β 是一元二次方程 x +2x ﹣1=0 的两个根,则 αβ 的值是( ) A .2 B .1 C .﹣2 D .﹣1
6.(3 分)在一幅长 80cm ,宽 50cm 的矩形风景画的四周镶上一条金色纸边,制成一幅矩形挂图,如
果要使整个挂图的面积是 5000cm ,设金色纸边的宽为 xcm ,那么满足的方程是( )
A .x +130x ﹣1400=0
B .x ﹣130x ﹣1400=0
C .x +65x ﹣250=0
D .x ﹣65x ﹣250=0
7.(3 分)已知,如图,在△ABC 中,∠ADE=∠C ,则下列等式成立的是(
)
A .
= B . = C . = D .
=
8.(3 分)对于两个不相等的实数 a 、b ,我们规定符号 m ax {a ,b }表示 a 、b 中较大的数,如:max {2,
4}=4.按照这个规定.方程 max {x ,﹣x }=
的解为(
)
A .
B .
C .
或
D .
或﹣1
二.填空题(本大题共 8 小题,每小题 3 分,共 24 分) 9.(3 分)化简: = .
10.(3 分)计算:( ﹣2) ( +2) =
.
11.(3 分)若 m :n=5:4,则
=
.
12.(3分)三角形两边的长是 3 和 4,第三边的长是方程 x ﹣12x +35=0 的根,则该三角形的周长为
.
2
2
2 2 2 2
2 2
2014 2015 2
13.(3 分)某超市一月份的营业额为 200 万元,已知第一季度的总营业额共 1000 万元.如果平均每 月增长率为 x ,则由题意列方程应为 .
14.(3 分)毕业之际,某校九年级数学性趣小组的同学相约到同一家礼品店购买纪念品,每两个同 学都相互赠送一件礼品,礼品店共售出礼品 30 件,则该兴趣小组的人数为 人.
15.(3 分)如图所示,在四边形 ABCD 中,AD ∥BC ,如果要使△ABC ∽△DCA ,那么还要补充的 一个条件是 .(只要求写出一个条件即可)
16.(3 分)如图,△ABC 与△AEF 中,AB=AE ,BC=EF ,∠B=∠E .AB 交 EF 于 D .给出下列结论: ①△ABC ≌△AEF ; ②∠AFC=∠C ;③DF=CF ; △④ADE ∽△FDB 其中正确的结论是 (填写所有正确结论的序号).
三、解答题:本大题共 8 个题,共 72 分.解答应写出文字说明,证明过程或演算步骤. 17.(10 分)计算
(1)2
+6
﹣3
(2)
÷(﹣
)× .
18.(10 分)解方程: (1)4x (1﹣x )=1
(2)x +3x +1=0(公式法)
19.(8 分)已知关于 x 的一元二次方程 x ﹣
(m ﹣2)x + m ﹣3=0
(1)求证:无论 m 取什么实数时,这个方程总有两个不相等的实数根; (2)如果方程的两个实数根为 x ,x ,且 2x +x =m +1,求 m 的值.
20.(8 分)如图,E 是 ABCD 的边 BA 延长线上一点,连接 EC ,交 AD 于点 F .在不添加辅助线的 情况下,请你写出图中所有的相似三角形,并任选一对相似三角形给予证明.
21.(8 分)如图,在 4×3 的正方形方格中 △,ABC 和△DEF 的顶点都在边长为 1 的小正方形的顶点 上.
(1)填空:∠ABC= °,BC= ;
(2)判断△ABC 与△DEC 是否相似,并证明你的结论.
2
2 1 2 1 2
22.(8 分)已知:x=1﹣ ,y=1+ ,求 x +y ﹣xy ﹣2x +2y 的值.
23.(10 分)某商场销售一批名牌衬衫,平均每天可售出 20 件,每件盈利 50 元,为了扩大销售,增 加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价 10 元, 商场平均每天可多售出 20 件.
(1)若商场平均每天要盈利 1600 元,每件衬衫应降价多少元? (2)怎样定价能获得最大利润,最大利润是多少?
24.(10 分)如图 1 将矩形 ABCD 折叠,使得顶点 B 落在 CD 边上的 P 点处,已知折痕与边 BC 交于
点 O ,连结 AP 、OP 、OA .
(1)求证:△OCP ∽△PDA ;
(2)如图 2,擦去折痕 AO 、线段 OP ,连结 BP .动点 M 在线段 AP 上(点 M 与点 P 、A 不重合), 动点 N 在线段 AB 的延长线上,且 BN=PM ,连结 MN 交 PB 于点 F ,作 ME ⊥BP 于点 E .探究:当 点 M 、N 在移动过程中,线段 EF 与线段 PB 有何数量关系?并说明理由.
2 2