最新《大学数学》第二章练习题
高等工程数学第二章习题及答案
第2章 线性代数方程组数值解法 研究n 阶线性方程组Ax b =的数值解法.()ij A a =是n n⨯矩阵且非奇异,12(,,,)Tn x x x x = ,12(,,,)Tn b b b b =两类数值方法:(1) 直接法:通过有限次的算术运算,若计算过程中没有舍入误差,可以求出精确解的方法.Ax b Gx d == 等价变换G 通常是对角矩阵、三角矩阵或者是一些结构简单的矩阵的乘积.(2) 迭代法:用某种极限过程去逐次逼近方程组的解的方法.(1)()i i Ax b x Bx k x Bx k +==+−−−−−→=+ 等价变换建立迭代格式,0,1,i =一、向量范数与矩阵范数 1. 向量范数【定义】 若对nK 上任一向量x ,对应一个非负实数x ,对任意,nx y R ∈及K α∈,满足如下条件(向量范数三公理) (1) 非负性:0x ≥,且0x =的充要条件是0x =;(2)齐次性:x xαα=;(3)三角不等式:x y x y+≤+.则称x为向量x的范数.常用的向量范数: (1) 1—范数11nii x x ==∑(2) 2—范数12221()ni i x x ==∑(3) ∞—范数1max ii nxx ∞≤≤=(4) 一般的p —范数11()pnpi pi xx ==∑2. 矩阵范数【定义】 若n nK ⨯上任一矩阵()ij n n A a ⨯=,对应一个非负实数A ,对任意的,n nA B K ⨯∈和K α∈,满足如下条件(矩阵范数公理):(1) 非负性:0A ≥,且0A =的充要条件是0A =;(2)齐次性:A Aαα=;(3)三角不等式:A B A B +≤+;(4)乘法不等式:AB A B≤.则称A为矩阵A的范数.矩阵范数与向量范数是相容的:Ax A x≤向量范数产生的从属范数或算子范数:10max maxx x AxA Ax x=≠==常见从属范数:(1) 1—范数111max ||nij j ni A a ≤≤==∑(2) ∞—范数11max ||nij i nj A a ∞≤≤==∑(3) 2—范数2A =谱半径1()max ||H i i n A A ρλ≤≤=,iλ为H A A 的特征值.H A 为A 的共轭转置. 注:矩阵A 的谱半径不超过A 的任一范数,即()A A ρ≤范数等价性定理:,s t x x为n R 上向量的任意两种范数,则存在常数12,0c c >,使得12,ns t s c x x c x x R ≤≤ ∀∈.注:矩阵范数有同样的结论. 【定理2.1】是任一向量范数,向量序列()k x 收敛于向量*x 的充要条件是()*0,k x x k -→ →∞二、 Gauss 消去法 1.顺序Gauss 消去法 将方程Ax b =写成如下形式11112211,121122222,11122,1n n n n n n n n nn n n n a x a x a x a a x a x a x a a x a x a x a ++++++=⎧⎪+++=⎪⎨⎪⎪+++=⎩其中记,1,1,2,,.i n i a b i n +==消元过程:第一次消元:设110a ≠,由第2,3,,n 个方程减去第一个方程乘以1111/(2,3,,)i i m a a i n == ,则将方程组中第一个未知数1x消去,得到同解方程11112211,1(1)(1)(1)22222,1(1)(1)(1)22,1n n n n n n n nn n n n a x a x a x a a x a x a a x a x a ++++++=⎧⎪ ++=⎪⎨⎪⎪ ++=⎩其中, (1)11,2,3,,;2,3,,,1ijij i j a a m a i n j n n =-==+ . 1111/i i m a a =,2,3,,i n = .第二次消元:设(1)220a ≠,.由第2,3,,n 个方程减去方程组中的第2个方程乘以(1)(1)2222/(3,4,,)i i m a a i n == ,则将方程组第2个未知数2x 消去,得到同解方程11112213311,1(1)(1)(1)(1)2222322,1(2)(2)(2)33333,1(2)(2)(2)33,1n n n n n n n n n nnn n n n a x a x a x a x a a x a a x a a x a x a a x a x a ++++++++=⎧⎪ +++=⎪⎪ ++=⎨⎪⎪⎪ ++=⎩其中(2)(1)(1)22, 3,4,,; 3,4,,,1ij ij i j a a m a i n j n n =-==+ . (1)(1)2222/i i m a a =,3,4,,i n = .经过1n -次消元后,原方程组变成等价方程组11112213311,1(1)(1)(1)(1)2222322,1(2)(2)(2)33333,1(1)(1),1n n n n n n n n n n n nn n n n a x a x a x a x a a x a a x a a x a x a a x a +++--+++++=⎧⎪ +++=⎪⎪ ++=⎨⎪⎪⎪ =⎩其中()(1)(1), 1,2,,k k k ij ij ik ij a a m a i k k n --=-=++ , 1,2,,,1j k k n n =+++ .(1)(1)/k k ik ik kkm a a --=,1,2,,i k k n =++ ;1,2,,1k n =- .回代过程:(1)(1),1(1)(1)(1),1,,1/[]/,1,2,,2,1.n n n n n m n i i i ii n i j j i j j i x a a x a a x a i n n --+---+=+⎧=⎪⎨=-=--⎪⎩∑计算量:按常规把乘除法的计算次数合在一起作为Gauss 消去法总的计算量,而略去加减法的计算次数. 在消去过程中,对固定的消去次数(1,2,,1)k k n =- ,有:除法(1)(1),,/,1,1,,k k ik i k k k m a a i k k n --= =++ 共计n k -次;乘法(1),,1,2,,;1,2,,,1k ik k j m a i k k n j k k n n - =++ =+++ 共计()(1)n k n k --+次.因此,消去过程总的计算量为1311[()(1)]3n k M n k n k n k n-==--++-≈∑ 回代过程的乘除法计算次数为21()2n n +.与消去法计算量相比可以略去不计.所以, Gauss 消去法总的计算量大约为313n .2. Gauss-Jordan 消去法Gauss-Jordan 消去法是Gauss 消去法的一种变形.此方法的第一次消元过程同Gauss 消去法一样,得到(1)(1)(1)(1)11112213311,1(1)(1)(1)(1)22223322,1(1)(1)(1)(1)32233333,1(1)(1)(1)(1)2233,1,,,,n n n n n n n n n nn nn n n n a x a x a x a x a a x a x a x a a x a x a x a a x a x a x a ++++⎧++++=⎪ +++=⎪ +++=⎨ +++= ⎪⎪⎪⎪⎩其中,(1)11,2,,,1jj a a j n n ==+ . 第二次消元:设(1)220a ≠,由第1,3,4,,n 个方程减去第2个方程乘以(1)(1)2222/(1,3,4,,)i i m a a i n == ,则得到同解方程组(2)(2)(2)11113311,1(1)(2)(2)(2)22223322,1(2)(2)(2)33333,1(2)(2)33,1,,,n n n n n n n n n nnn n n n a x a x a x a a x a x a x a a x a x a a x a x a +++++ +++= +++= ++= ++= (2),⎧⎪⎪⎪⎨⎪⎪⎪⎩继续类似的过程,在第k 次消元时,设(1)k kk a -,将第i 个方程减去第k 个方程乘以(1)(1)/k k ik ik kk m a a --=,这里1,3,4,1,1,,i k k n =-+ .经过1n -次消元,得到(2)1111,1(1)(2)2222,1(2)(2)33,1,,,n n n n n a x a a x a a x a +++⎧ =⎪ =⎪⎪ ⎨⎪⎪⎪ =⎩其中()(1)(1),1,2,,1,1,,k k k ij ij ik kj a a m a i k k n --=-=-+ ;1,2,,,1; 1,2,,1j n n k n =+=- .此时,求解回代过程为(1)(1),1/,1,2,,n i i i n iix a a i n --+= = 经统计,总的计算量约为312M n ≈次乘除法. 从表面上看Gauss-Jordan 消去法似乎比Gauss 消去法好,但从计算量上看Gauss -Jordan 消去法明显比Gauss消去法的计算量要大,这说明用Gauss-Jordan 消去法解线性方程组并不可取.但用此方法求矩阵的逆却很方便. 3.列选主元Gauss 消去法在介绍Gauss 消去法时,始终假设(1)0k kk a -≠,称(1)k kka -为主元.若(1)0k kka -=,显然消去过程无法进行.实际上,既使(1)0k kka -≠,但(1)k kka -很小时,用它作除数对实际计算结果也是很不利的.称这样的(1)k kka -为小主元.【例2.2】设计算机可保证10位有效数字,用消元法解方程1112120.3100.7,0.9,x x x x -⎧⨯+=⎪⎨ +=⎪⎩【解】经过第一次消元:第2个方程减去第1个方程乘以212111/m a a =得1112(1)(1)222230.3100.7x x a x a -⎧⨯+=⎪⎨ =⎪⎩其中(1)1222222111/0.333333333310a a a a =-=-⨯,(1)123323211113(/)0.233333333310a a a a a =-⋅=-⨯于是解得(1)(1)223221/0.7000000000,0.0000000000,x a a x ⎧==⎪⎨=⎪⎩而真解为120.2,0.7x x = =注:造成结果失真的主要因素是主元素11a太小,而且在消元过程中作了分母,为避免这个情况发生,应在消元之前,作行交换.【定义】 若 (1)(1)||max ||k k k r k ik k i na a --≤≤=,则称(1)||k k r k a - 为列主元素. k r 行为主元素行,这时可将第 k r行与第k 行进行交换,使(1)||k k r k a - 位于交换后的等价方程组的 (1)k kk a - 位置,然后再施实消去法,这种方法称为列选主元Gauss 消去法或部分主元Gauss 消去法.【例2.3】 应用列选主元Gauss 消去法解上述方程. 【解】 因为2111a a >,所以先交换第1行与第2行,得1211120.9,0.3100.7,x x x x -⎧+=⎪⎨⨯+=⎪⎩ 然后再应用Gauss 消去法,得到消元后的方程组为1220.9,0.7.x x x ⎧+=⎨=⎩回代求解,可以得到正确的结果.即120.2,0.7x x = =.三、三角分解法 设方程组Ax b =的系数矩阵A 的顺序主子式不为零.即1112121222110,1,2,,.kk k k k kka a a a a a k n a a a ∆=≠=在Gauss 消去法中,第一次消元时,相当于用单位下三角阵211131111010010n m L m m -⎡⎤⎢⎥- ⎢⎥⎢⎥=- ⎢⎥ ⎢⎥⎢⎥- ⎢⎥⎣⎦ ,左乘方程组Ax b =,得11A x b =,其中11121(1)(1)122211(1)200n n n nn a a a a a A L a a -(1)⎡⎤⎢⎥ ⎢⎥==⎢⎥ ⎢⎥⎢⎥ ⎣⎦ ,1(1)(1)111,11,1,1(,,,)Tn n n n b L b a a a -+++== .第二次消元时,相当于用单位下三角阵1232210101001n L m m - ⎡⎤⎢⎥ ⎢⎥⎢⎥= - ⎢⎥⎢⎥⎢⎥ - ⎢⎥⎣⎦0 ,左乘方程组11A x b =,得22A x b =其中11121(1)(1)22211(2)(2)221333(2)(2)300000n n n n nn a a a a a A L L A a a a a --⎡⎤ ⎢⎥ ⎢⎥⎢⎥== ⎢⎥⎢⎥ ⎢⎥ ⎢⎥⎣⎦ ,11(1)(2)(2)2211,12,13,1,1(,,,,).Tn n n n n b L L b a a a a --++++==经过1n -次消元,最后得到等价方程组11n n A x b --=其中11121(1)222111111221(1)n n n n n n nn a a a a a A L L L L A a (1)--------⎡⎤⎢⎥ ⎢⎥==⎢⎥⎢⎥⎢⎥ ⎣⎦1111(1)(1)112221,12,1,1(,,,)n Tn n n n n n n b L L L L b a a a --------+++==注意到1n A -是一个上三角阵,记111111221n n n U A L L L L A -------==则121()n A L L L U LU -==其中,121n L L L L -= . 不难验证21313212_1111n n nn m L m m m m m ⎡⎤⎢⎥ ⎢⎥⎢⎥= ⎢⎥ ⎢⎥⎢⎥ 1 ⎢⎥⎣⎦是单位下三角阵.于是解线性方程组Ax b =,就转化为解方程 LUx b =,若令Ux y =就得到一个与 Ax b =等价的方程组Ly b Ux y =⎧⎨=⎩【定理2.2】 若 A 为 n 阶方阵,且 A 的所有顺序主子式0k ∆≠,1,2,,k n = .则存在唯一的一个单位下三角矩阵 L 和一个上三角矩阵 U ,使A LU =.在上述过程中,若不假设A 的顺序主子式都不为零,只假设A 非奇异,那么Gauss 消去法将不可避免要应用两行对换的初等变换.第一次消元,将第1行与第1r 行交换,相当于将方程组Ax b =左乘矩阵11r P :1111r r P Ax P b=经第一次消元得11111111r r L P Ax L P b--=即系数矩阵为11111r A L P A-=,其中110111r P ⎡⎢ ⎢ 1= 1 0 1 ⎣0 0 ⎤⎥⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎦1 列 1r列 类似地,经1n -次消元,有121111111,22,11n n n n n r n n r r A L P L P L P A----------= .如果预先知道每一个(1,2,,1)iir P i n =- ,则在消元之前就全部作交换,得 1211,2,1,n n n r n r r A P P P A PA----== ,其中,1211,2,1,n n n r n r r P P P P ----= .即原方程变为PAx Pb =然后再消元,相当于对PA 做三角分解PA LU =由以上讨论,可得结论 【定理2.3】 若A 非奇异,则一定存在排列矩阵 P ,使得 PA 被分解为一个单位下三角阵和一个上三角1 行1行r阵的乘积,即PA LU =成立.这时,原方程组Ax b = 等价于 PAx Pb =,即等价于求解LUx Pb =令Ux y =则Ly Pb =实际求解时,先解方程组Ly Pb =,再根据 y 求解 Ux y =,即得原方程组Ax b =的解. 这种求解方法称为三角分解法.常用三角分解方法有以下几种. 1.Doolittle 分解方法 假设系数矩阵A 不需要进行行交换,且三角分解是唯一的. 记21121110n n l L l l ⎡⎤⎢⎥ ⎢⎥=⎢⎥ ⎢⎥ ⎢⎥⎣⎦ , 11121222n n nn u u u u u U u ⎡⎤⎢⎥ ⎢⎥=⎢⎥ ⎢⎥ 0 ⎣⎦ 于是有1112111121222212222112111110n n n n n n n n nn a a a u u u u u a a a l l l a a a ⎡⎤ ⎡⎤⎢⎥⎢⎥ ⎢⎥⎢⎥=⎢⎥⎢⎥ ⎢⎥⎢⎥ ⎢⎥⎢⎥ ⎣⎦⎣⎦ nn u ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥0 ⎣⎦从前面讨论A 的LU 分解过程可看出,L 、U 的元素都是用有关的(1)k ij a -来表示的,而它们的计算较麻烦.现在给出直接从系数矩阵A ,通过比较等式的两边逐步把L 和U 构造出来的方法,而不必利用Gauss 消去法的中间结果(1)k ij a -.计算步骤: (1) 由L 阵的第1行分别乘U 阵的各列,先算出U 阵的第1行元素 11,1,2,,j j u a j n = = .然后,由L 阵的各行分别去乘U 阵的第1列,算出L 阵的第1列元素1111/,2,3,,i i l a a i n = = .(2)现假设已经算出U 阵的前1r -行元素,L 阵的前1r -列元素,下面来算U 阵的第r 行元素,L 阵的第r 列元素.由L 阵的第r 行分别乘U 阵的第j 列(,1,,)j r r n =+ ,得11r ij rk kj rjk a l u u -==+∑所以,得U 阵的第r 行元素11,,1,,r rj rj rk kj k u a l u j r r n-==- =+∑ .再由L 阵的第i 行(1,2,,)i r r n =++ 分别去乘U 阵的第r 列,得11r ir ik kr ir rrk a l u l u -==+∑,所以,得L 阵的第r 列元素11[]/,1,2,,.r ir ir ik kr rr k l a l u u i r r n -==- =++∑取1,2,,r n = 逐步计算,就可完成三角分解A LU =;(3)解与Ax b = 等价的方程组Ly b Ux y =⎧⎨=⎩逐次用向前代入过程先解Ly b = 得1111,2,3,,.i i i ij j j y b y b l y i n -==⎧⎪⎨=- =⎪⎩∑然后再用逐次向后回代过程解Ux y =得1/,()/,1,2,,2,1.n n nn n i i ij j ii j i x y u x y u x u i n n =+=⎧⎪⎨=- =--⎪⎩∑2.Crout 分解方法仍假设系数矩阵A 不需要进行行交换,且三角分解是唯一的.即ˆA L=ˆU .与Doolittle 分解方法的区别在111212122211n n n n nn a a a a a a a a a ⎡⎤ ⎢⎥ ⎢⎥=⎢⎥ ⎢⎥⎢⎥ ⎣⎦ 1122ˆˆl l ⎡⎤ 0⎢⎥ ⎢⎥⎢⎥ ⎢⎥⎢⎥⎣⎦ 122ˆ1ˆ10n u u ⎡⎤⎢⎥ ⎢⎥⎢⎥ ⎢⎥ 1 ⎣⎦ 比较两边,则可推导出与Doolittle 分解方法类似的公式,不过Crout 分解方法是先算ˆL 的第r 列,然后再算ˆU的第r 行.3.Cholesky 分解方法若 A 为对称正定矩阵,则有 ˆT U L =,即11()()TT T A LDL LD LD LL ===其中L 为下三角阵. 进一步展开为1121111211112122221222221212n n n n n n nn n n nn a a a l l l l a a a l l l l l l l a a a ⎡⎤⎡⎤ ⎢⎥⎢⎥ 0 ⎢⎥⎢⎥=⎢⎥⎢⎥ ⎢⎥⎢⎥ ⎢⎥ ⎢⎥⎣⎦⎣⎦ 0nn l ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥ ⎣⎦ 比较两边对应元素,容易得到12121()r rr rr rk k l a l -==-∑ ,11()/r ir ir ik rk rrk l a l l l -==-∑ 1,2,,;1,2,,.r n i r r n ==++Cholesky 分解的优点:不用选主元. 由21rrr rk k a l ==∑ 可以看出||1,2,,.rk l k r ≤=这表明中间量rk l得以控制,因此不会产生由中间量放大使计算不稳定的现象. Cholesky 分解的缺点:需要作开方运算. 改进的Cholesky 分解: 改为使用分解T A LDL =即11121121121221222121111n n n n n n n n nn a a a d l l l d a a a l l d a a a ⎡⎤ 1 ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥ 1 1 ⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥ ⎢⎥⎢⎥⎢⎥ ⎢⎥ ⎣⎦⎣⎦⎣⎦ 2n l ⎡⎤⎢⎥ ⎢⎥⎢⎥ ⎢⎥ 1⎣⎦其中21ˆl 1ˆn l 2ˆn l ˆnn l 1ˆn u12111()/r r rr rk k k r ir ir ik k rk rk d a l d l a l d l d-=-=⎧=-⎪⎪⎨⎪=-⎪⎩∑∑,1,2,,;1,2,,.r n i r r n ==++Cholesky 分解方法或平方根法:应用Cholesky 分解可将Ax b =分解为两个三角形方程组T Ly b L x y ⎧= ⎪⎨= ⎪⎩分别可解得111111/,()/.i i i ik k ii k y b l y b l y l i n -=⎧=⎪⎨=-, =2,3,,⎪⎩∑和1/,()/1,.n n nn n i i ki k ii k i x y l x y l x l i n n =+⎧=⎪⎨=-, =--2,,2,1⎪⎩∑改进的Cholesky 分解方法或改进的平方根法:应用改进的Cholesky 分解,将方程组Ax b =分解为下面两个方程组1,,T Ly b L x D y -= ⎧⎨= ⎩同理可解得1111,,2,3,,.i i i ik k k y b y b l y i n ==⎧=⎪⎨=- =⎪⎩∑和1/,/,1,2,,2,1.n n n n i i i ki k k i x y d x y d l x i n n =+⎧=⎪⎨=- =--⎪⎩∑ 4.解三对角方程组的追赶法若()ij n n A a ⨯=满足1||||,1,2,,.nii ij j j ia a i n =≠> =∑则称A 为严格对角占优矩阵.若A 满足1||||,1,2,,.nii ij j j ia a i n =≠≥ =∑且其中至少有一个严格不等式成立,则称A 为弱对角占优矩阵.现在考虑Ax d = 的求解,即11112222211111n n n n n n n n n b c x d a b c x d a b c x d d a b x -----⎡⎤⎡⎤⎡⎤ ⎢⎥⎢⎥⎢⎥ ⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥ = ⎢⎥⎢⎥⎢⎥ ⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ 系数矩阵A 满足条件11||||0,||||||,,0,2,3,, 1.||||0,i i i i i n n b c b a c a c i n b a ⎧>>⎪≥+ ≠=-⎨⎪>>⎩采用Crout 分解方法11112222221111n n n n n n n b c a b c a b c a b βαβγαγα---⎡⎤ ⎡⎤⎢⎥ 1 ⎢⎥⎢⎥ ⎢⎥⎢⎥ = ⎢⎥⎢⎥ ⎢⎥ ⎢⎥ ⎢⎥⎢⎥⎣⎦ ⎣⎦ 1n β-⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥1 ⎢⎥⎢⎥ 1 ⎣⎦其中,,,i i i αβγ为待定系数.比较上式两边可得到111111,;,,2,3,,;,2,3,, 1.i i i i i i i i i b c a b i n c i n ααβγγβααβ-= == =+ == =-进而可导出1111111,2,3,,.,/,,2,3,,./(),2,3,, 1.i i i i i i ii i i i a i n b c b b i n c b i n γαβααββαβ--⎧= =⎪= =⎪⎨=- =⎪⎪=- =-⎩由此可看出,真正需要计算的是(1,2,,1)i n β=- ,而i α可由,i i b a 和1i β-产生.因此,实现了A 的Crout 分解后,求解Ax d =就等价于解方程组Ly dUx y =⎧⎨=⎩从而得到解三对角方程组的追赶法公式: (1) 计算i β的递推公式:1111/,/(),2,3,, 1.i i i i i c b c b i n ββαβ-⎧=⎪⎨=- =-⎪⎩(2) 解方程组Ly d =:11111/()/(),2,3,,.i i i i i i i y d b y d a y b a i n β--⎧=⎪⎨=-- =⎪⎩(3) 解方程组Ux y =:1,1,2,,2,1.n n i i i i x y x y x i n n β+⎧=⎪⎨=- =--⎪⎩追赶法的乘除法次数是66n -次.将计算121n βββ-→→→ 及12n y y y →→→ 的过程称之为“追”的过程,将计算方程组Ax d =的解121n n x x x x -→→→→ 的过程称之为“赶”的过程.四、迭代法 将Ax b =改写为一个等价的方程组 x Bx k =+建立迭代公式 (1)(),0,1,2,.i i x Bx k i +=+ =称矩阵B 为迭代矩阵.【定义】 如果对固定的矩阵B及向量k,对任意初始猜值向量(0)x ,迭代公式(1)()i i +()i()*lim i i x x →+∞=成立,其中*x 是一确定的向量,它不依赖于(0)x 的选取.则称此迭代公式是收敛的,否则称为发散的.如果迭代收敛,则应有**,x Bx k =+1. 收敛性()()*,0,1,2,i i x x i ε=- =为第i步迭代的误差向量.则有(1)(1)*()*()(),0,1,2,.x x B x x B i εε++=-=-==所以,容易推出()(0),0,1,2,,i i B i εε= =其中,(0)(0)*xxε=-为初始猜值的误差向量.设n nB K ⨯∈,lim 0i i B →+∞=⇔ ()1B ρ<.迭代法收敛基本定理: 下面三个命题是等价的 (1) 迭代法(1)()i i x Bx k +=+收敛;(2)()1B ρ<;(3) 至少存在一种矩阵的从属范数⋅,使1B <注:当条件()1B ρ<难以检验时,用1B 或B ∞等容易求出的范数,检验11B <或1B∞<来作为收敛的充分条件较为方便.常用迭代法如下. 2.Jacob 迭代 考察线性方程组Ax b =,设A 为非奇异的n 阶方阵,且对角线元素0ii a ≠(1,2,,)i n = .此时,可将矩阵A 写成如下形式A D L U =++,1122(,,,)nn D diag a a a = ,21313212000n n a L a a a a ⎡⎤⎢⎥ ⎢⎥⎢⎥= ⎢⎥ ⎢⎥⎢⎥ 0 ⎢⎥⎣⎦ ,12131232000n n a a a a a U ⎡⎤ ⎢⎥ ⎢⎥⎢⎥= 0 ⎢⎥ ⎢⎥⎢⎥ ⎢⎥⎣⎦ ,建立Jacobi 迭代公式(1)1()1(),i i x D L U x D b +--=-++迭代矩阵11()J B D L U I D A --=-+=-J B 的具体元素为112111122122221200n n J n n nn nn a a a a a a B a a a a a a ⎡⎤ - -⎢⎥⎢⎥⎢⎥- - ⎢⎥=⎢⎥⎢⎥ ⎢⎥⎢⎥- - 0 ⎢⎥⎣⎦ Jacobi 迭代法的分量形式如下1(1)()()111(),j n i i i jj jm m jm m m m j jj xb a x a x a -+==+=--∑∑1,2,,;0,1,2,.j n i = =3.Gauss-Seidel 迭代容易看出,在Jacobi 迭代法中,每次迭代用的是前一次迭代的全部分量()(1,2,,)i jx j n = .实际上,在计算(1)i j x +时,最新的分量(1)(1)(1)121,,,i i i j x x x +++- 已经算出,但没有被利用.事实上,如果Jacobi 迭代收敛,最新算出的分量一般都比前一次旧的分量更加逼近精确解,因此,若在求(1)i j x+时,利用刚刚计算出的新分量(1)(1)(1)121,,,i i i j x x x+++- ,对Jacobi 迭代加以修改,可得迭代公式1(1)(1)()111(),j ni i i jj jm m jm m m m j jj xb a x a x a -++==+=--∑∑1,2,,;0,1,2,.j n i = =矩阵形式(1)1()1()(),0,1,2,.i i x D L Ux D L b i +--=-++-+=1()G B D L U -=--+注:(1)两种迭代法均收敛时,Gauss-Seidt 迭代收敛速度更快一些.(2)但也有这样的方程组,对Jacobi 迭代法收敛,而对Gauss-Seidel 迭代法却是发散的. 【例2.4】 分别用Jacobi 迭代法和Gauss-Seidel 迭代法求解下面的方程组121232342,46,4 2.x x x x x x x ⎧- =⎪-+-=⎨⎪-+=⎩初始猜值取0(0,0,0)x =. 【解】 Jacobi 迭代公式为(1)()12(1)()()213(1)()321(2),41(6),0,1,2,41(2),4i i i i i i i x x x x x i x x +++⎧=+⎪⎪⎪=++=⎨⎪⎪=+⎪⎩迭代计算4次的结果如下 (1)(2)(3)(4)(0.5,1.5,0.5),(0.875,1.75,0.875),(0.938,1.938,0.938),(0.984,1.969,0.984).T T T T x x x x ====Gauss-Seidel 迭代公式为(1)()12(1)(1)()213(1)(1)321(2),41(6),0,1,2,41(2),4i i i i i i i x x x x x i x x +++++⎧=+⎪⎪⎪=++=⎨⎪⎪=+⎪⎩迭代计算4次的结果如下(1)(2)(3)(4)(0.5,1.625,0.9063),(0.9063,1.9532,0.9883),(0.9883,2.0,0.9985),(0.9985,1.999,0.9998).T T T T x x x x ====从这个例子可以看到,两种迭代法作出的向量序列(){}i x 逐步逼近方程组的精确解*(1,2,1)T x =,而且Gauss-Seidel 迭代法收敛速度较快.一般情况下,当这两种迭代法均收敛时,Gauss-Seidt 迭代收敛速度更3.超松弛迭代法为了加快迭代的收敛速度,可将Gauss-Seidel 迭代公式改写成1(1)()(1)()11(),j ni i i i jjj jm m jm m m m jjj xx b a x a x a -++===+--∑∑ 1,2,,;0,1,2,.j n i = =并记1(1)(1)()11(),j ni i i jj jm m jm m m m jjj rb a x a x a -++===--∑∑称 (1)i j r + 为 1i + 步迭代的第 j 个分量的误差向量.当迭代收敛时,显然有所有的误差向量(1)0(),1,2,,.i j r i j n +→→∞=为了获得更快的迭代公式,引入因子R ω∈,对误差向量 (1)i j r + 加以修正,得超松弛迭代法(简称SOR 方法)(1)()(1),0,1,2,.i i i j j j x x r i ω++=+ =即1(1)()(1)()1(),j ni i i i jjj jm mjm m m m jjjxx b a xa x a ω-++===+--∑∑1,2,,;0,1,2,.j n i = =适当选取因子ω,可望比Gauss-Seidel 迭代法收敛得更快.称ω为松弛因子.特别当1ω=时,SOR 方法就是Gauss-Seidel 迭代法.写成矩阵向量形式(1)1()1()[(1)](),j i x D L D U x D L b ωωωωω+--=+--++0,1,2,.i =迭代矩阵为1()[(1)].B D L D U ωωωω-=+--实际计算时,大部分是由计算经验或通过试算法来确定opt ω的近似值.所谓试算法就是从同一初始向量出发,取不同的松驰因子ω迭代相同次数(注意:迭代次数不应太少),然后比较其相应的误差向量()()i i r b Ax =-(或()(1)i i x x --),并取使其范数最小的松弛因子ω作为最佳松弛因子opt ω的近似值.实践证明,此方法虽然简单,但往往是行之有效的. 4.迭代收敛其它判别方法:用迭代法收敛基本定理来判断收敛性时,当n 较大时,迭代矩阵的谱半径计算比较困难,因此,人们试图建立直接利用矩阵元素的条件来判别迭代法的收敛定理. (1) 若方程组Ax b =中的系数矩阵A 是对称正定阵,则 Gauss-Seidel 迭代法收敛. 对于SOR 方法,当02ω<< 时迭代收敛(2)若A 为严格对角占优阵,则解方程组 Ax b = 的Jacobi 迭代法,Gauss -Seidel 迭代法均收敛. 对于SOR 方法,当01ω<< 时迭代收敛.【例2.5】 设线性方程组为121221,32,x x x x ⎧+=-⎪⎨+=⎪⎩建立收敛的Jacobi 迭代公式和Gauss -Seidel 迭代公式. 【解】 对方程组直接建立迭代公式,其Jacobi 迭代矩阵为0230J B -⎡⎤=⎢⎥- ⎣⎦,显见谱半径()1J B ρ=>,故Jacobi 迭代公式发散.同理Gauss -Seidel 迭代矩阵为0206G B -⎡⎤=⎢⎥ ⎣⎦,谱半径()61G B ρ=>,故Gauss -Seidel 选代公式也发散. 若交换原方程组两个方程的次序,得一等价方程组121232,21,x x x x ⎧+=⎪⎨+=-⎪⎩其系数矩阵显然对角占优,故对这一等价方程组建立的Jacobi 迭代公式,Gauss -Seidel 迭代公式皆收敛. (3)SOR 方法收敛的必要条件是 02ω<<【定理2.5】 如果A 是对称正定阵,且02ω<<,则解Ax b =的SOR 方法收敛.注:当(0,2)ω∈ 时,并不是对任意类型的矩阵A ,解线性方程组Ax b =的SOR 方法都是收敛的.当SOR 方法收敛时,通常希望选择一个最佳的值opt ω使SOR 方法的收敛速度最快.然而遗憾的是,目前尚无确定最佳超松弛因子opt ω的一般理论结果.实际计算时,大部分是由计算经验或通过试算法来确定opt ω的近似值.所谓试算法就是从同一初始向量出发,取不同的松驰因子ω迭代相同次数(注意:迭代次数不应太少),然后比较其相应的误差向量()()i i r b Ax =-(或()(1)i i x x --),并取使其范数最小的松弛因子ω作为最佳松弛因子opt ω的近似值.实践证明,此方法虽然简单,但往往是行之有效的.【例2.6】 求解线性方程组Ax b =,其中10.3000900.308980.30009100.4669110.274710.30898A - -- -0.46691 0= - -- 00.274711(5.32088,6.07624,8.80455,2.67600).T b ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥ - ⎣⎦ =-分别利用Jacobi 迭代法,Gauss -Seidel 迭代法,SOR 迭代法求解. 【解】其结果列入下表中,方程组精确解(五位有效数字)为*(8.4877,6.4275, 4.7028,4.0066).T x =-Jacobi 迭代法计算结果i()1i x()2i x ()3i x ()4i x ()2||||i r0 012.3095 1 5.3209 6.0762 -8.8046 2.6760 5.3609 27.97113.5621 -5.2324 1.90143.631820 8.4872 6.4263 -4.7035 4.0041 0.0041 218.48606.4271 -4.7050 4.0063 0.0028Gauss-Seidel 迭代法计算结果i()1i x()2i x()3i x()4i x()2||||i r0 012.3095 1 5.3209 7.6730 -5.2220 2.8855 3.6202 28.51506.1933 -5.1201 3.90040.49098 8.4832 6.4228 -4.7064 4.0043 0.0078 98.48556.4252-4.70554.00550.0038SOR 迭代法计算结果(1.16ω=)i()1i x()2i x()3i x()4i x()2||||i r0 012.3095 1 6.1722 9.1970 -5.2320 3.6492 3.6659 29.69416.1177 -4.8999 4.43351.33136 8.4842 6.4253 -4.7005 4.4047 0.0051 78.48686.4288-4.70314.00650.0016计算结果表明,若求出精确到小数点后两位的近似解,Jacobi 迭代法需要21次,Gauss -Seidel 迭代法需要9次,而SOR 迭代法(选松弛因子 1.16ω=)仅需要7次,起到加速作用.5.误差分析 【定理2.6】设 *x 是方程 Ax b = 的惟一解,v ⋅ 是某一种向量范数,若对应的迭代矩阵其范数1v B <,则迭代法(1)(),0,1,2,.i i xBx k i +=+ = 收敛,且产生向量序列(){}i x 满足()*()(1)||||||||||||1||||i i i vv vvB x x x x B --≤--()*(1)(0)||||||||||||1||||i i vv vvB x x x x B -≤--【证明】 由迭代收敛基本定理的(3)知,迭代法(1)(),0,1,2,.i i x Bx k i +=+ =收敛到方程的解*x .于是,由迭代公式立即得到(1)*()*(1)()()(1)(),().i i i i i i x x B x x x x B x x ++--=--=-为书写方便把v 范数中v 略去,有估计式(1)*()*||||||||||||,i i x x B x x +-≤⋅-(1)()()(1)||||||||||||.i i i i x x B x x +--≤⋅-再利用向量范数不等式||||||||||||x y x y -≥-于是得第一个不等式()(1)(1)()()*(1)*()*||||||||||||||||||||(1||||)||||,i i i i i i i B x x x x x x x x B x x -++ -≥-≥--- ≥--再反复递推即第二个不等式.注:(1)若事先给出误差精度ε,利用第二个不等式可得到迭代次数的估计(1)(0)(1||||)ln ln ||||||||v v v B i B x x ε⎡⎤->⎢⎥-⎣⎦ (2)在||||v B 不太接近1的情况下,由第一个不等式,可用()(1)||||i i v x x ε--<作为控制迭代终止的条件,并取 ()i x 作为方程组 Ax b = 的近似解.但是在||||v B 很接近1时,此方法并不可靠.一般可取1,2,v =∞或F .【例2.7】 用Jacobi 迭代法解方程组123123123202324,812,231530.x x x x x x x x x ⎧++=⎪++=⎨⎪-+=⎩问Jacobi 迭代是否收敛?若收敛,取(0)(0,0,0)T x =,需要迭代多少次,才能保证各分量的误差绝对值小于610-?【解】 Jacobi 迭代的分量公式为(1)()()123(1)()()213(1)()()3121(2423)201(12),0,1,2,81(3022),15i i i i i i i i i x x x x x x i x x x +++⎧=--⎪⎪⎪=-- =⎨⎪⎪=-+⎪⎩Jacobi 迭代矩阵J B 为130102011088210155J B ⎡⎤ - -⎢⎥⎢⎥⎢⎥=- -⎢⎥⎢⎥⎢⎥- ⎢⎥⎣⎦,由5251||||max ,,1208153J B ∞⎧⎫==<⎨⎬⎩⎭知,Jacobi 迭代收敛. 因设(0)(0,0,0)Tx =,用迭代公式计算一次得(1)(1)(1)12363,, 2.52x x x = = =而(1)(0)|||| 2.x x ∞-=于是有6110(1)13ln ln 13.23i -⎡⎤⋅-⎢⎥>=⎢⎥⎢⎥⎣⎦所以,要保证各分量误差绝对值小于610-,需要迭代14次.【例2.8】 用Gauss -Seidel 迭代法解例2.11中的方程组,问迭代是否收敛?若收敛,取(0)(0,0,0)Tx =,需要迭代多少次,才能保证各分量误差的绝对值小于610-?【解】 Gauss -Seidel 迭代矩阵G B 为102403601()03025524000G B D L U - - ⎡⎤⎢⎥=-+= -⎢⎥⎢⎥ 38 -3⎣⎦显然1||||14G B =<,所以迭代收敛. Gauss -Seidel 迭代分量公式为(1)()()123(1)(1)()213(1)(1)(1)3121(2423),201(12),0,1,2,81(3022),15i i i i i i i i i x x x x x x i x x x ++++++⎧=--⎪⎪⎪=-- =⎨⎪⎪=-+⎪⎩因取(0)(0,0,0)T x =,故迭代一次得(1)(1)(1)1231.2, 1.35, 2.11x x x = = =于是有(1)(0)|||| 2.11x x ∞-=,计算得6110(1)14ln ln 10.2.114i -⎡⎤⋅-⎢⎥>=⎢⎥⎢⎥⎣⎦所在,要保证各分量误差绝对值小于610-,需要迭代11次.。
高等数学第二章答案
高等数学第二章答案【篇一:高等数学第二章复习题及答案】>第二章一、填空题f(a?x)?f(a?x)?x?0xf(3?h)?f(3)?2、设f?(3)?2,则lim。
h?0______________2h1、设f(x)在x?a可导,则lim。
3、设f(x)?e,则limh?0?1xf(2?h)?f(2)?。
_____________hcosx?,f?(x0)?2,(0?x0?),则f(x0)?。
_______________________1?sinx2dy?5、已知x2y?y2x?2?0,则当经x=1、y=1时,。
dx_______________4、已知f(x)?6、f(x)?xex,则f???(ln2)?_______________。
__________7、如果y?ax(a?0)是y?x2?1的切线,则a?。
8、若f(x)为奇函数,f?(x0)?1且,则f?(?x0)?9、f(x)?x(x?1)(x?2)?(x?n),则f?(0)?10、y?ln(1?3?x),则y??11、设f?(x0)??1,则limx?0______________________________________________________。
x。
?___________f(x0?2x)?f(x0?x)_________________________12、设x?y?tany,则dy?。
13、设y?y???(0)?。
_______________14、设函数y?f(x)由方程xy?2lnx?y4所确定,则曲线y?f(x)在点(1,1)处的切线方程是______________________。
1???xcos15、f(x)??x??0_______________________x?0x?0。
,其导数在x?0处连续,则?的取值范围是16、知曲线y?x3?3a2x?b与x轴相切,则b2可以通过a表示为二、选择题。
大学数学第二册详细答案汇总
第一章 矩阵与行列式习题解答练习1.1 矩阵及其运算1. 已知线性变换x y y y x y y y x y y y 1123212331232235323=++=++=++⎧⎨⎪⎩⎪①②③, 求从变量x 1,x 2,x 3到变量y 1,y 2,y 3的线性变换。
解:由3x (1)–2×(2)得:4y 2–7y 3=3x 1–2x 2 ④ (3)–(2)得:y 2–2y 3=x 3–x 2 ⑤ (4)–4×(5)得:y 3=3x 1+2x 2–4x 3类似运算可得:y 1=–7x 1–4x 2+9x 3, y 2=6x 1+3x 2–7x 3 故由变量x 1,x 2,x 3到变量y 1,y 2,y 3的线性变换为y x x x y x x x y x x x112321233123749637324=--+=+-=+-⎧⎨⎪⎩⎪ 2. 已知两个线性变换x y y x y y y x y y y11321233123223245=+=-++=++⎧⎨⎪⎩⎪ y z z y z z y z z112213323323=-+=+=-+⎧⎨⎪⎩⎪ 求从z 1, z 2, z 3到x 1, x 2, x 3的线性变换。
解:将变换2代入变换1可得:x z z z x z z z x z z z1123212331236312491016=-++=-+=--+⎧⎨⎪⎩⎪3. 设A =111111111--⎛⎝⎫⎭⎪⎪⎪,B =123124051--⎛⎝ ⎫⎭⎪⎪⎪,求3AB –2A 及A T B 解:3AB –2A =3111111111--⎛⎝⎫⎭⎪⎪⎪123124051--⎛⎝ ⎫⎭⎪⎪⎪–2111111111--⎛⎝ ⎫⎭⎪⎪⎪ =3058056290-⎛⎝⎫⎭⎪⎪⎪–2111111111--⎛⎝ ⎫⎭⎪⎪⎪=----⎛⎝ ⎫⎭⎪⎪⎪21322217204292 A T B =111111111--⎛⎝⎫⎭⎪⎪⎪123124051--⎛⎝ ⎫⎭⎪⎪⎪=058056290-⎛⎝ ⎫⎭⎪⎪⎪ 4. 解:(1) (35, 6, 49)T , (2) (10) (3) ---⎛⎝⎫⎭⎪⎪⎪241236 (4) 6782056---⎛⎝ ⎫⎭⎪ (5) a x a x a x a x x a x x a x x 111222223332121213132323222+++++5. 设A =1213⎛⎝⎫⎭⎪,B =1012⎛⎝ ⎫⎭⎪,问 (1) AB =BA 吗? (2) (A +B )2=A 2+2AB +B 2吗? (3) (A +B )(A –B )=A 2–B 2吗? 解:AB =1213⎛⎝⎫⎭⎪1012⎛⎝ ⎫⎭⎪=3446⎛⎝ ⎫⎭⎪, BA =1012⎛⎝ ⎫⎭⎪1213⎛⎝ ⎫⎭⎪=1238⎛⎝ ⎫⎭⎪故 AB ≠BA 。
高等数学第二章答案2-4
高等数学第二章答案2-4习题241求由下列方程所确定的隐函数y的导数(1)y22某y90(2)某3y33a某y0(3)某ye某y(4)y1某ey解(1)方程两边求导数得2yy2y2某y0于是(y某)yyyyy某dyd某(2)方程两边求导数得3某23y2y2ay3a某y0于是(y2a某)yay某2ay某2y2ya某(3)方程两边求导数得y某ye某y(1y)于是(某e某y)ye某yye某yyy某e某y(4)方程两边求导数得yey某eyy于是(1某ey)yeyeyy1某ey在点(a,2a)处的切线方程和法线方程44解方程两边求导数得22某32y3y033112求曲线某32y32a3于是y1某3y3在点(a,a)处y144所求切线方程为ya(某a)即某ya442所求法线方程为ya(某a)即某y044d2y3求由下列方程所确定的隐函数y的二阶导数d某22(1)某y1(2)b2某2a2y2a2b2(3)ytan(某y)(4)y1某ey解(1)方程两边求导数得2某2yy0y某yy某某y某yyy2某2某1y(yy2y2y3y3(2)方程两边求导数得2b2某2a2yy02by2某ay2b某y某(2y2y某y2abby222ayay22a2y2b2某24bb223aa2y3ay(3)方程两边求导数得yec2(某y)(1y)e2c(某y)1y221ec(某y)co(某y)12in(某y)co2(某y)112in(某y)y22(1y2)221y3y3(12)yyyy5(4)方程两边求导数得yey某eyyyyyeeey1某ey1(y1)2yeyy(2y)ey(y)ey(3y)ye2y(3y)y223(2y)(2y)(2y) 4用对数求导法求下列函数的导数(1)y(某)某1某(2)y某5某222(3某)4(3)y(某1)(4)y某in某e某解(1)两边取对数得lny某ln|某|某ln|1某|,两边求导得11(某)某1yln某某ln1y某1某于是y(某某[l某1]1某1某1某(2)两边取对数得lny1ln|某5|1ln某(22)525两边求导得11112某yy5某525某2于是y15某5[112某]某22某55某2(3)两边取对数得lny1ln某(2)4ln3(某)5ln某(1)2两边求导得1y145y2(某2)3某某1某2(3某)4145]于是y[2(某2)某3某1(某1)(4)两边取对数得lny1ln某1lnin某1ln1(e某)224两边求导得某111etyco某y2某24(1e)某某e某[11co某te某]于是y某in2某24(1e)某1e某2某in某e[2cot某某]4某e15求下列参数方程所确定的函数的导数dyd某某at2(1)2ybt某(1in)(2)yco2dyy解(1)t3bt3btd某某t2at2adyy(2)coin1incod某某某etint,时dy的值6已知求当tt3d某yecot.dyytetcotetintcotint解d某某teintecotintcot1dy12当t时d某131227写出下列曲线在所给参数值相应的点处的切线方程和法线方程某int(1)在t处4yco2t某3at1t(2)2在t=2处3aty1t2dyy解(1)t2in2td某某tcot)2in(2dy22某y0当t时002d某4co42所求切线方程为y2(某2)即某y202所求法线方程为y1(某即某4y10226at(1t2)3at22t6at(2)yt(1t)(1t)3a(1t2)3at2t3a3at2某t(1t)(1t)dyy6at22t2d某某t3a3at1tdy224当t2时某06ay012a2d某12355所求切线方程为y12a4(某6a)即4某3y12a0535所求法线方程为y12a3(某6a)即3某4y6a0545d2y8求下列参数方程所确定的函数的二阶导数d某2某t(1)2y1t.某acot(2)ybint某3et(3)ty2e某ft(t)(4)设f(t)存在且不为零tytf(t)f(t)12dyyt1dy(y21)解(1)d某某tt某ttt3d某2dyytbcotbcott(2)d某某taintabcc2t2dy(yb)某taintd某2a2in3tdyyt2et2e2t(3)d某某t3e322e2t2dy(y)t4e3t2某t9d某3edyyf(t)tf(t)f(t)t(4)d某某tf(t)d2y(y1某)t某tf(t)d某2d3y9求下列参数方程所确定的函数的三阶导数d某某1t2(1)3ytt某ln(1t2)(2)ytarctantdy(tt3)13t2解(1)d某(1t2)2t13t2)(d2y1(13)2t4ttd某1(13)3dy35(1t2)32td某8t311dy(tarctant)1t(2)2td某[ln(21t2)]21t1t)(2dy1t24td某1t2221td3y()t41d某8t21t10落在平静水面上的石头产生同心波纹若最外一圈波半径的增大率总是6m/问在2秒末扰动水面面积的增大率为多少?解设波的半径为r对应圆面积为S则Sr2两边同时对t求导得St2rr 当t2时r6212rt6故St|t22126144(米2秒)11注水入深8m上顶直径8m的正圆锥形容器中其速率为4m2/min当水深为5m时其表面上升的速度为多少?解水深为h时水面半径为r1h水面面积为S1h224水的体积为V1hS1h1h2h333412dV3h2dhdh4dVdt12dtdthdt已知h5(m),dV4(m3/min)因此dh42dV4416(m/min)dthdt2525dt12溶液自深18cm直径12cm的正圆锥形漏斗中漏入一直径为10cm的圆柱形筒中开始时漏斗中盛满了溶液已知当溶液在漏斗中深为12cm时其表面下降的速率为1cm/min问此时圆柱形筒中溶液表面上升的速率为多少?解设在t时刻漏斗在的水深为y圆柱形筒中水深为h于是有162181r2y52h33yry由得r代入上式得618311y6218(2y52h333即162181y352h333两边对t求导得221yy5ht3当y12时yt1代入上式得1122(1)ht160.64(cm/min).255。
高等数学第二章测验题答案
易知 , f ( x ) 在 | x | 1 处连续 . 在 x 1 处 , x 1 f ( x ) f ( 1) 1 , (1) lim f lim x 1 x 1 x 1 x ( 1)
f (1) lim f ( x ) f ( 1) x 1 x ( 1)
2. f ( x )在x a可导,则F ( x ) | f ( x ) | 在x a
2.
应选 (B ) .
不可导的充要条件是 ( ), 并说明理由 . ( A) f (a ) 0, f (a ) 0; ( B ) f (a ) 0, f (a ) 0;
(C ) f (a ) 0, f (a ) 0; ( D) f (a ) 0, f (a ) 0.
由于 f ( 1) f ( 1) , 故 f ( x ) 在 x 1 处不可导 . 在 x 1 处 ,
x 1 ( x 1)2 lim 4 0. x 1 x 1
x 1 , x 1 x 1 ( x 1)2 , f ( x) 4 1 x 1 x 1, x 1
同样可求导y2 x
tan x
tan x [sec x ln x ] x
2
2 y log 2 log 3 log 5 x;
解:令 y 1 1 (log3 log5 x) ln 2 log3 log5 x
1 1 1 1 (log5 x) ln 2 log3 log5 x ln 3 log5 x 1 1 1 1 1 1 ln 2 ln 3 ln 5 log3 log5 x log5 x x
一、 1.
应选 ( A) .
1. 设f ( x )可导,F ( x ) f ( x )(1 | sin x |),
高等数学第二章课后习题答案
⾼等数学第⼆章课后习题答案第⼆章导数与微分1. ()().1,102-'=f x x f 试按定义求设200200(1)(1)10(1)10'(1)lim lim1020lim lim (1020)20x x x x f x f x f x xx x x x→?→?→?→-+?--?---==-?==?-=-?2. 下列各题中均假定()0x f '存在,按导数定义观察下列极限,指出此极限表⽰什么, 并将答案填在括号内。
⑴ ()()=?-?-→?xx f x x f x 000lim(0'()f x -);⑵ ()=→?xx f x 0lim ('(0)f ),其中()()存在;且0,00f f '= ⑶ ()()=--+→hh x f h x f h 000lim(02'()f x ).3. 求下列函数的导数:⑴ ='=y x y ,4则34x ⑵ ='=y x y ,32则1323x -⑶ ='=y xy ,1则3212x -- ⑷ ='=y x x y ,53则115165x 4.求曲线. 21,3 cos 程处的切线⽅程和法线⽅上点??=πx y'sin ,'()3y x y π=-==-2(1)0y +-=法线⽅程为1)23y x π-=-化简得3)0x π+-+= 5. 讨论函数=≠=0001sin 2x x xx y 在0=x 处的连续性和可导性. 20(0)01lim sin 0(0)()x f x f x→===因为有界量乘以⽆穷⼩所以函数在0x =处连续因为 20001sin(0)(0)1lim limlim sin 0x x x x f x f x x xx x→?→?→?+?-==?=所以函数在0x =处可导.6. 已知()()()()是否存在?⼜及求 0 ,0 0 ,0 2f f f x x x x x f '''<-≥=-+ 2'00(0)(0)(0)lim lim 0h h f h f h f h h+→+→++-==='0lim 1h h f h f hf h h-→-→++--===- ''(0)(0)f f +-≠Q '(0)f ∴不存在7. ()(). , 0sin x f x x x x x f '??≥<=求已知当0x <时, '()(sin )'cos f x x x ==; 当0x >时, '()()'1f x x ==;当0x =时'00(0)(0)(0)limlim 1h h f h f hf hh +→→+-===++ '00(0)(0)sin (0)limlim 1h h f h f h f h h-→-→+-===- '(0)1f ∴=综上,cos ,0'()1,0x x f x x8. 求下列函数的导数:(1);54323-+-=x x x y (2);1227445+-+=x xx y 2222222232242222csc cot (1)2csc 2'(1)2(1)csc cot 4csc (1)23(3)(3ln )(2ln )(2)'(3ln )(94)ln 32(3ln )x x x x xy x x x x x x x x x x x x x xx y x x x x x x x x x x -+-=+-+-=+++-++=+-+-+=+g g 2'364652'20282y x x x ---=--+(3);3253xxe x y +-= (4);1sec tan 2-+=x x y2'152ln 23x x y x e =-+ 2'2sec sec tan y x x x =+(5);log 3lg 2ln 2x x x y +-= (6)()();7432x x y -+= 123'ln10ln 2y x x x =-+'422y x =--(7);ln x xy =(8);cos ln 2x x x y = 21ln 'x xx y x-= 221'2ln cos cos ln sin y x x x x x x x x x =+- 21ln x x-= 22ln cos cos ln sin x x x x x x x x =+- (9);1csc 22 xxy +=2222csc cot (1)2csc 2'(1)x x x x x y x -+-=+g g 2222(1)csc cot 4csc (1)x x x x x x -+-=+ (10).ln 3ln 223xx x x y ++= 2232223(3)(3ln )(2ln )(2)x x x x x x x x y x x ++-++=+ 4222(94)ln 32(3ln )x x x x x x x x -+-+=+9. 已知. ,cos 21sin 4πρρ=+=d d 求因为1sin cos sin 2d d ρ=+-所以412422284d d πρπ?==+-=+10. .1轴交点处的切线⽅程与写出曲线x xx y -= 令0y =,得11x x ==-或因为2'1y x -=+,所以 11'2,'2x x y y ==-==曲线在(1,0)处的切线⽅程为2(1)y x =-,即220x y --=;曲线在(1,0)-处的切线⽅程为2(1)y x =+,即220x y -+=。
高等数学第二章课后习题答案
第二章 导数与微分1. ()().1,102-'=f x x f 试按定义求设200200(1)(1)10(1)10'(1)lim lim1020lim lim(1020)20x x x x f x f x f x xx x x x∆→∆→∆→∆→-+∆--∆---==∆∆∆-∆==∆-=-∆2. 下列各题中均假定()0x f '存在,按导数定义观察下列极限,指出此极限表示什么, 并将答案填在括号内。
⑴ ()()=∆-∆-→∆xx f x x f x 000lim(0'()f x -); ⑵ ()=→∆xx f x 0lim ('(0)f ), 其中()()存在;且0,00f f '= ⑶ ()()=--+→hh x f h x f h 000lim(02'()f x ).3. 求下列函数的导数:⑴ ='=y x y ,4则34x ⑵ ='=y x y ,32则1323x -⑶ ='=y xy ,1则3212x -- ⑷ ='=y x x y ,53则115165x 4. 求曲线. 21,3 cos 程处的切线方程和法线方上点⎪⎭⎫⎝⎛=πx y'sin ,'()32y x y π=-=-所以切线方程为1()223y x π-=--2(1)03y +-+=班级 姓名学号法线方程为1)23y x π-=-化简得3)0x π+-= 5. 讨论函数⎪⎩⎪⎨⎧=≠=0 001sin 2x x xx y 在0=x 处的连续性和可导性. 20(0)01lim sin 0(0)()x f x f x→===因为有界量乘以无穷小 所以函数在0x =处连续因为 20001s i n(0)(0)1l i m l i m l i ms i n 0x x x x f x f x x x xx∆→∆→∆→∆+∆-==∆=∆∆∆ 所以函数在0x =处可导.6. 已知()()()()是否存在?又及求 0 ,0 0 ,0 2f f f x x x x x f '''⎩⎨⎧<-≥=-+ 2'00(0)(0)(0)lim lim 0h h f h f h f hh +→+→++-==='00(0)(0)(0)limlim 1h h f h f hf hh -→-→++--===- ''(0)(0)f f +-≠ '(0)f ∴不存在7. ()(). , 0 0sin x f x x x x x f '⎩⎨⎧≥<=求已知当0x <时, '()(sin )'cos f x x x ==; 当0x >时, '()()'1f x x ==;班级 姓名学号当0x =时'00(0)(0)(0)limlim 1h h f h f hf hh +→→+-===++ '00(0)(0)sin (0)limlim 1h h f h f h f h h-→-→+-===- '(0)1f ∴=综上,cos ,0'()1,0x x f x x <⎧=⎨≥⎩8. 求下列函数的导数:(1);54323-+-=x x x y (2);1227445+-+=x xx y 2222222232242222csc cot (1)2csc 2'(1)2(1)csc cot 4csc (1)23(3)(3ln )(2ln )(2)'(3ln )(94)ln 32(3ln )x x x x xy x x x x x x x x x x x x x x x y x x x x x x x x x x -+-=+-+-=+++-++=+-+-+=+ 2'364y x x =-+652'20282y x x x ---=--+ (3);3253xx e x y +-= (4);1sec tan 2-+=x x y2'152ln 23x x y x e =-+ 2'2s e c s e c t a ny x x x =+班级 姓名学号(5);log 3lg 2ln 2x x x y +-= (6)()();7432x x y -+=123'ln10ln 2y x x x =-+ '422y x =--(7);ln x xy =(8);cos ln 2x x x y = 21ln 'x xx y x-= 221'2ln cos cos ln sin y x x x x x x x x x =+- 21ln x x-= 22l n c o s c o s l n s i n x x x x x x x x =+- (9);1csc 22xxy +=2222csc cot (1)2csc 2'(1)x x x x xy x -+-=+ 2222(1)csc cot 4csc (1)x x x x xx -+-=+ (10).ln 3ln 223x x x x y ++=2232223(3)(3ln )(2ln )(2)'(3ln )x x x x x x x x y x x ++-++=+ 4222(94)ln 32(3ln )x x x x x xx x -+-+=+ 9. 已知. ,cos 21sin 4πϕϕρϕϕϕρ=+=d d 求因为1s i n c o s s i n2d d ρϕϕϕϕϕ=+-班级 姓名学号所以4222422284d d πϕρπϕ==+-=+10. .1轴交点处的切线方程与写出曲线x xx y -= 令0y =,得11x x ==-或 因为2'1y x -=+, 所以 11'2,'2x x y y ==-==曲线在(1,0)处的切线方程为2(1)y x =-,即220x y --=; 曲线在(1,0)-处的切线方程为2(1)y x =+,即220x y -+=。
高数二练习题
高数二练习题高数二练习题高等数学是大学数学的重要组成部分,也是许多学生最头疼的一门课程。
其中,高数二作为高等数学的延续和深化,更是让许多学生感到困惑和压力。
然而,只有通过大量的练习和理解,才能真正掌握高数二的知识和技巧。
下面,我们将介绍一些高数二的练习题,希望能够帮助大家更好地应对这门课程。
1. 极限与连续高数二的第一个章节是极限与连续。
这一章节主要介绍了函数的极限和连续的概念。
在练习题中,我们可以通过计算极限和判断函数的连续性来加深对这些概念的理解。
例如,求函数f(x) = (x^2 - 1)/(x - 1)在x = 1处的极限,或者判断函数g(x) = sin(x)/x在x = 0处是否连续等。
2. 导数与微分导数与微分是高数二的重点内容,也是数学中的重要工具。
在这一章节中,我们需要掌握函数的导数和微分的计算方法,并且能够应用到各种实际问题中。
在练习题中,我们可以通过计算函数的导数和求解相关的应用题来提高自己的技巧。
例如,求函数f(x) = x^3 - 3x^2 + 2x的导数,或者求函数g(x) = e^x在x = 1处的切线方程等。
3. 不定积分与定积分不定积分与定积分是高数二的另一个重要内容。
在这一章节中,我们需要学习函数的不定积分和定积分的计算方法,并且能够应用到各种实际问题中。
在练习题中,我们可以通过计算函数的不定积分和求解相关的定积分来提高自己的技巧。
例如,求函数f(x) = 2x^3 - 3x^2 + 4x的不定积分,或者求函数g(x) =x^2在区间[0, 1]上的定积分等。
4. 级数与幂级数级数与幂级数是高数二的最后一个章节,也是相对较难的内容。
在这一章节中,我们需要学习级数和幂级数的概念,并且能够应用到各种实际问题中。
在练习题中,我们可以通过计算级数的和以及求解相关的幂级数来提高自己的技巧。
例如,计算级数∑(n=1 to ∞) (1/2)^n的和,或者求函数f(x) = ∑(n=0 to ∞)(x^n)/n!的幂级数展开等。
高等数学第二章习题
一、填空:(每空1分) 1、如果xyx ∆∆→∆0lim存在,则称此极限为函数()x f 的( 导数 )2、如果x x y sin =则=)2(/πy ( 1 )3、如果x x y sin =则=)1(/y (1cos 1sin + )4、如果x x y cos =则=)1(/y ( 1s i n 1c o s- ) 5、如果x x y cos =则=)0(/y ( 1 )6、曲线x x y -=3在1=x 处的切线斜率为( 2 )切线方程为( 22-=x y )。
7、若()x y 2arcsin -=则/y =(2412x-- )。
8、)(sin 2x d =(2cos x ))(2x d =( 2cos 2x x ))(x d 。
9、()/5-x =( 65--x ) 10、()/52x -=(x 522ln 5-⋅- ) 11、()/2log x a =(ax ln 1) 12、若()2sin 2-=x x y 则()2/y =( 4 )。
13、()/ln e e e xe x x +++=( x ex e xe 11++- ) 14、()/222ln e e e xx x +++=(xx e x1222++ ) 15、==dy e y x ,sin (x excos sin ⋅ )dx16、==dy e y x ,cos ( x ex s i n c o s⋅- )dx17、==dy y x ,2(2ln 2x)dx 18、==dy y x ,4(4ln 4x)dx19、曲线y=cosx 在32π=x 处的切线斜率为( 23- )切线方程为( 0323633=-++πy x )。
20、曲线y=x 2在2=x 处的切线斜率为( 4 )切线方程为( 44-=x y )21、)cos(cos 2x y =,则='y (()x x y cos sin sin 2⋅= ) 22、=-)(2x e d ( x e 22-- )dx23、=)1(x d ( 21x - )dx24、=+)11(x d (2)1(1x +- )dx 25、先对函数取对数然后再求导数的方法称为( 对数求导法 ) 26、如果x y ln =则=)1(/y ( 1 )27、如果x x y sin =则=)1(/y ( 1s i n 1c o s 1s i n 2- ) 28、如果x y arcsin =则=)0(/y ( 1 )29、如果x x y cos 2=则=)1(/y (1sin 1cos 2- )30、如果2cos x x y =则=)0(/y ( 1 )31、曲线x x y 23-=在1=x 处的切线斜率为( 1 )切线方程为( 2-=x y )。
同济大学版高等数学课后习题答案第2章
同济大学版高等数学课后习题答案第2章习题2-11. 设物体绕定轴旋转, 在时间间隔[0, t]内转过的角度为θ, 从而转角θ是t 的函数: θ=θ(t). 如果旋转是匀速的, 那么称tθω=为该物体旋转的角速度, 如果旋转是非匀速的, 应怎样确定该物体在时刻t 0的角速度?解在时间间隔[t 0, t 0+?t]内的平均角速度ω为 tt t t t-?+=??=)()(00θθθω,故t 0时刻的角速度为)()()(lim lim lim 000000t tt t t tt t t θθθθωω'=?-?+=??==→?→?→?. 2. 当物体的温度高于周围介质的温度时, 物体就不断冷却, 若物体的温度T 与时间t 的函数关系为T =T(t), 应怎样确定该物体在时刻t 的冷却速度?解物体在时间间隔[t 0, t 0+?t]内, 温度的改变量为 ?T =T(t +?t)-T(t), 平均冷却速度为tt T t t T t T ?-?+=??)()(,故物体在时刻t 的冷却速度为)()()(lim lim 00t T tt T t t T t T t t '=?-?+=??→?→?. 3. 设某工厂生产x 单位产品所花费的成本是f(x)元, 此函数f(x)称为成本函数, 成本函数f(x)的导数f '(x)在经济学中称为边际成本. 试说明边际成本f '(x)的实际意义.解 f(x +?x)-f(x)表示当产量由x 改变到x +?x 时成本的改变量.xx f x x f ?-?+)()(表示当产量由x 改变到x +?x 时单位产量的成本. xx f x x f x f x ?-?+='→?)()(lim)(0表示当产量为x 时单位产量的成本.4. 设f(x)=10x 2, 试按定义, 求f '(-1). 解 xx x f x f f x x ?--?+-=?--?+-=-'→?→?2200)1(10)1(10lim )1()1(lim)1(20)2(lim 102lim 10020-=?+-=??+?-=→?→?x xx x x x . 5. 证明(cos x)'=-sin x .解 xxx x x x ?-?+='→?cos )cos(lim )(cos 0xxx x x +-=→?2sin )2sin(2limx x xx x x sin ]22sin )2sin([lim 0-=+-=→?. 6. 下列各题中均假定f '(x 0)存在, 按照导数定义观察下列极限, 指出A 表示什么:(1)A xx f x x f x =?-?-→?)()(lim 000;解xx f x x f A x ?-?-=→?)()(lim000)()()(lim 0000x f xx f x x f x '-=?--?--=→?-. (2)A xx f x =→)(lim 0, 其中f(0)=0, 且f '(0)存在; 解)0()0()0(lim )(lim00f x f x f x x f A x x '=-+==→→. (3)A h h x f h x f h =--+→)()(lim 000. 解hh x f h x f A h )()(lim000--+=→hx f h x f x f h x f h )]()([)]()([lim00000----+=→ hx f h x f hx f h x f h h )()(lim)()(lim 000000----+=→→ =f '(x 0)-[-f '(x 0)]=2f '(x 0). 7. 求下列函数的导数: (1)y =x 4; (2)32x y =; (3)y =x 1. 6; (4)xy 1=;(5)21xy =;(6)53x x y =;(7)5322x x x y =;解 (1)y '=(x 4)'=4x 4-1=4x 3 .(2)3113232323232)()(--=='='='x x x xy . (3)y '=(x 1. 6)'=1.6x 1. 6-1=1.6x 0. 6.(4)23121212121)()1(-----=-='='='x x x xy .(5)3222)()1(---='='='x x xy .(6)511151651653516516)()(x x x x xy =='='='-.(7)651616153226161)()(--=='='='x x x x x x y .8. 已知物体的运动规律为s =t 3(m). 求这物体在t =2秒(s)时的速度.解v =(s)'=3t 2, v|t =2=12(米/秒).9. 如果f(x)为偶函数, 且f(0)存在, 证明f(0)=0. 证明当f(x)为偶函数时, f(-x)=f(x), 所以)0(0)0()(lim 0)0()(lim 0)0()(lim)0(000f x f x f x f x f x f x f f x x x '-=-----=---=--='→-→→, 从而有2f '(0)=0, 即f '(0)=0.10. 求曲线y =sin x 在具有下列横坐标的各点处切线的斜率:π32=x , x =π.解因为y '=cos x , 所以斜率分别为 2132cos 1-==πk , 1cos 2-==πk .11. 求曲线y =cos x 上点)21 ,3(π处的切线方程和法线方程式.解y '=-sin x ,233sin3-=-='=ππx y ,故在点)21 ,3(π处, 切线方程为)3(2321π--=-x y ,法线方程为)3(3221π--=-x y .12. 求曲线y =e x 在点(0,1)处的切线方程. 解y '=e x , y '|x =0=1, 故在(0, 1)处的切线方程为 y -1=1?(x -0), 即y =x +1.13. 在抛物线y =x 2上取横坐标为x 1=1及x 2=3的两点, 作过这两点的割线, 问该抛物线上哪一点的切线平行于这条割线?解 y '=2x , 割线斜率为421913)1()3(=-=--=y y k .令2x =4, 得x =2.因此抛物线y =x 2上点(2, 4)处的切线平行于这条割线. 14. 讨论下列函数在x =0处的连续性与可导性: (1)y =|sin x|;(2)=≠=0001sin 2x x xx y . 解 (1)因为 y(0)=0,0)sin (lim |sin |lim lim 00=-==---→→→x x y x x x ,0sin lim |sin |lim lim 00===+++→→→x x y x x x ,所以函数在x =0处连续. 又因为 1sin lim 0|0sin ||sin |lim 0)0()(lim )0(000-=-=--=--='---→→→-x x x x x y x y y x x x ,1sin lim 0|0sin ||sin |lim 0)0()(lim )0(000==--=--='+++→→→+xx x x x y x y y x x x , 而y '-(0)≠y '+(0), 所以函数在x =0处不可导.解因为01sin lim )(lim 200==→→xx x y x x , 又y(0)=0, 所以函数在x =0处连续. 又因为01sin lim 01sin lim0)0()(lim 0200==-=--→→→xx x x x x y x y x x x , 所以函数在点x =0处可导, 且y '(0)=0.15. 设函数>+≤=1 1)(2x b ax x x x f 为了使函数f(x)在x =1处连续且可导, a , b 应取什么值?解因为1lim )(lim 211==--→→x x f x x , b a b ax x f x x +=+=++→→)(lim )(lim 11, f(1)=a +b ,所以要使函数在x =1处连续, 必须a +b =1 . 又因为当a +b =1时211lim )1(21=--='-→-x x f x ,a x x a xb a x a x b ax f x x x =--=--++-=--+='+++→→→+1)1(lim 11)1(lim 11lim )1(111, 所以要使函数在x =1处可导, 必须a =2, 此时b =-1. 16. 已知?<-≥=0 0)(2x x x x x f 求f +'(0)及f -'(0), 又f '(0)是否存在?解因为 f -'(0)=10lim )0()(lim00-=--=---→→xx x f x f x x , f +'(0)=00lim )0()(lim 200=-=-++→→xx x f x f x x , 而f -'(0)≠f +'(0), 所以f '(0)不存在.17. 已知f(x)=?≥<0 0sin x x x x , 求f '(x) .解当x<0时, f(x)=sin x , f '(x)=cos x ; 当x>0时, f(x)=x , f '(x)=1; 因为 f -'(0)=10sin lim )0()(lim00=-=---→→x x x f x f x x , f +'(0)=10lim )0()(lim 00=-=-++→→xx x f x f x x , 所以f '(0)=1, 从而f '(x)=?≥<0 10cos x x x .18. 证明: 双曲线xy =a 2上任一点处的切线与两坐标轴构成的三角形的面积都等于2a 2 .解由xy =a 2得xa y 2=, 22xa y k -='=.设(x 0, y 0)为曲线上任一点, 则过该点的切线方程为)(02020x x x a y y --=-. 令y =0, 并注意x 0y 0=a 2, 解得0022002x x ax y x =+=, 为切线在x轴上的距.令x =0, 并注意x 0y 0=a 2, 解得00022y y x a y =+=, 为切线在y 轴上的距.此切线与二坐标轴构成的三角形的面积为 200002||2|2||2|21a y x y x S ===.习题 2-21. 推导余切函数及余割函数的导数公式: (cot x)'=-csc 2x ; (csc x)'=-csc xcot x .解 xx x x x xx x 2sin cos cos sin sin )sin cos ()(cot ?-?-='=' x xx x x 22222csc sin 1sin cos sin-=-=+-=. x x xx x x cot csc sin cos )sin 1()(csc 2?-=-='='. 2. 求下列函数的导数: (1)1227445+-+=xxxy ;(2) y =5x 3-2x +3e x ;(3) y =2tan x +sec x -1; (4) y =sin x ?cos x ; (5) y =x 2ln x ; (6) y =3e x cos x ; (7)xx y ln =;(8)3ln 2+=xe y x;(9) y =x 2ln x cos x ; (10)tt s cos 1sin 1++=;解 (1))12274()12274(14545'+-+='+-+='---x x x xxxy2562562282022820xxxx x x +--=+--=---. (2) y '=(5x 3-2x +3e x )'=15x 2-2x ln2+3ex .(3) y '=(2tan x +sec x -1)'=2sec 2x +sec x ?tan x =sec x(2sec x +tan x).(4) y '=(sin x ?cos x)'=(sin x)'?cos x +sin x ?(cos x)' =cos x ?cos x +sin x ?(-sin x)=cos 2x . (5) y '=(x 2ln x)'=2x ?ln x +x 2?x 1=x(2ln x +1) . (6) y '=(3e x cos x)'=3e x ?cos x +3e x ?(-sin x)=3e x (cos x -sin x).(7)22ln1ln 1)ln (x x x xx x x x y -=-?='='.(8)3422)2(2)3ln (x x e x x e x e x e y x x x x -=?-?='+='. (9) y '=(x 2ln x cos x)'=2x ?ln x cos x +x 2?x1?cos x +x 2 lnx ?(-sin x)2x ln x cos x +x cos x -x 2 ln x sin x .(10)22)cos 1(cos sin 1)cos 1()sin )(sin 1()cos 1(cos )cos 1sin 1(t tt t t t t t tt s +++=+-+-+='++='.3. 求下列函数在给定点处的导数: (1) y =sin x -cos x , 求6π='x y 和4π='x y .(2)θθθρcos 21sin +=,求4πθθρ=dd .(3)553)(2x x x f +-=, 求f '(0)和f '(2) .解 (1)y '=cos x +sin x , 21321236sin 6cos 6+=+=+='=πππx y ,222224sin 4cos 4=+=+='=πππx y . (2)θθθθθθθθρcos sin 21sin 21cos sin +=-+=d d ,)21(4222422214cos 44sin 214πππππθρπθ+=?+?=+==d d . (3)x x x f 52)5(3)(2+-=', 253)0(='f , 1517)2(='f . 4. 以初速v 0竖直上抛的物体, 其上升高度s 与时间t 的关系是2021gt t v s -=. 求:(1)该物体的速度v(t); (2)该物体达到最高点的时刻. 解(1)v(t)=s '(t)=v 0-gt .(2)令v(t)=0, 即v 0-gt =0, 得gv t 0=, 这就是物体达到最高点的时刻.5. 求曲线y =2sin x +x 2上横坐标为x =0的点处的切线方程和法线方程.解因为y '=2cos x +2x , y '|x =0=2, 又当x =0时, y =0, 所以所求的切线方程为 y =2x , 所求的法线方程为x y 21-=, 即x +2y =0.6. 求下列函数的导数: (1) y =(2x +5)4 (2) y =cos(4-3x); (3)23x e y -=;(4) y =ln(1+x 2); (5) y =sin 2x ; (6)22x a y -=;(7) y =tan(x 2); (8) y =arctan(e x ); (9) y =(arcsin x)2; (10) y =lncos x .解 (1) y '=4(2x +5)4-1?(2x +5)'=4(2x +5)3?2=8(2x +5)3. (2) y '=-sin(4-3x)?(4-3x)'=-sin(4-3x)?(-3)=3sin(4-3x). (3)22233236)6()3(xx x xe x e x e y ----=-?='-?='.(4)222212211)1(11x x x x x x y +=?+='+?+='. (5) y '=2sin x ?(sin x)'=2sin x ?cos x =sin 2x . (6))()(21])[(22121222122'-?-='-='-x a x a x a y2122)2()(21x a x x x a --=-?-=-.(7) y '=sec 2(x 2)?(x 2)'=2xsec 2(x 2).(8)xx xx e e e e y 221)()(11+='?+='. (9) y '21arcsin2)(arcsin arcsin 2xx x x -='?=. (10)x x xx x y tan )sin (cos 1)(cos cos 1-=-='?='. 7. 求下列函数的导数: (1) y =arcsin(1-2x);(2)211x y -=;(3)x e y x 3cos 2-=;(4)xy 1arccos =;(5)x x y ln 1ln 1+-=;(6)xx y 2sin =; (7)x y arcsin =;(8))ln(22x a x y ++=;(9) y =ln(sec x +tan x); (10) y =ln(csc x -cot x). 解 (1)2 221)21(12)21()21(11x x x x x y --=---='-?--='.(2))1()1(21])1[(21212212'-?--='-='---x x x y 2321)1()2()1(21x x x x x --=-?--=-.(3))3)(3sin (3cos )2()3(cos 3cos )(2222'-+'-='+'='----x x e x x e x e x e y xx x x)3sin 63(cos 213sin 33cos 21222x x e x e x e xxx+-=--=---. (4)1||)1()1(11)1()1(1122222-=---='--='x x x x x x x y . (5)22)ln 1(2)ln 1(1)ln 1()ln 1(1x x x x x x xy +-=+--+-='.(6)222sin 2cos 212sin 22cos xx x x xx x x y -=?-??='.(7)2222121)(11)()(11x x x x x x y -=?-='?-='.(8)])(211[1)(12222222222'+++?++='++?++='x a x a x a x x a x x a x y 2222221)]2(211[1x a x x a x a x +=++?++=.(9)x x x x x x x x y sec tan sec sec tan sec )tan (sec tan sec 12 =++='+?+='. (10) x xx x x x x x x x y csc cot csc csc cot csc )cot (csc cot csc 12 =-+-='-?-='.8. 求下列函数的导数: (1)2)2(arcsin x y =;(2)2tan ln x y =;(3)x y 2ln 1+=;(4)x e y arctan =; (5)y =sin n xcos nx ; (6)11arctan -+=x x y ;(7)xx y arccos arcsin =;(8) y=ln[ln(ln x)] ; (9)xx x x y-++--+1111; (10)xx y +-=11arcsin.解 (1)'?=')2(arcsin )2(arcsin 2x x y )2()2(11)2(arcsin 22'?-?=x x x21)2(11(arcsin 22-?=x x . 242arcsin 2x x-=(2))2(2sec 2tan 1)2(tan 2tan 12'??='?='x x x x x yx x x csc 212sec 2tan 12=??=.(3))ln 1(ln 121ln 1222'+?+=+='x xx y )(ln ln 2ln 1212'??+=x x x x x x 1ln 2ln 1212??+=xx x2ln 1ln +=.(4))(arctan arctan '?='x e y x)()(112arctan'?+?=x x e x)1(221)(11arctan 2arctanx x e x x e x x+=?+?=.(5) y '=n sin n -1x ?(sin x)'?cos nx +sin n x ?(-sin nx)?(nx)' =n sin n -1x ?cos x ?cos nx +sin n x ?(-sin nx)?n =n sin n -1x ?(cosx ?cos nx -sin x ?sin nx)= n sin n -1xcos(n +1)x . (6)222 211)1()1()1()11(11)11()11(11x x x x x x x x x x y +-=-+--?-++='-+?-++= '.(7)222)(arccos arcsin 11arccos 11x x x x x y -+-='22)(arccos arcsin arccos 11x x x x +?-=22)(arccos 12x x -=π.(8))(ln ln 1)ln(ln 1])[ln(ln )ln(ln 1'??='?='x x x x x y)ln(ln ln 11ln 1)ln(ln 1x x x x x x ?=??=. (9)2)11()121121)(11()11)(121121(x x x x x x x x xx y -++--+--+--++-++=' 22111x x -+-=.(10)2)1()1()1(1111)11(1111x x x xx x x x x y +--+-?+--='+-?+--=')1(2)1(1x x x -+-=.9. 设函数f(x)和g(x)可导, 且f 2(x)+g 2(x)≠0, 试求函数)()(22x g x f y +=的导数.解])()([)()(212222'+?+='x g x f x g x f y )]()(2)()(2[)()(2122x g x g x f x f x g x f '+'?+=)()()()()()(22x g x f x g x g x f x f +'+'=.10. 设f(x)可导, 求下列函数y 的导数dxdy :(1) y =f(x 2);(2) y =f(sin 2x)+f(cos 2x).解 (1) y '=f '(x 2)?(x 2)'= f '(x 2)?2x =2x ?f '(x 2). (2) y '=f '(sin 2x)?(sin 2x)'+f '(cos 2x)?(cos 2x)'= f '(sin 2x)?2sin x ?cos x +f '(cos 2x)?2cosx ?(-sin x) =sin 2x[f '(sin 2x)- f '(cos 2x)]. 11. 求下列函数的导数: (1) y =ch(sh x ); (2) y =sh x ?e ch x ; (3) y =th(ln x); (4) y =sh 3x +ch 2x ; (5) y =th(1-x 2); (6) y =arch(x 2+1); (7) y =arch(e 2x ); (8) y =arctan(th x);(9)xx y 2ch 21ch ln +=; (10))11(ch 2+-=x x y解 (1) y '=sh(sh x)?(sh x)'=sh(sh x)?ch x . (2) y '=ch x ?e ch x +sh x ?e ch x ?sh x =e ch x (ch x +sh 2x) . (3))(ln ch 1)(ln )(ln ch 122x x x x y ?='?='.(4) y '=3sh 2x ?ch x +2ch x ?sh x =sh x ?ch x ?(3sh x +2) .(5))1(ch 2)1()1(ch 122222x x x x y --=-?-='. (6)222)1()1(112422++='+?++='x x x x x y .(7)12)(1)(142222-='?-='x xx x e e e e y . (8)xxx x x x x y 222222ch 1ch sh 11ch 1th 11)th ()th (11?+=?+='?+=' x x x 222sh 211sh ch 1+=+=. (9))ch (ch 21)ch (ch 124'?-'?='x x x x y x x xx x sh ch 2ch 21ch sh 4??-= xx x x x x x x 323ch sh ch sh ch sh ch sh -?=-=x xx x x x 33332th ch sh ch )1ch (sh ==-?=. (10)'+-?+-?+-='+-?+-=')11()11(sh )11(ch 2])11(ch [)11(ch 2x x x x x x x x x x y)112(sh )1(2)1()1()1()112(sh 22+-?+=+--+?+-?=x x x x x x x x .12. 求下列函数的导数: (1) y =e -x (x 2-2x +3); (2) y =sin 2x ?sin(x 2); (3)2)2(arctan x y =;(4)n xx y ln =;(5)t t t t ee e e y --+-=;(6)xy 1cos ln =;(7)x ey 1sin 2-=; (8)xx y +=;(9)242arcsin x x x y -+=;(10)212arcsint t y +=.解 (1) y '=-e -x (x 2-2x +3)+e -x (2x -2) =e -x (-x 2+4x -5).(2) y '=2sin x ?cos x ?sin(x 2)+sin 2x ?cos(x 2)?2x =sin2x ?sin(x 2)+2x ?sin 2x ?cos(x 2). (3)2arctan 44214112arctan 222x x x x y +=?+?='. (4)121ln 1ln 1+--=?-?='n n n n x x n x nx x x xy . (5)2222)1(4)())(())((+=+---++='-----t t t t t t t t t t t t e e e e e e e e e e e e y .。
大学高等数学各章节练习题
第一章 极限与连续一、填空 1、设11()01x f x x ⎧≤⎪=⎨>⎪⎩ ,则[]()___________.f f x = 2、假设数列{}n x 收敛,则数列{}n x 肯定 。
3、假设0lim ()x x f x A →=,而0lim ()x x g x →不存在,则0lim(()())x x f x g x →+ 。
4、当0→x 时,1132-+ax 与1cos -x 为等价无穷小,则_______=a 5、设函数()f x 在点0x x =处连续,则()f x 在点0x x =处是否连续。
6、设21))((,sin )(x x f x x f -==ϕ,则)(x ϕ的定义域为_________7、如果⎪⎩⎪⎨⎧=≠-+=0,00,12sin )(2x x xe x xf ax 在),(+∞-∞内连续,则__=a8、 曲线22x e x y -=的渐近方程为__________________二、选择9、如果)(),(x g x f 都在0x 点处间断,那么〔 〕〔A 〕)()(x g x f +在0x 点处间断 〔B 〕)()(x g x f -在0x 点处间断 〔C 〕)()(x g x f +在0x 点处连续 〔D 〕)()(x g x f +在0x 点处可能连续。
10、设数列n x 与n y 满足lim 0n n n x y →∞=,则以下断言正确的选项是〔 〕〔A 〕假设n x 发散,则n y 必发散。
〔B 〕假设n x 无界,则n y 必有界 〔C 〕假设n x 有界,则n y 必为无穷小〔D 〕假设1nx 为无穷小,则n y 必为无穷小。
11、已知0()lim0x f x x→=,且(0)1f =,那么〔 〕〔A 〕()f x 在0x =处不连续。
〔B 〕()f x 在0x =处连续。
〔C 〕0lim ()x f x →不存在。
〔D 〕0lim ()1x f x →=12、设2()43x xf x x x+=- ,则0lim ()x f x →为〔 〕〔A 〕12 (B)13 (C) 14 (D)不存在13、设2(1)sin ()(1)x xf x x x-=-,那么0x =是函数的〔 〕〔A 〕无穷间断点。
广西大学高等数学(上)指导书 第二章 计算题答案
高等数学学习指导书第二章部分习题参考答案 (三)计算题 1.解:100()(0)(0)lim 011lim lim 1.1x xx x xf x f f x xe xe----→→→-'=-+===+0100()(0)(0)lim011lim lim 0.1x xx x xf x f f x xe xe++++→→→-'=-+===+3.解:当x a <时,()2ln 2.x a f x -+'=-当x a >时,()2ln2.x a f x -'= 当x a =时,||()()21lim lim ||ln2lim ,x a x a x a x a f x f a x a x ax a x a-→→→--=---=-不存在. ()f x ∴在x a =处不可导。
所以2ln 2,()2ln 2.x a x ax a f x x a -+-⎧-<'=⎨>⎩5.解:当0x <时,112()212ln .x x f x a a a a --'⎛⎫'=+-= ⎪⎝⎭ 当0x>时,2sin cos sin ().x x x x f x x x '-⎛⎫'== ⎪⎝⎭当0=x时,10002211()(0)(0)lim lim 02(1)2lim ln ,x x x xx a f x f af x xa a a x a-----→→→+---'==--==2000200sin 1()(0)sin (0)lim lim lim 01cos 12lim lim 0.22x x x x x xf x f x x x f x x x xx xx ++++++→→→→→---'===--===所以(0)f '不存在.因此122ln 20()sin 0.x a x f x xcosx xx x -⎧<⎪'=⎨->⎪⎩7.解:320001cos ()(0)1lim lim lim cos 0.0x x x x f x f x x x x x →→→-===- 所以(0)0f '=. 当0≠x 时,2322111()3cos (sin )()113cos sin .f x x x x x x x x x x'=+--=+又因为2000113cos sin()(0)lim lim 011lim(3cos sin ),x x x x x f x f x x x xx x x →→→+''-=-=+不存在. 所以(0)f ''不存在。
最新高等数学(同济第五版)第二章导数与微分-练习题册
第二章 导 数 与 微 分第 一 节 作 业一、填空题:1. 假定:,)('0按照导数定义存在x f.)()(lim )2(.)()(lim)1(000000=--+=∆-∆-→→∆h h x f h x f x x f x x f h x2. 设=⋅=',5322y xx x y 则 .3. 曲线y=e x 在点(0,1)处的切线方程为 .4. 已知物体的运动规律为 s=t 3(米),则这物体在t=2(秒)时的速度为 . 二、选择题(单选):1. 设f(x)=x(x-1)(x+2)(x-3)(x+4)…(x+100),则f’(1)的值等于: (A )101!; (B )100!101-; (C )-100; (D ).99!100 答:( ).1)(;1)(;21)(;0)(:)0(',0,00,1)(.22-⎪⎩⎪⎨⎧=≠-=-D C B A f x x x e x f x为则设答:( ) 三、试解下列各题:1. 讨论函数.00,00,1sin 处的连续性与可导性在=⎪⎩⎪⎨⎧=≠=x x x xx y2. 已知).(',0,,sin )(x f x x x x x f 求⎩⎨⎧≥<=3. 设?,,1)(,1,1,)(2应取什么值处可导在为了使b a x x f x b ax x x x f =⎩⎨⎧>+≤=四、试证明下列各题:1. 证明:双曲线xy=a 2上任一点处的切线与两坐标轴构成的三角形的面积等于2a2.2. 如果f(x)为偶函数,且f’(0)存在,证明f’(0)=0.第 二 节 作 业一、填空题:.)]sin )(cos cos [(sin .2.',3ln .12=+-=+=x x x x dxdy x e y x则设二、选择题(单选):.)()()(;)()()(;)()()(;)()()(:,)(,)(00必可导必不可导必不可导必可导处则在不可导可导处设在x g x f D x g x f C x g x f B x g x f A x x g x f x -+答:( ) 三、试解下列各题: 1. 设.,cos 21sin 4πϕϕρϕϕϕρ=+=d d 求2. 求曲线y=2sinx+x 2上横坐标为x=0的点处的切线方程和法线方程。
高等数学第二章答案2-3
习题 2-31. 求函数的二阶导数:(1) y =2x 2+ln x ;(2) y =e 2x -1;(3) y =x cos x ;(4) y =e -t sin t ;(5)22x a y -=;(6) y =ln(1-x 2)(7) y =tan x ;(8)113+=x y ; (9) y =(1+x 2)arctan x ;(10)xe y x =; (11)2x xe y =;(12))1ln(2x x y ++=.解 (1)x x y 14+=', 214xy -=''. (2) y '=e 2x -1 ⋅2=2e 2x -1, y ''=2e 2x -1 ⋅2=4e 2x -1.(3) y =x cos x ; y '=cos x -x sin x ,y ''=-sin x -sin x -x cos x =-2sin x -x cos x .(4) y '=-e -t sin t +e -t cos t =e -t (cos t -sin t )y ''=-e -t (cos t -sin t )+e -t (-sin t -cos t )=-2e -t cos t .(5)222222)(21x a x x a x a y --='-⋅-=', 22222222222)(xa x a a x a x a x x x a y ---=---⋅---=''. (6) 22212)1(11xxx x y --='-⋅-=',222222)1()1(2)1()2(2)1(2x x x x x x y -+-=--⋅---=''. (7) y '=sec 2 x ,y ''=2sec x ⋅(sec x )'=2sec x ⋅sec x ⋅tan x =2sec 2x ⋅tan x .(8)232233)1(3)1()1(+-=+'+-='x x x x y , 333433223)1()12(6)1(3)1(23)1(6+-=+⋅+⋅-+⋅-=''x x x x x x x x x y . (9)1arctan 211)1(arctan 222+=+⋅++='x x xx x x y , 12a r c t a n 2xxx y ++=''. (10)22)1(1x x e x e x e y x x x -=⋅-⋅=', 3242)22(2)1(])1([x x x e x x x e x e x e y x x x x +-=⋅--⋅+-=''. (11))21()2(2222x e x e x e y x x x +=⋅⋅+=',)23(24)21(222222x xe x e x x e y x x x +=⋅++⋅⋅=''.(12)2222211)1221(11)1(11x x x x x x x x x y +=++⋅++='++⋅++=', xx x x x x x x y ++-=+⋅+-='⋅+⋅+-=''1)1()12211)1(1122222. 2. 设f (x )=(x +10)6, f '''(2)=?解f '(x )=6(x +10)5, f ''(x )=30(x +10)4, f '''(x )=120(x +10)3,f '''(2)=120(2+10)3=207360.3. 若f ''(x )存在, 求下列函数y 的二阶导数22dxy d : (1) y =f (x 2);(2) y =ln[f (x )] .解 (1)y '= f '(x 2)⋅(x 2)'=2xf '(x 2),y ''=2f '(x 2)+2x ⋅2xf ''(x 2)=2f '(x 2)+4x 2f ''(x 2).(2))()(1x f x f y '=', 2)]([)()()()(x f x f x f x f x f y ''-''=''22)]([)]([)()(x f x f x f x f '-''=. 4. 试从y dy dx '=1导出: (1)322)(y y dy x d '''-=; (2)5233)()(3y y y y dy x d '''''-''=. 解 (1)()()()3222)(1)(11y y y y y dy dx y dx d y dy d dy dx dy d dy xd '''-='⋅'''-=⋅'='==. (2)(())(())dy dx y y dx d y y dy d dy x d ⋅'''-='''-=3333 52623)()(31)()(3)(y y y y y y y y y y y '''''-''='⋅''''⋅''-''''-=.5. 已知物体的运动规律为s =A sin ωt (A 、ω是常数), 求物体运动的加速度, 并验证:0222=+s dts d ω. 解 t A dtds ωωcos =, t A dts d ωωsin 222-=. 22dt s d 就是物体运动的加速度. 0s i n s i n 22222=+-=+t A t A s dts d ωωωωω. 6. 验证函数y =C 1e λx +C 2e -λx (λ,C 1, C 2是常数)满足关系式:y ''-λ2y =0 .解 y '=C 1λe λx -C 2λe -λx ,y ''=C 1λ2e λx +C 2λ2e -λx .y ''-λ2y =(C 1λ2e λx +C 2λ2e -λx )-λ2(C 1e λx +C 2e -λx )=(C 1λ2e λx +C 2λ2e -λx )-(C 1λ2e λx +C 2λ2e -λx )=0 . 7. 验证函数y =e x sin x 满足关系式:y ''-2y '+2y =0 .解 y '=e x sin x +e x cos x =e x (sin x +cos x ),y ''=e x (sin x +cos x )+e x (cos x -sin x )=2e x cos x .y ''-2y '+2y =2e x cos x -2e x (sin x +cos x )+2e x sin x=2e x cos x -2e x sin x -2e x cos x +2e x sin x =0 . 8. 求下列函数的n 阶导数的一般表达式:(1) y =x n +a 1x n -1+a 2x n -2+ ⋅ ⋅ ⋅ +a n -1x +a n (a 1, a 2, ⋅ ⋅ ⋅, a n 都是常数);(2) y =sin 2x ;(3) y =x ln x ;(4) y =xe x .解 (1) y '=nx n -1+(n -1)a 1x n -2+(n -2)a 2x n -3+ ⋅ ⋅ ⋅ +a n -1, y ''=n (n -1)x n -2+(n -1)(n -2)a 1x n -3+(n -2)(n -3)a 2x n -4+ ⋅ ⋅ ⋅ +a n -2, ⋅ ⋅ ⋅,y (n )=n (n -1)(n -2)⋅ ⋅ ⋅2⋅1x 0=n ! .(2) y '=2sin x cos x =sin2x ,)22s i n (22c o s 2π+==''x x y , )222s i n (2)22c o s (222ππ⋅+=+='''x x y , )232s i n (2)222c o s (233)4(ππ⋅+=⋅+=x x y , ⋅ ⋅ ⋅,]2)1(2s i n [21)(π⋅-+=-n x y n n . (3) 1ln +='x y ,11-==''x xy , y '''=(-1)x -2,y (4)=(-1)(-2)x -3,⋅ ⋅ ⋅,y (n )=(-1)(-2)(-3)⋅ ⋅ ⋅(-n +2)x -n +1112)!2()1()!2()1(-----=--=n n n n x n x n . (4) y '=e x +xe x ,y ''=e x +e x +xe x =2e x +xe x ,y '''=2e x +e x +xe x =3e x +xe x ,⋅ ⋅ ⋅,y (n )=ne x +xe x =e x (n +x ) .9. 求下列函数所指定的阶的导数:(1) y =e x cos x , 求y (4) ;(2) y =x sh x , 求y (100) ;(3) y =x 2sin 2x , 求y (50) .解 (1)令u =e x , v =cos x , 有u '=u ''=u '''=u (4)=e x ;v '=-sin x , v ''=-cos x , v '''=sin x , v (4)=cos x ,所以 y (4)=u (4)⋅v +4u '''⋅v '+6u ''⋅v ''+4u '⋅v '''+u ⋅v (4)=e x [cos x +4(-sin x )+6(-cos x )+4sin x +cos x ]=-4e x cos x .(2)令u =x , v =sh x , 则有u '=1, u ''=0;v '=ch x , v ''=sh x , ⋅ ⋅ ⋅ , v (99)=ch x , v (100)=sh x ,所以)100()99(99100)98(98100)98(2100)99(1100)100()100( v u v u C v u C v u C v u C v u y ⋅+⋅'+⋅''⋅⋅⋅+''⋅+'⋅+⋅= =100ch x +x sh x .(3)令u =x 2 , v =sin 2x , 则有u '=2x , u ''=2, u '''=0;x x v 2s i n 2)2482sin(24848)48(=⋅+=π,v (49)=249cos 2x , v (50)=-250sin 2x ,所以 )50()49(4950)48(4850)48(250)49(1150)50()50( v u v u C v u C v u C v u C v u y ⋅+⋅'+⋅''⋅⋅⋅+''⋅+'⋅+⋅= )50()49(4950)48(4850v u v u C v u C ⋅+⋅'+⋅''=)2s i n 2(2c o s 22502sin 22249505024928x x x x x -⋅+⋅⋅+⋅⋅⋅= )2s i n 212252c o s 502sin (2250x x x x x ++-=.。
高等数学第二章练习题含答案
第二章 练习题一、填空题 第一节1、设,则= 1/2 .2、函数在点处的切线方程为 12+=x y .3、双曲线在点处的法线方程为 )21(412-=-x y 4、过点M(1,3)曲线x y +=2的切线方程为052=+-y x第二节1、设 ,则!n .2、若函数可导,且, 则=xx x f ln )(ln 22'3、x x x x tan sec csc sec 22++4、已知,则=221ax +5、,则__x cot _____________第三节1、''=--y x x x 2sin cos第四节1、设参数方程(t 是参数)确定了函数,则= -tant .2、t e 221-第五节1、在点可导是在点连续的 充分 条件,在点可导是在点可微的 充要 条件。
2、已知,则 ()dx x ln 1+3、已知,则(sin 22cos2x x x + )dx二、选择题 第一节1.函数,则在处( C )A 不连续;B 连续但不可导; C; D2、函数在处( C )A 连续且可导 ;B 不连续且不可导C 连续但不可导;D 不连续但可导 3、设在的某个邻域内有定义,则在处可导的一个充分必要条件是( D ).A 存在.B 存在.C 存在.D 存在4、已知在可导,并且,则=( A ).A. B.C. D5、设在=2处 ( A )A. 连续B.不连续C. 可导D.不存在极限第二节1、若可导,且,则=( D )A ;B ;C ;D2、( D )A、B、C、D、3、( D )A、B、C、D、4、( C )A、B、C、 D、第三节1、函数( A )A、B、C、D、2、设.则( C ).A. B. C. D. .12.函数( C )A、0B、132C、120D、60第四节1、( C )A、B、C、D、第五节1、下列等式成立的是( D )A ;B ;C ; D2、设,则AA ; BC ; D3、函数在点( B ).A .可导但不连续;B .连续但不可导 ;C .连续并且可导;D .既不连续又不可导. 4、 设,则( C ).A. ;B.; C.; D..三、大题 第一节1、()()()()1,1111,f x x f f f +-====解:要使在处连续则有()()()2111lim ,1lim 1,x x f ax b a b f x +-+-→→=+=+==1a b ∴+=()()()+-1,11,f x x f f ''==要使在处可导则有()()()+111-1-11lim lim lim 111x x x f x f ax b ax af a x x x +++→→→+-'====---而 ()()()()2-111-1-11lim lim lim 1211x x x f x f x f x x x ---→→→'===+=--2,1121a b a ∴==-=-=-()211a b f x x ==-=所以当,时,在处连续且可导.第二节1.设由方程所确定,求.解:方程的两边分别对x 求导得x y x y y e ysin cos -'=' 整理得 ()x y x e y xsin cos -=-' 即 y 'xe xy x cos sin --=第四节 1、求由所确定的隐函数的二阶导数.解:两边对x 求导,得022'=-yy x , 得y x y ='对x 求导得2'"yxy y y -=…=22y y x y -=31y - 2、求方程确定的隐函数的导数= ?解 将y 看作x 的函数,方程两边对x 求导x x y x y y x y e xy 2cos 2ln )(=+'+'+ 则 dxdy=y '=x xe x yye x xy xyln 2cos 2+--3、设解:两端取对数:311ln ln -+=x x y 即 )]1ln()1[ln(31ln --+=x x y 两端对x 求导得:1111311)(--+='x x y y 于是: 11113)(--+='x x y y 4、求方程确定的隐函数的导数= ?解:方程两端对x 求导得 )1(y e y x y y x '+='++ ⇒y e x y x '-+)(=y e y x -+于是有 dx dy =yx y x e x ye ++--5、解:dy dx tt =-sin 2 d y dx t t t t t t t t t 22232124=-⋅=-sin cos sin cos 第五节1、设,解 dx y dy '==dx x x x x )11(1122++++ =dx x 112+。
高等数学第二章习题详细解答答案
1 ⎧ 2 1 ⎪ x sin , x ≠ 0 (2)∵ y = ⎨ ,而 lim y = lim x 2 sin = 0 = y x = 0 ,所以函数在 x = 0 处连续 x x →0 x →0 x ⎪ x=0 ⎩ 0,
1 x = 0 ,所以函数在 x = 0 点处可导. 而 lim x →0 x−0 x 2 sin
−2 sin cos (x + Δx) − cos x 3.解: ( cos x)′ = lim = lim Δx → 0 Δx →0 Δx Δx sin 2 x + Δx 2 = − sin x = - lim sin ⋅ lim Δx → 0 Δx → 0 Δx 2 2
4. 解:(1)不能,(1)与 f ( x ) 在 x0 的取值无关,当然也就与 f ( x ) 在 x0 是否连续无关, 故是 f ′( x0 ) 存在的必要条件而非充分条件. (2)可以,与导数的定义等价. (3)可以, 与导数的定义等价. 5. 解:(1) 5 x
9 −1 = 4 ,而 y′ = (x 2 )′ = 2 x ,令 2 x = 4 , 3 −1
得: x = 2 ,所以该抛物线上过点 (2, 4) 的切线平行于此割线. 10.解:(1)连续,但因为
f (0+ h )− f (0 ) = h
因而 lim
h→0
3
h −0 1 = 2/ 3 h h
f (0 + h) − f (0) 1 = lim 2 / 3 = +∞ ,即导数为无穷大。 → h 0 h h
∴ f +′(0) ≠ f −′(0) = −1 ,所以 f ′(0) 不存在.
13. 解 : 当 x > 0 时 , f ( x) = x 是 初 等 函 数 , 所 以 f ′( x) = 3 x ; 同 理 , 当 x < 0 时
高等数学习题第二章答案
习题2-4 1.解:(1)两边关于x 求导,得1(,)xyy e y xy ′′+−+=0整理可得11xy xye y y xe−′=−; (2)两边关于x 求导,得2224223xy x y y xyy y y ′′+−−+=0′,整理可得2224223y xyy x xy y −′=−+;(3)两边关于x 求导,得()ln cos 2xy ye y xy y x x 2x′′+++=⋅, 整理可得22cos 2ln xyxyx x y xye y x e x x−−′=+; (4)两边关于x 求导,得y ′=,整理可得y ′=. 2.解:两边关于252x y xy +−=0x 求导,得42522x y y y xy 0′′+⋅−−=整理可得 42252y xy y x−′=−,110x y y ==′=,所以曲线在点处的切线方程为 (1,1)10(1)y x −=−,即.1y = 3.解:对两边关于sin cos()0y y x y −+=x 求导,得sin cos sin()(1)0y x y x x y y ′′++++=整理可得,cos sin()sin sin()y x x y y x x y −−+′=++,则0212112x y y πππ==−−′==−−。
4.解:(1)应用隐函数的求导方法,得2d d 1sec (d d y y )x y x x ⎛⎞=+⋅+⎜⎟⎝⎠解得:2d csc ()d yx y x=−+,对此式再对x 求导 2222d d 2csc ()cot()12csc ()cot ()d d y y 3x y x y x y x x x ⎛⎞=+⋅++=−+⋅+⎜⎟⎝⎠y 。
(2)应用隐函数的求导方法,得d (2)d ()xy xy ye x y x e x x+=−+,对此式两边再对x 求导,得 2()[()2](24)()xy xye y xy y y xy y x e x ′′′++++′′=−+. 5.解:两边取对数,ln y cos x ln sin x =,再分别求导数, (sin )(ln )(cos )ln sin cos sin x y x x xx′′′=+ cos sin ln sin cos sin y x x x x yx ′=−+于是求得2cos cos (sin )sin ln sin sin xx y x x x ⎛⎞′=−⎜⎟⎝⎠x 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《大学数学A 》第二章练习题 1
2011-2012学年第一学期 2
3 一、选择题与填空题 4
1.直线l 与直线032=+-y x 平行,且与曲线x e x y +=相切,则切点5
坐标是……..……( ) 6
A .)1,0(
B .)0,1(
C .)1,1(e +
D .)1,1(1-+--e 7
2.设)(x f 在),(+∞-∞上可导,则])()(['-+x f x f 8
是……………………………………………..……….( ) 9
A .奇函数
B .偶函数
C .非奇非偶函数
D .无法确定其奇偶性 10
3.函数)(x f 在点x 0可导是)(x f 在点x 0连续的11
____________条件.………...………………....…..( ) 12
A.充分不必要
B.必要不充分
C.充要
D.既不充分也不必13
要 14
4.设0)0(=f ,且)0(f '存在,则=→x x f x )(lim 0
……………………………………………( ) 15 A.)(x f ' B.)0(f ' C.)0(f D.0
16 5.1)(+=x x f 在点0=x 处……..………………………………….……………………………… .( ) 17
A .无定义
B .不连续
C .可导
D .连续但不可18 导
19 6. 设21x e y +=,则=dy .
20 7. 设3
1)()(lim 0=--→a f h a f h h ,则=')(a f . 21
22 二、解答与证明题
23 1. 求下列导数
24 (1)设x e y x cos =,求y ''.
25
26
27
28 (2)设x e y sin =,求2
π=''x y .
29
30
31
32 (3)设)0()1(>+=x x x y x ,求1='x y .
33
34
35
36 (4)设)0(sin >=x x y x ,求2
π='x y .
37 38
39
40
2. 求下列极限
41 (1)]1)1ln(1[lim 0
x x x -+→ 42 43
44
(2)0lim ln (0)n x x x n +→> 45
46
47
48
(3)sin 0
lim x x x +→ 49 50
51
52
53 3. 设函数)(x y y =由下列参数方程所确定,求1
22=t dx y d
54 (1)⎩
⎨⎧+=+-=23)1ln(t t y t t x 55
56
57
58
59 (2)⎪⎩⎪⎨⎧=+=t y t x arctan 1ln 2
60
61
62
63
64
65 4. 求下列函数的极值及其图形的拐点 66 (1)123+--=x x x y
67
68
69
70 (2)5323+-=x x y
71
72
73
74
75 5(1)设0>>b a ,1>n ,证明:)()(11b a na b a b a nb n n n n -<-<---. 76
77
78
79
80
81 (2)证明:当0>x 时, x x x
x <+<+)1ln(1. 82
83
84
85
86
87
88
6. 设)(x f '在),0[+∞上单调递增,且0)0(=f ,试证x x f x F )()(=在),0(+∞ 89 上单调递增.
90
91
92
93
94
95 7. 求由方程xy e y x =-所确定的隐函数)(x y y =的导数dx
dy . 96
97
98
99
100
101
102 8. 已知x x x y arcsin 12+-=,求dy . 103。