九年级数学: 22.1二次函数的图像和性质第二课时教案

合集下载

二次函数的图象第二课时教案

二次函数的图象第二课时教案

二次函数的图象第二课时教案一、教学目标1. 知识与技能:(1)理解二次函数图象的开口方向、对称轴和顶点的概念;(2)学会如何通过二次函数的系数判断开口方向和对称轴的位置;(3)能够熟练运用二次函数的性质解决实际问题。

2. 过程与方法:(1)通过观察、分析、归纳二次函数图象的性质;(2)利用数形结合的方法,理解二次函数图象与系数的关系。

3. 情感态度与价值观:培养学生对数学的兴趣,提高学生分析问题、解决问题的能力。

二、教学重点与难点1. 教学重点:(1)二次函数图象的开口方向、对称轴和顶点的判断方法;(2)运用二次函数的性质解决实际问题。

2. 教学难点:(1)开口方向与对称轴的判断;(2)二次函数图象与实际问题的结合。

三、教学过程1. 复习导入:(1)回顾一次函数图象的性质;(2)引导学生思考二次函数图象的特点。

2. 新课讲解:(1)介绍二次函数图象的开口方向、对称轴和顶点的概念;(2)讲解如何通过二次函数的系数判断开口方向和对称轴的位置;(3)举例说明二次函数图象与系数的关系。

3. 课堂练习:(1)让学生绘制几个二次函数的图象,观察开口方向、对称轴和顶点的位置;(2)引导学生分析二次函数图象与系数的关系。

四、课后作业2. 选取几个实际问题,运用二次函数的性质进行解答。

五、教学反思本节课结束后,教师应认真反思教学效果,针对学生的掌握情况,调整教学策略,以提高学生对二次函数图象的理解和运用能力。

关注学生在课堂上的参与度和思维发展,激发学生的学习兴趣。

六、课堂实践1. 案例分析:分析实际问题,将其转化为二次函数形式;利用二次函数的性质,解答实际问题。

2. 分组讨论:学生分组,讨论如何将实际问题转化为二次函数;每组选取一个实际问题,展示解题过程和答案。

七、拓展与延伸1. 探讨二次函数图象在其他领域的应用;引导学生思考二次函数在物理学、经济学等领域的应用;举例说明二次函数在其他领域的实际应用。

2. 课堂小结:强调二次函数图象在实际问题中的应用价值。

数学北师大版九年级下册《二次函数的图象与性质(第二课时)》教学设计

数学北师大版九年级下册《二次函数的图象与性质(第二课时)》教学设计

北师大版数学九年级下册第二章第2节《二次函数的图象与性质(第二课时)》教学设计陕西师范大学附属中学马翠一、教材分析二次函数的图象—抛物线是人们最熟悉的曲线之一,生活中的应用非常广泛。

本节课是北师大版数学九年级下册第二章二次函数第2节二次函数的图象与性质的第二课时。

该内容属于《全日制义务教育课程标准(2011版)》中的“数与代数”领域,是在已经学习了二次函数定义、探究了y=±x2图象基础上,进一步探究函数y=ax2与y=ax2+c的图象与性质,既是前面所学知识的延续,又是探究其他二次函数图象的基础,起到了承上启下的作用。

二次函数的核心内容是它的概念和图象特征,本节课开始研究a、c对函数图象的影响,对后期研究一般的二次函数从方法和内容上有着重要的铺垫和打基础作用。

对二次函数图象的研究,充分体现了数形结合思想,通过对图象的研究和分析,可以确定函数本身的性质. 在以前学习的一次函数和反比例函数中都有所体现,结合本节课的内容,可以进一步加强对数形结合思想方法的理解。

从列表、解析式、图象三方面理解函数,分析a,c的影响,反应了研究函数图象的基本方法。

因此,学好本节课,将为今后的数学学习,尤其是函数学习,奠定坚实的基础。

二、学情分析学生的知识技能基础:在此之前,学生已掌握一次函数和反比例函数的图象和性质,并刚刚学习了二次函数的基本概念,能利用描点法画抛物线的图象;对于抛物线的图象形状、开口方向、对称轴、顶点坐标有所了解;能够根据图象认识和理解二次函数的性质。

学生的图形计算器基础:学生通过培训已经初步掌握了HP Prime图形计算器的使用,对图形计算器的运用熟悉,且有浓厚的学习兴趣。

学生活动经验基础:九年级学生逻辑思维从经验型逐步向理论型发展,开始有了数学抽象思维和一定的分析、归纳内能力,具备本节课的认知心理基础。

该阶段的学生几何直观能力也有了很大发展,教学中应深入浅出地引导分析,利用HP Prime图形计算器和几何画板相结合可以使学生更清晰的观察和认识图形,充分理解与归纳。

人教版九年级数学上册22.1.2《二次函数y=ax2的图象和性质》教案

人教版九年级数学上册22.1.2《二次函数y=ax2的图象和性质》教案

人教版九年级数学上册22.1.2《二次函数y=ax2的图象和性质》教案一. 教材分析人教版九年级数学上册第22.1.2节《二次函数y=ax^2的图象和性质》是九年级数学的重要内容,主要让学生了解二次函数的图象特征和性质。

通过本节课的学习,学生能理解二次函数的一般形式,掌握二次函数的图象特征,了解二次函数的增减性和对称性,从而为后续的函数学习打下基础。

二. 学情分析学生在学习本节课之前,已经掌握了函数的基本概念,具备了一定的函数知识。

但对于二次函数的图象和性质,可能还存在一定的困惑。

因此,在教学过程中,教师需要关注学生的学习情况,针对学生的实际问题进行讲解,引导学生理解和掌握二次函数的图象和性质。

三. 教学目标1.让学生理解二次函数的一般形式,掌握二次函数的图象特征。

2.让学生了解二次函数的增减性和对称性,能运用二次函数的性质解决实际问题。

3.培养学生的观察能力、分析能力和解决问题的能力。

四. 教学重难点1.二次函数的一般形式和图象特征。

2.二次函数的增减性和对称性。

五. 教学方法1.采用问题驱动法,引导学生主动探究二次函数的图象和性质。

2.利用多媒体辅助教学,直观展示二次函数的图象,帮助学生理解。

3.采用小组合作学习,培养学生的团队协作能力。

六. 教学准备1.多媒体教学设备。

2.二次函数图象和性质的相关教学素材。

3.学生分组合作学习的材料。

七. 教学过程导入(5分钟)教师通过提问方式引导学生回顾一次函数和正比例函数的图象和性质,为新课的学习做好铺垫。

同时,教师可以利用多媒体展示二次函数的图象,让学生初步感受二次函数的特点。

呈现(10分钟)教师给出二次函数的一般形式y=ax^2,让学生观察并分析二次函数的图象特征。

学生通过观察多媒体展示的二次函数图象,总结出二次函数的开口方向、顶点坐标等特征。

操练(10分钟)教师给出几个二次函数的实例,让学生分析其图象特征。

学生通过小组合作学习,探讨并分析二次函数的增减性和对称性。

初中数学教学课例《22.1.2二次函数y=ax的图像和性质》教学设计及总结反思

初中数学教学课例《22.1.2二次函数y=ax的图像和性质》教学设计及总结反思
来学习二次函数的图像和性质,给学习足够的探索和交
流的时间,让学生在自己动手体验中得出结果.
学生在前面已熟知了画函数图象的方法:列表、描
点、连线,也学习了一次函数的图像画法及形状,这为
探究函数 y=ax 的图象做好了知识上的准备.学生也具 学生学习能
备了基本作图能力,这使学生能主动参与本节课的操 力分析
决实际问题. 教学目标
2.数学思考:
通过观察、归纳等数学活动解决:
(1)用描点法画函数图像是我们发现函数图象的
特征和了解其性质的一个重要途径.因此,在教学过程
中应让学生画出函数图象,引导学生观察图像的特点,
概括出函数的性质.
(2)用“特殊----一般,具体----抽象“的方法
初中数学教学课例《22.1.2 二次函数 y=ax 的图像和性质》 教学设计及总结反思
学科
初中数学
教学课例名
《22.1.2 二次函数 y=ax 的图像和性质》

九年级数学上册第二十一章第一节第 2 课时的内
容,是在学生学习了二次函数的基本概念之后引入的新
内容.本节课的教学内容既是对 y=二次函数 y=ax2 的图
轴几方面分析函数图象的共同点和不同点.
(1)让学生概括图像的特点,提示学生从开口方 教学过程
向、对称性等方面考虑.
(2)肯定学生的表现,讲解:这样的曲线通常叫
做抛物线.它有一条对称轴,抛物线与它的对称轴的交
点叫做抛物线的顶点.
(3)提示学生从图像开口方向,顶点坐标,对称
轴几方面分析函数图象的共同点和不同点.
的增大而减小;在对称轴右侧(x>0 时),y 随着 x 的增
大而增大.
当 a<0 时,在对称轴的左侧(x<0 时),y 随着 x 的增

二次函数第二课时教案

二次函数第二课时教案

收获
• 1、|a|越大,开口度越小 • 2、增减性要分段,分为对称轴的左侧和右侧
3、
y=a x2
开口方向 对称轴 顶点坐标
增减性 对称轴左侧, y随x的增 大( ), 右侧y随x 的增大而 ( ) 对称轴左侧, y随x的增 大( ), 右侧y随x 的增大而 ( )
最值(大或 小)
a>0
a<0
作业
a>0
a<0
五、练一练
开口方向 顶点 对称轴 有最()点 增减性
对称轴左侧,y随x的增 大( ),右侧y随x 的增大而( )
y= 4x2
y=-8x2
对称轴左侧,y随x的增 大( ),右侧y随x 的增大而( )
六、测一测
1、若二次函数y=ax2的图象过点(1,-2),则a 的值是___________. 2、二次函数y=(m-1)x2的图象开口向下,则 m____________. 3、如图 ① y=ax2 ② y=bx2 ③ y=cx2 ④ y=dx2 比较a、b、c、d的大小。
22.1
二次函数一、回忆旧知:
1、用描点法画函数图像的一般步骤是什么? 2、我们通过什么研究一次函数的图像和性质 的? 3、一次函数的图像是什么? 4、二次函数的一般形式是什么?各项系数有 什么要求? 5、最简单的二次函数形式是什么?
二、学习目标:
1、会画二次函数y=ax2的图象; 2、知道二次函数的图象是一条抛物线; 3、掌握二次函数y=ax2的性质,并会灵活应 用. 4、体会数形结合、类比的思想.
y=a
x2
开口方向 对称轴 顶点坐标
增减性 对称轴左侧, y随x的增 大( ), 右侧y随x 的增大而 ( )
最值(大或 小)
a>0

2024年人教版九年级数学上册教案及教学反思全册第22章22.1.2 二次函数的图象和性质教案

2024年人教版九年级数学上册教案及教学反思全册第22章22.1.2 二次函数的图象和性质教案

22.1二次函数的图象和性质22.1.2二次函数y=ax2的图象和性质一、教学目标【知识与技能】1.会用描点法画二次函数y=ax2的图象,理解抛物线的有关概念;2.掌握二次函数y=ax2的性质,能确定二次函数y=ax2的表达式.【过程与方法】通过画出简单的二次函数探索出二次函数y=ax2的性质及图象特征.【情感态度与价值观】使学生经历探索二次函数y=ax2图象性质的过程,培养学生观察、思考、归纳的良好思维习惯.二、课型新授课三、课时1课时四、教学重难点【教学重点】1.二次函数y=ax2的图象的画法及性质;2.能确定二次函数y=ax2的解析式.【教学难点】1.用描点法画二次函数y=ax2的图象,探索其性质;2.能依据二次函数y=ax2的有关性质解决问题.五、课前准备课件、三角尺、铅笔等.六、教学过程(一)导入新课1.你们喜欢打篮球吗?(出示课件2)2.你们知道投篮时,篮球运动的路线是什么曲线?怎样计算篮球达到最高点时的高度?学生自主思考.(二)探索新知探究一:二次函数y=ax2的图象的画法出示课件4:画出二次函数y=x2的图象.学生分组画y=x2的图象,教师巡视,对于不正确的给予指导.⑴列表:在y=x2中自变量x可以是任意实数,列表表示几组对应值:⑵描点:根据表中x,y的数值在坐标平面中描点(x,y)(出示课件5)⑶连线:如图,再用平滑曲线顺次连接各点,就得到y=x2的图象.当取更多个点时,函数y=x 2的图象如下:(出示课件6)教师归纳:二次函数y=x 2的图象形如物体抛射时所经过的路线,我们把它叫做抛物线.这条抛物线关于y 轴对称,y 轴就是它的对称轴.对称轴与抛物线的交点叫做抛物线的顶点.出示课件7:画出二次函数y=-x 2的图象.学生分组画y=-x 2的图象,教师巡视,对于不正确的给予指导.⑴列表:⑵描点:⑶连线:x …-3-2-10123…y =-x 2……探究二:二次函数y=ax2的图象性质出示课件8:教师问:根据你以往学习函数图象性质的经验,说说二次函数y=x2的图象有哪些性质,并与同伴交流.学生交流后,师生共同总结如下:1.y=x2的图象是一条抛物线;2.图象开口向上;3.图象关于y轴对称;4.顶点(0,0);5.图象有最低点.出示课件9:教师问:说说二次函数y=-x2的图象有哪些性质,并与同伴交流.学生交流后,师生共同总结如下:1.y=-x2的图象是一条抛物线;2.图象开口向下;3.图象关于y轴对称;4.顶点(0,0);5.图象有最高点.教师归纳:(出示课件10)二次函数y=ax2的图象性质:1.顶点都在原点(0,0);2.图像关于y轴对称;3.当a>0时,开口向上;当a<0时,开口向下.师生共同探究:观察下列图象,抛物线y=ax2与y=-ax2(a>0)的关系是什么?(出示课件11)教师强调:二次项系数互为相反数,开口相反,大小相同,它们关于x轴对称.探究三:二次函数y=ax2的性质出示课件12:观察图形,y随x的变化如何变化?教师归纳:(出示课件13)对于抛物线y=ax2(a>0),当x>0时,y随x取值的增大而增大;当x<0时,y随x取值的增大而减小.师生共同探究:观察图形,y随x的变化如何变化?(出示课件14)教师归纳:(出示课件15)对于抛物线y =ax 2(a<0)当x>0时,y 随x 取值的增大而减小;当x<0时,y 随x 取值的增大而增大.出示课件16:在同一直角坐标系中,画出函数221,22y x y x ==的图象.将全班同学进行适当分组,分别完成两个图象的画图,并结合图象给予恰当的描述.解:分别填表,再画出它们的图象,如图:x ...-4-3-2-101234 (212)y x =······x ···-2-1.5-1-0.500.51 1.52···22y x =······出示课件17:师生共同探究:二次函数2221,,22y x y x y x ===的图象开口大小与a 的大小有什么关系?教师归纳:当a>0时,a 越大,开口越小.出示课件18:在同一直角坐标系中,画出函数221,22y x y x =-=-的图象.将全班同学进行适当分组,分别完成两个图象的画图,并结合图象给予恰当的描述.解:分别填表,再画出它们的图象,如图:x ···-4-3-2-101234···212y x =-······x ···-2-1.5-1-0.500.51 1.52···22y x =-······出示课件19:师生共同探究:二次函数2221,,22y x y x y x =-=-=-的图象开口大小与a 的大小有什么关系?教师归纳:当a<0时,a 越小(即a 的绝对值越大),开口越小.对于抛物线y=ax 2,|a|越大,抛物线的开口越小.师生共同完善认知:(出示课件20)出示课件21:填一填:(1)函数y=4x2的图象的开口,对称轴是,顶点是;(2)函数y=-3x2的图象的开口,对称轴是,顶点是,顶点是抛物线的最点;⑶函数32的图象的开口,对称轴是,顶点是,顶点是抛物线的最点;⑷函数y=-0.2x2的图象的开口,对称轴是,顶点是.学生独立思考后,口答如下:⑴向上;y轴;(0,0)⑵向下;y轴;(0,0);高⑶向上;y轴;(0,0);低⑷向下;y轴;(0,0)出示课件22:例已知y=(m+1)x m2+m是二次函数,且其图象开口向上,求m的值和函数解析式.学生自主思考后,师生共同解答如下:解:依题意有:解②,得m 1=-2,m 2=1.由①,得m>-1.因此m=1.此时,二次函数为y=2x 2.出示课件23:已知24(2)kk y k x +-=+是二次函数,且当x>0时,y 随x 增大而增大,则k=.学生独立思考后,自主解答如下:解:24(2)k k y k x+-=+是二次函数,即二次项的系数不为0,x 的指数等于2.又因当x>0时,y 随x 增大而增大,即说明二次项的系数大于0.因此,24220k k k ⎧+-=⎨+⎩>,解得k=2.探究四:二次函数y =ax 2的实际应用出示课件24:师生共同认知:二次函数y=ax 2是刻画客观世界许多现象的一种重要模型.出示课件25:例已知正方形的周长为Ccm,面积为Scm 2,(1)求S 与C 之间的二次函数关系式;(2)画出它的图象;(3)根据图象,求出当S=1cm 2时,正方形的周长;(4)根据图象,求出C 取何值时,S≥4cm 2.学生独立思考后,师生共同解答.(出示课件26)解:(1)∵正方形的周长为Ccm,∴正方形的边长为4Ccm,∴S 与C 之间的关系式为S=216C ;(2)作图如图:(3)当S=1cm 2时,C 2=16,即C=4cm;(4)若S≥4cm 2,即216C ≥4,解得C≥8,或c≤-8(舍去),因此C ≥8cm.出示课件27:已知二次函数y=2x 2.(1)若点(-2,y 1)与(3,y 2)在此二次函数的图象上,则y 1_____y 2;(填“>”“=”或“<”);(2)如图,此二次函数的图象经过点(0,0),长方形ABCD 的顶点A、B 在x 轴上,C、D 恰好在二次函数的图象上,B 点的横坐标为2,求图中阴影部分的面积之和.学生独立思考后,自主解答:(出示课件28)(2)解:∵二次函数y=2x2的图象经过点C,∴当x=2时,y=2×22=8.∵抛物线和长方形都是轴对称图形,且y轴为它们的对称轴,∴OA=OB,∴在长方形ABCD内,左边阴影部分面积等于右边空白部分面积,∴S阴影部分面积之和=2×8=16.教师总结如下:(出示课件29)二次函数y=ax2的图象关于y轴对称,因此左右两部分折叠可以重合,在二次函数比较大小中,我们根据图象中点具有的对称性转变到同一变化区域中(全部为升或全部为降),根据图象中函数值高低去比较;对于求不规则的图形面积,采用等面积割补法,将不规则图形转化为规则图形以方便求解.(三)课堂练习(出示课件30-34)1.已知抛物线y=ax2(a>0)过点A(-2,y1),B(1,y2)两点,则下列关系式一定正确的是()A.y1>0>y2B.y2>0>y1C.y1>y2>0D.y2>y1>02.函数y=2x2的图象的开口,对称轴,顶点是;在对称轴的左侧,y随x的增大而,在对称轴的右侧,y 随x 的增大而.3.函数y=-3x 2的图象的开口,对称轴,顶点是;在对称轴的左侧,y 随x 的增大而,在对称轴的右侧,y 随x 的增大而.4.如图,观察函数y=(k-1)x 2的图象,则k 的取值范围是.5.说出下列抛物线的开口方向、对称轴和顶点:6.已知二次函数y=x 2,若x≥m 时,y 最小值为0,求实数m 的取值范围.开口方向对称轴顶点坐标23x y =23x y -=231x y =231x y -=7.已知:如图,直线y=3x+4与抛物线y=x 2交于A、B 两点,求出A、B两点的坐标,并求出两交点与原点所围成的三角形的面积.参考答案:1.C2.向上;y 轴;(0,0);减小;增大3.向下;y 轴;(0,0);增大;减小4.k>15.6.解:在二次函数y=x 2中,a=1>0因此当x=0时,y 有最小值.∵当x≥m 时,y 最小值=0,∴m≤0.7.解:由题意得234,,y x y x =+⎧⎨=⎩开口方向对称轴顶点坐标23x y =向上y 轴(0,0)23x y -=向下y 轴(0,0)231x y =向上y 轴(0,0)231x y -=向下y 轴(0,0)解得4,1,16,1,x x y y ==-⎧⎧⎨⎨==⎩⎩或因此两函数的交点坐标为A(4,16)和B(-1,1).∵直线y=3x+4与y 轴相交于点C(0,4),即CO=4.两交点与原点所围成的三角形面积S △ABO =S △ACO +S △BOC .在△BOC 中,OC 边上的高就是B 点的横坐标值的绝对值1;在△ACO 中,OC 边上的高就是A 点的横坐标值的绝对值4.因此S △ABO =S △ACO +S △BOC =12×4×1+12×4×4=10.(四)课堂小结1.画二次函数y=ax 2的图象时,有哪些地方是你需关注的?2.你是如何理解并熟记抛物线y=ax 2的性质的?3.本节课你还存在哪些疑问?.(五)课前预习预习下节课(22.1.3第1课时)的相关内容.七、课后作业1.教材41页习题22.1第3,4题2.配套练习册内容八、板书设计:九、教学反思:本课时的设计比较注重让学生动手操作,让学生通过画二次函数的图象初步掌握其性质,画图的过程中需注意引导学生与其他函数的图象与性质进行对比.本课的目的是要让学生通过动手操作,经历探索归纳的思维过程,逐步获得图象传达的信息,熟悉图象语言,进而形成函数思想.。

人教版九年级上册 22.1 《二次函数y=ax2的图象和性质》教学设计

人教版九年级上册 22.1 《二次函数y=ax2的图象和性质》教学设计

人教版九年级上册22.1 《二次函数y=ax2的图象和性质》教学设计《二次函数y=ax2的图象和性质》教学设计一、教学内容分析二次函数y=ax2的图像和性质是人教版九年级数学上册第二十二章第一节第二课时的内容,是在学生学习了二次函数的基本概念之后引入的新内容,也是后面研究坐标形式和一般形式的二次函数图像性质的基础。

所以,学习本节内容我们既要对前段的内容进行升华,又要对后段内容进行启发。

二、教学对象分析九年级的学生在前面的学习过程中已经接触过一次函数和反比例函数图象和性质等内容,从学习情况看,他们对函数的理解和掌握情况并不理想。

通过课下的了解,学生们对二次函数有一定的恐惧心理,对学习非常的不利。

所以我们在教学过程中,要想方设法的调动学生的积极性,多与前面的的函数联系,帮助他们突破难点。

三、教学目标(一)知识与技能:能够准确绘制二次函数图像;通过图像发现和研究y=ax2二次函数的性质。

(二)过程与方法:经历探索和发现二次函数图像的特点和性质的过程;体会数形结合的数学思想在数学中的应用。

(三)情感、态度与价值观:经历观察,推理和交流等过程,获得研究问题与合作交流的方法x … -3 -2 -1 0 1 2 3 … y…941149…(2)描点和连线在直角坐标系中描点,然后用光滑的曲线顺次(按x 由小到大)连结各点(连线),得到函数y =x 2的图象,如图所示.提问:通过画图和观察图象,你能发现图象有什么特征? 像这样的曲线通常叫做抛物线.(二次函数的图象←→抛物线) 它有一条对称轴,(对称轴是y 轴或直线x=0) 抛物线与它的对称轴的交点叫做抛物线的顶点.(抛物线上最高或最低点←→二次函数的最大值或最小值)做一做:在同一直角坐标系中,再画出函数 和y=2x 2的图象,观察并比较两个图象,你发现有什么共同点?又有什么区别?归纳:当a>0时,抛物线y=ax 2的开口向上,对称轴是y 轴,顶xy 0-4 --2 -1 1234 10 8 6 4 2-y =x 2212y x点是原点,顶点是抛物线的最低点,a 越大,抛物线的开口越小。

人教版数学九年级上册22.1《二次函数y=a(x-h)^2+k的图象和性质(^2)》名师教案

人教版数学九年级上册22.1《二次函数y=a(x-h)^2+k的图象和性质(^2)》名师教案

22.1.3 二次函数2()y a x h k =-+的图象和性质第二课时〔刘佳〕一、教学目标 〔一〕学习目标〔1〕掌握二次函数2()(0)y a x h a =-≠的图象与性质及平移规律 〔2〕掌握二次函数2()(0)y a x h k a =-+≠的图象与性质及平移规律 〔3〕能用二次函数2()(0)y a x h k a =-+≠的图象与性质解决实际问题 〔二〕学习重点二次函数2()(0)y a x h k a =-+≠的图象和性质. 〔三〕学习难点二次函数2()(0)y a x h k a =-+≠与2(0)y ax a =≠的关系. 二、教学设计 〔一〕课前设计 1.预习任务〔1〕抛物线2()(0)y a x h a =-≠当0a >时开口向 上 、当0a <时开口向 下 ,对称轴是 直线x=h ,顶点是 〔h,0〕 ;当0h >时,抛物线2ax y =向 右 平移 h 个单位得抛物线2()(0)y a x h a =-≠,当0h <时,抛物线2ax y =向 左 平移 个单位得抛物线2()(0)y a x h a =-≠。

(2) 抛物线2()(0)y a x h k a =-+≠当0a >时开口向 上 、当0a <时开口向 下 ,对称轴是 直线x=h ,顶点是 〔h,k 〕 ;当0h >时,抛物线2ax y =向 右 平移 h 个单位、再向 上 (k>0)平移 k 个单位得抛物线2()(0)y a x h k a =-+≠,当0h <时,抛物线2ax y =向 左 平移 h 个单位、再向 下 (k<0)平移 │k│ 个单位得抛物线2()(0)y a x h k a =-+≠。

2.预习自测(1) 抛物线25(2)3y x =-+-的对称轴是_________,顶点坐标是_________.【知识点】2()(0)y a x h k a =-+≠的图象性质 【答案】2x =-,(2,3)--【解题过程】由二次函数图象性质易得答案为:2x =-,(2,3)-- 【思路点拨】掌握2()(0)y a x h k a =-+≠的图象性质,是解题的关键 〔2〕抛物线212y x =向______平移1个单位、再向 平移3个单位可得抛物线21(1)32y x =-+. 【知识点】2()(0)y a x h k a =-+≠的平移规律【答案】右,上【解题过程】由二次函数图象性质易得:右,上【思路点拨】掌握2()(0)y a x h k a =-+≠的平移规律,是解题的关键〔3〕假设抛物线y =a(x –1)2+k 上有一点A(3,5),那么点A 关于对称轴对称点A′的坐标为__________。

人教版九年级数学上册《二次函数的图象和性质(第2课时)》示范教学设计

人教版九年级数学上册《二次函数的图象和性质(第2课时)》示范教学设计

二次函数的图象和性质(第2课时)教学目标1.能够利用描点法画形如y=ax2(a≠0)的二次函数图象.2.通过观察图象能够说出二次函数y=ax2(a≠0)的图象特征和性质.3.在由具体的二次函数图象归纳总结二次函数y=ax2(a≠0)的图象和性质的过程中,进一步体会由特殊到一般和数形结合的思想.教学重点会用描点法画具体的形如y=ax2(a≠0)的二次函数图象,并由具体图象归纳总结出二次函数y=ax2(a≠0)的图象和性质.教学难点通过对a的取值分类讨论,总结出二次函数y=ax2(a≠0)的图象和性质,特别是|a|的大小对抛物线开口大小的影响.教学过程知识回顾1.一般地,形如y=ax2+bx+c(a,b,c是常数,a≠0)的函数,叫做二次函数.2.画出一次函数y=x+1的图象.【答案】(1)列表:(2)描点、连线.3.一次函数的图象是一条直线,当k>0时,y随x的增大而增大;当k<0时,y随x 的增大而减小.【设计意图】通过复习已经学过的有关函数的知识,为引出“二次函数y=ax2(a≠0)的图象和性质”作铺垫.新知探究一、探究学习【思考】二次函数y=ax2+bx+c(a≠0)的图象又是什么样的呢?【师生活动】教师提示:结合图象讨论性质是数形结合地研究函数的重要方法.我们将从最简单的二次函数y=x2开始,逐步深入地讨论一般二次函数的图象和性质.【问题】仿照前面的画法,画出二次函数y=x2的图象.【师生活动】教师提示:可以用描点法画出二次函数y=x2的图象.学生根据提示独立思考,并作图.解:(1)在y=x2中,自变量x可以是任意实数,列表表示几组对应值:(2)描点:根据表中x,y的数值在坐标平面中描点(x,y).(3)连线:用平滑曲线顺次连接各点,就得到y=x2的图象.教师提问:1.观察所画图象,你能说一下它的形状特征吗?学生分小组讨论,并派代表发言.教师分析:从图象可以看出,二次函数y=x2的图象是一条曲线,它的形状类似于投篮时或掷铅球时球在空中所经过的路线,只是这条曲线开口向上.这条曲线叫做抛物线y=x2.教师总结:二次函数的图象都是抛物线,它们的开口或者向上或者向下.二次函数y=ax2+bx+c的图象叫做抛物线y=ax2+bx+c.教师提问:2.在所画出的抛物线y=x2上分别取点(2,4),(3,9),并找到它们关于y 轴的对称点,你发现了什么?学生思考并回答:点(2,4),(3,9)关于y轴的对称点(-2,4),(-3,9)也在抛物线y =x 2上.教师追问:在所画出的抛物线y =x 2上任取一点(m ,m 2),它关于y 轴的对称点(-m ,m 2)也在抛物线y =x 2上吗?学生分小组讨论,并派代表发言.教师总结:在抛物线y =x 2上任取一点(m ,m 2),因为它关于y 轴的对称点(-m ,m 2)也在抛物线y =x 2上,所以抛物线y =x 2关于y 轴对称.抛物线y =x 2与它的对称轴的交点(0,0)叫做抛物线y =x 2的顶点,它是抛物线y =x 2的最低点.每条抛物线都有对称轴,抛物线与对称轴的交点叫做抛物线的顶点.顶点是抛物线的最低点或最高点.教师提问:3.观察所画出的二次函数y =x 2的图象,在对称轴的左右两侧,抛物线有什么特点?学生思考并回答:在对称轴的左侧,抛物线从左到右下降;在对称轴的右侧,抛物线从左到右上升.教师总结:二次函数y =x 2的图象:当x <0时,y 随x 的增大而减小;当x >0时,y 随x 的增大而增大.【设计意图】通过提出问题“二次函数y =ax 2+bx +c (a ≠0)的图象又是什么样的”,激发学生的求知欲,引导学生利用数形结合的方法研究函数的图象和性质.进而让学生利用已学过的描点法画出二次函数y =x 2的图象,通过小组交流让学生充分发表意见,总结自己观察出的图象的特征和函数性质,为讨论一般二次函数y =ax 2(a ≠0)的图象和性质作铺垫.二、典例精讲【例题】在同一直角坐标系中,画出函数212y x =,y =2x 2的图象.【师生活动】教师提出问题,学生独立思考并作图. 【答案】解:分别列表,再画出它们的图象.【设计意图】通过例题的练习与讲解,巩固学生对描点法画函数图象的应用,为探究二次函数y =ax 2(a >0)的图象和性质作铺垫.三、探究学习【思考】(1)函数212y x =,y =2x 2的图象与函数y =x 2(图中的虚线图形)的图象相比,有什么相同点和不同点?【师生活动】教师提出问题,学生观察所作图象思考并尝试回答.教师总结:相同点:(1)抛物线的开口向上;(2)对称轴是y 轴;(3)顶点是原点,顶点是抛物线的最低点;(4)当x >0时,y 随x 的增大而增大;当x <0时,y 随x 的增大而减小.不同点:开口大小不同,a 越大,抛物线的开口越小.【思考】(2)当a >0时,二次函数y =ax 2的图象有什么特点? 【师生活动】教师提示,学生尝试总结归纳. 【答案】二次函数y =ax 2(a >0)的图象与性质如下.【探究】(1)在同一直角坐标系中,画出函数y =-x 2,212y x =-,y =-2x 2的图象,并考虑这些抛物线有什么相同点和不同点.【师生活动】教师提示:可以参照讨论“函数212y x =,y =2x 2,y =x 2的图象的相同点和不同点”的方法来思考.学生按照提示先在同一直角坐标系中,画出函数图象,再分小组讨论,并派代表回答.教师总结:相同点:(1)抛物线的开口向下;(2)对称轴是y 轴;(3)顶点是原点,顶点是抛物线的最高点;(4)当x >0时,y 随x 的增大而减小;当x <0时,y 随x 的增大而增大.不同点:开口大小不同,a 越小,抛物线的开口越小.【探究】(2)当a <0时,二次函数y =ax 2的图象有什么特点? 【师生活动】教师提出问题,学生大胆思考并尝试回答.【答案】二次函数y =ax 2(a <0)的图象与性质如下.【归纳】一般地,抛物线y =ax 2的对称轴是y 轴,顶点是原点.当a >0时,抛物线y =ax 2的开口向上,顶点是抛物线的最低点;当a <0时,抛物线y =ax 2的开口向下,顶点是抛物线的最高点.对于抛物线y =ax 2,|a |越大,抛物线的开口越小.二次函数y =ax 2(a ≠0)的图象与性质【设计意图】通过对a 的取值分类讨论,总结出二次函数y =ax 2(a ≠0)的图象和性质,在由具体的二次函数图象归纳总结出二次函数y =ax 2(a ≠0)的图象和性质的过程中,让学生进一步体会由特殊到一般和数形结合的思想.课堂小结板书设计一、二次函数y=ax2(a>0)的图象与性质二、二次函数y=ax2(a<0)的图象与性质三、二次函数y=ax2(a≠0)的图象与性质课后任务完成教材第32页练习.。

22.1.2二次函数的图像和性质(教案)

22.1.2二次函数的图像和性质(教案)
此外,课堂总结时,我询问了学生们对今天课程的感受,他们普遍反映喜欢这种结合实际案例的教学方式。这让我感到欣慰,同时也提醒我,作为教师,需要不断更新教学方法和手段,以保持学生们的学习兴趣。
最后,我意识到在课堂上,对于学生的疑问和困惑,我需要更加耐心和细致地进行解答。有时候,一个简单的解释就能帮助学生跨越理解的障碍。在今后的教学中,我会更加注重与学生的互动,鼓励他们提出问题,并及时给予反馈。
-重点三,利用图示和计算,说明二次函数与x轴的交点即为二次方程的实数根;
-重点四,通过图像和数学推导,让学生理解二次函数最值的含义及其计算方法。
2.教学难点
-理解二次函数图像的对称性,特别是对称轴的概念及其与顶点的关系;
-掌握顶点坐标计算公式的应用,尤其是对于含有绝对值、分式等复杂二次函数的顶点求解;
-学会求解二次函数与坐标轴的交点,理解这些交点与二次方程解的关系;
-掌握二次函数的最值问题,明确当a>0时,函数有最小值;当a<0时,函数有最大值。
举例解释:
-对于重点一,强调a的符号决定了图像的形状,并通过实例展示a的正负对图像的影响;
-重点二,通过具体函数示例,演示如何计算顶点坐标,并解释顶点即为对称轴上的点;
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是“22.1.2二次函数的图像和性质”这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过物体抛高后落地的情况?”(如抛球游戏)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索二次函数图像和性质的奥秘。
3.二次函数图像的顶点坐标计算,顶点公式为(-b/2a,4ac-b²/4a);
4.二次函数图像的对称轴,即x = -b/2a;

九年级下册《二次函数的图像与性质》数学教案

九年级下册《二次函数的图像与性质》数学教案

九年级下册《二次函数的图像与性质》数学教案标题:九年级下册《二次函数的图像与性质》数学教案
一、教学目标
1. 知识目标:理解并掌握二次函数的概念、图像及其性质。

2. 技能目标:能够通过描点法绘制二次函数图像,通过观察图像判断函数的性质。

3. 情感态度价值观目标:培养学生分析问题、解决问题的能力,提高他们对数学的兴趣。

二、教学重难点
1. 教学重点:理解和掌握二次函数的图像和性质。

2. 教学难点:通过图像理解和应用二次函数的性质。

三、教学方法
采用启发式教学法、讲授法和实践操作法相结合的方式进行教学。

四、教学过程
1. 导入新课:通过复习一次函数的知识,引导学生思考如何将一次函数推广到二次函数,激发学生的学习兴趣。

2. 新课讲解:
(1) 二次函数的概念和表达式;
(2) 二次函数的图像:a>0, a=0, a<0三种情况下的图像特征;
(3) 二次函数的性质:顶点坐标、对称轴、开口方向等。

3. 实践操作:让学生分组合作,通过描点法绘制不同类型的二次函数图像,并讨论其性质。

4. 总结反馈:教师总结本节课的主要内容,对学生的表现进行反馈。

五、作业布置
设计一些习题,包括画图题和计算题,以帮助学生巩固所学知识。

六、教学反思
在教学结束后,反思本节课的教学效果,找出存在的问题,以便改进。

最全《二次函数的图像与性质》(第二课时)说课稿完整版.doc

最全《二次函数的图像与性质》(第二课时)说课稿完整版.doc

《二次函数的图像与性质》(第一课时)说课稿说课教师:准格尔旗第五中学张志伟一、教材的地位与作用《二次函数的图像与性质》是在学生已经学习过一次函数(包括正比例函数)的图像与性质,以及会建立二次函数模型和理解二次函数的有关概念的基础上进行的,它既是前面所学知识的应用、拓展,是对前面所学一次函数、图像与性质的一次升华,又是今后学习《二次函数的应用》、《二次函数与一元二次方程的联系》的预备知识,又是学生高中阶段数学学习的基础知识。

它在教材中起着非常重要的作用。

另外,本节课,最大特点,是结合图形来研究二次函数的性质,这充分体现了一个很重要的数学思想——数形结合数学思想。

因此,这一节课,无论是在知识上,还是对学生动手能力培养上都有着十分重要的作用。

二、教学重点与难点通过分析,我们知道,《二次函数的图像与性质》在整个教材体系中,起着承上启下的作用,有着广泛的应用。

我认为这节课的重点是根据特殊二次函数图象,观察、分析、归纳出二次函数的性质。

在作二次函数y=ax2 (a≠0)的图像时,要注意,选取适当的点,选适当数目的点;在动手作图的时候,要根据少量的点连出光滑的抛物线,作图不容易很理想,这是一个难点。

教学目标设计知识目标掌握二次函数y=ax2(a≠0)的图像的作法及其性质,会根据图像用数学语言表达图像的性质。

特别是能分清,当a>0,a<0时,图像之间有什么共同点与不同点。

理解二次函数和抛物线的有关概念。

能力目标本节课,过程是由抽象到直观,再由直观到抽象(既二次函数y=ax2(a≠0)的关系式——作出图像——说出二次函数y=ax2(a≠0)的图像的性质),培养学生分析问题、解决问题的能力,培养学生观察、探讨、分析、分类讨论的能力。

情感目标引导学生养成全面看问题、分类讨论的学习习惯,通过直观多媒体演示和学生动手作图、分析,激发学生学习数学的积极性。

教学结构设计建立以“实施主体性教学,培养学生自学能力”为主的课堂教学结构模式——学教结合式让学生先自学,然后由老师来教,这样容易激发学生的求知欲望,调动学生学习的兴趣。

二次函数的图像与性质(教案)

二次函数的图像与性质(教案)

北师大版数学九年级2.2.1二次函数的图像与性质教学设计讲授新课师:小组合作,画二次函数y=x2的图像(1)观察y=x2的表达式,选择适当的x值,并计算相应的y值,完成下表:(2)在直角坐标系中描点。

(3)用光滑的曲线连接各点便得到函数y=x2的图像。

师:小组讨论,对于二次函数y=x2的图像,(1)你能描述图像的形状吗?与同伴进行交流。

(2)图像与x轴有交点吗?如果有,交点坐标是什么?(3)当x˂0时,随着x值的增大,y值如何变化?当x˃0时呢?(4)当x取什么值时,y的值最小?最小值是什么?你是如何知道的?(5)图像是轴对称图形吗?如果是,它的对称轴是什么?请你找出几对对称点,并与同伴进行交流。

生:小组合作完成二次函数y=x2的图像生:(1)图像是一条抛物线,开口向上(2)有,(0,0)(3)当x˂0时,随着x值的增大,y值减小;当x˃0时,随着x值的增大,y值增大。

(4)当x=0时,y的值,最小值0,(0,0)点为最小值点。

(5)是轴对称问题由浅入深,层层递进,把学习的主动权交给学生,增强学生的信心,体验成功的快乐。

师:二次函数y=-x2的图像是什么形状?先想一想,然后画出它的图像。

它与二次函数y=x2的图像有什么关系?与同伴进行交流师:请同学们根据刚才的结果完成下列表格。

师:下面我们来检验一下大家的掌握情况吧。

1.已知(-0.5,0.25)是二次函数y=-x2图像上的一点,则图像上与之对称的点的坐标是()A.(-0.5,-0.25)B.(0.5,0.25)C.(0.5,-0.25)D.(0.5,0.5)图形,对称轴是y轴,对称点有(-1,1)和(1,1),(-2,4)和(2,4),(-3,9)和(3,9)等生:画出二次函数y=-x2的图像,并得到它的性质。

生:完成表格生:完成练习把学习的主动权交给学生,激发学生学习数学的好奇心和求知欲,增强学生的动手能力,体验成功的快乐2.抛物线y=2x2的顶点坐标是,对称轴是。

2二次函数的图像及其性质(二)教案

2二次函数的图像及其性质(二)教案
A、①
B、②
C、③
D、④
3.在一空旷场地上设计一落地为矩形ABCD的小屋,AB+BC=10m.拴住小狗的10m长的绳子一端固定在B点处,小狗在不能进入小屋内的条件下活动,其可以活动的区域面积为S(m2).
①如图1,若BC=4m,则S=________m.
②如图2,现考虑在(1)中的矩形ABCD小屋的右侧以CD为边拓展一正△CDE区域,使之变成落地为五边形ABCED的小屋,其它条件不变.则在BC的变化过程中,当S取得最小值时,边BC的长为________m.
教学重点
1.函数形如y=a(x-h)2+k图象的性质。
2.用描点法画出二次函数y=ax2+bx+c的图象和通过配方确定抛物线的对称轴、顶点坐标。
3.会通过配方求出二次函数 的最大或最小值
教学难点
1.识图能力的培养
2.学生能通过图象的观察,对比分析发现规律,从而归纳性质
理解二次函数y=ax2+bx+c(a≠0)的性质以及它的对称轴(顶点坐标分别是x=- 、(- , )
当k<0时,函数y=kx2开口向下,而y=kx﹣2的图象过二、三、四象限,
分析选项可得,只有B符合,
故选B.
5.【答案】﹣3
【解析】已知了抛物线的顶点横坐标为2,即抛物线的对称轴方程为x=﹣ =2,可据此求出m的值.
解:∵抛物线y=x2+(m﹣1)x﹣ 的顶点的横坐标是2,
∴ =2;
解得m=﹣3,
故答案为:﹣3.
答案与解析
1.【答案】A
【解析】∵抛物线的解析式为:y=x2+5x+6,
设原抛物线上有点(x,y),绕原点旋转180∘后,变为(−x,−y),点(−x,−y)在抛物线y=x2+5x+6上,

22.1.3二次函数的图像和性质教案

22.1.3二次函数的图像和性质教案

22.1.3二次函数的图像和性质教案篇一:22.1.3二次函数的图像和性质(1)课题:二次函数y?ax2?k的图象与性质主备:宋忠保总课时数:周课时数:学习目标1.会画二次函数y=ax2+k的图象;2.掌握二次函数y=ax2+k的性质,并会应用;3.知道二次函数y =ax2与y=ax2+k的联系.重难点预测:1.重点:从图象的平移变换的角度认识y?ax2?k与y?ax2的位置关系.22第1页第2页篇二:22.1.4二次函数的图像和性质教案22.1二次函数(6)教学目标:1.使学生掌握用描点法画出函数y=ax2+bx+c的图象。

2.使学生掌握用图象或通过配方确定抛物线的开口方向、对称轴和顶点坐标。

3.让学生经历探索二次函数y=ax2+bx+c的图象的开口方向、对称轴和顶点坐标以及性质的过程,理解二次函数y=ax2+bx+c的性质。

重点难点:重点:用描点法画出二次函数y=ax2+bx+c的图象和通过配方确定抛物线的对称轴、顶点坐标是教学的重点。

难点:理解二次函数y=ax2+bx+c(a≠0)的性质以及它的对称轴(顶点坐标分别是x=-bb4ac-b2(-是教学的难点。

2a2a4a教学过程:一、提出问题1.你能说出函数y=-4(x-2)2+1图象的开口方向、对称轴和顶点坐标吗?2.函数y=-4(x-2)2+1图象与函数y=-4x2的图象有什么关系?(函数y=-4(x-2)2+1的图象可以看成是将函数y=-4x2的图象向右平移2个单位再向上平移1个单位得到的)3.函数y=-4(x-2)2+1具有哪些性质?(当x<2时,函数值y随x的增大而增大,当x>2时,函数值y随x 的增大而减小;当x=2时,函数取得最大值,最大值y=1)154.不画出图象,你能直接说出函数y=-2+x-的图象的开口方向、对称轴和顶点22坐标吗?155.你能画出函数y=-x2+x-?22二、解决问题15由以上第4个问题的解决,我们已经知道函数y=-x2+x2215轴和顶点坐标。

九年级数学上册教学课件《二次函数的图象和性质(第2课时)》

九年级数学上册教学课件《二次函数的图象和性质(第2课时)》
y2<y3<y1
________________

解:∵抛物线y=3(x+ 2 )2的对称轴为x=- 2,a=3>0,开口向上,
∴当x<- 2时,即在对称轴的左侧,y随x的增大而减小;当x>- 2时,
即在对称轴的右侧,y随x的增大而增大.
∵点A的坐标为(-3 2,y1),
∴点A在抛物线上关于x=- 2的对称点A′的坐标为( 2,y1).
y随x的增大而增大.
当x>h时,y随x的增大
而减小;x<h时,y随x
的增大而增大.
探究新知
22.1 二次函数的图像和性质
素养考点 二次函数y = a(x-h)2 的图象和性质
例 若抛物线y=3(x+ 2 )2的图象上的三个点,A(-3 2 ,y1),
B(-1,y2),C(0,y3),则y1,y2,y3的大小关系为
22.1 二次函数的图像和性质
能力提升题
在同一坐标系中,画出函数y=2x2 与y=2(x-2)2 的图
象,分别指出两个图象之间的相互关系.
y
解:图象如右图.
y = 2x2
函数y=2(x-2)2的图象由函数y=2x2的
图象向右平移2个单位得到.
x
O
2
课堂检测
22.1 二次函数的图像和性质
拓广探索题
y 1 x2
式可表示为y=a(x-3)2,
把x=-1,y=4代入,得4=a(-1-3)2,a =
因此平移后二次函数关系式为y=
1
(x-3)2.
4
1

4
方法总结:根据抛物线左右平移的规律,向右平移3个单位后,a不变,
括号内应“减去3”;若向左平移3个单位,括号二次函数的图像和性质
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

22.1 二次函数(第二课时)
教学目标:
1.会用描点法画出形如y = ax 2 的二次函数图象,了解抛物线的有关概念;
2.通过观察图象,能说出二次函数y = ax 2 的图象特征和性质;
3.在类比探究二次函数y = ax 2 的图象和性质的过程中,进一步体会研究函数图象和性质的基本方法和数形结合的思想
教学重点:会用描点法画出二次函数y=ax2的图象,观察图象,得出二次函数y = ax 2 的图
象特征和性质。

教学难点:抛物线的图像特征。

教学过程:
一、问题引新
1,同学们可以回想一下,一次函数的性质是什么?
2.我们能否类比研究一次函数性质方法来研究二次函数的性质呢?
3.一次函数的图象是什么?二次函数的图象是什么?
二、学习新知
1、例1、画二次函数y=2x2与y=2x2的图象。

(有学生自己完成)
解:(1)列表:在x的取值范围内列出函数对应值表:
找一名学生板演画图
提问:观察这个函数的图象,它有什么特点? (让学生观察,思考、讨论、交流,)
2、归纳:
抛物线概念:像这样的曲线通常叫做抛物线。

抛物线与它的对称轴的交点叫做抛物线的
顶点.顶点坐标(0,0)
3、运用新知
(1).观察并比较两个图象,你发现有什么共同点?又有什么区别?
(2).课件出示:在同一直角坐标系中,y=2x2与y=-2x2的图象,观察并比较
(3).将所画的四个函数的图象作比较,你又能发现什么?(课件出示)让学生观察y=x2、y=2x2的图象,填空;
当a>0时,抛物线y=ax2开口______,在对称轴的左边,曲线自左向右______;在对称
轴的右边,曲线自左向右______,______是抛物线上位置最低的点。

当X<0时,函数值y随着x的增大而______,当X>O时,函数值y随X的增大而______;
当X=______时,函数值y=ax2 (a>0)取得最小值,最小值y=______
三、课堂练习:1.(1)函数23
2x y =的开口 ,对称轴是 ,顶点坐标是 ;
(2)函数24
1x y -=的开口 ,对称轴是 ,顶点坐标是 . 2. 抛物线 y=--x 2/16,其对称轴左侧,y 随 x 的增大而 ;在对称轴的右侧,y 随 x 的增大而 。

3.若抛物线y= 6x 2上点P 的坐标为(2,-24),则抛物线上点P 的对称点P’的坐标是( )。

4. 若抛物线 y=(n -1) x n2-n , 的开口向下,求n 的值?
5. 已知二次函数y=ax 2 的图形经过点(-2,-3)。

(1)求a 的值,并写出函数解析式;
(2)说出函数图象的顶点坐标、对称轴、开口方向和图象的位置;
四、小结:
(1) 本节课学了哪些主要内容?
(2)函数y=ax 2的图象有哪些特征?
五、作业:
教科书习题 22.1 第 3,4 题.
六:课后练习:
A 组
1.在同一直角坐标系中,画出下列函数的图象.
(1)24x y -= (2)24
1x y = 2.填空:
(1)抛物线25x y -=,当x= 时,y 有最 值,是 .
(2)当m= 时,抛物线m m
x m y --=2)1(开口向下. (3)已知函数1222)(--+=k k x
k k y 是二次函数,它的图象开口 ,当x 时,y 随x 的增大而增大.
3.已知抛物线102-+=k k kx y 中,当0>x 时,y 随x 的增大而增大.
(1)求k 的值; (2)作出函数的图象(草图).
4.已知抛物线2ax y =经过点(1,3),求当y=9时,x 的值.
B 组
5.底面是边长为x 的正方形,高为0.5cm 的长方体的体积为ycm 3.(1)求y 与x 之间的函数关系式;(2)画出函数的图象;(3)根据图象,求出y=8 cm3时底面边长x 的值;(4)根据图象,求出x 取何值时,y ≥4.5 cm 3.
6.二次函数2ax y =与直线32-=x y 交于点P (1,b ).
(1)求a 、b 的值;
(2)写出二次函数的关系式,并指出x 取何值时,该函数的y 随x 的增大而减小.
1.一个函数的图象是以原点为顶点,y 轴为对称轴的抛物线,且过M (-2,2).
(1)求出这个函数的关系式并画出函数图象;
(2)写出抛物线上与点M 关于y 轴对称的点N 的坐标,并求出⊿MON 的面积.。

相关文档
最新文档