江苏省交通规划设计院有限公司——连云港隧道结构计算书

合集下载

隧道课设电子版计算书

隧道课设电子版计算书

计算书一 基本资料高速公路隧道,结构断面如附图1-1所示,围岩级别为III 类,容重324kN/m ϒ=,围岩的单行抗力系数630.510kN/K m =⨯,衬砌材料C20混凝土,弹性模量72.810kpa h E =⨯,容重324kN/m ϒ=。

二 荷载确定1 围岩竖向均布压力:13310.452s s=3; 20kN /;1i(5),B 10.5520.0610.67m,m B m i .0.452 1.56724s q m B q ωγλλωωω--=⨯==+-=+⨯=⨯=⨯⨯=式中: 围岩类别,围岩容重,跨度影响系数,隧道宽度式中0.06为一侧平均超挖量,=515时,=0.1,此处=1+0.1(10.67-5)=1.567所以 考虑到初期支护承担大部分围岩压力,而二次衬砌一般作为安全储备,故对围岩压力进行折减,对于本隧道按照35%折减,即q 35%s q kpa =⨯=2 围岩水平均布力:0.2e q k p a == 四 计算位移1单位位移用辛普生法近似计算,按计算列表进行。

单位位移的计算见附表1-4. 单位位移计算如下:1112221101221022201111M M s M Ms h h s M Ms h hss h hS d E IE I n S y d E IE I n y S d E I E I n δδδδ∆=≈=⨯∆==≈=⨯∆=≈=⨯∑⎰∑⎰∑⎰计算精度校核为:61112222()10δδδ-++=⨯26(1)110ss h y SE I nδ-+∆==⨯=∑ 闭合差0.∆≈ 单位位移计算表 附表1-4注:1. I —截面惯性矩,3b I ,12d b =取单位长度。

2.不考虑轴力的影响2 载位移——主动荷载在基本结构中引起的位移 (1)每一楔块上的作用力竖向力:Q i i qb =式中: 123456781h ,h ,h ,h ,h ,h ,h ,h .2i i ii hb m m m m m m m m d d G S γ---========+=⨯∆⨯表示衬砌外缘相邻两截面之间的竖直投影长度,由附图1-5量的:()2i Bb m m =≈=∑校核 水平压力:E e i i h =式中:12345678h ,h ,h ,h ,h ,h ,h ,h .,,,i q e g b m m m m m m m m a a a --========表示衬砌外缘相邻两截面之间的竖直投影长度,由附图1-5量的: 011sin ()cos ,y ip i i iii i i i i i i N a Q G a Ex x x y y y --=+-∆=-∆=-∆--∑∑相邻两接缝中心点的坐标增值自重力:12i ii h d d G S γ-+=⨯∆⨯ 式中:8hG i d γ--表示接缝i 衬砌截面厚度 。

高速公路隧道计算书

高速公路隧道计算书

高速公路隧道计算书
1. 引言
本文档为高速公路隧道的计算书,旨在对隧道的相关参数进行
计算,并评估其合理性和安全性。

2. 隧道参数计算
2.1 隧道尺寸
根据设计要求和实际情况,计算隧道的尺寸包括净高度和净宽度。

2.2 隧道线型
根据设计要求和地质勘探结果,计算隧道的线型参数,包括纵
断面和横断面的曲线半径等。

2.3 隧道施工方法
根据施工要求和地质情况,计算隧道的施工方法,包括顺做法、逆做法和转向做法等。

2.4 隧道地质参数
根据地质勘探结果和相关地质资料,计算隧道的地质参数,包
括地层土质、岩性等。

2.5 隧道支护结构计算
根据隧道的地质情况和设计要求,计算隧道的支护结构类型和
尺寸,包括锚杆、拱形支护等。

3. 隧道安全性评估
根据隧道的设计参数和施工方法,评估隧道的安全性,包括地
质灾害、水文条件和交通安全等方面进行综合评估。

4. 结论
本文档根据高速公路隧道的相关参数进行计算,并对其安全性
进行评估。

根据计算结果,可以为隧道的设计和施工提供参考依据,确保隧道的合理性和安全性。

以上为《高速公路隧道计算书》的内容摘要,详细计算和评估
请参阅正文。

江苏省交通规划设计院有限公司——连云港隧道结构计算书

江苏省交通规划设计院有限公司——连云港隧道结构计算书

连云港港主体港区东疏港高速公路隧道工程结构计算说明书计算:复核:审核:目录1 工程概况 ....................................................................................................... -2 -2 计算内容和计算依据 ................................................................................... - 2 -2.1 计算内容.............................................................................................. - 2 -2.2 计算依据.............................................................................................. - 2 -3 隧道结构静力计算 ....................................................................................... - 2 -3.1荷载取值和计算模型........................................................................... - 2 -3.2 计算结果分析...................................................................................... - 5 -4、隧道V级围岩段抗震计算 ........................................................................ - 8 -4.1荷载取值和计算模型........................................................................... - 8 -4.2 计算结果分析...................................................................................... - 9 -5、隧道IV级围岩段抗震计算..................................................................... - 13 -5.1荷载取值和计算模型......................................................................... - 13 -5.2 计算结果分析.................................................................................... - 14 -1 工程概况连云港港东疏港高速公路共设置隧道2座—后云台山隧道及炮台顶隧道,均按上下行分离式形式布置。

明挖隧道计算书

明挖隧道计算书

隧道结构检算计算书一.E型截面结构厚度为:底板厚120cm,侧墙底厚120cm,侧墙顶厚为55cm,抗拔桩径为100cm。

采用荷载-结构法检算结构内力,基坑高度H=8.8m。

计算软件:midas civil(2006)取土的重度值:γ=20kN/m3;1、荷载计算:(计算断面取埋深最大处计算,水土分算)(1)侧水压力ew1=0kN/mew2=γw⨯H⨯ω=10⨯8.8⨯0.5=44kN/m(2)侧土压力et1=0kN/met2=λ⨯(γ-γw)⨯H=0.33⨯(20-10)⨯8.8 =29.04kN/m基底水浮力Pw =γw⨯(h1+H)⨯ω=10⨯(1.2+8.8)⨯0.5=50kN/m(3)边墙顶地面超载:qcz=20kN/m边墙汽车冲击荷载:冲击系数μ=20/(80+L)=20/(80+14)=0.213qcj =qcz⨯μ=20⨯0.213=4.26 kN/m汽车超载引起侧压力 ecz =qcz⨯λ=20⨯0.33=6.6 kN/m汽车冲击荷载引起侧压力 ecj=qcj⨯λ=4.26⨯0.33=1.41 kN/m (4)无地下水情况侧土压力et1=0kN/met2=λ⨯γ⨯H=0.33⨯20⨯8.8=58.1kN/m。

(5)地层抗力地层抗力是用地层弹簧来模拟的。

地层抗力系数根据土层条件确定,按温克假定计算。

在计算中,消除受拉的弹簧。

结合相近工程地质资料,弹性抗力系数取K=50MN/m32、荷载工况(1)、自重(2)、侧土压力(3)、侧水压力(4)、基底浮力(5)、无地下水时侧土压力(6)、汽车超载和冲击引起侧压力其中1~5为永久作用,6为可变作用。

3、计算简图如下图所示。

计算简图计算模型中采用梁单位模拟隧道结构的侧墙、底板和抗拔桩,在底板两端设置2个水平和竖向的约束,模拟抗浮牛腿的作用,侧墙、底板和抗拔桩分别设置土弹簧约束模拟地层对结构的作用,在计算中消除受拉的弹簧结构受力,计算所取纵向5m的平面框架有限元模型,相应的荷载在每延米数值的基础上。

隧道结构计算

隧道结构计算

隧道结构计算结构计算⼀.设计基本资料结构断⾯如附图所⽰。

岩体为Ⅳ级围岩,重度326.9/KN m γ=,围岩的弹性抗⼒系数630.510/K KN m =?,基底围岩弹性抗⼒系数为 1.25a K K =。

初砌材料为20C 混凝⼟,弹性模量为弹性模量为72.610E KPa =?,重度为320/h KN m γ=,混泥⼟衬砌轴⼼抗压强度标准值为13.5ck f MPa =,混凝⼟轴⼼抗拉强度标准值 1.7tck f MPa =。

图衬砌结构断⾯(尺⼨单位:cm )⼆.荷载确定①围岩竖向均布压⼒20.452s q γω-=?式中:S ―围岩级别,此处4S =;γ―围岩重度,此处326.9/KN m γ=;ω—跨度影响系数,1(5)m w i l =+-,⽑洞跨度1220.0612.12m l m =+?=,其中0。

06m 为⼀侧的平均超挖量,~155m l m =时,0.1i =,此处10.1(12.125) 1.712m l m =+-=。

所以,有420.45226.9 1.71282.895q KPa -==此处,超挖回填层重忽略不计急。

②围岩⽔平均布压⼒kp ?e=0.25q=0.2582.895=20.724a三.初砌⼏何要素1.结构⼏何尺⼨内轮廓半径为1 5.14R m =,27.64R m =;内径1R ﹑2R 所画圆曲线的终点截⾯和竖直轴的夹⾓?=311φ,?=832φ;拱顶截⾯厚度为00.35d m =;1 5.14R m =, 1549r cm = 27.64R m =,2799r cm =拱轴线半径'1100.5 5.140.50.35 5.315r R d m =+=+?= '2200.57.640.50.357.815r R d m =+=+?=2.半拱轴线长度S 及分段轴长S ? 分段轴线长度'11131= 3.14 5.315 2.8742180102S r mθπ?=='22283 3.147.81511.3152180180S r m θπ?==??=?半拱轴线长度12 2.874211.315214.1894S S S m =+=+=将半拱轴线长度等分为8块,每段长度为14.18941.773788S S m ?===3.各分块接缝(截⾯)中⼼⼏何要素①与竖直轴夹⾓i α11'1180 1.773718019.1305.315S r αθππ?=?=?=?=?m S S S 6732.08742.27737.12211=-?=-?=?=+=+=938.35180815.76732.031180'2112ππθαr S ?=??==0105.13180815.77737.1180'22ππθr S 32235.93813.01048.948ααθ=+?=?+?=?43248.94813.01061.958ααθ=+?=?+?=? 54261.95813.01074.968ααθ=+?=?+?=? 65274.96813.01087.978ααθ=+?=?+?=? 77287.97813.010100.988ααθ=+?=?+?=? 872100.98813.010113.998ααθ=+?=?+?=?另⼀⽅⾯,?=+=+=??1148331218θθα⾓度闭合差0≈?。

隧道结构计算书

隧道结构计算书

地 面
H1=25m
q1 qm e1
h'=4.1m H2=17m
q2 qz e 3 e4
e3 e4
e' 1
h=11.58m
e2
B=32.22m
e' 2
图 3-1 浅埋连拱隧道荷载计算示意图 图 3-1 所示为连拱隧道 V 级围岩浅埋段最大埋深处隧道二次衬砌结构荷载计 算示意图。从图中看出,左侧洞室埋深大于右侧洞室,存在偏压现象。隧道结构
-3-
隧道结构计算书
H q1 H1 1 1 tan B H q2 H 2 1 2 tan B
中隔墙顶部三角形块体自重荷载为:
qz h
作用在衬砌上的隧道两侧水平围岩压力为:
e1 H1 e2 ( H1 h) H 2 e1 ( H 2 h) e2
得:
tan =tanc
(tan 2 c 1)tanc =2.52 tanc tan

tan tan c =0.35 tan 1 tan (tan c tan ) tan c tan
25 H q1 H1 1 1 tan 25 25 1 0.35 0.384 =560kPa B 32.22
H p 2.5hq
式中:Hp—浅埋隧道分界深度(m); hq—荷载等效高度(m),按下式计算:
hq
式中, 为围岩重度(kN/m3);
q

q 为 V 级围岩深埋隧道围岩垂直均布压力(kN/m2),
q h 0.45 2s 1
式中,s 为围岩级别, 为宽度影响系数, 1 i(0.5B 5) ,B 为连拱隧道宽度 (m);i 为 B 每增减 1m 时的围岩压力增减率,以 B>5m 时,取 i=0.1。 由上述计算过程计算 V 级围岩浅埋和深埋隧道的分界高度 H p :

隧道结构力学计算

隧道结构力学计算

第一章绪论1. 隧道:构筑在离地面一定深度的岩层或土层中用作通到底建筑物2. 隧道分类:按周围介质分:岩石隧道和土层隧道;按用途不同分:交通隧道和市政工程隧道3. 公路隧道:穿越公路路线障碍物的交通隧道4. 公路隧道的主要特点:(1)断面形状复杂:宽而扁,高:宽<=1.; 常有特殊构造:岔洞,紧急停车带回车区,以及双连拱隧道,小间距隧道,双层隧道;(2) 荷载形式单一:主要是围岩压力,方向不会改变;(3)附属设施多:通风,照明,交通信号,消防,监控设施5. 断面几何形状:考虑功能和经济的两方面:马蹄形,圆形(盾构开挖),拱形(山岭隧道),双连拱(浅埋土层,地形受限),矩形(沉管法,城市隧道)6.. 衬砌的结构类型分为四类:整体式砼衬砌;装配式衬砌;锚喷支护衬砌;复合式衬砌7.. 整体式砼衬砌又可分为:半衬砌;厚拱薄墙衬砌;直墙拱形衬砌;曲墙拱形衬砌(1)半衬砌:适用于岩石较坚硬并且整体稳定或基本稳定的围岩; 对于侧压力很大的较软岩层或土层,为避免直墙承受较大压力,采用落地拱(2)厚拱薄衬砌:适用于水平压力很小的情况,拱脚较厚,边墙较薄(3) 直墙拱形衬砌:铁路隧道常用,竖向压力较大,水平侧压力不大(4)曲墙拱形衬砌:地质条件差,岩石破碎松散和易于坍塌地段8. 装配式衬砌:用于盾构法施工,深埋法施工,TBM 法施工9. 锚喷支护衬砌:喷混凝土和加锚杆两方法的统称。

常用方法:喷混凝土,钢筋网喷混凝土,锚杆喷混凝土,钢筋网锚杆混凝土,钢纤维喷混凝土;特点:有很强时效性,新奥法和挪威法10. 复合式衬砌:主要应用于含水量较多的地段,外层为锚喷支护,中间有一层防水层,内层多为整体式衬砌,新奥法多采用11. 初始地应力场由两种力系组成:自重应力分量;构造应力分量影响因素:一类是和地壳的运动,地下水的变化以及人类活动等因素有关12. 构造应力场:区域性明显,测试方法:解析反演法,原位测试法(1)地质的构造过程不公改变了地质的重力应力场,而且还有一总分残余在岩体内(2) 构造应力场在一定深度内普遍存在且多为水平分量(3)构造应力具有明显的区域性和时间性13. 作用在隧道结构上的荷载分为三类:主要荷载(就是长期作用的荷载,包括地层压力,围岩弹性抗力,结构自重力,回填岩土重力,地下静水压力及使用荷载); 附加荷载(指非经常作用的荷载,包括施工荷载,灌浆压力,局部落石以及有温度变化或砼收缩引起的温度应力和收缩用力) ;特殊荷载(一些偶然发生的荷载,如炮弹冲击力和爆炸时产生激波压力,地震力,车祸时冲撞力)14. 形变压力: 由岩体变形所产生的挤压力;15. 松散压力: 岩体坠落、滑移、坍塌所产生的重力16. 围岩压力:形变压力和松散压力统称为围岩压力17. 影响围岩压力的因素:a岩土的重力b岩体的结构c.地下水的分布d.隧道洞室的形状和尺寸e. 初始地应力18•确定围岩压力的方法:a•现场量测b•理论估算c工程类比法19•常用的围岩分类方法:a岩石坚固系数分类法b•太沙基理论c•铁路围岩分类法d•人工岩石洞室围岩分类法e.水工隧道围岩分类法20. 隧道结构计算的任务:就是采用数学力学的方法,计算分析在隧道修筑的整个过程中 (包括竣工,运营)a.隧道围岩及衬砌的强度 b.刚度和稳定性,为隧道的设计及施工提供具体设计参数21. 隧道的计算方法可分为三大部分: a.刚体力学法b.结构力学法(荷载位移法)c.连续介质力学法(地层结构法)22. 附:19 世纪后期,砼材料与钢材料的出现,地下结构的建造于计算进入地下连续拱形框架结构阶段,而计算的理论基础为线弹性结构力学;地下连续拱形框架结构式一种超静定弹性结构系统,荷载为地层压力,优点:以结构力学原理为计算理论基础缺点:没有考虑地层对衬砌结构变形所产生的弹性抵抗力23. 如果人工考虑隧道衬砌和地层的相互作用,地下结构的计算方法仅分为结构力学方法和连续介质力学方法24. 造成隧道结构计算结果不能直接应用的主要原因:(1) 围岩的物理力学参数无法准确确定(2)隧道的荷载量级很大,无法准确给出(3) 围岩自承能力除受围岩自身条件影响外,还受施工方法、时间、支护形式、洞室几何尺寸等的影响( 4)围岩本构关系复杂和屈服性准则不完善性,使围岩自承能力无法发挥第二章隧道结构计算的结构力学法1. 在分析过程中首先要确定地层压力,然后计算衬砌在地层压力和其他荷载作用下的内力分布,最后根据内力分布对衬砌结构断面进行验算2. 荷载结构法和计算地表结构所采用的结构力学方法基本相同,主要差别是衬砌结构在变形过程中要受到周围介质的限制,分为力法与位移法3. 拱形半衬砌隧道的结构计算: ( 1)半衬砌结构可简化为弹性固定平面无铰拱(计算模型) (2)拱顶截面建立位移协调方程,由拱顶截面的位移协调方程得拱脚处的位移和转角( 3) 将拱脚位移和转角方程代入拱顶截面位移协调方程,得关于未知力X1 ,X2 的线性代数方程组,可得拱顶截面未知力( 4)各截面强度校核4. 拱形曲墙隧道的结构计算: (1)假定弹性抗力为镰刀形分布,拱形曲墙式衬砌的计算模型为墙角弹性固定而两侧受周围约束的无铰拱( 2)通过h点的变形协调条件计算弹性抗力bh(3)计算主动荷载作用下衬砌的内力(4) b h=1时衬砌的内力⑸求出最大抗力值b h(6)用叠加的方法求出衬砌内任一点的内力5. 拱形曲墙隧道的结构计算模型:竖向荷载所引起的侧墙部分的变形,将受到侧面围岩的约束,形成一个抗力区,这里假定弹性抗力为镰刀形,其量值用 3 个特征值控制:抗力上零点对一般与对称中线夹角为40°-60°;抗力下零点在拱脚处;最大抗力点h 在衬砌最大跨度处,一般在抗力区2/3 处6. 拱形直墙隧道的局部变形法:在分析拱形直墙式隧道结构时,需将拱圈与直墙分开考虑,拱圈是一个拱脚弹性固定的无铰拱,弹性抗力假定为二次抛物线分布,边墙视为弹性地基梁,全部抗力有文克勒假设确定,墙顶和拱脚弹性固结,墙脚与基岩间有较大的摩擦力,无水平位移发生,他在基岩的作用视为刚性体7•外荷载产生的位移卩hp和直墙拱的结构计算:(1)由弹性地基梁公式,计算系数卩1, 3 1,卩2, 3 2(墙顶位移)(2)由主动荷载及单位弹性抗力所产生的h点位移计算单位弹性抗力所产生的位移h b (3)由口hp和口h b求得弹性抗力b h (4)根据任一截面i处的内力表达式得拱的截面内力( 5)求出直梁的内力( 6)校核8•隧道衬砌结构计算的矩阵力法计算步骤:(1)计算[F0](2)计算[丫SX]并将其转化为[丫SX]'⑶计算[丫SP]并将其转化为[丫SP]' (4)计算[Fxx],[Fxp](5)计算赘余力{x} (6)计算衬砌单元节点{s} ( 7)计算衬砌节点位移{ S }9•隧道衬砌结结构计算的矩阵位移法计算步骤:(1)计算衬砌单元刚度位移矩阵( 2)计算链杆刚度( 3)计算墙底支座的刚度矩阵( 4)集成总体刚度矩阵,并计算各元素值( 5)消去已知位移( 6)计算节点位移( 7)计算单元节点力10•拱形直墙计算模型:拱圈是一个拱脚弹性固定的无铰拱,拱圈弹性抗力假定为二次抛物线分布,边墙视为弹性地基梁,全部抗力由文壳勒假设确定。

隧道毕业设计计算书

隧道毕业设计计算书
0.55
0.60
Ⅱ、Ⅲ级围岩为
表面不光滑时
1.3设计标准及遵循规范
1.3.1 设计标准
(1)隧道按规定的远期的交通量设计,采用分离式单向行驶两车道隧道(上、下行分离)。
(2)隧道设计车速、几何线形与净空按100km/h计,隧道照明设计速度按照100km/h设计。
1.3.2 遵循规范
(1)、《公路隧道设计规范》JTGD70-2004
This highway tunnel for separate one-way road two-lane tunnel, stretches of the left line, the basic situation of 298m surrounding rockⅡlevel for: long 155m; ZhangGuiHuanong 90m surroundingⅣlevel 53m surrounding long.
表1-1 各类围岩主要物理力学指标表
围岩级别
力学指标



备注
密度ρ(×103kg/m3)
2.50~2.60
2.60~2.80
2.70~2.90
弹性抗力系数K(MPa/m)
400~500
1000~1200
1400~1600
弹性模量(静态) E(Gpa)
8.0~10.0
15.0~20.0
25.0~30.0
Tunnel after many calculation and checking, DongMen, lining and ventilation, etc, can normal construction requirements.
[Key words]:tunnel; Ventilation; Composite linings; New arcane

高速公路隧道设计计算书

高速公路隧道设计计算书

高速公路隧道设计计算书1. 引言此文档旨在提供高速公路隧道设计的计算书。

通过详细说明设计计算的相关参数和步骤,以确保隧道的安全和可靠性。

2. 隧道几何参数计算2.1 隧道断面尺寸计算根据设计要求和道路标准,计算隧道的断面尺寸。

考虑隧道的通行能力和施工限制,确保满足道路交通的需求。

2.2 隧道长度计算根据路线规划和土地使用情况,计算隧道的长度。

考虑隧道的地质条件和环境保护要求,确保隧道的稳定和安全性。

2.3 隧道纵坡计算根据道路纵坡和地形要求,计算隧道的纵坡。

确保隧道内的车辆行驶平稳,避免出现陡坡和坡度过大的情况。

3. 隧道结构设计计算3.1 隧道支护方式选择根据地质勘察结果和工程要求,选择适当的隧道支护方式。

考虑地层的稳定性和隧道使用寿命,确保隧道的结构安全可靠。

3.2 隧道设计荷载计算根据设计车辆的荷载和道路使用要求,计算隧道的设计荷载。

考虑车辆的重量和速度,确保隧道的结构可以承受荷载。

3.3 隧道混凝土衬砌厚度计算根据隧道的尺寸和设计荷载,计算隧道混凝土衬砌的厚度。

考虑混凝土的强度和耐久性,确保隧道的结构稳定和耐久。

4. 隧道排水设计计算4.1 隧道排水量计算根据降雨量和地质条件,计算隧道的排水量。

考虑隧道内的地下水位和地面径流,确保隧道保持干燥和安全。

4.2 隧道排水系统设计根据隧道的结构和排水量要求,设计有效的隧道排水系统。

确保排水系统的畅通和排水能力满足设计要求。

5. 结论通过以上计算,我们可以得出隧道设计的相关参数和结构要求。

这些计算书将为隧道设计工作提供参考,并确保隧道的安全和可靠性。

---以上是高速公路隧道设计计算书的概要内容。

为保证设计的准确性,请根据具体工程要求进行详细计算和结构设计。

隧道工程课程设计计算书

隧道工程课程设计计算书

隧道工程课程设计计算书设计参数:-隧道长度:2000m-隧道净宽:10m-隧道净高:6m-土体密度:18.5kN/m3-土体内摩擦角:30°-地下水位:5m-隧道内地下水位:2m-土体内抗剪强度参数:φ=30°计算步骤:1.计算隧道内各个断面的相对稳定性;2.计算隧道支护结构的尺寸和索力;3.计算隧道开挖的顺序和土体的应力状态;4.计算隧道的变位量和不同支护结构的变形量;5.计算隧道内构筑物的稳定性;6.计算隧道坍塌和局部沉降的可能性。

1.相对稳定性计算:计算隧道内两个断面的相对稳定性,以确定隧道开挖顺序和施工方法。

首先计算土体的自重应力,然后计算水压力和隧道开挖导致的土体应力变化。

根据土体内摩擦角和土体内抗剪强度参数,计算土体的剪应力和相对稳定性。

2.支护结构的尺寸和索力计算:根据隧道净高和净宽,计算隧道内的支护结构的尺寸和索力。

使用经验公式或数值模拟方法计算支护结构的索力。

3.土体的应力状态计算:根据施工顺序和隧道支护结构的施工过程,计算隧道开挖时土体的应力状态。

包括计算土体的剪应力和轴向应力。

4.隧道的变位量和变形计算:根据土体的应力状态和支护结构的尺寸和索力,计算隧道开挖时的变位量。

使用弹塑性模型计算不同支护结构的变形量。

5.隧道内构筑物的稳定性计算:根据土体的应力状态和支护结构的尺寸和索力,计算隧道内构筑物的稳定性。

包括计算构筑物的动力稳定性和长期稳定性。

6.隧道坍塌和局部沉降的可能性计算:根据土体的应力状态和支护结构的尺寸和索力,计算隧道开挖过程中的坍塌和局部沉降的可能性。

通过计算应力集中和土体塑性区域的发展,评估土体失稳的可能性。

以上是隧道工程课程设计计算书的主要内容,涉及隧道设计的各个方面。

通过对土体的力学性质、支护结构的尺寸和索力以及隧道开挖过程中土体应力状态的计算,可以确定隧道的稳定性和施工方法。

一个隧道计算书

一个隧道计算书

一、 结构尺寸隧道内径:5400;隧道外径:6000;管片厚度:300mm 管片宽度:1500mm 二、 计算原则选择区间隧道地质条件较差、隧道埋深较大、地面有特殊活载(地面建筑物 桩基、铁路线等)等不同地段进行结构计算。

三、 计算模型计算模型采用修正惯用设计法。

考虑管片接头影响,进行刚度折减后按均质圆 环进行计算;水平地层抗力按三角形抗力考虑;计算结果考虑管片环间错缝拼装 效应的影响进行内力调整。

弯曲刚度有效率 n =0.8,弯矩增大系数E =0.3。

计算 简图如下图所示。

使用ANSYS?序软件进行结构计算。

四、 计算荷载荷载分为永久荷载、活载、附加荷载和特殊荷载等四种。

1) 永久荷载:管片自重、水土压力、上部建筑物基础产生的荷载。

考虑地层特征 采取水土合算或水土分算。

2) 活载:地面超载一般按20KN/m 计;有列车通过地段按40KN/m 计。

3) 附加荷载:施工荷载一一盾构千斤顶推力,不均匀注浆压力,相邻隧道施工影 响等。

4) 特殊荷载:地震力一一按抗震基本烈度为7度计算,人防荷载按六级人防计算, 按动载化为静载计算。

五、 内力计算1、一般地段:地质条件较差、埋深较大地段(地面超载 20KN/m ):里程YCK5+990地面超载压力基底竖向反力修正惯用设计法计算模型计算模型节点划分选取地质钻孔为MEZ2-A073隧道埋深约33.9m,地下水位在地面下5.0m。

地层由上至下分别为<1>-7.3m; <5-1>-39.2m ; <5-2>-20m。

隧道所穿过地层为<5-2>。

隧道横断面与地层关系如下图所示:<!> [<5- 1 >O<5 —2>隧道横断面与地层关系2、列车通过地段:地面超载 40KN/m,里程YCK6+050选取地质钻孔为 MEZ2-A166隧道埋深约35.5m,地下水位在地面下12.5m。

隧道工程课程设计计算书

隧道工程课程设计计算书

隧道工程课程设计计算书一、项目背景及意义随着我国经济的快速发展,基础设施建设在国民经济中的地位日益突出,尤其是在交通运输领域。

隧道作为一种重要的交通工程结构,具有缩短路线、降低地形影响、保护生态环境等优点,在高速公路、铁路、城市轨道交通等方面得到了广泛应用。

因此,开展隧道工程课程设计,提高隧道工程设计水平,对培养隧道工程专业人才具有重要的现实意义。

二、设计任务及目标本次隧道工程课程设计的主要任务是针对某隧道工程,进行隧道主体结构设计、支护设计、排水设计、通风设计等方面的工作。

通过本次设计,使学生掌握隧道工程设计的基本原理和方法,培养实际工程问题的分析和解决能力。

三、设计内容与方法1. 隧道主体结构设计根据隧道工程的特点和地质条件,选择合适的隧道断面形式,进行隧道主体结构的设计。

主要包括隧道净空尺寸、衬砌结构、路面结构等方面的设计。

2. 隧道支护设计针对隧道工程的地质条件、围岩等级、施工方法等因素,进行隧道支护设计。

主要包括锚杆、喷射混凝土、钢架、超前支护等方面的设计。

3. 隧道排水设计根据隧道工程的地质条件、水文地质条件,进行隧道排水设计。

主要包括排水系统、防水系统、降水措施等方面的设计。

4. 隧道通风设计针对隧道工程的长度、交通量、地质条件等因素,进行隧道通风设计。

主要包括通风方式、通风设备、通风控制系统等方面的设计。

5. 隧道附属设施设计根据隧道工程的功能需求,进行隧道附属设施设计。

主要包括隧道照明、标志、监控系统、紧急救援系统等方面的设计。

6. 隧道施工组织设计根据隧道工程的特点、施工方法、施工技术等因素,进行隧道施工组织设计。

主要包括施工进度、施工队伍、施工设备、施工质量控制、施工安全管理等方面的设计。

四、设计成果与分析1. 隧道主体结构设计成果根据设计任务书的要求,完成了隧道主体结构的设计。

设计过程中,充分考虑了隧道工程的地质条件、交通需求、施工技术等因素,确保了设计方案的合理性、安全性和经济性。

明挖隧道计算书

明挖隧道计算书

隧道结构检算计算书一.E型截面结构厚度为:底板厚120cm,侧墙底厚120cm,侧墙顶厚为55cm,抗拔桩径为100cm。

采用荷载-结构法检算结构内力,基坑高度H=8.8m。

计算软件:midas civil(2006)取土的重度值:γ=20kN/m3;1、荷载计算:(计算断面取埋深最大处计算,水土分算)(1)侧水压力ew1=0kN/mew2=γw⨯H⨯ω=10⨯8.8⨯0.5=44kN/m(2)侧土压力et1=0kN/met2=λ⨯(γ-γw)⨯H=0.33⨯(20-10)⨯8.8 =29.04kN/m基底水浮力Pw =γw⨯(h1+H)⨯ω=10⨯(1.2+8.8)⨯0.5=50kN/m(3)边墙顶地面超载:qcz=20kN/m边墙汽车冲击荷载:冲击系数μ=20/(80+L)=20/(80+14)=0.213qcj =qcz⨯μ=20⨯0.213=4.26 kN/m汽车超载引起侧压力 ecz =qcz⨯λ=20⨯0.33=6.6 kN/m汽车冲击荷载引起侧压力 ecj=qcj⨯λ=4.26⨯0.33=1.41 kN/m (4)无地下水情况侧土压力et1=0kN/met2=λ⨯γ⨯H=0.33⨯20⨯8.8=58.1kN/m。

(5)地层抗力地层抗力是用地层弹簧来模拟的。

地层抗力系数根据土层条件确定,按温克假定计算。

在计算中,消除受拉的弹簧。

结合相近工程地质资料,弹性抗力系数取K=50MN/m32、荷载工况(1)、自重(2)、侧土压力(3)、侧水压力(4)、基底浮力(5)、无地下水时侧土压力(6)、汽车超载和冲击引起侧压力其中1~5为永久作用,6为可变作用。

3、计算简图如下图所示。

计算简图计算模型中采用梁单位模拟隧道结构的侧墙、底板和抗拔桩,在底板两端设置2个水平和竖向的约束,模拟抗浮牛腿的作用,侧墙、底板和抗拔桩分别设置土弹簧约束模拟地层对结构的作用,在计算中消除受拉的弹簧结构受力,计算所取纵向5m的平面框架有限元模型,相应的荷载在每延米数值的基础上。

隧道结构力学分析计算书

隧道结构力学分析计算书

有限元基础理论与ANSYS应用—隧道结构力学分析专业:姓名:学号:指导教师:2014年12月隧道结构力学分析目录目录 (2)1. 问题的描述........................................................... 错误!未定义书签。

2. 建模....................................................................... 错误!未定义书签。

2.1 定义材料......................................................................... 错误!未定义书签。

2.2 建立几何模型................................................................. 错误!未定义书签。

2.3 单元网格划分 (5)3. 加载与求解 (6)3.1 施加重力加速度 (6)3.2 施加集中力、荷载位移边界条件 (6)4. 后处理 (8)4.1 初次查看变形结果 (8)4. 2 除去受拉弹簧网格.............. (9)4.3 除去弹簧单元网格 (10)4. 4 查看内力和变形结果 (11)4. 5 绘制变形图 (12)5. 计算结果对比分析 (14)6. 结语 (14)7. 在做题过程中遇到的问题及解决方法 (16)8. 附录 (16)山岭隧道结构力学分析1.问题的描述已知双线铁路隧道总宽为13.3米,高为11.08米,以III级围岩深埋段为例,隧道而衬厚度为35cm,带仰拱,采用钢筋混凝土C30,其重度为=25kN/m3,弹性模量为31GPa,泊松比为0.2,。

该段该隧道的埋深为5米,围岩平均重度为23kN/m3,侧压力系数为0.3,计算围岩高度为6.588m,地层弹性抗力系数为500MPa/m。

隧道结构计算

隧道结构计算

第6章隧道结构计算6.1 概述6.1.1 引言隧道结构工程特性、设计原则和方法与地面结构完全不同,隧道结构是由周边围岩和支护结构两者组成共同的并相互作用的结构体系。

各种围岩都是具有不同程度自稳能力的介质,即周边围岩在很大程度上是隧道结构承载的主体,其承载能力必须加以充分利用。

隧道衬砌的设计计算必须结合围岩自承能力进行,隧道衬砌除必须保证有足够的净空外,还要求有足够的强度,以保证在使用寿限内结构物有可靠的安全度。

显然,对不同型式的衬砌结构物应该用不同的方法进行强度计算。

隧道建筑虽然是一门古老的建筑结构,但其结构计算理论的形成却较晚。

从现有资料看,最初的计算理论形成于十九世纪。

其后随着建筑材料、施工技术、量测技术的发展,促进了计算理论的逐步前进。

最初的隧道衬砌使用砖石材料,其结构型式通常为拱形。

由于砖石以及砂浆材料的抗拉强度远低于抗压强度,采用的截面厚度常常很大,所以结构变形很小,可以忽略不计。

因为构件的刚度很大,故将其视为刚性体。

计算时按静力学原理确定其承载时压力线位置,检算结构强度。

在十九世纪末,混凝土已经是广泛使用的建筑材料,它具有整体性好,可以在现场根据需要进行模注等特点。

这时,隧道衬砌结构是作为超静定弹性拱计算的,但仅考虑作用在衬砌上的围岩压力,而未将围岩的弹性抗力计算在内,忽视了围岩对衬砌的约束作用。

由于把衬砌视为自由变形的弹性结构,因而,通过计算得到的衬砌结构厚度很大,过于安全。

大量的隧道工程实践表明,衬砌厚度可以减小,所以,后来上述两种计算方法已经不再使用了。

进入本世纪后,通过长期观测,发现围岩不仅对衬砌施加压力,同时还约束着衬砌的变形。

围岩对衬砌变形的约束,对改善衬砌结构的受力状态有利,不容忽视。

衬砌在受力过程中的变形,一部分结构有离开围岩形成“脱离区”的趋势,另一部分压紧围岩形成所谓“抗力区”,如图6-1所示。

在抗力区内,约束着衬砌变形的围岩,相应地产生被动抵抗力,即“弹性抗力”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

连云港港主体港区东疏港高速公路隧道工程
结构计算说明书
计算:
复核:
审核:
江苏省交通规划设计院有限公司
二○○七年十月
目录
1 工程概况 ....................................................................................................... -
2 -
2 计算内容和计算依据 ................................................................................... - 2 -
2.1 计算内容.............................................................................................. - 2 -
2.2 计算依据.............................................................................................. - 2 -
3 隧道结构静力计算 ....................................................................................... - 2 -
3.1荷载取值和计算模型........................................................................... - 2 -
3.2 计算结果分析...................................................................................... - 5 -
4、隧道V级围岩段抗震计算 ........................................................................ - 8 -
4.1荷载取值和计算模型........................................................................... - 8 -
4.2 计算结果分析...................................................................................... - 9 -
5、隧道IV级围岩段抗震计算..................................................................... - 13 -
5.1荷载取值和计算模型......................................................................... - 13 -
5.2 计算结果分析.................................................................................... - 14 -
1 工程概况
连云港港东疏港高速公路共设置隧道2座—后云台山隧道及炮台顶隧道,均按上下行分离式形式布置。

后云台山隧道位于连云港港区东南部,穿越后云台山,地貌单元为云台山区,地势起伏较大,局部发育冲沟。

根据项目总体设计,路线起自老港区以东约500m处,即在841隧道东侧。

路线下穿中山东路后,穿越后云台山,在船山瀑布西侧出后云台山。

后云台山隧道左线长3745m(ZK0+907~ZK4+652),右线长3730m(YK0+911~YK4+641)。

隧道最大埋深410m,属特长隧道。

炮台顶隧道位于后云台山隧道南侧,隧道从连云港师范高等专科学院东方校区西侧穿越炮台顶,在黄崖村出炮台顶,隧道左线长845m(ZK5+908~ZK6+753),右线长848m(YK5+890~YK6+738)。

隧道最大埋深130m,属中隧道。

按照《公路隧道设计规范》(JTG D70-2004)和《公路工程抗震设计规范》(JTJ 004-89),需要对隧道结构进行静力和抗震强度计算。

2 计算内容和计算依据
2.1 计算内容
(1)隧道V级围岩段结构静力计算分析;
(2)隧道V级围岩段结构抗震强度和稳定性分析(按基本烈度8度计算);
(3)隧道IV级围岩段结构抗震强度和稳定性分析(按基本烈度8度计算)。

2.2 计算依据
《公路隧道设计规范》(JTG D70-2004)
《公路工程抗震设计规范》(JTJ 004-89)
《混凝土结构设计规范》(GB 50010-2002)
《工程结构设计原理》,东南大学出版社,曹双寅主编,2002年5月
3 隧道结构静力计算
3.1荷载取值和计算模型
本工程中V级围岩段隧道为隧道结构受力和抗震最不利的位置,因此本计算书针对V级围岩段隧道二次衬砌进行计算分析。

首先计算V级围岩段隧道所受的最大荷载。

V 级围岩浅埋与深埋的分界深度为p H :
B =16.54m ,s=5,i=0.1
2.5p q H h =
q q
h γ=
5115.550.45215.551(5) 2.16q h
q h h m i B γγωω-=⎫⎪→=⎫=⨯⎬→=⎬⎪=+-=⎭⎭
所以有: 15.552.5 2.538.9p q H h m γ
γ==⨯=
15.55q h q r m ==
故浅埋和深埋的分界高度为39.657m 。

由于后云台山隧道和炮台顶隧道V 级围岩段的最大埋深为20m (20m<H p ),所以本工程V 级围岩段隧道均为浅埋,且埋深最大处为隧道结构受力最不利的位置,因此本计算说明书只对V 级围岩最大埋深(H=20m )处隧道结构的静力进行计算分析。

由于h q <H<H p ,所以此处作用在隧道支护结构上的竖向均布荷载为:
1tan t H q H B γλθ⎛⎫=- ⎪⎝⎭
作用在支护结构最上部和最下部的侧向均布压力为:
12()
t e H
e H H λγλγ==+
代入参数: 3250.61512.12020/c c t H m H m
kN m ϕθϕγ⎧===⎪=⎪⎨=⎪⎪=⎩
,(隧道高度) 得:。

相关文档
最新文档