!药代动力学主要参数意义及计算

合集下载

1药代动力学主要参数意义及计算优质资料

1药代动力学主要参数意义及计算优质资料
适用于一室模型 半对数坐标纸上
作图,可求得k和 lgC0,药量D 已 知,C0可得,Vd 值可以求出
Vd求解法
面积法:
此法不受房室模型限制。
AUC

cdt
0

0 c0
ektdt


c0 k
ekt
0

0



c0 k


c0 k
C0 k AUC
Cin=Cout Cout=0
EH=0 EH=1
CLH=0 CLH= QH
EH>0.5 高肝摄取药物
EH :肝摄取比
EH<0.3 低肝摄取药物
FH : 肝生物利用度
二、肾清除率(Renal clearance,CLR )
概念:在单位时间内肾脏清除药物的总量与当时血浆药 物浓度的比值。
CLR = Cu×Vu CP

Css
R k Vd

FD /
k Vd
FD
k Vd

FD
0.693 t1/ 2

Vd

1.44FDt1/2
Vd
Concentration Concentration
Unchanged dose interval, changed dose
The time to reach steady state hasn’t changed, the
与吸收后进入体循环 的药量成正比
反映进入体循环药物 的相对量
血药浓度随时间变化 的积分值
AUC计算方法
积分法:

AUC0
Cdt
0

药代动力学主要参数意义及计算PPT课件

药代动力学主要参数意义及计算PPT课件

100mg 1L
100mg
Vd
100mg
/
L
1L
与组织或蛋白有特殊亲和
力,贮存在某组织中
10mg
Vd
100mg 10mg / L
10L
1L
活性炭吸附90mg药物
13
Vd求解法
图解外推法:
适用于一室模型 半对数坐标纸上
作图,可求得k和 lgC0,药量D 已 知,C0可得,Vd 值可以求出
6
F Fab FI FH
ab:通过胃肠粘膜; I:肠内避开首关效应; H:肝脏内避开首关效应
7
口服咪达唑仑进入肠粘膜的量是给药量的 100%,肠道首关效应为43%,肝脏首关效 应为44%,口服咪达唑仑的生物利用度是 多少?
F=100%×(1-43%)×(1-44%) =31.92%
当停止用药时间达到5个药物的t1/2时,药物的血浓度 (或体存量)仅余原来的3%,可认为已基本全部消除。
18
经过5个半衰期,血浆中药物基本完全从体内 消除,这种规律不因给药剂量、给药途径、消 除途径而发生改变
多次给药如每隔一个半衰期给药一次,则5个 半衰期后可达稳态血药浓度。
半衰期的任何变化将反映消除器官功能的变化, 与人体的病理/生理状态有关。
9
分布过程相关参数: 表观分布容积(Vd)
体内药物总量待平衡后,按血药浓度计算所需的体 液总容积。
X:体内药物 总药量;C:血药浓度
10
若体内药量相同,而血药浓度高,则Vd小 (主要分布在血浆中)
若体内药量相同,而血药浓度低,则Vd大 (主要分布在组织中)
Vd是假想容积,不代表生理容积,但可看出 药物与组织结合程度。

药代动力学主要参数意义及计算

药代动力学主要参数意义及计算

应用:UC常用 于药物的剂量调 整、药物相互作 用研究以及新药 开发过程中的药 代动力学评价。
04
药代动力学参数在药物研发中的应用
药物吸收阶段的预测
预测药物在体内的吸收速率 评估药物在特定组织中的分布情况 预测药物在不同生理条件下的吸收程度 指导药物制剂的改进和优化
药物分布阶段的预测
预测药物在组织中的浓度 分布
添加标题
添加标题
添加标题
添加标题
开发新型药物代谢动力学模型满 足个性化治疗需求
加强国际合作与交流共同推动药 物代谢动力学领域的发展
感谢观看
汇报人:
参数计算方法:药代动力学参数的计算方法有多种包括非房室模型和房室 模型等需要据具体研究情况和数据选择合适的计算方法。
药代动力学参数的分类
吸收参数:描述 药物从给药部位 进入血液循环的 速度和程度
分布参数:描述 药物在体内的分 布情况包括组织 分布和细胞内分 布
代谢参数:描述 药物在体内代谢 的情况包括代谢 速率和代谢产物 的性质
表观分布容积(Vd)
定义:指药物 在体内分布达 到平衡后按测 得的浓度计算 药物应占有的
体液容积
计算方法: Vd=给药量/血
药浓度
意义:反映药 物在体内分布 的 广 泛 程 度 Vd 越大药物在体
内分布越广
影响因素:药 物的脂溶性、 组织亲和力、 血浆蛋白结合
率等
清除率(Cl)
定义:清除率是指 单位时间内从体内 清除的药物量与血 浆药物浓度之间的 比值
利用药代动力学 参数制定个性化 的给药方案
通过药代动力学 研究优化给药方 案以提高疗效和 降低不良反应
根据患者的生理 和病理情况调整 给药方案以确保 药物的有效性和 安全性

药代动力学主要参数意义及计算

药代动力学主要参数意义及计算
精品课件
零级消除动力学 dC kC 0 数学表达公式 dt
dC k dt
t C0 Ct k
C t C 0 kt
零级消除动力学特点
t1 / 2 C 0 0.5C 0 2k k
•消除速率与血药浓度无关,属定量消除
•无固定半衰期
• 血药浓度用真数表示时量曲线呈直线
•当体内药量过大,超过机体最大消除能力时,多以零级动
静脉滴注无波动。
Hale Waihona Puke 精品课件多次给药的时量关系的规律总结
单位时间内给药总量不变时,达坪值时间和用药间隔τ 和/或用药剂量D无关,都是经过5个t1/2。
间隔不变,坪值高度与剂量成正比;
τ不变,D ↑→Css ↑
剂量不变,坪值高度与给药间隔成反比。
D不变, τ ↑ → Css ↓; τ ↓ → Css ↑
精品课件
Vd求解法
A U C0 cdt0 c0ektdtc k 0ekt 0 0 c k 0 c k 0
C 0kA U C 面Vd此积法法cX不:0 受房k室 A模XU型C限制。
精品课件
消除过程相关参数
半衰期 清除率 消除动力学
一级消除动力学 零级消除动力学
精品课件
半衰期(half-life,t1/2)
精品课件
药物总量100mg
100mg 1L
100mg
Vd
1L
100mg/ L
与组织或蛋白有特殊亲和
力,贮存在某组织中
10mg
Vd
100mg 10L 10mg/ L
1L
活性炭吸附90mg药物
精品课件
Vd求解法
图解外推法:
适用于一室模型 半对数坐标纸上
作图,可求得k和 lgC0,药量D 已知, C0可得,Vd值可以 求出

药代动力学主要参数意义

药代动力学主要参数意义
血药浓度随时间变化 的积分值
AUC计算方法
积分法:
AUC0
Cdt
0
梯形法:
AUC0
n i0
Ci1 Ci 2
ti
Cdt
t
First Pass Elimination (First Pass Metabolism ,First Pass Effect)
F Fab FI FH
60kg正常人,体液总量36L(占体重的 60%) ,其中血液3.0L(占体重的5%), 细胞内液24L(占体重的40%),细胞外 液12L(占体重的20%)
若Vd<3L,说明只分布在血管中,如酚红 若Vd≤36L,说明分布在体液中 若Vd≥100L,说明与组织特殊结合
药物总量100mg
100mg 1L
房室模型(compartment model)
房室模型(compartment model)
The time to reach steady state hasn’t changed, the
Css has changed.
Unchanged Dose, changed dose interval
The time to reach steady state hasn’t changed, the
面积法:
此法不受房室模型限制。
AUC
cdt
0
0 c0
ektdt
c0 k
ekt
0
0
c0 k
c0 k
C0 k AUC
X
X
Vd c0 k AUC
消除过程相关参数
半衰期 清除率 消除动力学
一级消除动力学 零级消除动力学
半衰期(half-life,t1/2)

药代动力学主要参数意义及计算_图文

药代动力学主要参数意义及计算_图文

FH : 肝生物利用度
二、肾清除率(Renal clearance,CLR )
概念:在单位时间内肾脏清除药物的总量与当时血浆药 物浓度的比值。
CLR = Cu×Vu CP
肾小球滤过
Cu 尿中药物浓度
肾小管分泌
Vu 单位时间尿量 CP 血浆药物浓度
肾小管再吸收
尿排泄
稳态血药浓度
(steady state concentration, Css)
反映进入体循环药物 的相对量
血药浓度随时间变化 的积分值
AUC计算内避开首关效应; H:肝脏内避开首关效应
口服咪达唑仑进入肠粘膜的量是给药量的 100%,肠道首关效应为43%,肝脏首关效 应为44%,口服咪达唑仑的生物利用度是多 少?
60kg正常人,体液总量36L(占体重的 60%) ,其中血液3.0L(占体重的5%), 细胞内液24L(占体重的40%),细胞外 液12L(占体重的20%)
若Vd<3L,说明只分布在血管中,如酚红 若Vd≤36L,说明分布在体液中 若Vd≥100L,说明与组织特殊结合
药物总量100mg
药物以一级动力学消除时,恒速或多次给药将 使血药浓度逐渐升高、当给药速度和消除速度 达平衡时,血药浓度稳定在一定的水平的状态 ,即Css。
约需5个t1/2达到Css; 此时:RE = RA 改变D或τ,Css都会改变,但达到Css的时间不变。
平均稳态血药浓度
达稳态时,在一个剂量间隔时间内,血药浓度曲线下 面积与给药间隔的比值。
Concentration Concentration
Unchanged dose interval, changed dose
The time to reach steady state hasn’t changed, the

药代动力学参数及其意义

药代动力学参数及其意义

1.生物半衰期(biological half life)t1/2 hrt1/2=0.693/k吸收半衰期ti/2(a)消除半衰期ti/耶)PK参数的意义T1/2:反映药物在体内消除的快慢,常川来决定给约间隔Cmax:反映勿物在体内达到峰位时的浓度,决定驾物是杏产生约效或带来不以反应。

Tmax:反映药物讪到饭高浓度时的时间,决定药物产生. 药效或不厘反应的快慢Vd:反映约物在体内的分布大小Ke(P):消除速率,活数,反映%物*体内消除的快慢LCL:消除率,反II史药物从体内消除的快慢。

AUC:反映驾物吸收的大小F:试验药的AUC相X、j「对照药的AUC大小,反映药物的吸收相对比(生•物等效性)单次给药试验起始剂量的估计■有同样药临床耐受性试验参考(国外文献):取其起始剂量的1/2•有同类药临床耐受性试推参考:取其起始剂量的1/4•同类药临床有效最:取该剂吊:的1/10,作为起始剂量•无参考时:根据临床前动物试验结果,推算起始剂量2013/1/30由临床前资料估算单次给药起始剂量■ Blachwell 法敏感动物LDso的1/600或最低有毒量的1/60.改良Bkichwell法(考虑安全性)两种动物急毒试流LD网的"600及两种动物长毒的有彪量的1/60以其中最低者为起始齐Ipg-Dolh?法(考虑有效性)最敏感动物最小有效量的1/50-U100■改良Fibonucciy;(起始量较大,用于抗癌药)小鼠急4LD10的i/ioo或大动物最低毒性剂量的1/40-1/3016单次给药最大剂量的估计.同样药、同类药,或结构相近的药物:单次最大剂量-动物长荏试验:引起中卤症状,或脏器出现侦逆性变化剂量的1/10 -动物长质试验:最大耐受量的1/5〜1/2■最大剂量范围内应包括预期的有效剂量-注意可操作性2O13/L/3O19单次给药剂量递增方案(爬坡试验)⑴费氏递增法(改良Fibonacci法):开始递增快,以后按+1/3递增:+100%, +67%, +50%, +3。

药代动力学主要参数意义及计算 PPT

药代动力学主要参数意义及计算 PPT

60kg正常人,体液总量36L(占体重的 60%) ,其中血液3.0L(占体重的5%), 细胞内液24L(占体重的40%),细胞外 液12L(占体重的20%)
若Vd<3L,说明只分布在血管中,如酚红 若Vd≤36L,说明分布在体液中 若Vd≥100L,说明与组织特殊结合
药物总量100mg
100mg 1L
当停止用药时间达到5个药物的t1/2时,药物的血浓度 (或体存量)仅余原来的3%,可认为已基本全部消除。
经过5个半衰期,血浆中药物基本完全从体内 消除,这种规律不因给药剂量、给药途径、消 除途径而发生改变
多次给药如每隔一个半衰期给药一次,则5个 半衰期后可达稳态血药浓度。
半衰期的任何变化将反映消除器官功能的变化, 与人体的病理/生理状态有关。F= 静Fra bibliotek等量药物AUC
× 100%
所以,一种药物若以静脉注射的话,它的绝对生物利用度是1;而若 是其他的服用方式,则绝对生物利用度一般会少于1。
相对生物利用度
受试制剂AUC F= 参比制剂AUC
× 100%
相对生物利用度是量度某一种药物相较同一药物的其他处方的生物利 用度,其他处方可以一种已确定的标准,或是 经由其他方式服用。
Vd
100mg 100mg / L
1L
与组织或蛋白有特殊亲和
力,贮存在某组织中
10mg
Vd
100mg 10mg / L
10L
1L
活性炭吸附90mg药物
Vd求解法
图解外推法:
适用于一室模型 半对数坐标纸上
作图,可求得k和 lgC0,药量D 已 知,C0可得,Vd 值可以求出
Vd求解法
血药浓度随时间变化 的积分值

药代动力学主要参数意义及计算通用课件

药代动力学主要参数意义及计算通用课件

半衰期(T1/2)计算方法
半衰期描述药物在体内消除一半所需 的时间。
VS
半衰期(T1/2)是药代动力学参数之 一,用于描述药物在体内消除一半所 需的时间。它表示药物在体内消除速 率恒定的情况下,所需的时间,单位 为h。计算T1/2的方法通常基于血药 浓度数据,通过非线性回归分析得到。 T1/2的大小可以反映药物在体内的消 除速度,对于了解药物的体内过程和 指导临床用药具有重要意义。
影响因素
药物的吸收速率、药物的溶解度、给药途径等。
THANKS
感谢观看
峰浓度(Cmax)计算方法
峰浓度描述药物在体内达到的最大浓度值。
峰浓度(Cmax)是药代动力学参数之一, 用于描述药物在体内达到的最大浓度值。它 表示药物被吸收后达到的最大血药浓度,单 位为μg/L或μg/(L·h)。计算Cmax的方法通 常基于血药浓度数据,通过非线性回归分析 得到。Cmax的大小可以反映药物的吸收程 度和生物利用度,对于了解药物的体内过程
药物的清除率、药物的分布容积、药物的消除途径等。
峰浓度(Cmax)意义及影响因素
峰浓度(Cmax)
表示药物在体内达到最高浓度的时间和数值, 是药物作用强度的重要指标。
影响因素
药物的吸收速率、给药剂量、给药途径等。
达峰时间(Tmax)意义及影响因素
达峰时间(Tmax)
表示药物在体内达到最高浓度所需的时间,是药物作用速度的重要指标。
药代动力学研究有助于了解药物在体内的行为,预测药物在 不同个体内的效果和安全性,为临床合理用药提供科学依据。
药代动力学研究目的
01
描述药物在体内的动态 变化过程,预测药物在 不同个体内的效果和安 全性。
02
优化给药方案,提高药 物的疗效和安全性。

药代动力学参数的含义和计算

药代动力学参数的含义和计算

Time
总面积=各间隔时间内梯形面积和
AUC0→n=(1/2)(C1+C2)(t2-t1)+ (1/2)(C2+C3)(t3-t2) + ⋅⋅⋅ ⋅⋅⋅ ⋅+ (1/2)(Cn-1+Cn)(tn-tn-1)
总清除率(CL, Total body clearance)
n 单位时间内有多少毫升血中的药物被清除 n 正确估算药物从体内消除速度的唯一参数
• 将激动剂的受体动力学公式改为如下:
E = [D] Emax Kd +[D] Kd = 1
K
E = K[D ] Emax 1 + K[D ]
在竞争性拮抗剂存在下:
• 受体动力学方程变为
E' = Emax
[D] Kd(1+ [I]) +[D]
⇒ E' = Emax
1
[D] (1+ K'[I])+[D]
Scott比值法
[D] = K + [D] = K + 1 [D]
E
E max
E max E max
令 X = [D],则 Y = [ D ] E
得到:
Y= K + 1 X Emax Emax
令 则 a = K ,b = 1
Emax
Emax
Emax
=
1 b
K=a b
pA2的计算:
• 原理同pD2 • 采用Schild plot作图法
药代动力学参数的 含义和计算
(单剂静脉注射一级消除动力学)
叶开和
一、常用参数及意义
消除速率常数 (K or Ke)
• 表示单位时间内机体能消除药物的固定分 数或百分比,单位为时间的倒数。如某药 的k=0.2h-1,表示机体每小时可消除该小 时起点时体内药量的20%
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

达稳态时,在一个剂量间隔时间内,血药浓度曲线下 面积与给药间隔的比值。
C ss
AUC
R Ass k Css Vd k
Css
R k Vd
FD /
k Vd
FD
k Vd
FD
0.693 t1/ 2
Vd
1.44FDt1/2
Vd
Concentration Concentration
Unchanged dose interval, changed dose
力学消除,当血药浓度降低至机体具有消除能力时,转为按 一级动力学消除。
Zero order First order
• 总体清除率(clearance,Cl)
单位时间内有多少分布容积中的药物被清除 (单位:ml/min or L/hr)
计算公式:
总体清除率
表示药物消除速率的另一种方法。
指体内诸器官在单位时间内消除药物的血浆容积, 是肝、肾以及其他消除途径清除率的总和
当停止用药时间达到5个药物的t1/2时,药物的血浓度 (或体存量)仅余原来的3%,可认为已基本全部消除。
经过5个半衰期,血浆中药物基本完全从体内 消除,这种规律不因给药剂量、给药途径、消 除途径而发生改变
多次给药如每隔一个半衰期给药一次,则5个 半衰期后可达稳态血药浓度。
半衰期的任何变化将反映消除器官功能的变化, 与人体的病理/生理状态有关。
药代动力学主要参数 意义及计算
中国医科大学药理学教研室 刘明妍
吸收过程相关参数
AUC 达峰时间Tmax 峰浓度Cmax 生物利用度
吸收进入血液循环的相对数量和速度
吸收相对数量用AUC 吸收速度通过Cmax,Tmax来估算
MTC
MEC
血药浓度—时间曲线下面积(AUC)
与吸收后进入体循环 的药量成正比
房室模型(compartment model)
房室模型(compartment model)
作品欣赏 谢谢观看!
半所需的时间。 是表达药物在体内消除快慢的重要参数
ln 2 0.693
t 1 / 2
kk
t1 / 2 C0 0.5C0 2k k
一级消除
零级消除
Give 100 mg of a drug
1 half-life ………….. 50 2 half-lives………… 25 3 half-lives …….….. 12.5 4 half-lives ………… 6.25 5 half-lives ………… 3.125 6 half-lives …………. 1.56
60kg正常人,体液总量36L(占体重的 60%) ,其中血液3.0L(占体重的5%), 细胞内液24L(占体重的40%),细胞外 液12L(占体重的20%)
若Vd<3L,说明只分布在血管中,如酚红 若Vd≤36L,说明分布在体液中 若Vd≥100L,说明与组织特殊结合
药物总量100mg
100mg 1L
药物以一级动力学消除时,恒速或多次给药将 使血药浓度逐渐升高、当给药速度和消除速度 达平衡时,血药浓度稳定在一定的水平的状态 ,即Css。
约需5个t1/2达到Css; 此时:RE = RA 改变D或τ,Css都会改变,但达到Css的时间不变。
稳态血药浓度与平均稳态血药浓度
平均稳态血药浓度
分布过程相关参数:
表观分布容积(Vd)
体内药物总量待平衡后,按血药浓度计算所需的体 液总容积。
X:体内药物 总药量;C:血药浓度
若体内药量相同,而血药浓度高,则Vd小 (主要分布在血浆中)
若体内药量相同,而血药浓度低,则Vd大 (主要分布在组织中)
Vd是假想容积,不代表生理容积,但可看出 药物与组织结合程度。
The time to reach steady state hasn’t changed, the
Css has changed.
Unchanged Dose, changed dose interval
The time to reach steady state hasn’t changed, the
反映进入体循环药物 的相对量
血药浓度随时间变化 的积分值
AUC计算方法
积分法:
AUC0
Cdt
0
梯形法:
AUC0
n i0
Ci1 Ci 2
Hale Waihona Puke tiCdtt
First Pass Elimination (First Pass Metabolism ,First Pass Effect)
F Fab FI FH
ab:通过胃肠粘膜; I:肠内避开首关效应; H:肝脏内避开首关效应
口服咪达唑仑进入肠粘膜的量是给药量的 100%,肠道首关效应为43%,肝脏首关效 应为44%,口服咪达唑仑的生物利用度是多 少?
F=100%×(1-43%)×(1-44%) =31.92%
绝对生物利用度 口服等量药物AUC
面积法:
此法不受房室模型限制。
AUC
cdt
0
0 c0
ektdt
c0 k
ekt
0
0
c0 k
c0 k
C0 k AUC
X
X
Vd c0 k AUC
消除过程相关参数
半衰期 清除率 消除动力学
一级消除动力学 零级消除动力学
半衰期(half-life,t1/2)
通常指血浆消除半衰期。 药物在体内分布达到平衡后,血浆药物浓度消除一
EH
CLH = QH × EH FH=1-EH
Cin
QH:肝血流量 Cin :肝入口处血药浓度 Cout :肝出口处血药浓度
Cin=Cout Cout=0
EH=0 EH=1
CLH=0 CLH= QH
EH>0.5 高肝摄取药物
EH :肝摄取比
EH<0.3 低肝摄取药物
FH : 肝生物利用度
二、肾清除率(Renal clearance,CLR )
概念:在单位时间内肾脏清除药物的总量与当时血浆药 物浓度的比值。
CLR = Cu×Vu CP
肾小球滤过
Cu 尿中药物浓度
肾小管分泌
Vu 单位时间尿量 CP 血浆药物浓度
肾小管再吸收
尿排泄
Cl ClH ClR ClOther
▪一级动力学消除时,恒速或多次给药时量曲线变化:
稳态血药浓度
(steady state concentration, Css)
Vd
100mg 100mg / L
1L
与组织或蛋白有特殊亲和
力,贮存在某组织中
10mg
Vd
100mg 10mg / L
10L
1L
活性炭吸附90mg药物
Vd求解法
图解外推法:
适用于一室模型 半对数坐标纸上
作图,可求得k和 lgC0,药量D 已 知,C0可得,Vd 值可以求出
Vd求解法
F= 静注等量药物AUC
× 100%
所以,一种药物若以静脉注射的话,它的绝对生物利用度是1;而若 是其他的服用方式,则绝对生物利用度一般会少于1。
相对生物利用度
受试制剂AUC F= 参比制剂AUC
× 100%
相对生物利用度是量度某一种药物相较同一药物的其他处方的生物利 用度,其他处方可以一种已确定的标准,或是 经由其他方式服用。
Css has changed.
多次给药的时量关系的规律总结
一次用药后,经过5个t1/2,体内药物基本消除。 连续多次给药,只要用药剂量和间隔不变,经过该药物
的5个t1/2达到Css。 分次给药时,血药浓度有波动,有峰值Cssmax,谷值
Cssmin,单位时间内的药量不变,分割给药次数越多,波 动越小,静脉滴注无波动。
二种消除方式 ➢一级动力学消除时量曲线
一级消除动力学特点: 血中药物消除速率与血药浓度成正比, 属定比消除 有固定半衰期,与浓度无关 如浓度用对数表示则时量曲线为直线 绝大多数药物在临床常用剂量或略高于 常用量时,都按一级动力学消除
零级消除动力学 数学表达公式
零级消除动力学特点
•消除速率与血药浓度无关,属定量消除 •无固定半衰期 • 血药浓度用真数表示时量曲线呈直线 •当体内药量过大,超过机体最大消除能力时,多以零级动
Cl k Vd
Cl
D AUC
D c0 / k
k Vd
Cl ClH ClR ClOther
一、肝清除率(Hepatic clearance,CLH )
概念:在单位时间内肝脏清除药物的总量与当
时血浆药物浓度的比值。
Cout
CLH = QH (Cin-Cout) Cin
EH =
Cin-Cout Cin
使血药浓度立即达到(或接近)Css的首次用药量。 当已确定每次固定给药量(维持量)时:
loading dose= Amax (或Amax/F) 当希望达到某有效浓度时:
loading dose= 靶浓度(Css)×Vd/F
如用药间隔时间为t1/2 ,则负荷量为给药量的倍量。
最佳给药方案: 每隔一个 t1/2 给予维持量,首剂加倍
多次给药的时量关系的规律总结
单位时间内给药总量不变时,达坪值时间和用药间隔τ 和/或用药剂量D无关,都是经过5个t1/2。
间隔不变,坪值高度与剂量成正比;
τ不变,D ↑→Css ↑
剂量不变,坪值高度与给药间隔成反比。
D不变, τ ↑ → Css ↓; τ ↓ → Css ↑
负荷量(loading dose)
相关文档
最新文档