立体几何线面平行垂直,线面角二面角的证明方法

合集下载

线面垂直、面面垂直

线面垂直、面面垂直

线面垂直、面面垂直及其证明一 线面垂直的判定定理(1)线面垂直定义:如果一条直线和一个平面内的任何一条直线都垂直,那么这条直线和这个平面垂直.(2(3)三垂线定理及其逆定理①三垂线定理:如果平面内一条直线和穿过该平面的一条斜线垂直,那么这条直线也垂直于这条斜线在平面内的射影.②三垂线逆定理:在平面内的一条直线,如果它和这个平面的一条斜线垂直,那么它也和这条斜线在平面内的射影垂直. (4)线面垂直的证明例1例2例3SDD 1ODBA C 1B 1A 1C例4在正方体1111ABCD A BC D -中,M 为1CC 的中点,AC 交BD 于点O ,求证:1AO ⊥平面MBD .练习1 在正方体1111ABCD A BC D -中. (1)求证:AC ⊥平面11B D BD .(2)求证:1BD ⊥平面1ACB .练习2在三棱锥A BCD -中,BC AC =,AD BD =,作BE CD ⊥,E 为垂足,作AH BE ⊥于H .求证:AH ⊥平面BCD .在四棱锥P ABCD -中,PA ⊥底面ABCD ,AB AD ⊥,AC CD ⊥,60ABC ︒∠=,PA AB BC ==,E 是PC 的中点.(1)求证:CD AE ⊥. (2)求证:PD ⊥面ABE .二 面面垂直(1条直线叫做二面角的棱,每个半平面叫做二面角的面,若棱为l ,两个面分别为,,αβ二面角记作为l αβ--.(2)二面角的平面角定义:在二面角l αβ--棱l 上取一点O ,在半平面α和β内,从点O 分别作垂直于棱l 的射线,OA OB ,射线组成AOB ∠.则AOB ∠叫做二面角的平面角.二面角的取值范围为[0,180]︒︒.(3)面面垂直定义:若两个平面的二面角为直二面角(平面角是直角的二面角),则这两个平面互相垂直.(4)面面判定定理:一个平面过另一个平面,则这两个面相互垂直. (5)面面垂直的正面即:面面垂直→线面垂直→线线垂直. 例1如图,在正方体1111ABCD A B C D -中,E 是1AA 的中点.(1)求证:1//AC 平面BDE ; (2)求证:平面1A AC ⊥平面BDE . .例2如图,直三棱柱111C B A ABC -中,侧棱垂直于底面,90ACB ︒∠=121AA BC AC ==,D 是棱1AA 的中点,求证:平面1BDC 平面BDC .AC B1B 1A D1C练习 如图,过S 引三条长度相等但不共面的线段,,SA SB SC ,且60ASB ASC ︒∠=∠=,90BSC ︒∠=,求证:平面ABC ⊥平面BSC .三 立体几何高考证明例1(2013江苏)如图,在三棱锥中,平面平面,,,过作,垂足为,点分别是棱的中点.求证:(1)平面平面; (2).例2(2012江苏)如图,在直三棱柱111ABC A B C -中,1111A B A C =,D E,分别是棱1BC CC ,上的点(点D 不同于点C ),且AD DE F⊥,为11B C 的中点.求证:(1) 平面ADE ⊥平面11BCC B ; (2) 直线1//A F 平面ADE .ABC S -⊥SAB SBC BC AB ⊥AB AS =A SB AF ⊥F G E ,SC SA ,//EFG ABC SA BC ⊥ABCSGFE例3如图,四棱锥P ABCD -中,底面ABCD 为平行四四边形,60DAB ︒∠=,2AB AD =,PD ⊥底面ABCD .(1)证明:PA BD ⊥(2)设1PD AD ==,求棱锥D PBC -的高.练习1如图,几何体E ABCD -是四棱锥,ABD 为正三角形,,CB CD EC BD =⊥.(Ⅰ)求证:BE DE =;(Ⅱ)若∠120BCD =︒,M 为线段AE 的中点,求证:DM ∥平面BEC .练习2(2011天津)如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,45ADC ∠=︒,1AD AC ==,O 为AC 的中点,PO ABCD ⊥平面,2PO =,M为PD 的中点.(Ⅰ) 证明://PB ACM 平面;MP(Ⅱ)(Ⅲ)。

立体几何-空间角求法题型(线线角、线面角、二面角)

立体几何-空间角求法题型(线线角、线面角、二面角)

空间角求法题型(线线角、线面角、二面角)空间角能比较集中的反映学生对空间想象能力的体现,也是历年来高考命题者的热点,几乎年年必考。

空间角是线线成角、线面成角、面面成角的总称。

其取值范围分别是:0°< θ ≤90°、0°≤ θ ≤90°、0°< θ ≤180°。

空间角的计算思想主要是转化:即把空间角转化为平面角,把角的计算转化到三角形边角关系或是转化为空间向量的坐标运算来解。

空间角的求法一般是:一找、二证、三求解,手段上可采用:几何法(正余弦定理)和向量法。

下面举例说明。

一、异面直线所成的角:例1如右下图,在长方体1111ABCD A B C D -中,已知4AB =,3AD =,12AA =。

E 、F 分别是线段AB 、BC 上的点,且1EB FB ==。

求直线1EC 与1FD 所成的角的余弦值。

思路一:本题易于建立空间直角坐标系,把1EC 与1FD 所成角看作向量EC 1与FD 的夹角,用向量法求解。

思路二:平移线段C 1E 让C 1与D 1重合。

转化为平面角,放到三角形中,用几何法求解。

(图1)解法一:以A 为原点,1AB AD AA 、、分别为x 轴、y 轴、z 轴的正向建立空间直角坐标系,则有 D 1(0,3,2)、E (3,0,0)、F (4,1,0)、C 1(4,3,2),于是11(1,3,2),(4,2,2)EC FD ==-设EC 1与FD 1所成的角为β,则:112222221121cos 14132(4)22EC FD EC FD β⋅===⋅++⨯-++ ∴直线1EC 与1FD 所成的角的余弦值为2114解法二:延长BA 至点E 1,使AE 1=1,连结E 1F 、DE 1、D 1E 1、DF , 有D 1C 1//E 1E , D 1C 1=E 1E ,则四边形D 1E 1EC 1是平行四边形。

则E 1D 1//EC 1 于是∠E 1D 1F 为直线1EC 与1FD 所成的角。

线线角、线面角,二面角[高考立体几何法宝]

线线角、线面角,二面角[高考立体几何法宝]

1A 1B 1C 1D BCD E FG线线角、线面角、二面角的求法1.空间向量的直角坐标运算律:⑴两个非零向量与垂直的充要条件是1122330a b a b a b a b ⊥⇔++=⑵两个非零向量a 与b 平行的充要条件是·=±||||2.向量的数量积公式若a 与b 的夹角为θ(0≤θ≤π),且123(,,)a a a a =,123(,,)b b b b =,则 (1)点乘公式: a ·b =|a ||b | cos θ(2)模长公式:则212||a a a a a =⋅=++2||b b b b =⋅=+ (3)夹角公式:2cos ||||a ba b a b a ⋅⋅==⋅+ (4)两点间的距离公式:若111(,,)A x y z ,222(,,)B x y z ,则2||(AB AB ==,A Bd =①两条异面直线a 、b 间夹角0,2πα⎛⎫∈ ⎪⎝⎭在直线a 上取两点A 、B ,在直线b 上取两点C 、D ,若直线a 与b 的夹角为θ,则cos |cos ,|AB CD θ=<>=例1 (福建卷)如图,长方体ABCD —A 1B 1C 1D 1中,AA 1=AB =2,AD =1,点E 、F 、G 分别是DD 1、AB 、CC 1的中点,则异面直线A 1E 与GF 所成的角是( )A .515arccosB .4πPBCAC .510arccosD .2π (向量法,传统法)例 2 (2005年全国高考天津卷)如图,PA ⊥平面ABC ,90ACB ∠=︒且PA AC BC a ===,则异面直线PB 与AC 所成角的正切值等于_____.解:(1)向量法(2)割补法:将此多面体补成正方体'''DBCA D B C P -,PB 与AC 所成的角的大小即此正方体主对角线PB 与棱BD 所成角的大小,在Rt △PDB 中,即tan PDDBA DB∠==. 点评:本题是将三棱柱补成正方体'''DBCA D B C P -②直线a 与平面α所成的角0,2πθ⎛⎤∈ ⎥⎝⎦(重点讲述平行与垂直的证明)可转化成用向量→a 与平面α的法向量→n 的夹角ω表示,由向量平移得:若ππππ平面α的法向量→n 是向量的一个重要内容,是求直线与平面所成角、求点到平面距离的必备工具.求平面法向量的一般步骤:图1-图1-图1-1D 1B 1C P DBCA(1)找出(求出)平面内的两个不共线的向量的坐标111222(,,),(,,)a a b c b a b c == (2)设出平面的一个法向量为(,,)n x y z =(3)根据法向量的定义建立关于x,y,z的方程组(0a <(4)解方程组,取其中的一组解,即得法向量。

立体几何常见证明方法

立体几何常见证明方法

立体几何方法归纳小结一、线线平行的证明方法1、根据公理4,证明两直线都与第三条直线平行。

2、根据线面平行的性质定理,若直线a平行于平面A ,过a的平面B与平面A相交于b ,则a//b。

3、根据线面垂直的性质定理,若直线a与直线b都与平面A垂直,则a//b 。

4、根据面面平行的性质定理,若平面A//平面B,平面C与平面A和平面B的交线分别为直线a与直线b,则a//b 。

二、线面平行的证明方法1、根据线面平行的定义,证直线与平面没有公共点。

2、根据线面平行的判定定理,若平面A内存在一条直线b与平面外的直线a平行,则a//A 。

(用相似三角形或平行四边形)3、根据平面与平面平行的性质定理,若两平面平行,则一个平面内的任一直线与另一个平面平行。

三、面面平行的证明方法1、根据定义,若两平面没有公共点,则两平面平行。

2、根据两平面平行的判定定理,一个平面内有两相交直线与另一平面平行,则两平面平行。

或根据两平面平行的判定定理的推论,一平面内有两相交直线与另一平面内两相交直线平行,则两平面平行。

3、垂直同一直线的两平面平行。

4、平行同一平面的两平面平行。

四、两直线垂直的证明方法1、根据定义,证明两直线所成的角为90°2、一直线垂直于两平行直线中的一条,也垂直于另一条.3、一直线垂直于一个平面,则它垂直于平面内的所有直线.4、根据三垂线定理及逆定理,若平面内的直线垂直于平面的一条斜线(或斜线在平面内的射影),则它垂直于斜线在平面内的射影(或平面的斜线).五、线面垂直的证明方法1、根据定义,证明一直线与平面内的任一(所有)直线垂直,则直线垂直于平面.2、根据判定定理,一直线垂直于平面内的两相交直线,则直线垂直于平面.3、一直线垂直于两平行平面中的一个,也垂直于另一个.4、两平行直线中的一条垂直于一个平面,另一条也垂直于这个平面.5、根据两平面垂直的性质定理,两平面垂直,则一个平面内垂直于它们交线的直线垂直于另一个平面.六、面面垂直的证明方法1、根据面面垂直的定义,两平面相交所成的二面角为直二面角,则两平面垂直。

专题35 空间中线线角、线面角,二面角的求法-

专题35   空间中线线角、线面角,二面角的求法-

专题35 空间中线线角、线面角、二面角的求法【高考地位】立体几何是高考数学命题的一个重点,空间中线线角、线面角的考查更是重中之重. 其求解的策略主要有两种方法:其一是一般方法,即按照“作——证——解”的顺序进行;其一是空间向量法,即建立直角坐标系进行求解. 在高考中常常以解答题出现,其试题难度属中高档题.类型一 空间中线线角的求法方法一 平移法例1正四面体ABCD 中, E F ,分别为棱AD BC ,的中点,则异面直线EF 与CD 所成的角为 A.6π B. 4π C. 3π D. 2π 【变式演练1】【2021届全国著名重点中学新高考冲刺】如图,正方体1111ABCD A B C D -,的棱长为6,点F 是棱1AA 的中点,AC 与BD 的交点为O ,点M 在棱BC 上,且2BM MC =,动点T (不同于点M )在四边形ABCD 内部及其边界上运动,且TM OF ⊥,则直线1B F 与TM 所成角的余弦值为( )A B C D .79【变式演练2】【江苏省南通市2020-2021学年高三上学期9月月考模拟测试】当动点P 在正方体1111ABCD A B C D -的棱DC 上运动时,异面直线1D P 与1BC 所成角的取值范围( )A .,64ππ⎡⎤⎢⎥⎣⎦B .,63ππ⎡⎤⎢⎥⎣⎦C .,43ππ⎡⎤⎢⎥⎣⎦D .,32ππ⎡⎫⎪⎢⎣⎭【变式演练3】【甘肃省白银市靖远县2020届高三高考数学(文科)第四次联考】在四面体ABCD 中,2BD AC ==,AB BC CD DA ====E ,F 分别为AD ,BC 的中点,则异面直线EF 与AC 所成的角为( )A .π6B .π4C .π3D .π2【变式演练4】【2020年浙江省名校高考押题预测卷】如图,在三棱锥S ABC -中,SA ⊥平面ABC ,4AB BC ==,90ABC ∠=︒,侧棱SB 与平面ABC 所成的角为45︒,M 为AC 的中点,N 是侧棱SC上一动点,当BMN △的面积最小时,异面直线SB 与MN 所成角的余弦值为( )A .16B .3C D .6方法二 空间向量法例2、【重庆市第三十七中学校2020-2021学年高三上学期10月月考】在长方体1111ABCD A B C D -中,E ,F ,G 分别为棱1AA ,11C D ,1DD 的中点,12AB AA AD ==,则异面直线EF 与BG 所成角的大小为( ) A .30B .60︒C .90︒D .120︒例3、【四川省泸县第四中学2020-2021学年高三上学期第一次月考】在长方体1111ABCD A B C D -中,2BC =,14AB BB ==,E ,F 分别是11A D ,CD 的中点,则异面直线1A F 与1B E 所成角的余弦值为( )A .34B .34-C D .6【变式演练5】【2021届全国著名重点中学新高考冲刺】《九章算术》是古代中国乃至东方的第一部自成体系的数学专著,书中记载了一种名为“刍甍”的五面体(如图),其中四边形ABCD 为矩形,//EF AB ,若3AB EF =,ADE 和BCF △都是正三角形,且2AD EF =,则异面直线AE 与CF 所成角的大小为( )A .6π B .4π C .3π D .2π 【变式演练6】【云南省云天化中学、下关一中2021届高三复习备考联合质量检测卷】如图所示,在正方体1111ABCD A B C D -中,点E 为线段AB 的中点,点F 在线段AD 上移动,异面直线1B C 与EF 所成角最小时,其余弦值为( )A .0B .12C D .1116类型二 空间中线面角的求法方法一 垂线法第一步 首先根据题意找出直线上的点到平面的射影点;第二步 然后连接其射影点与直线和平面的交点即可得出线面角; 第三步 得出结论.例3如图,四边形ABCD是矩形,1,AB AD ==E 是AD 的中点,BE 与AC 交于点F ,GF ⊥平面ABCD .(Ⅰ)求证:AF ⊥面BEG ;(Ⅰ)若AF FG =,求直线EG 与平面ABG 所成角的正弦值.【变式演练7】已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为ABC 的中心,则1AB 与底面ABC 所成角的正弦值为( )A .13 B. C.3 D .23【变式演练8】【北京市朝阳区2020届高三年级下学期二模】如图,在五面体ABCDEF 中,面ABCD 是正方形,AD DE ⊥,4=AD ,2DE EF ==,且π3EDC ∠=.(1)求证:AD ⊥平面CDEF ;(2)求直线BD 与平面ADE 所成角的正弦值;GFEDCBA(3)设M 是CF 的中点,棱AB 上是否存在点G ,使得//MG 平面ADE ?若存在,求线段AG 的长;若不存在,说明理由.方法二 空间向量法第一步 首先建立适当的直角坐标系并写出相应点的空间直角坐标; 第二步 然后求出所求异面直线的空间直角坐标以及平面的法向量坐标;第三步 再利用a bsin a bθ→→→→⋅=即可得出结论.例4 【内蒙古赤峰市2020届高三(5月份)高考数学(理科)模拟】在四棱锥P ABCD -中,底面ABCD 为等腰梯形,//BC AD ,222AD BC CD ===,O 是AD 的中点,PO ⊥平面ABCD ,过AB 的平面交棱PC 于点E (异于点C ,P 两点),交PO 于F .(1)求证://EF 平面ABCD ;(2)若F 是PO 中点,且平面EFD 与平面ABCD 求PC 与底面ABCD 所成角的正切值.【变式演练9】【2020年浙江省名校高考仿真训练】已知三棱台111ABC A B C -的下底面ABC 是边长为2的正三角形,上地面111A B C △是边长为1的正三角形.1A 在下底面的射影为ABC 的重心,且11A B A C ⊥.(1)证明:1A B ⊥平面11ACC A ;(2)求直线1CB 与平面11ACC A 所成角的正弦值.类型三 空间二面角的求解例4【江西省部分省级示范性重点中学教科研协作体2021届高三统一联合考试】三棱锥S ABC -中,2SA BC ==,SC AB ==,SB AC ==记BC 中点为M ,SA 中点为N(1)求异面直线AM 与CN 的距离; (2)求二面角A SM C --的余弦值.【变式演练10】【2021年届国著名重点中学新高考冲刺】如图,四边形MABC 中,ABC 是等腰直角三角形,90ACB ∠=︒,MAC △是边长为2的正三角形,以AC 为折痕,将MAC △向上折叠到DAC △的位置,使D 点在平面ABC 内的射影在AB 上,再将MAC △向下折叠到EAC 的位置,使平面EAC ⊥平面ABC ,形成几何体DABCE .(1)点F 在BC 上,若//DF 平面EAC ,求点F 的位置; (2)求二面角D BC E --的余弦值. 【高考再现】1.【2020年高考山东卷4】日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40︒,则晷针与点A 处的水平面所成角为 ( )A .20︒B .40︒C .50︒D .90︒2. 【2017课标II ,理10】已知直三棱柱111C C AB -A B 中,C 120∠AB =,2AB =,1C CC 1B ==,则异面直线1AB 与1C B 所成角的余弦值为( )A B C D 3.【2020年高考全国Ⅰ卷理数16】如图,在三棱锥P ABC -的平面展开图中,1,3,,,30AC AB AD AB AC AB AD CAE ===⊥⊥∠=︒,则cos FCB ∠=_____________.4.【2020年高考全国Ⅱ卷理数20】如图,已知三棱柱111ABC A B C -的底面是正三角形,侧面11BB C C 是矩形,,M N 分别为11,BC B C 的中点,P 为AM 上一点.过11B C 和P 的平面交AB 于E ,交AC 于F .(1)证明:1AA //MN ,且平面1A AMN ⊥平面11EB C F ;(2)设O 为Ⅰ111C B A 的中心,若F C EB AO 11平面∥,且AB AO =,求直线E B 1与平面AMN A 1所成角的正弦值.5.【2020年高考江苏卷24】在三棱锥A —BCD 中,已知CB =CD BD =2,O 为BD 的中点,AO Ⅰ平面BCD ,AO =2,E 为AC 的中点.(1)求直线AB与DE所成角的余弦值;(2)若点F在BC上,满足BF=14BC,设二面角F—DE—C的大小为θ,求sinθ的值.6.【2020年高考浙江卷19】如图,三棱台DEF—ABC中,面ADFC⊥面ABC,∠ACB=∠ACD=45°,DC =2BC.(I)证明:EF⊥DB;(II)求DF与面DBC所成角的正弦值.7.【2020年高考山东卷20】如图,四棱锥P ABCD-的底面为正方形,PD⊥底面ABCD,设平面PAD与平面PBC的交线为l.(1)证明:l⊥平面PDC;(2)已知1PD AD==,Q为l上的点,求PB与平面QCD所成角的正弦值的最大值.【反馈练习】1.【江西省乐平市第一中学2021届高三上学期联考理科】已知正方体1111ABCD A B C D -中,点E ,F 分别是线段BC ,1BB 的中点,则异面直线DE 与1D F 所成角的余弦值为( )A B C .35 D .452.【湖南省永州市宁远、道县、东安、江华、蓝山、新田2020届高三下学期六月联考】某四棱锥的三视图如图所示,点E 在棱BC 上,且2BE EC =,则异面直线PB 与DE 所成的角的余弦值为( )A .BCD .153.【2020届河北省衡水中学高三下学期第一次模拟】如图,在棱长为3的正方体1111ABCD A B C D -中,点P 是平面11A BC 内一个动点,且满足12DP PB +=1B P 与直线1AD 所成角的余弦值的取值范围为( )A .10,2⎡⎤⎢⎥⎣⎦B .10,3⎡⎤⎢⎥⎣⎦C .12⎡⎢⎣⎦D .1,22⎡⎢⎣⎦4.【广西玉林市2021届高三11月教学质量监测理科】如图,在正方体ABCD ﹣A 1B 1C 1D 1中,点E ,F 分别是棱AD ,CC 1的中点,则异面直线A 1E 与BF 所成角的大小为( )A .6πB .4πC .3πD .2π 5.【山东省泰安市2020届高三第四轮模拟复习质量】如图,在三棱锥A —BCD 中,AB =AC =BD =CD =3,AD =BC =2,点M ,N 分别为AD ,BC 的中点,则异面直线AN ,CM 所成的角的余弦值是( )A .58B .8C .78D .86.【福建省厦门市2020届高三毕业班(6月)第二次质量检查(文科)】如图,圆柱1OO 中,12OO =,1OA =,1OA O B ⊥,则AB 与下底面所成角的正切值为( )A .2BC .2D .127.【内蒙古赤峰市2020届高三(5月份)高考数学(理科)】若正方体1AC 的棱长为1,点P 是面11AA D D 的中心,点Q 是面1111D C B A 的对角线11B D 上一点,且//PQ 面11AA B B ,则异面直线PQ 与1CC 所成角的正弦值为__.8.【吉林省示范高中(四平一中、梅河口五中、白城一中等)2020届高三第五次模拟联考】如图,已知直三棱柱ADF BCE -,AD DF ⊥,2AD DF CD ===,M 为AB 上一点,四棱锥F AMCD -的体积与该直三棱柱的体积之比为512,则异面直线AF 与CM 所成角的余弦值为________.9.【湖北省华中师大附中2020届高三下学期高考预测联考文科】如图,AB 是圆O 的直径,点C 是圆O 上一点,PA ⊥平面ABC ,E 、F 分别是PC 、PB 边上的中点,点M 是线段AB 上任意一点,若2AP AC BC ===.(1)求异面直线AE 与BC 所成的角:(2)若三棱锥M AEF -的体积等于19,求AM BM10.【广东省湛江市2021届高三上学期高中毕业班调研测试】如图,三棱柱111ABC A B C -中,底面ABC 是边长为2的等边三角形,侧面11BCC B 为菱形,且平面11BCC B ⊥平面ABC ,160CBB ∠=︒,D 为棱1AA 的中点.(1)证明:1BC ⊥平面1DCB ;(2)求二面角11B DC C --的余弦值.11.【河南省焦作市2020—2021学年高三年级第一次模拟考试数学(理)】如图,四边形ABCD 为菱形,120ABC ∠=︒,四边形BDFE 为矩形,平面BDFE ⊥平面ABCD ,点P 在AD 上,EP BC ⊥.(1)证明:AD ⊥平面BEP ;(2)若EP 与平面ABCD 所成角为60°,求二面角C PE B --的余弦值.12.【广西南宁三中2020届高三数学(理科)考试】如图1,在直角ABC 中,90ABC ∠=︒,AC =AB =D ,E 分别为AC ,BD 的中点,连结AE 并延长交BC 于点F ,将ABD △沿BD 折起,使平面ABD ⊥平面BCD ,如图2所示.(1)求证:AE CD ⊥;(2)求平面AEF 与平面ADC 所成锐二面角的余弦值.13.【广西柳州市2020届高三第二次模拟考试理科】已知三棱锥P ABC -的展开图如图二,其中四边形ABCD ABE △和BCF △均为正三角形,在三棱锥P ABC -中:(1)证明:平面PAC ⊥平面ABC ;(2)若M 是PA 的中点,求二面角P BC M --的余弦值.14.【浙江省“山水联盟”2020届高三下学期高考模拟】四棱锥P ABCD -,底面ABCD 为菱形,侧面PBC 为正三角形,平面PBC ⊥平面ABCD ,3ABC π∠=,点M 为AD 中点.;(1)求证:CM PB(2)若点N是线段PA上的中点,求直线MN与平面PCM所成角的正弦值.。

线面垂直、线面角、二面角

线面垂直、线面角、二面角

线面垂直方法的总结我们学习了平面与直线垂直的定义、判定定理和性质定理,大家可以体会线线垂直在证明线面垂直时的重要性,将“三维”问题转化为“二维”解决是一种重要的立体几何数学思想方法.在处理实际问题过程中,可以先从题设条件入手,分析已有的垂直关系,再从结论入手分析所要证明的重要垂直关系,从而架起已知与未知的“桥梁”,同学们下面欣赏常见的线面垂直证明方法.一、 应用勾股定理同学们知道如果一个三角形的边长满足222c ba =+,则这个三角形是直角三角形,可以得到线线垂直的关系.例1:如图1所示,点P 是梯形A B C D 所在平面外一点,⊥PD 平面ABCD ,AB ∥CD ,已知82==AD BD ,54=AB .设M 是PC 上的一点,求证:⊥BD 平面PAD .证明:∵⊥PD 平面ABCD ,⊂BD 平面ABCD∴PD BD ⊥.又∵8=BD ,4=AD ,54=AB ,∴222CD BD AD =+,∴∠︒=90ADB ,∴AD BD ⊥ 又∵⊂PD 平面PAD ,⊂AD PAD ,D AD PD = . ∴⊥BD 平面PAD .二、 应用等腰(等边)三角形三线合一性质所谓三线合一的性质是等腰三角形底边的中线同时是高和角分线,可以很轻松的得到线线垂直,从而为证明线面垂直做了很好的准备工作.例2:如图2所示,已知P A 垂直于O 所在平面,A B 是O 的直径,C 是O 的圆周上异于A 、B 的任意一点,且P A A C =,点E 是线段PC 的中点.求证:A E ⊥平面P B C .证明:∵P A ⊥O 所在平面,BC 是O 的弦,∴B C P A ⊥. 又∵A B 是O 的直径,A C B ∠是直径所对的圆周角,∴B C A C ⊥. ∵,PA AC A PA =⊂ 平面P A C ,A C ⊂平面P A C . ∴B C ⊥平面P A C ,A E ⊂平面P A C ,∴A E B C ⊥.∵P A A C =,点E 是线段PC 的中点.∴A E P C ⊥. ∵PC BC C = ,P C ⊂平面P B C ,B C ⊂平面P B C . ∴A E ⊥平面P B C .此题利用A E 三线合一是解题的关键,在遇到线段的中点时,同学们要注意向三角形的三线合一转化.同时应用了圆的直径所对的圆周角是直角这个重要的结论,这点体现了平面几何对于立体几何的重要性. 三、 应用两条平行线的性质大家知道两条平行线中如果有一条与一个面中的直线垂直,则两条平行线都与平面中的ABCDPM图1ACBPEO图2直线垂直. 在三角形中位线与底边平行,可以得到线线平行的关系,平行四边形对边平行也可以得到线线平行,这样的结论很多,我们可以欣赏体会这样的方法.例3:如图3所示,P 为△A BC 所在平面外一点, ⊥BC 平面PAB ,G 为PB 的中点,M 为PC 的中点,N 在AB 上,NB AN 3=,求证:⊥AB 平面MNG . 证明:取AB 的中点H ,连结PH .∵G 为PB 的中点,M 为PC 的中点,∴GM 为△PBC 的中位线,∴GM ∥BC .∵⊥BC 平面PAB ,⊂AB 平面PAB , ∴⊥BC AB ,∴⊥AB GM .又∵PB PA =,H 为线段AB 的中点,∴AB ⊥PH .∵G 为PB 的中点, N 为HB 的中点,∴PH ∥GN .∴AB ⊥GN .∵GM GN G =,⊂GM 平面MNG ,⊂GN 平面MNG ,∴⊥AB 平面MNG .本题GM 和GN 分别是所在三角形的中位线, 对于证明方法有很大的帮助,同学们在后的解题中要注意根据已知条件找到平行关系是解题的关键. 四、 应用平面图形的几何性质我们都发现在立体几何问题的解决中,平面图形的性质产生了很重要的地位,在学习立体几何的过程中,平面几何的诸多知识点不能推广到三维空间,但同学们要注意平面图形的性质在解决立体几何的时候会发挥很重要的作用. 例4:如图4所示,四边形ABCD 是边长为1的菱形,点P 是菱形A B C D 所在平面外一点,∠︒=60BCD ,E 是CD 的中点,⊥PA 平面ABCD ,求证:BE ⊥平面PAB . 证明:∵⊥PA 平面ABCD ,BE ⊂平面ABCD ,∴PA BE ⊥,如图5所示,∵底面ABCD 是的菱形,∠︒=60BCD , ∴∠︒=60ABD .∵E 是CD 的中点,∴∠︒=30DBE ,∴∠︒=︒+︒=∠+∠=903060DBE BCD ABE , ∴AB BE ⊥.∵A AB PA = ,⊂PA 平面PAB ,⊂AB 平面PAB , ∴BE ⊥平面PAB .本题菱形ABCD 的性质对于解决立体几何的线面垂直有着很重要的作用,类似这样的方法很多,所以同学们要重视平面几何定义、定理、性质的应用.以上解题方法体现了立体几何证明的一个重要的思想方法:立体几何平面化,即转三维问题为二维,可以合理的解决立体几何问题. 五、 利用线面垂直、线线垂直关系线线垂直或面面垂直都可转化为线面垂直来分析解决,其关系为:线线垂直−−−→←−−−判定性质线面垂直−−−→←−−−判定性质面面垂直.这三者之间的关系非常密切,可以互相转化,从前面推出后面是判定定理,而从后面推出前面是性质定理.同学们应当学会灵活应用这些定理证明问题。

立体几何中的平行与垂直

立体几何中的平行与垂直

立体几何中的平行与垂直1线面平行(1)定义直线与平面无交点.(2)判定定理如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行.(3)性质定理一条直线与一个平面平行,如果过该直线的平面与此平面相交,那么该直线与交线平行.2 面面平行(1)定义α∩β=∅⟹α|| β.(2)判定定理如果一个平面内的两条相交直线都平行于另一个平面,那么两个平面互相平行.(3)面面平行的性质(1) a⊂αα||β}⇒a||β (面面平行⇒线面平行)(2)α || βα∩γ=aβ∩ γ=b}⇒ a || b (面面平行⇒线线平行)(3) 夹在两个平行平面间的平行线段相等.3 线面垂直(1)定义若一条直线垂直于平面内的任意一条直线,则这条直线垂直于平面.符号表述:若任意a⊂α都有l⊥a,则 l⊥α.(2)判定定理如果一条直线与一个平面内的两条相交直线垂直,那么该直线与此平面垂直.(3)性质定理垂直同一平面的两直线平行4 面面垂直(1) 定义若二面角α−l−β的平面角为90∘,则 α⊥β;(2) 判定定理如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.(3) 性质定理两个平面垂直,如果一个平面内有一直线垂直于这两个平面的交线,那么这条直线与另一个平面垂直.【例1】如图,三棱柱ABC﹣A1B1C1中,侧棱AA1⊥底面A1B1C1,底面三角形A1B1C1是正三角形,E是BC中点,则下列叙述正确的是()A.CC1与B1E是异面直线 B.AC⊥平面ABB1A1C.AE,B1C1为异面直线,且AE⊥B1C1 D.A1C1∥平面AB1E练习.1.如图是一几何体的平面展开图,其中四边形ABCD为正方形,△PDC,△PBC,△PAB,△PDA为全等的等边三角形,E、F分别为PA、PD的中点,在此几何体中,下列结论中错误的为()A.直线BE与直线CF共面 B.直线BE与直线AF是异面直线C.平面BCE⊥平面PAD D.面PAD与面PBC的交线与BC平行【例2】如图1,在△ABC中,∠ABC=90°,D为AC中点,AE⊥BD于E,延长AE交BC于F.将△ABD沿BD折起,得到三棱锥A1﹣BCD,如图2所示.(Ⅰ)若M是A1C的中点,求证:DM∥平面A1EF;(Ⅱ)若平面A1BD⊥平面BCD,试判断直线A1B与直线CD能否垂直?并说明理由.练习 2.如图,四边形ABCD为矩形,AD⊥平面ABE,F为CE上的点,且BF⊥平面ACE (Ⅰ)求证:AE⊥BE(Ⅱ)设M在线段AB上,且满足AM=2MB,试在线段CE上确定一点N,使得MN∥平面DAE.【例3】.如图,已知菱形AECD的对角线AC,DE交于点F,点E为的AB中点.将三角形ADE 沿线段DE折起到PDE的位置,如图2所示.(Ⅰ)求证:DE⊥平面PCF;(Ⅱ)证明:平面PBC⊥平面PCF;(Ⅲ)在线段PD,BC上是否分别存在点M,N,使得平面CFM∥平面PEN?若存在,请指出点M,N的位置,并证明;若不存在,请说明理由.练习3 .如图,直角三角形ABC中,A=60°,沿斜边AC上的高BD,将△ABD折起到△PBD的位置,点E在线段CD上.(1)求证:PE⊥BD;(2)过点D作DM⊥BC交BC于点M,点N为PB中点,若PE∥平面DMN,的值.求DEDC立体几何中的平行与垂直1线面平行(1)定义直线与平面无交点.(2)判定定理如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行.(3)性质定理一条直线与一个平面平行,如果过该直线的平面与此平面相交,那么该直线与交线平行.2 面面平行(1)定义α∩β=∅⟹α|| β.(2)判定定理如果一个平面内的两条相交直线都平行于另一个平面,那么两个平面互相平行.(3)面面平行的性质(1) a⊂αα||β}⇒a||β (面面平行⇒线面平行)(2)α || βα∩γ=aβ∩ γ=b}⇒ a || b (面面平行⇒线线平行)(3) 夹在两个平行平面间的平行线段相等.3 线面垂直(1)定义若一条直线垂直于平面内的任意一条直线,则这条直线垂直于平面.符号表述:若任意a⊂α都有l⊥a,则 l⊥α.(2)判定定理如果一条直线与一个平面内的两条相交直线垂直,那么该直线与此平面垂直.(3)性质定理垂直同一平面的两直线平行4 面面垂直(1) 定义若二面角α−l−β的平面角为90∘,则 α⊥β;(2) 判定定理如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.(3) 性质定理两个平面垂直,如果一个平面内有一直线垂直于这两个平面的交线,那么这条直线与另一个平面垂直.【例1】如图,三棱柱ABC﹣A1B1C1中,侧棱AA1⊥底面A1B1C1,底面三角形A1B1C1是正三角形,E是BC中点,则下列叙述正确的是()A.CC1与B1E是异面直线 B.AC⊥平面ABB1A1C.AE,B1C1为异面直线,且AE⊥B1C1 D.A1C1∥平面AB1E解析 A不正确,因为CC1与B1E在同一个侧面中,故不是异面直线;B不正确,由题意知,上底面ABC是一个正三角形,故不可能存在AC⊥平面ABB1A1;C正确,因为AE,B1C1为在两个平行平面中且不平行的两条直线,故它们是异面直线;D不正确,因为A1C1所在的平面与平面AB1E相交,且A1C1与交线有公共点,故A1C1∥平面AB1E 不正确;故选:C.练习.1.如图是一几何体的平面展开图,其中四边形ABCD为正方形,△PDC,△PBC,△PAB,△PDA为全等的等边三角形,E、F分别为PA、PD的中点,在此几何体中,下列结论中错误的为()A.直线BE与直线CF共面 B.直线BE与直线AF是异面直线C.平面BCE⊥平面PAD D.面PAD与面PBC的交线与BC平行答案 C解析画出几何体的图形,如图,由题意可知,A,直线BE与直线CF共面,正确,因为E,F是PA与PD的中点,可知EF∥AD,所以EF∥BC,直线BE与直线CF是共面直线;B,直线BE与直线AF异面;满足异面直线的定义,正确.C,因为△PAB是等腰三角形,BE与PA的关系不能确定,所以平面BCE⊥平面PAD,不正确.D,∵AD∥BC,∴AD∥平面PBC,∴面PAD与面PBC的交线与BC平行,正确.故选:C.【例2】如图1,在△ABC中,∠ABC=90°,D为AC中点,AE⊥BD于E,延长AE交BC于F.将△ABD沿BD折起,得到三棱锥A1﹣BCD,如图2所示.(Ⅰ)若M是A1C的中点,求证:DM∥平面A1EF;(Ⅱ)若平面A1BD⊥平面BCD,试判断直线A1B与直线CD能否垂直?并说明理由.证明:(Ⅰ)取FC中点N.在图1中,由D,N分别为AC,FC中点,所以DN∥EF.在图2中,由M,N分别为A1C,FC中点,所以MN∥A1F,所以平面DMN∥平面A1EF,(5分)所以DM∥平面A1EF.解:(Ⅱ)直线A1B与直线CD不可能垂直.因为平面A1BD⊥平面BCD,EF⊂平面BCD,EF⊥BD,所以EF⊥平面A1BD,(8分)所以A1B⊥EF.假设有A1B⊥CD,注意到CD与EF是平面BCD内的两条相交直线,则有A1B⊥平面BCD.(1)(10分)又因为平面A1BD⊥平面BCD,A1E⊂平面A1BD,A1E⊥BD,所以A1E⊥平面BCD.(2)而(1),(2)同时成立,这显然与“过一点和已知平面垂直的直线只有一条”相矛盾,所以直线A1B与直线CD不可能垂直.练习 2.如图,四边形ABCD为矩形,AD⊥平面ABE,F为CE上的点,且BF⊥平面ACE (Ⅰ)求证:AE⊥BE(Ⅱ)设M在线段AB上,且满足AM=2MB,试在线段CE上确定一点N,使得MN∥平面DAE.证明:(Ⅰ)∵AD⊥平面ABE,AD∥BC,∴BC⊥平面ABE,∵AE⊂平面ABE,∴AE⊥BC,又∵BF⊥平面ACE,AE⊂平面ACE,∴AE⊥BF,∵BC∩BF=B,∴AE⊥平面BCE,又BE⊂平面BCE,∴AE⊥BE.(6分)解:(Ⅱ)在三角形ABE中过M点作MG∥AE交BE于G点,CE,在三角形BEC中过G点作GN∥BC交EC于N点,连MN,则由比例关系得CN=13∵MG∥AE MG⊄平面ADE,AE⊂平面ADE,∴MG∥平面ADE,同理,GN∥平面ADE,∴平面MGN∥平面ADE,又MN⊂平面MGN,∴MN∥平面ADE,∴N点为线段CE上靠近C点的一个三等分点.(12分)【例3】.如图,已知菱形AECD的对角线AC,DE交于点F,点E为的AB中点.将三角形ADE 沿线段DE折起到PDE的位置,如图2所示.(Ⅰ)求证:DE ⊥平面PCF ;(Ⅱ)证明:平面PBC ⊥平面PCF ;(Ⅲ)在线段PD ,BC 上是否分别存在点M ,N ,使得平面CFM ∥平面PEN ?若存在,请指出点M ,N 的位置,并证明;若不存在,请说明理由.【解答】证明:(Ⅰ)折叠前,因为四边形AECD 为菱形,所以AC ⊥DE ;所以折叠后,DE ⊥PF ,DE ⊥CF ,又PF∩CF=F,PF ,CF ⊂平面PCF ,所以DE ⊥平面PCF(Ⅱ)因为四边形AECD 为菱形,所以DC ∥AE ,DC=AE .又点E 为AB 的中点,所以DC ∥EB ,DC=EB .所以四边形DEBC 为平行四边形.所以CB ∥DE .又由(Ⅰ)得,DE ⊥平面PCF ,所以CB ⊥平面PCF .因为CB ⊂平面PBC ,所以平面PBC ⊥平面PCF .解:(Ⅲ)存在满足条件的点M ,N ,且M ,N 分别是PD 和BC 的中点.如图,分别取PD 和BC 的中点M ,N .连接EN ,PN ,MF ,CM .因为四边形DEBC 为平行四边形,所以EF ∥CN ,EF =12BC =CN .所以四边形ENCF 为平行四边形.所以FC ∥EN .在△PDE 中,M ,F 分别为PD ,DE 中点,所以MF ∥PE .又EN ,PE ⊂平面PEN ,PE∩EN=E,MF ,CF ⊂平面CFM ,所以平面CFM ∥平面PEN .练习3 .如图,直角三角形ABC 中,A=60°,沿斜边AC 上的高BD ,将△ABD 折起到△PBD 的位置,点E 在线段CD 上.(1)求证:PE ⊥BD ;(2)过点D 作DM ⊥BC 交BC 于点M ,点N 为PB 中点,若PE ∥平面DMN ,求DE DC 的值.解析 (1)∵BD 是AC 边上的高,∴BD ⊥CD ,BD ⊥PD ,又PD∩CD=D,∴BD ⊥平面PCD ,又PE ⊂平面PCD 中,∴BD ⊥PE ,即PE ⊥BD ;(2)如图所示,连接BE ,交DM 与点F ,∵PE ∥平面DMN ,∴PE ∥NF ,又点N 为PB 中点,∴点F 为BE 的中点;∴DF=12BE=EF ;又∠BCD=90°﹣60°=30°,∴△DEF 是等边三角形,设DE=a ,则BD=√3a ,DC=√3BD=3a ;∴DE DC =a 3a =13.。

立体几何常考定理总结(八大定理)

立体几何常考定理总结(八大定理)

lmβααba立体几何的八大定理一、线面平行的判定定理:线线平行⇒线面平行文字语言:如果平面外.的一条直线与平面内.的一条直线平行,则这条直线与平面平行. 符号语言://a b a b αα⊄⎫⎪⊂⎬⎪⎭⇒//a α关键点...:.在.平面内...找一条与....平面外...的.直线平行的线...... 二、线面平行的性质定理:线面平行⇒线线平行文字语言:如果一条直线和一个平面平行,经过..这条直线的平面和这个平面相交..,那么这条直线就和交线..平行。

符号语言://l l m αβαβ⎫⎪⊂⎬⎪⋂=⎭⇒//l m关键点...:.需要..借助一个....经过已知直线......的.平面..,.接着找交线。

...... 三、面面平行的判定定理:线面平行⇒ 面面平行文字语言:如果一个平面内.有两.条相交..直线都平行..于另一个平面..,那么这两个平面平行. 符号语言://a b a b A a b αααβββ⊂⎫⎪⊂⎪⎪=⇒⎬⎪⎪⎪⎭∥∥ 关键..点:..在要证明面面平行的其中一个面内找两条相交直线和另一面线面平行。

............................... 四、面面平行的性质定理: 面面平行⇒线线平行、面面平行⇒线面平行 文字语言:如果两个平行平面同时..和第三..个.平面相交..,那么所得的两条交线..平行。

符号语言:////a a b b αβαγβγ⎫⎪⋂=⇒⎬⎪⋂=⎭关键点...:找..第三个平面.....与已知平面都相.......交,则交线平行.......文字语言:如果两个平面平行,那么其中一个平面内的任意..一条直线平行于另一个平面。

符号语言://,//a a αβαβ⊂⇒ 关键:只要是其中一个平面内的直线就行..................nmAαaBA l βαaβα五、线面垂直的判定定理:线线垂直⇒线面垂直文字语言:如果一条直线和一个平面内.的两.条相交..直线垂直..,那么这条直线垂直于这个平面。

2017年__高二年级立体几何垂直证明题常见模型和方法

2017年__高二年级立体几何垂直证明题常见模型和方法

立体几何垂直证明题常见模型及方法垂直转化:线线垂直线面垂直面面垂直;基础篇类型一:线线垂直证明(共面垂直、异面垂直)(1) 共面垂直:实际上是平面内的两条直线的垂直 (只需要同学们掌握以下几种模型)○1 等腰(等边)三角形中的中线○2 菱形(正方形)的对角线互相垂直 ○3勾股定理中的三角形 ○4 1:1:2 的直角梯形中 ○5 利用相似或全等证明直角。

例:在正方体1111ABCD A BC D -中,O 为底面ABCD 的中心,E 为1CC ,求证:1AO OE ⊥(2) 异面垂直 (利用线面垂直来证明,高考中的意图) 例1 在正四面体ABCD 中,求证AC BD ⊥变式 1 如图,在四棱锥ABCD P -中,底面A B C D 是矩形,已知60,22,2,2,3=∠====PAB PD PA AD AB .证明:AD PB ⊥;变式2 如图,在边长为2的正方形ABCD 中,点E 是AB 的中点,点F 是BC 的中点,将△AED,△DCF 分别沿,DE DF 折起,使,A C 两点重合于'A. 求证:'A D EF ⊥;类型二:线面垂直证明BE 'ADFG方法○1 利用线面垂直的判断定理例2:在正方体1111ABCD A BC D -中,O 为底面ABCD 的中心,E 为1CC ,求证:1AO BDE ⊥平面变式1:在正方体1111ABCD A BC D -中,,求证:11AC BDC ⊥平面 变式2:如图:直三棱柱ABC -A 1B 1C 1中, AC =BC =AA 1=2,∠ACB =90︒.E 为BB 1的中点,D 点在AB 上且DE = 3 .求证:CD ⊥平面A 1ABB 1;变式3:如图,在四面体ABCD 中,O 、E 分别是BD 、BC 的中点,AD BC ∥,90ABC ∠=°,PA ⊥平面ABCD .3PA =,2AD =,AB =,6BC =C○2 利用面面垂直的性质定理 例3:在三棱锥P-ABC 中,PA ABC ⊥底面,PAC PBC ⊥面面,BC PAC ⊥求证:面。

立体几何平行与垂直定理总结

立体几何平行与垂直定理总结

P
A
O
步骤 2:计算线段 PO 的长度。(直接解三角形;等体积法和等面积法;换
点法)方法二:坐标法。 d AP cos n AP n AP n
n α A θ
m
P O
2.线面距、面面距均可转化为点面距。 3.异面直线之间的距离 方法一:转化为线面距离。
如图,m 和 n 为两条异面直线, n 且
cos θ1 BO AB cos θ BC AB cos θ2 BC OB
∴ cos cos 1 cos 2
斜线和平面所成的角,是这条斜线和平面内 经过斜足的直线所成的一切角中最小的角。
一. 距离问题。 1.点面距。 方法一:几何法。 步骤 1: 过点 P 作 PO 于 O, 线段 PO 即为所求。
(一) 二面角及其平面角 (1)定义:在棱 l 上取一点 P,两个半平面内分别作 l 的垂线(射线)m、n,则 射线 m 和 n 的夹角 为二面角 —l— 的平面角。 (2)范围: [0,180] (3)求法: 方法一:定义法。 步骤 1:作出二面角的平面角(三垂线定理),并证明。 步骤 2:解三角形,求出二面角的平面角。 方法二:截面法。 步骤 1:如图,若平面 POA 同时垂直于平面 和 ,则交线(射线)AP 和 AO 的 夹角就是二面角。 步骤 2:解三角形,求出二面角。
l l
α
β
l
方法二:计算所成二面角为直角。
(二)夹角问题。 (一) 异面直线所成的角:(1) 范围: (0,90] (2)求法:方法一:定义法。 步骤 1:平移,使它们相交,找到夹角。 步骤 2:解三角形求出角。(常用到余弦定理)
a θ b c
a2 b2 c2 cos 余弦定理: (计算结果可能是其补角) 2ab

立体几何中有关平行、垂直常用的判定方法

立体几何中有关平行、垂直常用的判定方法

有关平行、垂直问题常见判定方法一、 线线平行的判定1、 公理4:平行于同一直线的另两直线互相平行. a ∥b ,b ∥c ==> a ∥c2、 三角形中位线平行于底边;平行四边形对边平行;棱柱侧棱互相平行.3、 线面平行的性质:一条直线与一个平面平行,过该直线的平面与平面相交,该直线与交线平行.a ∥α,a ⊂β,αβ=b ==>a ∥bβαba4、 面面平行的性质:两个平面平行,同时与第三个平面相交,所得的两条交线互相平行.α∥β,γα=a ,γβ=b ==>a ∥bγβαb a5、 平行于同一平面的两直线互相平行.a ⊥α,b ⊥α==> a ∥bαba二、 线面平行的判定1、 线面平行的判定定理:假设平面外的一条直线与此平面内的一条直线平行,那么该直线c b a与此平面平行.a ⊄α,b ⊂α,a ∥b ==> a ∥ααba2、 假设两平面平行,那么一个平面内的任一直线与另一平面平行.α∥β,a ⊂α==> a ∥βαβa3、 α⊥β,a ⊥β,a ⊄α==> a ∥αβαa4、 a ⊥b ,b ⊥α,a ⊄α==> a ∥ααab三、 面面平行的判定1、 面面平行的判定定理:假设一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.a ⊂α,b ⊂α,a b =O ,a ∥β,b ∥β==> α∥βO αβa b αβa2、 垂直于同一直线的两个平面互相平行.a ⊥α,a ⊥β==> α∥β (见上图)3、 平行于同一平面的两个平面互相平行.α∥γ,β∥γ==> α∥βαγβ4、 柱体的上下底面互相平行四、 线线垂直1、线线垂直的定义:a 与b 所成的角为直角.2、线面垂直的定义:假设一条直线与一个平面垂直,那么该直线与平面内的任一直线都垂直.a ⊥α,b ⊂α==> a ⊥bαab3、a ⊥α,b ∥α==> a ⊥bαab4、三垂直定理及其逆定理l ⊥α( H 为垂足),a ⊂α,HM 是斜线PM 在平面α内的射影三垂线定理〔垂影那么垂斜〕:a ⊥HM ==> a ⊥PM三垂线定理的逆定理〔垂斜那么垂影〕:a ⊥PM ==> a ⊥HMlM H Pαa5、a ⊥α,b ⊥β,α⊥β==> a ⊥bβαab五、线面垂直的判定1、线面垂直的判定定理:假设一直线和平面内的两相交直线都垂直,那么该直线与此平面垂直.a ⊂α,b ⊂α,ab =O , l ⊥a ,l ⊥b ==> l ⊥αlO αa b2、a∥b,a⊥α==> b⊥ααb a3、直棱柱的侧棱与底面垂直4、一条直线垂直于两平行平面中的一个平面,也垂直于另一个平面α∥β,a⊥α==> a⊥βαβa5、面面垂直性质:两平面垂直,一个平面内垂直于它们交线的直线垂直于另一个平面.α⊥β,αβ=l,a⊂α,a⊥l==> a⊥βlβαa5、 两相交平面同时垂直于第三个平面,那么它们的交线也与第三个平面垂直.αβ=l ,α⊥γ,β⊥γ==> l ⊥γl γβα六、面面垂直的判定1、定义:两平面相交所成二面角为直二面角.2、判定定理:假设一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.a ⊥β,a ⊂α ==> α⊥βl βαa2、a ∥α,a ⊥β==> α⊥ββαa。

3.1立体几何平行垂直有关定理总结

3.1立体几何平行垂直有关定理总结

立体几何有关平行垂直定理总结 BHS
.
2.等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。

3.推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等。

4.异面直线判定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。

5.两异面直线所成的角:过空间任意一点引两条直线分别平行(或重合)于两条异面直线,它们所成的锐角(或直角)。

范围为 ( 0°,90°]
6.斜线线与平面所成的角:平面的一条斜线和它在这个平面内的射影所成的锐角。

直线和平面所成角的取值范围为 [0°,90°]
7.二面角的平面角:以二面角的棱上任意一点为端点,在两个面内
分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角。

8.几何体的表面积和体积。

立体几何-空间角求法题型(线线角、线面角、二面角)

立体几何-空间角求法题型(线线角、线面角、二面角)

空间角求法题型(线线角、线面角、二面角)空间角能比较集中的反映学生对空间想象能力的体现, 也是历年来高考命题者的热点, 几乎年年必考。

空间角是线线成角、线面成角、面面成角的总称。

其取值范围分别是:0° < 90°、0°< < 90°、0° < 180°。

空间角的计算思想主要是转化:即把空间角转化为平面角,把角的计算转化到三角形边角关系或是转 化为空间向量的坐标运算来解。

空间角的求法一般是:一找、二证、三求解,手段上可采用:几何法(正 余弦定理)和向量法。

下面举例说明。

一、异面直线所成的角:例1如右下图,在长方体 ABCD A i BiGD i 中,已知AB 4 , AD 3, AA 2。

E 、F 分别是线段AB 、BC 上的点,且EB FB 1。

求直线EC i 与FD i 所成的角的余弦值。

思路一:本题易于建立空间直角坐标系,uuu uuu把EC i 与FD i 所成角看作向量 EC 与FD 的夹角,用向量法求 解。

思路二:平移线段C i E 让C i 与D i 重合。

转化为平面角,放到 三角形中,用几何法求解。

(图I )uuu uju umr解法一:以A 为原点,ABAD'AA 分别为x 轴、y 轴、z 轴的•••直线EC i 与FD i 所成的角的余弦值为 --- I4解法二: 延长 BA 至点 E i ,使 AE i =I ,连结 E i F 、DE i 、D i E i 、DF , 有D i C i //E i E , D i C i =E i E ,则四边形 D i E i EC i 是平行四边形。

则 E i D i //EC i 于是/ E i D i F 为直线EC i 与FD i 所成的角。

在 Rt △ BE i F 中, E i F -J E i F 2 BF 2「5 2 i 2 「‘莎。

立体几何平行垂直的证明方法

立体几何平行垂直的证明方法

• (1)证明 如图,设AC与BD交于点G,则G为AC 的中点.连接EG,GH,由于H为BC的中点, • 故GH=(1/2)AB. • 又EF=(1/2)AB ,∴EF=GH. • 又EF∥AB GH∥AB ∴EF ∥ GH • ∴四边形EFHG为平行四边形. • ∴EG∥FH. • 而EG⊂平面EDB,FH⊄平面EDB, • ∴FH∥平面EDB.
3、如果一条直线和一个平面内的两条相交直线垂直,那么
这条直线垂直于这个平面。(线面垂直的判定定理) 4、如果两个平面互相垂直,那么在一个平面内垂直于它们 交线的直线垂直于另一个平面。(面面垂直的性质定理) 5、两条平行直线中的一条垂直于平面,则另一条也垂直于
1、定义法:直线与平面内任意直线都垂直。 2、点在面内的射影。
四、线线垂直的证明方法:
1、勾股定理。 2、等腰三角形,三线合一
3、菱形对角线,等几何图形
4、直径所对的圆周角是直角。 5、点在线上的射影。
6、如果一条直线和一个平面垂直,那么这条直线就和这个
平面内任意的直线都垂直。
7、如果两条平行线中的一条垂直于一条直线,则另一条也
垂直于这条直线。
五、线面垂直的证明方法:
3.利用线面平行的性质定理: 如果一条直线平行于一个平面,经过这条直线的
平面和这个平面相交,则这条直线和交线平行 4.利用面面平行的性质定理: 如果两个平行平面同时和第三个平面相 交,那么它们的交线平行, 5.利用线面垂直的性质定理: 垂直于同一个平面的两条直线平行
二、线面平行的证明方法:
1、定义法:直线与平面没有公共点。 2、如果平面外一条直线和这个平面内的一条直线平行, 那么这条直线和这个平面平行。(线面平行的判定定理) 3、两个平面平行,其中一个平面内的任何一条直线必平行

立体几何判定平行垂直的20个判定定理

立体几何判定平行垂直的20个判定定理
范围
空间距离
距离图示
定义
两平行直线间的距离
异面直线间的距离:两条异面直线的公垂线段的长度。
平行直线和平面的距离
平行平面间距离
经过不在同一直线上的三点有且仅有一个平确定一个平面的依据空间角平面图形空间图形异面直线直线和平面两个平面夹角图示定义由一点出发的平面上的射影a与a?所成锐角面角的平面角
平行关系的判定
图示
符号
文字
线//线
(4个)
,
公理4:平行于同一条直线的两条直线互相平行
线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。
确定一个平面的依据
空间角
平面图形
空间图形
异面直线
直线和平面
两个平面
夹角图示
定义
由一点出发的两条射线组成的图形
异面直线所成的角:作 , , 所成的角(锐角或直角)为异面直线所成的角
直线与平面所成的角:a’是a在平面上的射影,a与a’所成锐角为直线与平面所成的角。
二面角的平面角:O在棱上,OA在α内,OA⊥棱,OB在β内,OB⊥棱,∠AOB是二面角的平面角。
, ,

面面垂直的性质定理:两个平面垂直,在第一个平面内垂直于交线的直线垂直于另一个平面。
⊥ , b⊥
线面垂直的性质:由线线平行得线面垂直。
⊥ , ⊥
面面平行的性质:由面面平行得线面垂直。
面⊥面
(2个)

面面垂直的判定定理:一个平面经过另外一个平面的垂线,则这两个平面互相垂直。
, ⊥
补充:如果一个平面与另一个平面的垂线平行,那么这两个平面互相垂直。
⊥ ,b⊥
线面垂直的性质定理:如何两条直线都垂直于同一个平面,那么这两条直线平行。

微专题3 立体几何中的平行与垂直问题(解析版)

微专题3  立体几何中的平行与垂直问题(解析版)

微专题3 立体几何中的平行与垂直问题(解析版)题型一、线面平行与垂直证明直线与平面的平行与垂直问题,一定要熟练记忆直线与平面的平行与垂直判定定理和性质定理,切记不可缺条件。

直线与平面的平行有两种方法:一是在面内找线;二是通过面面平行转化。

直线与平面垂直关键是找两条相交直线。

例1、如图,在四棱锥P ABCD中,M,N分别为棱P A,PD的中点.已知侧面P AD⊥底面ABCD,底面ABCD是矩形,DA=DP.求证:(1)MN∥平面PBC;MD⊥平面P AB.【证明】(1)在四棱锥P-ABCD中,M,N分别为棱P A,PD的中点,所以MN∥AD又底面ABCD是矩形,所以BC∥AD.所以MN∥BC.又BC⊂平面PBC,MN⊄平面PBC,所以MN∥平面PBC.(2)因为底面ABCD是矩形,所以AB⊥AD.又侧面P AD⊥底面ABCD,侧面P AD∩底面ABCD=AD,AB⊂底面ABCD,所以AB⊥侧面P AD.又MD⊂侧面P AD,所以AB⊥MD.因为DA=DP,又M为AP的中点,从而MD⊥P A.又P A,AB在平面P AB内,P A∩AB=A,所以MD⊥平面P AB【类比训练】如图所示,在三棱柱ABCA1B1C1中,四边形AA1B1B为矩形,平面AA1B1B⊥平面ABC,点E,F分别是侧面AA1B1B,BB1C1C对角线的交点.(1) 求证:EF∥平面ABC;(2) 求证:BB1⊥AC.解答(1)在三棱柱ABCA1B1C1中,四边形AA1B1B,四边形BB1C1C均为平行四边形,E,F分别是侧面AA1B1B,BB1C1C对角线的交点,所以E,F分别是AB1,CB1的中点,所以EF∥AC.(4分)因为EF⊄平面ABC,AC⊂平面ABC,所以EF∥平面ABC.(8分)(2)因为四边形AA1B1B为矩形,所以BB1⊥AB.因为平面AA1B1B⊥平面ABC,且平面AA1B1B∩平面ABC=AB,BB1⊂平面AA1B1B,所以BB1⊥平面ABC.(12分)因为AC⊂平面ABC,所以BB1⊥AC.(14分)例2、如图,在三棱柱ABCA1B1C1中,AB=AC,A1C⊥BC1,AB1⊥BC1,D,E分别是AB1和BC的中点.求证:(1)DE∥平面ACC1A1;(2)AE⊥平面BCC1B1.解答(1)连结A1B,在三棱柱ABCA1B1C1中,AA1∥BB1且AA1=BB1,所以四边形AA1B1B是平行四边形.又因为D是AB1的中点,所以D也是BA1的中点.(2分)在△BA1C中,D和E分别是BA1和BC的中点,所以DE∥A1C.又因为DE⊄平面ACC1A1,A1C⊂平面ACC1A1,所以DE∥平面ACC1A1.(6分)(2)由(1)知DE∥A1C,因为A1C⊥BC1,所以BC1⊥DE.(8分)又因为BC1⊥AB1,AB1∩DE=D,AB1,DE⊂平面ADE,所以BC1⊥平面ADE.又因为AE⊂平在ADE,所以AE⊥BC1.(10分)在△ABC中,AB=AC,E是BC的中点,所以AE⊥BC.(12分)因为AE⊥BC1,AE⊥BC,BC1∩BC=B,BC1,BC⊂平面BCC1B1,所以AE⊥平面BCC1B1. (14分)【类比训练】三棱锥DABC中,已知AC⊥BC,AC⊥DC,BC=DC,E,F分别为BD,CD的中点.求证:(1) EF∥平面ABC;(2) BD⊥平面ACE.解答(1)三棱锥DABC中,因为E为DB的中点,F为DC的中点,所以EF∥BC,(3分)因为BC⊂平面ABC,EF⊄平面ABC,所以EF∥平面ABC.(6分)(2)因为AC⊥BC,AC⊥DC,BC∩DC=C,BC,DC⊂平面BCD所以AC⊥平面BCD,(8分)因为BD⊂平面BCD,所以AC⊥BD,(10分)因为DC=BC,E为BD的中点,所以CE⊥BD,(12分)因为AC∩CE=C,AC,CE⊂平面ACE,所以BD⊥平面ACE.(14分)题型二、线面与面面平行与垂直证明平面与平面的平行与垂直问题,一定要熟练记忆平面与平面的平行与垂直判定定理和性质定理,切记不可缺条件。

线、面平行和垂直关系的证明

线、面平行和垂直关系的证明
3.利用面面垂直的判定定理证明面面垂直是常用方法, 而其需要证明线面垂直.在证明线线垂直时,要注意特殊图 形中的隐含垂直关系,如直棱柱和正棱柱的条件,菱形对角 线相互垂直平分,圆中直径所对的圆周角为 90°等.
【针对训练】 1.如图,平面 ABB1A1 为圆柱的轴截面,点 C 为底面 圆周上异于 A,B 的任意一点.
热点2 向量法证明平行和垂直
【方法结论】
设空间两条直线 l1,l2 的方向向量分别为 e1,e2,两个
平面 α1,α2 的法向量分别为 n1,n2,则有如下结论:
直线、平面
平行
垂直
l1 与 l2 l1 与 α1 α1 与 α2
e1=λe2 el11⊄·nα11=0
n1=λn2
e1·e2=0 e1=λn1 n1·n2=0
解答题 规范踩点 多得分
立体几何
线、面平行和垂直关系的 证明
[考情分析] 立体几何的解答题着重考查线线、线面与 面面平行和垂直的判定与性质,且多以棱柱、棱锥、棱台或 其简单组合体为载体进行考查,难度中等.
热点题型分析
热点1 综合法证明平行和垂直 【方法结论】 1.线、面平行问题解题策略 (1)证明线面平行:利用线面平行的定义、判定定理,面 面平行的性质定理、性质等; (2)证明面面平行:利用面面平行的定义、判定定理、垂 直于同一直线的两个平面平行、平行于同一平面的两个平面 平行; (3)利用线线、线面、面面平行的相互转化.
解 (1)证明:如图所示,连接 BC1.因为 BB1C1C 为菱形, 所以 BC1⊥B1C.又因为 AA1B1B 为正方形,所以 AB⊥BB1, 因为平面 AA1B1B⊥平面 BB1C1C,平面 AA1B1B∩平面 BB1C1C =BB1,AB⊂平面 AA1B1B,所以 AB⊥平面 BB1C1C.又 B1C ⊂平面 BB1C1C,于是 AB⊥B1C.又因为 AB∩BC1=B,所以 B1C⊥平面 ABC1.因为 AC1⊂平面 ABC1,所以 B1C⊥AC1.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A
P
B
C
E
D
一:线面平行的证明方法:
1、用“近似平行法”先找到面上与已知直线平行的直线(一般为表示面的三角形的边界直线,或三角形某边上的中线)
看找到的这条线与已知线的长度关系,1)若相等应该构造平行四边形;2)若不相等一般利用三角形中位线的性质(将这两个不相等的线段的端点连结并延长即会出现关键三角形)。

2、若既不能构造平行四边形也不能性用中位线性质,则应再构造一个此直线所在的平面,证明此平面与已知平面平行(先证面面平行,推出线面平行)
例一:如图,已知菱形ABCD ,其边长为2,
60BAD ∠= ,ABD ∆绕着BD 顺时针旋转120
得到PBD ∆,M 是PC 的中点.
(1)求证://PA 平面MBD ;
(2)求直线AD 与平面PBD 所成角的正弦值.
例二:已知四棱锥P-ABCD ,底面ABCD 是
60=∠A 、

长为a 的菱形,又ABCD PD 底⊥,且PD=CD ,点M 、N 分别是
棱AD 、PC 的中点.
(1)证明:DN//平面PMB ; (2)证明:平面PMB ⊥平面PAD ;
(3)求点A 到平面PMB 的距离.
例三:如图,已知点P 是平行四边形ABCD 所在平面外的一点,
上的点且PE EA BF FD =∶∶,求证:EF //平面PBC .
二:线面垂直的证明方法:
通过线线垂直,证明线面垂直
1) 利用勾股定理逆定理及三角形中两个角和为90°; 2) 利用等边、等腰三角形(中线即高线),正方形、矩形邻边垂直,正方形菱形对角线垂
直等;
3) 通过线面垂直,反推线线垂直;
4) 利用面面垂直的性质,证明垂直于交线即垂直于另一个平面。

例四:如图,四边形ABCD 为矩形,CF ⊥平面ABCD ,DE ⊥平面ABCD , AB=4a ,BC= CF=2a,P 为AB 的中点.
(1)求证:平面PCF ⊥平面PDE ; (2)求四面体PCEF 的体积.
C
例五:如图,在四棱锥ABCD P -中,ABCD 是矩形,ABCD PA 平面⊥
, 3,
1===AB AD PA ,点F 是PD 的中点,点E 在CD 上移动。

求证:AF PE ⊥
例六:如图,在四边形ABCD 中,4==AD AB ,7=
=CD BC ,点E 为线段AD 上
的一点.现将DCE ∆沿线段EC 翻折到PAC ,使得平面PAC ⊥平面ABCE ,连接PA ,PB .
(Ⅰ)证明:⊥BD 平面PAC ;
(Ⅱ)若︒=∠60BAD ,且点E 为线段AD 的中点,求直线PE 与平面ABCE 所成角的正弦值.
三:线面角AB 与面α的求法:
1、 先确定斜线与平面,找到线面的交点A 为斜足;
2、 找线在面外的一点B ,过点B 向平面α做垂线,确定垂足O ;
3、 连结斜足与垂足为斜线AB 在面α上的投影;
4、 投影AO 与斜线AB 之间的夹角为线面角。

以上第二步过面外一点向平面做垂线的方法有一下几种:
1) 线在面外的一点B 与平面上某点的连线正垂直于面α,无需再做辅助线; 2) 题中已知有与面α垂直的直线,过线在面外的一点B 直接做此垂线的平行线; 3) 过线在面外的一点B 做两垂直平面交线的垂线,利用面面垂直的性质证明OB ⊥面α(这
两个垂直平面一个是面α,另一个是过点B 且与α垂直的平面)。

例七:如图,在四棱锥P-ABCD 中,底面ABCD 是矩形,AD ⊥PD ,BC=1,PD=CD=2.
(I )求异面直线PA 与BC 所成角的正切值;
(II )证明平面PDC ⊥平面ABCD ;
A
B
C
D P
E
F
A B C D
E G
F (III )求直线PB 与平面ABCD 所成角的正弦值。

例八:如图,在四棱锥P ABCD -中,底面ABCD 为
平行四边形,0
45ADC ∠=,1AD AC ==,O 为AC
PO ⊥平面ABCD ,2PO =,
M 为PD
中点.
(Ⅰ)证明:PB //平面ACM ; (Ⅱ)证明:AD ⊥平面PAC

(Ⅲ)求直线AM 与平面ABCD 所成角的正切值.
四、二面角A-BC-D 的求法:
1、先确定两个平面,面ABC 及面BCD 和其两面的交线BC ,根据题意过点A 或点D 作交O 线BC 的垂线(一般情况选择在等腰三角形中作垂线AB=AC 时,或者在直角三角形中作垂线∠BAC=900时,应该过点A 作BC 垂线);
2、1)反连OD ,证明OD ⊥BC ;2)若OD 不垂直于BC ,看面BCD 内是否有与
交线BC 垂直的直线,若有直线l ⊥BC 则直接过点O 作l 的平行线; 3、若两个平面上没有对应的等腰三角形则看两平面是否有垂直于交线BC 的直线 若有可将两垂线平移至相交直线,求其夹角。

或者过点A 作两垂直平面交线的的 垂线,利用三垂线定理证明。

例十:已知三棱锥S-ABC, ∠ASC=90度,∠ASC=∠BSC=60度,且AS=BS=CS=2 求二面角B-AS-C 的正弦值。

例十一:如图,在六面体ABCDEFG 中,平面ABC ∥平面DEFG ,AD ⊥平面DEFG ,
AC AB ⊥,DG ED ⊥,EF ∥DG ,且2====DG DE AD AB ,1==EF AC .
(Ⅰ)求证: BF ∥平面ACGD ; (Ⅱ)求二面角A EG D --的正切值;
例十二:如图,四棱锥S-ABCD 的底面是矩形,SA ⊥底面ABCD ,P 为BC 边的中点,SB
与平面ABCD 所成的角为
45,且AD=2,SA=1。

(1)求证:PD ⊥平面SAP ;
(2)求二面角A-SD-P 的余弦的大小;
A
B
C S。

相关文档
最新文档