石墨烯基超级电容器电极材料研究进展..

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

**大学研究生课程考试(查)论文2014——2015学年第二学期

《石墨烯基超级电容器电极材料研究进展》

课程名称:材料化学

任课教师:

学院:

专业:

学号:

姓名:

成绩:

石墨烯基超级电容器电极材料研究进展

摘要:超级电容器是目前研究较多的新型储能元件,其大的比电容、高的循环稳定性以及快速的充放电过程等优良特性,使其在电能储存及转化方面得到广泛应用。超级电容器的电极材料是它的技术核心。石墨烯作为一种新型的纳米材料,具有良好的导电性和较大的比表面积,可作为超级电容器的电极材料。利用其他导电物质对石墨烯进行改性和复合,可以在保持其本身独特优点的同时提高作为电极材料的导电率、循环稳定性等其他性能。本文对近年来石墨烯基电极材料在两种不同类型超级电容器中的应用研究进行了综述。

关键词:超级电容器;石墨烯;导电聚合物;金属氧化物

随着人类社会赖以生存的环境状况的日益恶化,过多的CO2排放造成气候变化不稳定,人们对能源的开发和研究重点已经转移到绿色能源(如太阳能、风能等)上面[1, 2],但是它们是靠大自然的资源来储能和转化能量的,其发电能力极大程度要受到自然环境以及季节变化的影响,如果被广泛应用于日常生活,有很多不稳定性,这也是目前太阳能、风能领域的瓶颈。超级电容器,又称作电化学电容器,是一种既稳定又环保的新型储能元件。它具有充电时间短、使用寿命长、功率密度高、安全系数高、节能环保、低温特性好等优点。超级电容器在现代科技、工业、航天事业方面的应用都十分广泛,它代表了高储能技术的一次突破。目前,国内在相关方面做了许多研究,并实现了商业化生产。但是,它们的广泛应用还存在,例如,能量密低、成本过高等问题。

从原理出发,超级电容器可分为双电层电容器和法拉第赝电容器两类。两者均是由多孔双电极、电解质、集流体、隔离物4部分所构成(超级电容器结构如图1所示)。为了减小接触电阻,要求电解质和电极材料紧密接触;隔离物的电子电导要低,离子电导要高,以保证电解质离子顺利穿透。双电层电容器是利用双电极和电解质组成的双电层结构来实验充放电储能的。当在两电极上施加电压,电解质被电离产生正负离子,由于电荷补偿,正离子移向负电极,负离子移向正电极,这样就在电极与电解质界面处产生双电层。由于这个双电层是由相反电荷层构成,如同普通平板电容器一样,但是此双电层间距很小,是原子尺寸量

级,因此电容比普通电容器大得多。法拉第赝电容器是与电极充电电位有关的电容器,其原理是电活性物质在电极材料表面活体相中的二维或准二维空间上进行欠电位沉积,从而发生可逆的化学吸附、脱附或氧化还原反应。当电极在外加电场作用下时,电解液中离子发生迁移,扩散到电极与电解液界面处,发生电化学反应,从而进入到电极表面的活性氧化物体相中,实现电荷存储,放电时,离子又回到电解液,释放存储的电荷,如此反复实现充放电。

图1 超级电容器结构示意图

电极材料是超级电容器实现电荷存储并直接影响电容器的性能和生产成本的重要部分,其导电性和比表面积是重要参数,大的比表面积可以吸附更多的电解液离子,能够存储或者释放更多的电荷。因此,对超级电容器的研究重点就放在了高比表面积、低成本和高导电率的电极材料上。从现在的研究进展看,可以作为超级电容器电极材料[2, 3]的主要有过渡金属氧化物[4]、有机导电聚合物以及碳纳米管[5]、活性炭[6]、碳气凝胶[7]等多孔性炭材料。

作为新型碳材料的石墨烯(G),其物理结构稳定、比表面积大、导电性良好,利用其他导电物质对其进行改性、复合得到的G基复合物[8]已成为超级电容器电极材料研究的热门方向。尽管G本身具有大比表面积和高电导率以及其稳定的表面结构使其很难被电解液侵蚀,因此其适合作为超级电容器的电极材料,以获得大的电容量;但是,纳米级的G片层之间存在的较大的分子间作用力导致其易发生团聚而使得比表面积降低。为了克服这一缺点,人们试着采用各种无机、有机、金属物质对G或者氧化石墨烯(GO)进行表面改性和复合,以使G 为基底的电极材料不仅能有高的导电性能,而且有尽可能大的比表面积。本文对近年来石墨烯基电极材料在三种不同类型超级电容器中的应用研究综述如下。

1.石墨烯基双电层电容器

石墨烯具有优异的导电性、柔韧性、力学性能和很大的比表面积,自身可作为双电层超级电容器的电极材料。但无论是石墨烯、氧化石墨烯还是还原氧化石墨烯(RGO),它们在制备过程中均容易发生堆叠,影响石墨烯材料在电解质中的分散性和表面可浸润性,降低了石墨烯材料的有效比表面积和电导率。因此,避免石墨烯堆叠是制备高能量密度和高功率密度石墨烯基超级电容器的技术难题之一。Zhang[9]等将各种表面活性剂,如四丁基氢氧化铵、十六烷基三甲基溴化铵、十二烷基苯磺酸钠等嵌入到氧化石墨烯片中,缓解氧化石墨烯在还原过程中的堆叠现象,使表面活性剂有效地存在于石墨烯和氧化石墨烯片中,促进了材料表面的浸润性,使材料能够很好地分散,提高了材料的比容量。研究结果表明,在2mol/L的H2SO4水溶液中,采用四丁基氢氧化铵作为表面活性剂制备的电极材料在1A/g电流密度下的比容量达到194F/g。Yoon等[10]将己烷作为反溶剂物质加入到氧化石墨烯片的乙醇溶液中,制备得到不堆叠的褶皱氧化石墨烯片和还原氧化石墨烯片,有效地提高了还原氧化石墨烯的比表面积和孔隙率,分别为1435.4m2/g和4.1cm3/g,显著提升了该材料作为双电层电容器电极的性能。在6.0 mol/L的KOH水溶液中、1A/g的电流密度下,比容量达236F/g;在30A/g的电流密度下,比容量仍然达到171.2F/g。Wang等[11]将柔性石墨烯纸与炭黑纳米粒子通过普通的真空抽滤方法制备了复合电极材料,由于炭黑纳米粒子的存在,有效缓解了抽滤过程中石墨烯自发的堆叠过程,使制备的复合材料电化学性能超过了纯石墨烯纸的7倍,其最大的能量密度可达26W·h/kg,功率密度达5.1kW/kg。石墨烯层间距的控制对于避免石墨烯片层的堆叠、充分发挥石墨烯优异结构特性与电化学性能具有重要作用。Hantel等[12]通过控制真空热还原的加热速度和还原温度,获得不同层间距的石墨烯和含不同氧官能团的石墨烯,并将其用作超级电容器的电极材料。研究发现,其电极比电容与石墨烯的层间距、石墨烯上的含氧官能团和使用的电解质均有很大的关系,当层间距为0.43nm,己腈作为溶剂时,其比电容达到了220F/g,组成对称超级电容器时其比电容达到了195F/g。杨晓伟等[13]利用化学转化石墨烯在水溶液中的高分散性,采用过滤的方法在滤膜和溶液界面可控制备了石墨烯片层定向分布的化学转换石墨烯水凝胶(chemically converted graphene,CCG),获得了石墨烯片层之间π-π吸引力和溶剂化的排斥

相关文档
最新文档