频率特性的几种表示方法
自动控制原理与系统控制系统的频率特性
如图4-6所示。
12
四、惯性环节 传递函数 : G(s) C(s) 1
R(s) Ts 1
频率特性 : G( j) C( j) 1
R( j) jT 1
对数频率特性 : L() 20lg
1
20lg
(T)2 1
(T)2 1
Bode图 : arctanT
▪对数幅频特性L(ω)是一条曲线,逐点描绘很烦琐,通常采用近似的 绘制方法,用两条渐进线近似表示.
(极坐标表示法)
U () jV ()
(直角坐标表示法)
(A指(数表)e示j法 ())
图4-2
A() G(j) U 2 () V 2 ()
() G( j) arctan 1 V () U ()
6
例4-1 写出惯性环节的幅频特性、相频特性和频率特性。
解:惯性环节的传递函数为
G(s) 1 Ts 1
2
• 系统(或环节)输出量与输入量幅值之比为幅值频率特性, 简称幅频特性,它随角频率ω变化,常用M(ω)表示。
A()
A c
A r
• 输出量与输入量的相位差为相位频率特性,简称相频特性,它 也随角频率ω变化,常用φ(ω)表示,
c r
幅频特性和相频特性统称为频率特性,用G( jω)表示
3
频率特性就是线性系统(或环节)在正弦输入信号 作用下稳态时输出相量与输入相量之比。
G (j) G(j) G(j)
A() G(j)
() G(j)
幅频特性是输出量与输入量幅值之比M(ω),描述系统 对不同频率正弦输入信号在稳态时的放大(或衰减) 特性。
相频特性是输出稳态相对于正弦输入信号的相位差 φ(ω),描述系统稳态输出时对不同频率正弦输入信号 在相位上产生的相角迟后(或超前)的特性。
§5-2 频率特性的几种表示方法
波德图坐标(横坐标是频率,纵坐标是幅值和相角)的分度:
横坐标分度:它是以频率 的对数值 log 进行分度的。所 以横坐标(称为频率轴)上每一线性单位表示频率的十倍变化, 称为十倍频程(或十倍频),用Dec表示。如下图所示:
Dec Dec Dec Dec
...
0
2
1
0.01
0 .1
幅值 1
A( )
1.26
2
1.56
4
2.00
6
2.51
83.1610来自5.621510.0
20
增益 0
5
使用对数坐标图的优点: 可以展宽频带;频率是以10倍频表示的,因此可以清楚的 表示出低频、中频和高频段的幅频和相频特性。 可以将乘法运算转化为加法运算。 所有的典型环节的频率特性都可以用分段直线(渐进线) 近似表示。 对实验所得的频率特性用对数坐标表示,并用分段直线近 似的方法,可以很容易的写出它的频率特性表达式。 三、 对数幅相特性曲线(又称尼柯尔斯图) 尼柯尔斯图是将对数幅频特性和相频特性两条曲线合并成 一条曲线。横坐标为相角特性,单位度或弧度。纵坐标为对数 幅频特性,单位分贝。横、纵坐标都是线性分度。
第二节 频率特性的几种表示方法
1
频率特性可以写成复数形式: ( j ) P( ) jQ( ) ,也可 G 以写成指数形式:G( j ) | G( j ) | G( j )。其中,P ( ) 为实 频特性, ( ) 为虚频特性; G ( j ) |为幅频特性, G ( j ) 为相频 Q | 特性。 在控制工程中,频率分析法常常是用图解法进行分析和设 计的,因此有必要介绍常用的频率特性的三种图解表示。 极坐标频率特性曲线(又称奈魁斯特曲线) 对数频率特性曲线(又称波德图) 对数幅相特性曲线(又称尼柯尔斯图)
频率特性的图示方法
由:
2.典型环节的Bode图
始于点(ωT ,0),斜率20dB/dec的直线
对数幅频特性:
低频段(ω<<ωT), 20lgG(j)20lgT-20lgT=0dB
高频段(ω>>ωT), 20lgG(j) 20lg-20lgT
故:
ωT : 转角频率
(5)一阶微分环节
对数相频特性:
=0, G(j)=0°;=T,G(j)=45°;=, G(j)=90°; 对数相频特性曲线对称于点(T,45°)
01
20lgG(j)= 20lg G(j)= 90o
02
对数幅频特性:过点(1,0)斜率20dB/dec的直线
03
对数相频特性:过点(0,90o )平行于横轴的直线
04
2.典型环节的Bode图
始于点(ωT ,0), 斜率-20dB/dec的直线
(4)惯性环节
令:
故:
对数幅频特性:
低频段(ω<<ωT)源自 20lgG(j)20lgT-20lgT=0dB
02
补充必要的几点,根据G(j)、G(j)和Re[G(j)]、Im[G(j)]的变化趋势以及G(j)所处的象限,作出Nyquist曲线的大致图形。
03
2.绘制Nyquist图的一般方法
例1 系统的传递函数
解 系统的频率特性
0
幅频:
相频:G(j) = -90o-arctgT
实频:
虚频:
积分环节改变了起始点(低频段)
根据上述特点,可以直接绘制系统的对数幅频特性
Bode图的绘制
步骤如下
写出开环频率特性表达式,将所含各因子的转折频率由大到小依次标在频率轴上
频率特性理解
频率特性的基本概念大中小在稳定的线性系统(或线性环节)的输入端作用一个正弦信号,当系统相对稳定后,系统的稳态输出也必定是一个同频率的正弦信号。
稳态输出与输入的振幅比值以及它们之间的相位差取决于系统本身的结构和输入信号的频率。
这种现象在如图5-1所示的强迫振动实验中可以观察得到。
(图5-1)图中的系统为稳定的线性定常系统。
当输入信号R为时,输出C在稳态时也为正弦信号两者的频率相同,但振幅和相位角不同。
当输入信号的频率改变时,输出信号的振幅和相位角会发生变化。
一、频率特性的数学本质以上介绍的是频率响应特性(简称频率特性)的实验现象,下面我们将证明频率特性和传递函数之间的数学关系,以便可以很方便地由系统传递函数得到频率特性,反之也能够由频率特性得到传递函数。
输出的拉普拉斯变换式为设输入R(t)为正弦函数,表示为由拉普拉斯变换表查得故部分分式中及B、D均为待定系数。
对于一个稳定的系统,由于特征方程的所有特征根均具有负实数部分,的第一个分量总是随着t的增长逐渐消失,系统最终将以作稳态运动。
上式恰恰是我们需要求解的,其中系数由上式得到同理将系数B、D代入,则式中Im为G(jω)的虚部,Re为G(jω)的实部。
而输出端响应的振幅和输入端的振荡之比为输出端响应和输入端的相位差为由此可见,作用有正弦输入时的稳定线性定常系统,输出响应具有与输入同一频率的正弦稳定信号。
但是输出的振幅和相位角通常不等于输入量的振幅和相角,输出响应的振幅是输入量的倍,输出响应和输入量相位差为。
因此,系统的频率特性可以直接由G(jω)表示,系统的频率特性为式中是ω的函数,称为幅频特性,也是频率特性的模;是ω的函数,称为相频特性。
在上述数学推导中,我们可以清楚地看到所以,在已知系统或环节的传递函数时,只要令,就可以很方便地得到系统或环节的频率特性。
为了进一步说明频率特性的意义,现以图5-2所示的R-C电路为例。
图5-2频率特性可通过传递函数来求取,当电容两端电压uc为输出量,输入电压ui为输入量时,传递函数可用复阻抗串联的知识求取式中 T=RC频率特性只要将S以jω代替,频率特性为幅频特性(模)为相频特性(幅角)为当ui以低频信号输入时();这表明,当输入正弦电压ui的频率很低,则输出电压uc的振幅与的振幅几乎相等,相位近似同相。
自动控制系统—— 第5章-1 频率特性及其表示法
7
(1)输入为 ui (t) sin t 相对输入,输出有相位差,幅度不同
8
(2)输入为 ui (t) sin 2t 输出有相位差,峰值衰减,输入峰值不变
9
(3)输入为 ui (t) sin 3t 输出有相位差,初始段峰值衰减,之后峰值稳定
2
引言
频域分析法:应用频率特性研究线性系统的经典 方法称为频域分析法 引入频域模型:频率特性函数
线性定常系统的数学模型: 时域模型: 常微分方程
复数域模型: 传递函数 频域模型: 频率特性函数
3
频域分析的内容: 1.频率特性及其表示:幅相曲线,Bode图 2.典型环节的频率特性:一阶环节,二阶环节 3.Nyquist稳定判据:基于幅相曲线、Bode图 4.稳定裕度:幅值稳定裕度,相位稳定裕度 5.频域指标:带宽、谐振频率、谐振峰值等
cs (t) Kce jt K ce jt
K c 和 K c 可以由留数计算得到
Kc
G(s)
(s
A j)(s
j)
(s
j)
s j
G( j)A
2j
Kc
G(s)
(s
A j)(s
j)
(s
j)
s j
G( j)A
2j
22
由于 G( j) A()e j()
G( j) 与 G( j) 是共轭的
所以 G( j) A()e j()
Kc
G( j,) A
2j
A 2j
A()e j()
Kc
G( j)A
2j
A 2j
A()e
j ( )
代入 cs (t) Kce jt K ce jt
系统的频率特性分析(第二讲)
-45°
-90° 111
20T 10T 5T
112 2T T T
5 10 20 TTT
一阶惯性环节伯德图
一阶微分环节的Bode图与惯性环节的Bode图关于 横轴对称。
二阶微分环节的频率特性
③ 二阶微分环节: G(s) 2s2 2 s 1
幅频和相频特性为:
A
(1 22 )2 (2 )2 ,() arctan 2 1 22
常数T变化时,对数幅频特性和对数相频特性的形状都不变,
仅仅是根据转折频率1/T的大小整条曲线向左或向右平移即可。
而当增益改变时,相频特性不变,幅频特性上下平移。
G(s) 5 s 1
当增益 改变时, 相频特 性不变, 幅频特 性上下 平移。
Matlab 绘制的惯性环节的Bode图
4
振荡环节(要重视)G(s)
0.7 0.8 1.0
5
10
T
T
-30°
-60°
0.1
-90° 0.2
0.3
-120° 0.5
-150° 0.7
1.0
-180°
1
1
10T 5T
1
1
2
2T
T
T
左图是不同阻尼系数情况下 的对数幅频特性和对数相频 特性图。上图是不同阻尼系 数情况下的对数幅频特性实 5 10 际曲线与渐近线之间的误差 T T 曲线。
1
0.086 0.34 1.29 2.76 4.30 6.20 4.30 2.76 1.29 0.34 0.086
K 10,T 1, 0.3
G(
j )
s2
10 0.6s
1
o
1 T
40dB/ Dec
频率特性分析方法
(2)放大环节
Im
G(s) K G( j) K
φ
方法② 直接用频率特性测试仪测取,直接在X-Y 记录仪上显示 x jy或者 B e j 。
A
例1:某系统的传递函数为G:(s)
2(s s2
2)
当输入信号为:r(t) sin(t 1000 )
求出它的稳态输出响应。
解:
G(
j
2( j j )2
如何求模和相角?
G( j
tg1 1800
sin e j e j
2j
t 2
r=Asinωt
K Ts 1
Yss
KA
1 T 2 2
sin(
t
2 )
稳态输出仍是一个正弦信号,输出幅值和相位发生 了变化,角频率ω没变。
稳态输出与输入 r Asint 比较可得:
幅值比 B
K
A 1 T 22
相位差 2 arctg(T )
2
KU 2 U2 V 2
整理:U 2
V
2
KU
经配方,
即:
U
K 2
2
U V 2
K 2
2
圆的方程。圆心 (K/2, j0),半径K/2。
G( j 与G( j 为共轭复数。
当ω: -∞→+∞,得到完整的频率特性。 顺时针方向是频率特性变化的方向,即ω增加的方向。
Im
K Re
G( j) 为频率特性,是一复数,模 K 为系统的幅
1 T 22
值比
B ,其相角 A
2 为系统的相位差。
推广到一般的情况,对于任何线性定常系统,只 要将传递函数中的变量s用jω代替,便得到了系统的 频率特性。
§52频率特性的几种表示方法
A( ) ( )
P ( )
0
G( s)
s 1 s2 s 1
由于 | G( j ) |是偶函数, 所以当 从 0 和 0 变化时,奈魁 斯特曲线对称于实轴。
3
Tuesday, November 20, 2018
二、对数频率特性曲线(又称波德图) 它由两条曲线组成:幅频特性曲线和相频特性曲线。
第二节 频率特性的几种表示方法
Tuesday, November 20, 2018
1
频率特性可以写成复数形式: G( j ) P( ) jQ( ) ,也可 以写成指数形式:G( j ) | G( j ) | G( j )。其中,P ( ) 为实 频特性, Q ( ) 为虚频特性; | G ( j ) |为幅频特性, G ( j ) 为相频 特性。 在控制工程中,频率分析法常常是用图解法进行分析和设 计的,因此有必要介绍常用的频率特性的三种图解表示。 极坐标频率特性曲线(又称奈魁斯特曲线) 对数频率特性曲线(又称波德图) 对数幅相特性曲线(又称尼柯尔斯图)
Tuesday, November 20, 2018
2
一、极坐标频率特性曲线(又称奈魁斯特曲线)
它是在复平面上用一条曲线表示 由 0 时的频率特性。 即用矢量 G ( j ) 的端点轨迹形成的图形。 是参变量。在曲线 的上的任意一点可以确定实频、虚频、幅频和相频特性。 根据上面的说明,可知: 频率特性曲线是S平面 Q ( ) 上变量s沿正虚轴变化 时在G(s)平面上的映射。
ቤተ መጻሕፍቲ ባይዱ
幅值 1
A( )
1.26
2
1.56
4
2.00
6
2.51
8
频率特性的几种表示方法
在控制工程中,频率分析法常常是用图解法进行分析和设 计的,因此有必要介绍常用的频率特性的三种图解表示。
极坐标频率特性曲线(又称奈魁斯特曲线) 对数频率特性曲线(又称波德图) 对数幅相特性曲线(又称尼柯尔斯图)
Monday, August 05, 2019
2
一、极坐标频率特性曲线(又称奈魁斯特曲线)
Monday, August 05, 2019
6
第二节 频率特性的几种表示方法
Monday, August 05, 2019
1
频率特性可以写成复数形式:G( j) P() jQ() ,也可 以写成指数形式:G( j) | G( j) | G( j)。其中,P() 为实 频特性,Q()为虚频特性;| G( j) |为幅频特性,G( j) 为相频
Monday, August 05, 2019
4
纵坐标分度:幅频特性曲线的纵坐标是以log A()或20log A() 表示。其单位分别为贝尔(Bl)和分贝(dB)。直接将log A() 或 20log A() 值标注在纵坐标上。
相频特性曲线的纵坐标以度或弧度为单位进行线性分度。
一般将幅频特性和相频特性画在一张图上,使用同一个横 坐标(频率轴)。
0 由于 | G( j) |是偶函数, 所以当 从 0 和 0变化时,奈 魁斯特曲线对称于实 轴。
Monday, August 05, 2019
3
二、对数频率特性曲线(又称波德图)
它由两条曲线组成:幅频特性曲线和相频特性曲线。
波德图坐标(横坐标是频率,纵坐标是幅值和相角)的分度:
横坐标分度:它是以频率 的对数值 log 进行分度的。所 以横坐标(称为频率轴)上每一线性单位表示频率的十倍变化, 称为十倍频程(或十倍频),用Dec表示。如下图所示:
频率特性的基本概念
•表1-1 RC网络的幅频特性和相频0.707 0.45 0.196 0
() 0
45 63.4 78.69 90
图1-2 RC网络的幅频和相频特性 图1-3 RC网络频率特性的幅相曲线
对数频率特性图又称伯德图(Bode图),包括对数幅频特性 和对数相频特性两条曲线,其中,幅频特性曲线可以表示 一个线性系统或环节对不同频率正弦输入信号的稳态增益; 而相频特性曲线则可以表示一个线性系统或环节对不同频 率正弦输入信号的相位差。对数频率特性图通常绘制在半 对数坐标纸上,也称单对数坐标纸。
(3)利用对数运算可以将幅值的乘除运算化为加减运算, 并可以用简便的方法绘制近似的对数频率幅相特性,从而 大大简化系统频率特性的绘制过程。
自动控制原理
来求取。 (3)通过实验所测数据,进行分析求取。
G( j) G(s) s j
1.2频率特性的图形表示方法
频率特性函数最常用的两种图形表示 方法,分别为极坐标图和对数频率特 性图。
极坐标图,又称奈奎斯特图、幅相频 率特性图,其特点是将频率 作为参 变量。
当正弦信号的频率 由0 变化时, 系统频率特性向量的幅值和相位也随 之作相应的变化,其端点在复平面上 移动而形成的轨迹曲线称为幅相曲线, 其中曲线上的箭头表示频率增大的方 向。
自动控制原理
频率特性的基本概念
1.1频率特性的定义 频率特性反映了系统的频率响应与正弦
输入信号之间的关系。
图1-1 RC网络
控制系统频率特性的求解方法具有如下三种途径: (1)根据已知的系统方程,输入正弦函数求出其稳态解, 而后求解输出稳态分量和输入正弦信号的复数比。 (2)根椐系统传递函数,利用表达式
对数幅频特性图是表示环节的对数幅值 L() 20lg A()和频率 的关系曲线。
自动控制原理1第一节频率特性的基本概念
j ) j)
s j
RmG( j )
2j
Wednesday, January 31, 2024
5
而 G( j ) G(s) |s j | G( j ) | e jG( j ) A( )e j ()
G( j ) G(s) |s j | G( j ) | e jG( j ) A( )e j ( )
A() P2 () Q2 ()
() tg 1 Q() P( )
频率特性与传递函数的关系为:
G( j ) G(s) |s j
由于这种简单关系的存在,频率响应法和利用传递函数的时域 法在数学上是等价的。
Wednesday, January 31, 2024
8
[结论]:当传递函数中的复变量s用 j代替时,传递函数就转n为极点。
若: r(t)
Rm sint,则R(s)
Rm s2 2
(s
Rm j)(s
j )
则:C(s)
N (s)R(s)
N (s)
Rm
(s p1)(s p2 )...(s pn ) (s p1)(s p2 )...(s pn ) (s j )(s j )
G( j) P() jQ() 这里 P() Re[G( j)] 和 Q() Im[G( j)] 分别称为系统的实
频特性和虚频特性。
Wednesday, January 31, 2024
7
幅频特性、相频特性和实频特性、虚频特性之间具有下列
关系:
P() A() cos()
Q() A() sin()
11
频率响应法的优点之一在于它可以通过实验量测来获得, 而不必推导系统的传递函数。
事实上,当传递函数的解析式难以用推导方法求得时,常 用的方法是利用对该系统频率特性测试曲线的拟合来得出传递 函数模型。
4.2.1 常用于描述频率特性的几种曲线
G1 ( jw)G2 ( jw) G1 ( jw) e j1 (w ) . G2 ( jw) e j2 (w ) G1 G2 e j1 2
20lg G1G2 20lg G1 20lg G2
几个频率特性相乘,对数幅、相曲线相加
G1G2 1 2
两个频率特性互为倒数,幅、相特性反号,关于轴对称
线 性 分 度
L( w)
40 20
dB
w
0.1 1 10 100
w 2f
rad / s (弧度/秒)
线 性 分 度
( w )
900
度
w
0.1 1 10 100
rad / s (弧度/秒)
-900
对数频率特性优点 – 展宽频率范围 – 对于不含不稳定环节的系统,可由对数频率特性得到系 统的传函。 – 典型环节可用直线或折线近似表示
• 幅频特性是w 的偶函数 • 相频特性是w 的奇函数
w : 0 的曲线和w : 0的曲线关于实轴对称
• 性能分析(尤其是稳定性)时不需要绘制精确 的幅相特性曲线,只需绘制大致形状即可
对数分度:
lg 2 0.301
lg 5 0.699
lg 7 0.845
lg 8 3 lg 2 0.903
4.2. 典型环节频率特性
4.2.1 常用于描述频率特性的几种曲线
• 幅相频率特性曲线简称幅相曲线,又称极坐标图。在复平面 上,以角频率 w为自变量,把频率特性的幅频特性 ——模和 相频特性 ——相角同时在复平面上表示出来的图就是幅相曲 线。
• 开环对数频率特性图(对数坐标图或Bode图) 包括 开环对数幅频曲线 和 开环对数相频曲线 横坐标为w,以对数分度, 十倍频程,单位是rad/s 频率w每扩大10倍,横轴上变化一个单位长度。因此,对 于w坐标分度不均匀,对于lgw 则是均匀的。
第四章系统的频率特性分析
第四章系统的频率特性分析第四章系统的频率特性分析时间响应分析:主要用于分析线性系统的过渡过程,以时间t为独立变量,通过阶跃或脉冲输入作用下系统的瞬态时间响应来研究系统的性能;依据的数学模型为G(s)频率特性分析:以频率ω为独立变量,通过分析不同的谐波输入时系统的稳态响应来研究系统的性能;依据的数学模型为G(jω)频域分析的基本思想:把系统输入看成由许多不同频率的正弦信号组成,输出就是系统对不同频率信号响应的总和。
4.1频率特性概述1.频率响应与频率特性(1)频率响应:线性定常系统对谐波输入的稳态响应。
(frequencyresponse)对稳定的线性定常系统输入一谐波信号xi(t)=Xisin?t稳态输出(频率响应):xo(t)=Xo(?)sin[ωt+?(ω)]【例】设系统的传递函数为输入谐波信号xi(t)=Xisin?t 则稳态输出(频率响应)与输入信号的幅值成正比与输入同频率,相位不同进行laplace逆变换,整理得同频率?幅值比A(?)相位差?(?)ω的非线性函数(揭示了系统的频率响应特性)输入:xi(t)=Xisinωt稳态输出(频率响应):xo(t)=XiA(?)sin[ωt+?(ω)]幅频特性:稳态输出与输入谐波的幅值比相频特性:稳态输出与输入谐波的相位差?(?)[s]A(?)?(?)(2)频率特性:对系统频率响应特性的描述(frequencycharacteristic)频率特性定义为ω的复变函数,幅值为A(?),相位为?(?)。
输入谐波函数xi(t)=Xisin?t,其拉式变换为2.频率特性与传递函数的关系设系统的微分方程为:则系统的传递函数为:则由数学推导可得出系统的稳态响应为根据频率特性定义,幅频特性和相频特性分别为故G(j?)=?G(j?)?ej?G(j?)就是系统的频率特性如例1,系统的传递函数为所以3.频率特性的求法(1)频率响应→频率特性稳态输出(频率响应)故系统的频率特性为或表示为(2)传递函数→频率特性将传递函数G(s)中的s换成jω,得到频率特性G(jω)。
4.2.14.2频率特性的几何表示法
对数频率特性曲线——伯德图
对数相频特性曲线
1 横坐标为的对数lg 分度 2 纵坐标为()
频率每变化十倍,称为十倍频程,记作dec。
对数频率特性曲线——伯德图
对数幅频特性 横坐标表示为:ω 为方便只表示
纵坐标表示为:
L(ω )=20lgA(ω)
L(ω )=20lgA(ω ) dB
40 -20dB/dec
(3)在一张图上绘制低、中、高频段特 性,对系40dB/dec
-1
0
1 lgω
0
0.1
1
10 ω
-20 -40
十倍频程 dec
-20dB/dec
φ (ω )
单位为 dB
0
0.1
1
-90
10 ω
对数相频特性 -180
伯德图的优点
(1)对数运算,将串联环节的幅值相 乘转化为幅值相加的运算
(2)这种方法建立在渐近线的基础上, 简化了幅频特性的绘制过程
频率特性的几何表示法
频率特性法是一种图解分析法,常见的频率 特性曲线有两种:
1 幅相频率特性曲线
2 对数频率特性曲线
幅相频率特性曲线——奈奎斯特曲线(奈氏图)
特点: 以频率ω为变量,将频率特性的幅频特性A(ω)
和相频特性φ(ω)同时表示在复平面上。
Im
= 0 Re
=0
幅相频率特性曲线——奈奎斯特曲线(奈氏图)
作图方法: 取=0和=两点,必要时可在0< < 之间选取
一些特殊点,算出这些点处的幅频值和相频值,然后在 幅相平面上做出这些点,并用光滑的曲线连接起来。
Im
= 0 Re
=0
对数频率特性曲线——伯德图
4-2频率特性图形表示
1 ) 2
ξ
= −90 + arcsin
0
ξ
1−ξ 2
振荡环节的幅值特性曲线如图 所示。在 0 <ω <ωr 的范 围内,随着ω的增加, M(ω) 缓慢增大;当 ω =ωr 时, (ω)达到 M 最大值 Mr ;当 ω > ωr时,输出幅值衰减很快。 当阻尼比 ξ >1 时,此 时振荡环节可等效成两个 不同时间常数的惯性环节 的串联, 即
2
Tω = v(ω) 2 2 1+T ω
则有
1 2 u(ω) − + [v(ω)] 2 1 1 −Tω 1 = − + = 2 2 2 2 2 1+T ω 1+T ω 2
2 2 2
这是一个标准圆方程,其圆心坐标是 2 ,0 ,半径为 。且 2 当ω由 0 →∞时,∠G( jω) 由 0° → −90° ,说明惯性环节的频率特 性在 [G( jω)] 平面上是实轴下方半个圆周,如图所示。惯性环 节是一个低通滤波环节 相位滞后环节 低通滤波环节和相位滞后环节 低通滤波环节 相位滞后环节。在低频范围内,对 输入信号的幅值衰减较小,滞后相移也小,在高频范围内, 幅值衰减较大,滞后相角也大,最大滞后相角为90゜ 。
K 即 G(s) = 2 2 ,其对应频率特性 G( jω) 的起点 为 T s + 2ξTs +1
G( j0) = K, ∠G( j0) = 00
(ω = 0)
(五) 一阶微分环节 典型一阶微分环节的传函数为
G(s) = τs +1
其中τ为微分时间常数、1为比例项因子,由于实际的物理系 理想微分环节或纯微分环节(即不含比例项)是不存在的, 统中理想微分环节或纯微分环节 理想微分环节或纯微分环节 因此用比例微分环节作为一阶微分环节的典型形式。
频率特性的基本概念
式中,kc1, kc2 分别为:
kc1
C(s)(s
j )
|s j
G(s) Rm(s (s j)(s
j ) j)
s j
RmG( 2j
j )
kc2
C(s)(s
j )
|s j
G(s) Rm(s (s j)(s
j ) j)
s j
RmG( j )
频率特性的基本概念
考察一个系统的好坏,通常用阶跃输入下系统的阶跃响应 来分析系统的动态性能和稳态性能。
有时也用正弦波输入时系统的响应来分析,但这种响应并 不是单看某一个频率正弦波输入时的瞬态响应,而是考察频率 由低到高无数个正弦波输入下所对应的每个输出的稳态响应。 因此,这种响应也叫频率响应。
频率响应尽管不如阶跃响应那样直观,但同样间接地表示 了系统的特性。频率响应法是分析和设计系统的一个既方便又 有效的工具。
2j
而 G( j ) G(s) |s j | G( j ) | e jG( j ) A( )e j ()
G( j ) G(s) |s j | G( j ) | e jG( j ) A( )e j ( )
kc1
Rm 2j
A( )e j ( ) , kc2
Rm 2j
A( )e j ( )
cs (t)
G( j ) G(s) |s j
由传递函数还是可以得到其频率特性。
定义稳态响应与正弦输入信号的相位差() G( j) 为系统
的相频特性,它描述系统的稳态响应对不同频率输入信号的相
位移特性;
幅频特性和相频特性可在复平面上构成一个完整的向量G( j),
G( j ) A( )e j() ,它也是 的函数。
自动控制原理第五章频率法
频率响应的分析方法
频域分析法
通过求解系统的传递函数,得到系统的频率响应曲线,进而分析 系统的动态性能。
时域分析法
通过求解系统的微分方程,得到系统的时域响应,进而分析系统 的动态性能。
根轨迹法
通过绘制系统的极点轨迹图,分析系统的稳定性,并得到系统的 频率响应特性。
03
频率响应的特性
稳定性分析
判断系统稳定性的依据
频率响应是指控制系统对不 同频率输入信号的输出响应 特性。
频率响应的测量方法
通过测量控制系统在不同频 率下的输出信号,可以得到 系统的频率响应特性。
频率响应的分析
通过对频率响应的分析,可 以了解系统的动态特性和稳 定性。
控制系统中的稳定性分析
稳定性定义
如果一个系统受到扰动 后能够回到原来的平衡 状态,则称该系统是稳 定的。
频率特性的表示方法
极坐标图
01
通过极坐标图表示频率特性的幅度和相位角。
Bode图
02
通过Bode图表示频率特性的对数幅度和相位角随频率的变化关
系。
Nyquist图
03
通过Nyquist图表示频率特性的极点和零点随频率的变化关系。
02
频率响应分析
频率响应的定义
01
频率响应是指在稳态下,线性定常系统对不同频率的正弦输 入的稳态输出。
频率响应的极点和零点位置。
稳定裕度
衡量系统稳定性的指标,包括相位裕度和幅值 裕度。
稳定判据
基于频率响应的极点和零点位置,判断系统是否稳定的准则。
动态特性分析
动态响应过程
系统受到正弦波输入信号后,频率响应随时 间变化的过程。
动态性能指标
衡量系统动态响应性能的指标,如超调和调 节时间、峰值时间等。
频率特性的基本概念
[结论]:当传递函数中的复变量s用 代替时,传递函数就转变 为频率特性。反之亦然。
线性系统的频域分析法>>线性系统的频域特性
到目前为止,我们已学习过的线性系统的数学模型有以下
几种:微分方程、传递函数、脉冲响应函数和频率特性。它们
此外,在验证推导出的传递函数的正确性时,也往往用它 所对应的频率特性同测试结果相比较来判断。
频率响应法的优点之二在于它可以用图来表示,这在控制 系统的分析和设计中有非常重要的作用。
由实验方法求频率特性
正弦信号 发生器
实验装置 (系统或元件)
双踪 示波器
图 求频率特性的实验方法
系统的幅频特性: | G( j) | Y
频率响应尽管不如阶跃响应那样直观,但同样间接地表示 了系统的特性。频率响应法是分析和设计系统的一个既方便又 有效t;线性系统的频域特性
频率特性的定义:
系统的频率响应定义为系统在正弦作用下稳态响应的振幅、 相位与所加正弦作用的频率之间的依赖关系。
对于一般的线性定常系统,系统的输入和输出分别为r(t)和 c(t),系统的传递函数为G(s)。
G(s) C(s)
N (s)
R(s) (s p1)( s p2 )...( s pn )
式中, p j , j 1,2,..., n为极点。
线性系若统:的r频(域t)分析R法m s>i>n线性t,系则统R的(频s)域特s性2Rm 2
(s
Rm j)(s
j )
则:C(s)
N (s)R(s)
若系统稳定,则极点都在s左半平面。当 t ,即稳态时:
e p1t 0, e p2t 0,..., e pnt 0
频率特性的几种表示方法
Monday, July 06, 2020
1
频率特性可以写成复数形式:G( j) P() jQ() ,也可 以写成指数形式:G( j) | G( j) | G( j)。其中,P() 为实 频特性,Q()为虚频特性;| G( j) |为幅频特性,G( j) 为相频
特性。
Q( )
A( ) ( )
P( )
G(s)
s2
s 1 s 1
根据上面的说明,可知: 频率特性曲线是S平面 上变量s沿正虚轴变化 时在G(s)平面上的映射。
0 由于 | G( j) |是偶函数, 所以当 从 0 和0 变化时,乃奎 斯特曲线对称于实轴。
Monday, July 06, 2020
相频特性曲线的纵坐标以度或弧度为单位进行线性分度。
一般将幅频特性和相频特性画在一张图上,使用同一个横 坐标(频率轴)。
当幅频特性值用分贝值表示时,通常将它称为增益。幅值 和增益的关系为:增益 20 log(幅值)
幅值 1
A( )
增益 0
1.26 1.56 2.00 2.51 3.16 5.62 10.0 2 4 6 8 10 15 20
4
二、对数频率特性曲线(又称波德图)
它由两条曲线组成:幅频特性曲线和相频特性曲线。
波德图坐标(横坐标是频率,纵坐标是幅值和相角)的分度:
横坐标分度:它是以频率 的对数值 log 进行分度的。所 以横坐标(称为频率轴)上每一线性单位表示频率的十倍变化, 称为十倍频程(或十倍频),用Dec表示。如下图所示:
Dec Dec Dec Dec
... 2 1
0 0.01 0.1
01
2
1 10 100
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Saturday, November 17, 2018
2
一、极坐标频率特性曲线(又称奈魁斯特曲线)
它是在复平面上用一条曲线表示 由 0 时的频率特性。 即用矢量 G ( j ) 的端点轨迹形成的图形。 是参变量。在曲线 的上的任意一点可以确定实频、虚频、幅频和相频特性。 根据上面的说明,可知: 频率特性曲线是S平面 Q ( ) 上变量s沿正虚轴变化 时在G(s)平面上的映射。
波德图坐标(横坐标是频率,纵坐标是幅值和相角)的分度:
横坐标分度:它是以频率 的对数值 log 进行分度的。所 以横坐标(称为频率轴)上每一线性单位表示频率的十倍变化, 称为十倍频程(或十倍频),用Dec表示。如下图所示:
Dec Dec Dec Dec
...
0
2
1
0.01
0 .1
0 1
1
10
2 100
log
以对数分度,所以零频率线在 处。 由于
Saturday, November 17, 2018 4
纵坐标分度:幅频特性曲线的纵坐标是以log A( )或20log A( ) 表示。其单位分别为贝尔(Bl)和分贝(dB)。直接将log A( ) 或 20log A( ) 值标注在纵坐标上。 相频特性曲线的纵坐标以度或弧度为单位进行线性分度。 一般将幅频特性和相频特性画在一张图上,使用同一个横 坐标(频率轴)。 当幅制特性值用分贝值表示时,通常将它称为增益。幅值 和增益的关系为:增益 20log(幅值)
第二节 频率特性的几种表示方法
Saturday, November 17, 2018
1
频率特性可以写成复数形式: G( j ) P( ) jQ( ) ,也可 以写成指数形式:G( j ) | G( j ) | G( j )。其中,P ( ) 为实 频特性, Q ( ) 为虚频特性; | G ( j ) |为幅频特性, G ( j ) 为相频 特性。 在控制工程中,频率分析法常常是用图解法进行分析和设 计的,因此有必要介绍常用的频率特性的三种图解表示。 极坐标频率特性曲线(又称奈魁斯特曲线) 对数频率特性曲线(又称波德图) 对数幅相特性曲线(又称尼柯尔斯图)
A( ) ( )
P ( )
0
G( s)
s 1 s2 s 1
由于 | G( j ) |是偶函数, 所以当 从 0 和 0 变化时,奈魁 斯特曲线对称于实轴。
3
Saturday, November 17, 2018
二、对数频率特性曲线(又称波德图) 它由两条曲线组成:幅频特性曲线和相频特性曲线。
幅值 1
A( )
1.26
2
1.56
4
2.00
6
262
15
10.0
20
增益 0
Saturday, November 17, 2018
5
使用对数坐标图的优点: 可以展宽频带;频率是以10倍频表示的,因此可以清楚的 表示出低频、中频和高频段的幅频和相频特性。 可以将乘法运算转化为加法运算。 所有的典型环节的频率特性都可以用分段直线(渐进线) 近似表示。 对实验所得的频率特性用对数坐标表示,并用分段直线近 似的方法,可以很容易的写出它的频率特性表达式。 三、 对数幅相特性曲线(又称尼柯尔斯图) 尼柯尔斯图是将对数幅频特性和相频特性两条曲线合并成 一条曲线。横坐标为相角特性,单位度或弧度。纵坐标为对数 幅频特性,单位分贝。横、纵坐标都是线性分度。