2017届函数的奇偶性、周期性--学生版.docx
高中数学基础之函数的奇偶性与周期性
![高中数学基础之函数的奇偶性与周期性](https://img.taocdn.com/s3/m/ae4f4824001ca300a6c30c22590102020740f29b.png)
高中数学基础之函数的奇偶性与周期性函数的奇偶性:一般地,设函数f(x)的定义域为I,如果∀x∈I,都有-x∈I,且f(-x)=f(x),那么函数f(x)就叫做偶函数.一般地,设函数f(x)的定义域为I,如果∀x∈I,都有-x∈I,且f(-x)=-f(x),那么函数f(x)就叫做奇函数.(偶函数的图象特点:关于y轴对称;奇函数的图象特点:关于原点中心对称.)函数的周期性:一般地,对于函数f(x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有□01f(x+T)=f(x),那么函数f(x)就叫做周期函数,非零常数T叫做这个函数的周期.函数周期性常用结论对f(x)定义域内任一自变量x:①若f(x+a)=-f(x),则T=2a(a≠0).,则T=2a(a≠0).②若f(x+a)=1f(x),则T=2a(a≠0).③若f(x+a)=-1f(x)④若f(x+a)+f(x)=c,则T=2a(a≠0,c为常数).函数图象的对称性①若函数y=f(x+a)是偶函数,即f(a-x)=f(a+x),则函数y=f(x)的图象关于直线x=a 对称.②若对于R上的任意x都有f(2a-x)=f(x)或f(-x)=f(2a+x),则y=f(x)的图象关于直线x=a对称.③若函数y=f(x+b)是奇函数,即f(-x+b)+f(x+b)=0,则函数y=f(x)的图象关于点(b,0)中心对称.④若对于R上的任意x都有f(2b-x)+f(x)=0,则函数y=f(x)的图象关于点(b,0)中心对称.利用函数奇偶性可以解决的问题(1)求函数值:将待求值利用奇偶性转化为求已知解析式的区间上的函数值.(2)求解析式:将待求区间上的自变量转化到已知解析式的区间上,再利用奇偶性的定义求出.(3)求解析式中的参数:利用待定系数法求解,根据f (x )±f (-x )=0得到关于参数的恒等式,由系数的对等性得方程(组),进而得出参数的值.(4)画函数图象:利用函数的奇偶性可画出函数在其关于原点对称区间上的图象. (5)求特殊值:利用奇函数的最大值与最小值之和为零可求一些特殊结构的函数值. 例1 已知定义在R 上的奇函数f (x )满足f (x +2)=-f (x ),当0≤x ≤1时,f (x )=x 2,则f (2023)=( )A .20232B .1C .0D .-1 答案 D解析 因为f (x +2)=-f (x ),所以f (x +4)=f (x ),所以函数f (x )的周期为4,因为f (x )为R 上的奇函数,且当0≤x ≤1时,f (x )=x 2,所以f (2023)=f (506×4-1)=f (-1)=-f (1)=-1.故选D.例2 已知函数f (x )的定义域为R ,f (x +1)为奇函数,f (x +2)为偶函数,当x ∈(1,2)时,f (x )=-3x 2+2,则f ⎝ ⎛⎭⎪⎫143=( )A .-103 B .103 C .-23 D .23答案 B解析 ∵f (x +1)为奇函数,∴f (x +1)=-f (-x +1),∵f (x +2)为偶函数,∴f (x +2)=f (-x +2),∴f ((x +1)+1)=-f (-(x +1)+1)=-f (-x ),即f (x +2)=-f (-x ),∴f (-x +2)=f (x +2)=-f (-x ).令t =-x ,则f (t +2)=-f (t ),∴f (t +4)=-f (t +2)=f (t ),∴f (x +4)=f (x ).故函数f (x )的周期为4.∴f ⎝ ⎛⎭⎪⎫143=f ⎝ ⎛⎭⎪⎫23=-f ⎝ ⎛⎭⎪⎫43=103.故选B.例3 定义在R 上的函数f (x )满足f (x +2)=f (x ),当x ∈[3,5]时,f (x )=1-|x -4|,则下列不等式成立的是( )A .f ⎝ ⎛⎭⎪⎫sin π3>f ⎝ ⎛⎭⎪⎫cos π3 B .f (sin 1)>f (cos 1)C .f ⎝ ⎛⎭⎪⎫cos 2π3>f ⎝ ⎛⎭⎪⎫sin 2π3 D .f (sin 2)>f (cos 2)答案 C解析 ∵当x ∈[3,5]时,f (x )=1-|x -4|,f (x +2)=f (x ),∴当x ∈[-1,1]时,f (x )=f (x+2)=f (x +4)=1-|x |,当x ∈[0,1]时,f (x )=1-x ,∴函数f (x )在[0,1]上为减函数,又0<cos π3<sin π3<1,∴f ⎝ ⎛⎭⎪⎫sin π3<f ⎝ ⎛⎭⎪⎫cos π3,A 错误;0<cos 1<sin 1<1,∴f (sin 1)<f (cos 1),B 错误;f ⎝ ⎛⎭⎪⎫cos 2π3=f ⎝ ⎛⎭⎪⎫-12=12,f ⎝ ⎛⎭⎪⎫sin 2π3=f ⎝ ⎛⎭⎪⎫32=2-32,∴f ⎝ ⎛⎭⎪⎫cos 2π3>f ⎝ ⎛⎭⎪⎫sin 2π3,C 正确;f (sin 2)=1-sin 2,f (cos 2)=1-|cos 2|=1+cos 2,又sin 2π3<sin 2<1,cos 2π3<cos 2<0,∴0<1-sin 2<1-32,12<1+cos 2<1,∴f (sin 2)<f (cos 2),D 错误.故选C.例4 已知f (x )是定义在R 上的函数,且满足f (x +2)=-1f (x ),当2≤x ≤3时,f (x )=x ,则f ⎝ ⎛⎭⎪⎫-112=________.答案 52解析 因为f (x +2)=-1f (x ),所以f (x +4)=f (x ),所以f ⎝ ⎛⎭⎪⎫-112=f ⎝ ⎛⎭⎪⎫52,又2≤x ≤3时,f (x )=x ,所以f ⎝ ⎛⎭⎪⎫52=52,所以f ⎝ ⎛⎭⎪⎫-112=52. 例5 已知定义域为R 的函数f (x )在区间(-∞,5]上单调递减,对任意实数t ,都有f (5+t )=f (5-t ),那么下列式子一定成立的是( )A .f (-1)<f (9)<f (13)B .f (13)<f (9)<f (-1)C .f (9)<f (-1)<f (13)D .f (13)<f (-1)<f (9) 答案 C解析 ∵f (5+t )=f (5-t ),∴函数f (x )的图象关于直线x =5对称,∴f (-1)=f (11),∵函数f (x )在区间(-∞,5]上单调递减,∴f (x )在(5,+∞)上单调递增.∴f (9)<f (11)<f (13),即f (9)<f (-1)<f (13).例6 已知函数f (x )(x ∈R )满足f (-x )=2-f (x ),若函数y =x +1x 与y =f (x )图象的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则∑mi =1(x i +y i )=( )A .0B .mC .2mD .4m答案 B解析 由f (-x )=2-f (x )得f (x )的图象关于(0,1)对称,而y =x +1x =1+1x 也关于(0,1)对称,∴对于每一组对称点,x i +x i ′=0,y i +y i ′=2,∴∑mi =1 (x i +y i )=∑mi =1x i +∑mi =1y i =0+2×m2=m .例7 已知函数f (x )=⎩⎨⎧log a x ,x >0,|x +3|,-4≤x <0(a >0且a ≠1).若函数f (x )的图象上有且只有两个点关于原点对称,则实数a 的取值范围是( )A .⎝ ⎛⎭⎪⎫0,14B .⎝ ⎛⎭⎪⎫0,14∪(1,+∞)C .⎝ ⎛⎭⎪⎫14,1∪(1,+∞)D .(0,1)∪(1,4) 答案 C解析 当-4≤x <0时,函数y =|x +3|关于原点对称的函数为-y =|-x +3|,即y =-|x -3|(0<x ≤4),因为函数f (x )的图象上有且只有两个点关于原点对称,则等价为函数f (x )=log a x (x >0)与y =-|x -3|(0<x ≤4)的图象只有一个交点,作出两个函数的图象如图所示,若a >1,则f (x )=log a x (x >0)与y =-|x -3|(0<x ≤4)的图象只有一个交点,满足条件,当x =4时,y =-|4-3|=-1,若0<a <1,要使两个函数图象只有一个交点,则满足f (4)<-1,即log a 4<-1,得14<a <1.综上可得,实数a 的取值范围是⎝ ⎛⎭⎪⎫14,1∪(1,+∞).故选C.例8 已知函数g (x )的图象与f (x )=x 2-mx 的图象关于点(-1,2)对称,且g (x )的图象与直线y =-4x -4相切,则实数m =( )A .2B .-4C .4D .-1 答案 C解析 设(x ,y )是函数g (x )的图象上任意一点,则其关于(-1,2)对称的点为(-2-x ,4-y ),因此点(-2-x ,4-y )在f (x )的图象上,所以4-y =(-2-x )2-m (-2-x ),整理得y =-x 2-mx -4x -2m ,即g (x )=-x 2-mx -4x -2m ,又g (x )的图象与直线y =-4x -4相切,所以方程-x 2-mx -4x -2m =-4x -4,即x 2+mx +2m -4=0有两个相等的实数根,则m 2-4(2m -4)=0,可得m =4.故选C.例9 定义在R 上的函数f (x )满足f (2-x )=f (x ),且当x ≥1时,f (x )=⎩⎨⎧-x +3,1≤x <4,1-log 2x ,x ≥4,若对任意的x ∈[t ,t +1],不等式f (2-x )≤f (x +1+t )恒成立,则实数t 的最大值为( )A .-1B .-23 C .-13 D .13 答案 C解析 ∵f (2-x )=f (x ),∴函数f (x )的图象关于直线x =1对称,∵当x ≥1时,f (x )=⎩⎨⎧-x +3,1≤x <4,1-log 2x ,x ≥4,当1≤x <4时,f (x )=3-x 为减函数,且f (x )∈(-1,2];当x ≥4时,f (x )=1-log 2x 为减函数,且f (x )∈(-∞,-1],∴f (x )在[1,+∞)上是减函数,在(-∞,1]上是增函数.若不等式f (2-x )≤f (x +1+t )对任意x ∈[t ,t +1]恒成立,由对称性可得|2-x -1|≥|x +1+t -1|对任意x ∈[t ,t +1]恒成立,即有|x -1|≥|x +t |⇔-2x +1≥2tx +t 2⇔(2t +2)x +t 2-1≤0对任意x ∈[t ,t +1]恒成立,令g (x )=(2t +2)·x +t 2-1,则⎩⎨⎧g (t )≤0,g (t +1)≤0,即⎩⎨⎧2(t +1)t +t 2-1≤0,2(t +1)(t +1)+t 2-1≤0,即⎩⎨⎧3t 2+2t -1≤0,3t 2+4t +1≤0,解得-1≤t ≤-13,∴实数t 的最大值为-13.故选C. 轴对称(1)f (a -x )=f (a +x )⇔f (x )的图象关于直线x =a 轴对称(当a =0时,恰好就是偶函数). (2)f (a -x )=f (b +x )⇔f (x )的图象关于直线x =a +b2轴对称.(3)f (x +a )是偶函数,则f (x +a )=f (-x +a ),进而可得到f (x )的图象关于直线x =a 轴对称. 中心对称(1)f (a -x )=-f (a +x )⇔f (x )的图象关于点(a ,0)中心对称(当a =0时,恰好就是奇函数). (2)f (a -x )=-f (b +x )⇔f (x )的图象关于点⎝ ⎛⎭⎪⎫a +b 2,0中心对称.(3)f (a -x )+f (b +x )=2c ⇔f (x )的图象关于点⎝ ⎛⎭⎪⎫a +b 2,c 中心对称.。
专题07 函数的性质-单调性、奇偶性、周期性 (学生版)高中数学53个题型归纳与方法技巧总结篇
![专题07 函数的性质-单调性、奇偶性、周期性 (学生版)高中数学53个题型归纳与方法技巧总结篇](https://img.taocdn.com/s3/m/7f69e68d85254b35eefdc8d376eeaeaad1f31692.png)
【考点预测】1.高中数学53个题型归纳与方法技巧总结篇专题07函数的性质——单调性、奇偶性、周期性函数的单调性(1)单调函数的定义一般地,设函数()f x 的定义域为A ,区间D A ⊆:如果对于D 内的任意两个自变量的值1x ,2x 当12x x <时,都有12()()f x f x <,那么就说()f x 在区间D 上是增函数.如果对于D 内的任意两个自变量的值1x ,2x ,当12x x <时,都有12()()f x f x <,那么就说()f x 在区间D 上是减函数.①属于定义域A 内某个区间上;②任意两个自变量1x ,2x 且12x x <;③都有12()()f x f x <或12()()f x f x >;④图象特征:在单调区间上增函数的图象从左向右是上升的,减函数的图象从左向右是下降的.(2)单调性与单调区间①单调区间的定义:如果函数()f x 在区间D 上是增函数或减函数,那么就说函数()f x 在区间D 上具有单调性,D 称为函数()f x 的单调区间.②函数的单调性是函数在某个区间上的性质.(3)复合函数的单调性复合函数的单调性遵从“同增异减”,即在对应的取值区间上,外层函数是增(减)函数,内层函数是增(减)函数,复合函数是增函数;外层函数是增(减)函数,内层函数是减(增)函数,复合函数是减函数.2.函数的奇偶性函数奇偶性的定义及图象特点奇偶性定义图象特点偶函数如果对于函数()f x 的定义域内任意一个x ,都有()()f x f x -=,那么函数()f x 就叫做偶函数关于y 轴对称奇函数如果对于函数()f x 的定义域内任意一个x ,都有) ()(f x f x --=,那么函数()f x 就叫做奇函数关于原点对称判断()f x -与()f x 的关系时,也可以使用如下结论:如果0(())f x f x --=或()1(()0)()f x f x f x -=≠,则函数()f x 为偶函数;如果0(())f x f x -+=或()1(()0)()f x f x f x -=-≠,则函数()f x 为奇函数.注意:由函数奇偶性的定义可知,函数具有奇偶性的一个前提条件是:对于定义域内的任意一个x ,x -也在定义域内(即定义域关于原点对称).3.函数的对称性(1)若函数()y f x a =+为偶函数,则函数()y f x =关于x a =对称.(2)若函数()y f x a =+为奇函数,则函数()y f x =关于点(0)a ,对称.(3)若()()2f x f a x =-,则函数()f x 关于x a =对称.(4)若2(2)()f x f a x b -=+,则函数()f x 关于点()a b ,对称.4.函数的周期性(1)周期函数:对于函数()y f x =,如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有(()f x T f x +=),那么就称函数()y f x =为周期函数,称T 为这个函数的周期.(2)最小正周期:如果在周期函数()f x 的所有周期中存在一个最小的正数,那么称这个最小整数叫做()f x 的最小正周期.【方法技巧与总结】1.单调性技巧(1)证明函数单调性的步骤①取值:设1x ,2x 是()f x 定义域内一个区间上的任意两个量,且12x x <;②变形:作差变形(变形方法:因式分解、配方、有理化等)或作商变形;③定号:判断差的正负或商与1的大小关系;④得出结论.(2)函数单调性的判断方法①定义法:根据增函数、减函数的定义,按照“取值—变形—判断符号—下结论”进行判断.②图象法:就是画出函数的图象,根据图象的上升或下降趋势,判断函数的单调性.③直接法:就是对我们所熟悉的函数,如一次函数、二次函数、反比例函数等,直接写出它们的单调区间.(3)记住几条常用的结论:①若()f x 是增函数,则()f x -为减函数;若()f x 是减函数,则()f x -为增函数;②若()f x 和()g x 均为增(或减)函数,则在()f x 和()g x 的公共定义域上()()f x g x +为增(或减)函数;③若()0f x >且()f x 为增函数,1()f x 为减函数;④若()0f x >且()f x 为减函数,1()f x 为增函数.2.奇偶性技巧(1)函数具有奇偶性的必要条件是其定义域关于原点对称.(2)奇偶函数的图象特征.函数()f x 是偶函数⇔函数()f x 的图象关于y 轴对称;函数()f x 是奇函数⇔函数()f x 的图象关于原点中心对称.(3)若奇函数()y f x =在0x =处有意义,则有(0)0f =;偶函数()y f x =必满足()(||)f x f x =.(4)偶函数在其定义域内关于原点对称的两个区间上单调性相反;奇函数在其定义域内关于原点对称的两个区间上单调性相同.(5)若函数()f x 的定义域关于原点对称,则函数()f x 能表示成一个偶函数与一个奇函数的和的形式.记1()[()()]2g x f x f x =+-,1()[()()]2h x f x f x =--,则()()()f x g x h x =+.(6)运算函数的奇偶性规律:运算函数是指两个(或多个)函数式通过加、减、乘、除四则运算所得的函数,如()(),()(),()(),()()f x g x f x g x f x g x f x g x +-⨯÷.对于运算函数有如下结论:奇±奇=奇;偶±偶=偶;奇±偶=非奇非偶;奇()⨯÷奇=偶;奇()⨯÷偶=奇;偶()⨯÷偶=偶.(7)复合函数[()]y f g x =的奇偶性原来:内偶则偶,两奇为奇.(8)常见奇偶性函数模型奇函数:①函数1()(01x x a f x m x a +=≠-()或函数1()()1x x a f x m a -=+.②函数()()x x f x a a -=±-.③函数2()log log (1aa x m m f x x m x m +==+--或函数2()log log (1)a a x m m f x x m x m-==-++④函数()log )a f x x =+或函数()log )a f x x =.注意:关于①式,可以写成函数2()(0)1x m f x m x a =+≠-或函数2()()1x mf x m m R a =-∈+.偶函数:①函数()()x x f x a a -=±+.②函数()log (1)2mx a mxf x a =+-.③函数(||)f x 类型的一切函数.④常数函数3.周期性技巧()()()()211();()2()()()()2()()4()()2()()()()()2()()()2()()()(x R f x T f x T f x T f x T f x T f x T T f x f x f x T f x T T f x T f x T T f a x f a x b a f b x f b x f a x f a x a f x f a x f a x b a f b x f b x f a ∈+=+=-+=+=-+=-+=--+=-⎧-⎨+=-⎩+=-⎧⎨⎩+=--⎧-⎨+=--⎩函数式满足关系()周期为偶函数)()2()()()4()()()()()4()()()4()x f a x a f x f a x f a x b a f b x f b x f a x f a x a f x f a x f a x af x +=--⎧⎨⎩+=-⎧-⎨+=--⎩+=-⎧⎨⎩+=--⎧⎨⎩为奇函数为奇函数为偶函数4.函数的的对称性与周期性的关系(1)若函数()y f x =有两条对称轴x a =,()x b a b =<,则函数()f x 是周期函数,且2()T b a =-;(2)若函数()y f x =的图象有两个对称中心(,),(,)()a c b c a b <,则函数()y f x =是周期函数,且2()T b a =-;(3)若函数()y f x =有一条对称轴x a =和一个对称中心(,0)()b a b <,则函数()y f x =是周期函数,且4()T b a =-.5.对称性技巧(1)若函数()y f x =关于直线x a =对称,则()()f a x f a x +=-.(2)若函数()y f x =关于点()a b ,对称,则()()2f a x f a x b ++-=.(3)函数()y f a x =+与()y f a x =-关于y 轴对称,函数()y f a x =+与()y f a x =--关于原点对称.【题型归纳目录】题型一:函数的单调性及其应用题型二:复合函数单调性的判断题型三:利用函数单调性求函数最值题型四:利用函数单调性求参数的范围题型五:基本初等函数的单调性题型六:函数的奇偶性的判断与证明题型七:已知函数的奇偶性求参数题型八:已知函数的奇偶性求表达式、求值题型九:已知()f x =奇函数+M 题型十:函数的对称性与周期性题型十一:类周期函数题型十二:抽象函数的单调性、奇偶性、周期性题型十三:函数性质的综合【典例例题】题型一:函数的单调性及其应用例1.(2022·全国·高三专题练习)若定义在R 上的函数f (x )对任意两个不相等的实数a ,b ,总有()-()-f a f b a b>0成立,则必有()A .f (x )在R 上是增函数B .f (x )在R 上是减函数C .函数f (x )先增后减D .函数f (x )先减后增例2.(2022·全国·高三专题练习)已知函数()f x 的定义域为R ,且对任意两个不相等的实数a ,b 都有()()()0a b f a f b -->⎡⎤⎣⎦,则不等式()()315f x f x ->+的解集为().A .(),3-∞B .()3,+∞C .(),2-∞D .()2,+∞例3.(2022·全国·高三专题练习)()252f x x x =-的单调增区间为()A .1,5⎛⎫+∞ ⎪⎝⎭B .1,5⎛⎫-∞ ⎪⎝⎭C .1,5⎛⎫-+∞ ⎪⎝⎭D .1,5⎛⎫-∞- ⎪⎝⎭例4.(2022·全国·高三专题练习)已知函数1()22xxf x =-.(1)判断()f x 在其定义域上的单调性,并用单调性的定义证明你的结论;(2)解关于x 的不等式2(log )(1)f x f <.例5.(2022·全国·高三专题练习)讨论函数()1axf x x =-(0a ≠)在(11)-,上的单调性.【方法技巧与总结】函数单调性的判断方法①定义法:根据增函数、减函数的定义,按照“取值—变形—判断符号—下结论”进行判断.②图象法:就是画出函数的图象,根据图象的上升或下降趋势,判断函数的单调性.③直接法:就是对我们所熟悉的函数,如一次函数、二次函数、反比例函数等,直接写出它们的单调区间.题型二:复合函数单调性的判断例6.(2022·全国·高三专题练习(文))函数y =)A .1,2⎛⎫-∞ ⎪⎝⎭B .(,1]-∞-C .112⎡⎤-⎢⎥⎣⎦,D .[]12-,例7.(2022·全国·高三专题练习)函数()213log 412y x x =-++单调递减区间是()A .(),2-∞B .()2,+∞C .()2,2-D .()2,6-例8.(2022·全国·高三专题练习)函数2231()(2x x f x --=的单调递减区间是()A .(,)-∞+∞B .(,1)-∞C .(3,)+∞D .(1,)+∞【方法技巧与总结】讨论复合函数[()]y f g x =的单调性时要注意:既要把握复合过程,又要掌握基本函数的单调性.一般需要先求定义域,再把复杂的函数正确地分解为两个简单的初等函数的复合,然后分别判断它们的单调性,再用复合法则,复合法则如下:1.若()u g x =,()y f u =在所讨论的区间上都是增函数或都是减函数,则[()]y f g x =为增函数;2.若()u g x =,()y f u =在所讨论的区间上一个是增函数,另一个是减函数,则[()]y f g x =为减函数.列表如下:()u g x =()y f u =[()]y f g x =增增增增减减减增减减减增复合函数单调性可简记为“同增异减”,即内外函数的单性相同时递增;单性相异时递减.题型三:利用函数单调性求函数最值例9.(2022·河南·新乡县高中模拟预测(理))在人工智能领域的神经网络中,常用到在定义域I 内单调递增且有界的函数()f x ,即0M ∃>,x I ∀∈,()f x M ≤.则下列函数中,所有符合上述条件的序号是______.①()f x =()21x f x x =+;③()e e e ex xx x f x ---=+;④()11e x f x -=+.例10.(2022·全国·高三专题练习)定义在()0,∞+上的函数()f x 对于任意的*,x y R ∈,总有()()()f x f y f xy +=,且当1x >时,()0f x <且()1f e =-.(1)求()1f 的值;(2)判断函数在()0,∞+上的单调性,并证明;(3)求函数()f x 在21,e e ⎡⎤⎢⎥⎣⎦上的最大值与最小值.例11.(2022·全国·高三专题练习)已知函数()(0)2axf x a x =≠-.(1)判断函数()f x 在区间()2,2-上的单调性,并用单调性的定义加以证明;(2)若()33f =,求[]1,1x ∈-时函数()f x 的值域.例12.(2022·山西运城·模拟预测(理))已知a b <,函数()f x 的定义域为I ,若存在[,]a b I ⊆,使得()f x 在[,]a b 上的值域为[,]a b ,我们就说()f x 是“类方函数”.下列四个函数中是“类方函数”的是()①()21f x x =-+;②2()f x x =;③()2f x =+;④1()2xf x ⎛⎫= ⎪⎝⎭.A .①②B .②④C .②③D .③④【方法技巧与总结】利用函数单调性求函数最值时应先判断函数的单调性,再求最值.常用到下面的结论:1.如果函数()y f x =在区间(]a b ,上是增函数,在区间[)b c ,上是减函数,则函数()()y f x x a c =∈,在x b =处有最大值()f b .2.如果函数()y f x =在区间(]a b ,上是减函数,在区间[)b c ,上是增函数,则函数()()y f x x a c =∈,在x b =处有最小值()f b .3.若函数()y f x =在[]a b ,上是严格单调函数,则函数()y f x =在[]a b ,上一定有最大、最小值.4.若函数()y f x =在区间[]a b ,上是单调递增函数,则()y f x =的最大值是()f b ,最小值是()f a .5.若函数()y f x =在区间[]a b ,上是单调递减函数,则()y f x =的最大值是()f a ,最小值是()f b .题型四:利用函数单调性求参数的范围例13.(2022·河南濮阳·一模(理))“1b ≤”是“函数()()22,0log 2,20bx x f x x b x +>⎧=⎨++-<≤⎩是在()2,-+∞上的单调函数”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件例14.(2022·全国·江西科技学院附属中学高三阶段练习(理))已知函数()()e 4,0,2log 1,10,x m m x f x x x ⎧+>⎪=⎨-+-<≤⎪⎩若1x ∀,2x ∈R ,()()12120f x f x x x ->-,且()()2g x f x x =--仅有1个零点,则实数m 的取值范围为()A .11,4e ⎡⎫⎪⎢⎣⎭B .11,4e ⎡⎤⎢⎥⎣⎦C .1,1e ⎡⎫⎪⎢⎣⎭D .1,1e ⎛⎫ ⎪⎝⎭例15.(2022·浙江·高三学业考试)已知函数2()2f x x ax b =-+在区间(-∞,1]是减函数,则实数a 的取值范围是()A .[1,+∞)B .(-∞,1]C .[-1,+∞)D .(-∞,-1]例16.(2022·全国·高三专题练习)若函数21,1()2,,1ax x f x x ax x -<⎧=⎨-≥⎩是R 上的单调函数,则a 的取值范围()A .20,3⎛⎫⎪⎝⎭B .20,3⎛⎤ ⎥⎝⎦C .(]0,1D .()0,1例17.(2022·全国·高三专题练习)已知函数()f x =0a >且1a ≠)在区间[)1,3上单调递增,则实数a 的取值不可能是()A .13B .12C .23D .56例18.(2022·山东·济南市历城第二中学模拟预测)函数()53x f x x a +=-+在()1,+∞上是减函数,则实数a的范围是_______.例19.(2022·全国·高三专题练习)如果5533cos θsin θ7(cos θsin θ),θ[0,2π]->-∈,则θ的取值范围是___________.例20.(2022·全国·高三专题练习)已知函数()f x 满足()()()()1,f x y f x f y x y R +=+-∈,当0x >时,()1f x >,且()12f =.(1)求()()0,1f f -的值,并判断()f x 的单调性;(2)当[]1,2x ∈时,不等式()()231f ax x f x -+<恒成立,求实数a 的取值范围.【方法技巧与总结】若已知函数的单调性,求参数a 的取值范围问题,可利用函数单调性,先列出关于参数a 的不等式,利用下面的结论求解.1.若()a f x >在[]m n ,上恒成立()a f x ⇔>在[]m n ,上的最大值.2.若()a f x <在[]m n ,上恒成立()a f x ⇔<在[]m n ,上的最小值.题型五:基本初等函数的单调性例21.(2022·全国·高三阶段练习(文))下列函数在()1,3上单调递减的是()A .24y x x =-B .12x y -=C .y =D .cos 1y x =+例22.(2022·全国·高三专题练习)下列函数中,定义域是R 且为增函数的是A .xy e -=B .3y x =C .ln y x=D .y x=例23.(2022·全国·高三专题练习)已知()f x 是奇函数,且()()12120f x f x x x ->-对任意12,x x R ∈且12x x ≠都成立,设32a f ⎛⎫= ⎪⎝⎭,()3log 7b f =,()30.8c f =-,则()A .b a c <<B .c a b <<C .c b a<<D . a c b<<例24.(2022·山东·济南一中模拟预测)设函数()232xf x x ⎛⎫=+ ⎪⎝⎭,若()ln 3a f =,()5log 2b f =-,c f =(e 为自然对数的底数),则().A .a b c>>B .c b a>>C .c a b>>D .a c b>>【方法技巧与总结】1.比较函数值大小,应将自变量转化到同一个单调区间内,然后利用函数单调性解决.2.求复合函数单调区间的一般步骤为:①求函数定义域;②求简单函数单调区间;③求复合函数单调区间(同增异减).3.利用函数单调性求参数时,通常要把参数视为已知数,依据函数图像或单调性定义,确定函数单调区间,与已知单调区间比较,利用区间端点间关系求参数.同时注意函数定义域的限制,遇到分段函数注意分点左右端点函数值的大小关系.题型六:函数的奇偶性的判断与证明例25.(2022·北京通州·模拟预测)已知函数1()33xxf x ⎛⎫=- ⎪⎝⎭,则()f x ()A .是偶函数,且在R 是单调递增B .是奇函数,且在R 是单调递增C .是偶函数,且在R 是单调递减D .是奇函数,且在R 是单调递减例26.(2022·安徽·蒙城第一中学高三阶段练习(理))下列函数中,在其定义域内既是奇函数又是减函数的是()A .1y x=B .ln y x x=--C .3y x x=--D .3=-+y x x例27.(2022·广东·二模)存在函数()f x 使得对于x R ∀∈都有()()f g x x =,则函数()g x 可能为()A .()sin g x x=B .()22g x x x=+C .()3g x x x=-D .()()x xg x e e-=+例28.(2022·全国·高三专题练习)判断下列函数的奇偶性:(1)f (x )(2)f (x )=(x +(3)f (x ).(4)f (x )=2221,0,21,0;x x x x x x ⎧-++>⎨+-<⎩例29.(2022·全国·高三专题练习)已知定义在R 上的函数()f x ,()g x 满足:①()01f =;②()g x 为奇函数;③()0,x ∀∈+∞,()0>g x ;④任意的x ,R y ∈,()()()()()f x y f x f y g x g y -=-.(1)判断并证明函数()f x 的奇偶性;(2)判断并证明函数()f x 在()0,+∞上的单调性.【方法技巧与总结】函数单调性与奇偶性结合时,注意函数单调性和奇偶性的定义,以及奇偶函数图像的对称性.题型七:已知函数的奇偶性求参数例30.(2022·北京海淀·二模)若(),01,0x a x f x bx x +<⎧=⎨->⎩是奇函数,则()A .1,1a b ==-B .1,1a b =-=C .1,1a b ==D .1,1a b =-=-例31.(2022·河南洛阳·三模(理))若函数()()322x xx a f x -=⋅-是偶函数,则=a ()A .-1B .0C .1D .±1例32.(2022·江苏南通·模拟预测)若函数()22x x af x a +=-为奇函数,则实数a 的值为()A .1B .2C .1-D .±1例33.(2022·江西·南昌十中模拟预测(理))已知函数()(1)1x mf x x e=++为偶函数,则m 的值为_________.例34.(2022·全国·高三阶段练习(理))已知函数()()22330x xa a a f x -+=-⋅≠为奇函数,则=a ______.例35.(2022·全国·高三阶段练习(文))已知函数()2221x xa b f x x -+⋅=+为偶函数,则=a ______.例36.(2022·陕西·西安中学模拟预测(文))已知函数)1()e ln e x xf x x ⎛⎫=- ⎪⎝⎭为R 上的偶函数,则实数=a ___________.【方法技巧与总结】利用函数的奇偶性的定义转化为()()f x f x -=±,建立方程,使问题得到解决,但是在解决选择题、填空题时还显得比较麻烦,为了使解题更快,可采用特殊值法求解.题型八:已知函数的奇偶性求表达式、求值例37.(2022·安徽省芜湖市教育局模拟预测(理))设()f x 为奇函数,且0x >时,()e ln xf x x =+,则()1f -=___________.例38.(2022·重庆一中高三阶段练习)已知偶函数()f x ,当0x >时,()()212f x x f x '=-+,则()f x 的图象在点()()2,2f --处的切线的斜率为()A .3-B .3C .5-D .5例39.(2022·河北衡水·高三阶段练习)已知()f x 是定义在R 上的奇函数,且0x ≤时,()232f x x x m =-+,则()f x 在[]1,2上的最大值为()A .1B .8C .5-D .16-例40.(2022·江西·模拟预测(理))(),()f x g x 分别是定义在R 上的奇函数和偶函数,且()()2022sin 25+=--x f x g x x x ,则下列说法错误的是()A .(0)1g =B .()g x 在[]0,1上单调递减C .(1101)-g x 关于直线1101=x 对称D .()g x 的最小值为1例41.(2022·山西吕梁·一模(文))已知函数()f x 为定义在R 上的奇函数,且当0x ≥时,()21x f x x =+-,则当0x <时,()f x =()A .21x x ---B .21x x -++C .121x ----D .121x --++例42.(2022·北京·高三专题练习)已知定义在R 上的奇函数()f x 满足()()2f x f x =+,且当()0,1x ∈时,()241xxf x =+.(1)求()1f 和()1f -的值;(2)求()f x 在[]1,1-上的解析式.例43.(2022·全国·高三专题练习)若函数()f x 是奇函数,()g x 是偶函数,且其定义域均为{R,1}x x x ∈≠±.若()1()1f xg x x +=-,求()f x ,()g x 的解析式.【方法技巧与总结】抓住奇偶性讨论函数在各个分区间上的解析式,或充分利用奇偶性得出关于()f x 的方程,从而可得()f x 的解析式.题型九:已知()f x =奇函数+M例44.(2022·重庆一中高三阶段练习)已知()34f x ax =++(a ,b 为实数),()3lg log 102022f =,则()lg lg3f =______.例45.(2022·河南·西平县高级中学模拟预测(理))已知函数()2sin 414x xf x x -=++,且()5f a =,则()f a -=()A .2B .3C .-2D .-3例46.(2022·福建省福州第一中学高二期末)若对,x y R ∀∈,有()()()4f x y f x f y +=+-,函数2sin ()()cos 1xg x f x x =++在区间[2021,2021]-上存在最大值和最小值,则其最大值与最小值的和为()A .4B .8C .12D .16例47.(2022·上海·高一专题练习)若函数()()2221sin 1x xf x x ++=+的最大值和最小值分别为M 、m ,则函数()()()sin 3g x M m x M m x π⎡⎤=+++-⎢⎥⎣⎦图像的对称中心不可能是_______A .4,33ππ⎛⎫⎪⎝⎭B .,123ππ⎛⎫ ⎪⎝⎭C .28,33ππ⎛⎫ ⎪⎝⎭D .416,33ππ⎛⎫ ⎪⎝⎭例48.(2022·河南·温县第一高级中学高三月考(理))若函数()()113e sin 1ex x x f x --⋅--=在区间[]3,5-上的最大值、最小值分别为p 、q ,则p q +的值为().A .2B .1C .6D .3例49.(2022·黑龙江·哈尔滨三中高三月考(理))函数()()211()2x x f x x x e e x --=--+在区间[1,3]-上的最大值与最小值分别为M ,N ,则M N +的值为()A .2-B .0C .2D .4例50.(2022·广东潮阳·高一期末)函数()()22ln41ax a xf x x a++=++,若()f x 最大值为M ,最小值为N ,[]1,3a ∈,则M N +的取值范围是______.例51.(2022·安徽·合肥市第九中学高三月考(理))已知定义域为R 的函数2222020sin ()2x x e e x xf x x λλμ++=++有最大值和最小值,且最大值和最小值的和为6,则λ-μ=___.【方法技巧与总结】已知()f x =奇函数+M ,[,]x a a ∈-,则(1)()()2f x f x M -+=(2)max min ()()2f x f x M +=题型十:函数的对称性与周期性例52.(2022·天津三中二模)设函数()y f x =的定义域为D ,若对任意的12,x x D ∈,且122x x a +=,恒有()()122f x f x b +=,则称函数()f x 具有对称性,其中点(,)a b 为函数()y f x =的对称中心,研究函数1()1tan(1)1f x x x x =+++--的对称中心,求13540432022202220222022f f f f ⎛⎫⎛⎫⎛⎫⎛⎫+++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ ()A .2022B .4043C .4044D .8086例53.(2022·全国·模拟预测)已知定义在R 上的函数()f x 满足()()24f x f x +=+,且()1f x +是奇函数,则()A .()f x 是偶函数B .()f x 的图象关于直线12x =对称C .()f x 是奇函数D .()f x 的图象关于点1,02⎛⎫⎪⎝⎭对称例54.(2022·全国·模拟预测)已知函数()f x 的定义域为R ,且()()()2220222f x f x f +=-+对任意x ∈R 恒成立,又函数()2021f x +的图象关于点()2021,0-对称,且()12022f =,则()2021f =()A .2021B .2021-C .2022D .2022-例55.(2022·新疆·三模(文))已知定义在R 上的偶函数()f x 满足()()6f x f x +=,且当[]0,3x ∈时,()e x f x x =,则下面结论正确的是()A .()()()3ln 3e e f f f <<-B .()()()3e ln 3ef f f -<<C .()()()3e e ln 3f f f <-<D .()()()3ln 3e ef f f <-<例56.(2022·山东·肥城市教学研究中心模拟预测)已知函数()f x 满足(3)(1)9(2)f x f x f +=-+对任意x ∈R 恒成立,又函数(9)f x +的图象关于点(9,0)-对称,且(1)2022,f =则(45)f =()A .2021B .2021-C .2022D .2022-例57.(2022·广东茂名·模拟预测)已知函数()f x 是R 上的奇函数,且3()()2f x f x -=-,且当30,4x ⎛⎤∈ ⎥⎝⎦时,()23f x x =-,则(2021)(2022)(2023)f f f -+--的值为()A .4B .4-C .0D .6-例58.(2022·江西鹰潭·二模(文))已知()f x 是定义在R 上的奇函数,若32f x ⎛⎫+ ⎪⎝⎭为偶函数且()12f =,则()()()202020212022f f f ++=()A .2-B .4C .4-D .6例59.(2022·江苏·徐州市第七中学高三阶段练习)函数()()()222f x x x x ax b =+++满足:对x R ∀∈,都有()()11f x f x +=-,则函数()f x 的最小值为()A .-20B .-16C .-15D .0例60.(2022·黑龙江·哈尔滨三中三模(理))定义在R 上的函数()y f x =满足以下三个条件:①对于任意的实数x ∈R ,都有()()220f x f x ++-=成立;②函数()1y f x =+的图象关于y 轴对称;③对任意的1x ,[]20,1x ∈,12x x ≠,都有()()()()11221221x f x x f x x f x x f x +>+成立.则()2021f ,()2022f ,()2023f 的大小关系为()A .()()()202120232022f f f >>B .()()()202120222023f f f >>C .()()()202320222021f f f >>D .()()()202220212023f f f >>例61.(2022·陕西·榆林市教育科学研究所模拟预测(理))已知函数()f x 满足()()f x f x -=--,且函数()f x 与()cos 2g x x x =≠-⎛⎫ ⎪⎝⎭的图象的交点为()11,x y ,()22,x y ,()33,x y ,()44,x y ,则()41i ii x y =+=∑()A .-4πB .-2πC .2πD .4π【方法技巧与总结】(1)若函数()y f x =有两条对称轴x a =,()x b a b =<,则函数()f x 是周期函数,且2()T b a =-;(2)若函数()y f x =的图象有两个对称中心(,),(,)()a c b c a b <,则函数()y f x =是周期函数,且2()T b a =-;(3)若函数()y f x =有一条对称轴x a =和一个对称中心(,0)()b a b <,则函数()y f x =是周期函数,且4()T b a =-.题型十一:类周期函数例62.(2022·天津一中高三月考)定义域为R 的函数()f x 满足()()22f x f x +=,当[]0,2x 时,()[)[)232,0,11,1,22x x x x f x x -⎧-∈⎪⎪=⎨⎛⎫-∈⎪ ⎪⎪⎝⎭⎩,若当[)4,2x ∈--时,不等式()2142m f x m ≥-+恒成立,则实数m 的取值范围是()A .[]2,3B .[]1,3C .[]1,4D .[]2,4例63.(2022·浙江·杭州高级中学高三期中)定义域为R 的函数()f x 满足(2)3()f x f x +=,当[0,2]x ∈时,2()2f x x x =-,若[4,2]x ∈--时,13()()18f x t t≥-恒成立,则实数t 的取值范围是()A .(](],10,3-∞- B.((,-∞ C .[)[)1,03,-+∞ D.))⎡+∞⎣ 例64.(2022山西省榆林市高三二模理科数学试卷)定义域为R 的函数()f x 满足()()22f x f x +=,当[)0,2x ∈时,()[)[)2213,0,1{ln ,1,2x x x f x x x x -+∈=∈,若当[)4,2x ∈--时,函数()22f x t t ≥+恒成立,则实数t 的取值范围为()A .30t -≤≤B .31t -≤≤C .20t -≤≤D .01t ≤≤例65.(2022·湖北·高三月考)已知函数()11,022(2),2x x f x f x x ⎧--≤≤=⎨->⎩,其中R a ∈,给出以下关于函数()f x 的结论:①922f ⎛⎫= ⎪⎝⎭②当[]0,8x ∈时,函数()f x 值域为[]0,8③当4,15k ⎛⎤∈ ⎥⎝⎦时方程()f x kx =恰有四个实根④当[]0,8x ∈时,若()22xf x a +≤恒成立,则1a ≥-)A .1B .2C .3D .4【方法技巧与总结】1.类周期函数若()y f x =满足:()()f x m kf x +=或()()f x kf x m =-,则()y f x =横坐标每增加m 个单位,则函数值扩大k 倍.此函数称为周期为m 的类周期函数.xx类周期函数图象倍增函数图象2.倍增函数若函数()y f x =满足()()f mx kf x =或()(xf x kf m=,则()y f x =横坐标每扩大m 倍,则函数值扩大k倍.此函数称为倍增函数.注意当m k =时,构成一系列平行的分段函数,222311()[1)(1)[)()(1)[)(1)[)n n ng x x m g x m x m m f x g x m x m m g x m x m m --∈⎧⎪-+∈⎪⎪=-+∈⎨⎪⎪⎪-+∈⎩,,,,,,,,.题型十二:抽象函数的单调性、奇偶性、周期性例66.(2022·山东聊城·二模)已知()f x 为R 上的奇函数,()22f =,若对1x ∀,()20,x ∈+∞,当12x x >时,都有()()()1212210f x f x x x x x ⎡⎤--<⎢⎥⎣⎦,则不等式()()114x f x ++>的解集为()A .()3,1-B .()()3,11,1---C .()(),11,1-∞-- D .()(),31,-∞-⋃+∞例67.(2022·全国·模拟预测(理))已知定义在R 上的奇函数()f x 的图象关于直线1x =对称,且()y f x =在[]0,1上单调递增,若()3a f =-,12b f ⎛⎫=- ⎪⎝⎭,()2c f =,则a ,b ,c 的大小关系为()A .c b a <<B .b a c <<C .b c a <<D .c a b<<例68.(2022·黑龙江大庆·三模(理))已知定义域为R 的偶函数满足()()2f x f x -=,当01x ≤≤时,()1e 1x f x -=-,则方程()11f x x =-在区间[]3,5-上所有解的和为()A .8B .7C .6D .5例69.(2022·全国·高三专题练习)已知定义在R 上的函数()f x ,()g x 满足:①()01f =;②任意的x ,R y ∈,()()()()()f x y f x f y g x g y -=-.(1)求()()22f xg x -的值;(2)判断并证明函数()f x 的奇偶性.例70.(2022·上海·高三专题练习)定义在(-1,1)上的函数f (x )满足①对任意x 、y ∈(-1,1),都有f (x )+f (y )=f (1x y xy ++);②当x ∈(-1,0)时,有f (x )>0.求证:21111()()()()511312f f f f n n +++>++ .【方法技巧与总结】抽象函数的模特函数通常如下:(1)若()()()f x y f x f y +=+,则()(1)f x xf =(正比例函数)(2)若()()()f x y f x f y +=,则()[(1)]x f x f =(指数函数)(3)若()()()f xy f x f y =+,则()log b f x x =(对数函数)(4)若()()()f xy f x f y =,则()a f x x =(幂函数)(5)若()()()f x y f x f y m +=++,则()(1)f x xf m =-(一次函数)(6)对于抽象函数判断单调性要结合题目已知条件,在所给区间内比较大小,有时需要适当变形.题型十三:函数性质的综合例71.(2022·重庆南开中学模拟预测)已知函数()()ln ln 2cos 2f x x x x=---,则关于t 的不等式()()20f t f t +<的解集为()A .()2,1-B.(-C .()0,1D.(例72.(2022·安徽·六安市裕安区新安中学高三开学考试(文))已知函数()f x 是定义在R 上的偶函数,且在区间[0,)+∞上单调递增.若实数a 满足212(log )(lo )g )2(1f a f f a +≤,则a 的最小值是()A .32B .1C .12D .2例73.(2022·河南许昌·高三月考(理))已知函数31()224e e x xf x x x =-++-,其中e 是自然对数的底数,若()2(6)8f a f a -+>,则实数a 的取值范围是()A .(2,)+∞B .(3,2)-C .(,3)-∞-D .(,3)(2,)-∞-⋃+∞例74.(2022·河南·新蔡县第一高级中学高三月考(文))已知函数()3112e 33ex x f x x x =-+-+,其中e是自然对数的底数,若()2(23)6f a f a -+≥,则实数a 的取值范围是()A .(,3][1,)-∞-+∞ B .(,3]-∞-C .[1,)+∞D .[]3,1-例75.(2022·江苏·南京市中华中学高三月考)定义在R 上的函数()f x 满足()(2)f x f x -=,且当1x ≥时()23,141log ,4x x f x x x -+≤<⎧=⎨-≥⎩,若对任意的[,1]x t t ∈+,不等式()()21f x f x t -≤++恒成立,则实数t 的最大值为()A .1-B .23-C .13-D .13例76.(2022·内蒙古·赤峰二中高一月考(理))设()f x 是定义在R 上的奇函数,且当0x ≥时,()2f x x =,若对任意[]2x a a ∈+,,不等式()()2f x a f x +≥恒成立,则实数a 的取值范围是()A.)+∞B.)+∞C .()1-∞,D.⎡⎣例77.(2022·湖南·岳阳一中一模)已知函数221e e ()312x x xf x --=++,若不等式2(4)(2)1f ax f ax -+≤对任意x ∈R 恒成立,则实数a 的取值范围是()A .[]e,0-B .[]2,0-C .[]4,0-D .2e ,0⎡⎤-⎣⎦例78.(2022·全国·模拟预测)已知函数()2121xx f x -=+,若()()e 0x f f ax +<有解,则实数a 的取值范围为()A .()0,∞+B .(),e -∞-C .[]e,0-D .()(),e 0,-∞-⋃+∞例79.(2022·黑龙江·哈师大附中三模(理))已知函数()()1ln e 12x f x x =+-(e 为自然对数的底数),若()()21f a f a ≥-,则实数a 的取值范围是()A .1,3⎛⎤-∞ ⎥⎝⎦B .[1,+∞)C .1,13⎡⎤⎢⎥⎣⎦D .[)1,1,3⎛⎤-∞⋃+∞ ⎥⎝⎦【方法技巧与总结】(1)奇偶性与单调性综合解题,尤其要重视利用偶函数(或轴对称函数)与单调性综合解不等式和比较大小.(2)奇偶性、单调性、周期性综合解题,尤其要注意对称性与周期性之间的关系,周期是两条对称轴(或对称中心)之间距离的2倍,是对称中心与对称轴之间距离的4倍.【过关测试】一、单选题1.(2022·安徽·蒙城第一中学高三阶段练习(理))下列函数中,在其定义域内既是奇函数又是减函数的是()A .1y x=B .ln y x x =--C .3y x x =--D .3=-+y x x2.(2022·河南·模拟预测(文))已知0x >,0y >,且2e e sin 2sin x y x y ->-,则()A .2x y<B .2x y>C .x y>D .x y<3.(2022·湖北·房县第一中学模拟预测)已知函数()221e e 1x x f x -=+,不等式()()22f x f x >+的解集为()A .()(),12,-∞-+∞B .()1,2-C .()(),21,-∞-+∞ D .()2,1-4.(2022·浙江浙江·高三阶段练习)已知定义在R 上的奇函数()f x 在0x >时满足32()(1)62f x x x =-++,且()()8f x m f x +≤在[]1,3x ∈有解,则实数m 的最大值为()A .23B .2C .53D .45.(2022·河北·石家庄二中高三开学考试)已知函数(()cos ln 4f x x x π=+⋅+在区间[5,5]-的最大值是M ,最小值是m ,则()f M m +的值等于()A .0B .10C .4πD .2π6.(2022·安徽·蒙城第一中学高三阶段练习(理))已知()f x 为奇函数,且当0x >时()211e xf x x-=+,则曲线()y f x =在点11,22f⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭处的切线方程为()A .240x y ++=B .240x y -+=C .220x y -+=D .220x y ++=7.(2022·河南·模拟预测(理))已知函数()f x 的图象关于原点对称,且()()4f x f x =+,当()0,2x ∈时,()f x =32433log 4f ⎛⎫+= ⎪⎝⎭()A .-11B .-8C .3log 4D .38log 4-8.(2022·江西·南昌市实验中学一模(理))对于函数()y f x =,若存在0x ,使()()00f x f x =--,则称点()()00,x f x 与点()()00,x f x --是函数()f x 的一对“隐对称点”.若函数()2ln ,0,0x x f x mx mx x >⎧=⎨--≤⎩的图像恰好有2对“隐对称点”,则实数m 的取值范围是()A .10,e ⎛⎫ ⎪⎝⎭B .()0,1⋃(1,)+∞C .1,e ⎛⎫+∞ ⎪⎝⎭D .(1,)+∞二、多选题9.(2022·海南·模拟预测)下面关于函数23()2x f x x -=-的性质,说法正确的是()A .()f x 的定义域为(,2)(2,)-∞⋃+∞B .()f x 的值域为RC .()f x 在定义域上单调递减D .点(2,2)是()f x 图象的对称中心10.(2022·辽宁·模拟预测)已知定义在R 上的偶函数()f x 的图像是连续的,()()()63f x f x f ++=,()f x 在区间[]6,0-上是增函数,则下列结论正确的是()A .()f x 的一个周期为6B .()f x 在区间[]12,18上单调递减C .()f x 的图像关于直线12x =对称D .()f x 在区间[]2022,2022-上共有100个零点11.(2022·重庆巴蜀中学高三阶段练习)已知函数()f x 对任意x ∈R 都有()()2f x f x +=-,若函数()1y f x =-的图象关于1x =对称,且对任意的()12,0,2x x ∈,且12x x ≠,都有()()12120f x f x x x ->-,若()20f -=,则下列结论正确的是()A .()f x 是偶函数B .()20220f =C .()f x 的图象关于点()1,0对称D .()()21f f ->-12.(2022·河北秦皇岛·二模)已知函数())lg f x x =,()212xg x =+,()()()F x f x g x =+,则()A .()f x 的图象关于()0,1对称B .()g x 的图象没有对称中心C .对任意的[](),0x a a a ∈->,()F x 的最大值与最小值之和为4D .若()3311F x x x -+-<-,则实数x 的取值范围是()(),13,-∞⋃+∞三、填空题13.(2022·山东临沂·二模)已知函数e ()1xmxf x x =+-是偶函数,则m =__________.14.(2022·湖北·房县第一中学模拟预测)已知函数()()ln 0f x x a a a =-+>在21,e ⎡⎤⎣⎦上的最小值为1,则a 的值为________.15.(2022·广东佛山·三模)已知函数()22x x f x a -=+⋅的图象关于原点对称,若3(21)2f x ->,则x 的取值范围为________.16.(2022·陕西宝鸡·二模(文))若函数f (x )同时满足:(1)对于定义域上的任意x ,恒有()()0f x f x +-=;(2)对于定义域上的任意12,x x ,当12x x ≠,恒有()()12120f x f x x x -<-,则称函数f (x )为“理想函数”,下列①()1f x x=,②()=f x ,③()1212xxf x -=+,④22,0(),0x x f x x x ⎧-=⎨<⎩四个函数中,能被称为“理想函数”的有___________.(填出函数序号)四、解答题17.(2022·上海市市西中学高三阶段练习)设a ∈R ,函数2()21x x af x +=+;(1)求a 的值,使得f (x )为奇函数;(2)若3()2a f x +<对任意x ∈R 成立,求a 的取值范围.18.(2022·全国·高三专题练习)已知函数()21ax bf x x +=+是定义在()1,1-上的函数,()()f x f x -=-恒成立,且12.25f ⎛⎫= ⎪⎝⎭(1)确定函数()f x 的解析式;(2)用定义证明()f x 在()1,1-上是增函数;(3)解不等式()()10f x f x -+<.19.(2022·陕西·武功县普集高级中学高三阶段练习(理))设函数()()20,1,R x xf x ka a a a k -=->≠∈,()f x 是定义域为R 的奇函数(1)确定k 的值(2)若()13f =,判断并证明()f x 的单调性;(3)若3a =,使得()()()221f x f x λ≤+对一切[]2,1x ∈--恒成立,求出λ的范围.20.(2022·全国·高三专题练习)定义域均为R 的奇函数()f x 与偶函数()g x 满足()()10x f x g x +=.(1)求函数()f x 与()g x 的解析式;(2)证明:1212()()2()2x x g x g x g ++≥;(3)试用1()f x ,2()f x ,1()g x ,2()g x 表示12()f x x -与12()g x x +.21.(2022·全国·高三专题练习)定义在R 上的函数()f x ,对任意12,x x R ∈,满足下列条件:①1212()()()2f x x f x f x +=+-②(2)4f =(1)是否存在一次函数()f x 满足条件①②,若存在,求出()f x 的解析式;若不存在,说明理由.(2)证明:()()2g x f x =-为奇函数;22.(2022·上海·二模)对于函数()f x ,若在定义域内存在实数0x ,满足00()()f x f x -=-,则称()f x 为“M 类函数”.(1)已知函数π()2cos 3f x x ⎛⎫=- ⎪⎝⎭,试判断()f x 是否为“M 类函数”?并说明理由;(2)设1()423x x f x m +=-⋅-是定义域R 上的“M 类函数”,求实数m 的取值范围;(3)若()22log 2,3()2,3x mx x f x x ⎧->⎪=⎨-<⎪⎩为其定义域上的“M 类函数”,求实数m 取值范围.。
函数的奇偶性与周期性
![函数的奇偶性与周期性](https://img.taocdn.com/s3/m/2fa2184014791711cd791703.png)
函数的奇偶性与周期性1.函数的奇偶性奇函数偶函数定义一般地,如果对于函数f(x)的定义域内任意一个x都有f(-x)=-f(x),那么函数f(x)就叫做奇函数都有f(-x)=f(x),那么函数f(x)就叫做偶函数图象特征关于原点对称关于y轴对称2.函数的周期性(1)周期函数对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数y=f(x)为周期函数,称T为这个函数的周期.(2)最小正周期如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.3.判断下列结论的正误(正确的打“√”,错误的打“×”)(1)若f(x)是定义在R上的奇函数,则f(-x)+f(x)=0.(√)(2)偶函数的图象不一定过原点,奇函数的图象一定过原点.(×)(3)如果函数f(x),g(x)为定义域相同的偶函数,则F(x)=f(x)+g(x)是偶函数.(√)(4)定义域关于原点对称是函数具有奇偶性的一个必要条件.(√)(5)若T是函数的一个周期,则nT(n∈Z,n≠0)也是函数的周期.(√)(6)函数f(x)在定义域上满足f(x+a)=-f(x),则f(x)是周期为2a(a>0)的周期函数.(√)(7)函数f(x)=0,x∈(0,+∞)既是奇函数又是偶函数.(×)(8)若函数y=f(x+a)是偶函数,则函数y=f(x)关于直线x=a对称.(√)(9)若函数y=f(x+b)是奇函数,则函数y=f(x)关于点(b,0)中心对称.(√)(10)若某函数的图象关于y轴对称,则该函数为偶函数;若某函数的图象关于(0,0)对称,则该函数为奇函数.(√)考点一判断函数的奇偶性命题点用函数奇偶性定义判断[例1] (1)下列函数为奇函数的是( )A .y =xB .y =e xC .y =cos xD .x x e e y --= 解析:对于A ,定义域不关于原点对称,故不符合要求;对于B ,f (-x )≠-f (x ),故不符合要求;对于C ,满足f (-x )=f (x ),故不符合要求;对于D , ∵f (-x )=e -x -e x =-(e x -e -x )=-f (x ),∴y =e x -e -x 为奇函数,故选D. 答案:D(2)下列函数中为偶函数的是( )A .y =1x B .y =lg|x | C .y =(x -1)2 D .y =2x解析:根据奇、偶函数的定义,可得A 是奇函数,B 是偶函数,C ,D 为非奇非偶函数. 答案:B(3)函数f (x )=3-x 2+x 2-3,则( )A .不具有奇偶性B .只是奇函数C .只是偶函数D .既是奇函数又是偶函数 解析:由⎩⎨⎧3-x 2≥0,x 2-3≥0,得x =-3或x = 3.∴函数f (x )的定义域为{-3,3}.∵对任意的x ∈{-3,3},-x ∈{-3,3},且f (-x )=-f (x )=f (x )=0,∴f (x )既是奇函数,又是偶函数. 答案:D[方法引航] 判断函数的奇偶性的三种重要方法 (1)定义法:(2)图象法:函数是奇(偶)函数的充要条件是它的图象关于原点(y 轴)对称. (3)性质法:①“奇+奇”是奇,“奇-奇”是奇,“奇·奇”是偶,“奇÷奇”是偶;②“偶+偶”是偶,“偶-偶”是偶,“偶·偶”是偶,“偶÷偶”是偶;③“奇·偶”是奇,“奇÷偶”是奇.判断下列函数的奇偶性(1)f(x)=(x+1) 1-x1+x;(2)f(x)=lg1-x1+x.解:(1)要使函数有意义,则1-x1+x≥0,解得-1<x≤1,显然f(x)的定义域不关于原点对称,∴f(x)既不是奇函数,也不是偶函数.(2)由1-x1+x>0⇒-1<x<1,定义域关于原点对称.又f(-x)=lg 1+x1-x=lg1)11(-+-xx=-lg1-x1+x=-f(x),f(-x)≠f(x).故原函数是奇函数.考点二函数的周期性及应用命题点1.周期性的简单判断2.利用周期性求函数值[例2](1)下列函数不是周期函数的是()A.y=sin x B.y=|sin x| C.y=sin|x| D.y=sin(x+1)解析:y=sin x与y=sin(x+1)的周期T=2π,B的周期T=π,C项y=sin|x|是偶函数,x∈(0,+∞)与x∈(-∞,0)图象不重复,无周期.答案:C(2)已知函数f(x)是定义在R上的偶函数,若对于x≥0,都有f(x+2)=-1f(x),且当x∈[0,2)时,f(x)=log2(x+1),则求f(-2 017)+f(2 019)的值为________.解析:当x≥0时,f(x+2)=-1f(x),∴f(x+4)=f(x),即4是f(x)(x≥0)的一个周期.∴f(-2 017)=f(2 017)=f(1)=log22=1,f(2 019)=f(3)=-1f(1)=-1,∴f(-2 017)+f(2 019)=0.答案:0[方法引航](1)利用周期f(x+T)=f(x)将不在解析式范围之内的x通过周期变换转化到解析式范围之内,以方便代入解析式求值.(2)判断函数周期性的几个常用结论.①f(x+a)=-f(x),则f(x)为周期函数,周期T=2|a|.②f(x+a)=1f(x)(a≠0),则函数f(x)必为周期函数,2|a|是它的一个周期;③f(x+a)=-1f(x),则函数f(x)必为周期函数,2|a|是它的一个周期.1.若将本例(2)中“f(x+2)=-1f(x)”变为“f(x+2)=-f(x)”,则f(-2 017)+f(2 019)=________.解析:由f(x+2)=-f(x)可知T=4∴f(-2 017)=1,f(2 019)=-1,∴f(-2 017)+f(2 019)=0. 答案:02.若本例(2)条件变为f(x)对于x∈R,都有f(x+2)=f(x)且当x∈[0,2)时,f(x)=log2(x+1),求f(-2 017)+f(2 019)的值.解:由f(x+2)=f(x),∴T=2∴f(2 019)=f(1)=log22=1,f(-2 017)=f(2 017)=f(1)=1,∴f(-2 017)+f(2 019)=2.考点三函数奇偶性的综合应用命题点1.已知奇偶性求参数2.利用奇偶性、单调性求解不等式3.利用奇偶性求解析式或函数值[例3](1)若函数f(x)=2x-a是奇函数,则使f(x)>3成立的x的取值范围为() A.(-∞,-1)B.(-1,0) C.(0,1) D.(1,+∞)解析:因为函数y=f(x)为奇函数,所以f(-x)=-f(x),即2-x+12-x-a=-2x+12x-a.化简可得a=1,则2x+12x-1>3,即2x+12x-1-3>0,即2x+1-3(2x-1)2x-1>0,故不等式可化为2x-22x-1<0,即1<2x<2,解得0<x<1,故选C. 答案:C(2)函数f (x )=ax +b 1+x 2是定义在(-1,1)上的奇函数,且)21(f =25.①确定函数f (x )的解析式;②用定义证明f (x )在(-1,1)上是增函数; ③解不等式f (t -1)+f (t )<0.解:①∵在x ∈(-1,1)上f (x )为奇函数,∴f (0)=0,即b =0,∴f (x )=ax1+x 2. 又∵)21(f =25,∴a21+14=25.解得,a =1.∴f (x )=x 1+x 2,经检验适合题意. ②证明:由f ′(x )=1+x 2-2x 2(1+x 2)2=1-x 2(1+x 2)2.x ∈(-1,1)时,1-x 2>0,∴f ′(x )>0 ∴f (x )在(-1,1)上为增函数.③由f (t -1)+f (t )<0,得f (t -1)<-f (t ),即f (t -1)<f (-t ).∴⎩⎨⎧-1<t -1<1-1<-t <1t -1<-t得0<t <12.(3)已知f (x )是R 上的奇函数,当x ≥0时,f (x )=x 3+ln(1+x ),则当x <0时,f (x )=( ) A .-x 3-ln(1-x ) B .x 3+ln(1-x ) C .x 3-ln(1-x ) D .-x 3+ln(1-x ) 解析:当x <0时,-x >0,f (-x )=(-x )3+ln(1-x ),∵f (x )是R 上的奇函数,∴当x <0时, f (x )=-f (-x )=-[(-x )3+ln(1-x )]=x 3-ln(1-x ). 答案:C[方法引航] (1)根据奇偶性求解析式中的参数,是利用f (-x )=-f (x )或f (-x )=f (x )在定义域内恒成立,建立参数关系.(2)根据奇偶性求解析式或解不等式,是利用奇偶性定义进行转化.1.已知f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,那么a +b 的值是________. 解析:a -1+2a =0,∴a =13.f (x )=ax 2+bx 为偶函数,则b =0,∴a +b =13. 答案:132.定义在R 上的偶函数y =f (x )在[0,+∞)上递减,且)21(f =0,则满足f (x )<0的x 的集合为( )A.),2()21,(+∞⋃-∞∪(2,+∞)B.)1,21(∪(1,2)C.)21,0(∪(2,+∞)D.)1,21(∪(2,+∞)解析:选C.由题意可得f =f<0=)21(f ,又f (x )在[0,+∞)上递减,所以>12,即x >12或x <-12,解得0<x <12或x >2,所以满足不等式f<0的x 的集合为)21,0(∪(2,+∞).3.已知函数f (x )=-x +log 21-x 1+x +1,则)21()21(-+f f 的值为( )A .2B .-2C .0D .2log 213 解析:选A.由题意知,f (x )-1=-x +log 21-x 1+x ,f (-x )-1=x +log 21+x 1-x =x -log 21-x1+x=-(f (x )-1),所以f (x )-1为奇函数,则)21(f -1+)21(-f -1=0,所以)21()21(-+f f =2.[方法探究]“多法并举”解决抽象函数性质问题[典例] (2017·山东泰安模拟)定义在R 上的函数f (x )满足f (x +y )=f (x )+f (y ),f (x +2)=-f (x )且f (x )在[-1,0]上是增函数,给出下列四个命题:①f (x )是周期函数;②f (x )的图象关于x =1对称;③f (x )在[1,2]上是减函数;④f (2)=f (0),其中正确命题的序号是________(请把正确命题的序号全部写出来).[分析关系] ①f (x +y )=f (x )+f (y )隐含了用什么结论?什么方法探究? ②f (x +2)=-f (x ),隐含了什么结论?用什么方法探究.③若f (x )的图象关于x =1对称,其解析式具备什么等式关系?从何处理探究? ④f (x )在[-1,0]上的图象与[1,2]上的图象有什么关系?依据什么指导? ⑤f (2),f (0)从何处计算.[解析]第一步:f(x+y)=f(x)+f(y)对任意x,y∈R恒成立.(赋值法):令x=y=0,∴f(0)=0.令x+y=0,∴y=-x,∴f(0)=f(x)+f(-x).∴f(-x)=-f(x),∴f(x)为奇函数.第二步:∵f(x)在x∈[-1,0]上为增函数,又f(x)为奇函数,∴f(x)在[0,1]上为增函数.第三步:由f(x+2)=-f(x)⇒f(x+4)=-f(x+2)⇒f(x+4)=f(x),(代换法)∴周期T=4,即f(x)为周期函数.第四步:f(x+2)=-f(x)⇒f(-x+2)=-f(-x).(代换法)又∵f(x)为奇函数,∴f(2-x)=f(x),∴关于x=1对称.第五步:由f(x)在[0,1]上为增函数,又关于x=1对称,∴[1,2]上为减函数.(对称法)第六步:由f(x+2)=-f(x),令x=0得f(2)=-f(0)=f(0).(赋值法)[答案]①②③④[回顾反思]此题用图象法更直观.[高考真题体验]1.(2014·高考课标全国卷Ⅰ)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是()A.f(x)g(x)是偶函数B.|f(x)|g(x)是奇函数C.f(x)|g(x)|是奇函数D.|f(x)g(x)|是奇函数解析:选C.由题意可知f(-x)=-f(x),g(-x)=g(x),对于选项A,f(-x)·g(-x)=-f(x)·g(x),所以f(x)g(x)是奇函数,故A项错误;对于选项B,|f(-x)|g(-x)=|-f(x)|g(x)=|f(x)|g(x),所以|f(x)|g(x)是偶函数,故B项错误;对于选项C,f(-x)|g(-x)|=-f(x)|g(x)|,所以f(x)|g(x)|是奇函数,故C项正确;对于选项D,|f(-x)g(-x)|=|-f(x)g(x)|=|f(x)g(x)|,所以|f(x)g(x)|是偶函数,故D项错误,选C.2.(2016·高考山东卷)已知函数f (x )的定义域为R .当x <0时,f (x )=x 3-1;当-1≤x ≤1时,f (-x )=-f (x );当x >12时,)21()21(-=+x f x f .则f (6)=( )A .-2B .-1C .0D .2解析:选D.由题意可知,当-1≤x ≤1时,f (x )为奇函数,且当x >12时,f (x +1)=f (x ),所以f (6)=f (5×1+1)=f (1).而f (1)=-f (-1)=-[(-1)3-1]=2,所以f (6)=2.故选D.3.(2016·高考四川卷)已知函数f (x )是定义在R 上的周期为2的奇函数,当0<x <1时,f (x )=4x ,则)25(-f +f (1)=________.解析:综合运用函数的奇偶性和周期性进行变换求值. ∵f (x )为奇函数,周期为2,∴f (1)=f (1-2)=f (-1)=-f (1),∴f (1)=0.∵f (x )=4x ,x ∈(0,1),∴)25(-f =)21()21()225(f f f -=-=+-=-4⨯12=-2.∴)25(-f +f (1)=-2.答案:-24.(2015·高考课标全国卷Ⅰ)若函数f (x )=x ln(x +a +x 2)为偶函数,则a =________. 解析:由题意得f (x )=x ln(x +a +x 2)=f (-x )= -x ln(a +x 2-x ),所以a +x 2+x =1a +x 2-x,解得a =1.答案:15.(2014·高考四川卷)设f (x )是定义在R 上的周期为2的函数,当x ∈[-1,1)时,f (x )=⎩⎨⎧-4x 2+2,-1≤x <0,x , 0≤x <1,则)23(f =________.解析:由已知易得)21(-f =12)21(42=+-⨯-,又由函数的周期为2,可得)23(f =)21(-f =1. 答案:1课时规范训练 A 组 基础演练1.下列函数中为偶函数的是( )A .y =x 2sin xB .y =x 2cos xC .y =|ln x |D .y =2-x解析:选B.因为y =x 2是偶函数,y =sin x 是奇函数,y =cos x 是偶函数,所以A 选项为奇函数,B 选项为偶函数;C 选项中函数图象是把对数函数y =ln x 的图象在x 轴下方部分翻折到x 轴上方,其余部分的图象保持不变,故为非奇非偶函数;D 选项为指数函数y =x )21(,是非奇非偶函数.2.下列函数中既不是奇函数也不是偶函数的是( )A .y =2|x |B .y =lg(x +x 2+1)C .x x y -+=22D .y =lg1x +1解析:选D.选项D 中函数定义域为(-1,+∞),不关于原点对称,故y =lg 1x +1不是奇函数也不是偶函数,选项A 为偶函数,选项B 为奇函数,选项C 为偶函数.3.若f (x )是R 上周期为5的奇函数,且满足f (1)=1,f (2)=2,则f (3)-f (4)等于( ) A .-1 B .1 C .-2 D .2解析:选A.由f (x )是R 上周期为5的奇函数知f (3)=f (-2)=-f (2)=-2, f (4)=f (-1)=-f (1)=-1,∴f (3)-f (4)=-1,故选A.4.已知函数f (x )为奇函数,且当x >0时,f (x )=x 2+1x ,则f (-1)=( ) A .-2 B .0 C .1 D .2 解析:选A.当x >0时,f (x )=x 2+1x , ∴f (1)=12+11=2.∵f (x )为奇函数,∴f (-1)=-f (1)=-2.5.设f (x )是定义在R 上的周期为3的函数,当x ∈[-2,1)时,f (x )=⎩⎨⎧4x 2-2,-2≤x ≤0x ,0<x <1,则)25(f =( )A .0B .1 C.12 D .-1解析:选D.因为f (x )是周期为3的周期函数,所以)25(f =)21()321(-=+-f f =4×2)21(--2=-1,故选D.6.函数f (x )对于任意实数x 满足条件f (x +2)=1f (x ),若f (1)=-5,则f (f (5))=________. 解析:f (x +2)=1f (x ),∴f (x +4)=1f (x +2)=f (x ), ∴f (5)=f (1)=-5,∴f (f (5))=f (-5)=f (3)=1f (1)=-15. 答案:-157.已知f (x )是定义在R 上的偶函数,f (2)=1,且对任意的x ∈R ,都有f (x +3)=f (x ),则f (2 017)=________.解析:由f (x +3)=f (x )得函数f (x )的周期T =3,则f (2 017)=f (1)=f (-2),又f (x )是定义在R 上的偶函数,所以f (2 017)=f (2)=1. 答案:18.函数f (x )=e x +x (x ∈R )可表示为奇函数h (x )与偶函数g (x )的和,则g (0)=________. 解析:由题意可知h (x )+g (x )=e x +x ①,用-x 代替x 得h (-x )+g (-x )=e -x -x ,因为h (x )为奇函数,g (x )为偶函数,所以 -h (x )+g (x )=x e x -- ②.由(①+②)÷2得g (x )=e x +e -x 2,所以g (0)=e 0+e 02=1. 答案:19.已知f (x )是R 上的奇函数,且当x ∈(-∞,0)时,f (x )=-x lg(2-x ),求f (x )的解析式. 解:设x ∈(0,+∞),∴-x ∈(-∞,0),∴f (-x )=x lg(2+x ), ∵f (x )为奇函数,f (-x )=-f (x ),∴-f (x )=x lg(2+x ),∴f (x )=-x lg(2+x ). 又∵当x =0时,f (0)=0,适合f (x )=-x lg(2+x ) ∴f (x )=⎩⎨⎧-x lg (2+x ) x ∈[0,+∞)-x lg (2-x ) x ∈(-∞,0)10.已知函数f (x )=x 2+ax (x ≠0,常数a ∈R ). (1)讨论函数f (x )的奇偶性,并说明理由;(2)若函数f (x )在[2,+∞)上为增函数,求实数a 的取值范围. 解:(1)函数f (x )的定义域为{x |x ≠0}, 当a =0时,f (x )=x 2(x ≠0),显然为偶函数;当a ≠0时,f (1)=1+a ,f (-1)=1-a ,因此f (1)≠f (-1),且f (-1)≠-f (1),所以函数f (x )=x 2+a x (x ≠0)既不是奇函数,也不是偶函数.(2)f ′(x )=2x -a x 2=2x 3-a x 2,当a ≤0时,f ′(x )>0,则f (x )在[2,+∞)上是增函数;当a >0时,令f ′(x )=2x 3-a x 2≥0,解得x ≥32a ,由f (x )在[2,+∞)上是增函数,可知32a ≤2,解得0<a ≤16.综上,实数a 的取值范围是(-∞,16].B 组 能力突破1.若f (x )是定义在R 上的函数,则“f (0)=0”是“函数f (x )为奇函数”的 ( )A .必要不充分条件B .充要条件C .充分不必要条件D .既不充分也不必要条件解析:选A.f (x )在R 上为奇函数⇒f (0)=0;f (0)=0f (x )在R 上为奇函数,如f (x )=x 2,故选A. 2.已知定义在R 上的奇函数f (x )和偶函数g (x )满足f (x )+g (x )=x x a a --+2(a >0,且a ≠1).若g (2)=a ,则f (2)等于( )A .2 B.154 C.174 D .a 2解析:选B.∵f (x )为奇函数,g (x )为偶函数,∴f (-2)=-f (2),g (-2)=g (2)=a ,∵f (2)+g (2)=a 2-a -2+2,①∴f (-2)+g (-2)=g (2)-f (2)=a -2-a 2+2,②由①、②联立,g (2)=a =2,f (2)=a 2-a -2=154.3.已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,则( )A .f (-25)<f (11)<f (80)B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11)解析:选D.由函数f (x )是奇函数且f (x )在[0,2]上是增函数可以推知,f (x )在[-2,2]上递增,又f (x -4)=-f (x )⇒f (x -8)=-f (x -4)=f (x ),故函数f (x )是以8为周期的周期函数.f (-25)=f (-1),f (11)=f (3)=-f (3-4)=f (1),f (80)=f (0),故f (-25)<f (80)<f (11).4.定义在R 上的函数f (x ),对任意x 均有f (x )=f (x +2)+f (x -2)且f (2 016)=2 016,则f (2 028)=________.解析:∵x ∈R ,f (x )=f (x +2)+f (x -2),∴f (x +4)=f (x +2)-f (x )=-f (x -2),∴f (x +6)=-f (x ),∴f (x +12)=f (x ),则函数f (x )是以12为周期的函数.又∵f (2 016)=2 016,∴f (2 028)=f (2 028-12)=f (2 016)=2 016.答案:2 0165.函数f (x )的定义域为D ={x |x ≠0},且满足对于任意x 1,x 2∈D ,有)()()(2121x f x f x x f +=⋅.(1)求f (1)的值;(2)判断f (x )的奇偶性并证明你的结论;(3)如果f (4)=1,f (x -1)<2,且f (x )在(0,+∞)上是增函数,求x 的取值范围.解:(1)∵对于任意x 1,x 2∈D ,有f (x 1·x 2)=f (x 1)+f (x 2),∴令x 1=x 2=1,得f (1)=2f (1),∴f (1)=0.(2)令x 1=x 2=-1,有f (1)=f (-1)+f (-1),∴f (-1)=12f (1)=0.令x 1=-1,x 2=x ,有f (-x )=f (-1)+f (x ),∴f (-x )=f (x ),∴f (x )为偶函数.(3)依题设有f (4×4)=f (4)+f (4)=2,由(2)知,f (x )是偶函数,∴f (x -1)<2⇔f (|x -1|)<f (16).又f (x )在(0,+∞)上是增函数.∴0<|x -1|<16,解得-15<x <17且x ≠1.∴x 的取值范围是{x |-15<x <17且x ≠1}.。
专题——函数的奇偶性,周期性,对称性
![专题——函数的奇偶性,周期性,对称性](https://img.taocdn.com/s3/m/be0825447f21af45b307e87101f69e314332fa2a.png)
专题1函数的奇偶性,周期性,对称性知识梳理【题型解读】【知识储备】一.函数的奇偶性奇偶性定义图象特点偶函数一般地,如果对于函数f (x )的定义域内任意一个x ,都有f (-x )=f (x ),那么函数f (x )就叫做偶函数关于y 轴对称奇函数一般地,如果对于函数f (x )的定义域内任意一个x ,都有f (-x )=-f (x ),那么函数f (x )就叫做奇函数关于原点对称二.关于函数对称性的结论扩充1.若函数y =f (x )的图象关于x =a 对称⇔对定义域内任意x 都有f (a +x )=f (a -x )⇔对定义域内任意x 都有f (x )=f (2a -x )⇔y =f (x +a )是偶函数。
2.函数y =f (x )的图象关于点(a,0)对称⇔对定义域内任意x 都有f (a -x )=-f (a +x )⇔f (2a -x )=-f (x )⇔y =f (x +a )是奇函数。
3.若函数y =f (x )对定义域内任意x 都有f (x +a )=f (b -x ),则函数f (x )的图象的对称轴是x =a +b2。
4.若函数y =f (x )对定义域内任意x 都有f (a +x )+f (b -x )=c ,则函数f (x )的图象的对称中心为22a b c+(,)。
5.函数y =f (|x -a |)的图象关于x =a 对称。
三.关于函数周期性的结论扩充1.若满足f (x +a )=-f (x ),则f (x +2a )=f ((x +a )+a )=-f (x +a )=f (x ),所以2a 是函数的一个周期(a ≠0)。
2.若满足f (x +a )=1f (x ),则f (x +2a )=f ((x +a )+a )=1f (x +a )=f (x ),所以2a 是函数的一个周期(a ≠0)。
3.若函数满足f (x +a )=-1f (x ),同理可得2a 是函数的一个周期(a ≠0)。
专题05 函数周期性,对称性,奇偶性问题(学生版)-2024年高考二级结论速解技巧
![专题05 函数周期性,对称性,奇偶性问题(学生版)-2024年高考二级结论速解技巧](https://img.taocdn.com/s3/m/98a0969629ea81c758f5f61fb7360b4c2e3f2a36.png)
f (a + x)= f (a − x)
最常逆应用:若 y
=
f (x) 关于 x
=
a
对称:可得到如下结论中任意一个:
f= ( x)
f (2a − x)
;
f (−x=) f (2a + x)
周期性与对称性记忆口诀:同号周期,异号对称.
(2)点对称:若 f (a + x) =− f (b − x) + c ,则 y = f (x) 的图象关于点 ( a + b , c ) 对称. 22
C. f (2022) = 0
D. f (2023) = 2
三、填空题
6.(2023·四川南充·四川省南部中学校考模拟预测)已知函数 f ( x) 是定义在 R 上的奇函数,对任意的 x∈ R
都有
f
x
+
3 2
= − f
(
x)
,当
x
∈
−
3 4
,
0
时, = f ( x)
log2 (1+ x) ,则 f (2021) + f (2022) = _________
当 x ∈[−2, 0] 时, f= ( x)
1 x 3
+
b
,则
f
(log3 162)
= ___________.
11.(2023·全国·高三专题练习)已知定义在 R 上的函数 f (x) 满足 f (2 + x) =f (x) ,当 x ∈[0, 2]时,
f (x) = −x(x − 2) ,则方程 f (x) = lg x 有___________个根.
最常逆应用:若 y
函数的奇偶性与周期性知识点与经典例题
![函数的奇偶性与周期性知识点与经典例题](https://img.taocdn.com/s3/m/40435d0d0066f5335a8121b8.png)
函数的奇偶性与周期性知识点和经典试题本节知识点详解:1.函数的奇偶性2.函数的周期性(1)周期函数:对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数y =f(x)为周期函数,称T为这个函数的周期.(2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.重要结论:1.函数奇偶性的四个重要结论(1)如果一个奇函数f(x)在原点处有定义,即f(0)有意义,那么一定有f(0)=0.(2)如果函数f(x)是偶函数,那么f(x)=f(|x|).(3)奇函数在两个对称的区间上具有相同的单调性;偶函数在两个对称的区间上具有相反的单调性.(4)奇函数的图像在对称的区间上单调性相同,偶函数在对称的区间上单调性相反。
(5)运算性质①“奇+奇”是奇,“奇-奇”是奇,“奇·奇”是偶,“奇÷奇”是偶;②“偶+偶”是偶,“偶-偶”是偶,“偶·偶”是偶,“偶÷偶”是偶;③“奇·偶”是奇,“奇÷偶”是奇.2.函数周期性的三个常用结论对f(x)定义域内任一自变量的值x:(1)若f(x+a)=-f(x),则T=2a;(2)若f(x+a)=1f(x),则T=2a;(3)若f(x+a)=-1f(x),则T=2a.(a>0)3.函数对称性的三个常用结论(1)若函数y=f(x+a)是偶函数,即f(a-x)=f(a+x),则函数y=f(x)的图象关于直线x=a对称;(2)若对于R上的任意x都有f(2a-x)=f(x)或f(-x)=f(2a+x),则y=f(x)的图象关于直线x=a对称;(3)若函数y=f(x+b)是奇函数,即f(-x+b)+f(x+b)=0,则函数y =f(x)关于点(b,0)中心对称.经典选题一、判断题:判断下列说法是否正确,正确的在它后面的括号里打“√”,错误的打“×”.(1)函数y=x2,x∈(0,+∞)是偶函数.()(2)偶函数图象不一定过原点,奇函数的图象一定过原点.()(3)如果函数f(x),g(x)为定义域相同的偶函数,则F(x)=f(x)+g(x)是偶函数.()(4)若函数y=f(x+a)是偶函数,则函数y=f(x)关于直线x=a对称.()(5)若函数y=f(x+b)是奇函数,则函数y=f(x)关于点(b,0)中心对称.答案:(1)×(2)×(3)√(4)√(5)√二、选择题:1.已知f(x)=ax2+bx是定义在[a-1,2a]上的偶函数,那么a+b 的值是()A.-13 B.13 C.12D.-12答案:B2.下列函数为奇函数的是()A.y=2x-12x B.y=x3sin xC.y=2cos x+1 D.y=x2+2x答案:A3.下列函数为奇函数的是()A.y=x B.y=|sin x|C.y=cos x D.y=e x-e-x答案:D4.下列函数中,在(0,+∞)上单调递减,并且是偶函数的是( )A .y =x 2B .y =-x 3C .y =-ln|x |D .y =2x答案:C5.(高考全国Ⅰ卷)设函数f (x ),g (x )的定义域都为R ,且f (x )是奇函数,g (x )是偶函数,则下列结论中正确的是( )A .f (x )g (x )是偶函数B .|f (x )|g (x )是奇函数C .f (x )|g (x )|是奇函数D .|f (x )g (x )|是奇函数答案:C6.已知定义在R 上的奇函数f (x )满足f (x +1)=f (x ),当0<x <12时,f (x )=4x,则f ⎝ ⎛⎭⎪⎫-54=( )A .- 2B .-22C .-1 D.22 答案:A7. 已知f (x )为定义在R 上的奇函数,当x ≥0时,f (x )=2x +m ,则f (-2)=( )A .-3B .-54 C.54 D .3 答案:A8.已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2+2x ,若f (2-a 2)>f (a ),则实数a 的取值范围是( )A .(-∞,-1)∪(2,+∞)B .(-1,2)C .(-2,1)D .(-∞,-2)∪(1,+∞) 答案:C9.定义在R 上的奇函数f (x )满足f (x +2)=-1f (x ),且在(0,1)上f (x )=3x ,则f (log 354)=( )A.32B.23 C .-32 D .-23 答案:C10.已知f (x )是定义在实数集R 上的奇函数,对任意的实数x ,f (x -2)=f (x +2),当x ∈(0,2)时,f (x )=-x 2,则f ⎝ ⎛⎭⎪⎫132=( )A .-94B .-14 C.14 D.94 答案:D11. (理科)(2015·高考新课标卷Ⅱ)设函数f (x )=ln(1+|x |)-11+x 2,则使得f (x )>f (2x -1)成立的x 的取值范围是( ) A.⎝ ⎛⎭⎪⎫13,1 B.⎝ ⎛⎭⎪⎫-∞,13∪(1,+∞) C.⎝ ⎛⎭⎪⎫-13,13 D.⎝ ⎛⎭⎪⎫-∞,-13∪⎝ ⎛⎭⎪⎫13,+∞ 答案:A12.已知f (x )是定义在R 上的以3为周期的偶函数,若f (1)<1,f (5)=2a -3a +1,则实数a 的取值范围为( )A .(-1,4)B .(-2,0)C .(-1,0)D .(-1,2) 答案:A13.已知f (x )是R 上最小正周期为2的周期函数,且当0≤x <2时,f (x )=x 3-x ,则函数y =f (x )的图象在区间[0,6]上与x 轴的交点的个数为( )A .6B .7C .8D .9 答案:B14.已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,则( )A .f (-25)<f (11)<f (80)B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11) 答案:D三、填空题1. (2017·高考全国Ⅱ卷)已知函数f (x )是定义在R 上的奇函数,当x ∈(-∞,0)时,f (x )=2x 3+x 2,则f (2)= ________ . 答案:122.设函数f (x )是定义在R 上的奇函数,若当x ∈(0,+∞)时,f (x )=lg x ,则满足f (x )>0的x 的取值范围是 ________ .答案:(-1,0)∪(1,+∞)3. (2015·高考全国Ⅰ卷)若函数f (x )=x ln (x +a +x 2)为偶函数,则a = ________ .答案:14.已知f (x )是定义在R 上的奇函数,当x >0时,f (x )=x 2-4x ,则f (x )= ________ .答案:⎩⎪⎨⎪⎧x 2-4x ,x >0,0,x =0,-x 2-4x ,x <05.已知函数y =f (x )是R 上的偶函数,且在[0,+∞)上是增函数,若f (a )≥f (2),则实数a 的取值范围是 __________ .答案: {a |a ≥2或a ≤-2}。
函数的奇偶性与周期性
![函数的奇偶性与周期性](https://img.taocdn.com/s3/m/39ca9de7b04e852458fb770bf78a6529647d351d.png)
函数的奇偶性与周期性1课时1.函数的奇偶性定义2.函数的周期性定义1周期函数判断函数的奇偶性例11下列函数为奇函数的是A.y=错误!B.y=e xC.y=cos x D.y=e x-e-x2下列函数中为偶函数的是A.y=错误!B.y=lg|x|C.y=x-12D.y=2x3函数fx=错误!+错误!,则A.不具有奇偶性B.只是奇函数C.只是偶函数D.既是奇函数又是偶函数方法判断函数的奇偶性的三种重要方法1定义法:2图象法:函数是奇偶函数的充要条件是它的图象关于原点y轴对称.3性质法:①“奇+奇”是奇,“奇-奇”是奇,“奇·奇”是偶,“奇÷奇”是偶;②“偶+偶”是偶,“偶-偶”是偶,“偶·偶”是偶,“偶÷偶”是偶;③“奇·偶”是奇,“奇÷偶”是奇.练习判断下列函数的奇偶性1fx=x+1 错误!;2fx=lg错误!.函数的周期性及应用例21下列函数不是周期函数的是A.y=sin x B.y=|sin x|C.y=sin|x| D.y=sin x+12已知函数fx是定义在R上的偶函数,若对于x≥0,都有fx+2=-错误!,且当x∈0,2时,fx=log2x+1,则求f-2 017+f2 019的值为________.方法1利用周期fx+T=fx将不在解析式范围之内的x通过周期变换转化到解析式范围之内,以方便代入解析式求值.2判断函数周期性的几个常用结论.①fx+a=-fx,则fx为周期函数,周期T=2|a|.②fx+a=错误!a≠0,则函数fx必为周期函数,2|a|是它的一个周期;③fx+a=-错误!,则函数fx必为周期函数,2|a|是它的一个周期.练习1.若将本例2中“fx+2=-错误!”变为“fx+2=-fx”,则f-2 017+f2 019=________.2.若本例2条件变为fx对于x∈R,都有fx+2=fx且当x∈0,2时,fx=log2x+1,求f-2 017+f2 019的值.函数奇偶性的综合应用例31若函数fx=错误!是奇函数,则使fx>3成立的x的取值范围为A.-∞,-1B.-1,0C.0,1 D.1,+∞2函数fx=错误!是定义在-1,1上的奇函数,且f错误!=错误!.①确定函数fx的解析式;②用定义证明fx在-1,1上是增函数;③解不等式ft-1+ft<0.3已知fx是R上的奇函数,当x≥0时,fx=x3+ln1+x,则当x<0时,fx=A.-x3-ln1-x B.x3+ln1-xC.x3-ln1-x D.-x3+ln1-x练习1.已知fx=ax2+bx是定义在a-1,2a上的偶函数,那么a+b的值是________.2.定义在R上的偶函数y=fx在0,+∞上递减,且f错误!=0,则满足f x<0的x的集合为∪2,+∞∪1,2∪2,+∞∪2,+∞3.已知函数fx=-x+log2错误!+1,则f错误!+f错误!的值为A.2 B.-2C.0 D.2log2错误!“多法并举”解决抽象函数性质问题典例2017·山东泰安模拟定义在R上的函数fx满足fx+y=fx+fy,fx+2=-fx 且fx在-1,0上是增函数,给出下列四个命题:①fx是周期函数;②fx的图象关于x=1对称;③fx在1,2上是减函数;④f2=f0,其中正确命题的序号是________请把正确命题的序号全部写出来.高考真题体验1.2014·高考课标全国卷Ⅰ设函数fx,gx的定义域都为R,且fx是奇函数,gx是偶函数,则下列结论中正确的是A.fxgx是偶函数B.|fx|gx是奇函数C.fx|gx|是奇函数D.|fxgx|是奇函数2.2016·高考山东卷已知函数fx的定义域为R.当x<0时,fx=x3-1;当-1≤x≤1时,f-x=-fx;当x>错误!时,f错误!=f错误!.则f6=A.-2 B.-1C.0 D.23.2016·高考四川卷已知函数fx是定义在R上的周期为2的奇函数,当0<x<1时,fx=4x,则f错误!+f1=________.4.2015·高考课标全国卷Ⅰ若函数fx=x ln x+错误!为偶函数,则a=________. 5.2014·高考四川卷设fx是定义在R上的周期为2的函数,当x∈-1,1时,fx=错误!则f错误!=________.课后巩固练习1.下列函数中为偶函数的是A.y=x2sin x B.y=x2cos xC.y=|ln x| D.y=2-x2.下列函数中既不是奇函数也不是偶函数的是A.y=2|x|B.y=lg x+错误!C.y=2x+2-x D.y=lg错误!3.若fx是R上周期为5的奇函数,且满足f1=1,f2=2,则f3-f4等于A.-1 B.1C.-2 D.24.已知函数fx为奇函数,且当x>0时,fx=x2+错误!,则f-1=A.-2 B.0C.1 D.25.设fx是定义在R上的周期为3的函数,当x∈-2,1时,fx=错误!,则f错误!=A.0 B.1D.-16.函数fx对于任意实数x满足条件fx+2=错误!,若f1=-5,则ff5=________. 7.已知fx是定义在R上的偶函数,f2=1,且对任意的x∈R,都有fx+3=fx,则f2 017=________.8.函数fx=e x+xx∈R可表示为奇函数hx与偶函数gx的和,则g0=________. 9.已知fx是R上的奇函数,且当x∈-∞,0时,fx=-x lg2-x,求fx的解析式.10.已知函数fx=x2+错误!x≠0,常数a∈R.1讨论函数fx的奇偶性,并说明理由;2若函数fx在2,+∞上为增函数,求实数a的取值范围.能力突破1.若fx是定义在R上的函数,则“f0=0”是“函数fx为奇函数”的A.必要不充分条件B.充要条件C.充分不必要条件D.既不充分也不必要条件2.已知定义在R上的奇函数fx和偶函数gx满足fx+gx=a x-a-x+2a>0,且a≠1.若g2=a,则f2等于A.2D.a23.已知定义在R上的奇函数fx满足fx-4=-fx,且在区间0,2上是增函数,则A.f-25<f11<f80B.f80<f11<f-25C.f11<f80<f-25D.f-25<f80<f114.定义在R上的函数fx,对任意x均有fx=fx+2+fx-2且f2 016=2 016,则f2 028=________.5.函数fx的定义域为D={x|x≠0},且满足对于任意x1,x2∈D,有fx1·x2=fx1+fx2.1求f1的值;2判断fx的奇偶性并证明你的结论;3如果f4=1,fx-1<2,且fx在0,+∞上是增函数,求x的取值范围.。
函数的奇偶性及周期性
![函数的奇偶性及周期性](https://img.taocdn.com/s3/m/47ac6b8d25c52cc58ad6beb3.png)
函数的奇偶性及周期性知识回顾1.函数的奇偶性奇偶性 定义 图象特点偶函数 如果对于函数f (x )的定义域内任意一个x ,都有f (-x )=f (x ),那么函数f (x )是偶函数 关于y 轴对称奇函数 如果对于函数f (x )的定义域内任意一个x ,都有f (-x )=-f (x ),那么函数f (x )是奇函数关于原点对称2.函数奇偶性的几个重要结论 (1)f (x )为奇函数⇔f (x )的图象关于原点对称;f (x )为偶函数⇔f (x )的图象关于y 轴对称. (2)如果函数f (x )是偶函数,那么f (x )=f (|x |).(3)既是奇函数又是偶函数的函数只有一种类型,即f (x )=0,x ∈D ,其中定义域D 是关于原点对称的非空数集.(4)奇函数在两个对称的区间上具有相同的单调性,偶函数在两个对称的区间上具有相反的单调性. (5)偶函数在关于原点对称的区间上有相同的最大(小)值,取最值时的自变量互为相反数;奇函数在关于原点对称的区间上的最值互为相反数,取最值时的自变量也互为相反数.3.函数的对称性(1)若函数y =f (x )满足f (a +x )=f (b -x ),则函数y =f (x )关于直线x =a +b2对称,特别地,当a =b =0时,函数y =f (x )关于y 轴对称,此时函数y =f (x )是偶函数.(2)若函数y =f (x )满足f (x )=2b -f (2a -x ),则函数y =f (x )关于点(a ,b )对称,特别地,当a =0,b =0时,f (x )=-f (-x ),则函数y =f (x )关于原点对称,此时函数f (x )是奇函数.4.函数的周期性(1)周期函数对于函数f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=f (x ),那么就称函数f (x )为周期函数,称T 为这个函数的周期.(2)最小正周期如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期. 5.关于周期的结论(1)若f (x +a )=f (x -a ),则函数的周期为2a ; (2)若f (x +a )=-f (x ),则函数的周期为2a ; (3)若f (x +a )=1f x,则函数的周期为2a ; (4)若f (x +a )=-1f x,则函数的周期为2a .课前检测1.下列函数中为偶函数的是( )A .y =x 2sin xB .y =x 2cos xC .y =|ln x |D .y =2-x2.下列函数为奇函数的是( )A .y =xB .y =e xC .y =|x |D .y =e x -e -x3.【2020年浙江杭州杭州市西湖高级中学高一上学期期末考试数学试卷】若函数为奇函数,则实数( )A .B .C .D .4.【2019年浙江杭州单元测试】已知在上为奇函数,当,,则当 时,的解析式为 ________5.【2019年浙江宁波宁波效实中学高一上学期期中考试数学试卷(理)】已知定义在 上的偶函数 ,当 时,,则函数 的解析式为______________________;若有 ,则的取值范围为______________________.课中讲解考点一.奇偶性的判断例1 判断下列函数的奇偶性: (1)f (x )=x 3-x ; (2)f (x )=(x +1)1-x1+x; (3)f (x )=⎩⎪⎨⎪⎧x 2+x , x <0,-x 2+x , x >0.例2.【2020年9月陕西西安长安区第一中学高一上学期月考数学试卷】设函数,的定义域为,且是奇函数,是偶函数,则下列结论正确的是()A.是偶函数B.是奇函数C.是奇函数D.是奇函数考点二.奇偶性的应用例1.【2018年4月江西南昌江西师范大学附属中学高三下学期月考数学试卷(文)】定义在上的函数满足,、,,有下列命题:①;②设,是偶函数;③设,是常函数;④若,则的值可组成等差数列.其中正确命题有________ .(填所有正确命题序号)变式1.【2018年10月浙江金华东阳中学高一上学期月考数学试卷】已知函数是定义在上的奇函数,若对于任意给定的实数,,且,不等式恒成立,则不等式的解集为________.例2.【2017年陕西西安西安电子科技大学附属中学高一上学期期中考试数学试卷】已知是定义在上的奇函数,且当时,,则在上的解析式是____________________.变式2.【2020年9月陕西西安西安交通大学第二附属中学高一上学期月考数学试卷】已知是偶函数,,当时,为增函数,若,,且,则有()A.B.C.D.例3.【2020年浙江杭州杭州源清中学高一上学期期末考试数学试卷】已知是定义在上的偶函数,那么的值是()A.B.C.D.变式3.【2019年浙江台州高一上学期期中考试数学试卷五校】已知函数是定义在上的奇函数,当时,为单调递增函数,且,则满足的的取值范围是()A.B.C.D.变式4.(多选)已知函数对任意实数,,恒有且当,.其中正确的结论是()A.B.为偶函数C.为上减函数D.为上增函数考点三.周期性的应用例1.定义在上的函数满足:,当时,,则________ .变式1.已知函数满足,,则等于()A.B.C.D.例2.已知:函数是上的偶函数,是上的奇函数,且,若,则的值为________.变式2.定义在上的函数满足,当时,,当时,.则()A.B.C.D.例3.设偶函数对任意,都有,且当时,,则()A.B.C.D.变式3.设定义在上的函数满足,若,则().A.B.C.D.例4.已知定义在上的函数,对任意,,都有且,则________ .例5.设函数关于函数有以下四个结论:①值域为;②是周期函数;③是单调函数;④是偶函数;其中正确的结论个数为:()A.B.C.D.变式5.【2020年9月陕西西安西安车辆厂中学高一上学期月考数学试卷】老师给出一个函数,四个学生甲、乙、丙、丁各指出这个函数的一个性质:甲:对任意,都有;乙:在上,函数单调递减;丙:在上,函数单调递增;丁:不是函数的最小值.如果其中恰有三个人说得正确,则函数的解析式可能是________.考点四.对称性的应用例1.【2018年陕西西安雁塔区高新一中高一上学期期中考试数学试卷】定义在上的奇函数,当时,,则关于的函数的所有零点之和为()A.B.C.D.变式1.已知,,方程在内有且只有一个根,则在区间内根的个数为()A.B.C.D.例2.定义在上的函数满足,又,,给出下列命题:①的图象关于直线对称,的图象与的图象关于直线对称;②的图象关于直线对称,的图象与的图象关于直线对称;③的图象关于直线对称,的图象关于直线对称;④的图象关于直线对称,的图象关于直线对称.其中正确的命题是________(填入正确命题的序号).变式2.给出定义:设是函数的导数,是函数的导数,若方程有实数解,则称点为函数的“拐点”.对于三次函数,有如下真命题:任何一个三次函数都有唯一的“拐点”,且该“拐点”就是的对称中心,给定函数,请你根据上面结论,计算________.例3.已知函数是上的奇函数,若将不管向左还是向右平移一个单位都将得到一个偶函数,记向左平移一个单位得到的函数为,且,则________.变式3.已知定义在上的函数的图象关于点成中心对称,对任意实数都有,且,,则________考点五.函数的综合应用例1.【2019年重庆高二下学期期末考试数学试卷(区县卷文)】定义在上的偶函数满足,且在上单调递减,则()A.B.C.D.变式1.【2019年广东深圳龙岗区高一上学期期末考试数学试卷】设是定义在上的奇函数,且当时,,若对于任意的,不等式恒成立,则实数的取值范围是________.例2.【2018年9月广东深圳宝安区高三上学期月考数学试卷(理)】设的定义在上的偶函数,且当时,,若对任意的,不等式恒成立,则实数的最大值是________.变式2.函数是定义在上的偶函数,且满足,当时,,若方程恰有三个不相等的实数根,则实数的取值范围是().A.B.C.D.课后练习一单选题1.【2019年重庆重庆市南开中学高一上学期期中考试数学试卷】定义在上的满足:,且对任意两个不相等的实数,,都有,,则的解集为()A.B.C.D.2.【2019年浙江温州高二上学期期中考试数学试卷新力量联盟】设函数,则使得成立的的取值范围是()A.,B.,,C.,D.,,3.【2018年浙江杭州十四康桥高一上学期期中考试数学试卷】设函数,若不等式对任意恒成立,则实数的取值范围是()A.B.C.D .4.奇函数 满足 ,当 时,,则 ( )A .B .C .D .5.已知定义在 上的函数 ,对任意,都有 成立,若函数的图象关于直线 对称,则=( )A .B .C .D .6.定义在 上的偶函数 满足 ,对 , 且 ,都有 ,则有( ) A . B . C . D .二 多选题7.(2020•山东新高考模拟演练3)已知函数()e e x x f x -=-,()e e x xg x -=+,则以下结论错误的是( )A .任意的1x ,2x ∈R 且12x x ≠,都有()()12120f x f x x x -<-B .任意的1x ,2x ∈R 且12x x ≠,都有()()12120g x g x x x -<-C .()f x 有最小值,无最大值D .()g x 有最小值,无最大值8.(2020•山东新高考模拟演练5)已知函数229,1()4,1x ax x f x x a x x ⎧-+≤⎪=⎨++>⎪⎩,若()f x 的最小值为(1)f ,则实数a 的值可以是( ) A .1B .2C .3D .49.(2020•福建泉州)已知f(x)是定义在R 上的奇函数,f(1+x)=f(1-x)。
函数的基本性质 (学生版)
![函数的基本性质 (学生版)](https://img.taocdn.com/s3/m/43bee57327284b73f24250a0.png)
函数的基本性质 一.考点,难点,热点;1.函数的基本概念 (1)函数的定义设A ,B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f (x )和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数,记作y =f (x ),x ∈A . (2)函数的定义域、值域在函数y =f (x ),x ∈A 中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )|x ∈A }叫做函数的值域.显然,值域是集合B 的子集.(3)函数的三要素:定义域、对应关系和值域. (4)函数的表示法表示函数的常用方法有解析法、图象法和列表法. 2.映射的概念设A ,B 是两个非空的集合,如果按某一个确定的对应关系f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应f :A →B 为从集合A 到集合B 的一个映射. 3.函数解析式的求法求函数解析式常用方法有待定系数法、换元法、配凑法、消去法. 4.常见函数定义域的求法 (1)分式函数中分母不等于零. (2)偶次根式函数被开方式大于或等于0. (3)一次函数、二次函数的定义域为R .(4)y =a x (a >0且a ≠1),y =sin x ,y =cos x ,定义域均为R .(5)y =tan x 的定义域为⎩⎨⎧⎭⎬⎫x |x ∈R 且x ≠k π+π2,k ∈Z .(6)函数f (x )=x α的定义域为{x |x ∈R 且x ≠0}. 5.函数的单调性 (1)单调函数的定义增函数减函数定义一般地,设函数f (x )的定义域为I :如果对于定义域I 内某个区间D 上的任意两个自变量的值x 1,x 2当x 1<x 2时,都有f (x 1)<f (x 2),当x 1<x 2时,都有f (x 1)>f (x 2),那么就说函数f (x )在区间D 上是增函数那么就说函数f (x )在区间D上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的(2)单调区间的定义如果函数y =f (x )在区间D 上是增函数或减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做函数y =f (x )的单调区间. 6.函数的最值前提设函数y =f (x )的定义域为I ,如果存在实数M 满足 条件(1)对于任意x ∈I ,都有f (x )≤M ;(2)存在x 0∈I ,使得f (x 0)=M .(3)对于任意x ∈I ,都有f (x )≥M ;(4)存在x 0∈I ,使得f (x 0)=M .结论M 为最大值M 为最小值7.函数的奇偶性奇偶性,定义,图象特点偶函数,如果对于函数f (x )的定义域内任意一个x ,都有f (-x )=f (x ),那么函数f (x )是偶函数,关于y 轴对称奇函数,如果对于函数f (x )的定义域内任意一个x ,都有f (-x )=-f (x ),那么函数f (x )是奇函数,关于原点对称 8.周期性(1)周期函数:对于函数y =f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=f (x ),那么就称函数y =f (x )为周期函数,称T 为这个函数的周期. (2)最小正周期:如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期. 二、典型例题考点一:函数的定义域、解析式及图像1、函数21x f (x )e -=的部分图象大致是2、函数()2lg 212x y x x=++-的定义域是( )A .1,2⎛⎫-+∞ ⎪⎝⎭B .1,22⎛⎫-⎪⎝⎭C .11,22⎛⎫-⎪⎝⎭ D .1,2⎛⎫-∞-⎪⎝⎭3、已知函数2()4f x x =-,()y g x =是定义在R 上的奇函数,当0x >时,2()log g x x =,则函数()()f x g x ⋅的大致图象为4、函数y =lg1|1|x +|的大致图象为考点二:函数的奇偶性与周期性、对称性1、已知函数()f x 是R 上的奇函数,若对于0x ≥,都有()2()f x f x +=,[)()()20,2,log 1x f x x ∈=+当时时,()()20132012f f -+的值为( )A .2-B .1-C .1D .22、已知函数()f x 对任意x R ∈都有(6)()2(3),(1)f x f x f y f x ++==-的图象关于点(1,0)对称,则(2013)f =( )A .10B .5-C .5D .03、已知函数()f x 的定义域为(32,1)a a -+,且(1)f x +为偶函数,则实数a 的值可以是 ( )A .23B .2C .4D .64、已知函数()f x 是定义在R 上的奇函数,当x >0时,()12x f x -=-,则不等式()f x <12-的解集是 ( )A .(),1-∞-B .(],1-∞-C .()1,+∞D .[)1,+∞5、已知f(x)是以2为周期的偶函数,且当x∈(0,1)时,2()21,(log 12)x f x f =-则=A.13B .43C .2D .11三、课堂实战1、函数2ln ||x y x x=+的图象大致为2、已知函数1()()2x xf x e e -=-, 则()f x 的图象 ( )A .关于原点对称B .关于y 轴对称C .关于x 轴对称D .关于直线y x =对称3、函数y =2x-2x 的图像大致是4、已知函数()2x f x e =-,2()45g x x x =-+-.若有()()f b g a =,则a 的取值范围为( ) A .(1,3)B .(22,22)-+C .[22,22]-+D .[2,3] 5、已知函数()f x 的定义域为[3,6],则函数12(2)log (2)f x y x =-的定义域为( )A .3[,)2+∞ B .3[,2)2C .3(,)2+∞D .1[,2)26、已知奇函数3(0),()()(0),x a x f x g x x ⎧+=⎨⎩≥<则(2)g -的值为__________.7、已知函数⎪⎩⎪⎨⎧<+≥=4),1(4,)21()(x x f x x f x,则2(1log 5)f +的值为___________;8、奇函数)(x f y =满足1)3(=f ,且)3()()4(f x f x f -=-,则)2(f 等于( )A .0B .1C .21-D .21 9、对于函数(),y f x x R =∈,“|()|y f x =的图象关于y 轴对称”是“()y f x =是奇函数”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件10、已知定义在R 上的函数()f x ,对任意x R ∈,都有()()()63f x f x f +=+成立,若函数()1y f x =+的图象关于直线1x =-对称,则()2013f = ( )A .0B .2013C .3D .2013-11、已知()f x 是R 上最小正周期为2的周期函数,且当02x ≤<时,3()f x x x =-,则函数()y f x =的图象在区间[0,6]上与x 轴的交点的个数为( )A .6B .7C .8D .912、下列函数中既是偶函数又在(0,+∞)上是增函数的是( )A .3x y =B .1||+=x yC .12+-=x y D .||2x y -=13、下列函数中,在其定义域内,既是奇函数又是减函数的是( )A .xx f 1)(=B .x x f -=)( C .x x x f 22)(-=-D .x x f tan )(-=14、定义在R 上的偶函数()f x 满足:对任意1212,[0,)()x x x x ∈+∞≠都有2121()()0f x f x x x -<-,则有( )A .(3)(2)(1)f f f <-<B .(1)(2)(3)f f f <-<C .(2)(1)(3)f f f -<<D .(3)(1)(2)f f f <<-15、已知)(x f 为奇函数,在[]3,6上是增函数,[]3,6上的最大值为8,最小值为1-,则2(6)(3)f f -+-等于( )A .15-B .13-C .5-D .516、设()f x 是连续的偶函数,且当0x >时()f x 是单调函数,则满足3()()4x f x f x +=+的所有x 之和为( ) ( )A .3-B .3C .8-D .817、已知函数()f x 是R 上的偶函数,若对于0≥x ,都有)()2(x f x f =+,且当)2,0[∈x 时,)1(log )(2+=x x f ,则)2012()2011(f f +-的值为 ( )A .2-B .1-C .1D .218、设奇函数错误!未找到引用源。
3.2.2函数的奇偶性(学生版)
![3.2.2函数的奇偶性(学生版)](https://img.taocdn.com/s3/m/1624040126d3240c844769eae009581b6bd9bde7.png)
3.2.2.1函数的奇偶性的概念环节一 情境设置引导语 我们已经用符号语言描述了函数图象“上升”“下降”“最高点”“最低点”等性质,下面继续研究函数的其他性质.前面我们用符号语言精确地描述了函数图象在定义域的某个区间上“上升”(或“下降”)的性质.下面继续研究函数的其他性质.问题1画出并观察函数2()f x x =和()2g x x =-的图象(图3.2-6),你能发现这两个函数图象有什么共同特征吗?问题2类比函数单调性,你能用符号语言精确表达“函数图象关于y 轴对称”这一特征吗?问题3你能给偶函数下一个定义吗?问题4你能再举出几个偶函数的例子吗?并说明理由. 探究观察函数()f x x =和1()g x x=的图象(图3.2-8),你能发现这两个函数图象有什么共同特征吗?你能用符号语言精确地描述这一特征吗?问题6你能给奇函数下一个定义吗?问题7你能再举几个奇函数的例子吗?并说明理由.【知识梳理】函数的奇偶性温馨提示(1)定义域关于原点对称是函数为奇函数、偶函数的必要条件.(2)奇偶性是函数的“整体”性质,只有对函数定义域内的每一个x,都有f(-x)=-f(x)(或f(-x)=f(x)),才能说函数为奇函数(或偶函数).(3)既奇又偶的函数有且只有一类:f(x)=0,x∈D,且D是关于原点对称的集合.环节二应用新知题型一:函数奇偶性的判断角度1一般函数奇偶性的判断例6 判断下列函数的奇偶性:(1)4()f x x=;(2)5()f x x=;(3)1()f x xx=+;(4)21()f xx=.角度2 分段函数奇偶性的判定例 判断函数f (x )={x +1,x >0,−x +1,x <0的奇偶性.【练】判断下列函数的奇偶性:(1)f (x )=x 3+x ; (2)f (x )=(1-x )√1+x1−x ; (3)f (x )=2x 2+2xx +1(4)f (x )={x 2+3x,x ≥0,x 2−3x,x <0.(5)f (x )=1x ; (6)f (x )=x 2(x 2+2);(7)f (x )=xx -1; (8)f (x )=x |x |.题型二:奇、偶函数图象的应用例已知函数y=f(x)是定义在R上的偶函数,且当x≤0时,f(x)=x2+2x.现已画出函数f(x)在y轴左侧的图象,如图所示.(1)请补充完整函数y=f(x)的图象;(2)根据图象写出函数y=f(x)的单调递增区间;(3)根据图象写出使f(x)<0的x的取值集合.变式若将本例中的“偶函数”改为“奇函数”,其他条件不变,如何解答本题? 【练】定义在[-3,-1]∪[1,3]上的函数f(x)是奇函数,其部分图象如图所示.(1)请在坐标系中补全函数f(x)的图象;(2)比较f(1)与f(3)的大小.题型三利用函数的奇偶性求参数值【例】(1)若函数f(x)=x2-|x+a|为偶函数,则实数a=________.(2)已知函数f(x)=(x+1)(x+a)x为奇函数,则a=________.题型四利用函数的奇偶性求值【例】已知f(x)=x5+ax3+bx-8,且f(-2)=10,求f(2).【练】(1)若函数f(x)=ax2+bx+3a+b是偶函数,定义域为[a-1,2a],则a=________,b=________.(2)已知函数f(x)=x7-ax5+bx3+cx+2,若f(-3)=-3,则f(3)=________.3.2.2.2函数奇偶性的应用【知识梳理】1.奇、偶函数的单调性(1)若f(x)为奇函数且在区间[a,b](a<b)上单调递增,则f(x)在[-b,-a]上,即在对称区间上单调性.(2)若f(x)为偶函数且在区间[a,b](a<b)上单调递增,则f(x)在[-b,-a]上,即在对称区间上单调性.2.奇、偶函数的最值(1)若f(x)为奇函数且在区间[a,b](a<b)上有最大值为M,则f(x)在[-b,-a]上有最小值为.(2)若f(x)为偶函数且在区间[a,b](a<b)上有最大值为N,则f(x)在[-b,-a]上有最大值为.一、根据函数的奇偶性求函数的解析式题型一求对称区间上的解析式例1若f(x)是定义在R上的奇函数,当x>0时,f(x)=x2-2x+3,求f(x)的解析式.【练习1】函数f(x)是定义域为R的奇函数,当x>0时,f(x)=-x+1,求当x<0时,f(x)的解析式.【练习2】已知f(x)是R上的奇函数,且当x∈(0,+∞)时,f(x)=x(1+x),求f(x)的解析式.题型二构造方程组求解析式例2设f(x)是偶函数,g(x)是奇函数,且f(x)+g(x)=1x-1,求函数f(x),g(x)的解析式.【练习3】设f(x)是偶函数,g(x)是奇函数,且f(x)+g(x)=x2+2x,求函数f(x),g(x)的解析式.二、利用函数的奇偶性与单调性比较大小例3 已知f(x)是奇函数,且在区间[0,+∞)上单调递增,则f(-0.5),f(-1),f(0)的大小关系是( )A.f(-0.5)<f(0)<f(-1) B.f(-1)<f(-0.5)<f(0)C.f(0)<f(-0.5)<f(-1) D.f(-1)<f(0)<f(-0.5)【变式】设函数f(x)的定义域为R,对于任意实数x,总有f(-x)=f(x),当x∈[0,+∞)时,f(x)单调递增,则f(-2),f(π),f(-3)的大小关系是( )A.f(π)>f(-3)>f(-2) B.f(π)>f(-2)>f(-3)C.f(π)<f(-3)<f(-2) D.f(π)<f(-2)<f(-3)【练习4】设偶函数f(x)的定义域为R,当x∈[0,+∞)时,f(x)是增函数,则f(-2),f(π),f(-3)的大小关系是( )A.f(π)>f(-3)>f(-2) B.f(π)>f(-2)>f(-3)C.f(π)<f(-3)<f(-2) D.f(π)<f(-2)<f(-3)三、利用函数的单调性与奇偶性解不等式例4 设定义在[-2,2]上的奇函数f(x)在区间[0,2]上单调递减,若f(1-m)<f(m),求实数m的取值范围.【练习5】(1)奇函数f(x)在区间(-∞,+∞)上单调递增,不等式f(2x+1)+f(2-x)<0的解集是.(2)定义在[-2,2]上的偶函数g(x),当x≥0时,g(x)为减函数.若g(1-m)<g(m)成立,则m的取值范围是.【练习6】已知奇函数f(x)在(-∞,+∞)上单调递减,且f(1)=-1,求满足-1≤f(x-2)≤1的x的取值范围.四、单调性、奇偶性的综合应用例5已知函数f(x)=ax+b1+x2是定义域为(-1,1)上的奇函数,且f(12)=25.(1)求函数f(x)的解析式;(2)若实数t满足f(2t-1)+f(t-1)<0,求实数t的取值范围.【练习7】已知函数f(x)是R上的奇函数,当x≥0时,f(x)=x2+x.(1)当x<0时,求f(x)的解析式;(2)若f(1+a)+f(2a)>0,求实数a的取值范围.。
第五讲函数的奇偶性与周期性
![第五讲函数的奇偶性与周期性](https://img.taocdn.com/s3/m/edf053cdce2f0066f4332202.png)
第5讲函数的奇偶性与周期性最新考纲 1.结合具体函数,了解函数奇偶性的含义;2.会运用函数的图象理解和研究函数的奇偶性;3.了解函数周期性、最小正周期的含义,会判断、应用简单函数的周期性.知识梳理1.函数的奇偶性2.奇(偶)函数的性质(1)奇函数在关于原点对称的区间上的单调性,偶函数在关于原点对称的区间上的单调性(填“相同”、“相反”).(2)在公共定义域内①两个奇函数的和函数是,两个奇函数的积函数是.②两个偶函数的和函数、积函数是.③一个奇函数,一个偶函数的积函数是.(3)若函数f(x)是奇函数且在x=0处有定义,则f(0)=0.3.周期性(1)周期函数:对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=),那么就称函数y=f(x)为周期函数,称T为这个函数的周期.(2)最小正周期:如果在周期函数f(x)的所有周期中的正数,那么这个最小正数就叫做f(x)的最小正周期.诊 断 自 测1.判断正误(在括号内打“√”或“×”)精彩PPT 展示(1)函数y =x 2,x ∈(0,+∞)是偶函数.( )(2)偶函数图象不一定过原点,奇函数的图象一定过原点.( )(3)若函数y =f (x +a )是偶函数,则函数y =f (x )关于直线x =a 对称.( ) (4)函数f (x )在定义域上满足f (x +a )=-f (x ),则f (x )是周期为2a (a >0)的周期函数.( )(5)若函数y =f (x +b )是奇函数,则函数y =f (x )关于点(b ,0)中心对称.( ) 2.(2014·太原模拟)下列函数中,既是偶函数又在(0,+∞)上单调递增的函数是( )A .y =x 3B .y =|x |+1C .y =|log 2x |D .y =⎝ ⎛⎭⎪⎫12|x |3.(2014·新课标全国Ⅰ卷)设函数f (x ),g (x )的定义域都为R ,且f (x )是奇函数,g (x )是偶函数,则下列结论中正确的是( ) A .f (x )g (x )是偶函数 B .|f (x )|g (x )是奇函数 C .f (x )|g (x )|是奇函数 D .|f (x )g (x )|是奇函数4.已知f (x )在R 上是奇函数,且满足f (x +4)=f (x ),当x ∈(0,2)时,f (x )=2x 2,则f (2 015)等于( )A .-2B .2C .-98D .985.(人教A 必修1P39A6改编)已知函数f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x (1+x ),则x <0时,f (x )=________.考点一 函数奇偶性的判断及其应用例1. 定义在R 上的两个函数中,)(x f 为偶函数,)(x g 为奇函数,2)1()()(+=+x x g x f ,则=)(x f ____________变式:定义在区间(-1,1)上的函数f (x )满足2f (x )-f (-x )=lg(x +1),则f (x )的解析式为______结论:任意一个定义在R 上的函数均可以表示为一个偶函数与一个奇函数之和 教材P 52 7 已知()f x 是一个定义在R 上的函数,求证:(i )()()()g x f x f x =+-是偶函数; (ii ) ()()- ()h x f x f x =-是奇函数.变式:将)110lg()(+=x x f 分解为一个奇函数和一个偶函数之和.【例1】 (1)(2013·辽宁卷)已知函数f (x )=ln(1+9x 2-3x )+1,则f (lg2)+f ⎝ ⎛⎭⎪⎫lg 12=( )A .-1B .0C .1D .2 (2)判断下列函数的奇偶性:①f (x )=x lg(x +x 2+1); ②f (x )=(1-x )1+x1-x; ③f (x )=⎩⎨⎧-x 2+2x +1 (x >0),x 2+2x -1 (x <0); ④f (x )=4-x 2|x +3|-3.⑤()11212x f x x ⎛⎫=+ ⎪-⎝⎭⑥()11f x x x =+--⑦()f x=⑧()f x =(3)若f (x )=x 5+ax 3+bx +3在(0,+∞)上的最大值是8,求f (x )在(-∞,0)上的最小值.2. 函数()()122-+-+=a x b a ax x f 是定义在()()22,00,--a a 上的偶函数,则=⎪⎪⎭⎫ ⎝⎛+522b a f _________________ 3. 设)(x f 是定义在R 上的奇函数,且)(x f y =的图象关于直线21=x 对称,则 )5()4()3()2()1(f f f f f ++++=______4. 已知函数f(x)=1122xxm ⋅-+为奇函数,则m 的值等于_____变式:函数xxk k x g 212)(⋅+-=为奇函数,则实数k 的取值集合为_____5. 函数)11()(+--=x x x x f ,函数|3||4|1)(2-++-=x x x x g ,则F(x)= ()()f x g x ⋅的奇偶性为 函数.思考:和函数与积函数的奇偶性有何规律?【训练1】 (1)(2015·郑州质量预测)下列函数中,既是偶函数又在区间(1,2)上单调递增的是( )A .y =log 2|x |B .y =cos 2xC .y =2x -2-x 2D .y =log 22-x2+x(2)若函数f (x )=k -2x1+k ·2x在定义域上为奇函数,则实数k =________.(3).(2013年江西重点中学联考)定义在R 上的偶函数f (x )满足:对任意x 1,x 2∈[0,+∞),且x 1≠x 2,都有(x 1-x 2)·(f (x 1)-f (x 2))>0,则( )A .f (3)<f (-2)<f (1)B .f (1)<f (-2)<f (3)C .f (-2)<f (1)<f (3)D .f (3)<f (1)<f (-2) [例2] (1)(2012年高考上海卷)已知y =f (x )是奇函数.若g (x )=f (x )+2且g (1)=1,则g (-1)=________.(2)(2013年皖南八校联考)已知定义在R 上的奇函数f (x )满足f (x )=x 2+2x (x ≥0),若f (3-a 2)>f (2a ),则实数a 的取值范围是________. (3)例3 (1) 设a ∈R ,f(x)=a·2x+a -22x +1(x ∈R ),试确定a 的值,使f(x)为奇函数;(2) 设函数f(x)是定义在(-1,1)上的偶函数,在(0,1)上是增函数,若f(a -2)-f(4-a 2)<0,求实数a 的取值范围.变式训练(1) 已知函数f(x)=⎩⎪⎨⎪⎧x 2+x ,x ≤0,ax 2+bx ,x>0是奇函数,求a +b 的值;(2) 已知奇函数f(x)的定义域为[-2,2],且在区间[-2,0]内递减,若f(1-m)+f(1-m 2)<0,求实数m 的取值范围.(4)已知f (x )与g (x )都是定义在R 上的奇函数,若F (x )=af (x )+bg (x )+3,且F (-2)=5,则F (2)= ;(5)已知函数f (x )=x 3+sin x 的定义域为(-1,1),则满足不等式f (a 2-1)+f (1-2a )<0的a 的取值范围是 .考点二 函数周期性的应用【例2】 (1)(2014·安徽卷)设函数f (x )(x ∈R )满足f (x +π)=f (x )+sin x .当0≤x <π时,f (x )=0,则f ⎝⎛⎭⎪⎫23π6=( ) A.12 B.32 C .0 D .-12(2)已知f (x )是定义在R 上的偶函数,且f (x +2)=-f (x ),当2≤x ≤3时,f (x )=x ,则f (105.5)=________.【训练2】 (1)(2014·长春一模)已知函数f (x )是定义在R 上的奇函数,且是以2为周期的周期函数.若当x ∈[0,1)时,f (x )=2x -1,则f (log 126)的值为( ) A .-52 B .-5 C .-12 D .-6(2)(2015·雅安模拟)定义在R 上的函数f (x )满足f (x +6)=f (x ),当-3≤x <-1时,f (x )=-(x +2)2;当-1≤x <3时,f (x )=x .则f (1)+f (2)+f (3)+…+f (2 015)等于( )A .335B .336C .1 678D .2 012【拓展演练3】 设函数f (x )是定义在R 上的偶函数,且满足: ①f (x )=f (2-x );②当0≤x ≤1时,f (x )=x 2.(1)判断函数f (x )是否是周期函数; (2)求f (5.5)的值.【拓展演练4】 设f (x )是定义在[-1,1]上的偶函数,当x ∈[-1,0]时, f (x )=g (2-x ),且当x ∈[2,3]时,g (x )=2a (x -2)-4(x -2)3. (1)求f (x )的表达式;(2)是否存在正实数a (a >6),使函数f (x )的图象最高点在直线y =12上?若存在,求出正实数a 的值;若不存在,请说明理由.考点三 函数性质的综合应用【例4】 (1)已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,则( ) A .f (-25)<f (11)<f (80) B .f (80)<f (11)<f (-25) C .f (11)<f (80)<f (-25) D .f (-25)<f (80)<f (11)(2)(2014·新课标全国Ⅱ卷)偶函数y =f (x )的图象关于直线x =2对称,f (3)=3,则f (-1)=________.例5 设f(x)是定义在R 上的奇函数,且对任意实数x ,恒有f(x +2)=-f(x),当x ∈[0,2]时,f(x)=2x -x 2.(1) 求证:f(x)是周期函数;(2) 当x ∈[2,4]时,求f(x)的解析式; (3) 计算f(0)+f(1)+f(2)+…+f(2 014)的值.变式训练、设f(x)是定义在R 上的奇函数,且对任意实数x ,恒有f(x +2)=-f(x).当x ∈[0,2]时,f(x)=2x -x 2.(1) 求证:f(x)是周期函数;(2) 当x ∈[2,4]时,求f(x)的解析式.【训练3】1、 已知函数f (x )是定义在R 上的偶函数,且在区间[0,+∞)上单调递增.若实数a 满足f (log 2a )+f (log 12a )≤2f (1),则a 的取值范围是( ) A .[1,2] B.⎝ ⎛⎦⎥⎤0,12 C.⎣⎢⎡⎦⎥⎤12,2 D .(0,2]2. (2014·安徽)若函数f(x)(x ∈R )是周期为4的奇函数,且在[0,2]上的解析式为f(x)=⎩⎪⎨⎪⎧x (1-x ),0≤x ≤1,sin πx ,1<x ≤2,则f ⎝⎛⎭⎫294+f ⎝⎛⎭⎫416=________.3. 已知f(x)是R 上最小正周期为2的周期函数,且当0≤x <2时,f(x)=x 3-x ,则函数y =f(x)的图象在区间[0,6]上与x 轴的交点个数为________.4. 已知定义在R 上的偶函数f(x)在[0,+∞)上是增函数,且f(2)=1,若f(x +a)≤1对x ∈[-1,1]恒成立,则实数a 的取值范围是________.5. 已知f(x)是偶函数,且f(x)在[0,+∞)上是增函数,如果f(ax +1)≤f(x -2)在x ∈⎣⎡⎦⎤12,1上恒成立,求实数a 的取值范围.6.(2012·山东卷)定义在R 上的函数f (x )满足f (x +6)=f (x ).当-3≤x <-1时,f (x )=-(x +2)2;当-1≤x <3时,f (x )=x ,则f (1)+f (2)+f (3)+…+f (2012)=( )A .335B .338C .1678D .20127.(2012·上海卷)已知y =f (x )+x 2是奇函数,且f (1)=1.若g (x )=f (x )+2,则g (-1)= . 8(2011·浙江卷)若函数f (x )=x 2-|x +a |为偶函数,则实数a = .[思想方法]1.奇偶性定义是判断函数奇偶性的主要方法之一,为了便于判断,有时 将函数进行化简,或应用定义的变通形式:f (-x )=±f (x )⇔f (-x )±f (x )=0⇔f (-x )f (x )=±1(f (x )≠0).2.已知函数的奇偶性求参数问题的一般思路是:利用函数的奇偶性的定义,转化为f (-x )=-f (x )(或f (-x )=f (x ))对x ∈R 恒成立,从而可轻松建立方程,通过解方程,使问题获得解决.3.若对于函数f (x )的定义域内任一个自变量的值x 都有f (x +a )=-f (x )或f (x +a )=1f (x )或f (x +a )=-1f (x )(a 是常数且a ≠0),则f (x )是一个周期为2a的周期函数. [易错防范]1.在用函数奇偶性的定义进行判断时,要注意自变量在定义域内的任意性.不能因为个别值满足f (-x )=±f (x ),就确定函数的奇偶性.2.分段函数奇偶性判定时,要以整体的观点进行判断,不可以利用函数在定义域某一区间上不是奇偶函数而否定函数在整个定义域的奇偶性.3.函数f(x)满足的关系f(a+x)=f(b-x)表明的是函数图象的对称性,函数f(x)满足的关系f(a+x)=f(b+x)(a≠b)表明的是函数的周期性,在使用这两个关系时不要混淆.基础巩固题组(建议用时:40分钟)一、选择题1.(2014·重庆卷)下列函数为偶函数的是() A.f(x)=x-1 B.f(x)=x2+xC.f(x)=2x-2-x D.f(x)=2x+2-x2.(2014·乌鲁木齐诊断)定义在R上的偶函数f(x),对任意x1,x2∈[0,+∞)(x1≠x2),有f(x2)-f(x1)x2-x1<0,则()A.f(3)<f(-2)<f(1) B.f(1)<f(-2)<f(3)C.f(-2)<f(1)<f(3) D.f(3)<f(1)<f(-2)3.(2014·湖南卷)已知f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)-g(x)=x3+x2+1,则f(1)+g(1)=() A.-3 B.-1C.1 D.34.(2014·福建统一检测)已知f(x)是定义在R上的奇函数,且在[0,+∞)上单调递增,若f(lg x)<0,则x的取值范围是() A.(0,1) B.(1,10)C.(1,+∞) D.(10,+∞)5.(2015·天水一模)已知函数f(x)是R上的偶函数,g(x)是R上的奇函数,且g(x)=f(x-1),若f(2)=2,则f(2 014)的值为() A.2 B.0C.-2 D.±2二、填空题6.函数f (x )在R 上为奇函数,且x >0时,f (x )=x +1,则当x <0时,f (x )=________.7.(2014·湖南卷)若f (x )=ln(e 3x +1)+ax 是偶函数,则a =________.8.(2014·四川卷)设f (x )是定义在R 上的周期为2的函数,当x ∈[-1,1)时,f (x )=⎩⎨⎧-4x 2+2,-1≤x <0,x ,0≤x <1,则f ⎝ ⎛⎭⎪⎫32=________.三、解答题9.已知函数f (x )=⎩⎨⎧-x 2+2x ,x >0,0,x =0,x 2+mx ,x <0是奇函数.(1)求实数m 的值;(2)若函数f (x )在区间[-1,a -2]上单调递增,求实数a 的取值范围.10.设f (x )是定义在R 上的奇函数,且对任意实数x ,恒有f (x +2)=-f (x ),当x ∈[0,2]时,f (x )=2x -x 2. (1)求证:f (x )是周期函数;(2)当x ∈[2,4]时,求f (x )的解析式; (3)计算f (0)+f (1)+f (2)+…+f (2 016).能力提升题组 (建议用时:25分钟)11.(2014·石家庄模拟)已知f (x )是定义在R 上以3为周期的偶函数,若f (1)<1,f (5)=2a -3a +1,则实数a 的取值范围为( )A.(-1,4) B.(-2,1)C.(-1,2) D.(-1,0)12.(2015·郑州模拟)已知f(x)是R上最小正周期为2的周期函数,且当0≤x<2时,f(x)=x3-x,则函数y=f(x)的图象在区间[0,6]上与x轴的交点个数为() A.6 B.7 C.8 D.913.已知函数y=f(x)为奇函数,且对定义域内的任意x都有f(1+x)=-f(1-x).当x∈(2,3)时,f(x)=log2(x-1).给出以下4个结论:①函数y=f(x)的图象关于点(k,0)(k∈Z)成中心对称;②函数y=|f(x)|是以2为周期的周期函数;③当x∈(-1,0)时,f(x)=-log2(1-x);④函数y=f(|x|)在(k,k+1)(k∈Z)上单调递增.其中所有正确结论的序号为________.14.设f(x)是(-∞,+∞)上的奇函数,f(x+2)=-f(x),当0≤x≤1时,f(x)=x.(1)求f(π)的值;(2)当-4≤x≤4时,求f(x)的图象与x轴所围成图形的面积;(3)写出(-∞,+∞)内函数f(x)的单调区间.11。
07.高一寒假数学讲义:函数的奇偶性(应用)【学生版】
![07.高一寒假数学讲义:函数的奇偶性(应用)【学生版】](https://img.taocdn.com/s3/m/cae2d8310740be1e640e9a12.png)
高一寒假数学讲义“函数的奇偶性(应用)”学生姓名授课日期教师姓名授课时长函数的奇偶性在综合题中有相当多的应用,不仅要掌握基础的知识,而且要能灵活应用。
在各个考试中,都可能是出题的考查重点之一。
函数奇偶性1.偶函数如果对于函数y=f(x)的定义域D内的任意实数x,都有f(―x)=f(x),那么就把函数y=f(x)叫做偶函数。
并要向学生强调定义中的“定义域D中的任意实数x”一句话.从偶函数的定义中,指出一个函数是偶函数的必要条件:定义域关于原点对称。
偶函数的图象的性质:偶函数的图象关于轴对称的性质性质的证明要抓住四个要点:(1)a是y=f(x)定义域内的任意一个实数.(2)点A(a,f(a)),B(―a,f (―a))都是函数y=f(x)图象上的点.(3)因为f (―a)= f (a),所以B点坐标也为(―a,f (a)).(4)点(―a,f (a))与(a,f (a))关于y轴对称.2.奇函数如果对于函数y=f(x)的定义域D内的任意实数x,都有f(―x)= ―f(x),那么就把函数y=f(x)叫做奇函数。
由奇函数的定义得出奇函数的必要条件:定义域D关于原点对称。
3.关于奇偶函数的重要结论(1) f(x),g(x)设为定义域是D1,D2的奇函数,那么在D1∩D2上,f(x)+g(x)是奇函数,f(x)•g(x)是偶函数,类似的有:奇士奇=奇,奇奇=偶(课后练习),偶士偶=偶,偶⨯偶=偶,奇⨯偶=奇.(2)函数是奇函数⇔曲线y=f(x)关于原点对称,函数y=f(x)是偶函数⇔曲线y=f(x)关于y 轴对称.*(3)若y=f(x)是具有奇偶性的单调函数,则奇(偶)函数在正负对称区间上的单调性是相同(反)的。
(4)对于复合函数F (x)= f [g (x )],若g(x )为偶函数,则F (x)为偶函数;若g(x )为奇函数,f (x )为奇函数,则F()x 为奇函数;若g(x )为奇函数,)(x f 为偶函数,则F (x)为偶函数(自己证明).(5) f (x )既是奇函数又是偶函数的充要条件是f (x )=0 (定义域关于原点对称).(6)若函数f (x )的定义域关于原点对称,则f (x )可以表示成如下形式:)]()([21)]()([21)(x f x f x f x f x f --+-+=这个式子的特点是:右边是一个偶函数与一个奇函数的和【试题来源】【题目】求证:函数2432)(x x x f -=是偶函数。
2017版高考数学课件:2.3 函数的奇偶性与周期性
![2017版高考数学课件:2.3 函数的奇偶性与周期性](https://img.taocdn.com/s3/m/f4cc899e011ca300a7c390f0.png)
0, f(-x)=(-x)[1+(-x)]=-x(1-x)=-f(x);又f(0)=0,所以函数为奇函数.
解法二:作出函数图象,发现图象关于原点对称,所以函数为奇函数.
c
解法三:函数解析式可化简为f(x)=x(1+|x|),x∈R,则f(-x)=-x(1+|-x|)=-x(1+|x|)
=-f(x),所以函数为奇函数.
2-1 已知函数f(x)=2|x-2|+ax,g(x)为定义在R上的奇函数,且当x>0时,g(x)= f(x),且g(-1)=-4,求g(x)的解析式. 解析 g(-1)=-4=-g(1),所以g(1)=4,又当x>0时,g(x)=f(x),所以f(1)=g(1)=4=2 +a,所以a=2.当x<0时,-x>0,g(-x)=f(-x)=2|-x-2|+a(-x)=2|x+2|-ax=-g(x),所以g
判断函数的奇偶性一般都按照定义严格进行,一般步骤是:
(1)考察定义域是否关于③ 原点对称;
(2)根据定义域考察表达式f(-x)是否等于f(x)或-f(x): 若f(-x)=-f(x),则f(x)为奇函数; 若f(-x)=f(x),则f(x)为偶函数; 若f(-x)=-f(x)且f(-x)=f(x),则f(x)既是奇函数又是偶函数; 若f(-x)≠-f(x)且f(-x)≠f(x),则f(x)既不是奇函数又不是偶函数,即非奇非偶 函数.
第十二页,编辑于星期六:二十点 二十一分。
判断函数奇偶性的步骤 (1)首先求函数的定义域,定义域关于原点对称是函数为奇函数或偶函数
的必要条件; (2)如果函数的定义域关于原点对称,那么可进一步判断f(-x)=-f(x)或f(-x)=
函数的奇偶性及周期性
![函数的奇偶性及周期性](https://img.taocdn.com/s3/m/014caf87a0116c175f0e48a5.png)
由奇函数定义f(-x)=-f(x)得b=3.
(2)由(1)知 g(x)=x3-6x,从而 g′(x)=3x2-6,由此可知, (-∞, 2)和( 2, - +∞)是函数 g(x)的单调递增区间;(- 2, 2)是函数 g(x)的单调递减区间. g(x)在 x=- 2时,取得极大值,极大值为 4 2;g(x)在 x = 2时,取得极小值,极小值为-4 2.
于是f(-3)=f(3),f(-1)=f(1),
则f(3)<f(1).又f(x)在[0,5]上是单调函数,从而函数
f(x)在[0,5]上是单调减函数,观察选项,并注意到
f(x)=f(|x|),只有D正确.
答案:D
1 3.设 f(x)是奇函数,且当 x>0 时,f(x)=x,则当 x<0 时, f(x)=________.
gxx>0, 2 ∴x +2x-1=-g(-x), ∴f(x)= -g-xx<0,
∴f(x)是奇函数.
4-x2≥0, (3)∵ |x+3|≠3
⇒-2≤x≤2 且 x≠0,
∴函数定义域关于原点对称. 4-x2 4-x2 f(x)= = x , x+3-3 4--x2 4-x2 又 f(-x)= =- x , -x ∴f(-x)=-f(x),即函数是奇函数.
11 3 ∴f(1)= ( -2)=- ,g(0)=-1, 22 4 11 5 g(-1)=- ( +2)=- , 22 4 ∴f(1)>g(0)>g(-1).
答案:f(1)>g(0)>g(-1)
[归纳领悟] 函数奇偶性的应用 (1)已知函数的奇偶性求函数的解析式. 抓住奇偶性讨论函数在各个分区间上的解析式,或充分
)
解析:显然函数f(x)f(-x)为偶函数;函数f(x)|f(-x)|的奇 偶性不确定,譬如f(x)=x+1,函数f(x)|f(-x)|=(x+1)|- x+1|是一个非奇非偶函数;函数f(x)-f(-x)是一个奇函数, 因为f(-x)-f[-(-x)]=-[f(x)-f(-x)];函数f(x)+f(-x) 是一个偶函数,因为f(-x)+f[-(-x)]=f(x)+f(-x). 答案:D
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数的奇偶性.周期性例1、函数奇偶性的判断(B) y = sinx (C) y = lnx (D) y = x 2+l5、定义域为R 的四个函数歹=兀2+1, y = 3”,y=|x+l|, y = 2cosx 中,偶函数的个数是(A. 4B. 3C. 2D. 1例2、函数奇偶性的应用:⑴判断/(兀)的奇偶性;⑵证明:f(x)>0. 牛刀小试:1.函数y 二f(x)与函数y=g(x)的图象如图,则函数y 二f(x) • g(x)的图象可能是(下列函数:①/(x) = Jl-兀2+ Jx 2 -1 ;② /(x) = X 31 — V⑤如弋苗。
其中奇函数的个数是()。
A. 2B. 3C. 4 牛刀小试:1、判断下列函数的奇偶性:(l)f (x) =X:{——;D. 5(3)f (x) = (x —1)1+x⑷ f (x) = ^3—x 2H-A /X 2—3 .2、[2015高考福建, 理2】下列函数为奇函数的是()A. y = y/xB. y=sin«r|C. y = cosx3、【2015髙考广东, 理3】下列函数屮, 既不是奇函数,也不是偶函数的是(A. y = x + e x1 B. y = x + —xC. y = 2v+ — 丿 2J4、【2015高考安徽, 理2】下列函数屮, 既是偶函数乂存在零点的是((A) y = cosx已知/(^)=1 1)---------- 1 --2r -l 2);③/(x) = lnlx+4.A. x 轴成轴对称图形C.直线y 二x 成轴对称图形例3、奇偶性、单调性的交汇问题 已知奇函数/(兀)的定义域为[-2,2],且在区I 叫—2,0]单调单减,求满足/(l-m) + /(l-m 2)<0的实 数加的取值范闱。
牛刀小试:1、已知函数/(兀)是定义在区间[-2, 2]上的偶函数,当xG [0,2]时,/(兀)是减函数,如果不等式 /(l-m)</(m)成立,则实数加的収值范围( )A.[—l*B. 1, 2C. (-oo,0)D. (-=0,1)例4、抽象函数的奇偶性已知函数/(兀)的定义域为/?,且对任意的a,bwR 都有/(a+b) = /(Q )+ /(b),当兀〉0时,/(^)<0 恒成立①证明:/(兀)是R 上的减函数;②证明:/(兀)是奇函数。
例 5、若函数 /(%) = (%+a)3 PxwR W/(l + x) = -/(l-x)求/⑵ + .f (-2)。
牛刀小试:1、 设/(x)为定义在R 上的奇函数,当x>0时,/(x) = 2x +2x + /? (b 为常数),则/(-1)=( )A. 3B. 1C. -1D. -32、 设函数/(x)为偶函数,且当xw [0,2)吋/(x) = 2sin x ,当兀w [2,+°°)吋fM - log?x ,则 71 /(~) + /(4)= A 、—V3 + 2B 、1C\ 3D 、V3 + 22、 函数y = lg ——、 -1/的图象关于(B. y 轴成轴对称图形 D.原点成中心对称图形例6、函数的奇偶性与周期性己知函数几0是(一8, +®)上的奇函数,且/(兀)的图象关于兀=1对称,当兀G [0,1]时,几T) =2A-1,(1)求证:/U)是周期函数;⑵当炸[1,2]时,求夬兀)的解析式;⑶计算用))+夬1)+/(2) +・・・+/(20⑶的值.牛刀小试:1、已知函数/(兀)是定义在/?上的以5为周期的奇函数,若/(3) > 0,/(2012)=⑺+ 2)(°— 2),则a的取值范围是( )A. (—oo,—2)C. (-2,2)D. ( —oo, —2)kJ ( 2,,例7、奇偶性.单调性、周期性的交汇问题设/U)是(一°°,+°°)上的奇函数,/(%+2) =-/%),当0W兀W1 时,Ax)=x.⑴求血)的值;(2)当一4W/W4时,求夬力的图象与x轴所围成图形的面积;⑶写出(-oo, +oo)内函数/(兀)的单调增(或减)区间.例8、函数周期的应用设/(兀)是周期为2的奇函数,当0<x< 1时,/(x) = 2%(l-x),则/ ―=()\ 2丿1 1 1(A)-- (B)-- (C)-2 4 4 牛刀小试:1.1(巧当0 5x51 时,/(x) = 2x(1- X),则 /(—2) = ____________2、设屮刘是+ Q上的奇函数,且丁匕+2)=-亢Q,下面关于门刘的判定:其中正确命题的序号为 ______ .③门刘的图象关于X — 1对称;④门刘的图象关于X — 1对称.例9.函数的周期性与其他知识交汇已知函数/(兀)对任意实数兀满足/(x + l) = -且当XG[-1,1]时,/(x) = x2o(1)求于(2012);(2)确定函数/(x)的图象与函数y = lg x的图象交点的个数。
牛刀小试:1、设f (x)是定义在R上的奇函数,且对任意实数x,恒有f (x+2) =—f (x),当xW[0, 2]时,f (x) =2x —x2.(1)求证:f(x)是周期函数;(2)当xe[2, 4]时,求f(x)的解析式;(3)计算f(0) +f(l) +f(2) +・・・ + f (2014)的值.高考赏析:1、【2015高考新课标1,理13】若函数/U)二+ + )为偶函数,则—_________2、[2015 高考湖南,理5】设函数/(x) = ln(l+x)-ln(l-x),则/(x)是( )A.奇函数,且在(0,1)上是增函数B.奇函数,且在(0,1)上是减函数C.偶函数,且在(0,1)上是增函数D.偶函数,且在(0,1)上是减函数3、设函数/(x), g(x)的定义域都为R,且/(x)是奇函数,g(x)是他幣数,则下列结论正确的是A ./(x) g(x)是偶函数B ,\ /(%) | g(X)是奇函数C . f(x) | g(x) |是奇函数D .| f(x) g(兀)|是奇函数4、已知偶函数/(兀)在[0,+8)单调递减,/・(2)= 0.若/(兀一1)>0,则x的取值范圉是_______________5、函数/(%)的定义域为R,若/(x + 1)与于(兀一1)都是奇函数,贝!1()(A) /(%)是偶函数(B) /(X)是奇函数(C) /(%) = /(x + 2) (D) /(x + 3)是奇函数6・/(x-4) = -/(兀),且在区间[0,2]上是增函数,则( ).A. /(-25) < /(II) < /(80)B. /(80) < /(II) < /(-25)7、已知偶函数.f(x)在区间[0,4-00)上单调递增,贝IJ 满足/(2x-l)</(-)的x 取值范围是(3r 1 (D) [「 28、 某流程图如图所示,现输入如下四个函数,则可以输出的函数是()A. fM = — B . / W =[X Z — 1 zC. fM = :D. fM = lg sin xe +e9、 若于(兀)=—+ d 是奇函数,则。
= _________________2—1练习反馈:Y <0I 、定义在R 上的“满足心.—),5则 7(2010)= ________ 2、设 /(X )= x - sin x,则 /(x) A.既是奇函数又是减函数 C.是有零点的减函数B.(-l,0)D. (l,+8)4、如果 /(x + ^) = /'(一兀)且 /(x) = /(-x)则 /(兀)可以是()A. sin 2xB. cosxC. sin|x|D. sinx5、 已知定义在/?上的函数/(兀)满足"赴二,且/(_2)=/(_1) =-!,/( 9 土,则\ 2丿/(1)+/( 2)4-+/( 201,()A. -2B. -1C. 0D. 16、 函数f(x) = x\x-^c\+b 是奇函数的充要条件是()I 2 1 2 1 9 (A)(亍,亍)(B) ?) (0(-,-) B.既是奇函数又是增函数 D.是没有零点的奇函数3、若函数f(x) =2X +1 2x-a是奇函数,则使f(x)>3成立的x 的収值范围为C.(OJ))7、 若函数/(x)9g(x)分别为尺上的奇函数、偶函数,且满足/(x)-g(x) = e x ,则有()A . y (2)V /⑶ V g(o)B . g(o) </(3)</(2) C./(2)<g (0)</⑶D. g (0)</(2)</(3)8、 已知定义在R 上的奇函数几v)满足/U+2)=—/W ,则,夬6)的值为( )A. -1B. 0C. 1D. 29、已知/(x)满足/(x+3)= /(x), "R,且/(兀)是奇函数,若/(1) = ^2 ,则 f (2000)=()A. VIB. -A /2C. 3 + >/2D. 3-V210、 己知/(x)是定义在R 上的偶函数,且/(兀+ 4) = /(Q 对任何实数均成立,当0 5兀52时,/(x) = x,当 398 < x < 400 时,/(%)=()A. x-400B.兀一398C ・ 400-x D. 398-x-2X + b11、 已知定义域为/?的函数/(%) = —_—是奇函数。
2 1 +d(I )求的值;(1【)若对任意的re/?,不等式/(r 2-2r) + f(2r-k)<0恒成立,求鸟的取值范围; 12、 设函数/(无)在定义域[—1,1]是奇函数,当xe[-l,0]时,/(x) = -3x 2. (1)当 X G [0,1],求 /(X );⑵对任意cze[-l,l], XG [-1,1],不等式/(x)<2cos 2 0-asmO-\- \都成立,求&的取值范围.1)、求a 的值;2)当OWxW 1时,关于兀的方程/(x) + l = r 有解,求实数/的取值范圉;A. ah = 0B. a + b = 0C. a = hD. a 2 +b 2 =013、已知函数/(%) = ---------F a(a e /?)为奇函数 3A +1。