江苏连云港中考数学试题及答案

合集下载

2023年连云港市中考数学试卷及答案

2023年连云港市中考数学试卷及答案

数法)与基本技能(列方程解应用题及解一元二次方程),中等难度.【推荐指数】★★★离,在海岸线PQ上点E处测得∠AEP=74°,∠BEQ=30°;在点F处测得∠AFP=60°,∠BFQ=60°,EF=1km.(1)判断AB、AE的数量关系,并说明理由;(2)求两个岛屿A和B之间的距离(结果精确到0.1km).(参考数据:3≈1.73,sin74°≈cos74°≈0.28,tan74°≈3.49,sin76°≈0.97,cos76°≈0.24)ABPEFQ【分析】(1)容易猜想;AB、AE相等;要证明AB=AE,思路有三种:①AB、AE都在△ABE中,可考虑等角对等边,则需证明∠AEB=∠ABE;②若证明AB、AE所在三角形△AEF、△ABF全等也可;③如果能说明AF垂直平分线段BE,则必有AB=AE成立.(2)求两个岛屿A和B之间的距离,即求线段AB的长度,方法有两种:①由(1)可知AF⊥BE,则可考虑直接解直角三角形求AB的长度;②因为AB=AE,所以可思考转化为求AE的长度,这样就需过点A作PQ的垂线段,构造直角三角形,再利用解直角三角形知识解决.【答案】(1)相等,证明:∵∠BEQ=30°,∠BFQ=60°,∴∠EBF=30°,∴EF=BF.又∵∠AFP=60°,∴∠BFA=60°.在△AEF与△ABF中,EF=BF,∠AFE=∠AFB,AF=AF,∴△AEF≌△ABF,∴AB=AE.(2)法一:作AH⊥PQ,垂足为H,设AE=某,则AH=某sin74°,HE=某cos74°,HF=某cos74°+1.Rt△AHF中,AH=HF·tan60°,∴某cos74°=(某cos74°+1)·tan60°,即0.96某=(0.28某+1)某1.73∴某≈3.6,即AB≈3.6 km.答:略.法二:设AF与BE的交点为G,在Rt△EGF中,∵EF=1,∴EG=在Rt△AEG中,∠AEG=76°,AE=EG÷cos76°=3.23÷0.24≈3.6.答:略. 2 【涉及知识点】三角形全等判定解直角三角形实际应用(航海类问题) 锐角三角函数垂直平分线性质等腰三角形性质(等角对等边)【点评】解直角三角形是初中阶段数形结合的一个重要的知识点,所以其实际应用一直都是中考热点问题.本题的(1)(2)两问衔接恰当,(1)问为(2)问的解决卸下了不少难度,且解法较多,涉及数据较复杂,是一道很好的解直角三角形实际应用问题.【推荐指数】★★★★27.(2023连云港,27,10分)如果一条直线把一个平面图形的面积分成相等的两部分,我们把这条直线称为这个平面图形的一条面积等分线.如:平行四边形的一条对线所在的直线就是平行四边形的一条面积等分线.(1)三角形的中线、高线、角平分线分别所在的直线一定是三角形的面积等分线的有_______;么有S梯形ABCD=S△ADE.请你给出这个结论成立的理由,并过点A 作出梯形ABCD的面积等分线(不写作法,保留作图痕迹);(3)如图,四边形ABCD中,AB与CD不平行,S△ADC>S△ABC,过点A能否作出四边形ABCD的面积等分线?若能,请画出面积等分线,并给出证明;若不能,说明理由.EBABADCD【分析】(2)设AE与BC相交于点F.观察图形可知,要证明S梯形ABCD=S△ABE,就是要证明除去两个三角形公共部分外的两个小三角形△ABF和△CEF的面积相同.方法一:连接线段BE,△ABC和△AEC同底等高面积相等,再同时减去公共部分面积,即可说明△ABF和△CEF的面积相同;方法二:直接证明△ABF≌△ECF,也说明△ABF和△CEF的面积相同.同化与(1)可知,梯形ABCD的面积等分线即为△ADE的面积等分线,故只要作出△ADE的BD边中线即可.(3)问题更加趋向一般,由第(2)问可知.AB与CD是否平行,不影响△ABF和△CEF的面积相同.故可依法炮制.【答案】(1)中线所在的直线.(2)法一:连接BE,∵AB∥CE,AB=CE,∴四边形ABEC为平行四边形.∴BE∥AC∴△ABC和△AEC的公共边AC上的高也相等,∴S△ABC=S△AEC.∴S梯形ABCD=S△ACD+S△ABC=S△ACD+S△AEC=S△AED.ECD法二:设AE与BC相交于点F.∵AB∥CE,∴∠ABF=∠ECF,∠BAF=∠CEF.又∵AB=CE,∴△ABF≌△ECF.∴S梯形ABCD=S四边形AFCD+S△ABF=S四边形AFCD+S△ECF=S△AED.过点A的梯形ABCD的面积等分线的画法如图①所示.(3)能.连接AC,过点B作BE∥AC交DC的延长线于点E,连接AE.∵BE∥AC,∴△ABC和△AEC的公共边AC上的高也相等,∴S△ABC=S△AEC.∴S梯形ABCD=S△ACD+S△ABC=S△ACD+S△AEC=S△AED.∵S△ACD>S△ABC,∴面积等分线必与CD相交,取DE中点F,则直线AF即为要求作的四边形ABCD的面积等分线.作图如图②所示.【涉及知识点】三角形的中线性质梯形垂直平分线的作法平行四边形的判定三角形全等的判定【点评】本题选取课本基础知识:三角形中线平分三角形面积、梯形剪拼成三角形实验等,设计数学实践活动情景,问题由特殊到一般,在考查基础知识综合应用的同时,兼顾考查学生知识转化能力,作图能力以及实践操作能力,符合新课改精神,是一道不可多得的好题.【推荐指数】★★★★★28.(2023连云港,28,14分)如图,在平面直角坐标系中,O为坐标原点,⊙C的圆心坐标为(-2,-2),半径为2.函数y=-某+2的图象与某轴交于点A,与y轴交于点B,点P为AB上一动点(1)连接CO,求证:CO⊥AB;(2)若△POA是等腰三角形,求点P的坐标;(3)当直线PO与⊙C相切时,求∠POA的度数;当直线PO与⊙C相交时,设交点为E、F,点M为线段EF的中点,令PO=t,MO=s,求s与t之间的函数关系,并写出t的取值范围.【分析】(1)要证CO⊥AB,则必须先延长CO.注意到直线AB的函数关系式特点,可从角度入手,找到90°证明垂直;(2)△POA是等腰三角形要分两种情况讨论,①OP=OA;②OP=PA;③AP=AO.各种情况讨论时要注意利用图形中的特殊的几何关系;(3)此问其实包含两小问,第一小问要分两种情况讨论,即直线PO绕圆心O旋转过程中两次与圆C相切,解答较为简单;第二小问中由“点M为线段EF的中点”可考虑,连接MC,构造垂径定理适用图形,可得CM⊥EF,又CO⊥AB,则出现一组相似三角形.再利用相似三角形对应边成比例即可得到s与t之间的函数关系,再结合第一小问可得到t的取值范围.【答案】(1)延长CO交AB于D,过点C作CG⊥某轴于点G.∵直线AB的函数关系式是y=-某+2,∴易得A(2,0),B(0,2),∴AO=BO=2.又∵∠AOB=90°,∴∠D AO=45°.∵C(-2,-2),∴CG=OG=2,∴∠COG=45°,∠AOD=45°,∴∠ODA=90°.∴OD⊥AB,即CO⊥AB.yBGOHA·C(2)要使△POA为等腰三角形.①当OP=OA时,此时点P与点B重合,所以点P的坐标为(0,2);②当OP=PA时,由∠OAB=45°,所以点P恰好是AB的中点,所以点P 的坐标为(1,1);③当AP=AO时,则AP=2,过点作PH⊥OA交OA于点H在Rt△APH中,易得PH=AH=2,∴OH=2-2,∴点P的坐标为(2-2,2).∴若△POA为等腰三角形,则点P的坐标为(0,2)或(1,1)或(2-2,2).yBGFOC·MKEA某P某P·DD(3)当直线PO与⊙C相切时,设切点为K,连接CK,则CK⊥OK.由点C的坐标为(-2,-2),易得CO=22.∴∠POD=30°又∠AOD=45°,∴∠POA=75°,同理可求得∠POA的另一个值为15°.∵M为EF的中点,∴CM⊥EF又∵∠COM=∠POD,CO⊥AB,∴△COM∽△POD,所以=CO·DO.∵PO=t,MO=s,CO=22,DO=2,∴st=4.但PO过圆心C时,MO=CO=22,PO=DO=2,即MO·PO=4,也满足st=4.∴s=264.(2≤t≤).3t【涉及知识点】一次函数反比例函数等腰三角形相似三角形的性质直线与圆位COMO,即MO·PO?PODO置关系【点评】本题是一道典型的动态问题,其中涉及知识点密集,多次考查分类讨论思想的运用.其中,第1问属于一次函数变式问题,只要学生敢于尝试,多数能够完成;第2问是学生较为熟悉的等腰三角形分类讨论问题,学生有相关解题经验,应当属于中等难度问题;第3问则是一道依托于第1问的动态问题,难度较大.应当说本题题型新颖是个不可多得的好题,有利于培养学生的思维能力,具有明显的区分度.【推荐指数】★★★★★。

2023年江苏省连云港市中考数学试卷及答案详解

2023年江苏省连云港市中考数学试卷及答案详解

2023年江苏省连云港市中考试卷数学注意事项:1.本试卷共9页,满分为120分。

考试时间为120分钟。

2.答题前,考生务必先将自己的考生号、姓名、座位号等信息填写在试卷和答题卡的指定位置。

请认真核对条形码上的相关信息后,将条形码粘贴在答题卡的指定位置上。

3.答选择题时,必须使用2B铅笔将答题卡上对应题目的答案标号涂黑,修改时用橡皮擦干净,再选涂其他答案。

4.答非选择题时,必须使用0.5毫米的黑色字迹签字笔书写,作图题可先用铅笔绘出,确认后再用0.5毫米的黑色字迹签字笔描清楚。

要求字体工整,笔迹清晰。

严格按题号所示的答题区域作答,超出答题区域书写的答案无效:在试卷、草稿纸上答题无效。

5.保持答题卡清洁、完整,严禁折叠、损坏。

严禁在答题卡上做任何标记,严禁使用涂改液、胶带纸、修正带。

考试结束后,将本试卷和答题卡一并交回。

一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(3分)﹣6的相反数是()A.﹣B.C.﹣6D.62.(3分)在美术字中,有些汉字可以看成是轴对称图形.下列汉字中,是轴对称图形的是()A.B.C.D.3.(3分)2023年4月26日,第十二届江苏园艺博览会在我市隆重开幕.会场所在地园博园分为“山海韵”“丝路情”“田园画”三大片区,共占地约2370000平方米.其中数据“2370000”用科学记数法可表示为()A.2.37×106B.2.37×105C.0.237×107D.237×104 4.(3分)下列水平放置的几何体中,主视图是圆形的是()A.B.C.D.5.(3分)如图,甲是由一条直径、一条弦及一段圆弧所围成的图形;乙是由两条半径与一段圆弧所围成的图形;丙是由不过圆心O的两条线段与一段圆弧所围成的图形.下列叙述正确的是()A.只有甲是扇形B.只有乙是扇形C.只有丙是扇形D.只有乙、丙是扇形6.(3分)如图是由16个相同的小正方形和4个相同的大正方形组成的图形,在这个图形内任取一点P,则点P落在阴影部分的概率为()A.B.C.D.7.(3分)元朝朱世杰所著的《算学启蒙》中,记载了这样一道题:良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之?其大意是:快马每天行240里,慢马每天行150里,慢马先行12天,快马几天可追上慢马?若设快马x天可追上慢马,由题意得()A.=B.=﹣12C.240(x﹣12)=150x D.240x=150(x+12)8.(3分)如图,矩形ABCD内接于⊙O,分别以AB、BC、CD、AD为直径向外作半圆.若AB=4,BC=5,则阴影部分的面积是()A.π﹣20B.π﹣20C.20πD.20二、填空题(本大题共8小题,每小题3分,共24分.不需要写出解答过程,请把答案直接填写在答题卡相应位置上)9.(3分)计算:()2=.10.(3分)如图,数轴上的点A、B分别对应实数a、b,则a+b0.(用“>”“<”或“=”填空)11.(3分)一个三角形的两边长分别是3和5,则第三边长可以是.(只填一个即可)12.(3分)关于x的一元二次方程x2﹣2x+a=0有两个不相等的实数根,则a的取值范围是.13.(3分)画一条水平数轴,以原点O为圆心,过数轴上的每一刻度点画同心圆,过原点O按逆时针方向依次画出与正半轴的角度分别为30°、60°、90°、120°、 (330)的射线,这样就建立了“圆”坐标系.如图,在建立的“圆”坐标系内,我们可以将点A、B、C的坐标分别表示为A(6,60°)、B(5,180°)、C(4,330°),则点D的坐标可以表示为.14.(3分)以正六边形ABCDEF的顶点C为旋转中心,按顺时针方向旋转,使得新正六边形A′B′CD′E′F′的顶点D′落在直线BC上,则正六边形ABCDEF至少旋转°.15.(3分)如图,矩形OABC的顶点A在反比例函数y=(x<0)的图象上,顶点B、C在第一象限,对角线AC∥x轴,交y轴于点D.若矩形OABC的面积是6,cos∠OAC=,则k=.16.(3分)若W=5x2﹣4xy+y2﹣2y+8x+3(x、y为实数),则W的最小值为.三、解答题(本大题共11小题,共102分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤,作图过程需保留作图痕迹)17.(6分)计算|﹣4|+(π﹣)0﹣()﹣1.18.(6分)解方程组.19.(6分)解方程=﹣3.20.(8分)如图,菱形ABCD的对角线AC、BD相交于点O,E为AD的中点,AC=4,OE=2.求OD的长及tan∠EDO的值.21.(10分)为了解本校八年级学生的暑期课外阅读情况,某数学兴趣小组抽取了50名学生进行问卷调查.(1)下面的抽取方法中,应该选择.A.从八年级随机抽取一个班的50名学生B.从八年级女生中随机抽取50名学生C.从八年级所有学生中随机抽取50名学生(2)对调查数据进行整理,得到下列两幅尚不完整的统计图表:暑期课外阅读情况统计表阅读数量人数051252a3本及以上5合计50统计表中的a=,补全条形统计图;(3)若八年级共有800名学生,估计八年级学生暑期课外阅读数量达到2本及以上的学生人数;(4)根据上述调查情况,写一条你的看法.22.(10分)如图,有4张分别印有Q版西游图案的卡片:A唐僧、B孙悟空、C猪八戒、D沙悟净.现将这4张卡片(卡片的形状、大小、质地都相同)放在不透明的盒子中,搅匀后从中任意取出1张卡片,记录后放回、搅匀,再从中任意取出1张卡片.求下列事件发生的概率:(1)第一次取出的卡片图案为“B孙悟空”的概率为;(2)用画树状图或列表的方法,求两次取出的2张卡片中至少有1张图案为“A唐僧”23.(10分)渔湾是国家“AAAA”级风景区,图1是景区游览的部分示意图.如图2,小卓从九孔桥A处出发,沿着坡角为48°的山坡向上走了92m到达B处的三龙潭瀑布,再沿坡角为37°的山坡向上走了30m到达C处的二龙潭瀑布.求小卓从A处的九孔桥到C 处的二龙潭瀑布上升的高度DC为多少米?(结果精确到0.1m)(参考数据:sin48°≈0.74,cos48°≈0.67,sin37°≈0.60,cos37°≈0.80)24.(10分)如图,在△ABC中,AB=AC,以AB为直径的⊙O交边AC于点D,连接BD,过点C作CE∥AB.(1)请用无刻度的直尺和圆规作图:过点B作⊙O的切线,交CE于点F;(不写作法,保留作图痕迹,标明字母)(2)在(1)的条件下,求证:BD =BF.25.(12分)目前,我市对市区居民用气户的燃气收费,以户为基础、年为计算周期设定了如表的三个气量阶梯:阶梯年用气量销售价格备注第一阶梯0~400m 3(含400)的部分 2.67元/m 3若家庭人口超过4人的,每增加1人,第一、二阶梯年用气量的上限分别增加100m 3、200m 3.第二阶梯400~1200m 3(含1200)的部分3.15元/m 3第三阶梯1200m 3以上的部分 3.63元/m 3(1)一户家庭人口为3人,年用气量为200m 3,则该年此户需缴纳燃气费用为元;(2)一户家庭人口不超过4人,年用气量为xm 3(x >1200),该年此户需缴纳燃气费用为y 元,求y 与x 的函数表达式;(3)甲户家庭人口为3人,乙户家庭人口为5人,某年甲户、乙户缴纳的燃气费用均为3855元,求该年乙户比甲户多用多少立方米的燃气?(结果精确到1m 3)26.(12分)如图,在平面直角坐标系xOy 中,抛物线L 1:y =x 2﹣2x ﹣3的顶点为P .直线l过点M(0,m)(m≥﹣3),且平行于x轴,与抛物线L1交于A、B两点(B在A的右侧).将抛物线L1沿直线l翻折得到抛物线L2,抛物线L2交y轴于点C,顶点为D.(1)当m=1时,求点D的坐标;(2)连接BC、CD、DB,若△BCD为直角三角形,求此时L2所对应的函数表达式;(3)在(2)的条件下,若△BCD的面积为3,E、F两点分别在边BC、CD上运动,且EF=CD,以EF为一边作正方形EFGH,连接CG,写出CG长度的最小值,并简要说明理由.27.(12分)【问题情境建构函数】(1)如图1,在矩形ABCD中,AB=4,M是CD的中点,AE⊥BM,垂足为E.设BC =x,AE=y,试用含x的代数式表示y.【由数想形新知初探】(2)在上述表达式中,y与x成函数关系,其图象如图2所示.若x取任意实数,此时的函数图象是否具有对称性?若有,请说明理由,并在图2上补全函数图象.【数形结合深度探究】(3)在“x取任意实数”的条件下,对上述函数继续探究,得出以下结论:①函数值y 随x的增大而增大;②函数值y的取值范围是﹣4<y<4;③存在一条直线与该函数图象有四个交点;④在图象上存在四点A、B、C、D,使得四边形ABCD是平行四边形.其中正确的是.(写出所有正确结论的序号)【抽象回归拓展总结】(4)若将(1)中的“AB=4”改成“AB=2k”,此时y关于x的函数表达式是;一般地,当k≠0,x取任意实数时,类比一次函数、反比例函数、二次函数的研究过程,探究此类函数的相关性质(直接写出3条即可).答案及解析1.【分析】根据只有符号不同的两个数叫做互为相反数解答.【解答】解:﹣6的相反数是6.故选:D.【点评】本题考查了相反数的定义,熟记概念是解题的关键.2.【分析】根据轴对称图形的概念求解.【解答】解:中沿中间的竖线折叠,直线两旁的部分能完全重合,“中”是轴对称图形,故选:C.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.【分析】将一个数表示为a×10n的形式,其中1≤|a|<10,n为整数,这种表示数的方法叫做科学记数法,据此即可得出答案.【解答】解:2370000=2.37×106,故选:A.【点评】本题考查科学记数法表示较大的数,科学记数法是基础且重要知识点,必须熟练掌握.4.【分析】分别找出从图形的正面看所得到的图形即可.【解答】解:A.主视图是三角形,故此选项不符合题意;B.主视图是梯形,故此选项不合题意;C.主视图是圆,故此选项符合题意;D.主视图是矩形,故此选项不合题意;故选:C.【点评】此题主要考查了简单几何体的三视图,关键是掌握主视图是从几何体的正面看所得到的图形.5.【分析】根据扇形的定义进行判断.【解答】解:由扇形的定义可知,只有乙是扇形,故选:B.【点评】本题主要考查了认识平面图形—扇形,应熟知扇形的定义:由圆心角的两条半径和圆心角所对的圆弧围成的图形叫做扇形.6.【分析】求出阴影部分的面积,根据概率是即可求出概率.【解答】解:设16个相同的小正方形的边长为a,则4个相同的大正方形的边长为1.5a,∴点P落在阴影部分的概率为=,故选:B.【点评】本题考查几何概率的求法,注意结合概率的性质进行计算求解.用到的知识点为:用到的知识点为:概率=阴影面积与整个图形面积之比.7.【分析】由慢马先行12天,可得出快马追上慢马时慢马行了(x+12)天,利用路程=速度×时间,结合快马追上慢马时快马和慢马行过的路程相等,即可得出关于x的一元一次方程,此题得解.【解答】解:∵慢马先行12天,快马x天可追上慢马,∴快马追上慢马时,慢马行了(x+12)天.根据题意得:240x=150(x+12).故选:D.【点评】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.8.【分析】根据矩形的性质可求出BD,再根据图形中各个部分面积之间的关系,即S阴影部分=S以AD为直径的圆+S以AB为直径的圆+S矩形ABCD﹣S以BD为直径的圆进行计算即可.【解答】解:如图,连接BD,则BD过点O,在Rt△ABD中,AB=4,BC=5,∴BD2=AB2+AD2=41,S阴影部分=S以AD为直径的圆+S以AB为直径的圆+S矩形ABCD﹣S以BD为直径的圆=π×()2+π×()2+4×5﹣π×()2=+20﹣=20,故选:D.【点评】本题考查勾股定理,矩形的性质以及扇形面积的计算,掌握矩形的性质、勾股定理以及扇形面积的计算方法是正确解答的前提.9.【分析】()2=a(a≥0),据此即可求得答案.【解答】解:()2=5,故答案为:5.【点评】本题考查二次根式的性质,此为基础且重要知识点,必须熟练掌握.10.【分析】由数轴可得a<0<b,|a|>|b|,根据异号两数相加,取绝对值较大的数的符号,再用绝对值较大的数减去较小的数即可求得答案.【解答】解:由数轴可得a<0<b,|a|>|b|,则a+b<0,故答案为:<.【点评】本题考查实数与数轴及其加法法则,此为基础且重要知识点,必须熟练掌握.11.【分析】根据三角形的三边关系定理可得5﹣3<x<5+3,再解即可.【解答】解:由题意得:5﹣3<x<5+3,即:2<x<8,∴x的值可以是:4(大于2小于8的数即可).故答案为:4(大于2小于8的数即可).【点评】此题主要考查了三角形的三边关系,关键是掌握第三边的范围是:大于已知的两边的差,而小于两边的和.12.【分析】根据根的判别式得到Δ=4﹣4a>0,然后解不等式即可.【解答】解:根据题意得Δ=4﹣4a>0,解得a<1.故答案为a<1.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式Δ=b2﹣4ac:当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.13.【分析】在该坐标系中,某点的坐标用两个参数来描述:一个是该点与原点的距离,另一个是原点与该点所在的射线与x轴正半轴之间的夹角.【解答】解:∵点D与圆心的距离为3,射线OD与x轴正方向之间的夹角为150°,∴点D的坐标为(3,150°).故答案为:(3,150°).【点评】该题较简单,主要考查在不同坐标系中点的表示方法.14.(3分)以正六边形ABCDEF的顶点C为旋转中心,按顺时针方向旋转,使得新正六边形A′B′CD′E′F′的顶点D′落在直线BC上,则正六边形ABCDEF至少旋转60°.【分析】以正六边形ABCDEF的顶点C为旋转中心,按顺时针方向旋转,即∠DCD'是旋转角,∠BCD=120°,要使新正六边形A′B′CD′E′F′的顶点D′落在直线BC 上,则∠DCD'至少要旋转60°.【解答】解:∵多边形ABCDEF是正六边形,∴∠BCD=120°,要使新正六边形A′B′CD′E′F′的顶点D′落在直线BC上,则∠DCD'至少为60°,则正六边形ABCDEF至少旋转60°.故答案为:60°.【点评】本题考查多边形的性质和旋转的性质,熟悉性质是解题关键.15.【分析】作AE⊥x轴于E,由矩形的面积可以求得△AOC的面积是3,然后通过证得=,最后通过反比例函数系数k的几何意义即可求得k的△OEA∽△AOC,求得S△OEA值.【解答】解:作AE⊥x轴于E,∵矩形OABC的面积是6,∴△AOC的面积是3,∵∠AOC=90°,cos∠OAC=,∴,∵对角线AC∥x轴,∴∠AOE=∠OAC,∵∠OEA=∠AOC=90°,∴△OEA∽△AOC,∴,∴,=,∴S△OEA=|k|,k<0,∵S△OEA∴k=﹣.故答案为:﹣.【点评】本题考查了矩形的性质,三角形相似的判定和性质,解直角三角形,反比例函数系数k的几何意义,求得△AOE的面积是解题的关键.16.【分析】将原式进行配方,然后根据偶次幂的非负性即可求得答案.【解答】解:W=5x2﹣4xy+y2﹣2y+8x+3=x2+4x2﹣4xy+y2﹣2y+8x+3=4x2﹣4xy+y2﹣2y+x2+8x+3=(4x2﹣4xy+y2)﹣2y+x2+8x+3=(2x﹣y)2﹣2y+x2+4x+4x+3=(2x﹣y)2+4x﹣2y+x2+4x+3=(2x﹣y)2+2(2x﹣y)+1﹣1+x2+4x+4﹣4+3=[(2x﹣y)2+2(2x﹣y)+1]+(x2+4x+4)﹣2=(2x﹣y+1)2+(x+2)2﹣2,∵x,y均为实数,∴(2x﹣y+1)2≥0,(x+2)2≥0,∴原式W≥﹣2,即原式的W的最小值为:﹣2,故答案为:﹣2.【点评】本题考查配方法的应用及偶次幂的非负性,利用配方法把原式整理为“平方+常数”的形式是解题的关键.17.【分析】根据绝对值的性质,零次幂和负整数指数幂进行计算即可.【解答】解:原式=4+1﹣2=5﹣2=3.【点评】本题考查实数的运算,其相关运算法则是基础且重要知识点,必须熟练掌握.18.【分析】利用加减消元法解方程组即可.【解答】解:,①+②得:5x=15,解得:x=3,将x=3代入①得:3×3+y=8,解得:y=﹣1,故原方程组的解为:.【点评】本题考查解二元一次方程组,解二元一次方程组的基本方法为代入消元法和加减消元法,必须熟练掌握.19.【分析】两边同时乘以最简公分母x﹣2去分母,然后去括号、移项、合并同类项、把x 的系数化为1,即可算出x的值,然后再检验.【解答】解:去分母得:2x﹣5=3x﹣3﹣3(x﹣2),去括号得:2x﹣5=3x﹣3﹣3x+6,移项得:2x﹣3x+3x=5﹣3+6,合并同类项得:2x=8,把x的系数化为1得:x=4,检验:把x=4代入最简公分母x﹣2=4﹣2=2≠0,故原分式方程的解为:x=4.【点评】此题主要考查了分式方程的解法,关键是不要忘记检验,没有分母的项不要漏乘,这是同学们最容易出错的地方.20.【分析】由菱形的性质得到AC⊥BD,OA=AC=2,由直角三角形的性质求出AD =4,由勾股定理求出OD=2,由锐角的正切求出tan∠EDO=.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,OA=AC,∵AC=4,∴OA=2,∵E是AD中点,∴OE=AD,∵OE=2,∴AD=4,∴OD===2,∴tan∠EDO===.【点评】本题考查菱形的性质,直角三角形斜边的中线,勾股定理,解直角三角形,关键是应用菱形的性质求出OA的长,由直角三角形斜边中线的性质得到AD的长,由勾股定理求出OD长,由正切定义即可求出tan∠EDO.21.【分析】(1)根据样本要具有代表性解答即可;(2)用总数减去其它类别的人数,可得a的值,进而补全条形统计图;(3)用800乘样本中暑期课外阅读数量达到2本及以上的学生人数所占比例即可;(4)答案不唯一,只要合理即可.【解答】解:(1)下面的抽取方法中,应该选择从八年级所有学生中随机抽取50名学生,故答案为:C;(2)由题意得,a=50﹣5﹣25﹣5=15,补全条形统计图如下:故答案为:15;(3)800×=320(人),答:八年级学生暑期课外阅读数量达到2本及以上的学生人数约为320人;(4)大多数学生暑期课外阅读数量不够多,要加强宣传课外阅读数的重要性(答案不唯一).【点评】本题考查了条形统计图,统计表以及用样本估计总体,掌握题意读懂统计图是解题的关键.22.【分析】(1)直接根据概率公式计算;(2)画树状图展示所有16种等可能的结果,再找出两次取出的2张卡片中至少有1张图案为“A唐僧”的结果数,然后根据概率公式求解.【解答】解:(1)第一次取出的卡片图案为“B孙悟空”的概率为;故答案为:;(2)画树状图为:共有16种等可能的结果,其中两次取出的2张卡片中至少有1张图案为“A唐僧”的结果数为7,所以两次取出的2张卡片中至少有1张图案为“A唐僧”的概率=.【点评】本题考查了列表法与树状图法:利用列表法或树状图展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求出事件A或B的概率.23.【分析】过点B作BE⊥AD,作BF⊥CD,分别在Rt△ABE和Rt△CBF中分别解三角形求出BE,CF的长,二者相加就是CD的长.【解答】解:如图,过点B作BE⊥AD于E,在Rt△ABE中,sin∠BAE=,∴BE=AB sin∠BAE=92×sin48°≈92×0.74=68.08m,过点B作BF⊥CD于F,在Rt△CBF中,sin∠CBF=,∴CF=BC×sin∠CBF≈30×0.60=18.00m,∵FD=BE=68.08m,∴DC=FD+CF=68.08+18.00=86.08≈86.1m.答:从A处的九孔桥到C处的二龙潭瀑布上升的高度DC约为86.1m.【点评】本题主要考查解直角三角形的应用—坡度坡角问题,熟练掌握把实际问题转化成解直角三角形的问题是解决问题的关键.24.【分析】(1)过B作AB的垂线即为过点B的⊙O的切线;(2)由AB=AC,AB∥CE,可得∠BCF=∠ACB,而点D在以AB为直径的圆上,BF 为⊙O的切线,可得∠BDC=∠BFC,即可证明△BCD≌△BCF,从而BD=BF.【解答】(1)解:如图:过B作BF⊥AB,交CE与F,直线BF即为所求直线;(2)证明:∵AB=AC,∴∠ABC=∠ACB,∵AB∥CE,∴∠ABC=∠BCF,∴∠BCF=∠ACB,∵点D在以AB为直径的圆上,∴∠ADB=90°,∴∠BDC=90°,∵BF为⊙O的切线,∴∠ABF=90°,∵AB∥CE,∴∠BFC+∠ABF=180°,∴∠BFC=90°,∴∠BDC=∠BFC,在△BCD和△BCF中,,∴△BCD≌△BCF(AAS),∴BD=BF.【点评】本题考查作圆的切线和全等三角形判定与性质,解题的关键是掌握基本作图,能熟练运用三角形全等的判定定理.25.【分析】(1)用200乘以第一阶梯的电价即可;(2)根据题意按第一、二阶梯电价写出函数解析式即可;(3)先根据甲户、乙户缴纳的燃气费用均为3855元,判断甲、乙两家的燃气量的范围,再分别计算出出燃气量即可.【解答】解:(1)200×2.67=534(元),故答案为:534;(2)根据题意得:y=400×2.67+(1200﹣400)×3.15+3.63(x﹣1200)=3.63x﹣768,∴y与x的函数表达式为y=3.63x﹣768(x>1200);(3)∵400×2.67+(1200﹣400)×3.15=3588<3855,∴甲户该年的用气量达到了第三阶梯,由(2)知,当y=3855时,3.63x﹣768=3855,解得x=1273.6,又∵2.67×(100+400)+3.15×(1200+200﹣500)=4170>3855,且2.67×(100+400)=1335<3855.∴乙户该年的用气量达到第二阶梯,但未达到第三阶梯,设乙户年用气量为am3则有2.67×500+3.15(a﹣500)=3855,解得a=1300,1300﹣1273.6=26.4≈26m3,答:该年乙户比甲户多用约26立方米的燃气.【点评】本题考查一次函数的应用,关键是写出函数解析式.26.【分析】本题考查二次函数的对称的相关知识,直角三角形的三个角为直角的情况分析,不同情况下的最值问题.【解答】解:(1)∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线L1的顶点坐标P(1,﹣4),∵m=1,点P和点D关于直线x=1对称,∴点D的坐标为(1,6);(2)∵抛物线L1的顶点P(1,﹣4)与L2的顶点D关于直线y=m对称,∴D(1,2m+4),抛物线L2:y=﹣(x﹣1)2+(2m+4)=﹣x2+2x+2m+3,∴当x=0时,C(0,2m+3),①当∠BCD=90°时,如图1,过D作DN⊥y轴于N,∵D(1,2m+4),∴N(0,2m+4),∵C(0,2m+3),∴DN=NC=1,∴∠DCN=45°,∵∠BCD=90°,∴∠BCM=45°,∵直线l∥x轴,∴∠BMC=90°,∴∠CBM=∠BCM=45°,BM=CM,∵m≥﹣3,∴BM=CM=(2m+3)﹣m=m+3,∴B(m+3,m),∵点B在y=x2﹣2x﹣3的图象上,∴m=(m+3)2﹣2(m+3)﹣3,∴m=0或m=﹣3,∵当m=3时,得B(0,﹣3),C(0,﹣3),此时,点B和点C重合,舍去,当m=0时,符合题意;将m=0代入L2:y=﹣x2+2x+2m+3得L2:y=﹣x2+2x+3,②当∠BDC=90°,如图2,过B作BT⊥ND交ND的延长线于T,同理,BT=DT,∴D(1,2m+4),∴DT=BT=(2m+4)﹣m=m+4,∵DN=1,∴NT=DN+DT=1+(m+4)=m+5,∴B(m+5,m),∵当B在y=x2﹣2x﹣3的图象上,∴m=(m+5)2﹣2(m+5)﹣3,解得m=﹣3或m=﹣4,∵m≥﹣3,∴m=﹣3,此时,B(2,﹣3),C(0,﹣3)符合题意;将m=﹣3代入L2:y=﹣x2+2x+3得,L2:y=﹣x2+2x﹣3,③易知,当∠DBC=90°,此种情况不存在;综上所述,L2所对应的函数表达式为y=﹣x2+2x+3或y=﹣x2+2x﹣3;(3)如图3,由(2)知,当∠BDC=90°时,m=﹣3,此时,△BCD的面积为1,不合题意舍去,当∠BCD=90°时,m=0,此时,△BCD的面积为3,符合题意,由题意得,EF=FG=CD=,取EF的中点Q,在Rt△CEF中可求得CQ=EF=,在Rt△FGQ中可求得GQ=,当Q,C,G三点共线时,CG取最小值,最小值为.【点评】本题考查二次函数的对称的相关知识,直角三角形的三个角为直角的情况分析,不同情况下的最值问题.解题的关键是理解对称的关键,直角三角形的不同情况分析,综合应用.27.【分析】(1)证得Rt△ABE∽Rt△BMC,得出,由题意CM=CD=AB=2,利用勾股定理求得,BM=,即可得到=,从而得到y==(x>0);(2)把P点的对称点Q(﹣a,﹣b)代入解析式也成立,即可证明函数图象是否具有对称性;(3)观察图象即可判断;(4)分析函数的解析式即可得出函数的性质.【解答】解:(1)在矩形ABCD中,∠ABC=∠BCM=90°,∴∠ABE+∠MBC=90°,∵AE⊥BM,∴∠AEB=90°,∴∠BAE+∠ABE=90°,∴∠AEB=∠BCM,∠MBC=∠BAE,∴Rt△ABE∽Rt△BMC,∴,∵AB=4,点M是CD的中点,∴CM=CD=AB=2,在Rt△BMC中,BM===,∴=,∴y==(x>0);(2)x取任意实数时,对应的函数图象关于原点对称理由如下:若P(a,b)为图象上任意一点,则b=,∴设P(a,b)关于原点的对称点为Q,则Q(﹣a,﹣b),∵当x=﹣a时,y==﹣,∴Q(﹣a,﹣b)也在函数y=的图象上,∴当x取任意实数时,函数y=的图象关于原点对称;(3)观察图象,①函数值y随x的增大而增大;故正确,②函数值y的取值范围是﹣4<y<4;故错误,③存在一条直线与该函数图象有三个交点;故错误,④在图象上存在四点A、B、C、D,使得四边形ABCD是平行四边形,故正确.故答案为:①④;(4)y关于x的函数表达式为y=(x>0,k>0),当k≠0,x取任意实数时,有如下相关性质:当k>0时,图象经过第一、三象限,函数值y随x的增大而增大,y的取值范围为﹣2k <y<2k;当k<0时,图象经过第二、四象限,函数值y随x的增大而减小,y的哦值范围为水2k<y<﹣2k;函数图象经过原点;函数图象关于原点对称;故答案为:y=(x>0,k>0).【点评】本题是反比例函数与一次函数的交点问题,考查了三角形相似的判定和性质,反比例函数的图象和性质,数形结合是解题的关键.。

2022年江苏省连云港市中考数学真题(解析版)

2022年江苏省连云港市中考数学真题(解析版)

数学试题一、选择题(本大题共有8小题,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1. 3-的倒数是( )A. 3B. 13C. 13-D. 3-【答案】C【解析】【分析】由互为倒数的两数之积为1,即可求解.【详解】解:∵1313æö-´-=ç÷èø,∴3-的倒数是13-.故选C2. 下列图案中,是轴对称图形的是( )A. B. C.D.【答案】A【解析】【分析】根据轴对称图形的概念逐项分析判断即可,轴对称图形的概念:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形.【详解】A.是轴对称图形,故该选项正确,符合题意;B.不是轴对称图形,故该选项不正确,不符合题意;C.不是轴对称图形,故该选项不正确,不符合题意;D.不是轴对称图形,故该选项不正确,不符合题意;【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3. 2021年12月9日,“天宫课堂”正式开课,我国航天员在中国空间站首次进行太空授课,本次授课结束时,网络在线观看人数累计超过14600000人次.把“14600000”用科学记数法表示为( )A. 80.14610´ B. 71.4610´ C. 614.610´ D. 514610´【答案】B【解析】【分析】科学记数法的表现形式为10n a ´的形式,其中110a £<,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,当原数绝对值大于等于10时,n 是正数,当原数绝对值小于1时n 是负数;由此进行求解即可得到答案.【详解】解:714600000=1.4610´.故选:B .【点睛】本题主要考查了科学记数法,解题的关键在于能够熟练掌握科学记数法的具体要求.4. 在体育测试中,7名女生仰卧起坐的成绩如下(次/分钟):38,42,42,45,43,45,45,则这组数据的众数是( )A. 38B. 42C. 43D. 45【答案】D【解析】【分析】根据众数的定义即可求解.【详解】解:∵45出现了3次,出现次数最多,∴众数为45.故选D .【点睛】本题考查了求众数,掌握众数的定义是解题的关键.众数:在一组数据中出现次数最多的数.5. 函数y =x 的取值范围是( )A. 1³x B. 0x ³ C. 0x £ D. 1x £【答案】A【解析】【分析】根据二次根式有意义的条件列出不等式,即可求解.【详解】解:∵10x -³,故选A .【点睛】本题考查了求函数自变量取值范围,二次根式有意义的条件,掌握二次根式有意义的条件是解题的关键.6. ABC V 的三边长分别为2,3,4,另有一个与它相似的三角形DEF ,其最长边为12,则DEF V 的周长是( )A. 54B. 36C. 27D. 21【答案】C【解析】【分析】根据相似三角形的性质求解即可.【详解】解:∵△ABC 与△DEF 相似,△ABC 的最长边为4,△DEF 的最长边为12,∴两个相似三角形的相似比为1:3,∴△DEF 的周长与△ABC 的周长比为3:1,∴△DEF 的周长为3×(2+3+4)=27,故选:C .【点睛】本题主要考查了相似三角形的性质,熟知相似三角形的周长之比等于相似之比是解题的关键.7. 如图,有一个半径为2的圆形时钟,其中每个刻度间的弧长均相等,过9点和11点的位置作一条线段,则钟面中阴影部分的面积为( )A. 23pB. 23p -C. 43p -D. 43p 【答案】B【解析】【分析】阴影部分的面积等于扇形面积减去三角形面积,分别求出扇形面积和等边三角形的面积即可.【详解】解:如图,过点OC 作OD ⊥AB 于点D ,∵∠AOB =2×36012°=60°,∴△OAB 是等边三角形,∴∠AOD =∠BOD =30°,OA =OB =AB =2,AD =BD =12AB =1,∴OD=∴阴影部分的面积为260212236023p p ×´-´=,故选:B .【点睛】本题考查了扇形面积、等边三角形面积计算方法,掌握扇形面积、等边三角形的面积的计算方法是正确解答的关键.8. 如图,将矩形ABCD 沿着GE 、EC 、GF 翻折,使得点A 、B 、D 恰好都落在点O 处,且点G 、O 、C 在同一条直线上,同时点E 、O 、F 在另一条直线上.小炜同学得出以下结论:①GF ∥EC ;②ABAD ;③GEDF ;④OCOF ;⑤△COF ∽△CEG .其中正确的是( )A. ①②③B. ①③④C. ①④⑤D. ②③④【答案】B【解析】【分析】由折叠的性质知∠FGE =90°,∠GEC =90°,点G 为AD 的中点,点E 为AB的中点,设的AD=BC=2a,AB=CD=2b,在Rt△CDG中,由勾股定理求得b,然后利用勾股定理再求得DF=FO=,据此求解即可.【详解】解:根据折叠的性质知∠DGF=∠OGF,∠AGE=∠OGE,∴∠FGE=∠OGF+∠OGE=12(∠DGO+∠AGO) =90°,同理∠GEC=90°,∴∠FGE+∠GEC=180°∴GF∥EC;故①正确;根据折叠的性质知DG=GO,GA=GO,∴DG=GO=GA,即点G为AD的中点,同理可得点E为AB的中点,设AD=BC=2a,AB=CD=2b,则DG=GO=GA=a,OC=BC=2a,AE=BE=OE=b,∴GC=3a,在Rt△CDG中,CG2=DG2+CD2,即(3a)2=a2+(2b)2,∴b,∴ABAD,故②不正确;设DF=FO=x,则FC=2b-x,Rt△COF中,CF2=OF2+OC2,即(2b-x)2=x2+(2a)2,∴x=22b ab-,即DF=FO,=,∴GE DF;故③正确;∴OCOF==在∴OCOF ;故④正确;∵∠FCO 与∠GCE 不一定相等,∴△COF ∽△CEG 不成立,故⑤不正确;综上,正确的有①③④,故选:B .【点睛】本题主要考查了折叠问题,解题时,我们常常设要求的线段长为x ,然后根据折叠和轴对称的性质用含x 的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.二、填空题(本大题共8小题,不需要写出解答过程,请把答案直接填写在答题卡相应位置上)9. 计算:23a a +=______.【答案】5a【解析】【分析】直接运用合并同类项法则进行计算即可得到答案.【详解】解: 23a a+(23)a=+5a =.故答案为:5a .【点睛】本题主要考查了合并同类项,熟练掌握合并同类项法则是解答本题关键.10. 已知∠A 的补角是60°,则A Ð=_________°.【答案】120【解析】【分析】如果两个角的和等于180°,就说这两个角互为补角.由此定义即可求解.【详解】解:∵∠A 的补角是60°,∴∠A =180°-60°=120°,故答案为:120.【点睛】本题考查补角的定义,熟练掌握两个角互为补角的定义是解题的关键.11. 写出一个在1到3之间的无理数:_________.(答案不唯一)【解析】【分析】由于12=1,32=9,所以只需写出被开方数在1和9之间的,且不是完全平方数的数即可求解.的【详解】解:1和3.(答案不唯一).【点睛】本题主要考查常见无理数的定义和性质,解题关键是估算无理数的整数部分和小数部分.12. 若关于x 的一元二次方程()2100mxnx m +-=¹的一个解是1x =,则m n +的值是___.【答案】1【解析】【分析】根据一元二次方程解的定义把1x =代入到()2100mxnx m +-=¹进行求解即可.【详解】解:∵关于x 的一元二次方程()2100mxnx m +-=¹的一个解是1x =,∴10m n +-=,∴1m n +=,故答案为:1.【点睛】本题主要考查了一元二次方程解的定义,代数式求值,熟知一元二次方程解的定义是解题的关键.13. 如图,AB 是⊙O 的直径,AC 是⊙O 的切线,A 为切点,连接BC ,与⊙O 交于点D ,连接OD .若82AOD Ð=°,则C Ð=_________°.【答案】49【解析】【分析】利用同弧所对的圆周角等于圆心角的一半求得∠B =12∠AOD =41°,根据AC 是⊙O 的切线得到∠BAC =90°,即可求出答案.【详解】解:∵∠AOD =82°,∴∠B =12∠AOD =41°,∵AC 为圆的切线,A 为切点,∴∠BAC =90°,∴∠C =90°-41°=49°故答案为49.【点睛】此题考查圆周角定理,圆的切线的性质定理,直角三角形两锐角互余,正确理解圆周角定理及切线的性质定理是解题的关键.14. 如图,在66´正方形网格中,ABC V 的顶点A 、B 、C 都在网格线上,且都是小正方形边的中点,则sin A =_________.【答案】45##0.8【解析】【分析】如图所示,过点C 作CE ⊥AB 于E ,先求出CE ,AE 的长,从而利用勾股定理求出AC 的长,由此求解即可.【详解】解:如图所示,过点C 作CE ⊥AB 于E ,由题意得43CE AE ==,,∴5AC ==,∴4sin =5CE A AC =,故答案为:45.【点睛】本题主要考查了求正弦值,勾股定理与网格问题正确作出辅助线,构造直角三角形是解题的关键.15. 如图,一位篮球运动员投篮,球沿抛物线20.2 2.25y x x =-++运行,然后准确落入篮筐内,已知篮筐的中心离地面的高度为3.05m ,则他距篮筐中心的水平距离OH 是_________m .【答案】4【解析】【分析】将 3.05y =代入20.2 2.25y x x =-++中可求出x ,结合图形可知4x =,即可求出OH .【详解】解:当 3.05y =时,20.2 2.25 3.05-++x x =,解得:1x =或4x =,结合图形可知:4m OH =,故答案为:4【点睛】本题考查二次函数的实际应用:投球问题,解题的关键是结合函数图形确定x 的值.16. 如图,在ABCD Y 中,150ABC Ð=°.利用尺规在BC 、BA 上分别截取BE 、BF ,使BE BF =;分别以E 、F 为圆心,大于12EF 的长为半径作弧,两弧在CBA Ð内交于点G ;作射线BG交DC 于点H .若1AD =,则BH 的长为_________.【解析】【分析】如图所示,过点H 作HM ⊥BC 于M ,由作图方法可知,BH 平分∠ABC ,即可证明∠CBH =∠CHB ,得到1CH BC ==+,从而求出HM ,CM 的长,进而求出BM 的长,即可利用勾股定理求出BH 的长.【详解】解:如图所示,过点H 作HM ⊥BC 于M ,由作图方法可知,BH 平分∠ABC ,∴∠ABH =∠CBH ,∵四边形ABCD 是平行四边形,∴1BC AD AB CD ==+∥,,∴∠CHB =∠ABH ,∠C =180°-∠ABC =30°,∴∠CBH =∠CHB ,∴1CH BC ==+,∴12HM CH ==,∴CM ==,∴BM BC CM =-=∴BH ==.【点睛】本题主要考查了角平分线的尺规作图,平行四边形的性质,含30度角的直角三角形的性质,勾股定理,等腰三角形的性质与判定等等,正确求出CH 的长是解题的关键.三、解答题(本大题共11小题,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17. 计算:01(10)20222æö-´-ç÷èø.【答案】2【解析】【分析】根据有理数的乘法,二次根式的性质,零指数的计算法则求解即可.【详解】解:原式541=-+=2.【点睛】本题主要考查了有理数的乘法,求算术平方根,零指数,熟知相关计算法则是解题的关键.18. 解不等式2x ﹣1>312x -,并把它的解集在数轴上表示出来.【答案】不等式的解集为x >1,在数轴上表示见解析.【解析】【详解】试题分析:根据不等式的基本性质去分母、去括号、移项可得不等式的解集,再根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则在数轴上将解集表示出来.试题解析:去分母,得:4x ﹣2>3x ﹣1,移项,得:4x ﹣3x >2﹣1,合并同类项,得:x >1,将不等式解集表示在数轴上如图:19. 化简:221311x x x x -+--.【答案】11x x -+【解析】【分析】根据异分母分式的加法计算法则求解即可.【详解】解:原式2221311x x x x x +-=+--22131x x x x ++-=-22211x x x -+=-22(1)1x x -=-2(1)=(1)(1)x x x -+-11x x -=+.【点睛】本题主要考查了异分母分式的加法,熟知相关计算法则是解题的关键.20. 为落实国家“双减”政策,某校为学生开展了课后服务,其中在体育类活动中开设了四种运动项目:A 乒乓球,B 排球,C 篮球,D 跳绳.为了解学生最喜欢哪一种运动项目,随机抽取部分学生进行调查(每位学生仅选一种),并将调查结果制成如下尚不完整的统计图表.问卷情况统计表:运动项目人数A 乒乓球m B 排球10C 篮球80D 跳绳70(1)本次调查样本容量是_______,统计表中m =_________;(2)在扇形统计图中,“B 排球”对应的圆心角的度数是_________°;(3)若该校共有2000名学生,请你估计该校最喜欢“A 乒乓球”的学生人数.【答案】(1)200,40(2)18(3)约为400人【解析】【分析】(1)从两个统计图中可知,“C 篮球”的人数80人,占调查人数的40%,可求出本次调查的样本容量,进而求出m 的值;(2)“B 排球”的人数10人,据此可求得相应的圆心角;(3)用总人数乘以“A 乒乓球”的学生所占的百分比即可.【小问1详解】解:本次调查的样本容量是:80÷40%=200(人),的m=200-10-80-70=40;故答案:200,40;【小问2详解】解:扇形统计图中B部分扇形所对应的圆心角是360°×10200=18°,故答案为:18;【小问3详解】解:402000400200´=(人),估计该校最喜欢“A乒乓球”的学生人数约为400人.【点睛】此题考查统计表、扇形统计图的结合,从两个统计图中获取数量和数量之间的关系是解决问题的前提.21. “石头、剪子、布”是一个广为流传的游戏,规则是:甲、乙两人都做出“石头”“剪子”“布”3种手势中的1种,其中“石头”赢“剪子”,“剪子”赢“布”,“布”赢“石头”,手势相同不分输赢.假设甲、乙两人每次都随意并且同时做出3种手势中的1种.(1)甲每次做出“石头”手势的概率为_________;(2)用画树状图或列表的方法,求乙不输的概率.【答案】(1)1 3(2)见解析,2 3【解析】【分析】(1)根据概率计算公式求解即可;(2)先画树状图得出所有的等可能性的结果数,然后找到乙不输的结果数,最后利用概率计算公式求解即可.【小问1详解】解:∵甲每次做出的手势只有“石头”、“剪子”、“布”其中的一种,∴甲每次做出“石头”手势的概率为13;【小问2详解】解:树状图如图所示:为甲、乙两人同时做出手势共有9种等可能结果,其中乙不输的共有6种,∴P (乙不输)6293==.答:乙不输的概率是23.【点睛】本题主要考查了简单的概率计算,利用列表法或树状图法求解概率,熟知概率计算公式是解题的关键.22. 我国古代数学名著《九章算术》中有这样一个问题:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”其大意是:今有几个人共同出钱购买一件物品.每人出8钱,剩余3钱;每人出7钱,还缺4钱.问人数、物品价格各是多少?请你求出以上问题中的人数和物品价格.【答案】有7人,物品价格是53钱【解析】【分析】设人数为x 人,根据“物品价格=8×人数-多余钱数=7×人数+缺少的钱数”可得方程,求解方程即可.【详解】解:设人数为x 人,由题意得8374x x -=+,解得7x =.所以物品价格是87353´-=.答:有7人,物品价格是53钱.【点睛】本题主要考查由实际问题抽象出一元一次方程,由实际问题列方程组是把“未知”转化为“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的相等关系.23. 如图,在平面直角坐标系xOy 中,一次函数()0y ax b a =+¹的图像与反比例函数()0k y k x=¹的图像交于P 、Q 两点.点()43P ,-,点Q 的纵坐标为-2.(1)求反比例函数与一次函数的表达式;(2)求POQ △的面积.【答案】(1)12y x =-,112y x =-+ (2)5【解析】【分析】(1)通过点P 坐标求出反比例函数解析式,再通过解析式求出点Q 坐标,从而解出PQ 一次函数解析式;(2)令PQ 与y 轴的交点为M ,则三角形POQ 的面积为OM 乘以点P 横坐标除以2加上OM 乘以点Q 横坐标除以2即可.【小问1详解】将()43P ,-代入k y x=,解得12k =-,∴反比例函数表达式为12y x =-.当2y =-时,代入12y x=-,解得6x =,即()6,2Q -.将()43P ,-、()6,2Q -代入()0y ax b a =+¹,得4362a b a b -+=ìí+=-î,解得121a b ì=-ïíï=î.∴一次函数表达式为112y x =-+.【小问2详解】设一次函数的图像与y 轴交点为M,将0x =代入112y x =-+,得1y =,即()0,1M .∵()43P ,-,()6,2Q -,()0,1M ,∴111416522POQ POM QOM S S S =+=´´+´´=△△△.【点睛】本题考查待定系数法求反比例函数解析式、一次函数解析式、求一次函数和反比例函数围成的三角形面积,掌握拆分法是解本题关键.24. 我市的花果山景区大圣湖畔屹立着一座古塔——阿育王塔,是苏北地区现存最高和最古老的宝塔.小明与小亮要测量阿育王塔的高度,如图所示,小明在点A 处测得阿育王塔最高点C 的仰角45CAE Ð=°,再沿正对阿育王塔方向前进至B 处测得最高点C 的仰角53CBE Ð=°,10m AB =;小亮在点G 处竖立标杆FG ,小亮的所在位置点D 、标杆顶F 、最高点C 在一条直线上, 1.5m FG =,2m GD =.(注:结果精确到0.01m ,参考数据:sin 530.799°»,cos530.602°»,tan 53 1.327°»)(1)求阿育王塔的高度CE ;(2)求小亮与阿育王塔之间的距离ED .【答案】(1)40.58m(2)54.11m【解析】【分析】(1)在Rt CEB V 中,由tan 5310CE CE BE CE °==-,解方程即可求解.(2)证明Rt FGD Rt CED △∽△,根据相似三角形的性质即可求解.【小问1详解】在Rt CAE V 中,∵45CAE Ð=°,∴CE AE =.∵10AB =,∴1010BE AE CE =-=-.在Rt CEB V 中,由tan 5310CE CE BE CE °==-,得()tan5310CE CE °-=,解得40.58CE ».经检验40.58CE »是方程的解答:阿育王塔的高度约为40.58m .【小问2详解】由题意知Rt FGD Rt CED △∽△,∴FG GD CE ED=,即 1.5240.58ED =,∴54.11ED ».经检验54.11ED »是方程的解答:小亮与阿育王塔之间的距离约为54.11m .【点睛】本题考查了解直角三角形的应用,相似三角形的应用,掌握以上知识是解题的关键.25. 如图,四边形ABCD 为平行四边形,延长AD 到点E ,使DE AD =,且BE DC ^.(1)求证:四边形DBCE 为菱形;(2)若DBC △是边长为2的等边三角形,点P 、M 、N 分别在线段BE 、BC 、CE 上运动,求PM PN +的最小值.【答案】(1)证明见解析(2【解析】【分析】(1)先根据四边形ABCD 为平行四边形的性质和DE AD =证明四边形DBCE 为平行四边形,再根据BE DC ^,即可得证;(2)先根据菱形对称性得,得到'PM PN PM PN +=+,进一步说明PM PN +的最小值即为菱形的高,再利用三角函数即可求解.【小问1详解】证明:∵四边形ABCD 是平行四边形,∴AD BC ∥,AD BC =,∵DE AD =,∴DE BC =,又∵点E 在AD 的延长线上,∴∥DE BC ,∴四边形DBCE 为平行四边形,又∵BE DC ^,∴四边形DBCE 为菱形.【小问2详解】解:如图,由菱形对称性得,点N 关于BE 的对称点'N 在DE 上,∴'PM PN PM PN +=+,当P 、M 、'N 共线时,''PM PN PM PN MN +=+=,过点D 作DH BC ^,垂足为H ,∵∥DE BC ,∴'MN 的最小值即为平行线间的距离DH 的长,∵DBC △是边长为2的等边三角形,∴在Rt DBH V 中,60DBC Ð=°,2DB =,sin DH DBC DBÐ=,∴sin 2DH DB DBC =Ð==g∴PM PN +【点睛】本题考查了最值问题,考查了菱形的判定和性质,平行四边形的判定和性质,三角函数等知识,运用了转化的思想方法.将最值问题转化为求菱形的高是解答本题的关键.26. 已知二次函数2(2)4y x m x m =+-+-,其中2m >.(1)当该函数的图像经过原点()0,0O ,求此时函数图像的顶点A 的坐标;(2)求证:二次函数2(2)4y x m x m =+-+-的顶点在第三象限;(3)如图,在(1)的条件下,若平移该二次函数的图像,使其顶点在直线2y x =--上运动,平移后所得函数的图像与y 轴的负半轴的交点为B ,求AOB V 面积的最大值.【答案】(1)()1,1A --(2)见解析(3)最大值为98【解析】【分析】(1)先利用待定系数法求出二次函数解析式,再将二次函数解析式化为顶点式即可得到答案;(2)先根据顶点坐标公式求出顶点坐标为22820,24m m m æö--+-ç÷èø,然后分别证明顶点坐标的横纵坐标都小于0即可;(3)设平移后图像对应的二次函数表达式为2y x bx c =++,则其顶点坐标为24,24b c b æö--ç÷èø,然后求出点B 的坐标,根据平移后的二次函数顶点在直线2y x =--上推出2284b bc +-=,过点A 作AH OB ^,垂足为H ,可以推出219=(1)88AOB S b -++△,由此即可求解.【小问1详解】解:将()0,0O 代入2(2)4y xm x m =+-+-,解得4m =.由2m >,则4m =符合题意,∴222(1)1y x x x =+=+-,∴()1,1A --.【小问2详解】解:由抛物线顶点坐标公式得顶点坐标为22820,24m m m æö--+-ç÷èø.∵2m >,∴20m ->,∴20m -<,∴202m -<.∵228201(4)11044m m m -+-=---£-<,∴二次函数2(2)4y xm x m =+-+-的顶点在第三象限.【小问3详解】解:设平移后图像对应的二次函数表达式为2y x bx c =++,则其顶点坐标为24,24b c b æö--ç÷èø当0x =时,y c =,∴()0,B c .将24,24b c b æö--ç÷èø代入2y x =--,解得2284b b c +-=.∵()0,B c 在y 轴的负半轴上,∴0c <.∴2284b b OBc +-=-=-.过点A 作AH OB ^,垂足为H ,∵()1,1A --,∴1AH =.在AOB V 中,211281224AOB b b S OB AH æö+-=×=´-´ç÷èø△211184b b =--+219(1)88b =-++,∴当1b =-时,此时0c <,AOB V 面积有最大值,最大值为98.【点睛】本题主要考查了待定系数法求二次函数解析式,二次函数的性质,二次函数的平移,二次函数的最值问题,正确理解题意,熟练掌握二次函数的相关知识是解题的关键.27. 【问题情境】在一次数学兴趣小组活动中,小昕同学将一大一小两个三角板按照如图1所示的方式摆放.其中90ACB DEB Ð=Ð=°,30B Ð=°,3BE AC ==.【问题探究】小昕同学将三角板DEB 绕点B 按顺时针方向旋转.(1)如图2,当点E 落在边AB 上时,延长DE 交BC 于点F ,求BF 的长.(2)若点C 、E 、D 在同一条直线上,求点D 到直线BC 的距离.(3)连接DC ,取DC 的中点G ,三角板DEB 由初始位置(图1),旋转到点C 、B 、D 首次在同一条直线上(如图3),求点G 所经过的路径长.(4)如图4,G 为DC 的中点,则在旋转过程中,点G 到直线AB 的距离的最大值是_____.【答案】(1)(21±(3(4【解析】【分析】(1)在Rt △BEF 中,根据余弦的定义求解即可;(2)分点E 在BC 上方和下方两种情况讨论求解即可;(3)取BC 的中点O ,连接GO ,从而求出OG G 在以O 根据弧长公式即可求解;(4)由(3)知,点G 在以O O 作OH ⊥AB 于H ,当G 在OH 的反向延长线上时,GH 最大,即点G 到直线AB 的距离的最大,在Rt △BOH 中求出OH ,进而可求GH .【小问1详解】解:由题意得,90BEF BED Ð=Ð=°,∵在Rt BEF △中,30ABC Ð=°,3BE =,cos BE ABC BF Ð=.∴3cos cos 30BE BF ABC =°==Ð.【小问2详解】①当点E 在BC 上方时,如图一,过点D 作DH BC ^,垂足为H ,∵在ABC V 中,90ACB Ð=°,30ABC Ð=°,3AC =,∴tan AC ABC BC Ð=,∴3tan tan 30AC BC ABC =°==Ð∵在BDE V 中,90DEB Ð=°,30DBE ABC Ð=Ð=°,3BE =,tan DE DBE BE Ð=,∴tan30DE BE =°×.∵点C 、E 、D 在同一直线上,且90DEB Ð=°,∴18090CEB DEB Ð=-Ð=°°.又∵在CBE △中,90CEB Ð=°,BC =3BE =,∴CE ==,∴C D C E D E =+=∵在BCD △中,1122BCD S CD BE BC DH =×=×△,∴1CD BE DH BC ×==+.②当点E 在BC 下方时,如图二,在BCE V 中,∵90CEB Ð=°,3BE =,BC =∴CE ==.∴C D C E D E =-=.过点D 作DM BC ^,垂足为M .在BDC V 中,1122BDC S BC DM CD BE =×=×△,∴1D M -.综上,点D 到直线BC 1±.【小问3详解】解:如图三,取BC 的中点O ,连接GO ,则12GO BD ==∴点G 在以O 当三角板DEB 绕点B 顺时针由初始位置旋转到点C 、B 、D 首次在同一条直线上时,点G 所经过的轨迹为150°所对的圆弧,圆弧长为1502360p ´=.∴点G .【小问4详解】解:由(3)知,点G 在以O 如图四,过O 作OH ⊥AB 于H ,当G 在OH 的反向延长线上时,GH 最大,即点G 到直线AB 的距离的最大,在Rt △BOH 中,∠BHO =90°,∠OBH =30°,12BO BC ==,∴sin sin 30OH BO OBH =×а=,∴GH OG OH =+=即点G 到直线AB 【点睛】本题考查了勾股定理,旋转的性质,弧长公式,解直角三角形等知识,分点E 在BC 上方和下方是解第(2)的关键,确定点G 的运动轨迹是解第(3)(4)的关键.。

2022年江苏省连云港市中考数学附解析

2022年江苏省连云港市中考数学附解析

2022年江苏省连云港市中考数学学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,⊙O 内切于ABC △,切点分别为D E F ,,.已知50B ∠=°,60C ∠=°,连结OE OF DE DF ,,,,那么EDF ∠等于( )A .40°B .55°C .65°D .70°2.某班级想举办一次书法比赛,全班45名同学必须每人上交一份书法作品,设一等奖5名,二等奖10名,三等奖15名,那么该班某位同学获一等奖的概率为( )A .19B .29C .13D .23 3.在ABC △中,90C ∠=°,2B A ∠=∠,则cos A 等于( ) AB .12 CD4.如图,点A ,D ,G ,M 在半圆O 上,四边形ABOC ,OFDE ,HMNO•都是矩形,•设BC=a ,EF=b ,NH=c ,则下列各式正确的是( ).A .a>b>cB .a=b=cC .c>a>bD .b>c>a5.抛物线2y ax =和22y x =的形状相同,则 a 的值是( )A .2B .-2C .2±D .不确定 6.抛物线y =(x -1)2+2的对称轴是( )A .直线x =-1B .直线x =1C .直线x =-2D .直线x =2 7.样本频数分布反映了( )A .样本数据的多少B .样本数据的平均水平C .样本数据的离散程度D .样本数据在各个小范围内数量的多少8.-5<x <5的非正整数x 是( )A .-1B .0C .-2,-1,0D .1,-1,09.将△ABC 的三个顶点的横坐标都乘-l ,纵坐标保持不变,则所得图形( )A .与原图形关于x 轴对称B .与原图形关于k 轴对称C .与原图形关于原点对称D .向x 轴的负方向平移了一个单位10.老师对某班同学中出现的错别字情况进行抽样调查,一个小组10位同学在一篇作文中 出现的错别字个数统计如下(单位:个):0,2,0,2,3,0,2,3,1,2.有关这组数据的下列说法中,正确的是( )A .平均数是2B .众数是3C .中位数是1.5D .方差是1.25 11.某物体的三视图是如图所示的三个图形,那么该物体的形状是( )A .长方体B .圆锥体C .正方体D .圆柱体12.在∠AOB 的内部任取一点C ,作射线0C ,则一定存在( )A .∠AOB>∠AOCB .∠AOC>∠BOC C .∠BCE<∠AOCD .∠AOC=∠BOC 13.规定运算|a b ad bc c d =-,若22178632x x --=+,则x 的值是( ) A . -60B . 4.8C .24D .-12 14.按下面的程序计算,若开始输入的值x 为正数,最后输出的结果为656,则满足条件的x的不同值最多有 ( )A .2个B .3个C .4个D .5个 15.运用分配律计算:(-3)×(-8+2-3),有下列四种不同的结果,其中正确的是( ) A .-3×8-3×2-3×3 B .-3×(-8)-3×2-3×3C .(-3)×(-8)+3×2-3×3D .(-3)×(-8)-3×2+3×3 二、填空题16.如图所示是一个三级台阶,它的每一级的长、宽、高分别为20 dm, 3 dm,2dm .A 和B 是 这个台阶两个相对的端点,A 处有一只蚂蚁,这只蚂蚁要沿着台阶面爬到 B 点最短路程是 dm .解答题17.一盒子内放有3个红球、6个白球和5个黑球,它们除颜色外都相同,搅匀后任意摸出1个球是白球的概率为 .18.如图,△ABC 中,点D在AB上,请填上一个你认为适合的条件 ,使得△ACD ∽△ABC .19.如图,已知梯形ABCD,添加一个条件,使其成为等腰梯形,则这个条件可以是.20.在△ABC与△ADC中,下列3个论断:①AB=AD;②∠BAC=∠DAC;③BC=DC.将两个论断作为条件,另一个论断作为结论,构成一个命题,写出一个真命题:.21.已知直角三角形的两直角边长分别为 a 和3,则斜边长为.22.如图(1)硬纸片ABCD 的边长是4cm,点E、F分别是AB、BC边的中点,若沿左图中的虚线剪开,拼成如图 (2}所示的一栋“小别墅”,则图中阴影部分的面积和是 cm2.解答题23.已知二元一次方程x + 3y =10:请写出一组正整数解.24.若∠1的对顶角是∠2,∠2的补角是∠3,且∠3=54°,则∠l= .三、解答题25.(1)如图①,等边△ABC 中,D 是AB 边上的动点,以 CD 为一边,向上作等边△EDC,连结 AE. 求证:AE∥BC.(2)如图②,将 (1)中等边△ABC 的形状改成以 BC 为底边的等腰三角形,顶角∠BAC = 30°,所作等边△EDC 改成以 DC 为底边的等腰三角形,且相似于△ABC. 求∠CAE 的度数.26.已知直线y=2x-1.(1)求已知直线与x轴、y轴交点A、B的坐标;(2)若直线y=kx+b与已知直线关于x轴对称,求其解析式,并在同一坐标系内画出两条直线的图象.27.解下列方程组:(1)2244x y x y +=⎧⎨-=⎩; (2)231761m n m n +=⎧⎨+=-⎩; (3)6234()5()2x y x y x y x y +-⎧+=⎪⎨⎪+--=⎩28. :请你在3×3 的方格纸上,以其中的格点为顶点分别画出,三个形状不同的三角形(工具不限,只要求画出图形,不必写结论).29.如图,AC =AE ,∠BAM =∠BND =∠EAC , 图中是否存在与△ABE 全等的三角形?并说明理由.30.计算:(1)222468a a a a -++- (2) 3(m -2n)-2(-2n+3m)A D M C BE N【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.A3.A4.B5.C6.B7.D8.C9.B10.D11.D12.A13.D14.C15.D二、填空题16.2517.73 18. ∠1=∠B 或∠2=∠ACB 或ABAC AC AD =或AC 2=AD ·AB(只填一个) 19.AB=CD 等20.①②⇒③或①③⇒②21..423.略24.126°三、解答题25.(1)证明:正△ABC 和正△CDE,∴BC=AC, ∠ACB=60°,CD= CE,∠DCE= 60°;∴∠BCD=∠ECA,∴△BCD ≌△△ACE,∴∠CAE=∠B= 60°,∴∠CAE=∠ACB,∴AE ∥BC(2)△ABC 为等腰三角形,∠BAC=30°,∠ACB=∠B=75°,∵△ABC ∽△EDC,∴∠DEC=30° ,∴∠ECD=∠EDC=75°,BC AC CD CE =, ∴∠BCD=∠ACE,BC CD AC CE=.∴ △BCD ∽△ACE,∴∠CAE=∠B=75°. 26.(1)A(12,0),B(0,-l);(2)y=-2x+1,图象略27.(1)10x y =⎧⎨=⎩ ;(2) 11m n =-⎧⎨=⎩;(3)71x y =⎧⎨=⎩28.29. 存在△ABE ≌△ADC ,理由略30.(1)244a a -;(2)-3m-2n。

2022年江苏省连云港市中考数学试卷和答案

2022年江苏省连云港市中考数学试卷和答案

2022年江苏省连云港市中考数学试卷和答案一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(3分)﹣3的倒数是()A.﹣3B.3C.﹣D.2.(3分)下列图案中,是轴对称图形的是()A.B.C.D.3.(3分)2021年12月9日,“天宫课堂”正式开课,我国航天员在中国空间站首次进行太空授课,本次授课结束时,网络在线观看人数累计超过14600000人次.把“14600000”用科学记数法表示为()A.0.146×108B.1.46×107C.14.6×106D.146×105 4.(3分)在体育测试中,7名女生仰卧起坐的成绩如下(次/分钟):38,42,42,45,43,45,45,则这组数据的众数是()A.38B.42C.43D.455.(3分)函数y=中自变量x的取值范围是()A.x≥1B.x≥0C.x≤0D.x≤1 6.(3分)△ABC的三边长分别为2,3,4,另有一个与它相似的三角形DEF,其最长边为12,则△DEF的周长是()A.54B.36C.27D.217.(3分)如图,有一个半径为2的圆形时钟,其中每个刻度间的弧长均相等,过9点和11点的位置作一条线段,则钟面中阴影部分的面积为()A.π﹣B.π﹣C.π﹣2D.π﹣8.(3分)如图,将矩形ABCD沿着GE、EC、GF翻折,使得点A、B、D恰好都落在点O处,且点G、O、C在同一条直线上,同时点E、O、F在另一条直线上.小炜同学得出以下结论:①GF∥EC;②AB=AD;③GE=DF;④OC=2OF;⑤△COF ∽△CEG.其中正确的是()A.①②③B.①③④C.①④⑤D.②③④二、填空题(本大题共8小题,每小题3分,共24分.不需要写出答案过程,请把答案直接填写在答题卡相应位置上)9.(3分)计算:2a+3a=.10.(3分)已知∠A的补角为60°,则∠A=°.11.(3分)写出一个在1到3之间的无理数:.12.(3分)若关于x的一元二次方程mx2+nx﹣1=0(m≠0)的一个解是x=1,则m+n的值是.13.(3分)如图,AB是⊙O的直径,AC是⊙O的切线,A为切点,连接BC,与⊙O交于点D,连接OD.若∠AOD=82°,则∠C =°.14.(3分)如图,在6×6正方形网格中,△ABC的顶点A、B、C 都在网格线上,且都是小正方形边的中点,则sinA=.15.(3分)如图,一位篮球运动员投篮,球沿抛物线y=﹣0.2x2+x+2.25运行,然后准确落入篮筐内,已知篮筐的中心离地面的高度为3.05m,则他距篮筐中心的水平距离OH是m.16.(3分)如图,在▱ABCD中,∠ABC=150°.利用尺规在BC、BA上分别截取BE、BF,使BE=BF;分别以E、F为圆心,大于EF的长为半径作弧,两弧在∠CBA内交于点G;作射线BG 交DC于点H.若AD=+1,则BH的长为.三、答案题(本大题共11小题,共102分.请在答题卡指定区域内作答,答案时应写出必要的文字说明、证明过程或演算步骤)17.(6分)计算(﹣10)×(﹣)﹣+20220.18.(6分)解不等式2x﹣1>,并把它的解集在数轴上表示出来.19.(6分)化简+.20.(8分)为落实国家“双减”政策,某校为学生开展了课后服务,其中在体育类活动中开设了四种运动项目:A乒乓球,B排球,C 篮球,D跳绳.为了解学生最喜欢哪一种运动项目,随机抽取部分学生进行调查(每位学生仅选一种),并将调查结果制成如下尚不完整的统计图表.问卷情况统计表人数运动项目mA乒乓球B排球10C篮球80D跳绳70(1)本次调查的样本容量是,统计表中m=;(2)在扇形统计图中,“B排球”对应的圆心角的度数是°;(3)若该校共有2000名学生,请你估计该校最喜欢“A乒乓球”的学生人数.21.(10分)“石头、剪子、布”是一个广为流传的游戏,规则是:甲、乙两人都做出“石头”“剪子”“布”3种手势中的1种,其中“石头”赢“剪子”,“剪子”赢“布”,“布”赢“石头”,手势相同不分输赢.假设甲、乙两人每次都随意并且同时做出3种手势中的1种.(1)甲每次做出“石头”手势的概率为;(2)用画树状图或列表的方法,求乙不输的概率.22.(10分)我国古代数学名著《九章算术》中有这样一个问题:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”其大意是:今有几个人共同出钱购买一件物品.每人出8钱,剩余3钱;每人出7钱,还缺4钱.问人数、物品价格各是多少?请你求出以上问题中的人数和物品价格.23.(10分)如图,在平面直角坐标系xOy中,一次函数y=ax+b (a≠0)的图象与反比例函数y=(k≠0)的图象交于P、Q两点.点P(﹣4,3),点Q的纵坐标为﹣2.(1)求反比例函数与一次函数的表达式;(2)求△POQ的面积.24.(10分)我市的花果山景区大圣湖畔屹立着一座古塔——阿育王塔,是苏北地区现存最高和最古老的宝塔.小明与小亮要测量阿育王塔的高度,如图所示,小明在点A处测得阿育王塔最高点C的仰角∠CAE=45°,再沿正对阿育王塔方向前进至B处测得最高点C的仰角∠CBE=53°,AB=10m;小亮在点G处竖立标杆FG,小亮的所在位置点D、标杆顶F、最高点C在一条直线上,FG=1.5m,GD=2m.(1)求阿育王塔的高度CE;(2)求小亮与阿育王塔之间的距离ED.(注:结果精确到0.01m,参考数据:sin53°≈0.799,cos53°≈0.602,tan53°≈1.327)25.(10分)如图,四边形ABCD为平行四边形,延长AD到点E,使DE=AD,且BE⊥DC.(1)求证:四边形DBCE为菱形;(2)若△DBC是边长为2的等边三角形,点P、M、N分别在线段BE、BC、CE上运动,求PM+PN的最小值.26.(12分)已知二次函数y=x2+(m﹣2)x+m﹣4,其中m>2.(1)当该函数的图象经过原点O(0,0),求此时函数图象的顶点A的坐标;(2)求证:二次函数y=x2+(m﹣2)x+m﹣4的顶点在第三象限;(3)如图,在(1)的条件下,若平移该二次函数的图象,使其顶点在直线y=﹣x﹣2上运动,平移后所得函数的图象与y轴的负半轴的交点为B,求△AOB面积的最大值.27.(14分)【问题情境】在一次数学兴趣小组活动中,小昕同学将一大一小两个三角板按照如图1所示的方式摆放.其中∠ACB=∠DEB=90°,∠B=30°,BE=AC=3.【问题探究】小昕同学将三角板DEB绕点B按顺时针方向旋转.(1)如图2,当点E落在边AB上时,延长DE交BC于点F,求BF的长.(2)若点C、E、D在同一条直线上,求点D到直线BC的距离.(3)连接DC,取DC的中点G,三角板DEB由初始位置(图1),旋转到点C、B、D首次在同一条直线上(如图3),求点G所经过的路径长.(4)如图4,G为DC的中点,则在旋转过程中,点G到直线AB 的距离的最大值是.答案一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.【知识点】倒数.【答案】解:﹣3的倒数是﹣.故选:C.2.【知识点】轴对称图形.答案【答案】解:A.是轴对称图形,故此选项符合题意;B.不是轴对称图形,故此选项不符合题意;C.不是轴对称图形,故此选项不符合题意;D.不是轴对称图形,故此选项不符合题意;故选:A.3.【知识点】科学记数法—表示较大的数.答案【答案】解:14600000=1.46×107.故选:B.4.【知识点】众数.答案【答案】解:∵45出现了3次,出现的次数最多,∴这组数据的众数为45;故选:D.5.【知识点】函数自变量的取值范围;解一元一次不等式.答案【答案】解:∵x﹣1≥0,∴x≥1.故选:A.6.【知识点】相似三角形的性质.答案【答案】解:方法一:设2对应的边是x,3对应的边是y,∵△ABC∽△DEF,∴==,∴x=6,y=9,∴△DEF的周长是27;方式二:∵△ABC∽△DEF,∴=,∴=,∴C△DEF=27;故选:C.7.【知识点】扇形面积的计算;弧长的计算.答案【答案】解:连接OA、OB,过点O作OC⊥AB,由题意可知:∠AOB=60°,∵OA=OB,∴△AOB为等边三角形,∴AB=AO=BO=2∴S扇形AOB==π,∵OC⊥AB,∴∠OCA=90°,AC=1,∴OC=,∴S△AOB==,∴阴影部分的面积为:π﹣;故选:B.8.【知识点】相似三角形的判定;矩形的性质;翻折变换(折叠问题).答案【答案】解:由折叠性质可得:DG=OG=AG,AE=OE=BE,OC=BC,∠DGF=∠FGO,∠AGE=∠OGE,∠AEG=∠OEG,∠OEC =∠BEC,∴∠FGE=∠FGO+∠OGE=90°,∠GEC=∠OEG+∠OEC=90°,∴∠FGE+∠GEC=180°,∴GF∥CE,故①正确;设AD=2a,AB=2b,则DG=OG=AG=a,AE=OE=BE=b,∴CG=OG+OC=3a,在Rt△CGE中,CG2=GE2+CE2,(3a)2=a2+b2+b2+(2a)2,解得:b=a,∴AB=AD,故②错误;在Rt△COF中,设OF=DF=x,则CF=2b﹣x=2a﹣x,∴x2+(2a)2=(2a﹣x)2,解得:x=a,∴DF=×a=a,2OF=2×a=2a,在Rt△AGE中,GE==a,∴GE=DF,OC=2OF,故③④正确;无法证明∠FCO=∠GCE,∴无法判断△COF∽△CEG,故⑤错误;综上,正确的是①③④,故选:B.二、填空题(本大题共8小题,每小题3分,共24分.不需要写出答案过程,请把答案直接填写在答题卡相应位置上)9.【知识点】合并同类项.答案【答案】解:2a+3a=5a,故答案为:5a.10.【知识点】余角和补角.答案【答案】解:∵∠A的补角为60°,∴∠A=180°﹣60°=120°,故答案为:120.11.【知识点】无理数.答案【答案】解:1到3之间的无理数如,,.答案不唯一.12.【知识点】一元二次方程的解;一元二次方程的定义.答案【答案】解:把x=1代入方程mx2+nx﹣1=0得m+n﹣1=0,解得m+n=1.故答案为:1.13.【知识点】切线的性质;圆周角定理.答案【答案】解:∵AC是⊙O的切线,∴∠BAC=90°,∵∠AOD=82°,∴∠ABD=41°,∴∠C=90°﹣∠ABD=90°﹣41°=49°,故答案为:49.14.【知识点】解直角三角形.答案【答案】解:设每个小正方形的边长为a,作CD⊥AB于点D,由图可得:CD=4a,AD=3a,∴AC===5a,∴sin∠CAB===,故答案为:.15.【知识点】二次函数的应用.答案【答案】解:当y=3.05时,3.05=﹣0.2x2+x+2.25,x2﹣5x+4=0,(x﹣1)(x﹣4)=0,解得:x1=1,x2=4,故他距篮筐中心的水平距离OH是4m.故答案为:4.16.【知识点】作图—基本作图;角平分线的性质;平行四边形的性质.答案【答案】解:在▱ABCD中,∠ABC=150°,∴∠C=30°,AB∥CD,BC=AD=+1,由作图知,BH平分∠ABC,∴∠CBH=∠ABH,∵AB∥CD,∴∠CHB=∠ABH,∴∠CHB=∠CBF,∴CH=BC=+1,过B作BG⊥CD于G,∴∠CGB=90°,∴BG==,CG=BC=,∴HG=CH﹣CG=,∴BH===,故答案为:.三、答案题(本大题共11小题,共102分.请在答题卡指定区域内作答,答案时应写出必要的文字说明、证明过程或演算步骤)17.【知识点】实数的运算;零指数幂.答案【答案】解:原式=5﹣4+1=2.18.【知识点】解一元一次不等式;在数轴上表示不等式的解集.答案【答案】解:去分母,得:4x﹣2>3x﹣1,移项,得:4x﹣3x>﹣1+2,合并同类项,得:x>1,将不等式解集表示在数轴上如下:.19.【知识点】分式的加减法.答案【答案】解:原式=+===.20.【知识点】扇形统计图;总体、个体、样本、样本容量;用样本估计总体;统计表.答案【答案】解:(1)本次调查的样本容量是:80÷40%=200(人);A乒乓球人数:200﹣70﹣80﹣10=40(人);故答案为:200,40;(2)“B排球”对应的圆心角的度数:360°×=18°;故答案为:18;(3)该校最喜欢“A乒乓球”的学生人数:2000×=400(人),答:该校最喜欢“A乒乓球”的学生人数为400人.21.【知识点】列表法与树状图法.答案【答案】解:(1)甲每次做出“石头”手势的概率为;故答案为:;(2)画树状图得:共有9种等可能的情况数,其中乙不输的有6种,则乙不输的概率是=.22.【知识点】二元一次方程组的应用;数学常识;一元一次方程的应用.答案【答案】解:设有x个人,物品的价格为y钱,由题意得:,解得:,答:有7个人,物品的价格为53钱.23.【知识点】反比例函数与一次函数的交点问题.答案【答案】解:(1)将点P(﹣4,3)代入反比例函数y=中,解得:k=﹣4×3=﹣12,∴反比例函数的表达式为:y=﹣;当y=﹣2时,﹣2=﹣,∴x=6,∴Q(6,﹣2),将点P(﹣4,3)和Q(6,﹣2)代入y=ax+b中得:,解得:,∴一次函数的表达式为:y=﹣x+1;(2)如图,y=﹣x+1,当x=0时,y=1,∴OM=1,∴S△POQ=S△POM+S△OMQ=×1×4+×1×6=2+3=5.24.【知识点】解直角三角形的应用﹣仰角俯角问题.答案【答案】解:(1)在Rt△CAE中,∵∠CAE=45°,∴CE=AE,∵AB=10m,∴BE=AE﹣10=CE﹣10,在Rt△CEB中,tan∠CBE=tan53°==,∴1.327≈,解得CE≈40.58(m);答:阿育王塔的高度CE约为40.58m;(2)由题意知:∠CED=90°=∠FGD,∠FDG=∠CDE,∴△FGD∽△CED,∴=,即=,解得ED≈54.11(m),答:小亮与阿育王塔之间的距离ED是54.11m.25.【知识点】轴对称﹣最短路线问题;等边三角形的性质;平行四边形的性质;菱形的判定与性质.答案【答案】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵DE=AD,∴DE=BC,∵E在AD的延长线上,∴DE∥BC,∴四边形DBCE是平行四边形,∵BE⊥DC,∴四边形DBCE是菱形;(2)解:作N关于BE的对称点N',过D作DH⊥BC于H,如图:由菱形的对称性知,点N关于BE的对称点N'在DE上,∴PM+PN=PM+PN',∴当P、M、N'共线时,PM+PN'=MN'=PM+PN,∵DE∥BC,∴MN'的最小值为平行线间的距离DH的长,即PM+PN的最小值为DH的长,在Rt△DBH中,∠DBC=60°,DB=2,∴DH=DB•sin∠DBC=2×=,∴PM+PN的最小值为.26.【知识点】二次函数综合题.答案【答案】(1)解:把O(0,0)代入y=x2+(m﹣2)x+m﹣4得:m﹣4=0,解得m=4,∴y=x2+2x=(x+1)2﹣1,∴函数图像的顶点A的坐标为(﹣1,﹣1);(2)证明:由抛物线顶点坐标公式得y=x2+(m﹣2)x+m﹣4的顶点为(,),∵m>2,∴2﹣m<0,∴<0,∵=﹣(m﹣4)2﹣1≤﹣1<0,∴二次函数y=x2+(m﹣2)x+m﹣4的顶点在第三象限;(3)解:设平移后图像对应的二次函数表达式为y=x2+bx+c,其顶点为(﹣,),当x=0时,B(0,c),将(﹣,)代入y=﹣x﹣2得:=﹣2,∴c=,∵B(0,c)在y轴的负半轴,∴c<0,∴OB=﹣c=﹣,过点A作AH⊥OB于H,如图:∵A(﹣1,﹣1),∴AH=1,在△AOB中,S△AOB=OB•AH=×(﹣)×1=﹣b2﹣b+1=﹣(b+1)2+,∵﹣<0,∴当b=﹣1时,此时c<0,S△AOB取最大值,最大值为,答:△AOB面积的最大值是.27.【知识点】几何变换综合题.答案【答案】解:(1)由题意得,∠BEF=∠BED=90°,在Rt△BEF中,∠ABC=30°,BE=3,∴BF===2;(2)①当点E在BC上方时,如图1,过点D作DH⊥BC于H,在Rt△ABC中,AC=3,∴tan∠ABC=,∴BC===3,在Rt△BED中,∠EBD=∠ABC=30°,BE=3,∴DE=BE•tan∠DBE=,∵S△BCD=CD•BE=BC•DH,∴DH==+1,②当点E在BC下方时,如图2,在Rt△BCE中,BE=3,BC=3,根据勾股定理得,CE==3,∴CD=CE﹣DE=3﹣,过点D作DM⊥BC于M,∵S△BDC=BC•DM=CD•BE,∴DM==﹣1,即点D到直线BC的距离为±1;(3)如图3﹣1,连接CD,取CD的中点G,取BC的中点O,连接GO,则OG∥AB,∴∠COG=∠B=30°,∴∠BOE=150°,∵点G为CD的中点,点O为BC的中点,∴GO=BD=,∴点G是以点O为圆心,为半径的圆上,如图3﹣2,∴三角板DEB由初始位置(图1),旋转到点C、B、D首次在同一条直线上时,点G所经过的轨迹为150°所对的圆弧,∴点G所经过的路径长为=π;(4)如图4,过点O作OK⊥AB于K,∵点O为BC的中点,BC=3,∴OB=,∴OK=OB•sin30°=,由(3)知,点G是以点O为圆心,为半径的圆上,∴点G到直线AB的距离的最大值是+=,故答案为:.。

2023年江苏省连云港市中考数学真题(答案解析)

2023年江苏省连云港市中考数学真题(答案解析)

数学试题一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.【答案】D【解析】解:6-的相反数是6.故选:D .2.【答案】C【解析】解:选项A 、B 、D 均不能找到这样的一条直线,使直线两旁的部分能够完全重合的图形,所以不是轴对称图形;选项C 能找到这样的一条直线,使直线两旁的部分能够完全重合的图形,所以是轴对称图形;故选:C .3.【答案】A【解析】解:62370000 2.3710=⨯.故选:A .4.【答案】C【解析】解:A 选项,主视图是等腰三角形,故此选项不合题意;B 选项,主视图是梯形,故此选项不合题意;C 选项,主视图是圆,故此选项符合题意;D 选项,主视图是矩形,故此选项不合题意;故选:C .5.【答案】B【解析】解:甲是由一条直径、一条弦及一段圆弧所围成的图形:乙是由两条半径与一段圆弧所围成的图形;丙是由不过圆心O 的两条线段与一段圆弧所围成的图形,只有乙是扇形,故选:B .6.【答案】B【解析】解:设小正方形的边长为1,则大正方形的边长为32,∴总面积为2231614169252⎛⎫⨯+⨯=+= ⎪⎝⎭,阴影部分的面积为2239132122222⎛⎫⨯+⨯=+= ⎪⎝⎭,∴点P 落在阴影部分的概率为131322550=,故选:B .7.【答案】D【解析】解:设快马x 天可追上慢马,由题意得()24015012x x =+故选:D .8.【答案】D【解析】解:如图所示,连接AC ,∵矩形ABCD 内接于O ,4,5==AB BC ∴222AC AB BC =+∴阴影部分的面积是222+πππ222ABCD AB BC AC S ⎛⎫⎛⎫⎛⎫⨯+⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭矩形()2221+π4ABCD S AB BC AC ⨯+-矩形ABCDS =矩形4520=⨯=,故选:D .二、填空题(本大题共8小题,每小题3分,共24分.不需要写出解答过程,请把答案直接填写在答题卡相应位置上)9.【答案】5【解析】解:2=5故答案为:5.10.【答案】<【解析】解:由数轴可得0,a b a b<<>∴a b +0<11.【答案】4(答案不唯一,大于2且小于8之间的数均可)【解析】解:设第三边长为x ,由题意得:5353x -<<+,则28x <<,故答案可为:4(答案不唯一,大于2且小于8之间的数均可).12.【答案】1k <【解析】解:∵关于x 的方程220x x k -+=有两个不相等的实数根,∴()224240b ac k ∆=-=-->,解得1k <.故答案为:1k <.13.【答案】()3,150︒【解析】解:根据图形可得D 在第三个圆上,OD 与正半轴的角度150︒,∴点D 的坐标可以表示为()3,150︒故答案为:()3,150︒.14.【答案】72【解析】解:∵五边形ABCDE 是正五边形,∴530726DCF ∠÷=︒=︒,∴新五边形A B CD E ''''的顶点D ¢落在直线BC 上,则旋转的最小角度是72︒,故答案为:72.15.【答案】83-【解析】解:方法一:∵2cos 3OAC ∠=,∴2cos 3AD AO OAC AO AC ∠===设2AD a =,则3AO a =,∴92AC a =∵矩形OABC 的面积是6,AC 是对角线,∴AOC 的面积为3,即132AO OC ⨯=∴623OC a a==在Rt AOC 中,222AC AO OC =+即()2229232a a a ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭即22813644a a-=解得:24515a =在Rt ADC 中,DO ==∵对角线AC x ∥轴,则AD OD ⊥,∴245822153AOD k S a ===== ,∵反比例函数图象在第二象限,∴83k =-,方法二:∵2cos 3OAC ∠=,∴2cos 3AD AO OAC AO AC ∠===设2AD a =,则3AO a =,∴92AC a =,∴24992AD a AC a ==,488226993AOD AOC S S ∴=⨯=⨯= ,∵0k <,∴83k =-,故答案为:83-.16.【答案】2-【解析】解:2254283W x xy y y x =-+-++=22244421442x xy y x y x x -++-++++-=()()()22222122x y x y x -+-+++-=()()222122x y x -+++-∵x y 、为实数,∴()()2210,20,x y x -+≥+≥∴W 的最小值为2-,故答案为:2-.三、解答题(本大题共11小题,共102分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤,作图过程需保留作图痕迹)17.【答案】3【解析】解:原式4123=+-=.18.【答案】31x y =⎧⎨=-⎩【解析】解:3827x y x y +=⎧⎨-=⎩①②①+②得515x =,解得3x =,将3x =代入①得338y ⨯+=,解得1y =-.∴原方程组的解为3,1.x y =⎧⎨=-⎩19.【答案】4x =【解析】解:方程两边同时乘以x ﹣2得,25333(2)x x x -=---,解得:4x =检验:当4x =时,20x -≠,∴4x =是原方程的解,∴原方程的解为x =4.20.【答案】OD =3tan 3EDO ∠=【解析】在菱形ABCD 中,,2AC BD AC AO ⊥=.∵4AC =,∴2AO =.在Rt AOD 中,∵E 为AD 中点,∴12OE AD =.∵2OE =.∴4=AD .∴OD ==∴3tan3AO EDO OD ∠===.21.【答案】(1)C (2)15;见解析(3)320人(4)答案不唯一,见解析【解析】(1)为了解本校八年级学生的暑期课外阅读情况,应该选择从八年级所有学生中随机抽取50名学生,这样抽取的样本具有广泛性和代表性,故选:C ;(2)50525515a =---=;故答案为:15;补全条形统计图如图所示:(3)155********+⨯=(人)答:八年级学生暑期课外阅读数量达到2本及以上的学生约为320人.(4)本次调查大部分同学一周暑期课外阅读数量达不到3本,建议同学们多阅读,培养热爱读书的良好习惯(答案不唯一).22.【答案】(1)14(2)716【解析】(1)解:共有4张卡片,第一次取出的卡片图案为“B 孙悟空”的概率为14故答案为:14.(2)树状图如图所示:由图可以看出一共有16种等可能结果,其中至少一张卡片图案为“A 唐僧”的结果有7种.∴P (至少一张卡片图案为“A 唐僧”)716=.答:两次取出的2张卡片中至少有一张图案为“A 唐僧”的概率为716.23.【答案】86.1m【解析】过点B 作BE AD ⊥,垂足为E .在Rt ABE △中,sin BE BAE AB∠=,∴sin 92sin 48920.7468.08m BE AB BAE =∠=︒≈⨯=.过点B 作BF CD ⊥,垂足为F .在Rt CBF △中,sin CF CBF BC=∠,∴sin 30sin37300.6018.00m CF BC CBF =∠=︒≈⨯=.∵68.08m FD BE ==,∴68.0818.0086.0886.1m DC FD CF =+=+=≈.答:从A 处的九孔桥到C 处的二龙潭瀑布上升的高度DC 约为86.1m .24.【答案】(1)见解析(2)见解析【解析】(1)解:方法不唯一,如图所示.(2)∵AB AC =,∴A ABC CB =∠∠.又∵CE AB ∥,∴ABC BCF ∠=∠,∴BCF ACB =∠∠.∵点D 在以AB 为直径的圆上,∴90ADB ∠=︒,∴=90BDC ∠︒.又∵BF 为O 的切线,∴90ABF ∠=︒.∵CE AB ∥,∴180BFC ABF ∠+∠=︒,∴90BFC ∠=︒,∴BDC BFC ∠=∠.∵在BCD △和BCF △中,,,,BCD BCF BDC BFC BC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()AAS BCD BCF ≌ .∴BD BF =.25.【答案】(1)534(2) 3.63768(1200)y x x =->(3)26立方米【解析】(1)∵33200m 400m <,∴该年此户需缴纳燃气费用为:2.67200534⨯=(元),故答案为:534;(2)y 关于x 的表达式为()()400 2.671200400 3.15 3.631200y x =⨯+-⨯+- 3.63768(1200)x x =->(3)∵()400 2.671200400 3.1535883855⨯+-⨯=<,∴甲户该年的用气量达到了第三阶梯.由(2)知,当3855y =时,3.637683855x -=,解得1273.6x ≈.又∵()()2.67100400 3.15120020050041703855⨯++⨯+-=>,且()2.6710040013353855⨯+=<,∴乙户该年的用气量达到第二阶梯,但末达到第三阶梯.设乙户年用气量为3m a .则有()2.67500 3.155003855a ⨯+-=,解得1300.0a =,∴31300.01273.626.426m -=≈.答:该年乙户比甲户多用约26立方米的燃气.26.【答案】(1)()1,6D (2)223y x x =-++或223y x x =-+-(3)1022-,见解析【解析】(1)∵2223(1)4y x x x =--=--,∴抛物线1L 的顶点坐标()1,4P -.∵1m =,点P 和点D 关于直线1y =对称.∴()1,6D .(2)由题意得,1L 的顶点()1,4P -与2L 的顶点D 关于直线y m =对称,∴()1,24D m +,抛物线()()222:124223L y x m x x m =--++=-+++.∴当0x =时,可得()0,23C m +.①当90BCD ∠=︒时,如图1,过D 作DN y ⊥轴,垂足为N .∵()1,24D m +,∴()0,24N m +.∵()0,23C m +∴1DN NC ==.∴45DCN ∠=︒.∵90BCD ∠=︒,∴45BCM ∠=︒.∵直线l x ∥轴,∴90BMC ∠=︒.∴45,CBM BCM BM CM ∠=∠=︒=.∴()233BM CM m m m ==+-=+.∴()3,B m m +.又∵点B 在2=23y x x --图像上,∴()()23233m m m =+-+-.解得0m =或3m =-.∵当3m =-时,可得()()0,3,0,3B C --,此时B C 、重合,舍去.当0m =时,符合题意.将0m =代入22:223L y x x m =-+++,得22:23L y x x =-++.②当=90BDC ∠︒时,如图2,过B 作BT ND ⊥,交ND 的延长线于点T .同理可得BT DT =.∵()1,24D m +,∴()244DT BT m m m ==+-=+.∵1DN =,∴()145NT DN DT m m =+=++=+.∴()5,B m m +.又∵点B 在2=23y x x --图像上,∴()()25253m m m =+-+-.解得3m =-或4m =-.∴3m =-.此时()()2,3,0,3B C --符合题意.将3m =-代入22:223L y x x m =-+++,得22:23L y x x =-+-.③当90DBC ∠=︒时,此情况不存在.综上,2L 所对应的函数表达式为223y x x =-++或223y x x =-+-.(3)如图3,由(2)知,当=90BDC ∠︒时,3m =-,此时()()2,3,0,3B C --则2BC =,CD BD ==BCD △的面积为1,不合题意舍去.当90BCD ∠=︒时,0m =,则()()3,0,0,3B C ,∴BC ==,此时BCD △的面积为3,符合题意∴CD =.依题意,四边形EFGH 是正方形,∴EF FG CD ===.取EF 的中点Q ,在Rt CEF △中可求得122CQ EF ==.在Rt FGQ 中可求得2GQ ==.∴当,,Q C G 三点共线时,CG 取最小值,最小值为1022.27.【答案】(1)244(0)4y x x =>+;(2)x 取任意实数时,对应的函数图像关于原点成中心对称,见解析;(3)①④;(4)222(0,0)y x k x k=>>+,见解析【解析】(1)在矩形ABCD 中,90ABC BCM ∠=∠=︒,∴90ABE MBC ∠+∠=︒.∵AE BM ⊥,∴90AEB ∠=︒,∴90BAE ABE ∠+∠=︒.∴,AEB BCM MBC BAE ∠=∠∠=∠.∴Rt Rt ABE BMC ∽,∴AB AE BM BC=.∵4AB =,点M 是CD 的中点,∴11222CM CD AB ===.在Rt BMC △中,BM ===,y x =.∴2444y x ==+.∴y 关于x 的表达式为:244(0)4y x x =>+.(2)x 取任意实数时,对应的函数图像关于原点成中心对称.理由如下:若(),P a b 为图像上任意一点,则2444b a =+.设(),P a b 关于原点的对称点为Q ,则(),Qa b --.当x a =-时,2444y b a ==-=-+-+.∴(),Q a b --也在244y x =+的图像上.∴当x 取任意实数时,2444y x =+的图像关于原点对称.函数图像如图所示.(3)根据函数图象可得①函数值y 随x 的增大而增大,故①正确,②由(1)可得函数值y AB <,故函数值的范围为44y -<<,故②错误;③根据中心对称的性质,不存在一条直线与该函数图像有四个交点,故③错误;④因为平行四边形是中心对称图形,则在图像上存在四点A B C D 、、、,使得四边形ABCD 是平行四边形,故④正确;故答案为:①④.(4)y 关于x 的函数表达式为222(0,0)y x k x k=>>+;当0,k x ≠取任意实数时,有如下相关性质:当0k >时,图像经过第一、三象限,函数值y 随x 的增大而增大,y 的取值范围为22k y k -<<;当0k <时,图像经过第二、四象限,函数值y 随x 的增大而减小,y 的取值范围为22k y k <<-;函数图像经过原点;函数图像关于原点对称.。

2022年江苏省连云港市中考数学试卷和答案解析

2022年江苏省连云港市中考数学试卷和答案解析

2022年江苏省连云港市中考数学试卷和参考答案解析一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(3分)﹣3的倒数是()A.﹣3B.3C.﹣D.2.(3分)下列图案中,是轴对称图形的是()A.B.C.D.3.(3分)2021年12月9日,“天宫课堂”正式开课,我国航天员在中国空间站首次进行太空授课,本次授课结束时,网络在线观看人数累计超过14600000人次.把“14600000”用科学记数法表示为()A.0.146×108B.1.46×107C.14.6×106D.146×105 4.(3分)在体育测试中,7名女生仰卧起坐的成绩如下(次/分钟):38,42,42,45,43,45,45,则这组数据的众数是()A.38B.42C.43D.455.(3分)函数y=中自变量x的取值范围是()A.x≥1B.x≥0C.x≤0D.x≤1 6.(3分)△ABC的三边长分别为2,3,4,另有一个与它相似的三角形DEF,其最长边为12,则△DEF的周长是()A.54B.36C.27D.217.(3分)如图,有一个半径为2的圆形时钟,其中每个刻度间的弧长均相等,过9点和11点的位置作一条线段,则钟面中阴影部分的面积为()A.π﹣B.π﹣C.π﹣2D.π﹣8.(3分)如图,将矩形ABCD沿着GE、EC、GF翻折,使得点A、B、D恰好都落在点O处,且点G、O、C在同一条直线上,同时点E、O、F在另一条直线上.小炜同学得出以下结论:①GF∥EC;②AB=AD;③GE=DF;④OC=2OF;⑤△COF ∽△CEG.其中正确的是()A.①②③B.①③④C.①④⑤D.②③④二、填空题(本大题共8小题,每小题3分,共24分.不需要写出参考答案过程,请把参考答案直接填写在答题卡相应位置上)9.(3分)计算:2a+3a=.10.(3分)已知∠A的补角为60°,则∠A=°.11.(3分)写出一个在1到3之间的无理数:.12.(3分)若关于x的一元二次方程mx2+nx﹣1=0(m≠0)的一个解是x=1,则m+n的值是.13.(3分)如图,AB是⊙O的直径,AC是⊙O的切线,A为切点,连接BC,与⊙O交于点D,连接OD.若∠AOD=82°,则∠C =°.14.(3分)如图,在6×6正方形网格中,△ABC的顶点A、B、C 都在网格线上,且都是小正方形边的中点,则sinA=.15.(3分)如图,一位篮球运动员投篮,球沿抛物线y=﹣0.2x2+x+2.25运行,然后准确落入篮筐内,已知篮筐的中心离地面的高度为3.05m,则他距篮筐中心的水平距离OH是m.16.(3分)如图,在▱ABCD中,∠ABC=150°.利用尺规在BC、BA上分别截取BE、BF,使BE=BF;分别以E、F为圆心,大于EF的长为半径作弧,两弧在∠CBA内交于点G;作射线BG 交DC于点H.若AD=+1,则BH的长为.三、参考答案题(本大题共11小题,共102分.请在答题卡指定区域内作答,参考答案时应写出必要的文字说明、证明过程或演算步骤)17.(6分)计算(﹣10)×(﹣)﹣+20220.18.(6分)解不等式2x﹣1>,并把它的解集在数轴上表示出来.19.(6分)化简+.20.(8分)为落实国家“双减”政策,某校为学生开展了课后服务,其中在体育类活动中开设了四种运动项目:A乒乓球,B排球,C 篮球,D跳绳.为了解学生最喜欢哪一种运动项目,随机抽取部分学生进行调查(每位学生仅选一种),并将调查结果制成如下尚不完整的统计图表.问卷情况统计表人数运动项目mA乒乓球B排球10C篮球80D跳绳70(1)本次调查的样本容量是,统计表中m=;(2)在扇形统计图中,“B排球”对应的圆心角的度数是°;(3)若该校共有2000名学生,请你估计该校最喜欢“A乒乓球”的学生人数.21.(10分)“石头、剪子、布”是一个广为流传的游戏,规则是:甲、乙两人都做出“石头”“剪子”“布”3种手势中的1种,其中“石头”赢“剪子”,“剪子”赢“布”,“布”赢“石头”,手势相同不分输赢.假设甲、乙两人每次都随意并且同时做出3种手势中的1种.(1)甲每次做出“石头”手势的概率为;(2)用画树状图或列表的方法,求乙不输的概率.22.(10分)我国古代数学名著《九章算术》中有这样一个问题:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”其大意是:今有几个人共同出钱购买一件物品.每人出8钱,剩余3钱;每人出7钱,还缺4钱.问人数、物品价格各是多少?请你求出以上问题中的人数和物品价格.23.(10分)如图,在平面直角坐标系xOy中,一次函数y=ax+b (a≠0)的图象与反比例函数y=(k≠0)的图象交于P、Q两点.点P(﹣4,3),点Q的纵坐标为﹣2.(1)求反比例函数与一次函数的表达式;(2)求△POQ的面积.24.(10分)我市的花果山景区大圣湖畔屹立着一座古塔——阿育王塔,是苏北地区现存最高和最古老的宝塔.小明与小亮要测量阿育王塔的高度,如图所示,小明在点A处测得阿育王塔最高点C的仰角∠CAE=45°,再沿正对阿育王塔方向前进至B处测得最高点C的仰角∠CBE=53°,AB=10m;小亮在点G处竖立标杆FG,小亮的所在位置点D、标杆顶F、最高点C在一条直线上,FG=1.5m,GD=2m.(1)求阿育王塔的高度CE;(2)求小亮与阿育王塔之间的距离ED.(注:结果精确到0.01m,参考数据:sin53°≈0.799,cos53°≈0.602,tan53°≈1.327)25.(10分)如图,四边形ABCD为平行四边形,延长AD到点E,使DE=AD,且BE⊥DC.(1)求证:四边形DBCE为菱形;(2)若△DBC是边长为2的等边三角形,点P、M、N分别在线段BE、BC、CE上运动,求PM+PN的最小值.26.(12分)已知二次函数y=x2+(m﹣2)x+m﹣4,其中m>2.(1)当该函数的图象经过原点O(0,0),求此时函数图象的顶点A的坐标;(2)求证:二次函数y=x2+(m﹣2)x+m﹣4的顶点在第三象限;(3)如图,在(1)的条件下,若平移该二次函数的图象,使其顶点在直线y=﹣x﹣2上运动,平移后所得函数的图象与y轴的负半轴的交点为B,求△AOB面积的最大值.27.(14分)【问题情境】在一次数学兴趣小组活动中,小昕同学将一大一小两个三角板按照如图1所示的方式摆放.其中∠ACB=∠DEB=90°,∠B=30°,BE=AC=3.【问题探究】小昕同学将三角板DEB绕点B按顺时针方向旋转.(1)如图2,当点E落在边AB上时,延长DE交BC于点F,求BF的长.(2)若点C、E、D在同一条直线上,求点D到直线BC的距离.(3)连接DC,取DC的中点G,三角板DEB由初始位置(图1),旋转到点C、B、D首次在同一条直线上(如图3),求点G所经过的路径长.(4)如图4,G为DC的中点,则在旋转过程中,点G到直线AB 的距离的最大值是.参考答案解析一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.【点拨】根据倒数的定义可得﹣3的倒数是﹣.【参考答案】解:﹣3的倒数是﹣.故选:C.2.【点拨】根据轴对称图形的定义,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,进行判定即可得出参考答案.【参考答案】解:A.是轴对称图形,故此选项符合题意;B.不是轴对称图形,故此选项不符合题意;C.不是轴对称图形,故此选项不符合题意;D.不是轴对称图形,故此选项不符合题意;故选:A.3.【点拨】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【参考答案】解:14600000=1.46×107.故选:B.4.【点拨】根据众数的定义即一组数据中出现次数最多的数,即可得出参考答案.【参考答案】解:∵45出现了3次,出现的次数最多,∴这组数据的众数为45;故选:D.5.【点拨】根据二次根式的被开方数是非负数即可得出参考答案.【参考答案】解:∵x﹣1≥0,∴x≥1.故选:A.6.【点拨】(1)方法一:设2对应的边是x,3对应的边是y,根据相似三角形的对应边的比相等列等式,解出即可;方式二:根据相似三角形的周长的比等于相似比,列出等式计算.【参考答案】解:方法一:设2对应的边是x,3对应的边是y,∵△ABC∽△DEF,∴==,∴x=6,y=9,∴△DEF的周长是27;方式二:∵△ABC∽△DEF,∴=,∴=,∴C△DEF=27;故选:C.7.【点拨】连接OA、OB,过点O作OC⊥AB,根据等边三角形的判定得出△AOB为等边三角形,再根据扇形面积公式求出S扇形AOB =π,再根据三角形面积公式求出S△AOB=,进而求出阴影部分的面积.【参考答案】解:连接OA、OB,过点O作OC⊥AB,由题意可知:∠AOB=60°,∵OA=OB,∴△AOB为等边三角形,∴AB=AO=BO=2∴S扇形AOB==π,∵OC⊥AB,∴∠OCA=90°,AC=1,∴OC=,∴S△AOB==,∴阴影部分的面积为:π﹣;故选:B.8.【点拨】根据折叠的性质和矩形的性质点拨判断①;通过点G为AD中点,点E为AB中点,设AD=2a,AB=2b,利用勾股定理点拨求得AB与AD的数量关系,从而判断②;利用相似三角形的判定和性质点拨判读GE和DF、OC和OF的数量关系,从而判断③和④;根据相似三角形的判定点拨判断⑤.【参考答案】解:由折叠性质可得:DG=OG=AG,AE=OE=BE,OC=BC,∠DGF=∠FGO,∠AGE=∠OGE,∠AEG=∠OEG,∠OEC =∠BEC,∴∠FGE=∠FGO+∠OGE=90°,∠GEC=∠OEG+∠OEC=90°,∴∠FGE+∠GEC=180°,∴GF∥CE,故①正确;设AD=2a,AB=2b,则DG=OG=AG=a,AE=OE=BE=b,∴CG=OG+OC=3a,在Rt△CGE中,CG2=GE2+CE2,(3a)2=a2+b2+b2+(2a)2,解得:b=a,∴AB=AD,故②错误;在Rt△COF中,设OF=DF=x,则CF=2b﹣x=2a﹣x,∴x2+(2a)2=(2a﹣x)2,解得:x=a,∴DF=×a=a,2OF=2×a=2a,在Rt△AGE中,GE==a,∴GE=DF,OC=2OF,故③④正确;无法证明∠FCO=∠GCE,∴无法判断△COF∽△CEG,故⑤错误;综上,正确的是①③④,故选:B.二、填空题(本大题共8小题,每小题3分,共24分.不需要写出参考答案过程,请把参考答案直接填写在答题卡相应位置上)9.【点拨】根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变求解.【参考答案】解:2a+3a=5a,故参考答案为:5a.10.【点拨】根据补角的定义即可得出参考答案.【参考答案】解:∵∠A的补角为60°,∴∠A=180°﹣60°=120°,故参考答案为:120.11.【点拨】由于12=1,32=9,所以只需写出被开方数在1和9之间的,且不是完全平方数的数即可求解.【参考答案】解:1到3之间的无理数如,,.参考答案不唯一.12.【点拨】把x=1代入方程mx2+nx﹣1=0得到m+n﹣1=0,然后求得m+n的值即可.【参考答案】解:把x=1代入方程mx2+nx﹣1=0得m+n﹣1=0,解得m+n=1.故参考答案为:1.13.【点拨】根据AC是⊙O的切线,可以得到∠BAC=90°,再根据∠AOD=82°,可以得到∠ABD的度数,然后即可得到∠C的度数.【参考答案】解:∵AC是⊙O的切线,∴∠BAC=90°,∵∠AOD=82°,∴∠ABD=41°,∴∠C=90°﹣∠ABD=90°﹣41°=49°,故参考答案为:49.14.【点拨】先构造直角三角形,然后即可求出sinA的值.【参考答案】解:设每个小正方形的边长为a,作CD⊥AB于点D,由图可得:CD=4a,AD=3a,∴AC===5a,∴sin∠CAB===,故参考答案为:.15.【点拨】根据所建坐标系,水平距离OH就是y=3.05时离他最远的距离.【参考答案】解:当y=3.05时,3.05=﹣0.2x2+x+2.25,x2﹣5x+4=0,(x﹣1)(x﹣4)=0,解得:x1=1,x2=4,故他距篮筐中心的水平距离OH是4m.故参考答案为:4.16.【点拨】根据平行四边形的性质得到C=30°,AB∥CD,BC=AD=+1,根据角平分线的定义得到∠CBH=∠ABH,过B作BG⊥CD于G,根据直角三角形的性质得到BG==,CG=BC=,根据勾股定理即可得到结论.【参考答案】解:在▱ABCD中,∠ABC=150°,∴∠C=30°,AB∥CD,BC=AD=+1,由作图知,BH平分∠ABC,∴∠CBH=∠ABH,∵AB∥CD,∴∠CHB=∠ABH,∴∠CHB=∠CBF,∴CH=BC=+1,过B作BG⊥CD于G,∴∠CGB=90°,∴BG==,CG=BC=,∴HG=CH﹣CG=,∴BH===,故参考答案为:.三、参考答案题(本大题共11小题,共102分.请在答题卡指定区域内作答,参考答案时应写出必要的文字说明、证明过程或演算步骤)17.【点拨】直接利用算术平方根以及零指数幂的性质、有理数的混合运算法则分别化简,进而得出参考答案.【参考答案】解:原式=5﹣4+1=2.18.【点拨】去分母、移项、合并同类项可得其解集.【参考答案】解:去分母,得:4x﹣2>3x﹣1,移项,得:4x﹣3x>﹣1+2,合并同类项,得:x>1,将不等式解集表示在数轴上如下:.19.【点拨】先通分,再计算通分母分式加减即可.【参考答案】解:原式=+===.20.【点拨】(1)本次调查的样本容量用篮球的人数÷所占的百分比;乒乓球人数=本次调查的样本容量﹣排球人数﹣篮球人数﹣跳绳人数;(2)“B排球”对应的圆心角的度数:360°×这部分的比值;(3)该校最喜欢“A乒乓球”的学生人数:总体×样本得比值.【参考答案】解:(1)本次调查的样本容量是:80÷40%=200(人);A乒乓球人数:200﹣70﹣80﹣10=40(人);故参考答案为:200,40;(2)“B排球”对应的圆心角的度数:360°×=18°;故参考答案为:18;(3)该校最喜欢“A乒乓球”的学生人数:2000×=400(人),答:该校最喜欢“A乒乓球”的学生人数为400人.21.【点拨】(1)直接根据概率公式求解即可;(2)根据题意画出树状图得出所有等情况数,找出符合条件的情况数,然后根据概率公式即可得出参考答案.【参考答案】解:(1)甲每次做出“石头”手势的概率为;故参考答案为:;(2)画树状图得:共有9种等可能的情况数,其中乙不输的有6种,则乙不输的概率是=.22.【点拨】设有x个人,物品的价格为y钱,由题意:每人出8钱,剩余3钱;每人出7钱,还缺4钱.列出二元一次方程组,解方程组即可.【参考答案】解:设有x个人,物品的价格为y钱,由题意得:,解得:,答:有7个人,物品的价格为53钱.23.【点拨】(1)把P的坐标代入y=,利用待定系数法即可求得反比例函数解析式,进而求出Q的坐标,把P、Q的坐标代入一次函数的解析式求出即可;(2)根据三角形面积和可得结论.【参考答案】解:(1)将点P(﹣4,3)代入反比例函数y=中,解得:k=﹣4×3=﹣12,∴反比例函数的表达式为:y=﹣;当y=﹣2时,﹣2=﹣,∴x=6,∴Q(6,﹣2),将点P(﹣4,3)和Q(6,﹣2)代入y=ax+b中得:,解得:,∴一次函数的表达式为:y=﹣x+1;(2)如图,y=﹣x+1,当x=0时,y=1,∴OM=1,∴S△POQ=S△POM+S△OMQ=×1×4+×1×6=2+3=5.24.【点拨】(1)由∠CAE=45°,AB=10m,可得BE=AE﹣10=CE﹣10,在Rt△CEB中,可得tan∠CBE=tan53°==,即可解得阿育王塔的高度CE约为40.58m;(2)由△FGD∽△CED,可得=,可解得小亮与阿育王塔之间的距离ED是54.11m.【参考答案】解:(1)在Rt△CAE中,∵∠CAE=45°,∴CE=AE,∵AB=10m,∴BE=AE﹣10=CE﹣10,在Rt△CEB中,tan∠CBE=tan53°==,∴1.327≈,解得CE≈40.58(m);答:阿育王塔的高度CE约为40.58m;(2)由题意知:∠CED=90°=∠FGD,∠FDG=∠CDE,∴△FGD∽△CED,∴=,即=,解得ED≈54.11(m),答:小亮与阿育王塔之间的距离ED是54.11m.25.【点拨】(1)先证明四边形DBCE是平行四边形,再由BE⊥DC,得四边形DBCE是菱形;(2)作N关于BE的对称点N',过D作DH⊥BC于H,由菱形的对称性知,点N关于BE的对称点N'在DE上,可得PM+PN=PM+PN',即知MN'的最小值为平行线间的距离DH的长,即PM+PN的最小值为DH的长,在Rt△DBH中,可得DH=DB•sin ∠DBC=,即可得参考答案.【参考答案】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵DE=AD,∴DE=BC,∵E在AD的延长线上,∴DE∥BC,∴四边形DBCE是平行四边形,∵BE⊥DC,∴四边形DBCE是菱形;(2)解:作N关于BE的对称点N',过D作DH⊥BC于H,如图:由菱形的对称性知,点N关于BE的对称点N'在DE上,∴PM+PN=PM+PN',∴当P、M、N'共线时,PM+PN'=MN'=PM+PN,∵DE∥BC,∴MN'的最小值为平行线间的距离DH的长,即PM+PN的最小值为DH的长,在Rt△DBH中,∠DBC=60°,DB=2,∴DH=DB•sin∠DBC=2×=,∴PM+PN的最小值为.26.【点拨】(1)把O(0,0)代入y=x2+(m﹣2)x+m﹣4可得y =x2+2x=(x+1)2﹣1,即得函数图像的顶点A的坐标为(﹣1,﹣1);(2)由抛物线顶点坐标公式得y=x2+(m﹣2)x+m﹣4的顶点为(,),根据m>2,=﹣(m﹣4)2﹣1≤﹣1<0,可知二次函数y=x2+(m﹣2)x+m﹣4的顶点在第三象限;(3)设平移后图像对应的二次函数表达式为y=x2+bx+c,其顶点为(﹣,),将(﹣,)代入y=﹣x﹣2得c=,可得OB=﹣c=﹣,过点A作AH⊥OB于H,有S△AOB =OB•AH=×(﹣)×1=﹣(b+1)2+,由二次函数性质得△AOB面积的最大值是.【参考答案】(1)解:把O(0,0)代入y=x2+(m﹣2)x+m﹣4得:m﹣4=0,解得m=4,∴y=x2+2x=(x+1)2﹣1,∴函数图像的顶点A的坐标为(﹣1,﹣1);(2)证明:由抛物线顶点坐标公式得y=x2+(m﹣2)x+m﹣4的顶点为(,),∵m>2,∴2﹣m<0,∴<0,∵=﹣(m﹣4)2﹣1≤﹣1<0,∴二次函数y=x2+(m﹣2)x+m﹣4的顶点在第三象限;(3)解:设平移后图像对应的二次函数表达式为y=x2+bx+c,其顶点为(﹣,),当x=0时,B(0,c),将(﹣,)代入y=﹣x﹣2得:=﹣2,∴c=,∵B(0,c)在y轴的负半轴,∴c<0,∴OB=﹣c=﹣,过点A作AH⊥OB于H,如图:∵A(﹣1,﹣1),∴AH=1,在△AOB中,S△AOB=OB•AH=×(﹣)×1=﹣b2﹣b+1=﹣(b+1)2+,∵﹣<0,∴当b=﹣1时,此时c<0,S△AOB取最大值,最大值为,答:△AOB面积的最大值是.27.【点拨】(1)根据锐角三角函数求解,即可求出参考答案;(2)①当点E在BC上方时,如图1过点D作DH⊥BC于H,根据锐角三角函数求出BC=3,DE=,最后利用面积求解,即可求出参考答案;②当点E在BC下方时,同①的方法,即可求出参考答案;(3)先求出∠BOE=150°,再判断出点G是以点O为圆心,为半径的圆上,最后用弧长公式求解,即可求出参考答案;(4)过点O作OK⊥AB于K,求出OK=,即可求出参考答案.【参考答案】解:(1)由题意得,∠BEF=∠BED=90°,在Rt△BEF中,∠ABC=30°,BE=3,∴BF===2;(2)①当点E在BC上方时,如图1,过点D作DH⊥BC于H,在Rt△ABC中,AC=3,∴tan∠ABC=,∴BC===3,在Rt△BED中,∠EBD=∠ABC=30°,BE=3,∴DE=BE•tan∠DBE=,∵S△BCD=CD•BE=BC•DH,∴DH==+1,②当点E在BC下方时,如图2,在Rt△BCE中,BE=3,BC=3,根据勾股定理得,CE==3,∴CD=CE﹣DE=3﹣,过点D作DM⊥BC于M,∵S△BDC=BC•DM=CD•BE,∴DM==﹣1,即点D到直线BC的距离为±1;(3)如图3﹣1,连接CD,取CD的中点G,取BC的中点O,连接GO,则OG∥AB,∴∠COG=∠B=30°,∴∠BOE=150°,∵点G为CD的中点,点O为BC的中点,∴GO=BD=,∴点G是以点O为圆心,为半径的圆上,如图3﹣2,∴三角板DEB由初始位置(图1),旋转到点C、B、D首次在同一条直线上时,点G所经过的轨迹为150°所对的圆弧,∴点G所经过的路径长为=π;(4)如图4,过点O作OK⊥AB于K,∵点O为BC的中点,BC=3,∴OB=,∴OK=OB•sin30°=,由(3)知,点G是以点O为圆心,为半径的圆上,∴点G到直线AB的距离的最大值是+=,故参考答案为:.。

江苏省连云港市中考数学试题含解析

江苏省连云港市中考数学试题含解析

连云港市2021年高中段学校招生统一文化考试数 学 试 题(请考生在答题卡上作答)注意事项:1.考试时间为120分钟.本试卷共6页,28题.全卷满分150分. 2.请在答题卡上规定区域内作答,在其他位置作答一概无效.3.答题前,请考生务必将自己的姓名、准考证号和座位号用毫米黑色墨水签字笔填写在答题卡及试题指定位置,并认真查对条形码上的姓名及考试号.4.选择题答案必需用2B 铅笔填涂在答题卡的相应位置上,如需改动,用橡皮擦干净后再从头填涂.参考公式:抛物线y =ax 2+bx +c ( a ≠0 )的极点坐标为(—b2a ,4ac —b 24a).一、选择题(本大题共有8个小题,每小题3分,共24分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选择项前的字母代号填涂在答题卡相应位置.......上) 1.2的相反数是A .2B .-2C .2 D .12A .2B .-2C .2 D .12【答案】B 。

【考点】相反数。

【分析】按照相反数意义,直接求出结果。

2.a 2·a 3等于A .a 5B .a 6C .a 8D .a 9 【答案】A 。

【考点】指数乘法运算法则。

【分析】按照指数乘法运算法则,直接求出结果:。

23235a a a a a +⋅==3.计算 (x +2) 2的结果为x 2+□x +4,则“□”中的数为 A .-2 B .2 C .-4 D .4 【答案】D 。

【考点】完全平方公式。

【分析】按照完全平方公式,直接求出结果。

4.关于反比例函数y =4x图象,下列说法正确的是A .必通过点(1,1)B .两个分支散布在第二、四象限C .两个分支关于x 轴成轴对称D .两个分支关于原点成中心对称 【答案】D 。

【考点】反比例函数图象。

【分析】按照反比例函数图象特征,y =4x图象通过点(1,4),两个分支散布在第一、三象限 ,图象关于直线y =x 和y =-x 成轴对称 ,两个分支关于原点成中心对称。

【中考真题】2022年江苏省连云港市中考数学试卷(附答案)

【中考真题】2022年江苏省连云港市中考数学试卷(附答案)

2022年江苏省连云港市中考数学真题学校:___________姓名:___________班级:___________考号:___________一、单选题1.-3的倒数是( )A .3B .-3C .13D .13- 2.下列图案中,是轴对称图形的是( )A .B .C .D . 3.2021年12月9日,“天宫课堂”正式开课,我国航天员在中国空间站首次进行太空授课,本次授课结束时,网络在线观看人数累计超过14600000人次.把“14600000”用科学记数法表示为( )A .80.14610⨯B .71.4610⨯C .614.610⨯D .514610⨯ 4.在体育测试中,7名女生仰卧起坐的成绩如下(次/分钟):38,42,42,45,43,45,45,则这组数据的众数是( )A .38B .42C .43D .455.函数y =x 的取值范围是( )A .1≥xB .0x ≥C .0x ≤D .1x ≤ 6.ABC 的三边长分别为2,3,4,另有一个与它相似的三角形DEF ,其最长边为12,则DEF 的周长是( )A .54B .36C .27D .21 7.如图,有一个半径为2的圆形时钟,其中每个刻度间的弧长均相等,过9点和11点的位置作一条线段,则钟面中阴影部分的面积为( )A .23πB .23πC .43π-D .43π8.如图,将矩形ABCD 沿着GE 、EC 、GF 翻折,使得点A 、B 、D 恰好都落在点O 处,且点G 、O 、C 在同一条直线上,同时点E 、O 、F 在另一条直线上.小炜同学得出以下结论:①GF ①EC ;①AB ;①GE DF ;①OC ;①△COF ①△CEG .其中正确的是( )A .①①①B .①①①C .①①①D .①①①二、填空题 9.计算:23a a +=______.10.已知①A 的补角是60°,则A ∠=_________︒.11.写出一个在1到3之间的无理数:_________.12.若关于x 的一元二次方程()2100mx nx m +-=≠的一个解是1x =,则m n +的值是___.13.如图,AB 是①O 的直径,AC 是①O 的切线,A 为切点,连接BC ,与①O 交于点D ,连接OD .若82AOD ∠=︒,则C ∠=_________︒.14.如图,在66⨯正方形网格中,ABC 的顶点A 、B 、C 都在网格线上,且都是小正方形边的中点,则sin A =_________.15.如图,一位篮球运动员投篮,球沿抛物线20.2 2.25y x x =-++运行,然后准确落入篮筐内,已知篮筐的中心离地面的高度为3.05m ,则他距篮筐中心的水平距离OH 是_________m .16.如图,在ABCD 中,150ABC ∠=︒.利用尺规在BC 、BA 上分别截取BE 、BF ,使BE BF =;分别以E 、F 为圆心,大于12EF 的长为半径作弧,两弧在CBA ∠内交于点G ;作射线BG 交DC 于点H .若1AD =,则BH 的长为_________.三、解答题17.计算:01(10)20222⎛⎫-⨯- ⎪⎝⎭. 18.解不等式2x ﹣1>312x -,并把它的解集在数轴上表示出来.19.化简:221311x x x x -+--.20.为落实国家“双减”政策,某校为学生开展了课后服务,其中在体育类活动中开设了四种运动项目:A 乒乓球,B 排球,C 篮球,D 跳绳.为了解学生最喜欢哪一种运动项目,随机抽取部分学生进行调查(每位学生仅选一种),并将调查结果制成如下尚不完整的统计图表.问卷情况统计表:(1)本次调查的样本容量是_______,统计表中m =_________;(2)在扇形统计图中,“B 排球”对应的圆心角的度数是_________︒;(3)若该校共有2000名学生,请你估计该校最喜欢“A 乒乓球”的学生人数.21.“石头、剪子、布”是一个广为流传的游戏,规则是:甲、乙两人都做出“石头”“剪子”“布”3种手势中的1种,其中“石头”赢“剪子”,“剪子”赢“布”,“布”赢“石头”,手势相同不分输赢.假设甲、乙两人每次都随意并且同时做出3种手势中的1种.(1)甲每次做出“石头”手势的概率为_________;(2)用画树状图或列表的方法,求乙不输的概率.22.我国古代数学名著《九章算术》中有这样一个问题:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”其大意是:今有几个人共同出钱购买一件物品.每人出8钱,剩余3钱;每人出7钱,还缺4钱.问人数、物品价格各是多少?请你求出以上问题中的人数和物品价格.23.如图,在平面直角坐标系xOy 中,一次函数()0y ax b a =+≠的图像与反比例函数()0k y k x=≠的图像交于P 、Q 两点.点()43P ,-,点Q 的纵坐标为-2.(1)求反比例函数与一次函数的表达式;(2)求POQ △的面积.24.我市的花果山景区大圣湖畔屹立着一座古塔——阿育王塔,是苏北地区现存最高和最古老的宝塔.小明与小亮要测量阿育王塔的高度,如图所示,小明在点A 处测得阿育王塔最高点C 的仰角45CAE ∠=︒,再沿正对阿育王塔方向前进至B 处测得最高点C 的仰角53CBE ∠=︒,10m AB =;小亮在点G 处竖立标杆FG ,小亮的所在位置点D 、标杆顶F 、最高点C 在一条直线上, 1.5m FG =,2m GD =.(注:结果精确到0.01m ,参考数据:sin530.799︒≈,cos530.602︒≈,tan53 1.327︒≈)(1)求阿育王塔的高度CE ;(2)求小亮与阿育王塔之间的距离ED .25.如图,四边形ABCD 为平行四边形,延长AD 到点E ,使DE AD =,且BE DC ⊥.(1)求证:四边形DBCE 为菱形;(2)若DBC △是边长为2的等边三角形,点P 、M 、N 分别在线段BE 、BC 、CE 上运动,求PM PN +的最小值.26.已知二次函数2(2)4y x m x m =+-+-,其中2m >.(1)当该函数的图像经过原点()0,0O ,求此时函数图像的顶点A 的坐标;(2)求证:二次函数2(2)4y x m x m =+-+-的顶点在第三象限;(3)如图,在(1)的条件下,若平移该二次函数的图像,使其顶点在直线2y x =--上运动,平移后所得函数的图像与y 轴的负半轴的交点为B ,求AOB 面积的最大值.27.【问题情境】在一次数学兴趣小组活动中,小昕同学将一大一小两个三角板按照如图1所示的方式摆放.其中90ACB DEB ∠=∠=︒,30B ∠=︒,3BE AC ==.【问题探究】小昕同学将三角板DEB 绕点B 按顺时针方向旋转.(1)如图2,当点E 落在边AB 上时,延长DE 交BC 于点F ,求BF 的长.(2)若点C 、E 、D 在同一条直线上,求点D 到直线BC 的距离.(3)连接DC,取DC的中点G,三角板DEB由初始位置(图1),旋转到点C、B、D 首次在同一条直线上(如图3),求点G所经过的路径长.(4)如图4,G为DC的中点,则在旋转过程中,点G到直线AB的距离的最大值是_____.参考答案:1.D【解析】【分析】根据倒数的定义,即可计算出结果.【详解】解:-3的倒数是13-; 故选:D【点睛】本题考查了倒数的定义:乘积是1的两数互为倒数.2.A【解析】【分析】根据轴对称图形的概念逐项分析判断即可,轴对称图形的概念:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形.【详解】A.是轴对称图形,故该选项正确,符合题意;B.不是轴对称图形,故该选项不正确,不符合题意;C.不是轴对称图形,故该选项不正确,不符合题意;D.不是轴对称图形,故该选项不正确,不符合题意;故选A【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.B【解析】【分析】科学记数法的表现形式为10n a ⨯的形式,其中110a ≤<,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,当原数绝对值大于等于10时,n 是正数,当原数绝对值小于1时n 是负数;由此进行求解即可得到答案.【详解】解:714600000=1.4610⨯.故选:B .【点睛】本题主要考查了科学记数法,解题的关键在于能够熟练掌握科学记数法的具体要求. 4.D【解析】【分析】根据众数的定义即可求解.【详解】解:①45出现了3次,出现次数最多,①众数为45.故选D .【点睛】本题考查了求众数,掌握众数的定义是解题的关键.众数:在一组数据中出现次数最多的数.5.A【解析】【分析】根据二次根式有意义的条件列出不等式,即可求解.【详解】解:①10x -≥,①1≥x .故选A .【点睛】本题考查了求函数自变量取值范围,二次根式有意义的条件,掌握二次根式有意义的条件是解题的关键.6.C【解析】【分析】根据相似三角形的性质求解即可.【详解】解:①①ABC与①DEF相似,①ABC的最长边为4,①DEF的最长边为12,①两个相似三角形的相似比为1:3,①①DEF的周长与①ABC的周长比为3:1,①①DEF的周长为3×(2+3+4)=27,故选:C.【点睛】本题主要考查了相似三角形的性质,熟知相似三角形的周长之比等于相似之比是解题的关键.7.B【解析】【分析】阴影部分的面积等于扇形面积减去三角形面积,分别求出扇形面积和等边三角形的面积即可.【详解】解:如图,过点OC作OD①AB于点D,①①AOB=2×36012=60°,①△OAB是等边三角形,①①AOD =①BOD =30°,OA =OB =AB =2,AD =BD =12AB =1,①OD=①阴影部分的面积为260212236023ππ⋅⨯-⨯= 故选:B .【点睛】本题考查了扇形面积、等边三角形的面积计算方法,掌握扇形面积、等边三角形的面积的计算方法是正确解答的关键.8.B【解析】【分析】由折叠的性质知①FGE =90°,①GEC =90°,点G 为AD 的中点,点E 为AB 的中点,设AD =BC =2a ,AB =CD =2b ,在Rt △CDG 中,由勾股定理求得b ,然后利用勾股定理再求得DF =FO【详解】解:根据折叠的性质知①DGF =①OGF ,①AGE =①OGE ,①①FGE =①OGF +①OGE =12(①DGO +①AGO ) =90°, 同理①GEC =90°,①GF ①EC ;故①正确;根据折叠的性质知DG =GO ,GA =GO ,①DG =GO =GA ,即点G 为AD 的中点,同理可得点E 为AB 的中点,设AD =BC =2a ,AB =CD =2b ,则DG =GO =GA =a ,OC =BC =2a ,AE =BE =OE =b ,①GC =3a ,在Rt △CDG 中,CG 2=DG 2+CD 2,即(3a )2=a 2+(2b )2,①b,①AB,故①不正确;设DF =FO =x ,则FC =2b -x ,在Rt △COF 中,CF 2=OF 2+OC 2,即(2b -x )2=x 2+(2a )2,①x =22b a b-DF =FOGE,①GE DF == ①GE;故①正确;①2OC a a OF ==①OC;故①正确;①①FCO 与①GCE 不一定相等,①△COF ①△CEG 不成立,故①不正确;综上,正确的有①①①,故选:B .【点睛】本题主要考查了折叠问题,解题时,我们常常设要求的线段长为x ,然后根据折叠和轴对称的性质用含x 的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.9.5a【解析】【分析】直接运用合并同类项法则进行计算即可得到答案.【详解】解: 23a a +(23)a =+5a =.故答案为:5a .【点睛】本题主要考查了合并同类项,熟练掌握合并同类项法则是解答本题的关键.【解析】【分析】如果两个角的和等于180°,就说这两个角互为补角.由此定义即可求解.【详解】解:①①A 的补角是60°,①①A =180°-60°=120°,故答案为:120.【点睛】本题考查补角的定义,熟练掌握两个角互为补角的定义是解题的关键.11答案不唯一)【解析】【分析】由于12=1,32=9,所以只需写出被开方数在1和9之间的,且不是完全平方数的数即可求解.【详解】解:1和3.答案不唯一).【点睛】本题主要考查常见无理数的定义和性质,解题关键是估算无理数的整数部分和小数部分. 12.1【解析】【分析】根据一元二次方程解的定义把1x =代入到()2100mx nx m +-=≠进行求解即可.【详解】解:①关于x 的一元二次方程()2100mx nx m +-=≠的一个解是1x =,①10m n +-=,①1m n +=,故答案为:1.本题主要考查了一元二次方程解的定义,代数式求值,熟知一元二次方程解的定义是解题的关键.13.49【解析】【分析】利用同弧所对的圆周角等于圆心角的一半求得①B =12①AOD =41°,根据AC 是①O 的切线得到①BAC =90°,即可求出答案.【详解】解:①①AOD =82°,①①B =12①AOD =41°,①AC 为圆的切线,A 为切点,①①BAC =90°,①①C =90°-41°=49°故答案为49.【点睛】此题考查圆周角定理,圆的切线的性质定理,直角三角形两锐角互余,正确理解圆周角定理及切线的性质定理是解题的关键.14.45 【解析】【分析】如图所示,过点C 作CE ①AB 于E ,先求出CE ,AE 的长,从而利用勾股定理求出AC 的长,由此求解即可.【详解】解:如图所示,过点C 作CE ①AB 于E ,由题意得43CE AE ==,,①5AC =, ①4sin =5CE A AC =,故答案为:45.【点睛】本题主要考查了求正弦值,勾股定理与网格问题正确作出辅助线,构造直角三角形是解题的关键.15.4【解析】【分析】将 3.05y =代入20.2 2.25y x x =-++中可求出x ,结合图形可知4x =,即可求出OH .【详解】解:当 3.05y =时,20.2 2.25 3.05-++x x =,解得:1x =或4x =,结合图形可知:4OH m =,故答案为:4【点睛】本题考查二次函数的实际应用:投球问题,解题的关键是结合函数图形确定x 的值. 16【解析】【分析】如图所示,过点H 作HM ①BC 于M ,由作图方法可知,BH 平分①ABC ,即可证明①CBH =①CHB ,得到1CH BC ==,从而求出HM ,CM 的长,进而求出BM 的长,即可利用勾股定理求出BH 的长.【详解】解:如图所示,过点H 作HM ①BC 于M ,由作图方法可知,BH 平分①ABC ,①①ABH =①CBH ,①四边形ABCD 是平行四边形,①1BC AD AB CD ==∥,,①①CHB =①ABH ,①C =180°-①ABC =30°,①①CBH =①CHB ,①1CH BC ==,①12HM CH ==①CM ==,①BM BC CM =-=①BH ==【点睛】本题主要考查了角平分线的尺规作图,平行四边形的性质,含30度角的直角三角形的性质,勾股定理,等腰三角形的性质与判定等等,正确求出CH 的长是解题的关键. 17.2【解析】【分析】根据有理数的乘法,二次根式的性质,零指数的计算法则求解即可.【详解】解:原式541=-+=2.【点睛】本题主要考查了有理数的乘法,二次根式的性质,零指数,熟知相关计算法则是解题的关键.18.不等式的解集为x >1,在数轴上表示见解析.【解析】【详解】试题分析:根据不等式的基本性质去分母、去括号、移项可得不等式的解集,再根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则在数轴上将解集表示出来. 试题解析:去分母,得:4x ﹣2>3x ﹣1,移项,得:4x ﹣3x >2﹣1,合并同类项,得:x >1,将不等式解集表示在数轴上如图:19.11x x -+ 【解析】【分析】根据异分母分式的加法计算法则求解即可.【详解】 解:原式2221311x x x x x +-=+-- 22131x x x x ++-=- 22211x x x -+=- 22(1)1x x -=- 2(1)=(1)(1)x x x -+- 11x x -=+. 【点睛】本题主要考查了异分母分式的加法,熟知相关计算法则是解题的关键.20.(1)200,40(2)18(3)约为400人【解析】【分析】(1)从两个统计图中可知,“C篮球”的人数80人,占调查人数的40%,可求出本次调查的样本容量,进而求出m的值;(2)“B排球”的人数10人,据此可求得相应的圆心角;(3)用总人数乘以“A乒乓球”的学生所占的百分比即可.(1)解:本次调查的样本容量是:80÷40%=200(人),m=200-10-80-70=40;故答案为:200,40;(2)解:扇形统计图中B部分扇形所对应的圆心角是360°×10200=18°,故答案为:18;(3)解:402000400200⨯=(人),估计该校最喜欢“A乒乓球”的学生人数约为400人.【点睛】此题考查统计表、扇形统计图的结合,从两个统计图中获取数量和数量之间的关系是解决问题的前提.21.(1)1 3(2)见解析,23【解析】【分析】(1)根据概率计算公式求解即可;(2)先画树状图得出所有的等可能性的结果数,然后找到乙不输的结果数,最后利用概率计算公式求解即可.(1)解:①甲每次做出的手势只有“石头”、“剪子”、“布”其中的一种,①甲每次做出“石头”手势的概率为13;(2)解:树状图如图所示:甲、乙两人同时做出手势共有9种等可能结果,其中乙不输的共有6种,①P(乙不输)62 93 ==.答:乙不输的概率是23.【点睛】本题主要考查了简单的概率计算,利用列表法或树状图法求解概率,熟知概率计算公式是解题的关键.22.有7人,物品价格是53钱【解析】【分析】设人数为x人,根据“物品价格=8×人数-多余钱数=7×人数+缺少的钱数”可得方程,求解方程即可.【详解】解:设人数为x人,由题意得8374x x-=+,解得7x=.所以物品价格是87353⨯-=.答:有7人,物品价格是53钱.【点睛】本题主要考查由实际问题抽象出一元一次方程,由实际问题列方程组是把“未知”转化为“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的相等关系. 23.(1)12y x =-,112y x =-+ (2)5【解析】【分析】(1)通过点P 坐标求出反比例函数解析式,再通过解析式求出点Q 坐标,从而解出PQ 一次函数解析式;(2)令PQ 与y 轴的交点为M ,则三角形POQ 的面积为OM 乘以点P 横坐标除以2加上OM 乘以点Q 横坐标除以2即可.(1)将()43P ,-代入k y x=,解得12k =-, ①反比例函数表达式为12y x =-. 当2y =-时,代入12y x=-,解得6x =,即()6,2Q -. 将()43P ,-、()6,2Q -代入()0y ax b a =+≠,得4362a b a b -+=⎧⎨+=-⎩,解得121a b ⎧=-⎪⎨⎪=⎩. ①一次函数表达式为112y x =-+. (2)设一次函数的图像与y 轴交点为M ,将0x =代入112y x =-+,得1y =,即()0,1M .①()43P ,-,()6,2Q -,()0,1M , ①111416522POQ POM QOM S S S =+=⨯⨯+⨯⨯=△△△.【点睛】本题考查待定系数法求反比例函数解析式、一次函数解析式、求一次函数和反比例函数围成的三角形面积,掌握拆分法是解本题关键.24.(1)40.58m(2)54.11m【解析】【分析】(1)在Rt CEB 中,由tan 5310CE CE BE CE ︒==-,解方程即可求解. (2)证明Rt FGD Rt CED △∽△,根据相似三角形的性质即可求解.(1)在Rt CAE 中,①45CAE ∠=︒,①CE AE =.①10AB =,①1010BE AE CE =-=-.在Rt CEB 中,由tan 5310CE CE BE CE ︒==-, 得()tan5310CE CE ︒-=,解得40.58CE ≈.经检验40.58CE ≈是方程的解答:阿育王塔的高度约为40.58m .(2)由题意知Rt FGD Rt CED △∽△, ①FG GD CE ED =, 即 1.5240.58ED=, ①54.11ED ≈.经检验54.11ED ≈是方程的解答:小亮与阿育王塔之间的距离约为54.11m .【点睛】本题考查了解直角三角形的应用,相似三角形的应用,掌握以上知识是解题的关键. 25.(1)证明见解析【解析】【分析】(1)先根据四边形ABCD 为平行四边形的性质和DE AD =证明四边形DBCE 为平行四边形,再根据BE DC ⊥,即可得证;(2)先根据菱形对称性得,得到'PM PN PM PN +=+,进一步说明PM PN +的最小值即为菱形的高,再利用三角函数即可求解.(1)证明:①四边形ABCD 是平行四边形,①AD BC ∥,AD BC =,①DE AD =,①DE BC =,又①点E 在AD 的延长线上,①∥DE BC ,①四边形DBCE 为平行四边形,又①BE DC ⊥,①四边形DBCE 为菱形.(2)解:如图,由菱形对称性得,点N 关于BE 的对称点'N 在DE 上,①'PM PN PM PN +=+,当P 、M 、'N 共线时,''PM PN PM PN MN +=+=,过点D 作DH BC ⊥,垂足为H ,①∥DE BC ,①'MN 的最小值即为平行线间的距离DH 的长,①DBC △是边长为2的等边三角形,①在Rt DBH 中,60DBC ∠=︒,2DB =,sin DH DBC DB∠=,①sin 2DH DB DBC =∠== ①PM PN +【点睛】本题考查了最值问题,考查了菱形的判定和性质,平行四边形的判定和性质,三角函数等知识,运用了转化的思想方法.将最值问题转化为求菱形的高是解答本题的关键. 26.(1)()1,1A --(2)见解析(3)最大值为98【解析】【分析】(1)先利用待定系数法求出二次函数解析式,再将二次函数解析式化为顶点式即可得到答案;(2)先根据顶点坐标公式求出顶点坐标为22820,24m m m ⎛⎫--+- ⎪⎝⎭,然后分别证明顶点坐标的横纵坐标都小于0即可;(3)设平移后图像对应的二次函数表达式为2y x bx c =++,则其顶点坐标为24,24b c b ⎛⎫-- ⎪⎝⎭,然后求出点B 的坐标,根据平移后的二次函数顶点在直线2y x =--上推出2284b bc +-=,过点A 作AH OB ⊥,垂足为H ,可以推出219=(1)88AOB S b -++△,由此即可求解.(1)解:将()0,0O 代入2(2)4y x m x m =+-+-, 解得4m =.由2m >,则4m =符合题意,①222(1)1y x x x =+=+-,①()1,1A --.(2) 解:由抛物线顶点坐标公式得顶点坐标为22820,24m m m ⎛⎫--+- ⎪⎝⎭. ①2m >,①20m ->,①20m -<, ①202m -<. ①228201(4)11044m m m -+-=---≤-<, ①二次函数2(2)4y x m x m =+-+-的顶点在第三象限.(3)解:设平移后图像对应的二次函数表达式为2y x bx c =++,则其顶点坐标为24,24b c b ⎛⎫-- ⎪⎝⎭ 当0x =时,y c =,①()0,B c . 将24,24b c b ⎛⎫-- ⎪⎝⎭代入2y x =--, 解得2284b bc +-=. ①()0,B c 在y 轴的负半轴上,①0c <. ①2284b b OBc +-=-=-. 过点A 作AH OB ⊥,垂足为H ,①()1,1A --,①1AH =.在AOB 中,211281224AOB b b S OB AH ⎛⎫+-=⋅=⨯-⨯ ⎪⎝⎭△ 211184b b =--+ 219(1)88b =-++, ①当1b =-时,此时0c <,AOB 面积有最大值,最大值为98.【点睛】本题主要考查了待定系数法求二次函数解析式,二次函数的性质,二次函数的平移,二次函数的最值问题,正确理解题意,熟练掌握二次函数的相关知识是解题的关键.27.(1)1【解析】【分析】(1)在Rt ①BEF 中,根据余弦的定义求解即可;(2)分点E 在BC 上方和下方两种情况讨论求解即可;(3)取BC 的中点O ,连接GO ,从而求出OGG 在以O 的圆上,然后根据弧长公式即可求解;(4)由(3)知,点G 在以OO 作OH ①AB 于H ,当G 在OH 的反向延长线上时,GH 最大,即点G 到直线AB 的距离的最大,在Rt ①BOH 中求出OH ,进而可求GH .(1)解:由题意得,90BEF BED ∠=∠=︒,①在Rt BEF △中,30ABC ∠=︒,3BE =,cos BE ABC BF∠=.①3cos cos30BE BF ABC =︒==∠ (2)①当点E 在BC 上方时,如图一,过点D 作DH BC ⊥,垂足为H ,①在ABC 中,90ACB ∠=︒,30ABC ∠=︒,3AC =, ①tan AC ABC BC ∠=,①3tan tan 30AC BC ABC =︒==∠ ①在BDE 中,90DEB ∠=︒,30DBE ABC ∠=∠=︒,3BE =,tan DE DBE BE∠=,①tan30DE BE =︒⋅=①点C 、E 、D 在同一直线上,且90DEB ∠=︒,①18090CEB DEB ∠=-∠=︒︒.又①在CBE △中,90CEB ∠=︒,BC =3BE =,①CE =①CD CE DE =+=①在BCD △中,1122BCD S CD BE BC DH =⋅=⋅△,①1CD BE DH BC⋅==. ①当点E 在BC 下方时,如图二,在BCE 中,①90CEB ∠=︒,3BE =,BC =①CE =①CD CE DE =-=过点D 作DM BC ⊥,垂足为M .在BDC 中,1122BDC S BC DM CD BE =⋅=⋅△,①1DM =.综上,点D 到直线BC 1.(3)解:如图三,取BC 的中点O ,连接GO ,则12GO BD =①点G 在以O当三角板DEB 绕点B 顺时针由初始位置旋转到点C 、B 、D 首次在同一条直线上时,点G所经过的轨迹为150︒所对的圆弧,圆弧长为1502360π⨯=.①点G . (4)解:由(3)知,点G 在以O如图四,过O 作OH ①AB 于H ,当G 在OH 的反向延长线上时,GH 最大,即点G 到直线AB 的距离的最大,在Rt ①BOH 中,①BHO =90°,①OBH =30°,12BO BC =,①sin sin30OH BO OBH =⋅∠︒,①GH OG OH =+=即点G 到直线AB 【点睛】 本题考查了勾股定理,旋转的性质,弧长公式,解直角三角形等知识,分点E 在BC 上方和下方是解第(2)的关键,确定点G 的运动轨迹是解第(3)(4)的关键.。

2022年江苏省连云港市中考数学试卷真题(答案详解)

2022年江苏省连云港市中考数学试卷真题(答案详解)
2
∴OD= AO2 AD2 3 ,
∴阴影部分的面积为 60 22 1 2 3 2 3 ,
360 2
3
故选:B.
【点睛】
本题考查了扇形面积、等边三角形的面积计算方法,掌握扇形面积、等边三角形的面积的计
算方法是正确解答的关键.
8.B
【分析】
由折叠的性质知∠FGE=90°,∠GEC=90°,点 G 为 AD 的中点,点 E 为 AB 的中点,设
26.已知二次函数 y x2 (m2)xm4,其中 m 2 .
(1)当该函数的图像经过原点 O 0, 0 ,求此时函数图像的顶点 A 的坐标;
(2)求证:二次函数 y x2 (m2)xm4的顶点在第三象限;
(3)如图,在(1)的条件下,若平移该二次函数的图像,使其顶点在直线 y x 2 上运 动,平移后所得函数的图像与 y 轴的负半轴的交点为 B ,求 AOB 面积的最大值. 27.【问题情境】在一次数学兴趣小组活动中,小昕同学将一大一小两个三角板按照如图 1 所示的方式摆放.其中 ACB DEB 90 , B 30 , BE AC 3 . 【问题探究】小昕同学将三角板 DEB 绕点 B 按顺时针方向旋转.
试卷第 6页,共 7页
(1)如图 2,当点 E 落在边 AB 上时,延长 DE 交 BC 于点 F ,求 BF 的长. (2)若点 C 、 E 、 D 在同一条直线上,求点 D 到直线 BC 的距离. (3)连接 DC ,取 DC 的中点 G ,三角板 DEB 由初始位置(图 1),旋转到点 C 、 B 、 D 首次 在同一条直线上(如图 3),求点 G 所经过的路径长. (4)如图 4, G 为 DC 的中点,则在旋转过程中,点 G 到直线 AB 的距离的最大值是_____.

2022年江苏省连云港市中考数学试题附解析

2022年江苏省连云港市中考数学试题附解析

2022年江苏省连云港市中考数学试题学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.两座灯塔A 和B 与海岸观察站的距离相等,灯塔A 在观察站北偏东 60°,灯塔B 在观察站的南偏东 80°,则灯塔A 在灯塔B 的( )A . 北偏东10°B . 北偏西10°C . 南偏东10°D . 南偏西l0° 2.下列计算中,正确的是( ) A . 325+=B .321-=C .3282-=D .3333+= 3.已知等腰三角形一腰上的高线等于底边的一半,则这个等腰三角形的顶角等于( ) A .120°B .90°C . 60°D .30° 4.若△ABC ≌△DEF ,AB=DE ,∠A=35°,∠B=75°,则F 的度数是( )A . 35°B . 70°C .75°D .70°或75° 5.如图,直线123,,l l l 表示三条相互交叉的公路,现要建造一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( )A .一处B .两处C .三处D .四处6.如图所示,△ADF ≌△CBE ,则结论:①AF=CE ;②∠1=∠2;③BE=CF , ④AE=CF .其中正确的个数为( )A .1个B .2个C .3个D .4个 7. 下列说法不正确的是( )A .8 和-8 互为相反数B .8 是-8 的相反数C .-8 是8 的相反数D .-8 是相反数 二、填空题8.如图所示,P 是锐角α的边OA 上的一点,且P 点的坐标为 (4,3),则cos α= .9.在半径为5厘米的圆内有两条互相平行的弦,一条弦长为8厘米,•另一条弦长为6厘米,则两弦之间的距离为________厘米. 10. 已知代数式251x x --的值为 5,则代数式23155x x -+的值为 .11.已知直角三角形的两直角边长分别为 a 和3,则斜边长为 .12.一次函数图象经过点(2,0)和(-2,4),这个一次函数的解析式是 .13.在加油站,加油机显示器上显示的某一种油的单价为每升4.75元,总价从0元开始随着加油量的变化而变化,总价y(元)与加油量x(升)的函数解析式是 .14.如图是某个几何体的表面展开图,则该几何体是 .15.如图,线段A ′B °是线段AB 经一次旋转变换得到的,旋转的角度是 .16.方程125m n m x y +++=是二元一次方程,则m = ,n = .17.已知正方形的面积是2269y xy x ++ (x>0,y>0),利用分解因式,写出表示该正方形的边长的代数式 .18.如图,把五边形ABCD O变换到五边形CDEFO,应用了哪种图形变换?请完整地叙述这个变换: .19.在下列条件中:①∠A+∠B=∠C ;②∠A ∶∠B ∶∠C=1∶2∶3;③∠A=900-∠B ;④∠A=∠B=12∠C 中,能确定△ABC 是直角三角形的条件有 个. 20.如图所示,请在下面这一组图形符号中找出它们所蕴含的内在规律,然后在横线上的空白处填上恰当的图形.21.如图,点C 是∠AOB 的OA 边上一点,0、E 是OB 边上的两点,则图中共有 条线段, 条射线, 个角.22.确定 a 是正数还是负数.(1)若||1a a =-,则a 是 ; (2)若1||a a =,则a 是 . 三、解答题23.某汽车油箱的容积为 70 L ,小王把油箱注满油后准备驾驶汽车从县城到300 km 外的省城接客人,在接到客人后立即按原路返回,请回答下列问题:(1)油箱注满油后,汽车能够行驶的总路程 a(km)与每千米平均耗油量 b(L)之间有怎样的函数关系?(2)小王以平均每千米耗油 0.1 L 的速度驾驶汽车到达省城,在返程时由于下雨,小王降低了车速,此时每行驶1 km 的耗油量增加了一倍,如果小王一直以此速度行驶,油箱里的油是否够回到县城?如果不够用,至少还需加多少油?24.已知一个长方形的长为 5 cm ,宽和长之比为黄金比,用尺规作图作出这个长方形.25.如图,过四边形ABCD 的四个顶点分别作对角线AC 、BD 的平行线,所围成的四边形EFGH 显然是平行四边形.(1)当四边形ABCD 分别是菱形、矩形、等腰梯形时,相应的平行四边形EFGH 一定是...“菱形、矩形、正方形”中的哪一种?请将你的结论填入下表:四边形ABCD菱形 矩形 等腰梯形 平行四边形EFGH(2)反之,当用上述方法所围成的平行四边形EFGH 分别是矩形、菱形时,相应的原四边形ABCD 必须满足....怎样的条件?26.如图,BD 平分∠ABC ,∠1=∠2,则AD ∥BC ,证明过程如下:证明:∵BD 平分∠ABC( )∴∠1=∠3( )∵∠1=∠2( )∴∠2=∠3∴AD ∥BC ( )27.如图:已知∠B=40°,∠C=59°,∠DEC=47°,求∠F 的度数.28.如图所示,有1l ,2l ,3l 三条公路交于A ,B ,C ,现要在△ABC 内建一加油站,使它到三条公路的距离相等,问应如何建?作出加油站的位置,并说明理由.29.已知一个角的补角比它的余角的2倍多100,求这个角的度数.30.画图.(1)已知线段a 、b(a>b),画图:F A B CD E①a-b;②a+b.(2)已知∠α、∠β,画图:①∠α+∠β;②∠β-∠α【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.C3.A4.B5.D6.C7.D二、填空题8.49.57厘米或1厘米10.2311.29a +12.2y x =-+13.4.75y x =14.正三棱柱15.130°16.0,1217.3x+y18.五边形ABCD O绕着点O 顺时针方向旋转90°得到五边形CDEFO19.420.21.6,5,1022.(1)负数 (2)正数三、解答题23.(1)70a b= (2)实际耗油量= 300×< 0.1I + 300× 0.2=90>70,90- 70=20(L)∴ 油箱里的油不够用,还需加 20 L 油.24.如图,AB = 5 cm ,四边形 ABCD 是所求的矩形.25.(1)矩形,菱形,菱形;(2)AC⊥BD,AC=BD.26.略.27.34°28.分别作∠ABC与∠BCA的角平分线,两条角平分线的交点即为加油站的位置,根据角平分线上的点到角两边的距离相等即可说明29.10°30.略。

2023年江苏省连云港市中考数学真题(解析版)

2023年江苏省连云港市中考数学真题(解析版)

数学试题一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1. 实数6−的相反数是( ) A. 16− B. 16 C. 6− D. 6【答案】D【解析】【分析】根据相反数的意义,相反数是只有符号不同的两个数,改变6−前面的符号,即可得6−的相反数.【详解】解:6−的相反数是6.故选:D .【点睛】本题考查了相反数.解题的关键是掌握相反数的意义,一个数的相反数就是在这个数前面添上“−”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2. 在美术字中,有些汉字可以看成是轴对称图形.下列汉字中,是轴对称图形的是( )A.B. C. D.【答案】C【解析】【分析】根据轴对称图形的概念逐项分析判断即可,轴对称图形的概念:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形.【详解】解:选项A 、B 、D 均不能找到这样的一条直线,使直线两旁的部分能够完全重合的图形,所以不是轴对称图形;选项C 能找到这样的一条直线,使直线两旁的部分能够完全重合的图形,所以是轴对称图形; 故选:C .【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3. 2023年4月26日,第十二届江苏园艺博览会在我市隆重开幕.会场所在地园博园分为“山海韵”“丝路情”“田园画”三大片区,共占地约2370000平方米.其中数据“2370000”用科学记数法可表示为( )A. 62.3710⨯B. 52.3710⨯C. 70.23710⨯D. 423710⨯ 【答案】A【解析】【分析】用科学记数法表示较大的数时,一般形式为10n a ⨯,其中110a ≤<,n 为整数,据此判断即可.【详解】解:62370000 2.3710=⨯.故选:A .【点睛】此题主要考查了用科学记数法表示较大的数,一般形式为10n a ⨯,其中110a ≤<,确定a 与n 的值是解题的关键.4. 下列水平放置的几何体中,主视图是圆形的是( )A. B. C. D.【答案】C【解析】【分析】分别找出从图形的正面看所得到的图形即可.【详解】解:A .主视图是等腰三角形,故此选项不合题意;B .主视图是梯形,故此选项不合题意;C .主视图是圆,故此选项符合题意;D .主视图是矩形,故此选项不合题意;故选:C .【点睛】此题主要考查了简单几何体的三视图,关键是掌握主视图是从几何体的正面看所得到的图形. 5. 如图,甲是由一条直径、一条弦及一段圆弧所围成的图形:乙是由两条半径与一段圆弧所围成的图形;丙是由不过圆心O 的两条线段与一段圆弧所围成的图形,下列叙述正确的是( )A. 只有甲是扇形B. 只有乙是扇形C. 只有丙是扇形D. 只有乙、丙是扇形【答案】B【解析】 【分析】根据扇形的定义,即可求解.扇形,是圆的一部分,由两个半径和和一段弧围成.【详解】解:甲是由一条直径、一条弦及一段圆弧所围成的图形:乙是由两条半径与一段圆弧所围成的图形;丙是由不过圆心O 的两条线段与一段圆弧所围成的图形,只有乙是扇形,故选:B .【点睛】本题考查了扇形的定义,熟练掌握扇形的定义是解题的关键.6. 如图是由16个相同的小正方形和4个相同的大正方形组成的图形,在这个图形内任取一点P ,则点P 落在阴影部分的概率为( )A. 58B. 1350C. 1332D. 516【答案】B【解析】【分析】设小正方形的边长为1,则大正方形的边长为32,根据题意,分别求得阴影部分面积和总面积,根据概率公式即可求解.【详解】解:设小正方形的边长为1,则大正方形的边长为32, ∴总面积为2231614169252⎛⎫⨯+⨯=+= ⎪⎝⎭, 阴影部分的面积为2239132122222⎛⎫⨯+⨯=+= ⎪⎝⎭, ∴点P 落在阴影部分的概率为131322550=, 故选:B .【点睛】本题考查了几何概率,分别求得阴影部分的面积是解题的关键.7. 元朝朱世杰所著的《算学启蒙》中,记载了这样一道题:良马日行二百四十里,鸡马日行一百五十里,驽马先行一十二日,问良马几何日追及之?其大意是:快马每天行240里,慢马每天行150里,驽马先行12天,快马几天可追上慢马?若设快马x 天可追上慢马,由题意得( )A. 12240150x x +=B. 12240150x x =− C. ()24012150x x −=D. ()24015012x x =+【答案】D【解析】 【分析】设快马x 天可追上慢马,根据路程相等,列出方程即可求解.详解】解:设快马x 天可追上慢马,由题意得()24015012x x =+故选:D . 【点睛】本题考查了一元一次方程的应用,根据题意列出方程是解题的关键. 8. 如图,矩形ABCD 内接于O ,分别以AB BC CD AD 、、、为直径向外作半圆.若4,5==AB BC ,则阴影部分的面积是( ) A. 41204π− B. 41202π− C. 20π D. 20【答案】D【解析】【分析】根据阴影部分面积为2个直径分别为,AB BC 的半圆的面积加上矩形的面积减去直径为矩形对角线长的圆的面积即可求解.【详解】解:如图所示,连接AC ,∵矩形ABCD 内接于O ,4,5==AB BC【∴222AC AB BC =+ ∴阴影部分的面积是222+πππ222ABCD AB BC AC S ⎛⎫⎛⎫⎛⎫⨯+⨯− ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭矩形 ()2221+π4ABCD S AB BC AC ⨯+−矩形 ABCD S =矩形4520=⨯=,故选:D .【点睛】本题考查了勾股定理,矩形的性质,熟练掌握勾股定理是解题的关键.二、填空题(本大题共8小题,每小题3分,共24分.不需要写出解答过程,请把答案直接填写在答题卡相应位置上)9. 计算:2(5)=__________.【答案】5【解析】【分析】根据二次根式的性质即可求解. 【详解】解:2(5)=5故答案为:5.【点睛】本题考查了二次根式的性质,熟练掌握二次根式的性质是解题的关键.10. 如图,数轴上的点A B 、分别对应实数a b 、,则a b +__________0.(用“>”“<”或“=”填空)【答案】<【解析】 【分析】根据数轴可得0,a b a b <<>,进而即可求解. 【详解】解:由数轴可得0,a b a b <<>∴a b +0<【点睛】本题考查了实数与数轴,有理数加法的运算法则,数形结合是解题的关键.11. 一个三角形的两边长分别是3和5,则第三边长可以是__________.(只填一个即可)【答案】4(答案不唯一,大于2且小于8之间的数均可)【解析】【分析】根据三角形的三边关系定理:三角形两边之和大于第三边,三角形的两边差小于第三边可得5353x −<<+,再解即可.【详解】解:设第三边长为x ,由题意得:5353x −<<+,则28x <<,故答案可为:4(答案不唯一,大于2且小于8之间的数均可).【点睛】此题主要考查了三角形的三边关系:第三边的范围是:大于已知的两边的差,而小于两边的和. 12. 若关于x 的一元二次方程220x x k −+=有两个不相等的实数根,则k 的取值范围是_________.【答案】1k <【解析】【分析】若一元二次方程有两个不相等的实数根,则根的判别式24>0b ac ∆=−,建立关于k 的不等式,解不等式即可得出答案.【详解】解:∵关于x 的方程220x x k −+=有两个不相等的实数根,∴()224240b ac k ∆=−=−−>,解得1k <.故答案为:1k <.【点睛】此题考查了根的判别式.一元二次方程()200ax bx c a ++=≠的根与24b ac ∆=−有如下关系:(1)0∆>⇔方程有两个不相等的实数根;(2)Δ0=⇔方程有两个相等的实数根;(3)Δ0<⇔方程没有实数根.13. 画一条水平数轴,以原点O 为圆心,过数轴上的每一刻度点画同心圆,过原点O 按逆时针方向依次画出与正半轴的角度分别为306090120330︒︒︒︒︒、、、、、的射线,这样就建立了“圆”坐标系.如图,在建立的“圆”坐标系内,我们可以将点、、A B C 的坐标分别表示为()()()6,605,1804,330A B C ︒︒︒、、,则点D 的坐标可以表示为__________.3,150︒【答案】()【解析】【分析】根据题意,可得D在第三个圆上,OD与正半轴的角度150︒,进而即可求解.【详解】解:根据图形可得D在第三个圆上,OD与正半轴的角度150︒,3,150︒∴点D的坐标可以表示为()3,150︒.故答案为:()【点睛】本题考查了有序实数对表示位置,数形结合,理解题意是解题的关键.''''的顶点D¢落14. 以正五边形ABCDE的顶点C为旋转中心,按顺时针方向旋转,使得新五边形A B CD E在直线BC上,则正五边ABCDE旋转的度数至少为______°.【答案】72【解析】∠的度数,进而得出旋转的角度.【分析】依据正五边形的外角性质,即可得到DCF【详解】解:∵五边形ABCDE是正五边形,∴530726DCF ∠÷=︒=︒,∴新五边形A B CD E ''''的顶点D ¢落在直线BC 上,则旋转的最小角度是72︒,故答案为:72.【点睛】本题主要考查了正多边形、旋转性质,关键是掌握正多边形的外角和公式的运用.15. 如图,矩形OABC 的顶点A 在反比例函数(0)k y x x=<的图像上,顶点B C 、在第一象限,对角线AC x ∥轴,交y 轴于点D .若矩形OABC 的面积是6,2cos 3OAC ∠=,则k =__________.【答案】83−【解析】【分析】方法一:根据AOC 的面积为3,得出623OC a a ==,92AC a =,在Rt AOC 中,222AC AO OC =+,得出2515a =,根据勾股定理求得5DO a =,根据k 的几何意义,即可求解. 方法二:根据已知得出49AD AC =则49AOD AOC S S =,即可求解. 【详解】解:方法一:∵2cos 3OAC ∠=, ∴2cos 3AD AO OAC AO AC ∠===设2AD a =,则3AO a =, ∴92AC a = ∵矩形OABC 的面积是6,AC 是对角线,∴AOC 的面积为3,即132AO OC ⨯= ∴623OC a a== 在Rt AOC 中,222AC AO OC =+ 即()2229232a a a ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭ 即22813644a a−= 解得:2515a = 在Rt ADC 中,225DO AO AD a =−= ∵对角线AC x ∥轴,则AD OD ⊥, ∴2582252525153AOD k S a a a =====, ∵反比例函数图象在第二象限, ∴83k =−, 方法二:∵2cos 3OAC ∠=, ∴2cos 3AD AO OAC AO AC ∠=== 设2AD a =,则3AO a =, ∴92AC a =, ∴24992AD a AC a ==,488226993AOD AOC S S ∴=⨯=⨯=, ∵0k <, ∴83k =−, 故答案为:83−.【点睛】本题考查了矩形的性质,反比例函数k 的几何意义,余弦的定义,熟练掌握反比例函数的性质是解题的关键.16. 若2254283W x xy y y x =−+−++(x y 、为实数),则W 的最小值为__________.【答案】2−【解析】【分析】运用配方法将2254283W x xy y y x =−+−++变形为()()222122W x y x =−+++−,然后根据非负数的性质求出W 的最小值即可.【详解】解:2254283W x xy y y x =−+−++=22244421442x xy y x y x x −++−++++−=()()()22222122x y x y x −+−+++−=()()222122x y x −+++−∵x y 、为实数,∴()()2210,20,x y x −+≥+≥∴W 的最小值为2−,故答案为:2−.【点睛】本题主要考查了配方法的应用,非负数的性质,解题时注意配方的步骤,注意在变形的过程 中不要改变式子的值. 三、解答题(本大题共11小题,共102分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤,作图过程需保留作图痕迹)17. 计算(101422π−⎛⎫−+− ⎪⎝⎭. 【答案】3【解析】【分析】根据化简绝对值,零指数幂以及负整数指数幂进行计算即可求解.【详解】解:原式4123=+−=.【点睛】本题考查了实数的混合运算,熟练掌握化简绝对值,零指数幂以及负整数指数幂是解题的关键. 18. 解方程组3827x y x y +=⎧⎨−=⎩【答案】31x y =⎧⎨=−⎩【解析】【分析】方程组运用加减消元法求解即可.【详解】解:3827x y x y +=⎧⎨−=⎩①② ①+②得515x =,解得3x =,将3x =代入①得338y ⨯+=,解得1y =−.∴原方程组的解为3,1.x y =⎧⎨=−⎩【点睛】本题主要考查了解二元一次方程组,方法主要有:代入消元法和加减消元法.19. 解方程:2533322x x x x −−=−−−. 【答案】4x =【解析】【分析】方程两边同时乘以x ﹣2,再解整式方程得x =4,经检验x =4是原方程的根.【详解】解:方程两边同时乘以x ﹣2得,25333(2)x x x −=−−−,解得:4x =检验:当4x =时,20x −≠,∴4x =是原方程的解,∴原方程的解为x =4.【点睛】本题考查了解分式方程,熟练掌握分式方程的解法,切勿遗漏对根的检验是解题的关键.20. 如图,菱形ABCD 的对角线AC BD 、相交于点,O E 为AD 的中点,4AC =,2OE =.求OD 的长及tan EDO ∠的值.【答案】23OD =3tan 3EDO ∠=【解析】 【分析】根据菱形的性质得出,2AC BD AC AO ⊥=,Rt AOD 中,勾股定理求得OD 的长,根据正切的定义即可求解.【详解】在菱形ABCD 中,,2AC BD AC AO ⊥=.∵4AC =,∴2AO =.在Rt AOD 中,∵E 为AD 中点, ∴12OE AD =. ∵2OE =.∴4=AD . ∴22224223OD AD AO =−=−= ∴3tan 23AO EDO OD ∠===. 【点睛】本题考查了菱形的性质,勾股定理,求正切,熟练掌握以上知识是解题的关键.21. 为了解本校八年级学生的暑期课外阅读情况,某数学兴趣小组抽取了50名学生进行问卷调查. (1)下面的抽取方法中,应该选择( )A .从八年级随机抽取一个班的50名学生B .从八年级女生中随机抽取50名学生C .从八年级所有学生中随机抽取50名学生(2)对调查数据进行整理,得到下列两幅尚不完整的统计图表:暑期课外阅读情况统计表阅读数量(本)人数051252a3本及以上5合计50a__________,补全条形统计图;统计表中的=(3)若八年级共有800名学生,估计八年级学生暑期课外阅读数量达到2本及以上的学生人数;(4)根据上述调查情况,写一条你的看法.【答案】(1)C (2)15;见解析(3)320人(4)答案不唯一,见解析【解析】【分析】(1)根据所抽取的样本必须具有广泛性和代表性,即可解答;(2)用样本容量减去总计量为0本,1本以及3本及以上的人数可得a的值,再补全条形统计图即可;(3)用800乘以样本中暑期课外阅读数量达到2本及以上所占百分比即可得出结论;(4)根据统计表的数据提出建议即可.【小问1详解】为了解本校八年级学生的暑期课外阅读情况,应该选择从八年级所有学生中随机抽取50名学生,这样抽取的样本具有广泛性和代表性,故选:C;【小问2详解】50525515a=−−−=;故答案为:15;补全条形统计图如图所示:【小问3详解】155********+⨯=(人) 答:八年级学生暑期课外阅读数量达到2本及以上的学生约为320人.【小问4详解】本次调查大部分同学一周暑期课外阅读数量达不到3本,建议同学们多阅读,培养热爱读书的良好习惯(答案不唯一).【点睛】本题考查了抽样调查的可靠性,频数分布表以及条形统计图,熟练掌握条形统计图是解题的关键.22. 如图,有4张分别印有Q 版西游图案的卡片:A 唐僧、B 孙悟空、C 猪八戒、D 沙悟净.现将这4张卡片(卡片的形状、大小、质地都相同)放在不透明的盒子中,搅匀后从中任意取出1张卡片,记录后放回、搅匀,再从中任意取出1张卡片求下列事件发生的概率:(1)第一次取出的卡片图案为“B 孙悟空”的概率为__________;(2)用画树状图或列表的方法,求两次取出的2张卡片中至少有1张图案为“A 唐僧”的概率.【答案】(1)14(2)716【解析】【分析】(1)根据概率公式即可求解;(2)根据题意,画出树状图, 进而根据概率公式即可求解.【小问1详解】解:共有4张卡片,第一次取出的卡片图案为“B 孙悟空”的概率为14故答案为:14. 【小问2详解】树状图如图所示:由图可以看出一共有16种等可能结果,其中至少一张卡片图案为“A 唐僧”的结果有7种.∴P (至少一张卡片图案为“A 唐僧”)716=. 答:两次取出的2张卡片中至少有一张图案为“A 唐僧”的概率为716. 【点睛】本题考查了概率公式求概率,画树状图法求概率,熟练掌握求概率的方法是解题的关键. 23. 渔湾是国家“AAAA ”级风景区,图1是景区游览部分示意图.如图2,小卓从九孔桥A 处出发,沿着坡角为48︒的山坡向上走了92m 到达B 处的三龙潭瀑布,再沿坡角为37︒的山坡向上走了30m 到达C 处的二龙潭瀑布.求小卓从A 处的九孔桥到C 处的二龙潭瀑布上升的高度DC 为多少米?(结果精确到0.1m )(参考数据:sin480.74cos480.67sin370.60cos370.80︒≈︒≈︒≈︒≈,,,)【答案】86.1m【解析】的【分析】过点B 作BE AD ⊥,垂足为E ,在Rt ABE △中,根据sin BE BAE AB∠=求出BE ,过点B 作BF CD ⊥,垂足为F ,在Rt CBF △中,根据sin CF CBF BC =∠求出CF ,进而求解即可. 【详解】过点B 作BE AD ⊥,垂足为E .在Rt ABE △中,sin BE BAE AB∠=, ∴sin 92sin 48920.7468.08m BE AB BAE =∠=︒≈⨯=.过点B 作BF CD ⊥,垂足为F .在Rt CBF △中,sin CF CBF BC=∠, ∴sin 30sin37300.6018.00m CF BC CBF =∠=︒≈⨯=.∵68.08m FD BE ==,∴68.0818.0086.0886.1m DC FD CF =+=+=≈.答:从A 处的九孔桥到C 处的二龙潭瀑布上升的高度DC 约为86.1m .【点睛】此题考查了解直角三角形的应用一坡度坡角问题,熟练利用锐角三角函数关系是解题关键. 24. 如图,在ABC 中,AB AC =,以AB 为直径的O 交边AC 于点D ,连接BD ,过点C 作CE AB ∥.(1)请用无刻度的直尺和圆规作图:过点B 作O 的切线,交CE 于点F ;(不写作法,保留作图痕迹,标明字母)(2)在(1)的条件下,求证:BD BF =.【答案】(1)见解析 (2)见解析【解析】 【分析】(1)根据尺规作图,过点B 作AB 的垂线,交CE 于点F ,即可求解;(2)根据题意切线的性质以及直径所对的圆周角是直角,证明BDC BFC ∠=∠,根据平行线的性质以及等腰三角形的性质得出BCD BCF =∠,进而证明()AAS BCD BCF ≌,即可得证.小问1详解】解:方法不唯一,如图所示. 【小问2详解】 ∵AB AC =,∴A ABC CB =∠∠. 又∵CE AB ∥,∴ABC BCF ∠=∠, ∴BCF ACB =∠∠. ∵点D 在以AB 为直径的圆上, ∴90ADB ∠=︒,∴=90BDC ∠︒.又∵BF 为O 的切线, ∴90ABF ∠=︒.∵CE AB ∥,∴180BFC ABF ∠+∠=︒,∴90BFC ∠=︒, ∴BDC BFC ∠=∠. 【∵在BCD △和BCF △中,,,,BCD BCF BDC BFC BC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()AAS BCD BCF ≌.∴BD BF =.【点睛】本题考查了作圆的切线,切线的性质,直径所对的圆周角是直角,全等三角形的性质与判定,熟练掌握以上知识是解题的关键.25. 目前,我市对市区居民用气户的燃气收费,以户为基础、年为计算周期设定了如下表的三个气量阶梯: 阶梯 年用气量销售价格备注 第一阶梯 30400m ~(含400)的部分 2.67元3/m若家庭人口超过4人的,每增加1人,第一、二阶梯年用气量的上限分别增加33100m 200m 、. 第二阶梯 34001200m ~(含1200)的部分 3.15元3/m第三阶梯31200m 以上的部分 3.63元3/m(1)一户家庭人口为3人,年用气量为3200m ,则该年此户需缴纳燃气费用为__________元;(2)一户家庭人口不超过4人,年用气量为3m (1200)x x >,该年此户需缴纳燃气费用为y 元,求y 与x 的函数表达式;(3)甲户家庭人口为3人,乙户家庭人口为5人,某年甲户、乙户缴纳的燃气费用均为3855元,求该年乙户比甲户多用多少立方米的燃气?(结果精确到31m )【答案】(1)534 (2) 3.63768(1200)y x x =−>(3)26立方米【解析】【分析】(1)根据第一阶梯的费用计算方法进行计算即可;(2)根据“单价×数量=总价”可得y 与x 之间的函数关系式;(3)根据两户的缴费判断收费标准列式计算即可解答.【小问1详解】∵33200m 400m <,∴该年此户需缴纳燃气费用为:2.67200534⨯=(元),故答案为:534;【小问2详解】y 关于x 的表达式为()()400 2.671200400 3.15 3.631200y x =⨯+−⨯+− 3.63768(1200)x x =−>【小问3详解】∵()400 2.671200400 3.1535883855⨯+−⨯=<,∴甲户该年的用气量达到了第三阶梯.由(2)知,当3855y =时,3.637683855x −=,解得1273.6x ≈.又∵()()2.67100400 3.15120020050041703855⨯++⨯+−=>,且()2.6710040013353855⨯+=<,∴乙户该年的用气量达到第二阶梯,但末达到第三阶梯.设乙户年用气量为3m a .则有()2.67500 3.155003855a ⨯+−=,解得1300.0a =,∴31300.01273.626.426m −=≈.答:该年乙户比甲户多用约26立方米的燃气.【点睛】本题考查了一次函数的应用,一元一次方程的应用以及列代数式,解题的关键是找准等量关系,正确列出一元一次方程.26. 如图,在平面直角坐标系xOy 中,抛物线21:23L y x x =−−的顶点为P .直线l 过点()()0,3M m m ≥−,且平行于x 轴,与抛物线1L 交于A B 、两点(B 在A 的右侧).将抛物线1L 沿直线l 翻折得到抛物线2L ,抛物线2L 交y 轴于点C ,顶点为D .(1)当1m =时,求点D 的坐标;(2)连接BC CD DB 、、,若BCD △为直角三角形,求此时2L 所对应的函数表达式;(3)在(2)的条件下,若BCD △的面积为3,E F 、两点分别在边BC CD 、上运动,且EF CD =,以EF 为一边作正方形EFGH ,连接CG ,写出CG 长度的最小值,并简要说明理由.【答案】(1)()1,6D(2)223y x x =−++或223y x x =−+−(3102−,见解析 【解析】【分析】(1)将抛物线解析式化为顶点式,进而得出顶点坐标()1,4P −,根据对称性,即可求解. (2)由题意得,1L 的顶点()1,4P −与2L 的顶点D 关于直线y m =对称,()1,24D m +,则抛物线()()222:124223L y x m x x m =−−++=−+++.进而得出可得()0,23C m +,①当90BCD ∠=︒时,如图1,过D 作DN y ⊥轴,垂足为N .求得()3,B m m +,代入解析式得出0m =,求得22:23L y x x =−++.②当=90BDC ∠︒时,如图2,过B 作BT ND ⊥,交ND 的延长线于点T .同理可得BT DT =,得出()5,B m m +,代入解析式得出3m =−代入22:223L y x x m =−+++,得22:23L y x x =−+−;③当90DBC ∠=︒时,此情况不存在.(3)由(2)知,当=90BDC ∠︒时,3m =−,此时BCD △的面积为1,不合题意舍去.当90BCD ∠=︒时,0m =,此时BCD △的面积为3,符合题意.由题意可求得2EF FG CD ===.取EF 的中点Q ,在Rt CEF 中可求得1222CQ EF ==.在Rt FGQ 中可求得102GQ =.易知当,,Q C G 三点共线时,CG 取最小值,最小值为1022−. 【小问1详解】∵2223(1)4y x x x =−−=−−,∴抛物线1L 的顶点坐标()1,4P −.∵1m =,点P 和点D 关于直线1y =对称.∴()1,6D .【小问2详解】由题意得,1L 的顶点()1,4P −与2L 的顶点D 关于直线y m =对称,∴()1,24D m +,抛物线()()222:124223L y x m x x m =−−++=−+++. ∴当0x =时,可得()0,23C m +.①当90BCD ∠=︒时,如图1,过D 作DN y ⊥轴,垂足为N .∵()1,24D m +,∴()0,24N m +.∵()0,23C m +∴1DN NC ==.∴45DCN ∠=︒.∵90BCD ∠=︒,∴45BCM ∠=︒.∵直线l x ∥轴,∴90BMC ∠=︒.∴45,CBM BCM BM CM ∠=∠=︒=.∵3m ≥−,∴()233BM CM m m m ==+−=+.∴()3,B m m +.又∵点B 在2=23y x x −−图像上,∴()()23233m m m =+−+−.解得0m =或3m =−.∵当3m =−时,可得()()0,3,0,3B C −−,此时B C 、重合,舍去.当0m =时,符合题意.将0m =代入22:223L y x x m =−+++,得22:23L y x x =−++.②当=90BDC ∠︒时,如图2,过B 作BT ND ⊥,交ND 的延长线于点T .同理可得BT DT =.∵()1,24D m +,∴()244DT BT m m m ==+−=+.∵1DN =,∴()145NT DN DT m m =+=++=+.∴()5,B m m +.又∵点B 在2=23y x x −−图像上,∴()()25253m m m =+−+−.解得3m =−或4m =−.∵3m ≥−,∴3m =−.此时()()2,3,0,3B C −−符合题意.将3m =−代入22:223L y x x m =−+++,得22:23L y x x =−+−.③当90DBC ∠=︒时,此情况不存在.综上,2L 所对应的函数表达式为223y x x =−++或223y x x =−+−.【小问3详解】如图3,由(2)知,当=90BDC ∠︒时,3m =−,此时()()2,3,0,3B C −−则2BC =,2CD BD ==,则BCD △的面积为1,不合题意舍去.当90BCD ∠=︒时,0m =,则()()3,0,0,3B C , ∴223332BC =+=BCD △的面积为3,符合题意 ∴2CD =.依题意,四边形EFGH 是正方形, ∴2EF FG CD ===.取EF 的中点Q ,在Rt CEF △中可求得1222CQ EF ==. 在Rt FGQ 中可求得()2222210222GQ FG FQ ⎛⎫=+=+= ⎪ ⎪⎝⎭. ∴当,,Q C G 三点共线时,CG 102− 【点睛】本题考查了二次函数的性质,特殊三角形问题,正方形的性质,勾股定理,面积问题,分类讨论是解题的关键.27. 【问题情境 建构函数】(1)如图1,在矩形ABCD 中,4,AB M =是CD 的中点,AE BM ⊥,垂足为E .设,BC x AE y ==,试用含x 的代数式表示y .由数想形 新知初探】(2)在上述表达式中,y 与x 成函数关系,其图像如图2所示.若x 取任意实数,此时的函数图像是否具有对称性?若有,请说明理由,并在图2上补全函数图像.【数形结合 深度探究】(3)在“x 取任意实数”的条件下,对上述函数继续探究,得出以下结论:①函数值y 随x 的增大而增大;②函数值y 的取值范围是4242y −<<③存在一条直线与该函数图像有四个交点;④在图像上存在四点A B C D 、、、,使得四边形ABCD 是平行四边形.其中正确的是__________.(写出所有正确结论的序号)【抽象回归 拓展总结】(4)若将(1)中的“4AB =”改成“2AB k =”,此时y 关于x 的函数表达式是__________;一般地,当0,k x ≠取任意实数时,类比一次函数、反比例函数、二次函数的研究过程,探究此类函数的相关性质(直接写出3条即可).【答案】(1)2244(0)4x x y x x +=>+;(2)x 取任意实数时,对应的函数图像关于原点成中心对称,见解析;(3)①④;(4)22222(0,0)kx x k y x k x k+=>>+,见解析 【解析】【分析】(1)证明Rt Rt ABE BMC ∽,得出AB AE BM BC =,进而勾股定理求得BM ,24y x x =+,整理后即可得出函数关系式;(2)若(),P a b 为图像上任意一点,则22444a ab a +=+.设(),P a b 关于原点的对称点为Q ,则(),Q a b −−.当x a =−时,可求得y b =−.则(),Q a b −−也在22444x x y x +=+的图像上,即可得证,根据中心对称的性质补全函数图象即可求解;(3)根据函数图象,以及中心对称性质,逐项分析判断即可求解;(4)将(1)中的4换成2k ,即可求解;根据(2)的图象探究此类函数的相关性质,即可求解.【详解】(1)在矩形ABCD 中,90ABC BCM ∠=∠=︒,∴90ABE MBC ∠+∠=︒.∵AE BM ⊥,∴90AEB ∠=︒,∴90BAE ABE ∠+∠=︒.∴,AEB BCM MBC BAE ∠=∠∠=∠.∴Rt Rt ABE BMC ∽,∴AB AE BM BC=. ∵4AB =,点M 是CD 的中点,∴11222CM CD AB ===. 在Rt BMC △中,2222224BM BC CM x x =+=+=+, 24y x x =+.∴22444x x y x +==+ ∴y 关于x 的表达式为:2244(0)4x x y x x +=>+. (2)x 取任意实数时,对应的函数图像关于原点成中心对称.理由如下:若(),P a b 为图像上任意一点,则244a a b +=. 设(),P a b 关于原点的对称点为Q ,则(),Q a b −−.当x a =−时, ()()2222444444a a a a y b a a −−++==−=−+−+. ∴(),Q a b −−也在22444x x y x +=+的图像上. ∴当x 取任意实数时,22444x x y x +=+的图像关于原点对称. 函数图像如图所示.(3)根据函数图象可得①函数值y 随x 的增大而增大,故①正确,②由(1)可得函数值y AB <,故函数值的范围为44y −<<,故②错误;③根据中心对称的性质,不存在一条直线与该函数图像有四个交点,故③错误;④因为平行四边形是中心对称图形,则在图像上存在四点A B C D 、、、,使得四边形ABCD 是平行四边形,故④正确;故答案为:①④.(4)y 关于x 的函数表达式为22222(0,0)kx x k y x k x k+=>>+; 当0,k x ≠取任意实数时,有如下相关性质:当0k >时,图像经过第一、三象限,函数值y 随x 的增大而增大,y 的取值范围为22k y k −<<; 当0k <时,图像经过第二、四象限,函数值y 随x 的增大而减小,y 的取值范围为22k y k <<−; 函数图像经过原点;函数图像关于原点对称;【点睛】本题考查了相似三角形的性质,中心对称的性质,根据函数图象获取信息,根据题意求得解析式是解题的关键.。

精品解析:江苏省连云港市2021年中考数学真题(解析版)

精品解析:江苏省连云港市2021年中考数学真题(解析版)
【详解】解:连接OC,
∵OC=OB,
∴∠OCB=∠OBC=40°,
∴∠BOC=180°-40°×2=100°,
∴∠AOC=100°+30°=130°,
∵OC=OA,
∴∠OAC=∠OCA=25°,
故答案为:25.
【点睛】本题考查的是圆的基本性质、等腰三角形的性质,三角形内角和定理,掌握三角形内角和等于180°是解题的关键.
【详解】解:连接ED
是 的中线,

设 ,
与 是等高三角形,

故答案为: .
【点睛】本题考查三角形的中线、三角形的面积等知识,是重要考点,难度一般,掌握相关知识是解题关键.
三、解答题(本大题共11小题,共102分.请在答题卡指定区域内作答,解答时写出必要的文字说明、证明过程或演算步骤)
17.计算: .
【点睛】本题考查相似三角形的判定与性质、正切等知识,是重要考点,掌握相关知识是解题关键.
8.如图,正方形 内接于 ,线段 在对角线 上运动,若 的面积为 , ,则 周长的最小值是( )
A.3B.4C.5D.6
【答案】B
【解析】
【分析】利用将军饮马之造桥选址的数学方法进行计算.
【详解】如图所示,
(1) 为 上一动点, 点关于线段 的对称点为点 ,连接 ,则 ,过 点作 的平行线 ,过 点作 的平行线 ,两平行线相交于点 , 与 相交于点M.


∴当 的时候,W取到最大值1264,故最大利润为1264元
故答案为:1264
【点睛】本题考查的是二次函数的应用,正确理解题意、通过具体问题找到变化前后的关系是解题关键点.
16.如图, 是 的中线,点F在 上,延长 交 于点D.若 ,则 ______.

连云港中考数学试题及答案

连云港中考数学试题及答案

连云港中考数学试题及答案注意:以下是连云港中考数学试题及答案,本文将为您介绍部分试题及其答案。

一、选择题1. 集合{1,2,3,4}中,不可能是二次函数y=Ax^2 + B的图像的是()A. {1,2,3}B. {1,4}C. {1,3,4}D. {2,3,4}答案:D2. 已知集合A={x|x^2 - 5x + 4 > 0},则集合A中元素的个数为()A. 1B. 2C. 3D. 4答案:D3. 二项式展开式中,含有x^3和y^3项的是()A. (x+y)^3B. (x-y)^3C. (x+y)(x-y)^2D. (x-y)^2答案:C二、填空题1. $\frac{2}{5}$化成百分数是()%答案:40%2. 如果令a=-2,那么$-a^{-4} =$()答案:-16三、解答题1. 已知直线y=3x+1与x轴交于点A,与y轴交于点B。

过点P(-2,1)作直线l使得线段AB与线段OP的比值为2:3,求直线l的方程。

解:首先,点A坐标为(m,0),由直线y=3x+1与x轴的交点得:$m=-\frac{1}{3}$。

点B坐标为(0,n),由直线y=3x+1与y轴的交点得:$n=1$。

所以A(-1/3,0),B(0, 1)。

设直线l的方程为y=kx+b,过点P(-2,1),代入得:$1=-2k+b$。

(1)由线段AB与线段OP的比值为2:3,可以得到:$\frac{b-1}{k+\frac{1}{3}}=\frac{3}{2}$。

(2)由方程(1)解得:$b=2k+1$。

代入方程(2)得:$\frac{2k}{k+\frac{1}{3}}=\frac{3}{2}$。

解上述方程可以得到:$k=-\frac{3}{8}$。

代入方程(1)解得:$b=\frac{17}{4}$。

所以直线l的方程为y=-3x/8 + 17/4。

2. 若a,b,c均为正整数,且满足条件:a+b+c=15,abc最大值为多少?解:由于abc的最大值,我们可以想到将三个数尽可能分配得相等。

2022年江苏省连云港市中考数学试卷原卷附解析

2022年江苏省连云港市中考数学试卷原卷附解析

2022年江苏省连云港市中考数学试卷原卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.若抛物线y=ax2经过点P (l,-2),则它也经过()A. P1(-1,-2 )B. P2(-l, 2 )C. P3( l, 2)D. P4(2, 1)2.某初中毕业班的每一个同学都将自己的相片向全班其他同学各送一张表示留念,全班共送了2550张相片,如果全班有x名学生,根据题意,列出方程为()A.x(x+1)=2550 B.x(x-1)=2550C.2x(x+1)=2550 D.x (x-1)=2550×23.八年级(1)班50名学生的年龄统计结果如表所示:则此班学生年龄的众数、中位数分别为()年龄(岁)13141516人数(人)422231A.14岁,l4岁 B.15岁,l4岁 C.14岁,l5岁 D.15岁,l6岁4.直线142y x=-与x轴的交点坐标为()A.(0,一4)B.(一4,0)C.(0,8)D.(8,O)5.三个物体的主视图都有圆,那么这三个物体可能是()A.立方体、球、圆柱B.球、圆柱、圆锥C.直四棱柱、圆柱、三棱锥D.圆锥、正二十面体、直六棱柱6.下列图形中,可以折成正方体的是()A.B.C.D.7.如图,由△ABC平移而得的三角形有()A. 8个B. 9个C. 10个D. 16个8.将方程12x3123x-+-=去分母,正确的结果是()A.3(1)2(23)1x x--+=B.3(1)2(23)6x x--+=C.31431x x--+=D.31436x x--+=9.过线段AB的中点画直线l⊥AB,若AB=2 cm,则点A到直线l的距离是()A.1 cm B.3.2 cm C.4 cm D.无法计算10.若3a 的倒数与293a -互为相反数,那么a 的值是( ) A . 32B .32-C .3D .-1311. 下列各式中,运算结果为负数的是( ) A .(-2)×(-3)÷(+4) B .(+1)÷(-1)×(-1)÷(+1) C .1111()()()24816-⨯-÷-⨯D .(-3)×(-5)×(-7)÷(-9)二、填空题12.在一个不透明的袋中装有2个绿球,3个红球和5个黄球,它们除了颜色外都相同,从中随机摸出一个球,摸到红球的概率是 .13.放大镜中的四边形与原四边形的形状 .(填“相同”或“不相同”).14.如图,从地面垂直向上抛出一小球,小球的高度h (单位:米)与小球运动时间t (单位:秒)的函数关系式是29.8 4.9h t t =-,那么小球运动中的最大高度h =最大 .15. 已知点(2,一6)在抛物线22y ax =-的图象上,则a= . 16.下面的判断是否正确:(1)我从书架上取出了5本书,5本书都是数学书.因此书架上的书都是数学书. ( ) (2)有一条线段AB 长3 cm .另一条线段BC 长2 cm ,那么AC 长5cm ( ) (3)直线AB ,CD 相交于O ,∠AOC=30°,那么∠BOD=30°. ( )17.如图,在等腰三角形ABC 中,AB=AC ,BC=2cm ,∠A=120°,将△ABC 绕着点A 旋转,当点B 落在点C 的位置时,点C 落在点D 处,则BD 的长为 cm .18.在同一平面内直线m ,n 都和直线l 垂直,则直线m 与n 的位置关系是 . 19.若(a+2)2+│b-3│=0,则ba =________.三、解答题20.如图所示,甲站在墙前,乙在墙后,为了不破甲看到,请你在图中画出乙的活动区域.21.如图,∠PAQ 是直角,⊙O 与 AP 相切于点 T ,与 AQ 交于B 、C 两点.(1)BT 是否平分∠OBA?说明你的理由.(2)若已知 AT=4,弦 BC=6,试求⊙O的半径R.22.如图所示,在Rt△ABC 中,∠B= 90°,AC=200, sinA=0.6,求BC 的长.23.某1电影院有 1000 个座位,门票每张 3元,可达客满,根据市场统计,若每张门票提高x元,将有 200x 张门票.不能售出.(1)求提价后每场电影的票房收入 y(元)与票价提高量 x(元)之间的函数关系式及自变量x的取值范围;(2)为增加收入,电影院应做怎样的决策(提价还是降价?若提价,提价多少为宜?)24.如图,在四边形ABCD中,AC⊥DC,∠ADC的面积为30cm2,DC=12 cm ,AB=3cm ,BC=4 cm,求△ABC的面积.25.解方程组6()2()143()()5x y x y x y x y --+=⎧⎨-++=⎩26.某商场对今年端午节这天销售A 、B 、C 三种品牌粽子的情况进行了统计,绘制如图6和图7所示的统计图.根据图中信息解答下列问题:(1)哪一种品牌粽子的销售量最大? (2)补全图6中的条形统计图.(3)写出A 品牌粽子在图7中所对应的圆心角的度数.(4)根据上述统计信息,明年端午节期间该商场对A 、B 、C 三种品牌的粽子如何进货? 请你提一条合理化的建议.27.浙江省位于中国东南沿海,面积约为10.18万平方千米,其地形由山地、丘陵、平原盆地、河流和湖泊组成,请完成下表.(结果保留3个有效数字)图 7图 628.已知a,b是有理数,且满足|1||2|0++-=,求a ba b+的值.29.已知甲数的绝对值是乙数的绝对值的 3倍,且在数轴上表示这两个数的点位于原点的两侧,相距为 8,求这两个数.30.在城关中学开展的“我为四川地震灾区献爱心”捐书活动中,校团委为了了解八年级同学的捐书情况,用简单的随机抽样方法从八年级的10个班中抽取50名同学,对这50名同学所捐的书进行分类统计后,绘制了如下统计表:捐书情况统计表种类文学类科普类学辅类体育类其他合计册数1201801408040560(1)根据统计表补全这50名同学捐书情况的频数分布直方图;(2)若八年级共有475名同学,请你估计八年级同学的捐书总册数及学辅类书的册数.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.B3.B4.D5.B6.B7.B8.B9.A10.C11.C二、填空题12.3(或0.3)1013.相同14.4.9米15.- 116.(1)× (2)× (3)√17.218.平行19.-8三、解答题20.如图中斜线区.21.(1) BT 平分∠OBA.理由如下:连结 OT,则 OT⊥AP.∵∠PAQ=90°,∴∠PAQ+∠OTA=180°∴OT∥AQ,∴∠OTB=∠ABT,又∠OTB=∠OBT,∴∠ABT=∠0BT,∴BT 平分∠0BA (2)作 OE⊥BC于E 点,则 BE=3,四边形 AEOT 是矩形,∴ OE=AT=4,∴22R=+=43522.Rt △ABC 中,sin BCA AC=,AC=200,∴sin 2000.6=120BC AC A =⋅=⨯. 23.(1)y=(3+x)(1000-200x),化简得22004003000y x x =-++, x 的取值范围是 0≤x ≤5.(2)22004003000y x x =-++2200(-2)3000x x =-+2200(1)3200x =--+ ∴当 x=1 时,票房收入最大.即提价 1 元为宜.24.6cm 225.把(x y -)、 (x y +)看做一个整体,1232x y ⎧=⎪⎪⎨⎪=-⎪⎩26.解: (1)C 品牌;(2)略(B 品牌的销售量是800个);(3)60°;(4)略27.表中依次填:7.17,0.652;23.228.1(1)非正数 (2)非负数 (3)1 (4)1 或-329.-6 和 2 或 6 和-230.(1)图略 (2)估计八年级同学的捐书总册数为 5320册,学辅类书为1330册。

2022年江苏省连云港市中考数学真题含解析

2022年江苏省连云港市中考数学真题含解析

2022年江苏省连云港市中考数学真题一、选择题(本大题共有8小题,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.-3的倒数是()A .3 B.-3 C.13 D.13-2.下列图案中,是轴对称图形的是()A. B. C. D.3.2021年12月9日,“天宫课堂”正式开课,我国航天员在中国空间站首次进行太空授课,本次授课结束时,网络在线观看人数累计超过14600000人次.把“14600000”用科学记数法表示为()A.80.14610⨯B.71.4610⨯C.614.610⨯D.514610⨯4.在体育测试中,7名女生仰卧起坐的成绩如下(次/分钟):38,42,42,45,43,45,45,则这组数据的众数是()A.38B.42C.43D.455.函数y =中自变量x 的取值范围是()A.1≥x B.0x ≥ C.0x ≤ D.1x ≤6.ABC 的三边长分别为2,3,4,另有一个与它相似的三角形DEF ,其最长边为12,则DEF 的周长是()A.54 B.36 C.27 D.217.如图,有一个半径为2的圆形时钟,其中每个刻度间的弧长均相等,过9点和11点的位置作一条线段,则钟面中阴影部分的面积为()A.232π-B.23πC.43π-D.43π8.如图,将矩形ABCD 沿着GE 、EC 、GF 翻折,使得点A 、B 、D 恰好都落在点O 处,且点G 、O 、C 在同一条直线上,同时点E 、O 、F 在另一条直线上.小炜同学得出以下结论:①GF ∥EC ;②AB =435AD ;③GE DF ;④OC ;⑤△COF ∽△CEG .其中正确的是()A.①②③B.①③④C.①④⑤D.②③④二、填空题(本大题共8小题,不需要写出解答过程,请把答案直接填写在答题卡相应位置上)9.计算:23a a +=______.10.已知∠A 的补角是60°,则A ∠=_________︒.11.写出一个在1到3之间的无理数:_________.12.若关于x 的一元二次方程()2100mx nx m +-=≠的一个解是1x =,则m n +的值是___.13.如图,AB 是⊙O 的直径,AC 是⊙O 的切线,A 为切点,连接BC ,与⊙O 交于点D ,连接OD .若82AOD ∠=︒,则C ∠=_________︒.14.如图,在66⨯正方形网格中,ABC 的顶点A 、B 、C 都在网格线上,且都是小正方形边的中点,则sin A =_________.15.如图,一位篮球运动员投篮,球沿抛物线20.2 2.25y x x =-++运行,然后准确落入篮筐内,已知篮筐的中心离地面的高度为3.05m ,则他距篮筐中心的水平距离OH 是_________m .16.如图,在ABCD 中,150ABC ∠=︒.利用尺规在BC 、BA 上分别截取BE 、BF ,使BE BF =;分别以E 、F 为圆心,大于12EF 的长为半径作弧,两弧在CBA ∠内交于点G ;作射线BG 交DC 于点H .若31AD =,则BH 的长为_________.三、解答题(本大题共11小题,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.计算:01(10)1620222⎛⎫-⨯-⎪⎝⎭.18.解不等式2x ﹣1>312x -,并把它的解集在数轴上表示出来.19.化简:221311x x x x -+--.20.为落实国家“双减”政策,某校为学生开展了课后服务,其中在体育类活动中开设了四种运动项目:A 乒乓球,B 排球,C 篮球,D 跳绳.为了解学生最喜欢哪一种运动项目,随机抽取部分学生进行调查(每位学生仅选一种),并将调查结果制成如下尚不完整的统计图表.问卷情况统计表:运动项目人数A 乒乓球m B 排球10C 篮球80D 跳绳70(1)本次调查的样本容量是_______,统计表中m =_________;(2)在扇形统计图中,“B 排球”对应的圆心角的度数是_________︒;(3)若该校共有2000名学生,请你估计该校最喜欢“A 乒乓球”的学生人数.21.“石头、剪子、布”是一个广为流传的游戏,规则是:甲、乙两人都做出“石头”“剪子”“布”3种手势中的1种,其中“石头”赢“剪子”,“剪子”赢“布”,“布”赢“石头”,手势相同不分输赢.假设甲、乙两人每次都随意并且同时做出3种手势中的1种.(1)甲每次做出“石头”手势的概率为_________;(2)用画树状图或列表的方法,求乙不输的概率.22.我国古代数学名著《九章算术》中有这样一个问题:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”其大意是:今有几个人共同出钱购买一件物品.每人出8钱,剩余3钱;每人出7钱,还缺4钱.问人数、物品价格各是多少?请你求出以上问题中的人数和物品价格.23.如图,在平面直角坐标系xOy 中,一次函数()0y ax b a =+≠的图像与反比例函数()0k y k x=≠的图像交于P 、Q 两点.点()43P ,-,点Q 的纵坐标为-2.(1)求反比例函数与一次函数的表达式;(2)求POQ △的面积.24.我市的花果山景区大圣湖畔屹立着一座古塔——阿育王塔,是苏北地区现存最高和最古老的宝塔.小明与小亮要测量阿育王塔的高度,如图所示,小明在点A 处测得阿育王塔最高点C 的仰角45CAE ∠=︒,再沿正对阿育王塔方向前进至B 处测得最高点C 的仰角53CBE ∠=︒,10m AB =;小亮在点G 处竖立标杆FG ,小亮的所在位置点D 、标杆顶F 、最高点C 在一条直线上, 1.5m FG =,2m GD =.(注:结果精确到0.01m ,参考数据:sin 530.799︒≈,cos530.602︒≈,tan 53 1.327︒≈)(1)求阿育王塔的高度CE ;(2)求小亮与阿育王塔之间的距离ED .25.如图,四边形ABCD 为平行四边形,延长AD 到点E ,使DE AD =,且BE DC ⊥.(1)求证:四边形DBCE 为菱形;(2)若DBC △是边长为2的等边三角形,点P 、M 、N 分别在线段BE 、BC 、CE 上运动,求PM PN +的最小值.26.已知二次函数2(2)4y x m x m =+-+-,其中2m >.(1)当该函数的图像经过原点()0,0O ,求此时函数图像的顶点A 的坐标;(2)求证:二次函数2(2)4y x m x m =+-+-的顶点在第三象限;(3)如图,在(1)的条件下,若平移该二次函数的图像,使其顶点在直线2y x =--上运动,平移后所得函数的图像与y 轴的负半轴的交点为B ,求AOB 面积的最大值.27.【问题情境】在一次数学兴趣小组活动中,小昕同学将一大一小两个三角板按照如图1所示的方式摆放.其中90ACB DEB ∠=∠=︒,30B ∠=︒,3BE AC ==.【问题探究】小昕同学将三角板DEB 绕点B 按顺时针方向旋转.(1)如图2,当点E 落在边AB 上时,延长DE 交BC 于点F ,求BF 的长.(2)若点C 、E 、D 在同一条直线上,求点D 到直线BC 的距离.(3)连接DC ,取DC 的中点G ,三角板DEB 由初始位置(图1),旋转到点C 、B 、D 首次在同一条直线上(如图3),求点G所经过的路径长.(4)如图4,G为DC的中点,则在旋转过程中,点G到直线AB的距离的最大值是_____.2022年江苏省连云港市中考数学真题一、选择题(本大题共有8小题,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.-3的倒数是()A.3B.-3C.13D.13-【答案】D【解析】【分析】根据倒数的定义,即可计算出结果.【详解】解:-3的倒数是13-;故选:D【点睛】本题考查了倒数的定义:乘积是1的两数互为倒数.2.下列图案中,是轴对称图形的是()A. B. C. D.【答案】A【解析】【分析】根据轴对称图形的概念逐项分析判断即可,轴对称图形的概念:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形.【详解】A.是轴对称图形,故该选项正确,符合题意;B.不是轴对称图形,故该选项不正确,不符合题意;C.不是轴对称图形,故该选项不正确,不符合题意;D.不是轴对称图形,故该选项不正确,不符合题意;故选A【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.2021年12月9日,“天宫课堂”正式开课,我国航天员在中国空间站首次进行太空授课,本次授课结束时,网络在线观看人数累计超过14600000人次.把“14600000”用科学记数法表示为()A.80.14610⨯ B.71.4610⨯ C.614.610⨯ D.514610⨯【答案】B【分析】科学记数法的表现形式为10n a ⨯的形式,其中110a ≤<,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,当原数绝对值大于等于10时,n 是正数,当原数绝对值小于1时n 是负数;由此进行求解即可得到答案.【详解】解:714600000=1.4610⨯.故选:B .【点睛】本题主要考查了科学记数法,解题的关键在于能够熟练掌握科学记数法的具体要求.4.在体育测试中,7名女生仰卧起坐的成绩如下(次/分钟):38,42,42,45,43,45,45,则这组数据的众数是()A.38B.42C.43D.45【答案】D【解析】【分析】根据众数的定义即可求解.【详解】解:∵45出现了3次,出现次数最多,∴众数为45.故选D .【点睛】本题考查了求众数,掌握众数的定义是解题的关键.众数:在一组数据中出现次数最多的数.5.函数y =中自变量x 的取值范围是()A.1≥x B.0x ≥ C.0x ≤ D.1x ≤【答案】A【解析】【分析】根据二次根式有意义的条件列出不等式,即可求解.【详解】解:∵10x -≥,∴1≥x .故选A .【点睛】本题考查了求函数自变量取值范围,二次根式有意义的条件,掌握二次根式有意义的条件是解题的关键.6.ABC 的三边长分别为2,3,4,另有一个与它相似的三角形DEF ,其最长边为12,则DEF 的周长是()A.54 B.36 C.27 D.21【解析】【分析】根据相似三角形的性质求解即可.【详解】解:∵△ABC 与△DEF 相似,△ABC 的最长边为4,△DEF 的最长边为12,∴两个相似三角形的相似比为1:3,∴△DEF 的周长与△ABC 的周长比为3:1,∴△DEF 的周长为3×(2+3+4)=27,故选:C .【点睛】本题主要考查了相似三角形的性质,熟知相似三角形的周长之比等于相似之比是解题的关键.7.如图,有一个半径为2的圆形时钟,其中每个刻度间的弧长均相等,过9点和11点的位置作一条线段,则钟面中阴影部分的面积为()A.232π-B.23πC.43π-D.43π-【答案】B【解析】【分析】阴影部分的面积等于扇形面积减去三角形面积,分别求出扇形面积和等边三角形的面积即可.【详解】解:如图,过点OC 作OD ⊥AB 于点D ,∵∠AOB =2×36012︒=60°,∴△OAB 是等边三角形,∴∠AOD =∠BOD =30°,OA =OB =AB =2,AD =BD =12AB =1,∴OD 223AO AD -=∴阴影部分的面积为26021223336023ππ⋅⨯-⨯=-故选:B .【点睛】本题考查了扇形面积、等边三角形的面积计算方法,掌握扇形面积、等边三角形的面积的计算方法是正确解答的关键.8.如图,将矩形ABCD 沿着GE 、EC 、GF 翻折,使得点A 、B 、D 恰好都落在点O 处,且点G 、O 、C 在同一条直线上,同时点E 、O 、F 在另一条直线上.小炜同学得出以下结论:①GF ∥EC ;②AB =435AD ;③GE 6DF ;④OC 2;⑤△COF ∽△CEG .其中正确的是()A.①②③B.①③④C.①④⑤D.②③④【答案】B【解析】【分析】由折叠的性质知∠FGE =90°,∠GEC =90°,点G 为AD 的中点,点E 为AB 的中点,设AD =BC =2a ,AB=CD=2b,在Rt△CDG中,由勾股定理求得b,然后利用勾股定理再求得DF=FO,据此求解即可.【详解】解:根据折叠的性质知∠DGF=∠OGF,∠AGE=∠OGE,∴∠FGE=∠OGF+∠OGE=12(∠DGO+∠AGO)=90°,同理∠GEC=90°,∴GF∥EC;故①正确;根据折叠的性质知DG=GO,GA=GO,∴DG=GO=GA,即点G为AD的中点,同理可得点E为AB的中点,设AD=BC=2a,AB=CD=2b,则DG=GO=GA=a,OC=BC=2a,AE=BE=OE=b,∴GC=3a,在Rt△CDG中,CG2=DG2+CD2,即(3a)2=a2+(2b)2,∴b,∴AB,故②不正确;设DF=FO=x,则FC=2b-x,在Rt△COF中,CF2=OF2+OC2,即(2b-x)2=x2+(2a)2,∴x=22b ab-,即DF=FO,GE=,∴GEaDF==,∴GEDF;故③正确;∴2 OC aa OF==∴OC ;故④正确;∵∠FCO 与∠GCE 不一定相等,∴△COF ∽△CEG 不成立,故⑤不正确;综上,正确的有①③④,故选:B .【点睛】本题主要考查了折叠问题,解题时,我们常常设要求的线段长为x ,然后根据折叠和轴对称的性质用含x 的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.二、填空题(本大题共8小题,不需要写出解答过程,请把答案直接填写在答题卡相应位置上)9.计算:23a a +=______.【答案】5a【解析】【分析】直接运用合并同类项法则进行计算即可得到答案.【详解】解:23a a+(23)a=+5a =.故答案为:5a .【点睛】本题主要考查了合并同类项,熟练掌握合并同类项法则是解答本题的关键.10.已知∠A 的补角是60°,则A ∠=_________︒.【答案】120【解析】【分析】如果两个角的和等于180°,就说这两个角互为补角.由此定义即可求解.【详解】解:∵∠A 的补角是60°,∴∠A =180°-60°=120°,故答案为:120.【点睛】本题考查补角的定义,熟练掌握两个角互为补角的定义是解题的关键.11.写出一个在1到3之间的无理数:_________.【答案】(答案不唯一)【解析】【分析】由于12=1,32=9,所以只需写出被开方数在1和9之间的,且不是完全平方数的数即可求解.【详解】解:1和3之间的无理数如.(答案不唯一).【点睛】本题主要考查常见无理数的定义和性质,解题关键是估算无理数的整数部分和小数部分.12.若关于x 的一元二次方程()2100mxnx m +-=≠的一个解是1x =,则m n +的值是___.【答案】1【解析】【分析】根据一元二次方程解的定义把1x =代入到()2100mxnx m +-=≠进行求解即可.【详解】解:∵关于x 的一元二次方程()2100mxnx m +-=≠的一个解是1x =,∴10m n +-=,∴1m n +=,故答案为:1.【点睛】本题主要考查了一元二次方程解的定义,代数式求值,熟知一元二次方程解的定义是解题的关键.13.如图,AB 是⊙O 的直径,AC 是⊙O 的切线,A 为切点,连接BC ,与⊙O 交于点D ,连接OD .若82AOD ∠=︒,则C ∠=_________︒.【答案】49【解析】【分析】利用同弧所对的圆周角等于圆心角的一半求得∠B =12∠AOD =41°,根据AC 是⊙O 的切线得到∠BAC =90°,即可求出答案.【详解】解:∵∠AOD =82°,∴∠B =12∠AOD =41°,∵AC 为圆的切线,A 为切点,∴∠BAC =90°,∴∠C =90°-41°=49°故答案为49.【点睛】此题考查圆周角定理,圆的切线的性质定理,直角三角形两锐角互余,正确理解圆周角定理及切线的性质定理是解题的关键.14.如图,在66⨯正方形网格中,ABC 的顶点A 、B 、C 都在网格线上,且都是小正方形边的中点,则sin A =_________.【答案】45【解析】【分析】如图所示,过点C 作CE ⊥AB 于E ,先求出CE ,AE 的长,从而利用勾股定理求出AC 的长,由此求解即可.【详解】解:如图所示,过点C 作CE ⊥AB 于E ,由题意得43CE AE ==,,∴5AC ==,∴4sin =5CE A AC =,故答案为:45.【点睛】本题主要考查了求正弦值,勾股定理与网格问题正确作出辅助线,构造直角三角形是解题的关键.15.如图,一位篮球运动员投篮,球沿抛物线20.2 2.25y x x =-++运行,然后准确落入篮筐内,已知篮筐的中心离地面的高度为3.05m ,则他距篮筐中心的水平距离OH 是_________m .【答案】4【解析】【分析】将 3.05y =代入20.2 2.25y x x =-++中可求出x ,结合图形可知4x =,即可求出OH .【详解】解:当 3.05y =时,20.2 2.253.05-++x x =,解得:1x =或4x =,结合图形可知:4OH m =,故答案为:4【点睛】本题考查二次函数的实际应用:投球问题,解题的关键是结合函数图形确定x 的值.16.如图,在ABCD 中,150ABC ∠=︒.利用尺规在BC 、BA 上分别截取BE 、BF ,使BE BF =;分别以E 、F 为圆心,大于12EF 的长为半径作弧,两弧在CBA ∠内交于点G ;作射线BG 交DC 于点H .若1AD =,则BH 的长为_________.【答案】【解析】【分析】如图所示,过点H 作HM ⊥BC 于M ,由作图方法可知,BH 平分∠ABC ,即可证明∠CBH =∠CHB ,得到1CH BC ==+,从而求出HM ,CM 的长,进而求出BM 的长,即可利用勾股定理求出BH 的长.【详解】解:如图所示,过点H 作HM ⊥BC 于M ,由作图方法可知,BH 平分∠ABC ,∴∠ABH =∠CBH ,∵四边形ABCD 是平行四边形,∴1BC AD AB CD ==+∥,,∴∠CHB =∠ABH ,∠C =180°-∠ABC =30°,∴∠CBH =∠CHB ,∴1CH BC ==+,∴13122HM CH +==,∴332CM +==,∴312BM BC CM -=-=,∴BH ==,.【点睛】本题主要考查了角平分线的尺规作图,平行四边形的性质,含30度角的直角三角形的性质,勾股定理,等腰三角形的性质与判定等等,正确求出CH 的长是解题的关键.三、解答题(本大题共11小题,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.计算:01(10)20222⎛⎫-⨯-⎪⎝⎭.【答案】2【解析】【分析】根据有理数的乘法,二次根式的性质,零指数的计算法则求解即可.【详解】解:原式541=-+=2.【点睛】本题主要考查了有理数的乘法,二次根式的性质,零指数,熟知相关计算法则是解题的关键.18.解不等式2x ﹣1>312x -,并把它的解集在数轴上表示出来.【答案】不等式的解集为x >1,在数轴上表示见解析.【解析】【详解】试题分析:根据不等式的基本性质去分母、去括号、移项可得不等式的解集,再根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则在数轴上将解集表示出来.试题解析:去分母,得:4x ﹣2>3x ﹣1,移项,得:4x ﹣3x >2﹣1,合并同类项,得:x >1,将不等式解集表示在数轴上如图:19.化简:221311x x x x -+--.【答案】11x x -+【解析】【分析】根据异分母分式的加法计算法则求解即可.【详解】解:原式2221311x x x x x +-=+--22131x x x x ++-=-22211x x x -+=-22(1)1x x -=-2(1)=(1)(1)x x x -+-11x x -=+.【点睛】本题主要考查了异分母分式的加法,熟知相关计算法则是解题的关键.20.为落实国家“双减”政策,某校为学生开展了课后服务,其中在体育类活动中开设了四种运动项目:A 乒乓球,B 排球,C 篮球,D 跳绳.为了解学生最喜欢哪一种运动项目,随机抽取部分学生进行调查(每位学生仅选一种),并将调查结果制成如下尚不完整的统计图表.问卷情况统计表:运动项目人数A 乒乓球m B 排球10C 篮球80D 跳绳70(1)本次调查的样本容量是_______,统计表中m =_________;(2)在扇形统计图中,“B 排球”对应的圆心角的度数是_________︒;(3)若该校共有2000名学生,请你估计该校最喜欢“A 乒乓球”的学生人数.【答案】(1)200,40(2)18(3)约为400人【解析】【分析】(1)从两个统计图中可知,“C 篮球”的人数80人,占调查人数的40%,可求出本次调查的样本容量,进而求出m 的值;(2)“B 排球”的人数10人,据此可求得相应的圆心角;(3)用总人数乘以“A 乒乓球”的学生所占的百分比即可.【小问1详解】解:本次调查的样本容量是:80÷40%=200(人),m=200-10-80-70=40;故答案为:200,40;【小问2详解】解:扇形统计图中B部分扇形所对应的圆心角是360°×10200=18°,故答案为:18;【小问3详解】解:402000400200⨯=(人),估计该校最喜欢“A乒乓球”的学生人数约为400人.【点睛】此题考查统计表、扇形统计图的结合,从两个统计图中获取数量和数量之间的关系是解决问题的前提.21.“石头、剪子、布”是一个广为流传的游戏,规则是:甲、乙两人都做出“石头”“剪子”“布”3种手势中的1种,其中“石头”赢“剪子”,“剪子”赢“布”,“布”赢“石头”,手势相同不分输赢.假设甲、乙两人每次都随意并且同时做出3种手势中的1种.(1)甲每次做出“石头”手势的概率为_________;(2)用画树状图或列表的方法,求乙不输的概率.【答案】(1)1 3(2)见解析,2 3【解析】【分析】(1)根据概率计算公式求解即可;(2)先画树状图得出所有的等可能性的结果数,然后找到乙不输的结果数,最后利用概率计算公式求解即可.【小问1详解】解:∵甲每次做出的手势只有“石头”、“剪子”、“布”其中的一种,∴甲每次做出“石头”手势的概率为1 3;【小问2详解】解:树状图如图所示:甲、乙两人同时做出手势共有9种等可能结果,其中乙不输的共有6种,∴P (乙不输)6293==.答:乙不输的概率是23.【点睛】本题主要考查了简单的概率计算,利用列表法或树状图法求解概率,熟知概率计算公式是解题的关键.22.我国古代数学名著《九章算术》中有这样一个问题:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”其大意是:今有几个人共同出钱购买一件物品.每人出8钱,剩余3钱;每人出7钱,还缺4钱.问人数、物品价格各是多少?请你求出以上问题中的人数和物品价格.【答案】有7人,物品价格是53钱【解析】【分析】设人数为x 人,根据“物品价格=8×人数-多余钱数=7×人数+缺少的钱数”可得方程,求解方程即可.【详解】解:设人数为x 人,由题意得8374x x -=+,解得7x =.所以物品价格是87353⨯-=.答:有7人,物品价格是53钱.【点睛】本题主要考查由实际问题抽象出一元一次方程,由实际问题列方程组是把“未知”转化为“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的相等关系.23.如图,在平面直角坐标系xOy 中,一次函数()0y ax b a =+≠的图像与反比例函数()0k y k x=≠的图像交于P 、Q 两点.点()43P ,-,点Q 的纵坐标为-2.(1)求反比例函数与一次函数的表达式;(2)求POQ △的面积.【答案】(1)12y x =-,112y x =-+(2)5【解析】【分析】(1)通过点P 坐标求出反比例函数解析式,再通过解析式求出点Q 坐标,从而解出PQ 一次函数解析式;(2)令PQ 与y 轴的交点为M ,则三角形POQ 的面积为OM 乘以点P 横坐标除以2加上OM 乘以点Q 横坐标除以2即可.【小问1详解】将()43P ,-代入k y x=,解得12k =-,∴反比例函数表达式为12y x =-.当2y =-时,代入12y x=-,解得6x =,即()6,2Q -.将()43P ,-、()6,2Q -代入()0y ax b a =+≠,得4362a b a b -+=⎧⎨+=-⎩,解得121a b ⎧=-⎪⎨⎪=⎩.∴一次函数表达式为112y x =-+.【小问2详解】设一次函数的图像与y 轴交点为M ,将0x =代入112y x =-+,得1y =,即()0,1M .∵()43P ,-,()6,2Q -,()0,1M ,∴111416522POQ POM QOM S S S =+=⨯⨯+⨯⨯=△△△.【点睛】本题考查待定系数法求反比例函数解析式、一次函数解析式、求一次函数和反比例函数围成的三角形面积,掌握拆分法是解本题关键.24.我市的花果山景区大圣湖畔屹立着一座古塔——阿育王塔,是苏北地区现存最高和最古老的宝塔.小明与小亮要测量阿育王塔的高度,如图所示,小明在点A 处测得阿育王塔最高点C 的仰角45CAE ∠=︒,再沿正对阿育王塔方向前进至B 处测得最高点C 的仰角53CBE ∠=︒,10m AB =;小亮在点G 处竖立标杆FG ,小亮的所在位置点D 、标杆顶F 、最高点C 在一条直线上, 1.5m FG =,2m GD =.(注:结果精确到0.01m ,参考数据:sin 530.799︒≈,cos530.602︒≈,tan 53 1.327︒≈)(1)求阿育王塔的高度CE ;(2)求小亮与阿育王塔之间的距离ED .【答案】(1)40.58m(2)54.11m【解析】【分析】(1)在Rt CEB 中,由tan 5310CE CE BE CE ︒==-,解方程即可求解.(2)证明Rt FGD Rt CED △∽△,根据相似三角形的性质即可求解.【小问1详解】在Rt CAE 中,∵45CAE ∠=︒,∴CE AE =.∵10AB =,∴1010BE AE CE =-=-.在Rt CEB 中,由tan 5310CE CE BE CE ︒==-,得()tan5310CE CE ︒-=,解得40.58CE ≈.经检验40.58CE ≈是方程的解答:阿育王塔的高度约为40.58m .【小问2详解】由题意知Rt FGD Rt CED △∽△,∴FG GD CE ED=,即 1.5240.58ED =,∴54.11ED ≈.经检验54.11ED ≈是方程的解答:小亮与阿育王塔之间的距离约为54.11m .【点睛】本题考查了解直角三角形的应用,相似三角形的应用,掌握以上知识是解题的关键.25.如图,四边形ABCD 为平行四边形,延长AD 到点E ,使DE AD =,且BE DC ⊥.(1)求证:四边形DBCE 为菱形;(2)若DBC △是边长为2的等边三角形,点P 、M 、N 分别在线段BE 、BC 、CE 上运动,求PM PN +的最小值.【答案】(1)证明见解析(2【解析】【分析】(1)先根据四边形ABCD 为平行四边形的性质和DE AD =证明四边形DBCE 为平行四边形,再根据BE DC ⊥,即可得证;(2)先根据菱形对称性得,得到'PM PN PM PN +=+,进一步说明PM PN +的最小值即为菱形的高,再利用三角函数即可求解.【小问1详解】证明:∵四边形ABCD 是平行四边形,∴AD BC ∥,AD BC =,∵DE AD =,∴DE BC =,又∵点E 在AD 的延长线上,∴∥DE BC ,∴四边形DBCE 为平行四边形,又∵BE DC ⊥,∴四边形DBCE 为菱形.【小问2详解】解:如图,由菱形对称性得,点N 关于BE 的对称点'N 在DE 上,∴'PM PN PM PN +=+,当P 、M 、'N 共线时,''PM PN PM PN MN +=+=,过点D 作DH BC ⊥,垂足为H ,∵∥DE BC ,∴'MN 的最小值即为平行线间的距离DH 的长,∵DBC △是边长为2的等边三角形,∴在Rt DBH 中,60DBC ∠=︒,2DB =,sin DH DBC DB ∠=,∴sin 22DH DB DBC =∠=⨯=∴PM PN +【点睛】本题考查了最值问题,考查了菱形的判定和性质,平行四边形的判定和性质,三角函数等知识,运用了转化的思想方法.将最值问题转化为求菱形的高是解答本题的关键.26.已知二次函数2(2)4y x m x m =+-+-,其中2m >.(1)当该函数的图像经过原点()0,0O ,求此时函数图像的顶点A 的坐标;(2)求证:二次函数2(2)4y x m x m =+-+-的顶点在第三象限;(3)如图,在(1)的条件下,若平移该二次函数的图像,使其顶点在直线2y x =--上运动,平移后所得函数的图像与y 轴的负半轴的交点为B ,求AOB 面积的最大值.【答案】(1)()1,1A --(2)见解析(3)最大值为98【解析】【分析】(1)先利用待定系数法求出二次函数解析式,再将二次函数解析式化为顶点式即可得到答案;(2)先根据顶点坐标公式求出顶点坐标为22820,24m m m ⎛⎫--+- ⎪⎝⎭,然后分别证明顶点坐标的横纵坐标都小于0即可;(3)设平移后图像对应的二次函数表达式为2y x bx c =++,则其顶点坐标为24,24b c b ⎛⎫-- ⎪⎝⎭,然后求出点B 的坐标,根据平移后的二次函数顶点在直线2y x =--上推出2284b bc +-=,过点A 作AH OB ⊥,垂足为H ,可以推出219=(1)88AOB S b -++△,由此即可求解.【小问1详解】解:将()0,0O 代入2(2)4y xm x m =+-+-,解得4m =.由2m >,则4m =符合题意,∴222(1)1y x x x =+=+-,∴()1,1A --.【小问2详解】解:由抛物线顶点坐标公式得顶点坐标为22820,24m m m ⎛⎫--+- ⎪⎝⎭.∵2m >,∴20m ->,∴20m -<,∴202m -<.∵228201(4)11044m m m -+-=---≤-<,∴二次函数2(2)4y x m x m =+-+-的顶点在第三象限.【小问3详解】解:设平移后图像对应的二次函数表达式为2y x bx c =++,则其顶点坐标为24,24b c b ⎛⎫-- ⎪⎝⎭当0x =时,y c =,∴()0,B c .将24,24b c b ⎛⎫-- ⎪⎝⎭代入2y x =--,解得2284b bc +-=.∵()0,B c 在y 轴的负半轴上,∴0c <.∴2284b b OBc +-=-=-.过点A 作AH OB ⊥,垂足为H ,∵()1,1A --,∴1AH =.在AOB 中,211281224AOB b b S OB AH ⎛⎫+-=⋅=⨯-⨯ ⎪⎝⎭△211184b b =--+219(1)88b =-++,∴当1b =-时,此时0c <,AOB 面积有最大值,最大值为98.【点睛】本题主要考查了待定系数法求二次函数解析式,二次函数的性质,二次函数的平移,二次函数的最值问题,正确理解题意,熟练掌握二次函数的相关知识是解题的关键.27.【问题情境】在一次数学兴趣小组活动中,小昕同学将一大一小两个三角板按照如图1所示的方式摆放.其中90ACB DEB ∠=∠=︒,30B ∠=︒,3BE AC ==.【问题探究】小昕同学将三角板DEB 绕点B 按顺时针方向旋转.(1)如图2,当点E落在边AB上时,延长DE交BC于点F,求BF的长.(2)若点C、E、D在同一条直线上,求点D到直线BC的距离.(3)连接DC,取DC的中点G,三角板DEB由初始位置(图1),旋转到点C、B、D首次在同一条直线上(如图3),求点G所经过的路径长.(4)如图4,G为DC的中点,则在旋转过程中,点G到直线AB的距离的最大值是_____.【答案】(1)23(261±(3)53 6π(4)73 4【解析】【分析】(1)在Rt△BEF中,根据余弦的定义求解即可;(2)分点E在BC上方和下方两种情况讨论求解即可;(3)取BC的中点O,连接GO,从而求出OG3G在以O3根据弧长公式即可求解;(4)由(3)知,点G在以O3O作OH⊥AB于H,当G在OH的反向延长线上时,GH 最大,即点G 到直线AB 的距离的最大,在Rt △BOH 中求出OH ,进而可求GH .【小问1详解】解:由题意得,90BEF BED ∠=∠=︒,∵在Rt BEF △中,30ABC ∠=︒,3BE =,cos BE ABC BF ∠=.∴3cos cos 30BE BF ABC =︒==∠【小问2详解】①当点E 在BC 上方时,如图一,过点D 作DH BC ⊥,垂足为H ,∵在ABC 中,90ACB ∠=︒,30ABC ∠=︒,3AC =,∴tan AC ABC BC∠=,∴3tan tan 30AC BC ABC =︒==∠∵在BDE 中,90DEB ∠=︒,30DBE ABC ∠=∠=︒,3BE =,tan DE DBE BE ∠=,∴tan30DE BE =︒⋅.∵点C 、E 、D 在同一直线上,且90DEB ∠=︒,∴18090CEB DEB ∠=-∠=︒︒.又∵在CBE △中,90CEB ∠=︒,BC =3BE =,∴CE ==∴CD CE D E =+=∵在BCD △中,1122BCD S CD BE BC DH =⋅=⋅△,∴1CD BE DH BC ⋅==+.②当点E 在BC 下方时,如图二,在BCE 中,∵90CEB ∠=︒,3BE =,BC =,∴CE ==∴CD CE D E =-=过点D 作DM BC ⊥,垂足为M .在BDC 中,1122BDC S BC DM CD BE =⋅=⋅△,∴1D M -.综上,点D 到直线BC 1±.【小问3详解】解:如图三,取BC 的中点O ,连接GO ,则12GO BD ==∴点G 在以O 为半径的圆上.当三角板DEB 绕点B 顺时针由初始位置旋转到点C 、B 、D 首次在同一条直线上时,点G 所经过的轨迹为。

2024年江苏省连云港市中考数学试卷正式版含答案解析

2024年江苏省连云港市中考数学试卷正式版含答案解析

绝密★启用前学校:___________姓名:___________班级:___________考号:___________一、选择题:本题共8小题,每小题3分,共24分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.−12的相反数是( )A. −2B. 2C. −12D. 122.2024年5月,全国最大的海上光伏项目获批落地连云港,批准用海面积约28000亩,总投资约90亿元.其中数据“28000”用科学记数法可以表示为( )A. 28×103B. 2.8×104C. 2.8×103D. 0.28×1053.下列运算结果等于a6的是( )A. a3+a3B. a⋅a6C. a8÷a2D. (−a2)34.下列网格中各个小正方形的边长均为1,阴影部分图形分别记作甲、乙、丙、丁,其中是相似形的为( )A. 甲和乙B. 乙和丁C. 甲和丙D. 甲和丁5.如图,将一根木棒的一端固定在O点,另一端绑一重物.将此重物拉到A点后放开,让此重物由A点摆动到B点.则此重物移动路径的形状为( )A. 倾斜直线B. 抛物线C. 圆弧D. 水平直线6.下列说法正确的是( )A. 10张票中有1张奖票,10人去摸,先摸的人摸到奖票的概率较大B. 从1,2,3,4,5中随机抽取一个数,取得偶数的可能性较大C. 小强一次掷出3颗质地均匀的骰子,3颗全是6点朝上是随机事件D. 抛一枚质地均匀的硬币,正面朝上的概率为12,连续抛此硬币2次必有1次正面朝上7.如图,正方形中有一个由若干个长方形组成的对称图案,其中正方形边长是80cm,则图中阴影图形的周长是( )A. 440cmB. 320cmC. 280cmD. 160cm8.已知抛物线y=ax2+bx+c(a、b、c是常数,a<0)的顶点为(1,2).小烨同学得出以下结论:①abc<0;;④抛物线y=ax2+2②当x>1时,y随x的增大而减小;③若ax2+bx+c=0的一个根为3,则a=−12是由抛物线y=ax2+bx+c向左平移1个单位,再向下平移2个单位得到的.其中一定正确的是( )A. ①②B. ②③C. ③④D. ②④二、填空题:本题共8小题,每小题3分,共24分。

2022年江苏省连云港市中考数学试卷及答案解析

2022年江苏省连云港市中考数学试卷及答案解析

2022年江苏省连云港市中考数学试卷一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(3分)﹣3的倒数是()A.﹣3B.3C.−13D.132.(3分)下列图案中,是轴对称图形的是()A.B.C.D.3.(3分)2021年12月9日,“天宫课堂”正式开课,我国航天员在中国空间站首次进行太空授课,本次授课结束时,网络在线观看人数累计超过14600000人次.把“14600000”用科学记数法表示为()A.0.146×108B.1.46×107C.14.6×106D.146×1054.(3分)在体育测试中,7名女生仰卧起坐的成绩如下(次/分钟):38,42,42,45,43,45,45,则这组数据的众数是()A.38B.42C.43D.455.(3分)函数y=√x−1中自变量x的取值范围是()A.x≥1B.x≥0C.x≤0D.x≤16.(3分)△ABC的三边长分别为2,3,4,另有一个与它相似的三角形DEF,其最长边为12,则△DEF的周长是()A.54B.36C.27D.217.(3分)如图,有一个半径为2的圆形时钟,其中每个刻度间的弧长均相等,过9点和11点的位置作一条线段,则钟面中阴影部分的面积为()A .23π−√32B .23π−√3C .43π﹣2√3D .43π−√38.(3分)如图,将矩形ABCD 沿着GE 、EC 、GF 翻折,使得点A 、B 、D 恰好都落在点O 处,且点G 、O 、C 在同一条直线上,同时点E 、O 、F 在另一条直线上.小炜同学得出以下结论:①GF ∥EC ;②AB =4√35AD ;③GE =√6DF ;④OC =2√2OF ;⑤△COF ∽△CEG .其中正确的是( )A .①②③B .①③④C .①④⑤D .②③④二、填空题(本大题共8小题,每小题3分,共24分.不需要写出解答过程,请把答案直接填写在答题卡相应位置上) 9.(3分)计算:2a +3a = .10.(3分)已知∠A 的补角为60°,则∠A = °. 11.(3分)写出一个在1到3之间的无理数: .12.(3分)若关于x 的一元二次方程mx 2+nx ﹣1=0(m ≠0)的一个解是x =1,则m +n 的值是 .13.(3分)如图,AB 是⊙O 的直径,AC 是⊙O 的切线,A 为切点,连接BC ,与⊙O 交于点D ,连接OD .若∠AOD =82°,则∠C = °.14.(3分)如图,在6×6正方形网格中,△ABC 的顶点A 、B 、C 都在网格线上,且都是小正方形边的中点,则sin A = .15.(3分)如图,一位篮球运动员投篮,球沿抛物线y =﹣0.2x 2+x +2.25运行,然后准确落入篮筐内,已知篮筐的中心离地面的高度为3.05m ,则他距篮筐中心的水平距离OH 是 m .16.(3分)如图,在▱ABCD 中,∠ABC =150°.利用尺规在BC 、BA 上分别截取BE 、BF ,使BE =BF ;分别以E 、F 为圆心,大于12EF 的长为半径作弧,两弧在∠CBA 内交于点G ;作射线BG 交DC 于点H .若AD =√3+1,则BH 的长为 .三、解答题(本大题共11小题,共102分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.(6分)计算(﹣10)×(−12)−√16+20220. 18.(6分)解不等式2x ﹣1>3x−12,并把它的解集在数轴上表示出来. 19.(6分)化简1x−1+x 2−3x x 2−1.20.(8分)为落实国家“双减”政策,某校为学生开展了课后服务,其中在体育类活动中开设了四种运动项目:A乒乓球,B排球,C篮球,D跳绳.为了解学生最喜欢哪一种运动项目,随机抽取部分学生进行调查(每位学生仅选一种),并将调查结果制成如下尚不完整的统计图表.问卷情况统计表运动项目人数A乒乓球mB排球10C篮球80D跳绳70(1)本次调查的样本容量是,统计表中m=;(2)在扇形统计图中,“B排球”对应的圆心角的度数是°;(3)若该校共有2000名学生,请你估计该校最喜欢“A乒乓球”的学生人数.21.(10分)“石头、剪子、布”是一个广为流传的游戏,规则是:甲、乙两人都做出“石头”“剪子”“布”3种手势中的1种,其中“石头”赢“剪子”,“剪子”赢“布”,“布”赢“石头”,手势相同不分输赢.假设甲、乙两人每次都随意并且同时做出3种手势中的1种.(1)甲每次做出“石头”手势的概率为;(2)用画树状图或列表的方法,求乙不输的概率.22.(10分)我国古代数学名著《九章算术》中有这样一个问题:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”其大意是:今有几个人共同出钱购买一件物品.每人出8钱,剩余3钱;每人出7钱,还缺4钱.问人数、物品价格各是多少?请你求出以上问题中的人数和物品价格.23.(10分)如图,在平面直角坐标系xOy中,一次函数y=ax+b(a≠0)的图象与反比例函数y=kx(k≠0)的图象交于P、Q两点.点P(﹣4,3),点Q的纵坐标为﹣2.(1)求反比例函数与一次函数的表达式;(2)求△POQ的面积.24.(10分)我市的花果山景区大圣湖畔屹立着一座古塔——阿育王塔,是苏北地区现存最高和最古老的宝塔.小明与小亮要测量阿育王塔的高度,如图所示,小明在点A处测得阿育王塔最高点C的仰角∠CAE=45°,再沿正对阿育王塔方向前进至B处测得最高点C的仰角∠CBE=53°,AB=10m;小亮在点G处竖立标杆FG,小亮的所在位置点D、标杆顶F、最高点C在一条直线上,FG=1.5m,GD=2m.(1)求阿育王塔的高度CE;(2)求小亮与阿育王塔之间的距离ED.(注:结果精确到0.01m,参考数据:sin53°≈0.799,cos53°≈0.602,tan53°≈1.327)25.(10分)如图,四边形ABCD为平行四边形,延长AD到点E,使DE=AD,且BE⊥DC.(1)求证:四边形DBCE为菱形;(2)若△DBC是边长为2的等边三角形,点P、M、N分别在线段BE、BC、CE上运动,求PM+PN的最小值.26.(12分)已知二次函数y=x2+(m﹣2)x+m﹣4,其中m>2.(1)当该函数的图象经过原点O(0,0),求此时函数图象的顶点A的坐标;(2)求证:二次函数y=x2+(m﹣2)x+m﹣4的顶点在第三象限;(3)如图,在(1)的条件下,若平移该二次函数的图象,使其顶点在直线y=﹣x﹣2上运动,平移后所得函数的图象与y轴的负半轴的交点为B,求△AOB面积的最大值.27.(14分)【问题情境】在一次数学兴趣小组活动中,小昕同学将一大一小两个三角板按照如图1所示的方式摆放.其中∠ACB=∠DEB=90°,∠B=30°,BE=AC=3.【问题探究】小昕同学将三角板DEB绕点B按顺时针方向旋转.(1)如图2,当点E落在边AB上时,延长DE交BC于点F,求BF的长.(2)若点C、E、D在同一条直线上,求点D到直线BC的距离.(3)连接DC,取DC的中点G,三角板DEB由初始位置(图1),旋转到点C、B、D 首次在同一条直线上(如图3),求点G所经过的路径长.(4)如图4,G为DC的中点,则在旋转过程中,点G到直线AB的距离的最大值是.2022年江苏省连云港市中考数学试卷参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(3分)﹣3的倒数是()A.﹣3B.3C.−13D.13【解答】解:﹣3的倒数是−1 3.故选:C.2.(3分)下列图案中,是轴对称图形的是()A.B.C.D.【解答】解:A.是轴对称图形,故此选项符合题意;B.不是轴对称图形,故此选项不符合题意;C.不是轴对称图形,故此选项不符合题意;D.不是轴对称图形,故此选项不符合题意;故选:A.3.(3分)2021年12月9日,“天宫课堂”正式开课,我国航天员在中国空间站首次进行太空授课,本次授课结束时,网络在线观看人数累计超过14600000人次.把“14600000”用科学记数法表示为()A.0.146×108B.1.46×107C.14.6×106D.146×105【解答】解:14600000=1.46×107.故选:B.4.(3分)在体育测试中,7名女生仰卧起坐的成绩如下(次/分钟):38,42,42,45,43,45,45,则这组数据的众数是()A.38B.42C.43D.45【解答】解:∵45出现了3次,出现的次数最多, ∴这组数据的众数为45; 故选:D .5.(3分)函数y =√x −1中自变量x 的取值范围是( ) A .x ≥1B .x ≥0C .x ≤0D .x ≤1【解答】解:∵x ﹣1≥0, ∴x ≥1. 故选:A .6.(3分)△ABC 的三边长分别为2,3,4,另有一个与它相似的三角形DEF ,其最长边为12,则△DEF 的周长是( ) A .54B .36C .27D .21【解答】解:方法一:设2对应的边是x ,3对应的边是y , ∵△ABC ∽△DEF , ∴2x =3y=412,∴x =6,y =9, ∴△DEF 的周长是27; 方式二:∵△ABC ∽△DEF , ∴C △ABC C △DEF =412,∴2+3+4C △DEF=13,∴C △DEF =27; 故选:C .7.(3分)如图,有一个半径为2的圆形时钟,其中每个刻度间的弧长均相等,过9点和11点的位置作一条线段,则钟面中阴影部分的面积为( )A .23π−√32B .23π−√3C .43π﹣2√3D .43π−√3【解答】解:连接OA 、OB ,过点O 作OC ⊥AB ,由题意可知:∠AOB =60°, ∵OA =OB ,∴△AOB 为等边三角形, ∴AB =AO =BO =2∴S 扇形AOB =60π×22360=23π,∵OC ⊥AB ,∴∠OCA =90°,AC =1, ∴OC =√3,∴S △AOB =12×2×√3=√3, ∴阴影部分的面积为:23π−√3;故选:B .8.(3分)如图,将矩形ABCD 沿着GE 、EC 、GF 翻折,使得点A 、B 、D 恰好都落在点O 处,且点G 、O 、C 在同一条直线上,同时点E 、O 、F 在另一条直线上.小炜同学得出以下结论:①GF ∥EC ;②AB =4√35AD ;③GE =√6DF ;④OC =2√2OF ;⑤△COF ∽△CEG .其中正确的是( )A .①②③B .①③④C .①④⑤D .②③④【解答】解:由折叠性质可得:DG =OG =AG ,AE =OE =BE ,OC =BC , ∠DGF =∠FGO ,∠AGE =∠OGE ,∠AEG =∠OEG ,∠OEC =∠BEC , ∴∠FGE =∠FGO +∠OGE =90°,∠GEC =∠OEG +∠OEC =90°, ∴∠FGE +∠GEC =180°,∴GF∥CE,故①正确;设AD=2a,AB=2b,则DG=OG=AG=a,AE=OE=BE=b,∴CG=OG+OC=3a,在Rt△CGE中,CG2=GE2+CE2,(3a)2=a2+b2+b2+(2a)2,解得:b=√2a,∴AB=√2AD,故②错误;在Rt△COF中,设OF=DF=x,则CF=2b﹣x=2√2a﹣x,∴x2+(2a)2=(2√2a﹣x)2,解得:x=√22a,∴√6DF=√6×√22a=√3a,2√2OF=2√2×√22a=2a,在Rt△AGE中,GE=√AG2+AE2=√3a,∴GE=√6DF,OC=2√2OF,故③④正确;无法证明∠FCO=∠GCE,∴无法判断△COF∽△CEG,故⑤错误;综上,正确的是①③④,故选:B.二、填空题(本大题共8小题,每小题3分,共24分.不需要写出解答过程,请把答案直接填写在答题卡相应位置上)9.(3分)计算:2a+3a=5a.【解答】解:2a+3a=5a,故答案为:5a.10.(3分)已知∠A的补角为60°,则∠A=120°.【解答】解:∵∠A的补角为60°,∴∠A=180°﹣60°=120°,故答案为:120.11.(3分)写出一个在1到3之间的无理数:√2(符合条件即可).【解答】解:1到3之间的无理数如√2,√3,√5.答案不唯一.12.(3分)若关于x的一元二次方程mx2+nx﹣1=0(m≠0)的一个解是x=1,则m+n的值是1.【解答】解:把x=1代入方程mx2+nx﹣1=0得m+n﹣1=0,解得m+n=1.故答案为:1.13.(3分)如图,AB是⊙O的直径,AC是⊙O的切线,A为切点,连接BC,与⊙O交于点D,连接OD.若∠AOD=82°,则∠C=49°.【解答】解:∵AC是⊙O的切线,∴∠BAC=90°,∵∠AOD=82°,∴∠ABD=41°,∴∠C=90°﹣∠ABD=90°﹣41°=49°,故答案为:49.14.(3分)如图,在6×6正方形网格中,△ABC的顶点A、B、C都在网格线上,且都是小正方形边的中点,则sin A=45.【解答】解:设每个小正方形的边长为a,作CD⊥AB于点D,由图可得:CD=4a,AD=3a,∴AC =√AD 2+CD 2=√(3a)2+(4a)2=5a ,∴sin ∠CAB =CD AC =4a 5a =45,故答案为:45.15.(3分)如图,一位篮球运动员投篮,球沿抛物线y =﹣0.2x 2+x +2.25运行,然后准确落入篮筐内,已知篮筐的中心离地面的高度为3.05m ,则他距篮筐中心的水平距离OH 是 4 m .【解答】解:当y =3.05时,3.05=﹣0.2x 2+x +2.25,x 2﹣5x +4=0,(x ﹣1)(x ﹣4)=0,解得:x 1=1,x 2=4,故他距篮筐中心的水平距离OH 是4m .故答案为:4.16.(3分)如图,在▱ABCD 中,∠ABC =150°.利用尺规在BC 、BA 上分别截取BE 、BF ,使BE =BF ;分别以E 、F 为圆心,大于12EF 的长为半径作弧,两弧在∠CBA 内交于点G ;作射线BG 交DC 于点H .若AD =√3+1,则BH 的长为 √2 .【解答】解:在▱ABCD 中,∠ABC =150°,∴∠C =30°,AB ∥CD ,BC =AD =√3+1,由作图知,BH 平分∠ABC ,∴∠CBH =∠ABH ,∵AB ∥CD ,∴∠CHB =∠ABH ,∴∠CHB =∠CBF ,∴CH =BC =√3+1,过B 作BG ⊥CD 于G ,∴∠CGB =90°,∴BG =12BC =√3+12,CG =√32BC =3+√32, ∴HG =CH ﹣CG =√3−12,∴BH =√BG 2+HG 2=(√3+12)2+(√3−12)2=√2,故答案为:√2.三、解答题(本大题共11小题,共102分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.(6分)计算(﹣10)×(−12)−√16+20220.【解答】解:原式=5﹣4+1=2.18.(6分)解不等式2x ﹣1>3x−12,并把它的解集在数轴上表示出来. 【解答】解:去分母,得:4x ﹣2>3x ﹣1,移项,得:4x ﹣3x >﹣1+2,合并同类项,得:x >1,将不等式解集表示在数轴上如下:.19.(6分)化简1x−1+x 2−3xx 2−1.【解答】解:原式=x+1(x+1)(x−1)+x 2−3x (x+1)(x−1)=x 2−2x+1(x+1)(x−1)=(x−1)2(x+1)(x−1) =x−1x+1.20.(8分)为落实国家“双减”政策,某校为学生开展了课后服务,其中在体育类活动中开设了四种运动项目:A 乒乓球,B 排球,C 篮球,D 跳绳.为了解学生最喜欢哪一种运动项目,随机抽取部分学生进行调查(每位学生仅选一种),并将调查结果制成如下尚不完整的统计图表.问卷情况统计表运动项目人数 A 乒乓球m B 排球10 C 篮球80 D 跳绳 70 (1)本次调查的样本容量是 200 ,统计表中m = 40 ;(2)在扇形统计图中,“B 排球”对应的圆心角的度数是 18 °;(3)若该校共有2000名学生,请你估计该校最喜欢“A 乒乓球”的学生人数.【解答】解:(1)本次调查的样本容量是:80÷40%=200(人);A 乒乓球人数:200﹣70﹣80﹣10=40(人);故答案为:200,40;(2)“B 排球”对应的圆心角的度数:360°×120=18°; 故答案为:18;(3)该校最喜欢“A 乒乓球”的学生人数:2000×40200=400(人), 答:该校最喜欢“A 乒乓球”的学生人数为400人.21.(10分)“石头、剪子、布”是一个广为流传的游戏,规则是:甲、乙两人都做出“石头”“剪子”“布”3种手势中的1种,其中“石头”赢“剪子”,“剪子”赢“布”,“布”赢“石头”,手势相同不分输赢.假设甲、乙两人每次都随意并且同时做出3种手势中的1种.(1)甲每次做出“石头”手势的概率为 13 ;(2)用画树状图或列表的方法,求乙不输的概率.【解答】解:(1)甲每次做出“石头”手势的概率为13; 故答案为:13;(2)画树状图得:共有9种等可能的情况数,其中乙不输的有6种,则乙不输的概率是69=23. 22.(10分)我国古代数学名著《九章算术》中有这样一个问题:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”其大意是:今有几个人共同出钱购买一件物品.每人出8钱,剩余3钱;每人出7钱,还缺4钱.问人数、物品价格各是多少?请你求出以上问题中的人数和物品价格.【解答】解:设有x 个人,物品的价格为y 钱,由题意得:{y =8x −3y =7x +4, 解得:{x =7y =53, 答:有7个人,物品的价格为53钱.23.(10分)如图,在平面直角坐标系xOy 中,一次函数y =ax +b (a ≠0)的图象与反比例函数y =k x (k ≠0)的图象交于P 、Q 两点.点P (﹣4,3),点Q 的纵坐标为﹣2.(1)求反比例函数与一次函数的表达式;(2)求△POQ 的面积.【解答】解:(1)将点P (﹣4,3)代入反比例函数y =k x 中,解得:k =﹣4×3=﹣12, ∴反比例函数的表达式为:y =−12x ;当y =﹣2时,﹣2=−12x, ∴x =6,∴Q (6,﹣2),将点P (﹣4,3)和Q (6,﹣2)代入y =ax +b 中得:{−4a +b =36a +b =−2,解得:{a=−12 b=1,∴一次函数的表达式为:y=−12x+1;(2)如图,y=−12x+1,当x=0时,y=1,∴OM=1,∴S△POQ=S△POM+S△OMQ=12×1×4+12×1×6=2+3=5.24.(10分)我市的花果山景区大圣湖畔屹立着一座古塔——阿育王塔,是苏北地区现存最高和最古老的宝塔.小明与小亮要测量阿育王塔的高度,如图所示,小明在点A处测得阿育王塔最高点C的仰角∠CAE=45°,再沿正对阿育王塔方向前进至B处测得最高点C的仰角∠CBE=53°,AB=10m;小亮在点G处竖立标杆FG,小亮的所在位置点D、标杆顶F、最高点C在一条直线上,FG=1.5m,GD=2m.(1)求阿育王塔的高度CE;(2)求小亮与阿育王塔之间的距离ED.(注:结果精确到0.01m,参考数据:sin53°≈0.799,cos53°≈0.602,tan53°≈1.327)【解答】解:(1)在Rt △CAE 中,∵∠CAE =45°,∴CE =AE ,∵AB =10m ,∴BE =AE ﹣10=CE ﹣10,在Rt △CEB 中,tan ∠CBE =tan53°=CE BE =CE CE−10, ∴1.327≈CE CE−10, 解得CE ≈40.58(m );答:阿育王塔的高度CE 约为40.58m ;(2)由题意知:∠CED =90°=∠FGD ,∠FDG =∠CDE ,∴△FGD ∽△CED ,∴FG CE =GD ED ,即1.540.58=2ED ,解得ED ≈54.11(m ),答:小亮与阿育王塔之间的距离ED 是54.11m .25.(10分)如图,四边形ABCD 为平行四边形,延长AD 到点E ,使DE =AD ,且BE ⊥DC .(1)求证:四边形DBCE 为菱形;(2)若△DBC 是边长为2的等边三角形,点P 、M 、N 分别在线段BE 、BC 、CE 上运动,求PM +PN 的最小值.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵DE=AD,∴DE=BC,∵E在AD的延长线上,∴DE∥BC,∴四边形DBCE是平行四边形,∵BE⊥DC,∴四边形DBCE是菱形;(2)解:作N关于BE的对称点N',过D作DH⊥BC于H,如图:由菱形的对称性知,点N关于BE的对称点N'在DE上,∴PM+PN=PM+PN',∴当P、M、N'共线时,PM+PN'=MN'=PM+PN,∵DE∥BC,∴MN'的最小值为平行线间的距离DH的长,即PM+PN的最小值为DH的长,在Rt△DBH中,∠DBC=60°,DB=2,∴DH =DB •sin ∠DBC =2×√32=√3,∴PM +PN 的最小值为√3.26.(12分)已知二次函数y =x 2+(m ﹣2)x +m ﹣4,其中m >2.(1)当该函数的图象经过原点O (0,0),求此时函数图象的顶点A 的坐标;(2)求证:二次函数y =x 2+(m ﹣2)x +m ﹣4的顶点在第三象限;(3)如图,在(1)的条件下,若平移该二次函数的图象,使其顶点在直线y =﹣x ﹣2上运动,平移后所得函数的图象与y 轴的负半轴的交点为B ,求△AOB 面积的最大值.【解答】(1)解:把O (0,0)代入y =x 2+(m ﹣2)x +m ﹣4得:m ﹣4=0,解得m =4,∴y =x 2+2x =(x +1)2﹣1,∴函数图象的顶点A 的坐标为(﹣1,﹣1);(2)证明:由抛物线顶点坐标公式得y =x 2+(m ﹣2)x +m ﹣4的顶点为(2−m 2,−m 2+8m−204),∵m >2,∴2﹣m <0,∴2−m 2<0, ∵−m 2+8m−204=−14(m ﹣4)2﹣1≤﹣1<0, ∴二次函数y =x 2+(m ﹣2)x +m ﹣4的顶点在第三象限;(3)解:设平移后图象对应的二次函数表达式为y =x 2+bx +c ,其顶点为(−b 2,4c−b 24), 当x =0时,B (0,c ),将(−b2,4c−b24)代入y=﹣x﹣2得:4c−b24=b2−2,∴c=b2+2b−84,∵B(0,c)在y轴的负半轴,∴c<0,∴OB=﹣c=−b2+2b−84,过点A作AH⊥OB于H,如图:∵A(﹣1,﹣1),∴AH=1,在△AOB中,S△AOB=12OB•AH=12×(−b2+2b−84)×1=−18b2−14b+1=−18(b+1)2+98,∵−18<0,∴当b=﹣1时,此时c<0,S△AOB取最大值,最大值为98,答:△AOB面积的最大值是9 8.27.(14分)【问题情境】在一次数学兴趣小组活动中,小昕同学将一大一小两个三角板按照如图1所示的方式摆放.其中∠ACB=∠DEB=90°,∠B=30°,BE=AC=3.【问题探究】小昕同学将三角板DEB绕点B按顺时针方向旋转.(1)如图2,当点E落在边AB上时,延长DE交BC于点F,求BF的长.(2)若点C、E、D在同一条直线上,求点D到直线BC的距离.(3)连接DC,取DC的中点G,三角板DEB由初始位置(图1),旋转到点C、B、D 首次在同一条直线上(如图3),求点G所经过的路径长.(4)如图4,G为DC的中点,则在旋转过程中,点G到直线AB的距离的最大值是7√34.【解答】解:(1)由题意得,∠BEF=∠BED=90°,在Rt△BEF中,∠ABC=30°,BE=3,∴BF=BEcos∠ABC=3cos30°=2√3;(2)①当点E在BC上方时,如图1,过点D作DH⊥BC于H,在Rt△ABC中,AC=3,∴tan∠ABC=AC BC,∴BC=ACtan∠ABC=3tan30°=3√3,在Rt△BED中,∠EBD=∠ABC=30°,BE=3,∴DE=BE•tan∠DBE=√3,∵S△BCD=12CD•BE=12BC•DH,∴DH =CD⋅BE BC=√6+1, ②当点E 在BC 下方时,如图2,在Rt △BCE 中,BE =3,BC =3√3,根据勾股定理得,CE =√BC 2−BE 2=3√2,∴CD =CE ﹣DE =3√2−√3,过点D 作DM ⊥BC 于M ,∵S △BDC =12BC •DM =12CD •BE ,∴DM =CD⋅BE BC =√6−1, 即点D 到直线BC 的距离为√6±1;(3)如图3﹣1,连接CD ,取CD 的中点G ,取BC 的中点O ,连接GO ,则OG ∥AB ,∴∠COG =∠B =30°,∴∠BOE =150°,∵点G 为CD 的中点,点O 为BC 的中点,∴GO =12BD =√3,∴点G 是以点O 为圆心,√3为半径的圆上,如图3﹣2,∴三角板DEB 由初始位置(图1),旋转到点C 、B 、D 首次在同一条直线上时,点G 所经过的轨迹为150°所对的圆弧,∴点G 所经过的路径长为150π⋅√3180=5√36π;(4)如图4,过点O 作OK ⊥AB 于K ,∵点O 为BC 的中点,BC =3√3, ∴OB =3√32, ∴OK =OB •sin30°=3√34,由(3)知,点G 是以点O 为圆心,√3为半径的圆上, ∴点G 到直线AB 的距离的最大值是√3+3√34=7√34, 故答案为:7√34.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

港云连的丽美连云港市2016年高中段学校招生统一文化考试数学试题参考公式:抛物线()02≠++=a c bx ax y 的顶点坐标为 ⎝⎛-ab2,⎪⎪⎭⎫-a b ac 442 一、选择题(本大题共有8小题,每小题3分,共24分。

在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上。

) 1.有理数1-,2-,0,3中,最小的数是A .1-B .2-C .0D .32.据市统计局调查数据显示,我市目前常住人口约为4470000人,数据“4470000”用科学记数法可表示为A .61047.4⨯B .71047.4⨯C .710447.0⨯D .410447⨯3.右图是一个正方体的平面展开图,把展开图折叠成正方体后,“美”字一面相对面是的字是A .丽B .连C .云D .港4.计算:=-x x 35A .x 2B .22xC .x 2-D .2-5.若分式21+-x x 的值为0,则 (第图2图1S 6S 5S 4S 3S 2S 1A21DCBA 3题图)A .2-=xB .0=xC .1=xD .1=x 或2-6.姜老师给出一个函数表达式,甲、乙、丙三位同学分别正确指出了这个函数的一个性质。

甲:函数图像经过第一象限;乙:函数图像经过第三象限;丙:在每一个象限内,y 值随x 值的增大而减小。

根据他们的描述,姜老师给出的这个函数表达式可能是A .x y 3=B .x y 3=C .xy 1-= D .2x y =7.如图1,分别以直角三角形三边为边向外作等边三角形,面积分别为1S 、2S 、3S ;如图2,分别以直角三角形三个顶点为圆心,三边长为半径向外作圆心角相等的扇形,面积分别为4S 、5S 、6S 。

其中161=S ,452=S ,115=S ,146=S ,则=+43S SA .86B .64C .54D .488.如图,在网格中(每个小正方形的边长均为1个单位)选取9个格点(格线的交点称为格点)。

如果以A 为圆心,r 为半径画圆,选取的格点中除点A 外恰好有3个在圆内,则r 的取值范围为A .1722<<rB .2317<<rC .517<<rD .295<<rA 11A 7A 6A 5A 8A 9A 10A 12A 4A 3A 2A 1图1FEDCBANM HG图2FEDCBA DCBAP(第7题图) (第8题图) (第12题图)二、填空题(本大题共有8小题,每小题3分,共24分。

不需要写出解答过程,请把答案直接填写在答题卡相应位置.......上。

) 9.化简:=38 ▲ .10.分解因式:=-362x ▲ .11.在新年晚会的投飞镖游戏环节中,7名同学的投掷成绩(单位:环)分别是:7,9,9,4,9,8,8,则这组数据的众数是 ▲ .12.如图,直线AB ∥CD ,BC 平分ABD ∠,若︒=∠541,则=∠2 ▲ .13.已知关于x 的方程0122=-++a x x 的一个根是0,则=a ▲ .14.如图,正十二边形1221A A A Λ,连接73A A ,107A A ,则=∠1073A A A ▲ .(第14题图) (第15题图) (第16题图)15.如图1,将正方形纸片ABCD 对折,使AB 与CD 重合,折痕为EF 。

如图2,展开后再折叠一次,使点C 与点E 重合,折痕为GH ,点B 的对应点为点M ,EM 交AB 于N 。

若2=AD ,则=MN ▲ .16.如图,⊙P 的半径为5,A 、B 是圆上任意两点,且6=AB ,以AB 为边作正方形ABCD (点D 、P 在直线AB 两侧)。

若AB 边绕点P 旋转一周,则CD 边扫过的面积为 ▲ .三、解答题(本大题共11小题,共102分。

请在答题卡上指定区域内.........作答。

解答时写出必要的文字说明、证明过程或演算步骤。

) 17.(本题满分6分)计算()()2532102016+---.18.(本题满分6分)解方程0112=+-xx .3210-119.(本题满分6分)解不等式131-<+x x,并将解集在数轴上表示出来.20.(本题满分8分)某自行车公司调查阳光中学学生对其产品的了解情况,随机抽取部分学生进行问卷,结果分“非常了解”、“比较了解”、“一般了解”、“不了解”四种类型,分别记为A 、B 、C 、D 。

根据调查结果绘制了如下尚不完整的统计图。

(1)本次问卷共随机调查了 ▲ 名学生,扇形统计图中=m ▲ . (2)请根据数据信息补全条形统计图.F ED CBA(3)若该校有1000名学生,估计选择“非常了解”、“比较了解”共约有多少人?21.(本题满分10分)甲、乙两校分别有一男一女共4名教师报名到农村中学支教。

(1)若从甲、乙两校报名的教师中分别随机选1名,则所选的2名教师性别相同的概率是 ▲ .(2)若从报名的4名教师中随机选2名,用列表或画树状图的方法求出这2名教师来自同一所学校的概率。

22.(本题满分10分)四边形ABCD 中,BC AD =,DF BE =,BD AE ⊥,BD CF ⊥,垂足分别为E 、F 。

(1)求证:CBF ADE ∆∆≌;(2)若AC 与BD 相交于点O ,求证:CO AO =.23.(本题满分10分)某数学兴趣小组研究我国古代《算法统宗》里这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空。

诗中后两句的意思是:如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间房。

(1)求该店有客房多少间?房客多少人?(2)假设店主李三公将客房进行改造后,房间数大大增加。

每间客房收费20钱,且每间客房最多入住4人,一次性定客房18间以上(含18间),房费按8折优惠。

若诗中“众客”再次一起入住,他们如何订房更合算?24.(本题满分10分)环保局对某企业排污情况进行检测,结果显示:所排污水中硫化物的浓度超标,即硫化物的浓度超过最高允许的L0.1。

环保局要求该企业立即整改,mg/在15天以内(含15天)排污达标。

整改过程中,所排污水中硫化物的浓度()Ly/与时mg间x(天)的变化规律如图所示,其中线段AB表示前3天的变化规律,从第3天起,所排污水中硫化物的浓度y与时间x成反比例关系。

(1)求整改过程中硫化物的浓度y与时间x的函数表达式;(2)该企业所排污水中硫化物的浓度,能否在15天以内不超过最高允许的L0.1?mg/为什么?CBA25.(本题满分10分)如图,在ABC ∆中,︒=∠150C ,4=AC ,81tan =B 。

(1)求BC 的长;(2)利用此图形求︒15tan 的值(精确到1.0,参考数据:4.12=,7.13=,2.25=)26.(本题满分12分)如图,在平面直角坐标系xOy 中,抛物线bx ax y +=2经过两点(1-A ,)1,(2B ,)2。

过点B 作x BC ∥轴,交抛物线于点C ,交y 轴于点D 。

(1)求此抛物线对应的函数表达式及点C 的坐标;(2)若抛物线上存在点M ,使得BCM ∆的面积为27,求出点M 的坐标;(3)连接OA 、OB 、OC 、AC ,在坐标平面....内,求使得AOC ∆与OBN ∆相似(边OA 与边OB 对应)的点N 的坐标。

N B O A BN27.(本题满分14分)我们知道:光反射时,反射光线、入射光线和法线在同一平面内,反射光线、入射光线分别在法线两侧,反射角等于入射角。

如右图,AO 为入射光线,入射点为O ,ON 为法线(过入射点O 且垂直于镜面的直线),OB 为反射光线,此时反射角BON ∠等于入射角AON ∠。

问题思考:(1)如图1,一束光线从点A 处入射到平面镜上,反射后恰好过点B ,请在图中确定平面镜上的入射点P ,保留作图痕迹,并简要说明理由;(2)如图2,两平面镜OM 、ON 相交于点O ,且ON OM ⊥,一束光线从点A 出发,经过平面镜反射后,恰好经过点B 。

小昕说,光线可以只经过平面镜OM 反射后过点B ,也可以只经过平面镜ON 反射后过点B 。

除了小昕的两种做法外,你还有其它做法吗?如果有,请在图中画出光线的行进路线,保留作图痕迹,并简要说明理由;B A A SNM O N(图1)(图2) 问题拓展:(3)如图3,两平面镜OM 、ON 相交于点O ,且︒=∠30MON ,一束光线从点S 出发,且平行于平面镜OM ,第一次在点A 处反射,经过若干次反射后又回到了点S ,如果SA 和AO 的长均为m 1,求这束光线经过的路程;(4)如图4,两平面镜OM 、ON 相交于点O ,且︒=∠15MON ,一束光线从点P 出发,经过若干次反射后,最后反射出去时,光线平行于平面镜OM 。

设光线出发时与射线PM的夹角为θ()︒<<︒1800θ,请直接写出满足条件的所有θ的度数(注:OM 、ON 足够长)(图3)(图4)。

相关文档
最新文档