多面体外接球半径常见的求法
例谈多面体外接球半径的常见求法
例谈多面体外接球半径的常见求法湖北省荆州市沙市第五中学张胜言求棱锥、棱柱的外接球半径、表面积、体积的问题在近几年各地的高考模拟题和全国高考试题中经常出现,这是高考的重点,也是学生学习的难点.困难表现在两个方面:一是找不到外接球球心的位置,二是如何采用适当的方法求外接球的半径.下面例谈几类多面体外接球半径的常见求法.方法一:首先构造简单的几何体,如长方体、正方体、三棱柱等,易作出这些简单几何体的外接球,从而求解.定义:若一个多面体的各个顶点都在一个球的球面上,则称这个多面体是这个球的内接多面体,这个球是这个多面体的外接球.一、长方体、正方体外接球的半径1.长方体:因为长方体外接球半径是体对角线长的一半,设长方体长、宽、高分别为c b a ,,,外接球半径为R ,则2222c b a R ++=(如图1).2.正方体:设正方体棱长为a ,外接球半径为R ,则a R 23=(如图2).二、三棱柱外接球半径1.底面是直角三角形的直三棱柱:把三棱柱补成长方体,易求(如图3).设底面三角形两直角边长分别为b a ,,直三棱柱高为c ,则外接球半径为R ,则2222c b a R ++=.2.正三棱柱:(如图4),正三棱柱球心O 在两底面中心21O O ,的中点处,设底面边长为a ,高为h ,外接球半径为R ,构造11OO A Rt ∆,则,,R OA hOO ==112a a D A O A 33233232111=⨯==,22233⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=h a R 三、三棱锥外接球半径c bO a 图1O a图2c b O aACB A 1C 1B 1图3AC BO B 1DC 1A 1O 1O 2a h R 图4AB DC图51.三条棱互相垂直的三棱锥:把它补成以这三条互相垂直的棱为长、宽、高的长方体,易求.(如图5)2.三组相对棱分别相等的三棱锥:(如图6),把它补成以这三组棱分别为面对角线的长方体,设c BD AC b AD BC a CD AB ======,,,设长方体长、宽、高分别为z y x ,,,则⎪⎩⎪⎨⎧=+=+=+222222222c x z b z y a y x ,2222222c b a z y x ++=++,()422222222c b a z y x R ++=++=.3.正四面体:设棱长为a ,外接球半径为R ,由2易知a R 46=.例题1:如图7,正方形ABCD 的边长为4,点E ,F 分别是BC ,CD 的中点,沿AE ,EF ,FA 折成一个三棱锥AEF B -(使点D C B ,,重合于点B ),则三棱锥AEF B -的外接球半径为.【解】在正方形ABCD 中,︒=∠=∠=∠90EBA FCE ADF ,所以折成三棱锥后,可将其转化为以)(,,DF BF BE AB 为棱的长方体,62224222=++=∴R 练习1:已知四面体ABC P -的四个顶点都在球O 的球面上,若⊥PB 平面ABC ,AC AB ⊥,且1=AC ,2==AB PB ,则球O 的体积为.例题2:已知正三棱柱111C B A ABC -的体积为2,32==AB V ,则该三棱柱外接球的表面积为.【解】如图8,设三棱柱的高为h ,3243S 2111=⨯=∆C B A ,2,332,=∴=∴=h h Sh V 11=∴OO ,3322233232111=⨯⨯==D A O A ,3713322221211=+⎪⎪⎭⎫ ⎝⎛=+=∴OO O A R ,ππ32842==∴R S 练习2:已知三棱柱111C B A ABC -侧棱垂直于底面,各顶点都在同一球面上,若该棱柱体积Cc b O a D A B x y z图6AB FE图7(2)ACB 1B O DC 1A 1O 1O 2R 图8︒=∠===602AB ,1,62BAC AC V ,,则该球表面积为.方法二:由定义法求多面体外接球半径.这类问题关键是找出球心O 位置:一般地,先在一个面上找到一点1O 到其余各点距离相等,球心O 就在经过点1O 并垂直于该平面的直线l 上,构造出两个直角三角形,利用勾股定理解方程组求出R .例题3:已知三棱锥ABC S -所有顶点都在球O 的球面上,且⊥SC 平面ABC ,若1===AC AB SC ,︒=∠120BAC ,则球O 的表面积为.【解】如图9,作菱形ABCD ,则︒=∠=∠6021BAC DAC 易得ACD∆为正三角形D ∴为ABC ∆外接圆的圆心,⊥∴OD 平面ABC ,又⊥SC 平面ABC ,SC OD ∥∴,过点O 作SC OE ⊥,垂足为E ,R OS OC ==,设x CE OD ==,则x SE -=1,在OSE Rt OCD Rt ∆∆,中有:()⎩⎨⎧=-+=+222222111R x R x ,解得⎪⎪⎩⎪⎪⎨⎧==2521R x 所以球的表面积为πππ5254422=⎪⎪⎭⎫ ⎝⎛⨯==R S .练习3:若三棱锥ABC P -的高和底面边长都等于6,则其外接球的表面积为()A.64π B.32π C.16π D.8π方法三:对于一些特殊的图形,利用其特有的性质找到外接球球心,直接求解.例题4:在三棱锥ABC S -中2==BC AB ,2==SA SC ,6=SB ,若C B A S ,,,在同一球面上,则该球的表面积是()A.68 B.π6C π24 D.π6【解】如图10,2==BC AB ,2==SA SC ,6=SB ,在SAB ∆中,由于222SB AB SA =+,故︒=∠90SAB ,同理︒=∠90SCB ,故SB 的中点是三棱锥ABC S -外接球的球心O ,从而半径为26=R ,所以该球的表面积为ππ62642=⎪⎪⎭⎫ ⎝⎛=S ,选D.练习4:已知三棱锥ABC -S 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面⊥SCA 平面SCB ,BC SB AC SA ==,,三棱锥ABC -S 的体积为9,则球O 的表面积为.图9SCRRE BAO D图10AOS CB A FE D CB 图7(1)(附练习题答案:1、29π=V ;2、π36=S ;3、选A ;4、π36)。
多面体外接球半径常见的5种求法
多面体外接球半径常见的5种求法公式法例1 一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为98,底面周长为3,则这个球的体积为 . 解 设正六棱柱的底面边长为x ,高为h,则有263,1,296,8x x x h h =⎧⎧=⎪⎪∴⎨⎨=⎪⎪=⎩⎩ ∴正六棱柱的底面圆的半径12r =,球心到底面的距离2d =.∴外接球的半径1R ==.43V π∴=球. 小结 本题是运用公式222R r d =+求球的半径的,该公式是求球的半径的常用公式. 多面体几何性质法例2 已知各顶点都在同一个球面上的正四棱柱的高为4,体积为16,则这个球的表面积是A.16πB.20πC.24πD.32π解 设正四棱柱的底面边长为x ,外接球的半径为R ,则有2416x =,解得2x =.∴2R R ==∴= .∴这个球的表面积是2424R ππ=.选C.小结 本题是运用“正四棱柱的体对角线的长等于其外接球的直径”这一性质来求解的.补形法例3 若三棱锥的三个侧面两两垂直,则其外接球的表面积是 . 解 据题意可知,该三棱锥的三条侧棱两两垂直,∴把这个三棱锥可以补成一个棱长为.设其外接球的半径为R ,则有()222229R =++=.∴294R =. 故其外接球的表面积249S R ππ==.小结 一般地,若一个三棱锥的三条侧棱两两垂直,且其长度分别为a b c 、、,则就可以将这个三棱锥补成一个长方体,于是长方体的体对角线的长就是该三棱锥的外接球的直径.设其外接球的半径为R,则有2R =.练习1 (2003,四个顶点在同一球面上,则此球的表面积为( )3π B. 4πC. D. 6π2(2006年山东高考题)在等腰梯形ABCD 中,AB=2DC=2,0DAB=60∠,E 为AB 的中点,将ADE ∆与BEC ∆分布沿ED 、EC 向上折起,使A B 、重合于点P ,则三棱锥P-DCE 的外接球的体积为( ).A. 27B. 2C. 8D. 243 (2008年浙江高考题)已知球O 的面上四点A 、B 、C 、D ,DA ABC ⊥平面,AB BC ⊥,O 的体积等于 .4(2008年安徽高考题)已知点A 、B 、C 、D 在同一个球面上,B BCD A ⊥平面,BC DC ⊥,若6,AB =,则B 、C 两点间的球面距离是 .寻求轴截面圆半径法例4 正四棱锥S ABCD -,点S A B C D 、、、、都在同一球面上,则此球的体积为 .解 设正四棱锥的底面中心为1O ,外接球的球心为O ,如图1所示.∴由球的截面的性质,可得1OO ABCD ⊥平面.又1SO ABCD ⊥平面,∴球心O 必在1SO 所在的直线上. ∴ASC ∆的外接圆就是外接球的一个轴截面圆,外接圆的半径就是外接球的半径.在ASC ∆中,由2SA SC AC ===,得222SA SC AC +=.∴ASC AC ∆∆是以为斜边的Rt . ∴12AC =是外接圆的半径,也是外接球的半径.故43V π=球. 小结 根据题意,我们可以选择最佳角度找出含有正棱锥特征元素的外接球的一个轴截CDAB SO 1图3面圆,于是该圆的半径就是所求的外接球的半径.本题提供的这种思路是探求正棱锥外接球半径的通解通法,该方法的实质就是通过寻找外接球的一个轴截面圆,从而把立体几何问题转化为平面几何问题来研究.这种等价转化的数学思想方法值得我们学习.确定球心位置法例5 在矩形ABCD 中,4,3AB BC ==,沿AC 将矩形ABCD 折成一个直二面角B ACD --,则四面体ABCD 的外接球的体积为A.12512πB.1259πC.1256πD.1253π 解 设矩形对角线的交点为O ,则由矩形对角线互相平分,可知OA OB OC OD ===.∴点O 到四面体的四个顶点A B C D 、、、的距离相等,即点O 为四面体的外接球的球心,如图2所示.∴外接球的半径52R OA ==.故3412536V R ππ==球.选C.外接球内切球问题1. (陕西理•6)一个正三棱锥的四个顶点都在半径为1的球面上,其中底面的三个顶点在该球的一个大圆上,则该正三棱锥的体积是( )A .433 B .33 C . 43 D .123答案 B2. 直三棱柱111ABC A B C -的各顶点都在同一球面上,若12AB AC AA ===,120BAC ∠=︒,则此球的表面积等于 。
数学复习:多面体外接球半径的求法
数学复习:多面体外接球半径的求法近年来,求多面体的外接球半径成为全国各地高考的热点问题,是考察学生空间想象能力、画图能力和分析问题能力的一类综合题型,难度中等偏上。
因此,这类问题也是学生失分的重灾区,主要存在以下难点:一不能选择恰当的角度认识多面体;二不能准确分析几何体的线面关系找到球心。
这两个困难让学生对此类问题无从下手,渐渐地对此类问题失去信心。
本文从“画法”到“算法”,简单归纳出几类多面体的外接球半径的典型求法,试图突破此类问题在高三复习中的教学难点。
1通过补形直接求半径若多面体的每个顶点都落在长方体(或直三棱柱)的顶点上,那么该多面体的外接球也是该长方体(或直三棱柱)的外接球。
直三棱柱的外接球球心是上下底面外心连线的中点。
已知直三棱柱111C B A ABC -,设其上下底面的外接圆半径为r,三棱柱的高为h,则其外接球半径222r h R +⎪⎭⎫ ⎝⎛=。
长方体的外接球球心是体对角线的中点。
设长方体的长宽高分别为c b a ,,,则其外接球半径2222c b a R ++=。
1.1墙角锥若在一个三棱锥中,共顶点的三条棱两两垂直,那么我们可以把它补形成一个长方体。
例1.三棱锥P-ABC 的三条侧棱两两垂直,三个侧面的面积分别是22、32、62,则该三棱锥的外接球的体积是A.23B.8236π6π分析:如图(1),由题可以把三棱锥看成是以P 为墙角的墙角锥,易得,,3,21===c b a π6262222=∴=++=∴V c b a R 1.2三对对棱分别相等的四面体若一个三棱锥的三对对棱分别相等,那么我们可以把这个三棱锥看成是由一个长方体的六个面对角线构成的。
例2,在三棱锥A BCD -中,2AB CD ==5AD BC AC BD ====,则三棱锥A BCD -外接球的半径为________。
分析:如图(2),易得2,1,1===c b a 262222=++=∴c b a R 1.3四个面都是直角三角形的三棱锥利用长方体的线面关系,可将四个面都是直角三角形的三棱锥放在长方体内。
内接球和外接球半径计算公式
内接球和外接球半径计算公式
内接球和外接球是几何学中的概念,它们分别是指一个多面体内部最大的(最小的)球和一个多面体外部最小的(最大的)球。
下面是内接球和外接球的半径计算公式。
(以下解释中,我们以正四面体为例)
内接球半径计算公式:
正四面体的内接球是四面体内部最大的球,它的半径可以通过正四面体的棱长计算得出。
设正四面体的棱长为a,则正四面体的内接球半径R为:
R = a / (2√3)
其中√3表示根号下3,也就是3的平方根。
该公式适用于所有正多面体内接球的半径计算。
外接球半径计算公式:
正四面体的外接球是四面体外部最小的球,它的半径可以通过正四面体的边长计算得出。
设正四面体的边长为a,则正四面体的外接球半径r为:
r = a / (2√6)
其中√6表示根号下6,也就是6的平方根。
该公式同样适用于所有正多面体外接球的半径计算。
需要注意的是,以上公式仅适用于正多面体,对于其他不规则多面体,内接球和外接球的半径计算需要用到其他方法。
多面体外接球问题方法总结
多面体外接球问题方法总结
求多面体的外接球的方法有两种:
1. 利用多面体的顶点坐标求解:
a. 首先求解多面体的质心坐标。
可以通过计算多面体的顶点坐标的平均值得到质心坐标。
b. 然后,求解多面体顶点到质心的距离,取最大距离作为外接球的半径。
c. 外接球的中心坐标为质心坐标,半径为最大距离。
2. 利用多面体的边长/面积求解:
a. 首先,根据多面体的类型,求解多面体的特定的边长、面积或者角度。
b. 利用上述的边长、面积或者角度的关系,可以求解外接球的半径。
c. 外接球的中心坐标可以通过找到多面体的对称中心或者中心对称点来获取。
需要注意的是,方法一比方法二更为常用且通用,但对于某些特殊的多面体,可能需要使用方法二来求解。
同时,在实际应用中,还可以借助计算机软件来进行多面体外接球的求解,提高计算的精度和效率。
内接球和外接球公式
内接球和外接球公式内接球和外接球是几何学中的两个重要概念,它们分别是指一个多面体内切于多面体的最大球和一个多面体外接于多面体的最小球。
这两个球的半径和体积可以通过公式计算得出。
内接球公式对于一个正多面体,它的内接球半径r可以通过以下公式计算得出:r = a/2 * √(n/(n+2))其中a为正多面体的边长,n为正多面体的面数。
这个公式可以用于计算正四面体、正八面体、正十二面体等多面体的内接球半径。
对于一个正六面体,它的内接球半径r可以通过以下公式计算得出:r = a/2其中a为正六面体的边长。
这个公式可以用于计算正六面体的内接球半径。
对于一个球体,它的内接球半径r等于球体半径的一半,即:r = R/2其中R为球体半径。
这个公式可以用于计算球体的内接球半径。
外接球公式对于一个正多面体,它的外接球半径R可以通过以下公式计算得出:R = a/2 * √(n/(n-2))其中a为正多面体的边长,n为正多面体的面数。
这个公式可以用于计算正八面体、正十二面体等多面体的外接球半径。
对于一个正四面体,它的外接球半径R可以通过以下公式计算得出:R = a/2 * √2其中a为正四面体的边长。
这个公式可以用于计算正四面体的外接球半径。
对于一个球体,它的外接球半径R等于球体半径,即:R = r其中r为球体的内接球半径。
这个公式可以用于计算球体的外接球半径。
总结内接球和外接球是几何学中的两个重要概念,它们分别是指一个多面体内切于多面体的最大球和一个多面体外接于多面体的最小球。
这两个球的半径和体积可以通过公式计算得出。
对于不同的多面体,内接球和外接球的公式也不同。
掌握这些公式可以帮助我们更好地理解多面体的性质和特点。
多面体外接球半径常见的五种求法
例1一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为 ,底面周长为3,则这个球的体积为.
解设正六棱柱的底面边长为 ,高为 ,则有
∴正六棱柱的底面圆的半径 ,球心到底面的距离 .∴外接球的半径 . .
小结本题是运用公式 求球的半径的,该公式是求球的半径的常用公式.
寻求轴截面圆半径法
例4正四棱锥 的底面边长和各侧棱长都为 ,点 都在同一球面上,则此球的体积为.
解设正四棱锥的底面中心为 ,外接球的球心为 ,如图1所示.∴由球的截面的性质,可得 .
又 ,∴球心 必在 所在的直线上.
∴ 的外接圆就是外接球的一个轴截面圆,外接圆的半径就是外接球的半径.
在 中,由 ,得 .
确定球心位置法
例5在矩形 中, ,沿 将矩形 折成一Leabharlann 直二面角 ,则四面体 的外接球的体积为
A. B. C. D.
解设矩形对角线的交点为 ,则由矩形对角线互相平分,可知 .∴点 到四面体的四个顶点 的距离相等,即点 为四面体的外接球的球心,如图2所示.∴外接球的半径 .故 .选C.
∴ .
∴ 是外接圆的半径,也是外接球的半径.故 .
小结根据题意,我们可以选择最佳角度找出含有正棱锥特征元素的外接球的一个轴截面圆,于是该圆的半径就是所求的外接球的半径.本题提供的这种思路是探求正棱锥外接球半径的通解通法,该方法的实质就是通过寻找外接球的一个轴截面圆,从而把立体几何问题转化为平面几何问题来研究.这种等价转化的数学思想方法值得我们学习.
多面体几何性质法
例2已知各顶点都在同一个球面上的正四棱柱的高为4,体积为16,则这个球的表面积是
A. B. C. D.
解设正四棱柱的底面边长为 ,外接球的半径为 ,则有 ,解得 .
多面体外接球半径内切球半径的常见几种求法之欧阳法创编
多面体外接球、内切球半径常见的5种求法如果一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,这个球称为多面体的外接球.有关多面体外接球的问题,是立体几何的一个重点,也是高考考查的一个热点.研究多面体的外接球问题,既要运用多面体的知识,又要运用球的知识,并且还要特别注意多面体的有关几何元素与球的半径之间的关系,而多面体外接球半径的求法在解题中往往会起到至关重要的作用.公式法例1 一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为98,底面周长为3,则这个球的体积为.解 设正六棱柱的底面边长为x ,高为h ,则有263,1,296,84x x x h h =⎧⎧=⎪⎪∴⎨⎨=⨯⎪⎪=⎩⎩∴正六棱柱的底面圆的半径12r =,球心到底面的距离2d =.∴外接球的半径1R ==.43V π∴=球. 小结本题是运用公式222R r d =+求球的半径的,该公式是求球的半径的常用公式.多面体几何性质法例2 已知各顶点都在同一个球面上的正四棱柱的高为4,体积为16,则这个球的表面积是A.16πB.20πC.24πD.32π解 设正四棱柱的底面边长为x ,外接球的半径为R ,则有2416x =,解得2x =. ∴2R R ==∴= .∴这个球的表面积是2424R ππ=.选C.小结本题是运用“正四棱柱的体对角线的长等于其外接球的直径”这一性质来求解的.补形法例3 若三棱锥的三个侧棱两两垂直,且侧棱长,则其外接球的表面积是.解 据题意可知,该三棱锥的三条侧棱两两垂的正方体,于是正方体的外接球就是三棱锥的外接球.设其外接球的半径为R ,则有()222229R =++=.∴294R =. 故其外接球的表面积249S R ππ==. 小结一般地,若一个三棱锥的三条侧棱两两垂直,且其长度分别为a b c 、、,则就可以将这个三棱锥补成一个长方体,于是长方体的体对角线的长就是该三棱锥的外接球的直径.设其外接球的半径为R,则有2R =寻求轴截面圆半径法例4 正四棱锥S ABCD -的底面边长和各侧棱长都S A B C D 、、、、都在同一球面上,则此球的体积为.解 设正四棱锥的底面中心为1O ,外接球的球心为O ,如图3所示.∴由球的截面的性质,可得1OO ABCD ⊥平面. 又1SO ABCD ⊥平面,∴球心O 必在1SO 所在的直线上.∴ASC ∆的外接圆就是外接球的一个轴截面圆,外接圆的半径就是外接球的半径.在ASC ∆中,由2SA SC AC ===,得C DA B S O 1图3222SA SC AC +=.∴ASC AC ∆∆是以为斜边的Rt . ∴12AC=是外接圆的半径,也是外接球的半径.故43V π=球. 小结根据题意,我们可以选择最佳角度找出含有正棱锥特征元素的外接球的一个轴截面圆,于是该圆的半径就是所求的外接球的半径.本题提供的这种思路是探求正棱锥外接球半径的通解通法,该方法的实质就是通过寻找外接球的一个轴截面圆,从而把立体几何问题转化为平面几何问题来研究.这种等价转化的数学思想方法值得我们学习.确定球心位置法例5 在矩形ABCD 中,4,3AB BC ==,沿AC 将矩形ABCD 折成一个直二面角B AC D --,则四面体ABCD 的外接球的体积为 A.12512π B.1259π C.1256π D.1253π 解 设矩形对角线的交点为O ,则由矩形对角线互相平分,可知OA OB OC OD ===.∴点O 到四面体的四个顶点A B C D 、、、的距离相等,即点O 为四面体的外接球的球心,如图2所示.∴外接球的半径CA O DB 图452R OA ==.故3412536V R ππ==球.选C.出现多个垂直关系时建立空间直角坐标系,利用向量知识求解【例题】:已知在三棱锥BCD A -中,ABC AD 面⊥,︒=∠120BAC ,2===AC AD AB径。
多面体的外接球的半径求法
立体几何专题:多面体外接球的半径求法引理:点O 为多边形E ABCD ⋅⋅⋅⋅⋅的外接圆的圆心,过点O 作一条直线l 垂直平面E ABCD ⋅⋅⋅⋅⋅,则l 上的任意一点P 到多边形的顶点的距离相等。
确定多面体外接球的球心方法:先确定一个三角形,找出此三角形外接圆的圆心,过圆心作此三角形所在平面的垂线1l ;再确定另一则外接球的半径h R R h r R 2)(222=⇒-+= 八、三棱锥BCD A -中,若AB =CD =a ,AC =BD =b ,AD =BC =c ,则外接球的半径R 221222c b a ++= 方法:构造长方体,c b a ,,为长方体面对角线的长,设长方体的长、宽、高分别为z y x ,,。
则)(21222222222222222c b a z y x c x z b z y a y x ++=++⇒⎪⎩⎪⎨⎧=+=+=+,∴外接球的半径R 221222c b a ++= 附:三角形ABC 的外接圆半径r 的求法: 设Cc B b A a r a BC b AC c AB sin 2sin 2sin 2,,,===⇒===(由正弦定理) S Sabc r (4=表示⊿ABC 的面积)①。
②例2 1 2球 3球4 A π26 B π36 C π6 D π125、三棱锥BCD A -,,5,90=︒=∠=∠AC ADC ABC 则三棱锥BCD A -外接球的体积为 。
6、三棱锥BCD A -,,2,3,90===︒=∠=∠=∠BD CB AB CBD ABD ABC 则三棱锥BCD A -外接球的表面积为 。
7、点D C B A ,,,在同一球面上,,2,2===AC BC AB 若球的表面积为425π,则四面体ABCD 体积的最大值为 。
多面体外接球、内切球的半径求法
多面体外接球、内切球的半径的求法第一部分外接球方法一、公式法例1 一个六棱柱的底面是正六边形,苴侧棱垂直于底面,已知该六棱柱的顶点都在同—个球面上,且该六棱柱的体积为底面周长为3,则这个球的体和为8 ---------------------------------6x = 3<9 A VT 2 ——6 x —x ■解设正六棱柱的底面边长为x ,高为力,则有8 4二正六棱柱的底面圆的半径r 球心到底面的距离rf = —. /■外接球的半径R= J尸二护=1 .3小结君题是运网公式用=r:+d‘求球的半径旳,该公式是求球的半径的営同公式.方法二、多面体几何性质法例2已知各顶点都在同一个球面上的正四棱柱的高为4,体积为16,则这个球的表面积是A. 16^-B. 20^C. 24^D. 32穴解设正四棱柱的底面边长为工,外接球的半径为则有4x:=16.解得x = 2.•:= +2,+ 4’ =2忆二7?=亦…••这个球的表面积是亠了尺‘ =24^ •选C.小结本题是运同-正四技炷的朱对角线的长等于其外接球的宜径^这一性熨来求解的. 方法三、补行法例3若三棱锥的三个侧棱两两垂直,且侧棱长均为,则其外接球的表面积是解据题意可知,该三棱锥的三条侧棱两两垂直…•.把这个三棱锥可以补成一个棱长为d的正方体,于是正方体的外接球就是三棱锥的外接球.设苴外接球的半径为Q 则有(2尺)‘ =(>/1「+丨\/7「+(\/7「=9.二疋二?故其外接球的表面和S = 4^R: =9兀・小结一般地.若一个三陵锥的三条例祓两两垂直,且其良覽分别为队亠—则就牙以特这个三谡维补成一令枚方体.于是长方俸的依对筒贱的悅就是该三谡维的外接球的直徑设其外接球的半桎为乩则有2应二J/ +F +F .方法四、寻求轴截面半径法例4正四棱锥S-ABCD的底面边长利各侧棱长都为JT,点S、A, B y C. D都在同一球面上•则此球的体和为 _______ .解设正四棱锥的底面中心为O:,外接球的球心为O,如图3 所示•二由球的截面的性质,可得06丄平.又SO:丄平面/1ECD,二球心O必在SQ所在的直线上.■■- 4SC的外接圆就是外接球的一个轴截面圆,外接圆的半径就是外接球的半径.在ZUSC 中,由血= SC = Q AC = 2, ^SA2 +SC;= AC2r二AJSC是以JQ为斜边的RM■ ■ —= 1是外接圆的半径,也是外接球的半径.故4 =也*2 3小结檢拇题意、我们可以遶择聂佳商叟找出含有正愎锥超•圧元董的外接球的一个轴耘习王’二是该圜旳半径弐是斫文旳外茯球旳半逐,轧题炭厲蓟这呻退路是袄求三梭红歼接球半経的通解通法,该方法的实质就是逸过寻我外接球的一个轴截霽圆,从而把立体几何问瑟转化为平厨几何问题来研究.这釉竽价转化的数学魁想方法值得我们学习.方法五、确定球心位置法例5在矩形ABCD中,AB = 4,BC = i r沿卫C将矩形ABCD折成一个直二面角B-AC-D,则四面体ABCD的外接球的体积为125 125 125A.——広B.——広C*——才12 9 6D求该棱锥的外接球半径求该棱锥的外接球半径 ZDD((W)C(-bv5,0) 由平面知识得 B禅潯所以半径为R选+ (Zl_Z2)【例题】:已知在三A -BCD 中,貝Q 丄®4BCW :由已知建立空间直角坐标系设球心坐标为O(x.y.z)则AO = BO = CO = DO :生空间两点间臣离公式知X 2+ v 2 +Z =(x-l): +O - 石)‘ +Z ^(0,0,0) 5(2,0,0) 根据勾股定瑾知.假设正四面体的边长为。
高考数学中的内切球和外接球问题---专题复习
高考数学中的内切球和外接球问题---专题复习高考数学:内切球和外接球问题多面体的顶点都在同一球面上时,称该多面体为球的内接多面体,该球为多面体的外接球。
多面体外接球问题是立体几何的重点,也是高考的热点,考查学生的空间想象能力和化归能力。
解决该问题需要运用多面体和球的知识,并特别注意多面体的几何元素与球的半径之间的关系。
多面体外接球半径的求法在解题中往往起到至关重要的作用。
一、直接法(公式法)1、求正方体的外接球的有关问题例1:若正方体的棱长为3且顶点都在同一球面上,求该球的表面积。
解析:要求球的表面积,只需知道球的半径。
由于正方体内接于球,所以它的体对角线正好为球的直径,因此求球的半径可转化为先求正方体的体对角线长,再计算半径。
故表面积为27π。
例2:一个正方体的各顶点均在同一球的球面上,若该正方体的表面积为24,则该球的体积为多少?解析:要求球的体积,还需先求出球的半径。
由正方体表面积可求出棱长,从而求出正方体的体对角线长为3√3.因此,该球的半径为3,故该球的体积为36π。
2、求长方体的外接球的有关问题例1:一个长方体的各顶点均在同一球面上,且一个顶点上的三条棱长分别为1、2、3,则该球的表面积为多少?解析:关键是求出球的半径,因为长方体内接于球,所以它的体对角线正好为球的直径。
长方体体对角线长为√14,故球的表面积为14π。
例2:已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则该球的表面积为多少?解析:正四棱柱也是长方体。
由长方体的体积16及高4可以求出长方体的底面边长为2,因此,长方体的长、宽、高分别为2、2、4.故该球的表面积为24π。
3、求多面体的外接球的有关问题例:一个底面为正六边形的六棱柱,侧棱垂直于底面,已知该六棱柱的顶点都在同一球面上,且该六棱柱的体积为8,底面周长为3,则该球的体积为多少?解析:设正六棱柱的底面边长为x,高为h。
由底面周长可得x=3/6=1/2,由体积可得h=4/3.因此,正六棱柱的底面圆的半径为√3/2,外接球的半径为√13/2.故该球的体积为(52/3)π。
克列尔公式求外接球半径
克列尔公式求外接球半径克列尔公式求外接球半径克列尔公式源于18世纪法国数学家克列尔的研究,该公式用于计算一个正四面体外接球的半径。
由于正四面体是一种重要的多面体,而外接球半径又是其重要参数之一,因此克列尔公式被广泛地应用于物理、化学、材料科学等领域。
下面将详细介绍克列尔公式的原理、推导和应用。
一、克列尔公式的原理正四面体是一种多面体,具有4个面、6条棱和4个顶点。
如果在正四面体的每个面上取一个点,那么这4个点的凸包就是该正四面体。
同时,如果在正四面体外部构造一个球,该球可以切到正四面体的每个面上且仅切到各个面的一个点上,那么这个球就是该正四面体的外接球。
在任意一个正四面体中,外接球的半径都可以由克列尔公式计算得到。
二、克列尔公式的推导设正四面体ABCD中,A点到外接球的球心O的距离为R,边长为a,则有:AB = AC = AD = aBC = BD = a√2CD = a√3设O为球心,OA = OB = OC = OD = R,则有:∠AOD = 3π/2,∠BOC = π/2,∠AOC = ∠BOD = π/3,则△AOD、△BOC、△AOC、△BOD都是等边三角形。
设M为OA的中点,则有:OM = OA/2 = R/2AD = a√3/3 = 2OM,即 AD/OM = 2∠AOD = 3π/2,∠ADO = π/6△AMO、△ADO相似,则有:AD/OA = OM/AMAD/R = R/2OM2R³ = a³ + 4OM³R³ = a³/(2√3)由此可得:R = a/√6三、克列尔公式的应用克列尔公式的应用非常广泛,特别是在物理、化学和材料科学等领域。
例如,利用克列尔公式可以计算出各种晶体的晶格常数、原子半径和空隙率等参数,进而进一步研究晶体结构和物理性质。
此外,该公式还可以用于诸如密排球堆、分子包装和天然晶体形态等问题的计算。
综上所述,克列尔公式是一种极其重要的数学工具,它不仅有着理论上的重要性,还具有广泛的实际应用价值。
多面体外接球、内切球的半径求法
设正多面体外接球、内切球得半径得求法第一部分外接球方法一、公式法例1—个六棱柱的底面是正六边形,其側棱垂直于底面,已知该六棱柱的顶点都在同9—个球面上,且该六棱柱的体和为二,底面周长为了,则这个球的休积为8一正六棱柱的底面圆的半径F =±球心到底面的距离巾二二外接球的半径R— J 厂亠二一1. “--------- .3小结■轧题是运円公式尺二十用术球的半径的,该公式是求球的半径的兽円公式. 方法二、多面体几何性质法例2已知各顶点都在同一个球面上的正四棱柱的高为4体积为16,则这个球的表面和是扎16 龙 B.20T C. 24/r D.32 疔解设正四棱柱的底面边长为匚外接球的半径为尺,则有4,? =16,解得v = 2.A 2R・VFZFTF二ls/6匸R二离*二这个球的表面积是4疗7?6二21选C.小结本題是运用••正四陵柱的体苦角线的长茅于其外接球的宜径粹这一性质来求錢的.方法三、补行法例3若三稜锥的三个侧棱两两垂直,且侧棱长均为41・则其外接球的表面积是例5在矩/宓9中,二 二沿解 据題意可知,该三棱锥的三条侧棱两两垂直,二把这个三棱锥可以补成一个棱长为 的正方体•于是 正方体的外接球就是三棱锥的肺接球.设其外接球的半径为则有(2町二(同十阿+ (旬=9・• •庆斗 故其外接球的表面积5 =曲耳『小结一般地,若一个三祓惟的三条便檢两两垂宜,且共悅度分别为z b 、。
则就 可以將这个三按 维社成一个长方农于是戋方体钓本对角线的戈就是该三擁锥的外接球的車径.设其外接球的半衽为R, 则有2?二十方:十/ .方法四、寻求轴截面半径法例4正四棱锥5 ■宓9的底面边长和各侧棱长都为JT ,点5•儿及6 D 都在同一球面上,则此球的体和为 _____________解设正四棱锥的福面中心为外接球的球心为O,如图3所示…由球的截面的性质,可得00:丄平面月QCQ •又S3丄平面乩?CQ,二球心O 必在S6所在的直线上的外接圖就是外接球的一个轴截面圆,外接圜的半径就是外接球的半径.在&LSC 中•由 S£ 二 SC 二 JI 二2 , A SA +SC 2=AC\ ・'・AJSC 是以JC 为斜边的RtA ・ACIiT-—二1呈外接圆的半径,也是外接球的半径■故卩人二一・ 2 3小结框拇题意,我们可以选择壷佳角覽找出舍肓正唆链蚌爼元畫的外接球的一个抽截Sr 圆、于 是该圜的半径就是所求的外接球的半径•本题提供的这种思■路是探求正棱锥外接球半桎的逸塀逸 法,该方法的实质就是通过寻找外接球的一个軸截笛園,从而把虫体几何问题 特化为平石几■何问题 来研究•这释等价转化的数学思想方去位得我們翅方法五、确定球心位置法B-AC-D,贝叮四面他⑦的外接球的体积为125 —n 12 B.125C ■——圧125D.——+ Gi — JJ+ (可一可)解设拒形对角线的交点2则由矩形对角线互相平分,可知0A = OB = 0C =0D,点0到四面体的四个顶点4 B, C.刀的 距离相等,即点O 为四面体的外 接球的掠心,如图2所示二外接球的半径R - 0A=二•故几一TJ7—丄二 才•选CL 2 3 6方法六、出现多个垂直尖系时建立空间直角坐标系 ,利用向量只就是求解 【洌題】:己知在三棱锥不如?中,且。
考前必复之:多面体外接球半径常见的求法(20190530-0606更新)
多面体外接球半径常见求法定义:若一个多面体的各顶点都在一个球的球面上,则称这个多面体是这个球的内接多面体,这个球是这个多面体的外接球. 常用性质:1.外接球球心到多面体各顶点的距离均相等.2.球的任意一个截面都是圆.其中过球心的截面叫做球的大圆,其余的截面都叫做球的小圆.如图13.球的小圆的圆心和球心的连线垂直于小圆所在的平面; 反之,球心在球的小圆所在平面上的射影是小圆的圆心; 过球的小圆圆心作垂直于小圆所在平面的直线必经过. 正棱锥的外接球球心在底面上的高所在的直线上.如图1,设球O 的半径为R ,球O 的小圆的圆心为1O ,半径为r , 球心O 到小圆1O 的距离1OO d =,则由性质2得22d R r =-,或22r R d =-. 4.球的两个平行截面的圆心的连线垂直于这两个截面,且经过球心.如图2 5.球的直径等于球的内接长方体的对角线长.方法一:长(正)方体的外接球利用性质5:球的内接长方体的对角线等于该球直径求出球的半径.例1 (2006年全国卷I )已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积为( ).A. 16πB. 20πC. 24πD. 32π答案:C解析:正四棱柱也是长方体.由长方体的体积16及高4可以求出长方体的底面边长为2,因此,长方体的长、宽、高分别为2,2,4,于是可求出球的半径,进而求出球的表面积,答案C.方法二:可以补成长方体的三棱锥的外接球问题只要四面体四顶点与长方体某四个顶点重合,则四面体就与长方体拥有共同的外接球,我们不妨称这个四面体内接于长方体,称长方体的内接四面体.长方体内接四面体可分四类:①四个面都是锐角三角形且对棱相等(如图一).对棱的长度相等(分别为长方体面对角线).②四个面都是直角三角形(如图二).它们有一条最长棱,这条最长的棱就是长方体的体对角线,图2图一 图二图三 图四③ 有三个面都是直角三角形,有三条棱两两垂直,另一面为锐角三角形(如图三).两两垂直的三条棱就是长方体的长、宽、高④有三个面都是直角三角形,没有三条棱两两垂直,另一面为锐角三角形(如图四).它们有一条最长棱,这个最的棱就是长方体的体对角线.类型一:对棱相等例 2.1 (20032,四个顶点在同一球面上,则此球的表面积为( )A. 3πB. 4πC. 33πD. 6π解析:一般解法,需设出球心,作出高线,构造直角三角形,再计算球的半径.在此,由于所有棱长都相等,我们联想只有正方体中有这么多相等的线段,所以构造一个正方体,再寻找棱长相等的四面体,如图2,四面体A BDE -满足条件,即AB=AD=AE=BD=DE 2BE ==体的棱长为1,3,3,所以此球的表面积便可求得,故选A. (如图2)变式练习1 (2006年山东高考题)在等腰梯形ABCD 中,AB=2DC=2,0DAB=60∠,E 为AB 的中点,将ADE ∆与BEC ∆分布沿ED 、EC 向上折起,使A B 、重合于点P ,则三棱锥P-DCE 的外接球的体积为( ).A.B.C.D.答案:A解析:折起后的图形是棱长为1的正四面体,将其放在正方体中,其直观图如图所示.它可以看作是一个棱长为22的正方体被截去四个角后得到的几何体,可求得该几何体的外接球的半径为12×12+12+12=64,故所求球的体积为4π3×⎝⎛⎭⎫643=6π8. 变式练习2 A ,B ,C ,D 且AC=BD=5,AD=BC=41,AB=CD ,则三棱锥D-ABC 的体积是____ __. 答案:20类型二:例2.2 (2008年浙江高考题)已知球O 的面上四点A 、B 、C 、D ,DA ABC⊥平面,AB BC ⊥,O 的体积等于 .解析:本题同样用一般方法时,需要找出球心,求出球的半径.而利用长方体模型很快便可找到球的直径,由于DA ABC ⊥平面,AB BC⊥,联想长方体中的相应线段关系,构造如图4所示的长方体,又因为CD 长即为外接球的直径,利用直角三角形解出CD=3.故球O 的体积等于92π.(如图4)图4例2.3 已知点A 、B 、C 、D 在同一个球面上,B BCD A ⊥平面,BC DC ⊥,若6,AC=213,AD=8AB =,则球的体积是 .答案:2563π解析:首先可联想到例8,构造下面的长方体,于是AD 为球的直径,O 为球心,OB=OC=4为半径,3425633V R ππ∴==类型三:有三条棱两两垂直例2.4 (2008年福建高考题)若三棱锥的三条侧棱两两垂直,且侧棱长均为3,则其外接球的表面积是_______________.解析:此题用一般解法,需要作出棱锥的高,然后再设出球心,利用直角三角形计算球的半径.而作为填空题,我们更想使用较为便捷的方法,所以三条侧棱两两垂直,使我们很快联想到长方体的一个角,马上构造长方体,且侧棱长均相等,所以可构造正方体模型,如图1,则AC=BC=CD 3=,那么三棱锥的外接球的直径即为正方体的体对角线,设其外接球的半径为R ,则有()()()()222223339R =++=.∴294R =. 故其外接球的表面积249S R ππ==.小结 一般地,若一个三棱锥的三条侧棱两两垂直,且其长度分别为a b c 、、,则就可以将这个三棱锥补成一个长方体,于是长方体的体对角线的长就是该三棱锥的外接球的直径.设其外接球的半径为R ,则有2222R a b c =++.出现“墙角”结构利用补形知识,补成长方体.变式1 在四面体中,共顶点的三条棱两两垂直,其长度分别为,若该四面体的四个顶点在一个球面上,求这个球的表面积.解:因为:长方体外接球的直径为长方体的体对角线长所以:四面体外接球的直径为的长 即:所以球的表面积为变式2:在正三棱锥S -ABC 中,M ,N 分别是SC ,BC 的中点,且MN ⊥AM ,若侧棱SA =23,则正CBO图5三棱锥S -ABC 外接球的表面积是________. 答案 36 π解析 由MN ⊥AM 且MN 是△BSC 的中位线得BS ⊥AM , 又由正三棱锥的性质得BS ⊥AC ,∴BS ⊥面ASC .即正三棱锥S -ABC 的三侧棱SA 、SB 、SC 两两垂直,外接球直径为3SA =6. ∴球的表面积S =4πR 2=4π×32=36π.方法三:寻求轴截面圆半径法常用于求正棱锥、正棱柱(正四棱柱属长方体)、圆锥、圆柱的外接球; 依据:性质3、4例3 (2010年新课标理10)设三棱柱的侧棱垂直于底面,所有棱长都为a ,顶点都在一个球面上,则该球的表面积为(A) 2a π (B)273a π (C)2113a π (D) 25a π 解析:如图222222274312a a R OB OE BE a ==+=+= 22743S a a ππ∴==命题意图:考察球与多面体的接切问题及球的表面积公式变式练习1 一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为98,底面周长为3,则这个球的体积为 . 答案:43π变式练习2 正四棱锥S ABCD -的底面边长和各侧棱长都为2,S A B C D 、、、、都在同一球面上,则此球的体积为 .解 设正四棱锥的底面中心为1O ,外接球的球心为O ,如图1所示.∴由球的截面的性质,可得1OO ABCD ⊥平面.又1SO ABCD ⊥平面,∴球心O 必在1SO 所在的直线上.∴ASC ∆的外接圆就是外接球的一个轴截面圆,外接圆的半径就是外接球的半径.在ASC ∆中,由22SA SC AC ===,,得222SA SC AC +=.∴ASC AC ∆∆是以为斜边的Rt .∴12AC =是外接圆的半径,也是外接球的半径.故43V π=球.变式练习3 (2009年全国Ⅰ)直三棱柱111ABC A B C -的各顶点都在同一球面上,若12AB AC AA ===, 120BAC ∠=︒,则此球的表面积等于 .CD ABSO 1图3B也可以把这个问题看成直三棱柱的外接圆柱的外接球问题,如图所示.变式练习 直三棱柱111ABC A B C -的各顶点都在同一球面上,若1263,2,,3AB AC AA ===060BAC ∠=,则它的这个外接球的表面积为 . 答案:12π小结 根据题意,我们可以选择最佳角度找出含有正棱锥特征元素的外接球的一个轴截面圆,于是该圆的半径就是所求的外接球的半径.本题提供的这种思路是探求正棱锥外接球半径的通解通法,该方法的实质就是通过寻找外接球的一个轴截面圆,从而把立体几何问题转化为平面几何问题来研究.这种等价转化的数学思想方法值得我们学习.方法四:建系求球心的坐标例4.1 在四面体S ABC -中,SA ⊥平面ABC ,o120BAC ∠=,2SA AC ==,1AB =,则该四面体的外接球的表面积为1040..7 .11 .33A B C D ππππ 答案:D解析:如图所示,以A 为原点建系,则A 1AC 1CBB 1O 2O13C(2,0,0),B(,,0)22-设球心为O(1,y,1),则OB=OC=R即2223311()()122y y ++=+-+,解得23y =从而外接球表面积210404433S R πππ==⨯=解法2(方法三) 由余弦定理得22o 21221cos1207BC =+-⨯⨯⨯=,故由正弦定理ABC∆的外接圆直径为o2772,sin12033BC r r ===,故22402(2)23R r =+=,如图所示, 从而外接球表面积210404433S R πππ==⨯=.变式练习 (2015·江西八校联考)正三角形ABC 的边长为2,将它沿高AD 折叠,使点B 与点C 间的距离为3,则四面体ABCD 外接球的表面积为( )A .7πB .19π C.767π D.19619π【解析】 由题意可知四面体ABCD 中,BD =CD =1,AB =AC =2,AD =3,BC =3,∠BDC =120°,易得AD ⊥BD ,AD ⊥CD ,∴AD ⊥平面BCD ,建立如图所示的空间直角坐标系,则A (0,0,3),B (1,0,0),C ⎝⎛⎭⎫-12,32,0,D (0,0,0),设球心为O (x ,y ,z ),由OA =OB =OC =OD ,可知O ⎝⎛⎭⎫12,32,32,球的半径r =72,∴表面积S =4πr 2=7π.【答案】 A方法五:利用外接球球心到多面体各顶点的距离均相等确定球心求之例5 在矩形ABCD 中,4,3AB BC ==,沿AC 将矩形ABCD 折成一个直二面角B AC D --,SACBO 2O则四面体ABCD 的外接球的体积为A.12512π B.1259π C.1256π D.1253π 解 设矩形对角线的交点为O ,则由矩形对角线互相平分,可知OA OB OC OD ===.∴点O 到四面体的四个顶点A B C D 、、、的距离相等,即点O 为四面体的外接球的球心,如图2所示.∴外接球的半径52R OA ==.故3412536V R ππ==球.选C. 出现两个垂直关系,利用直角三角形结论.【原理】:直角三角形斜边中线等于斜边一半.球心为直角三角形斜边中点.方法六:过两个不平行的截面圆的圆心分别作两截面圆的垂线确定球心方法类比:三角形外接圆圆心为分别作三角形 任意两条边的垂直平分线的交点,如图所示: 方法依据:性质3方法实操:如图,过两个不平行的截面圆的圆心分别 作两截面圆的垂线其交点即为球心.例6.1 已知在四面体ABCD 中, 2AB AD BC CD BD =====,平面ABD ⊥平面BDC ,则四面体ABCD 的外接球的表面积为( )A. 20π3B. 6πC.22π3D. 8π 【解析】∵2AB AD BC CD BD =====, 所以△ABD 与△BDC 均为正三角形.分别过正三角形BDC 的中心1O 作1OO ⊥平面BDC , 正三角形ABD 的中心O 2作2OO ⊥平面BDC , 并设12OO OO O =(则O 为四面体ABCD 的外接球的球心).设M 为BD 的中点,外接球的半径为R ,连接OB ,则OB =R ,因为平面ABD ⊥平面BDC ,所以12OO OO ⊥,11OO O M ⊥,22OO O M ⊥,12O M O M ⊥,且12O M O M =,四边形12OO MO 为正方形,.∵323MA ==,∴123O M O M ==1BM =,∴2222335()13R =++=,∴ 四面体ABCD 的外接球的表面积220π4π3S R ==.故选A. O 1 O 2O O 1O 2OB D A CM例6.2 在三棱锥P ABC -中,22,4,3,5PA PB AB BC AC =====,若平面PAB ⊥平面ABC ,则三棱锥P ABC -外接球的表面积为_______.【答案】25π【解析】取AB 的中点O ',AC 的中点O ,连接O O ',因为222PA PB AB +=,所以PAB ∆是以AB 为斜边的直角三角形,从而点O '为PAB ∆外接圆的圆心, 又222AB BC AC +=,所以ABC ∆是以AC 为斜边的直角三角形,从而点O 为ABC ∆外接圆的圆心, 又因为O O BC '∥,所以O O AB '⊥,又平面PAB ⊥平面ABC ,且平面PAB ⋂平面ABC AB =,所以O O '⊥平面PAB , 所以点O 为三棱锥P ABC -外接球的球心,所以外接球的半径2521===AC OA R , 故外接球的表面积2425S R ππ==.例6.3 已知半径为4的球面上有两点A ,B ,42AB =O ,若球面上的动点C 满足二面角C -AB -O 的大小为60︒,则四面体OABC 的外接球的半径为 . 【解析】由已知42AB =4OA OB ==,所以△OAB 为直角三角形.如图,平面OAB 截球O 得小圆M , 其中点M 直角三角形△OAB 外接圆圆心,线段AB 的中点 平面ABC 截球O 得小圆E ,点C 为小圆E 上的动点不妨设CA CB =,则点E 在线段CM 上,CM AB ⊥,OM AB ⊥ CMO ∠为二面角C -AB -O 的平面角,连接OE ,则OE ⊥平面ABC , 作1l ⊥平面OAB 并与OE 的延长线交于点F , 则点F 为四面体OABC 的外接球的球心,OF 为半径, 如图,OF 2246==所以,四面体OABC 46。
多面体外接球半径常见的五种求法
多面体外接球半径常见的5种求法文/xx如果一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,这个球称为多面体的外接球.有关多面体外接球的问题,是立体几何的一个重点,也是高考考查的一个热点.研究多面体的外接球问题,既要运用多面体的知识,又要运用球的知识,并且还要特别注意多面体的有关几何元素与球的半径之间的关系,而多面体外接球半径的求法在解题中往往会起到至关重要的作用.公式法例1一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为9,底面周长为3,则这个球的体积为.86x3,1x,x2解设正六棱柱的底面边长为,高为h,则有932xh,64h3.8∴正六棱柱的底面圆的半径r31,球心到底面的距离d.∴外接球的半径22R r2d21.V球4.3222小结本题是运用公式R r d求球的半径的,该公式是求球的半径的常用公式.多面体几何性质法例2已知各顶点都在同一个球面上的正四棱柱的高为4,体积为16,则这个球的表面积是A.16B.20C.24D.32解设正四棱柱的底面边长为x,外接球的半径为R,则有4x16,解得x2.∴2R 222224226,R6.∴这个球的表面积是4R224.选C.小结本题是运用“正四棱柱的体对角线的长等于其外接球的直径”这一性质来求解的.补形法例3若三棱锥的三个侧面两两垂直,且侧棱长均为3,则其外接球的表面积是.解据题意可知,该三棱锥的三条侧棱两两垂直,∴把这个三棱锥可以补成一个棱长为3的正方体,于是正方体的外接球就是三棱锥的外接球.设其外接球的半径为R,则有2R223232329.∴R29.4故其外接球的表面积S4R9.小结一般地,若一个三棱锥的三条侧棱两两垂直,且其长度分别为a、b、c,则就可以将这个三棱锥补成一个长方体,于是长方体的体对角线的长就是该三棱锥的外接球的直径.设其外接球的半径为R,则有2R a2b2c2.寻求轴截面圆半径法例4正四棱锥S ABCD的底面边长和各侧棱长都为2,点S、A、B、C、D都在同一球面上,则此球的体积为.解设正四棱锥的底面中心为O1,外接球的球心为O,如图1所示.∴由球的截面的性质,可得OO1平面ABCD.DCO1图3BS又SO1平面ABCD,∴球心O必在SO1所在的直线xx.∴ASC的外接圆就是外接球的一个轴截面圆,外接圆的半径就是外接球的半径.在ASCxx,由SA SC A2,AC2,得SA2SC2AC2.∴ASC是以AC为斜边的Rt.∴AC4.1是外接圆的半径,也是外接球的半径.故V球23小结根据题意,我们可以选择最佳角度找出含有正棱锥特征元素的外接球的一个轴截面圆,于是该圆的半径就是所求的外接球的半径.本题提供的这种思路是探求正棱锥外接球半径的通解通法,该方法的实质就是通过寻找外接球的一个轴截面圆,从而把立体几何问题转化为平面几何问题来研究.这种等价转化的数学思想方法值得我们学习.确定球心位置法例5在矩形ABCD中,AB4,BC3,沿AC将矩形ABCD折成一个直二面角B AC D,则四面体ABCD的外接球的体积为125125A.B.C.D.12963解设矩形对角线的交点为O,则由矩形对角线互相平分,可知OA OB OC OD.∴点O到四面体的四个顶点A、B、C、D的距离相等,即点O为四面体的外接球的球心,如图2所示.∴外接球的半541253.选C.径R OA.故V 球R236DCBAO图4。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多面体外接球半径常见求法
知识回顾:
定义1:若一个多面体的各顶点都在一个球的球面上,则称这个多面体是这个球的内接多面体,这个球是这个多面体的外接球。
定义2:若一个多面体的各面都与一个球的球面相切,则称这个多面体是这个球的外切多面体,这个球是这个多面体的内切球。
1、内切球球心到多面体各面的距离均相等,外接球球心到多面体各顶点的距离均相等。
2、正多面体的内切球和外接球的球心重合。
3、正棱锥的内切球和外接球球心都在高线上,但不重合。
4、基本方法:构造三角形利用相似比和勾股定理。
5、体积分割是求内切球半径的通用做法。
一、公式法
例1一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同
一个球面上,且该六棱柱的体积为98,底面周长为3,则这个球的体积为 .
小结 本题是运用公式222
R r d =+求球的半径的,该公式是求球的半径的常用公式.
二、多面体几何性质法
例2 已知各顶点都在同一个球面上的正四棱柱的高为4,体积为16,则这个球的表面积是
A.16π
B.20π
C.24π
D.32π
小结 本题是运用“正四棱柱的体对角线的长等于其外接球的直径”这一性质来求解的.
三、补形法
例3 若三棱锥的三个侧面两两垂直,且侧
,则其外接球的表面积是 .
小结一般地,若一个三棱锥的三条侧棱两
两垂直,且其长度分别为a b c
、、,则就可以将这个三棱锥补成一个长方体,于是长方体的体对角线的长就是该三棱锥的外接球的直径.设其外接球的半径为
R,则有2R=
变式1:
变式2:三棱锥O ABC
-中,,,
OA OB OC两两垂直,且
22OA OB OC a
===,则三棱锥O ABC -外接球的表面积为
( )
A .2
6a π B .2
9a π C .2
12a π D .2
24a π
四、寻求轴截面圆半径法 例4 正四棱锥S ABCD -的底面边长
S A B C D 、、、、都在同一球面上,则此球的体积为 .
小结 根据题意,我们可以选择最佳角度找出含有正棱锥特征元素的外接球的一个轴截面圆,于是该圆的半径就是所求的外接球的半径.本题提供的这种思路是探求正棱锥外接
C
D
A
B
S
O 1
图3
球半径的通解通法,该方法的实质就是通过寻找外接球的一个轴截面圆,从而把立体几何问题转化为平面几何问题来研究.这种等价转化的数学思想方法值得我们学习.
变式1:求棱长为 a 的正四面体P – ABC 的外接球的表面积
变式2:正三棱锥的高为1,底面边长为。
求棱锥的内切球的表面积。
变式1:
五、确定球心位置法
例5 在矩形ABCD 中,4,3AB BC ==,沿AC 将矩形ABCD 折成一个直二面角
B A
C
D --,
则四面体ABCD 的外接球的体积为
A.12512π
B.1259π
C.1256π
D.125
3
π
变式1:三棱锥P ABC -中,底面ABC ∆是边长为2的正三角形, PA ⊥底面ABC ,且2PA =,则此三棱锥外接球的半径为( )
C A O D
B
图4
A
B C.2
D
1.如图,已知四棱锥P—ABCD,PB⊥AD.,侧面PAD为边长等于2的正三角形,底面ABCD为菱形,侧面PAD与底面ABCD所成的二面角为120°.
(I)求点P到平面ABCD的距离,
(II)求面APB与面CPB所成二面角的余弦值.。