第1章 均匀传输线理论(1)
1 均匀传输线理论
U ( z ) A1e j z A2e j z 1 I ( z ) ( A1e j z A2e j z ) z0
E ( z ) A1e j z A2e j z H ( z) 1
( A1e j z A2e j z )
其中,特性阻抗 Z0
U 0 A1 A2 Z 0 I 0 A1 A2
1 A1 (U 0 Z 0 I 0 ) 2 1 A2 (U 0 Z 0 I 0 ) 2
1 1 j z j z U ( z ) ( U Z I ) e ( U Z I ) e 0 0 0 0 0 0 2 2 1 1 j z I ( z) (U 0 Z 0 I 0 )e (U 0 Z 0 I 0 )e j z 2Z 0 2Z 0
再考虑终端条件
j l j l U ( l ) A e A e Zl Il 1 2 j l j l Z I ( l ) A e A e 1 2 0
即 A1e
j l
A2e
j l
Zl ( A1e j l A2e j l ) Z0
u ( z , t ) Re U ( z )e jt jt i ( z , t ) Re I ( z ) e
式中,U(z)、I(z)只与z有关,表示在传输线z处的电 压或电流的复值。 i( z, t ) dU u ( z, t ) Ri ( z , t ) L ( R j L) I ZI z t dz dI i ( z , t ) Gu ( z , t ) C u ( z , t ) (G jC )U YU z t dz
微波技术第1章 传输线理论1-电报方程
2r
假如导体的表面电阻为Rs,而导体间填充介质具 有的复数介电常数为
j
导磁率为: 试确定传输线参量。
0r
解 同轴线参量为
L ( 2 )2
2
0
b a
1 r2
rdrd
2
ln b
a
C
2 b 1 rdrd 2
(ln b a )2 0 a r 2
lnb a
ቤተ መጻሕፍቲ ባይዱ
R
Rs
(2 )2
(
2 0
1 a2
ad
2 0
1 b2
bd
)
RS
2
1 1 a b
G
(ln b a
)2
2
0
b a
1 r2
rdrd
2
lnb a
内外导体具有表面电阻R s的同轴线
y
,
a
x
b Rs
注意
表1.1 列出了同轴线、双线和平行板传输线的参量。 从下一章将看到,大部分传输线的传播常数,特性阻抗和衰 减是直接由场论解法导出的。 该例题先求等效电路参数(L,C,R,G)的方法,只适用于 相对较简单的传输线。虽然如此,它还是提供了一种有用的直 观概念,将传输线和它的等效电路联系起来。
1.4传输线的传输功率、效率与损耗
1.4 传输线的传输功率、效率与损耗传输线传输功率效率与损耗传输功率本节要点传输效率 损耗 功率容量Decibels (dB)作为单位功率值常用分贝来表示,这需要选择一个功率单位作为参考,常用的参考单位有1mW 和1W 。
如果用1mW 作参考,分贝表示为:=)mW (lg 10)dBm (P P 如1mW=0dBm 10mW=10dBm 1W=30dBm 0.1mW=−10dBm如果1W 作参考,分贝表示为:如1W=0dBW10W=10dBW0.1W=−10dBW)W (lg 10)dB (P P =插入损耗1.5 阻抗匹配阻抗匹配具有三种不同的含义,分别是负载阻抗匹配、源阻抗匹配和共轭阻抗匹配。
抗匹配源阻抗匹配和共轭阻抗匹配本节内容三种匹配阻抗匹配的方法与实现1. 三种匹配(impedance matching)入射波射波反射波Z 0Z lZ (1)g负载阻抗匹配:负载阻抗等于传输线的特性阻抗。
此时传输线上只有从信源到负载的入射波,而无反射波。
(2)源阻抗匹配:电源的内阻等于传输线的特性阻抗。
()阻抗内阻等传输线特性阻抗对匹配源来说,它给传输线的入射功率是不随负载变化的,负载有反射时,反射回来的反射波被电源吸收。
E gZ gZ in=Z g* E g负载阻抗匹配Z l =Z 0 Z =Z 信号源阻抗匹配g 0 共轭阻抗匹配Z in =Z g *匹配器1匹配器2*g in ZZ =Z in =Z 02. 阻抗匹配的实现方法隔离器或阻抗匹配衰减器负载匹配的方法:从频率上划分有窄带匹配和宽带匹配;从实现手段上划分有λ/4阻抗变换器法、支节调配法。
(1) λ/4阻抗变换器匹配方法此处接λ/4阻抗变换器lR Z Z 001=Z Z =0in电容性负载Z 0若是l 1λ/401Z Z =电感性负载又如何?Z 0Z 0Z 01ρR x =Z 0/ρZ i n =Z 0(2) 支节调配法(stub tuning)(2)(i)支节调配器是由距离负载的某固定位置上的并联或串联终端短路或开路的传输线(称之为支节)构成的。
微波技术与天线复习知识要点
微波技术与天线复习知识要点绪论●微波的定义:微波是电磁波谱介于超短波与红外线之间的波段,它属于无线电波中波长最短的波段;●微波的频率范围:300MHz~3000GHz ,其对应波长范围是1m~●微波的特点要结合实际应用:似光性,频率高频带宽,穿透性卫星通信,量子特性微波波谱的分析第一章均匀传输线理论●均匀无耗传输线的输入阻抗2个特性定义:传输线上任意一点z处的输入电压和输入电流之比称为传输线的输入阻抗注:均匀无耗传输线上任意一点的输入阻抗与观察点的位置、传输线的特性阻抗、终端负载阻抗、工作频率有关;两个特性:1、λ/2重复性:无耗传输线上任意相距λ/2处的阻抗相同Z in z= Z in z+λ/22、λ/4变换性: Z in z- Z in z+λ/4=Z02证明题:作业题●均匀无耗传输线的三种传输状态要会判断1.行波状态:无反射的传输状态▪匹配负载:负载阻抗等于传输线的特性阻抗▪沿线电压和电流振幅不变▪电压和电流在任意点上同相2.纯驻波状态:全反射状态▪负载阻抗分为短路、开路、纯电抗状态3.行驻波状态:传输线上任意点输入阻抗为复数●传输线的三类匹配状态知道概念▪负载阻抗匹配:是负载阻抗等于传输线的特性阻抗的情形,此时只有从信源到负载的入射波,而无反射波;▪源阻抗匹配:电源的内阻等于传输线的特性阻抗时,电源和传输线是匹配的,这种电源称之为匹配电源;此时,信号源端无反射;▪共轭阻抗匹配:对于不匹配电源,当负载阻抗折合到电源参考面上的输入阻抗为电源内阻抗的共轭值时,即当Z in=Z g﹡时,负载能得到最大功率值;共轭匹配的目的就是使负载得到最大功率;●传输线的阻抗匹配λ/4阻抗变换P15和P17●阻抗圆图的应用与实验结合史密斯圆图是用来分析传输线匹配问题的有效方法;1.反射系数圆图:Γz=|Γ1|e jΦ1-2βz= |Γ1|e jΦΦ1为终端反射系数的幅度,Φ=Φ1-2βz是z处反射系数的幅角;反射系数圆图中任一点与圆心的连线的长度就是与该点相应的传输线上某点处的反射系数的大小;2.阻抗原图点、线、面、旋转方向:➢在阻抗圆图的上半圆内的电抗x>0呈感性,下半圆内的电抗x<0呈容性;➢实轴上的点代表纯电阻点,左半轴上的点为电压波节点,其上的刻度既代表r min又代表行波系数K,右半轴上的点为电压波腹点,其上的刻度既代表r max又代表驻波比ρ;➢|Γ|=1的圆图上的点代表纯电抗点;➢实轴左端点为短路点,右端点为开路点,中心点处是匹配点;➢在传输线上由负载向电源方向移动时,在圆图上应顺时针旋转,;反之,由电源向负载方向移动时,应逆时针旋转;3.史密斯圆图:将上述的反射系数圆图、归一化电阻圆图和归一化电抗圆图画在一起,就构成了完整的阻抗圆图;4.基本思想:➢特征参数归一阻抗归一和电长度归一;➢以系统不变量|Γ|作为史密斯圆图的基底;➢把阻抗或导纳、驻波比关系套覆在|Γ|圆上;●回波损耗、功率分配等问题的分析✓回波损耗问题:1.定义为入射波功率与反射波功率之比通常以分贝来表示,即Lrz=10lgP in/Pr dB对于无耗传输线,ɑ=0,Lr与z无关,即Lrz=-20lg|Γ1| dB2.插入损耗:定义为入射波功率与传输功率之比3.|Γ1|越大,则| Lr |越小;|Γ1|越小,则| L in|越大;P21:有关回波损耗的例题例1-4✓功率分配问题:1.入射波功率、反射波功率和传输功率计算公式反映出了它们之间的分配关系;P192.传输线的传输效率:η=负载吸收功率/始端传输功率3.传输效率取决于传输线的损耗和终端匹配情况第二章规则金属波导●导波系统中的电磁波按纵向场分量的有无,可分为TE波、TM波和TEM波三种类型;知道概念➢TEM波:导行波既无纵向磁场有无纵向电场,只有横向电场和磁场,故称为横电磁波;E z=0而H z=0➢TM波E波:只有纵向电场,又称磁场纯横向波;E z≠0而H z=0➢TE波H波:只有纵向磁场,又称电场纯横向波;E z=0而H z≠0●导行条件:k c<k时,f>f c为导行波;●矩形波导、圆波导主要模式的特点及应用✧矩形波导:将由金属材料制成的、矩形截面的、内充空气的规则金属波导称为矩形波导;1)纵向场分量E z和H z不能同时为零,不存在TEM波;2)TE波:横向的电波,纵向场只有磁场;➢TE波的截止波数k c,➢矩形波导中可以存在无穷多种TE导模,用TE mn表示;➢最低次波形为TE10,截止频率最低;3)TM波➢TM11模是矩形波导TM波的最低次模,其他均为高次模;4)主模TE10的场分布及其工作特性➢主模的定义:在导行波中截止波长最长截止频率最低的导行模➢特点:场结构简单、稳定、频带宽和损耗小等;✧圆波导:若将同轴线的内导体抽走,则在一定条件下,由外导体所包围的圆形空间也能传输电磁能量,这就是圆形波导;➢应用:远距离通信、双极化馈线以及微波圆形谐振器等;➢圆形波导也只能传输TE和TM波形;➢主模TE11,截止波长最长,是圆波导中的最低次模;圆波导中TE11模的场分布与矩形波导的TE10模的场分布很相似,因此工程上容易通过矩形波导的横截面逐渐过渡变为圆波导;即构成方圆波导变换器;➢圆对称TM01模:圆波导的第一个高次模,由于它具有圆对称性故不存在极化简并模;因此常作为雷达天线与馈线的旋转关节中的工作模式;➢低损耗的TE01模:是圆波导的高次模式,它与TM11模是简并模;它是圆对称模,故无极化简并;当传输功率一定时,随着频率升高,管壁的热损耗将单调下降;故其损耗相对于其他模式来说是低的,故可将工作在此模式下的圆波导用于毫米波的远距离传输或制作高Q值的谐振腔;●熟悉模式简并概念及其区别1.矩形波导中的E-H简并:对相同的m和n,TE mn和TM mn模具有相同的截止波长或相同的截止频率;虽然它们的场分布不同,但是具有相同的传输特性;2.圆波导中有两种简并模:➢E-H简并:TE0n模和TM1n模的简并➢极化简并模:考虑到圆波导的轴对称性,因此场的极化方向具有不确定性,使导行波的场分布在φ方向存在cosmφ和sinmφ两种可能的分布,它们独立存在,相互正交,截止波长相同,构成同一导行模的极化简并模;●熟悉矩形波导壁电流分布及应用●波导激励的几种类型1.电激励2.磁激励3.电流激励●方圆波导转换器的作用圆波导中TE11模的场分布与矩形波导的TE10模的场分布很相似,因此工程上容易通过矩形波导的横截面逐渐过渡变为圆波导;即构成方圆波导变换器;第三章微波集成传输线●带状线、微带线的结构及特点1.带状线:➢是由同轴线演化而来的,即将同轴线的外导体对半分开后,再将两半外导体向左右展平,并将内导体制成扁平带线;➢主要传输的是TEM波;可存在高次模;➢用途:替代同轴线制作高性能的无源元件;➢特点:宽频带、高Q值、高隔离度➢缺点:不宜做有源微波电路;2.微带线:➢是由双导体传输线演化而来的,即将无限薄的导体板垂直插入双导体中间,再将导体圆柱变换成导体带,并在导体带之间加入介质材料,从而构成了微带线;微带线是半开放结构;➢工作模式:准TEM波●带状线、微带线特征参数的计算会查图➢带状线和微带线的传输特性参量主要有:特性阻抗Z0、衰减常数ɑ、相速v p和波导波长λg ●介质波导主模及其特点➢主模HE11模的优点:a)不具有截止波长;b)损耗较小;c)可直接由矩形波导的主模TE10激励;第四章微波网络基础●熟练掌握阻抗参量、导纳参量、转移参量、散射参量结合元件特性和传输参量的定义P84-P93➢阻抗矩阵Z➢导纳矩阵Y➢转移矩阵A➢散射矩阵S➢传输矩阵T●掌握微波网络思想在微波测量中的应用三点法的条件➢前提条件:令终端短路、开路和接匹配负载时,测得的输入端的反射系数分别为Γs,Γo和Γm,从而可以求出S11, S12, S22;第五章微波元器件●匹配负载螺钉调配器原理、失配负载;衰减器、移相器作用➢匹配负载作用:消除反射,提高传输效率,改善系统稳定性;➢螺钉调配器:螺钉是低功率微波装置中普遍采用的调谐和匹配原件,它是在波导宽边中央插入可调螺钉作为调配原件;螺钉深度不同等效为不同的电抗原件,使用时为了避免波导短路击穿,螺钉·都设计成为了容性,即螺钉旋入波导中的深度应小于3b/4b为波导窄边尺寸;➢失配负载:既吸收一部分微波功率又反射一部分微波功率,而且一般制成一定大小驻波的标准失配负载,主要用于微波测量;➢衰减器,移相器作用:改变导行系统中电磁波的幅度和相位;●了解定向耦合器的工作原理P106➢定向耦合器是一种具有定向传输特性的四端口元件,它是由耦合装置联系在一起的两对传输系统构成的;➢利用波程差;●熟练掌握线圆极化转换器的工作原理及作用●了解场移式隔离器的作用P122➢根据铁氧体对两个方向传输的波型产生的场移作用不同而制成的;●了解铁氧体环行器的分析及作用P123➢环行器是一种具有非互易特性的分支传输系统;第六章天线辐射与接收的基本理论第七章电波传播概论●天波通信、地波通信、视距波通信的概念1.天波通信:指自发射天线发出的电波在高空被电离层反射后到达接收点的传播方式,也成为电离层电波传播;主要用于中波和短波波段2.地波通信:无线电波沿地球表面传播的传播方式;主要用于长、中波波段和短波的低频段;3.视距波通信:指发射天线和接收天线处于相互能看见的视距距离内的传播方式;地面通信、卫星通信以及雷达等都可以采用这种传播方式;主要用于超短波和微波波段的电波传播●天线的作用●无线电波传输是产生失真的原因无线电波通过煤质除产生传输损耗外,还会使信号产生失真——振幅失真和相位失真两个原因:1.煤质的色散效应:色散效应是由于不同频率的无线电波在煤质中的传播速度有差别而引起的信号失真;2.随机多径传输效应:会引起信号畸变;因为无线电波在传输时通过两个以上不同长度的路径到达接收点;接收天线收到的信号是几个不同路径传来的电场强度之和;。
《微波技术与天线》第二版刘学观 第1章
(1-1-5)
式中, Z=R+jωL, Y=G+jωC, 分别称为传输线单位长串联阻抗和 单位长并联导纳。
第1章 均匀传输线理论 2. 均匀传输线方程的解 将式(1- 1- 5)第1式两边微分并将第 2 式代入, 得
d 2U ( z ) ZYU ( z ) 0 2 dz
同理可得
d I ( z) ZYI ( z ) 0 2 dz
第1章 均匀传输线理论
图 1-1 各种微波传输线 (a) 双导体传输线; (b) 波导; (c) 介质传输线
第1章 均匀传输线理论 对均匀传输线的分析方法通常有两种: 一种是场分析法, 即
从麦克斯韦尔方程出发, 求出满足边界条件的波动解, 得出传输
线上电场和磁场的表达式, 进而分析传输特性; 第二种是等效电 路法, 即从传输线方程出发, 求出满足边界条件的电压、 电流波 动方程的解, 得出沿线等效电压、电流的表达式, 进而分析传输 特性。前一种方法较为严格, 但数学上比较繁琐, 后一种方法实
b Z0 ln r a
60
(1-1-17)
式中, εr为同轴线内、外导体间填充介质的相对介电常数。 常
用的同轴线的特性阻抗有50 Ω 和75Ω两种。
第1章 均匀传输线理论 2) 传播常数 γ 传播常数 γ 是描述传输线上导行波沿导波系统传播过程中 衰减和相移的参数, 通常为复数,由前面分析可知
1 2 1 2
。 对于 LC
R G j LC 1 jL 1 jC
1 ( RY0 GZ 0 ) j LC 2
于是小损耗传输线的衰减常数α和相移常数β分别为
(1-1-19)
1 α= (RY0+GZ0) 2 LC β=ω
第1章均匀传输线理论详解
第1章
1.1 1.2 1.3 1.4
均匀传输线理论
均匀传输线方程及其解 传输线阻抗与状态参量 无耗传输线的状态分析 传输线的传输功率、 效率与损耗
1.5
1.6 1.7
阻抗匹配
史密斯圆图及其应用 同轴线的特性阻抗
习
题
第1章 均匀传输线理论
传输线
电路:导线
e.g.50Hz交流电电线
无纵向电磁场分量的电磁波称为横电磁波,即TEM
波,TEM波只能够存在于双导体或多导体中。
另外, 传输线本身的不连续性可以构成各种形式的
微波无源元器件 , 这些元器件和均匀传输线、 有源
元器件及天线一起构成微波系统。
第1章 均匀传输线理论
一、传输线的种类
1、双导体传输线(TEM波传输线): 它由两根或两根以上平行导体构成 , 因其传输的电 磁波是横电磁波( TEM 波)或准 TEM 波 , 故又称为 TEM波传输线。
dU ( z ) Z I ( z) dz
dI ( z ) Y U ( z ) dz
移相
dU 2 ( z ) dI ( z ) Z Z Y U ( z ) 2 dz dz
dI 2 ( z ) Z Y I ( z) 0 2 dz
dI 2 ( z ) dU ( z ) Y Y Z I ( z) 2 dz dz
从微分的角度,对很小的Δz, 忽略高阶小量,有: u ( z , t ) u ( z z , t ) u ( z , t ) z z i ( z , t ) i ( z z , t ) i ( z , t ) z z 从电路角度,应用基尔霍夫定律,可得: i ( z , t ) u(z, t)+R﹒Δz﹒i(z, t)+ L z - u(z+Δz, t)=0 t u( z z, t ) i(z, t)+G﹒Δz﹒u(z+Δz, t)+ C﹒Δz﹒ -i(z+Δz, t)=0
第1章 均匀传输线
的位置、传输线的特性阻抗、终端负载阻抗及工作频率有关,且 一般为复数,故不宜直接测量。另外,无耗传输线上任意相距 λ /2处的阻抗相同,一般称之为λ /2重复性。
第1章 均匀传输线理论
例1、一根特性阻抗为50Ω、长度为0.1875m的无耗均匀传输线, 其工作频率为200MHz,终端接有负载ZL=40+j30 (Ω),试求其 输入阻抗。 解 : 由工作频率 f=200MHz 得相移常数 β=2πf/c=4π/3 。将 ZL=40+j30 (Ω),Z0=50,z=l=0.1875及β值代入下式,有
TEM波指电矢量与磁矢量都与传播方向垂直。
第1章 均匀传输线理论
金属波导
均匀填充介质的金属波导管;
有矩形波导、圆形波导、脊性波导、椭圆波导等。
第1章 均匀传输线理论
介质传输线
电磁波沿传输线表面传播,又称为表面波波导;
包括镜像线、单根表面波传输线、介质波导等。
第1章 均匀传输线理论
1.2 均匀传输线方程的建立与求解
u ( z, t ) u ( z, t ) u ( z, t )
z z A1e cos(t z ) A2 e cos(t z ) i ( z , t ) i ( z , t ) i ( z , t ) 1 [ A1e z cos(t z ) A2 e z cos(t z )] Z0
由上式可见,传输线上电压和电流以波的形式传播,在任一
点的电压或电流均由沿-z方向传播的行波(称为入射波)和沿+z 方向传播的行波(称为反射波)叠加而成。
第1章 均匀传输线理论
现在来确定待定系数,传输线的边界条件通常有以下三种:
微波技术和天线(第四版)刘学观 第1章
第一章均匀传输线理论第章传输1.1节均匀传输线方程及其解1.2节传输线的阻抗与状态参量1.3节无耗传输线的状态分析1.4节传输线的传输功率、效率与损耗1.5节阻抗匹配151.6节史密斯圆图及其应用1.7节同轴线的特性阻抗1.1 均匀传输线方程及其解 本节要点传输线分类均匀传输线等效及传输线方程传输线方程解及其分析传输线的特性参数1.微波传输线定义及分类微波传输线是用以传输微波信息和能量的各种形式的传输系统的总称,它的作用是引导电磁波沿一定方向传输因此又称为导波系统 第一类是双导体传输线,它由二根或二根以上平行传输,因此又称为导波系统。
第类是双导体传输线由根或根以平行导体构成,因其传输的电磁波是横电磁波(TEM 波)或准TEM 波,故又称为TEM 波传输线,主要包括平行双线同轴线带状线和微带线等行双线、同轴线、带状线和微带线等。
第二类是均匀填充介质的金属波导管,因电磁波在管内传播,故称为波导,主要包括矩形波导、圆波导、脊形波导和椭圆波导等。
第三类是介质传输线,因电磁波沿传输线表面传播,故称为表面波波导,主要包括介质波导、镜像线和单根表面波传输线等。
2. 均匀传输线方程当高频电流通过传输线时,在传输线上有:导线将产生热耗,这表明导线具有分布电阻;在周围产生磁场,即导线存在分布电感;由于导线间绝缘不完善而存在漏电流,表明沿线各处有分布电导;两导线间存在电压,其间有电场,导线间存在分布电容。
这四个分布元件分别用单位长分布电阻、漏电导、电感和电容描述。
设传输线始端接信号源,终端接负载,坐标如图所示。
Δz其上任意微分小段等效为由电阻R Δz 、电感L Δz 、电容C Δz z +Δz z z 0和漏电导G Δz 组成的网络。
i (z +Δz ,t )i (z ,t )R ΔzL Δz u (z +Δz ,t )u (z ,t )G Δz C Δz设时刻t 在离传输线终端z 处的电压和电流分别为u (z,t ) 和i (z,t ),+z +z +z z +Δz而在位置z Δz 处的电压和电流分别为u (z Δz,t )和i (z Δz,t )。
微波技术第1章-传输线理论1
电磁波传播问题概述
• 时域一般波动方程
r r r 2 r ∂E ∂ E 1 ∂J 2 ∇ E − µε − µε 2 = ∇ρ + µ ∂t ∂t ε ∂t r r 2 r r ∂H ∂ H 2 ∇ H − µε − µε 2 = −∇ × J ∂t ∂t
(9)
一阶时间偏导数代表损耗,二阶代表波动。 一阶时间偏导数代表损耗,二阶代表波动。
(5)
r r r r D = εE , B = µH
短路面(理想导体边界)
r r n×E = 0 S r r r n×H =α S r r n•D =σ S r r n•B =0
S
→
Et
S
= 0,
Hn S = 0 Ht
S
En S ≠ 0,
≠0
(6)
切向电场为零, 切向电场为零,切向磁场不为零的界 电壁)均可视为等效短路面 等效短路面。 面(电壁)均可视为等效短路面。
第1章 微波传输线
§1.1 引言
*传输系统:把微波能量从一处传到另一处的装置。 传输系统:把微波能量从一处传到另一处的装置。
传输系统也叫导波结构或导波系统。 传输系统也叫导波结构或导波系统。 微波中常用传输系统: 微波中常用传输系统: 传输线:由两根或两根以上平行导体构成。 *传输线:由两根或两根以上平行导体构成。 通常工作在其主模( 通常工作在其主模(TEM波或准TEM波) 。 故又称为TEM波传输线。(含平行双线、同轴线和微带线等) 波传输线。 含平行双线、同轴线和微带线等) 波导管:由单根封闭柱形导体空腔构成。 *波导管:由单根封闭柱形导体空腔构成。 电磁波在管内传播,简称波导。 电磁波在管内传播,简称波导。 表面波波导:由单根介质或敷介质层导体构成。 *表面波波导:由单根介质或敷介质层导体构成。 电磁波沿其表面传播。 电磁波沿其表面传播。
均匀传输线传输线理论
平行双导线和同轴线的分布参数
D d
b a
3
均匀传输线的等效电路
4
§2.2 均匀传输线方程及其解
z
Zg ZL
Eg
z+z i(z+z,t)
z Rz Lz
z=0 i(z,t)
Cz u(z+z,t)
Gz
u(z,t)
5
2.2.1 均匀传输线方程
u ( z
z,
t
)
Ri( z, t )
L
i(z,
t
t
)
我们着重研究时谐(正弦或余弦)的变化情况
u(z,t) Re U (z)e jt
i(z,t) Re
I(z)e jt
dU (z) dz
(R
j L)I (z)
ZI
(z)
dI
(z)
dz
(G
jC)U
(z)
YU (z)
dU (z) dz
j L I (z)
dI
(
z)
dz
jC U (z)
A1e
z
+A2e z
I (z)
1 Z0
( A1e z
A2e z )
注意:U (z) I (z)
Z0
Z0
Z Y
R jL G jC
是传输线的特征阻抗
8
方程的物理意义
电压的瞬时表达式,(电流的类似)
u(z, t) A1ez cos(t z) A2ez cos(t z)
沿-z方向的入射波
Z(z) Z(z l)
2
是tan()的重复性
⑵ l/4阻抗变换(倒置)性:传输线上相距l/4的 任意两点的阻抗性质发生转换:
第1.1节 均匀传输线理论
(
)
将终端条件U (0)=Ul, I (0)=Il代入上式可得
U l = A1 + A2 Il =
解得
,。 1
1 ( A1 − A2 ) Z0
《微波技术与天线》
第一章 均匀传输线理论之•均匀传输线方程及其解
研究传输线上所传输电磁波的特性的方法有两种: 研究传输线上所传输电磁波的特性的方法有两种
一种是“场 ” 的分析方法 “ 的分析方法,即从麦氏方程出发,解特定边界条 件下的电磁场波动方程 电磁场波动方程,求得场量( E和H)随时间和空间的变 电磁场波动方程 化规律,由此来分析电磁波的传输特性; 另一种方法是“ 路 ” 的分析方法 “ 的分析方法,它将传输线作为分布参数 来处理,得到传输线的等效电路 等效电路,然后由等效电路根据克希霍 等效电路 夫定律导出传输线方程,再解传输线方程 传输线方程,求得线上电压和电 传输线方程 流随时间和空间的变化规律,最后由此规律来分析电压和电 流的传输特性。
U ( z ) = A1e γz + A2 e − γz
I (z ) = A1e γz − A2 e −γz Z 0
(
)
Z 0 = ( R + jωL ) /(G + jωC )称为传输线的特性阻抗 。
A , A 为积分常数,由边界条件决定。 1 2 为积分常数,由边界条件决定。
《微波技术与天线》
第一章 均匀传输线理论之•均匀传输线方程及其解
《微波技术与天线》
第一章 均匀传输线理论之•均匀传输线方程及其解
精选第一章均匀传输线传输线理论资料
卫星系微波教研室
理工大学通信工程学院
1
第一章 均匀传输线理论
微波传输线 均匀传输线方程及其解 均匀传输线的传输特征及特征参数 传输线的传输功率、效率和损耗 无耗传输线的三种工作状态 史密斯圆图 无耗传输线的阻抗匹配
2
传输线的分布参数
高频磁场 → 分布电感 高频电场 → 分布电容 高频电流的趋肤效应 → 分布电阻 介质的漏电流 → 分布电导
z)
Ii
U (z
i (z )[1
)[1 G(
G(z)] z)]
Zin
(z)
U (z) I (z)
Z0
1 1
G(z) G(z)
G(z) Zin (z) Z0 Zin (z) Z0
终端负载与终端反射系数的关系
ZL
Z0
1 GL 1 GL
GL
ZL ZL
Z0 Z0
z
I (z)
1 Z0
( A1e z
A2e z )
注意:U (z) I (z)
Z0
Z0
Z Y
R jL G jC
是传输线的特征阻抗
9
方程的物理意义
电压的瞬时表达式,(电流的类似)
u(z, t) A1ez cos(t z) A2ez cos(t z)
I (z)
A1 Z0
[e( j )z
GLe( j )z ]
| GL | 0 行波状态 | GL | 1 驻波状态 | GL | 1 行驻波状态
UI ((zz))ZAA101eejjzz
[1 GLe j2 z ] [1 GLe j2 z ]
第一章(均匀传输线理论)
• 电容
U(t)=Ri(t),i(t)=GU(t)
U(t)=dψ/dt=Ldi/dt i(t)=dq/dt=CdU/dt
一 、 传微输波传线输的线基及本其种概类念
微波传输线:用来传输微波信息和能量的各种 形式传输系统的总称,也称导波系统。 导行波:向一定方向传播的电磁波称为导行波
4.驻波比(行波系数)
U
I
max
max
U U 1 U
U
1
I
I
U U 1 U U 1
min
min
1 1
K
U
min
1
1
U 1
max
0 1
1时: 全反射 0时: 无反射,即匹配状态 1 其它时:1
jZ0 jZ1
tan tan
l l
Yin
(l)
1 Zin (l)
Y0
Y1 Y0
jY0 jY1
tan tan
l l
当 l n(n=整数)时,tanβL=0 2
Zin
(l
)
Zin
(
n
2
)
Z1
当 l (2n 1)( n=整数)时, tanβL=∞ 4
Zin (l)
(2n Zin (
U (z) U (z) U (z) A1e j z[1 (z)]
I (z)
I (z)
I (z)
A1 Z0
e j z[1
( z )]
Zin
(z)
第1章++均匀传输线理论
l
l
当线上传输高频电磁波时,传输线上的导体上的损耗 电阻、电感、导体之间的电导和电容会对传输信号产 生影响,这些影响不能忽略。
①分布电阻: 电流流过导线将使导线发热表明导线具有 分布电阻; R0为传输线上单位长度的分布电阻。 ②分布电导 :导线间绝缘不完善而存在漏电流,表明沿 线各处有分布电导;G0为传输线上单位长度的分布电导。 ③分布电感:导线中有电流,周围有高频磁场,即导线 存在分布电感;L0为传输线上单位长度的分布电感。 ④分布电容:导线间有电压,导线间有高频电场,导线 间存在分布电容;C0为传输线上单位长度的分布电容。
=Y
dz dU ( z ) dz
定义电压传播常数:
ZY
R0 j L0 G0 jC0
d 2U z 2 U z 0 2 dz 则方程变为: 2 d I z 2 I z 0 2 dz
电压的解为:
z z U ( z) Ae A e 1 2
第一章 均匀传输线理论
§1.1 均匀传输线方程及其解
§1.2 传输线阻抗与状态参量
§1.3 无耗传输线的状态分析 §1.4 传输线的传输功率、效率和损耗 §1.5 阻抗匹配 §1.6 史密斯圆图及其应用 §1.7 同轴线及其特性阻抗
§1.1 均匀传输线方程及其解 一.微波传输线定义及分类
约束或引导微波沿一定方向传输的系统(导波系统)
U + = A1e g z I+ = 1 A1e g z Z0
e g z 表示向-z方向传播的波, 即自源到负载方向的入射 波,用U+或I +表示;
e
- gz
表示向+z方向传播的波,即 自负载到源方向的反射波, 用U-或I -表示。 电压电流解为
第1章均匀传输线理论
第1章 均匀传输线理论
1.1
均匀传输线方程及其解
由均匀传输线组成的导波系统都可等效为如图所示的均匀平 行双导线系统。
其中传输线的始端接微波信号源(简称信源), 终端接负载 , 选取传输线的纵向坐标为z, 坐标原点选在终端处, 波沿负z 方向传播。
第1章 均匀传输线理论
在均匀传输线上任意一点 z 处 , 取一微分线元 Δz ( Δz<<λ ) , 该线元可视为集总参数电路, 其上有电阻RΔz、电感LΔz 、电容 CΔz和漏电导GΔz(其中R, L, C, G分别为单位长电阻、单位长电 感、单位长电容和单位长漏电导),得到的等效电路如图所示。
整个传输线可看作由无限多个上述等效电路的级联而成。有耗 和无耗传输线的等效电路分别如图所示。
第1章 均匀传输线理论
均匀传输线及其等效电路 (a) 均匀平行双导线系统; (b) 均匀平行双导线的等效电路; (c) 有耗传输线的等效电路; (d) 无耗传输线的等效电路
第1章 均匀传输线理论
1、均匀传输线方程
2、封闭金属波导(TE波和TM波传输线):
TE波(横电波):凡是磁场矢量既有横向分量又有纵向分量, 而电场矢量只有横向分量的波称为磁波或横电波,通常表示 为H波或TE波。 TM波(横磁波):凡其电场矢量除有横向分量外还有纵向分 量,而磁场矢量只有横向分量的波称为电波或横磁波,通常 表示为E波或TM波。
第1章 均匀传输线理论
3、均匀传输线
沿线的分布参数 R0, G0, L0 , C0与距 离无关的传输线 沿线的分布参数 R0, G0, L0, C0与距 离有关的传输线
均匀传输线
不均匀传输线
第1章 均匀传输线理论
均匀传输线单位长度上的分布电阻为R0、分布电导为G0 、分布电容为C0、分布电感为L0,其值与传输线的形状、尺寸 、导线的材料、及所填充的介质的参数有关。
第节传输线的传输功率效率和损耗
Lr
(
z)
10
lg
Pin Pr
10 lg
l
1 e2 4z
20 lg l
2(8.686z)
(dB)
对于无耗线 Lr (z) 20 lg l (dB)
若负载匹配,则Lr,表达无反射波功率。
《微波技术与天线》
第一章 均匀传输线理论之•传输功率、效率与损耗
插入损耗(insertion loss):入射波功率与传播功率之比
《微波技术与天线》
第一章 均匀传输线理论之•传输功率、效率与损耗
总之,回波损耗和插入损耗虽然都与反射信号即反射系数有关;
回波损耗取决于反射信号本身旳损耗,|Γl|越大,则|Γr|越小; 插入损耗|Li|则表达反射信号引起旳负载功率旳减小,|Γl|越大,则|Li|也越大。
图 1- 9 | Lr|、 |Li|随反射系数旳变化曲线
1.4 传播线旳传播功率、效率与损耗
本节要点
传播功率 传播效率 损耗 功率容量
《微波技术率、效率与损耗
1. 传播功率(transmission power)与效率
设均匀传播线特征阻抗为实数且传播常数 j ;
则沿线电压、电流旳体现式为:
U (z) A1 eze jz le jzez
所以有
Pin Pr 3Pout Pi
可见,输入功分器旳功率分可分为反射功率,输出功率 和损耗功率三部分。
《微波技术与天线》
第一章 均匀传输线理论之•传输功率、效率与损耗
Decibels (dB)作为单位
功率值常用分贝来表达,这需要选择一种功率单位 作为参照,常用旳参照单位有1mW和1W。
假如用1mW作参照,分贝表达为:
P(dBm) 10 lg P(mW)
微波技术与天线——第1章
(1-7a) 根据双曲函数的表达式,上式整理后可得 (1-7c)
第一章、传输线理论 (2)已知传输线始条件 这时将坐标原点z=0选在始端较为适宜。将始端条件 U(0)=U1,I(O)=I1 ,代入式(1—4),同样可得沿线的 电压电流表达式为
(1-6b)
第一章、传输线理论 4、传输线的特性参量 传输线的特性参量主要包括:传播常数、特性阻抗、 相速和相波长 (1)、传播常数
反映波经过单位长度传输线后幅度和相位的变化 的物理量。
传播常数γ 一般为复数,可表示为 其中实部α称为衰减常数,表示行波每经过单位长度 后振幅的衰减,单位为分贝/米(dB/m)或奈培/米
第一章、传输线理论 (NP/m);虚部β称为相移常数,表示行波每经过单位长 度后相位滞后的弧度数,单位为弧度/米(rad/m)。 对于低耗传输线,一般满足 R0 L0 , G0 C0 , 所以有
第一章、传输线理论 由此可得
衰减常数是由传输线的导体电阻损耗αc和填充介质的漏 电损耗αd两部分组成。对于无耗传输线RO=0,G0=0
实际应用中,在微波频段内,总能满 足 R0 L0 , G0 C0 因此可把微波传输线当作无耗传输线来看待。
第一章、传输线理论 (2)特性阻抗 特性阻抗定义:传输线上入射波电压Ui(z)与入射波电流 Ii(z)之比。或反射波电压Ur(z)与反射波电流Ir(z)之比 的负值,即
图1-2
图1-3
第一章、传输线理论
电阻器
第一章、传输线理论 电容器
第一章、传输线理论 电感器
图1-9
图1-10
图1-11
第一章、传输线理论 在微波频率下传输线的分布参数效应
体现为分布参数电感,电容,电导和电阻
微波传输线的特点
均匀传输线理论课件
研究具有优良环境适应性(如耐高温、耐腐蚀)的传输线,提高传 输线的应用范围和可靠性。
THANKS
THANK YOU FOR YOUR WATCHING
要点一
微波传输线
研究适用于微波频段的传输线,提高信号传输速率和稳定 性。
要点二
高速数字传输线
研究高速数字信号的传输线,满足大数据和云计算的需求 。
未来传输线的发展趋势与挑战
集成化与微型化
随着电子设备向微型化发展,传输线也需要适应这一趋势,研究 微型化、高密度集成的新型传输线。
高效能与稳定性
提高传输线的导电效率和稳定性,以满足未来电子设备的高效能需 求。
均匀传输线的能量损耗
能量损耗的原因
能量损耗主要是由于传输线上的 电阻、电感和电容等分布参数引
起的。
功率损耗
功率损耗是指传输线上消耗的功率 ,它与传输线的长度、传输信号的 频率以及传输线的材料有关。
热损耗
热损耗是指由于能量损耗而产生的 热量,它会导致传输线温度升高, 影响传输性能。
均匀传输线的信号完整性
05
均匀传输线的应用实例
高速数字信号的传
总结词
高速数字信号的传输是均匀传输线理论的重 要应用之一,通过使用均匀传输线,可以确 保信号在高速传输过程中的稳定性和完整性 。
详细描述
在高速数字信号的传输过程中,由于信号的 频率较高,信号线上的电压和电流的瞬时值 会随着时间的变化而快速变化。为了确保信 号在传输过程中不失真,需要使用均匀传输 线理论来设计信号线的参数,如线宽、线厚 、线间距等,以减小信号在传输过程中的损 耗和反射,从而确保信号的稳定性和完整性
推导过程
基于电磁场理论和电路理论,通过分 析传输线的电场和磁场,推导出均匀 传输线方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1- 1- 7a)
第1章 均匀传输线理论 利用式( 利用式(1-1-5), 可得电流的通解为 ) 1 I ( z) = I + ( z) + I − ( z) = ( A1e +γz − A2 e −γz ) Z0 式中, 式中 Z 0
(1- 1-7b
= ( R + jωL) /(G + jωC )
第1章 均匀传输线理论
均匀传输线及其等效电路 图 1-2 均匀传输线及其等效电路 (a) 均匀平行双导线系统 (b) 均匀平行双导线的等效电路 均匀平行双导线系统; 均匀平行双导线的等效电路; (c) 有耗传输线的等效电路 (d) 无耗传输线的等效电路 有耗传输线的等效电路;
第1章 均匀传输线理论 设在时刻t, 位置z处的电压和电流分别为 处的电压和电流分别为u(z, t)和i(z, t), 而在 设在时刻 位置 处的电压和电流分别为 和 位置z+∆z处的电压和电流分别为 处的电压和电流分别为u(z+∆z, t)和i(z+∆z, t)。 对很小 位置 处的电压和电流分别为 和 。 忽略高阶小量, 的∆z, 忽略高阶小量 有
Z 0 shγ z Ul chγ z I l
(1-1-12)
令γ=α+jβ, 则可得传输线上的电压和电流的瞬时值表达式为
u ( z, t ) = u+ ( z, t ) + u− ( z, t )
+αz −αz = A1e cos(ωt + β z ) + A2 e cos(ωt − βz ) (1-1-8) i ( z , t ) = i+ ( z , t ) + i− ( z , t ) 1 = [ A1e +αz cos(ωt + β z ) − A2 e −αz cos(ωt − β z )] Z0
(1-1-6)
一维波动方程。 显然电压和电流均满足一维波动方程 显然电压和电流均满足一维波动方程。 电压的通解为
U ( z ) = U + ( z ) + U − ( z ) = A1eγ t + A2 e −γ t
式中, 为待定系数, 由边界条件确定。 式中 A1, A2为待定系数 由边界条件确定。
第 1章 均匀传输线理论 章
微波传输线是用以传输微波信息和能量的各种形式的传输 微波传输线是用以传输微波信息和能量的各种形式的传输 系统的总称, 它的作用是引导电磁波沿一定方向传输, 系统的总称 它的作用是引导电磁波沿一定方向传输 因此又称 导行波。 为导波系统, 其所导引的电磁波被称为导行波。 一般将截面尺 导波系统 其所导引的电磁波被称为导行波 寸、形状、媒质分布、材料及边界条件均不变的导波系统称为 形状、媒质分布、 规则导波系统, 又称为均匀传输线 均匀传输线。 规则导波系统 又称为均匀传输线。 把导行波传播的方向称为 纵向, 垂直于导波传播的方向称为横向。 纵向 垂直于导波传播的方向称为横向。无纵向电磁场分量的 电磁波称为横电磁波, 电磁波称为横电磁波,即TEM波。另外 传输线本身的不连续 横电磁波 波 另外, 性可以构成各种形式的微波无源元器件, 这些元器件和均匀传 性可以构成各种形式的微波无源元器件 输线、 有源元器件及天线一起构成微波系统 微波系统。 输线、 有源元器件及天线一起构成微波系统。
d 2U ( z ) − ZYU ( z ) = 0 2 dz
同理可得
d I ( z) − ZYI ( z ) = 0 2 dz
2
第1章 均匀传输线理论 令 γ 2=ZY=(R+jωL)(G+jωC), 则上两式可写为
d 2U ( z ) 2 − γ U ( z ) = 0 2 dz 2 d I ( z) − γ 2 I ( z) = 0 dz 2
第1章 均匀传输线理论
1.1 均匀传输线方程及其解 均匀传输线方程及其解 1. 均匀传输线方程
由均匀传输线组成的导波系统都可等效为如图 1- 2(a) ( ) 所示的均匀平行双导线系统 均匀平行双导线系统。 所示的均匀平行双导线系统。 其中传输线的始端接微波信号 简称信源) 终端接负载, 选取传输线的纵向坐标为z, 源(简称信源), 终端接负载 选取传输线的纵向坐标为 坐标 原点选在终端处, 波沿负z方向传播 方向传播。 原点选在终端处 波沿负 方向传播。 在均匀传输线上任意一 点z处, 取一微分线元 (∆z<<λ), 该线元可视为集总参数电 处 取一微分线元∆z( ) 其上有电阻R∆z、电感 电容C∆z和漏电导 和漏电导G∆z(其中 其中R, 路, 其上有电阻 、电感L∆z 、电容 和漏电导 其中 L, C, G分别为单位长电阻、 单位长电感、 单位长电容和单位 分别为单位长电阻、 分别为单位长电阻 单位长电感、 长漏电导),得到的等效电路如图 1-2(b)所示, 则整个传输线 长漏电导 得到的等效电路如图 ( )所示 可看作由无限多个上述等效电路的级联而成。 可看作由无限多个上述等效电路的级联而成。有耗和无耗传输 线的等效电路分别如图 1- 2(c)、 (d)所示。 ( ) )所示。
(1-1-10)
第1章 均匀传输线理论 将上式代入式 ( 1- 1- 7) , 则有 )
U ( z ) = U l chγ z + I l Z 0 shγ z Ul I ( z ) = I l chγ z + shγ z Z0
(1-1-11)
写成矩阵形式为
chγ z U ( z) = 1 shγ z I ( z) Z 0
对于时谐电压和电流, 对于时谐电压和电流 可用复振幅表示为
u ( z, t ) = Re U ( z )e jωt jωt i ( z , t ) = Re I ( z )e
(1-1-4)
第1章 均匀传输线理论 将上式代入( 即可得时谐传输线方程 将上式代入(1- 1- 3)式, 即可得时谐传输线方程 )
第1章 均匀传输线理论
第1章 均匀传输线理论 章
1.1 均匀传输线方程及其解 1.2 传输线阻抗与状态参量 1.3 无耗传输线的状态分析 1.4 传输线的传输功率、 效率与损耗 传输线的传输功率、 1.5 阻抗匹配 1.6 史密斯圆图及其应用 1.7 同轴线的特性阻抗 习 题
第1章 均匀传输线理论
第1章 均匀传输线理论 微波传输线大致可以分为三种类型。第一类是 微波传输线大致可以分为三种类型。第一类是双导体传输 三种类型 它由两根或两根以上平行导体构成, 线, 它由两根或两根以上平行导体构成 因其传输的电磁波是横 电磁波( 波传输线, 电磁波(TEM波)或准 波 或准TEM波, 故又称为 波 故又称为TEM波传输线 主要 波传输线 包括平行双线、同轴线、带状线和微带线等 所示。 包括平行双线、同轴线、带状线和微带线等, 如图 1 - 1(a)所示。 所示 第二类是均匀填充介质的金属波导管, 因电磁波在管内传播, 第二类是均匀填充介质的金属波导管, 因电磁波在管内传播, 故 称为波导, 主要包括矩形波导、圆波导、脊形波导和椭圆波导等, 称为波导 主要包括矩形波导、圆波导、脊形波导和椭圆波导等 所示。 如图 1- 1(b)所示。第三类是介质传输线 因电磁波沿传输线表 所示 第三类是介质传输线, 面传播, 故称为表面波波导, 主要包括介质波导、 面传播 故称为表面波波导 主要包括介质波导、 镜像线和单根 表面波传输线等, 所示。 表面波传输线等 如图 1 - 1(c)所示。 所示
第1章 均匀传输线理论 由上式可见, 传输线上电压和电流以波的形式传播, 由上式可见 传输线上电压和电流以波的形式传播 在任 一点的电压或电流均由沿-z方向传播的行波( 称为入射波 入射波) 一点的电压或电流均由沿 方向传播的行波(称为 入射波 ) 方向传播的行波 和沿+z方向传播的行波(称为反射波)叠加而成。 和沿 方向传播的行波(称为反射波)叠加而成。 方向传播的行波 反射波 现在来确定待定系数, 现在来确定待定系数 由图 1- 2(a)可知 传输线的边界 ( )可知, 条件通常有以下三种: 条件通常有以下三种 已知终端电压U 和终端电流I ① 已知终端电压 l和终端电流 l; 已知始端电压U 和始端电流I ② 已知始端电压 i和始端电流 i; 已知信源电动势E 和内阻Z 以及负载阻抗Z ③ 已知信源电动势 g和内阻 g以及负载阻抗 l。
∂t
(1-1-2)
第1章 均匀传输线理论 将式( 将式(1- 1- 1)代入式(1- 1- 2), 并忽略高阶小量 可得 )代入式( ) 并忽略高阶小量,
∂u( z, t ) ∂i( z, t ) = Ri( z, t ) + L ∂z ∂t ∂i( z, t ) ∂u( z, t ) = Gu( z, t )方程也称电报方程。在沟通大西洋电 缆(海底电缆)时,开尔芬首先发现了长线效 应:电报信号的反射、传输都与低频有很大 的不同。经过仔细研究,才知道当线长与波 长可比拟或超过波长时,必须计及其波动性, 这时传输线也称长线。
这就是均匀传输线方程, 也称电报方程。 电报方程。 这就是均匀传输线方程, 也称电报方程 均匀传输线方程
第1章 均匀传输线理论
第一种情况
代入式( 将边界条件 z=0 处U(0)=Ul、I(0)=Il 代入式(1- 1-7), ) 得 Ul=A1+A2 1 I l= (A1-A2) Z0 由此解得 (1-1-9)
1 A1= (Ul+IlZ0) 2 1 A2= (Ul-IlZ0) 2
dU ( z ) = ZI ( z ) dz dI ( z ) = YU ( z ) dz
和单位长并联导纳。 和单位长并联导纳。
(1-1-5)
式中, 式中 Z=R+jωL, Y=G+jωC, 分别称为传输线单位长串联阻抗