微波传输线概念
第二章-传输线理论
第二章 传输线理论
根据传输线上的分布参数是否均匀分布,可将其分为 均匀传输线和不均匀传输线。我们可以把均匀传输线分割
成许多小的微元段dz (dz<<λ),这样每个微元段可看作集 中参数电路,用一个Γ型网络来等效。于是整个传输线可
等效成无穷多个Γ型网络的级联
第二章 传输线理论
2 - 2 无耗传输线方程及其解 一、传输线方程
即:
( ) I (z) = Ii2e jβ z + Ir2e- jβ z = Ii2 e jβ z + e- jβ z = 2Ii2 cos β z
( ) u(z,t) =
2Ui2
sin
β
z cos ω t
+
φ 2
+π
2
i(z,t) =
2
Ii2
cos β
z cos(ω t
+
φ) 2
第二章 传输线理论
=
-
Ur (z) Ir (z)
=
R0 + jωL1 G0 + jωC1
对于无耗传输线( R0 = 0, G0 = 0 ),则
Z0 =
L1 C1
对于微波传输线 ,也符合。
平行双线 同轴线 特性阻抗
在无耗或低耗情况下,传输线的特性阻抗为一实数, 它仅决定于分布参数L1和C1,与频率无关。
第二章 传输线理论
l = (2n +1) λ (n = 0,1,2,)
4
1.传输线上距负载为半波长整数倍的各点的输入阻抗等于负载阻抗;
2.距负载为四分之一波长奇数倍的各点的输入阻抗等于特性阻抗的
平方与负载阻抗的比值;
3.当Z0为实数,ZL为复数负载时,四分之一波长的传输线具有变换阻 抗性质的作用。
微波技术(微波传输线)
描述信号在传输线上传播时的 幅度和相位变化的参数。
衰减
指信号在传输过程中幅度的减 小,与传输线的长度和材料有 关。
延迟
指信号在传输过程中时间的延 迟,与传输线的长度和传播速
度有关。
03
微波传输线的性能分析
传输线损耗
导体损耗
辐射损耗
由于导体中的电子与电磁场相互作用, 导致能量转化为热能,从而产生损耗。
传输线不连续性
不连续性定义
01
不连续性是指微波传输线中因结构、尺寸、材料等因素引起的
电磁场分布不连续的现象。
不连续性类型
02
不连续性可分为短路、开路、不均匀、不匹配等类型。
不连续性的影响
03
不连续性会导致信号反射、散射和模式转换等,影响微波系统
的性能。
04
微波传输线的实际应用
卫星通信系统
卫星通信系统是利用微波传输线实现地球上不同位置之间通信的重要应用之一。
微波技术的应用领域
01
02
03
通信领域
利用微波的穿透性和反射 性,实现无线通信和卫星 通信,如移动通信、电视 广播等。
雷达领域
利用微波的反射性和高频 率特性,实现高精度、高 分辨率的雷达探测和定位。
加热领域
利用微波对水分子产生共 振的特性,实现快速、均 匀的加热,常用于食品加 工和工业加热。
02
未来发展方向与展望
未来微波传输线将朝着高频化、高速化、 小型化、集成化的方向发展,以满足不
断增长的信息传输需求。
随着新材料、新工艺的不断涌现,微波 传输线的性能将得到进一步提升,如采 用新型介质材料、电磁超材料等,实现
更低损耗、更高传输效率的目标。
微波网络课后习题答案
微波网络课后习题答案微波网络课后习题答案随着科技的不断进步,网络已经成为了我们生活中不可或缺的一部分。
而微波网络作为一种重要的通信技术,在现代社会中发挥着重要的作用。
然而,在学习微波网络的过程中,我们常常会遇到一些难题,需要通过课后习题来巩固和加深对知识的理解。
本文将为大家提供一些微波网络课后习题的答案,希望能够对大家的学习有所帮助。
1. 什么是微波网络?微波网络是一种基于微波技术的通信网络,它利用微波信号进行数据传输。
微波信号具有高频率和高带宽的特点,能够在较远距离内传输大量的数据。
微波网络主要由发射器、接收器、传输介质和信号处理设备等组成。
2. 微波网络的应用领域有哪些?微波网络广泛应用于电信、广播、卫星通信、雷达等领域。
在电信领域,微波网络被用于电话和互联网的传输;在广播领域,微波网络用于电视和广播的传输;在卫星通信领域,微波信号被用于卫星之间的通信;在雷达领域,微波信号被用于探测目标等。
3. 什么是微波传输线?微波传输线是一种用于传输微波信号的导线或导管。
常见的微波传输线有同轴电缆、微带线和波导等。
同轴电缆是由内导体、绝缘层和外导体组成的,适用于中小功率的传输。
微带线是一种在介质板上制作的传输线,适用于高频率的传输。
波导是一种空心的金属管道,适用于高功率的传输。
4. 什么是微波功率分配器?微波功率分配器是一种用于将微波功率分配给多个输出端口的设备。
常见的微波功率分配器有功率分配器、功率组合器和功率分束器等。
功率分配器将输入功率均匀地分配给多个输出端口;功率组合器将多个输入功率合并为一个输出功率;功率分束器将输入功率分散到多个输出端口。
5. 什么是微波滤波器?微波滤波器是一种用于滤除或选择特定频率的微波信号的设备。
微波滤波器可以分为低通滤波器、高通滤波器、带通滤波器和带阻滤波器等。
低通滤波器可以滤除高频信号,只保留低频信号;高通滤波器可以滤除低频信号,只保留高频信号;带通滤波器可以选择特定频率范围内的信号;带阻滤波器可以滤除特定频率范围内的信号。
第三章 微波传输线
图
H11模
图
E11模
Z
Ez
Eψ
Er
O Ψ
Y
r
X
圆柱坐标系
1 ∂H z ∂H ϕ = jωεE r − ∂z r ∂ϕ ∂H r ∂H z − = jωεEϕ ∂z ∂r 1 ∂ 1 ∂H r (rH ϕ ) − = jωεE z r ∂r r ∂ϕ 1 ∂E z ∂Eϕ = − jωµH r − ∂z r ∂ϕ ∂E r ∂E z − = − jωµH ϕ ∂z ∂r 1 ∂ 1 ∂E r (rEϕ ) − = − jωµH z r ∂r r ∂ϕ
(2)常用低次模的截止波长: 例1:矩形波导尺寸为a=8cm,b=4cm;试求工作频率在 3GHz时该波导能传输的模式。
3、波导尺寸的选取 (1)目的:只传输H10模,抑制H20模和H01模,即只传输主 模。因为这样可以使信号能量集中,减小损耗,且避免模式 间干扰和多模式传输引起的附加色散。 (2)选取原则:
一、直角坐标系中电磁场关系 1、基本方程 对于无损耗的媒质来说,电磁场中的基本方程,即麦克思韦方程变为
r r ∂H ∇ × E = −µ ∂t r r ∂E ∇× H = ε ∂t
(1)
为了求解方便,设场量按正弦规律变换,则
r r jwt −γz E = Em e r r jwt −γz H = H me
可以得到磁场的直角分量为
∂E z + γE y = − jwµH x (书P33,3-6式) ∂y ∂E z − γE x − = − jwµH y ∂x ∂E y ∂E x + = − jwµH z ∂x ∂y
用Ez和Hz表示其它场分量,由上述两个式子可以得到:
Ex = −
微波技术基础 第2章 传输线理论
内容提要
一、传输线基本概念
1、传输线的种类
2、分布参数及分布参数电路
二、传输线方程的解
1、传输线方程的解
2、入射波和反射波
三、传输线的特性参量
传播常数、特性阻抗、相速和相波长、输入阻抗、反
射系数、驻波比(行波系数)和传输功率
2020/1/23
1
西安电子科技大学
四、均匀无耗传输线工作状态的分析
,
a b
ad
D
a
W
, d
L1(H / m)
ln b 2 a
D D2 d2
ln
d
d
W
C1(F / m)
2 / ln b
a
/ ln D D2 d 2
d
W
d
R1( / m)
Rs
2
1 a
1 b
2Rs
d
2Rs W
G1(S / m)
数电路,用一个 型网络来等效。于是整个传输线可等效成 无穷多个 型网络的级联.
2020/1/23
6
西安电子科技大学
二、传输线方程
i(z,t)
L1 z
(z, t) R1 z
G1z
i(z z,t)
C1z (z z,t)
z
1) 一般传输线方程或电报方程
z,t z z,t z,t z
2
2
I (d ) VL ILZ0 e d VL ILZ0 e d I (d ) I (d )
2Z0
2Z0
V (d) ch d
I
(d
第三章微波传输线平行双线与同轴线
各种微波集成传输线
① 准TEM波传输线, 主要包括微带传输线和共 面波导等(a)-(c);
② 非TEM波传输线, 主要包括槽线、 鳍线等 (d);
③开放式介质波导传输线, 主要包括介质波导、 镜像波导(e-f);
2 从同轴线到金属波导管
• 金属波导:和同轴线比较,波导管除去内 导体,不仅降低了内导体的损耗而且提高 了传输线的功率容量;
• 其缺点是比较笨重、高频下批量成本高、 频带较窄等。
3 微波集成传输线
• 随着航空、航天事业发展的需要, 对微波 设备提出了体积要小、重量要轻、 可靠性 要高、性能要优越、一致性要好、 成本要 低等要求, 这就促成了微波技术与半导体 器件及集成电路的结合, 产生了微波集成 电路。
1
1
c
vp
L0C0
r r
p
2
vp f
0 r r
当同轴线的截面尺寸与工作波长可比 拟时,同轴线内将出现高次模式。 要使同 轴线工作于TEM模式,则同轴线的内外半径 应满足以下条件:
min
1
2
D
d
3 损耗特性
通常同轴线介质损耗很小,其传输 损耗基本上决定于导体的欧姆损失。 同轴线的衰减常数仍可按下式估算
通频带:0~nGHz,语音信号
在实际中,广泛使用不同型号的电缆连 接接头(Cable Connector)以实现电缆的 连接, 尽管其功能相似, 但结构不同。 它们的共同点都是将电缆的内导体和外导 体分别连接起来, 使用时要注意连接头电 气和机械很好的匹配。
《微波传输线》课件
低噪音
微波传输线具备低噪音特性,在信号传输过程中不 会引入过多的干扰。
高灵敏度
微波传输线对微小信号非常敏感,可以实现高精度 的信研究领域
3 工业领域
包括无线通信、光纤通信等, 微波传输线在通信领域中扮 演着重要的角色。
包括辐射研究、涡流损耗测 量等,微波传输线在科学研 究中具备广阔的应用前景。
《微波传输线》PPT课件
微波传输线是一种用于在高频率电路中传输电能和信号的特殊电缆。它通过 高频率、高速度、高精度和高灵敏度的特点,实现了高效的电能传输。
什么是微波传输线?
微波传输线是一种用于在高频率电路中传输电能和信号的特殊电缆。它在微波技术中扮演着重要的角色,使得高频 率电路能够稳定地工作。
微波传输线的特点
包括同轴电缆、双对称电缆、单称电缆等不同类型,用于高频率电路的信号传输。
2 无线传输线
包括空气传输线、杆塔传输线、建筑传输线等适用于高频率电路信号传输的无线传输方 式。
微波传输线的优点
高频率响应
微波传输线可以有效地传输高频率信号,确保了电 路的正常工作。
高速传输
微波传输线能够实现快速的数据传输,适用于高速 通信和数据传输领域。
包括雷达、微波炉等,微波 传输线在工业应用中发挥着 重要的作用。
总结
微波传输线是一种高效、高精度的传输方式,被广泛应用于通信、研究和工 业等领域。我们应该进一步研究和探索微波传输线的应用潜力。
高频率
微波传输线可以工作在高频率范围内,实现高速数 据传输。
高速度
微波传输线的传输速度非常快,确保了高频率信号 的准确传输。
高精度
微波传输线具备高精度的信号传输和电能传输效果, 确保了电路工作的稳定性。
《微波传输线》课件
环境影响与可持续发展
总结词
环境影响与可持续发展是微波传输线发展中必须考虑 的问题,需要采取有效措施降低对环境的影响。
详细描述
随着人们对环境保护意识的提高,微波传输线在发展 过程中必须考虑其对环境的影响。在材料选择、生产 制造、使用过程中,需要采取环保措施,减少对环境 的污染和破坏。同时,为了实现可持续发展,还需要 积极探索可再生能源的应用,如太阳能、风能等,以 降低能源消耗和碳排放量,为构建绿色、低碳的未来 做出贡献。
缺点
尺寸较大,不易实现小型化和集成化。
圆波导
结构特点
由一个金属圆筒和两个金属封盖构成 ,传输TEM模的电磁波。
应用场景
主要用于微波测量和某些特殊应用。
优点
具有低损耗、高带宽和良好的屏蔽性 能。
缺点
尺寸较大,不易实现小型化和集成化 ,且加工难度较高。
光纤
结构特点
由石英或塑料制成的纤芯和包层组成,传输 光波。
《微波传输线》PPT课件
目录
• 微波传输线概述 • 微波传输线的种类与结构 • 微波传输线的传输特性 • 微波传输线的应用场景 • 微波传输线的设计与优化 • 微波传输线的未来发展与挑战
01
微波传输线概述
定义与特点
定义
微波传输线是指用来传输微波信号的 导波结构,通常由金属导体(如铜、 铝等)构成。
06
微波传输线的未来发展 与挑战
新材料的应用
总结词
新材料的应用是微波传输线领域的重要发展 方向,有助于提高传输性能和降低成本。
详细描述
随着科技的不断发展,新型材料如碳纳米管 、石墨烯等在微波传输线中的应用逐渐受到 关注。这些新材料具有优异的电性能和机械 强度,可以替代传统的铜线材料,降低传输 损耗,提高传输速度,同时也有助于减轻线 缆重量和减小线缆尺寸,为未来的通信和航
微波技术长线理论
当接通电源后, 电流通过分布电感逐级向分布 电容充电形成向负载方向传输的电压波和电流波, 即,电压和电流是以波的形式在传输线上传播并 将能量从电源传至负载。
思考题: 1. 什么叫传输线?微波传输线可分为哪几类? 2. 何谓“长线”、“短线” ?举例说明。 3.什么叫分布参数电路?它与集中参数电路 在概念和处理手法上有何不同?
线”。显然,微波传输线属于“长线”的范 畴,
故本章称为 “ 长线理论 ” , 即微波传输 线
2. 分布参数与分布参数电路
长线和短线的区别还在于: 长线为分布参数电路, 短线为集中参数电路。 低频电路中, 电路元件参数(R、L、C)基本上 都集中在相应的元件(电阻、电感器、电容器)中, 称为集中参数。 电路中还存在着元件间连线的电阻、电感和 导线间的电容等,称为分布参数。 低频电路中, 分布参数的量值与集中参数相比, 微乎其微, 可忽略不计。低频传输线为短线, 在电 路中只起连接线作用。低频电路为集中参数电路。
高频信号通过传输线时会产生以下分布参数:
导体周围高频磁场→串联分布电感; 两导体间高频电场→并联分布电容; 导线 有限,高频电流趋肤效应→分布电阻; 导体间非理想绝缘→漏电→并联分布电导。
当双导线工作在微波波段时,分布参数的影响 不容忽视。
例:设双导线的分布电感 L0=0.999nH/mm, 分布电容 C0=0.0111pF/mm ;
3. 均匀传输线的等效电路
对于均匀传输线, 由于分布参数均匀分布,故可任 取一小段线元 dz<< 来讨论,dz可作为“短线”,即集
中 参数电路来处理, 并等效为一个集中参数的型网络。而 整个传输线就可视为由许多相同线元dz的等效网络级联 而成的电路,如图2-5所示。
微波技术第1章-传输线理论1
电磁波传播问题概述
• 时域一般波动方程
r r r 2 r ∂E ∂ E 1 ∂J 2 ∇ E − µε − µε 2 = ∇ρ + µ ∂t ∂t ε ∂t r r 2 r r ∂H ∂ H 2 ∇ H − µε − µε 2 = −∇ × J ∂t ∂t
(9)
一阶时间偏导数代表损耗,二阶代表波动。 一阶时间偏导数代表损耗,二阶代表波动。
(5)
r r r r D = εE , B = µH
短路面(理想导体边界)
r r n×E = 0 S r r r n×H =α S r r n•D =σ S r r n•B =0
S
→
Et
S
= 0,
Hn S = 0 Ht
S
En S ≠ 0,
≠0
(6)
切向电场为零, 切向电场为零,切向磁场不为零的界 电壁)均可视为等效短路面 等效短路面。 面(电壁)均可视为等效短路面。
第1章 微波传输线
§1.1 引言
*传输系统:把微波能量从一处传到另一处的装置。 传输系统:把微波能量从一处传到另一处的装置。
传输系统也叫导波结构或导波系统。 传输系统也叫导波结构或导波系统。 微波中常用传输系统: 微波中常用传输系统: 传输线:由两根或两根以上平行导体构成。 *传输线:由两根或两根以上平行导体构成。 通常工作在其主模( 通常工作在其主模(TEM波或准TEM波) 。 故又称为TEM波传输线。(含平行双线、同轴线和微带线等) 波传输线。 含平行双线、同轴线和微带线等) 波导管:由单根封闭柱形导体空腔构成。 *波导管:由单根封闭柱形导体空腔构成。 电磁波在管内传播,简称波导。 电磁波在管内传播,简称波导。 表面波波导:由单根介质或敷介质层导体构成。 *表面波波导:由单根介质或敷介质层导体构成。 电磁波沿其表面传播。 电磁波沿其表面传播。
微波技术基础简答题整理
对于电场线,总是垂直于理想管壁,平行于理想管壁的分量为 对于磁场线,总是平行于理想管壁,垂直于理想管壁的分量为 ( P82)
0 或不存在; 0 或不存在。
2-10. 矩形波导的功率容量与哪些因素有关? 矩形波导的功率容量与波导横截面的尺寸、模式(或波形) 导中填充介质的击穿强度等因素有关。 (P90)
工作波长 λ,即电磁波在无界媒介中传输时的波长, λ与波导的形状与尺寸无关。 截止波数为传播常数 γ等于 0 时的波数,此时对应的频率称为截止频率,对应的 波长则称为截止波长。它们由波导横截面形状、尺寸,及一定波形等因素决定。 波长只有小于截止波长, 该模式才能在波导中以行波形式传输, 当波长大于截止 波长时,为迅衰场。
2-2. 试从多个方向定性说明为什么空心金属波导中不能传输 TEM模式。※
如果空心金属波导内存在 TEM 波,则要求磁场应完全在波导横截面内,而且是 闭合曲线。 由麦克斯韦第一方程, 闭合曲线上磁场的积分应等于与曲线相交链的 电流。由于空心金属波导中不存在沿波导轴向(即传播方向)的传到电流,所以 要求存在轴向位移电流,这就要求在轴向有电场存在,这与 TEM 波的定义相矛 盾,所以空心金属波导内不能传播 TEM 波。
按损耗特性分类: ( 1)分米波或米波传输线(双导线、同轴线) ( 2)厘米波或分米波传输线(空心金属波导管、带状线、微带线) ( 3)毫米波或亚毫米波传输线(空心金属波导管、介质波导、介质镜像线、微 带线) ( 4)光频波段传输线(介质光波导、光纤)
1-3. 什么是传输线的特性阻抗,它和哪些因素有关?阻抗匹配的物理实质是什 么?
4-5. 微波谐振器的两个主要功能是 储能 和选频 。
4-6. 无耗传输线谐振器串联谐振的条件是 Zin =0,并联谐振的条件是 Zin =∞。
01微波技术第1章传输线理论
传 输 线 理 论
二、分布参数的概念及传输线的 等效电路
• 电路理论的前提是集中参数,其条件为: •
ι<<λ ι:电器尺寸,λ:工作波长 传输线中工作波长和传输长度可比拟,沿 线的电压、电流不仅是时间的函数,还是 空间位置的函数,从而形成分布参数的概 念。
传 输 线 理 论
传输线上处处存在分布电阻、分布电 感,线间处处存在分布电容和漏电导。分 布参数为:R(Ω/m)、L(H/m) C(F/m)、 G(S/m) 如果分布参数沿线均匀,则为均匀传 输线,否则,为非均匀传输线。 传输线的等效电路如图1.1.1所示
EXP:双根传输线
传 输 线 理 论
Zc取决于传输线的几何尺寸和周围媒介, 与传输线的位置和工作频率无关。
传 输 线 理 论
⑶ 相速和波长 相速:某一等相面推进的速度 令α=0(无耗),由ωt-βz=常数,得
传 输 线 理 论
§1-3 反射系数、输入阻抗与 驻波系数
传输线上的电压、电流既然具有波
传 输 线 理 论
第一章 传输线理论
§1-1 传输线的种类及分布 参数的概念
传 输 线 理 论
• 定义:广义上讲,凡是能够导引电磁波
•
沿一定方向传输的导体、介质或由他们 共同组成的导波系统,都可以称为传输 线。 传输线是微波技术中最重要的基本元件 之一,原因有两点: ⑴ 完成把电磁波的能量从一处传到另一 处。 ⑵ 可构成各种用途的微波元件。 Exp:耦合器、匹配器、电容、电感等
传 输 线 理 论
1.3.2式的意义在于: ⑴ 无耗传输线上各点反射系数的大小相等, 均等于终端反射系数的大小。 ⑵ 只要求出|Γ|,若已知λ或β则可求出任意 点的反射系数Γz 随着ZL的性质不同,传输线上将会有 如下不同的工作状:
电磁场理论与微波技术 第8章 微波传输线
所以 ▽× = -jωμH
③
4.全电流定律▽×H = Jc + ∂D/∂t ,现无传导电流,Jc = 0 , 以及D = εE ,E正比于ejωt ,
所以 ▽×H = jωεE
④
第8章 微波传输线
Maxwell方程组变成:
▽•E = 0
①
▽•B = 0
②
▽×E = -jωμH ③
▽×H = jωεE ④
第8章 微波传输线 图 8―1―1
第8章 微波传输线
在微波的低频段,可以用平行双线来传输微波能量和信号;而 当频率提高到其波长和两根导线间的距离可以相比时,电磁能量会 通过导线向空间辐射出去,损耗随之增加,频率愈高,损耗愈大, 因此在微波的高频段,平行双线不能用来作为传输线。
为了避免辐射损耗,可以将传输线做成封闭形式,像同轴线 那样电磁能量被限制在内外导体之间,从而消除了辐射损耗。因 此,同轴线传输线所传输的电磁波频率范围可以提高,是目前常 用的微波传输线。但随频率的继续提高,同轴线的横截面尺寸必 须相应减小,才能保证它只传输TEM模,这样会导致同轴线的导 体损耗增加,尤其内导体引起损耗更大,传输功率容量降低。因 此同轴线又不能传输更高频率的电磁波,一般只适用于厘米波 段。
= ω2 με
(即以后的波数k = 2π/λε:k = ω√με,2πf / v = 2π/λε,v=λεf)
左边 = 右边:
即:▽2 E + k2 E = 0
其中k2
2.同样对▽×H式两边再取▽×:得 :▽2 H + k2 H = 0
第8章 微波传输线
(三)直角坐标系下的场量:
E = ax Ex + ay Ey + az Ez H = ax Hx + ay Hy + az Hz ▽2 E = ax▽2Ex + ay▽2Ey + az▽2Ez ▽2 H = ax▽2Hx + ay▽2Hy + az▽2Hz
微波技术原理 第3章 传输线理论(第1-5节)
无失真线的条件 若传输线的损耗较大,β 一般不再是频率的
线性函数,因而相速vp 将随频率变化。即传输过 程中将出现色散,结果会导致传输信号失真。
但如果有损传输线的损耗参量和电抗参量能 满足以下关系:
那么
,就不会出现色散。——无失真线
作业:P118
3.2
§3.4 理想传输线中传输波的特性参量
i ( z , t ) = I(z) e jωt
+
u ( z , t ) = U(z) e jωt
-
Z0 ,β
ZL
-l
0Z
由于电流波和电压波到达终端负载时,都将 发生反射,所以在传输线(Z < 0)中既有入射波 又有反射波,总电压和总电流的波动函数为:
一. 反射系数 定义:反射波电压与入射波电压之比称为电压反
射系数,简称为反射系数,记为:Γ 。
~
Z0
RL>Z0
~
Z0
RL<Z0
|U|
|U|,|I|
|U|
|U|,|I|
|I|
|U|max
|I|
z 5λ/4 λ 3λ/4 λ/2 λ/4 O a)
z 5λ/4 λ 3λ/4 λ/2 b)
|U|min λ/4 O
理想传输线终端接纯电阻负载
五. 利用测量线测量终端负载阻抗的方法
P36 图片
θ=?
~
z
z
λ
z
5λ/4
Z0
u i
|U|
|I|
Zin
3λ/4
λ/2
λ/4
ZL=0 u,i 0 |U|,|I| 0 Zin
0
2. 终端开路(ZL=∞)
在这种情况下,传输线中电流波或电压波也是纯 驻波,终端负载Z=0处为电压波的波腹。
微波传输线的特性及其应用
微波传输线的特性及其应用引言:微波传输线是一种用于传输高频电信号的特殊导线,它具有独特的特性和广泛的应用。
本文将探讨微波传输线的特性,以及它在通信、雷达、卫星通信等领域的应用。
一、微波传输线的特性1. 低损耗:微波传输线中的导线和绝缘材料经过精心设计,使得其在传输过程中损耗较低,能够有效地保持信号的强度和质量。
2. 宽带特性:微波传输线的结构和参数能够适应宽频带的传输需求,使得它能够传输多种频率的电信号,从而满足不同应用场景的需求。
3. 高速传输:微波传输线具有较高的传输速度,能够在纳秒级别内传输电信号,适用于需要快速传输的应用,如雷达系统。
4. 抗干扰能力强:微波传输线的设计和结构使得它具有较强的抗干扰能力,能够有效地抵御外界电磁干扰和噪声,保证信号的稳定性和可靠性。
二、微波传输线的应用1. 通信领域:微波传输线广泛应用于通信领域,如移动通信基站、光纤通信系统等。
它能够传输高频信号,满足通信系统对于大容量、高速传输的需求。
2. 雷达系统:雷达系统是一种利用微波信号进行目标探测和测距的技术,微波传输线在雷达系统中扮演着重要的角色。
它能够稳定地传输雷达信号,确保雷达系统的准确性和可靠性。
3. 卫星通信:微波传输线在卫星通信系统中起到关键作用。
卫星通信需要通过微波信号进行长距离传输,微波传输线能够有效地传输卫星信号,保证卫星通信的稳定和可靠。
4. 医学影像:微波传输线在医学影像领域也有广泛的应用。
如医学磁共振成像(MRI)系统中的微波传输线能够传输高频信号,实现对人体内部结构的精确成像。
结论:微波传输线具有低损耗、宽带特性、高速传输和抗干扰能力强等特性,因此在通信、雷达、卫星通信和医学影像等领域得到了广泛的应用。
随着科技的不断进步,微波传输线的应用将会越来越广泛,为人们的生活和工作带来更多的便利和创新。
微波技术基础-传输线理论(2)
相速 相波长
ω vp = β
λ p = v pT =
2π
1 LC
β
2π LC
4
北京邮电大学——《微波技术基础》
本节内容 端接负载的无耗传输线
反射系数 驻波比 输入阻抗
传输线的工作状态
行波、驻波、行驻波定义及条件 不同工作状态下线上电压、电流等参数特点
北京邮电大学——《微波技术基础》
5
端接负载的无耗传输线
电压和电流行波解
d 2U ( z ) − γ 2U ( z ) = 0 dz 2 d 2 I ( z) − γ 2 I ( z) = 0 dz 2
电压和电流波动方程
3
北京邮电大学——《微波技术基础》
行波电压与行波电流之比 反映传输线材质特性的常数 上节内容回顾 传输线的特性参量主要包括:传播常数、特性阻抗、相速和 相波长、输入阻抗、反射系数、驻波比(行波系数)和传输功 率等。 无耗 ( R = G = 0) ⎪α = 0 传播常数 γ = α + jβ = ( R + jω L)(G + jωC ) ⎧ ⎨ ⎪ β = ω LC ⎩ U 0+ U 0− L 特征阻抗 Z 0 = + = − − = R + jω L Z0 = I0 I0 G + jωC C
北京邮电大学——《微波技术基础》
6
无耗线与有耗线的区别
有耗线(R≠0, G ≠0 )—— 一般表达式 传播常数 γ = α + j β = ( R + jω L)(G + jωC )(α≠0)
U U R + jω L =− = 特征阻抗 Z 0 = I I G + jωC
+ 0 + 0 − 0 − 0
微波技术(3.3.1)--第2-3讲微波传输线定义和类型
准TEM波传输线
单根金属波导, TE或TM波传 输线
介质系统, 表面波传输 线
TEM波(transverse electromagnetic wave)
微波低、中频区(双导体,传输主模为TEM波)
I1
Iz
I2 长线理论
微 波 源
U1
U z
U
2
负
ZL 载
微波传输线 在微波波段,凡用来导引电磁波沿定向传输的导体、
介质系统均可称为传输线。随着频率增高,传输线形式、
结构趋于复杂。基本原则是:损耗小、传输功率大、工 作频带宽、尺寸小。
导体带
介质基片 t W
d
接地板
r
低、中频区(双导体)
中高频区(微带线)
高频区(金属波导)
各种形式的传输线
பைடு நூலகம்
损耗小、传输功率大、工作频带宽、尺寸小。
l
双导线模型
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1) 2.45GHz 波長: =C/(F )
3×10 10cm/sec
=
2.45×10 (92.54) 10.2
(2) 2.45GHz 有效波長: = C / ( F eff )
3×10 10cm/sec
=
2.45×10 (2.54) 6.789
= 1.5 cm
= 1.85 cm
-18-
0 0(A(iAr)ir)
60.0 30.0 12.5 12.0 10.0 6.0 2.5
波 長 (cm)
11((= =2.525.)55)
37.7 18.8 7.83 7.51 6.29 3.77 1.57
-7-
22 ((==110.02.)2)
18.8 9.40 3.91 3.76 3.13 1.88 0.78
2.32
Ceramic filled PTFF/glass 6-8
Ceramic filled PTFF
10
Teflon®
2.10
Polyethylene
2.25
材料對不同特性阻抗(Z0)的有效介電常數( eff )
-19-
材料對不同特性阻抗(Z0)的有效介電常數( eff )
-20-
-5-
條型傳輸線的參數 - 特性阻抗(Z0)
介電常數與介電層厚度 導體寬度與厚度 t/b比率 地面距離
-6-
條型傳輸線的參數釋意-介電常數
介電常數:
=
0
介電質( )增加則波長( )減少
介電質將決定條型傳輸線的傳播速度與波長.
頻率
(GHz)
0.5 1.0 2.4 2.5 3.0 5.0 12.0
-10-
條型傳輸線的參數釋意-地面距離
地面距離
地面距離指
銅箔 接地面
B = 地面距離
-11-
微條帶 ( Microstrip )
微條帶
W
t
介電質( )
b
接地面
微條帶傳輸 (橫截面)
微條帶傳輸:由介電質來分離微條帶和接地面所組成. 在微波電路因具屏蔽功能故可充當傳輸線.
-12-
微條帶 ( Microstrip ) - 介電質(1) 影響微條帶電性的兩種介電常數與厚度:
第4 回
微波傳輸線 基本概論
楊亞基
87 / 8 /4
-1-
高頻元件種類
集總(Lumped)元件 •分佈(Distributed)元件
Input
Inductance C1 C2
Output
Input
C1
Output C2
Layout Pattern
根據 “集膚效應 ” (Skin Effect) 高頻電流流通於導體外部表面, 亦即高頻信號隨電路沿著元件長 度或面積來分佈.
空氣介電質. ( = 1.0 )及 銅箔厚度(t).
波長 = C / (F )
-13-
微條帶 ( Microstrip ) - 介電質(2)
2. PCB介電質.( = 2.54 , 10.2 . .)及材料厚度(b).
推導1.與2.的有效介電常數 ( eff )關係 :
eff = 1 + q ( r - 1 )
Pad
Ground
電感(L): 藉由高阻抗導線製作等效電感器. XL=2f·L 頻率愈高 ,阻抗愈高則線段愈窄.
-3-
條型傳輸線 (Strip line)
同軸電纜演化條型傳輸線的過程
A
B
C
D
當些許漏電場通過電介質的曝露邊緣為有 效抑制而以金屬帶罩將兩地電性緊密接合.
-4-
條型傳輸線的結構
微波傳輸線上最有用的形式即條型傳輸線,或稱 Triplate. Sandwish Package.
介電常數()及相對介電常數( r)與有效介電常數( eff)
空氣介電常數( =1 )
各種材料對空氣的相對介電常數( r )
Epoxy/glass
4.0 - 4.6
PTFF*/glass cloth
2.55
Polyphenylene oxide (PPO) 2.55
Irradiated polyolefin
-2-
分佈元件種類 : (a)傳輸線(Strip line)及 (b)微條帶(Micro strip)
分佈元件的電感(L)與電容(C)
電容(C1/C2):藉由Pad表面積和地所形成的極板以製作等
效電容器.
正極
Layout Pattern Pad
介電質
負極
C1
介電質
1.Fiber Glass
Copper Plate 2.Teflon
/4諧振器設計例 諧振器的諧振頻率 f0 = Length
3.91cm Glass Fiber Board ( =10.2)
7.83cm Teflon Board ( =2.54)
-8-
條型傳輸線的參數釋意-導體寬度與厚度 導體寬度與厚度
-9-
條型傳輸線的參數釋意- t/b比率 t/b比率
式中q為填充因素,其定義 :
介質面積
q = 若為條型微條帶時其所使用的全部介質面積
-14-
-15-
微帶寬度( W )與阻抗(Z0)的關係
Fig13
-16-
-17-
微波電路設計範例
試以工作頻率在2.4-2.5GHz的窄頻帶內;使用基板厚度t=0.025
英吋陶瓷負荷PTFF材料,且 r =10.2 計算其波長及有效波長.