控制系统的传递函数

合集下载

自动控制原理--传递函数的定义及性质和表示形式

自动控制原理--传递函数的定义及性质和表示形式
K*:=b0/a0,称为根轨迹增益;N(S)=0为系统 特征方程
传 递 函 数的表示形式
3.时间常数形式(尾1型 )
G(s)
bm (1s 1)( 2s2
an (T1s 1)(T2s2
22s 1)( is 1) 2T2s 1)(Tjs 1)
m
K bm K * am
(zi )
1 n
称 G(s)的开环增益。
传递函数
传递函数的定义及性质 传 递 函 数的表示形式
传 递 函 数的定义
对于n阶系统,线性微分方程的一般形式为:
a d n c(t) a d n1 c(t) a d c(t) a c(t)
0 dt n
dt1 n1
dt n1
n
b d m r(t) b d m1 r(t) b d r(t) b r(t)
另外实际系统总有惯性,因此实际系统中有n>=m,n称 为系统的阶数
传递函数的性质
7)传递函数是系统单位脉冲响应的Laplace变换。
定义 g(t) 为系统单位脉冲作用下的系统输出:
当 r(t) (t) 时,系统的输出c(t)称为 g(t)
此时,L[r(t)] L[ (t)] 1 所以:
C(s) G(s)R(s) G(s) c(t) g(t) L1[C(s)] L1[G(s)R(s)] L1[G(s)]
( p j )
1
i ,Tj 称时间常数。
传递函数的性质
G(s)
C(s) R(s)
b0sm a0 s n
b1sm1 a1sn1
bm1s an1s
bm an
5)传递函数的概念主要适用于单输入单输出系统。
若系统有多个输入信号,在求传递函数时,除了一

控制系统的传递函数

控制系统的传递函数

比例环节
二、典型环节及其传递函数 典型环节有比例、积分、惯性、振荡、微分和延迟环节等 多种。以下分别讨论典型环节的时域特征和复域(s域)特征。 时域特征包括微分方程和单位阶跃输入下的输出响应。s域特性 研究系统的零、极点分布。 (一)比例环节: 时域方程: y(t ) kx(t ), t
0
Y ( s) 传递函数: G ( s) k X ( s)
U a ( s) 功放: ua (t ) k3u2 (t ), G3 ( s) k3 U 2 ( s)
直流电动机:
(s)(TaTm s 2 Tm s 1) kuUa (s) km M c (s)(Ta s 1)
Tuesday, January 08, 2019
5
传递函数的基本概念||例2-8
K Kg
z
i 1 n j 1
m
i
p
j
Tuesday, January 08, 2019
11
传递函数的表现形式
若零点或极点为共轭复数,则一般用2阶项来表示。若 p1 , p2
1 1 为共轭复极点,则: 2 2 ( s p1 )(s p2 ) s 2 n s n 1 1 或: 2 2 (T1s 1)(T2 s 1) T s 2Ts 1 其中系数 n、 由 p1、p2 或 T1、T2 求得。
同样,共轭复零点可表示如下:
(s z1 )(s z2 ) s 2 2 n s n
或:
2
(T1s 1)(T2 s 1) T 2 s 2 2Ts 1
Tuesday, January 08, 2019
12
传递函数的表现形式
若再考虑有n个零值极点,则传递函数的通式可以写成:

第二章 控制系统的传递函数

第二章    控制系统的传递函数

第二章
控制系统的传递函数
2.1 微分方程模型(时间域模型)
一、控制系统微分方程的分类
线性系统:可由线性微分方程描述的系统。线性微分方程是指微分方程 是定常和线性的。线性系统可应用叠加原理,将多输入及多输出的 系统转化为单输入和单输出的系统进行处理分析,最后进行叠加。 另外线性系统还有一个重要的性质,就是齐次性,即当输入量的数 值成比例增加时,输出量的数值也成比例增加,而且输出量的变化 规律只与系统的结构、参数及输入量的变化规律有关,与输入量数 值的大小是无关的。 非线性系统:研究非线性系统的运动规律和分析方法的一个分支学科。 非线性系统最重要的问题之一就是确定模型的结构,如果对系统的 运动有足够的知识,则可以按照系统运动规律给出它的数据模型。 一般来说,这样的模型是由非线性微分方程和非线性差分方程给出 的,对这类模型的辨别可以采用线性化,展开成特殊函数等方法。 非线性系统理论的研究对象是非线性现象,它反映出非线性系统运 动本质的一类现象,不能采用线性系统的理论来解释,主要原因是 非线性现象有频率对振幅的依赖性、多值响应和跳跃谐振、分谐波 振荡、自激振荡、频率插足、异步抑制、分岔和混沌等。
控制系统的传递函数
例 2:RLC 电路(L-R-C 无源四端网络)如图,建立输入输出间的微分方程关
由基尔霍夫定律,回路的压降为 0,即输入电压由电感、电阻、电容上的电压 平衡。 Ur=UL+UR+UC 电流 与 有 即 的关系
第二章
控制系统的传递函数
与 在数值上具有一 ~
注意:该系统也是一个二阶系统 与例 1 相比,它们具有相同的模型形式。当
线性系统满足叠加原理,而非线性系统不满足叠加原理。
第二章
控制系统的传递函数
二、微分方程模型的建立 根据系统物理机理建立系统微分方程模型的基本步骤: (1)确定系统中各元件的输入、输出物理量; (2)根据物理定律或化学定律(机理),列出元件的原始方程,在条 件允许的情况下忽略次要因素,适当简化; (3)列出原始方程中中间变量与其他因素的关系; (4)消去中间变量,按模型要求整理出最后形式。

控制系统的传递函数定义

控制系统的传递函数定义

控制系统的传递函数定义
控制系统传递函数是描述控制系统输入与输出关系的数学模型,通常用于分析和设计控制系统。

它表示了输入信号经过控制系统后的输出信号,可以用数学公式表示为输出信号Y(s)与输入信号U(s)的关系:Y(s)=G(s)U(s)。

其中,G(s)为系统的传递函数,它是一个复数函数,描述了控制系统的动态特性和稳态特性。

传递函数的分母描述了系统的阻尼和自然频率,分子描述了系统的增益和相位,通过对传递函数进行分析可以得到系统的稳态误差、稳定性、响应速度等性能指标。

因此,传递函数是控制系统分析和设计的重要工具,对于掌握控制系统的动态特性和优化系统性能具有重要意义。

- 1 -。

控制系统的传递函数及信号流图和梅逊公式

控制系统的传递函数及信号流图和梅逊公式
+
1 Ln LrLsLt
《自动控制理论》
§2.6 信号流图和梅逊公式的应用
《自动控制理论》
§2.6 信号流图和梅逊公式的应用
例2-7 试用梅逊公式求系统的闭环传递函数 C(S)
R(S)
图2-45 例2-7图
《自动控制理论》
§2.6 信号流图和梅逊公式的应用
解: P1 G1G2G3.
路 开通路—通路与任一节点相交不多于一次
《自动控制理论》
§2.6 信号流图和梅逊公式的应用
闭通路—通路的终点也是通路的起点,并且与任何其它节 点相交不多于一次
6)前向通路—从输入节点到输出节点的通路上,通过任何节 点不多于一次,此通路自然保护区为前向通路
7)回路—就是闭环通路 8)不接触回路—如果一些回路间没有任何公共节点 9)前向通路增益—在前向通路中多支路增益的乘积。 10)回路增益—回路中多支路增益的乘积。
《自动控制理论》
§2.6 信号流图和梅逊公式的应用
信号流图的性质 (1)信号流图只适用于线性系统。 (2)支路表示一个信号对另一个信号的函数关系;信 号只能沿着支路上的箭头指向传递 (3)在节点上可以把所有输入支路的信号叠加,并把 相加后的信号传送到所有的输出支路。
(4)具有输入和输出支路的混合节点,通过增加一个具 有单位增益的支路,可以把它作为输出节点来处理。 (5)对于一个给定的系统,其信号流图不是唯一的, 这是由于描述的方程可以表示为不同的形式。
参考输入误差的传递函数为
CR(s) ER(s)G1(s)G2(s)
CR(s)
G1( s )G 2( s )
R(s) 1 G1(s)G2(s)H (s)
ER(s)G1(s)G2(s)

控制工程基础:第二章 控制系统的数学模型及传递函数

控制工程基础:第二章 控制系统的数学模型及传递函数

用线性微分方程描述的系统,称为线性系统。 如果方程的系数为常数,则称为线性定常系统; 如果方程的系数不是常数,而是时间的函数,则称为线性时 变系统。
线性系统的重要性质是可以应用叠加原理:
(1)多个输入同时作用于线性系统的总响应,等于各个输入 单独作用时分别产生的响应之和,且输入增大若干倍时,其输出 亦增大同样的倍数。
一、 拉氏变换的定义
§2.2 拉普拉斯积分变换
1. 拉氏变换的定义
如果有一个以时间t为自变量的实函数f (t),
它的定义域是t 0,那么函数f (t)的拉氏变换为:
L[ f (t)] F (s) f (t)est dt 0
复变量:s j
原函数: f (t) 象函数: F (s)
F(s) L[ f (t)]
(6)式即为二阶常系数线性微分方程。
四、小结:
§2.1系统运动微分方程的建立
(1)物理本质不同的系统,可以有相同形式的数学模型。
机械平移动力学系统:
d2 m dt2
xo
(t
)
B
d dt
xo (t) kxo (t)
fi (t)
电网络系统:
LC
d2 dt 2
uo
(t)
RC
d dt
uo
(t)
uo
(t)
L[Ax1(t) Bx2 (t)] AX1(s) BX 2 (s)
2. 微分定理和积分定理
(1)微分定理
在所有初始条件均 为零时
L[ df (t)] sF (s) dt
L[ f (t)] F(s)
L[ df (t)] sF (s) f (0) dt
L[ d 2 f (t)] s 2 F (s) sf (0) f (0) dt 2

第四章控制系统的传递函数

第四章控制系统的传递函数

其中,
n
1 T
——环节的 固有频率
To 2
1 T
——环节的 阻尼比
如果0≤ξ<1,二阶环节称为振荡环节
例7 图示是由质量m、阻尼c、弹簧k组成的动力系统. 求G(s)
依动力平衡原理有 Xi(t) k m c
Xo(t)
d 2 xo dxo m 2 c kxo kxi dt dt
因此,系统的传递函数就是系统单位脉冲响应 的拉氏变换。
一般地,传递函数的表达式为
X o ( s) ao s n a1s n1 a2 s n2 an G( s ) X i ( s) bo s m b1s m1 b2 s m2 bm
2. 传递函数的性质
k
k为比例环节的增益或称为放大系数
例1

ni(t)
z1
求一对齿轮传动的传递函数 no z1 k ∴G(s)=k ni z2
最基本的运算放大器
no(t)
z2
例2
i 1= i 2
ei ea ea eo R1 R2
ei eo R1 R2
ei
R2 R1 e i2 a Ko a i3 i1 +
ZL=Ls
3.电容元件
dUC iC C dt
ZC(s) = 1/sC
例5
下图是一个由运算放大器组成的积分器, 求G(s)。 C R i + uc 取拉氏变换 uo Ui(s) R
Zc
i
+ Uo(s)
ui
解:
1 uc idt c
I ( s) U c ( s) cs
K s
1 Zc cs
ms2 X o ( s) csX o (s) kXo ( s) kXi (sG( s) 2 ms cs k

控制系统的传递函数

控制系统的传递函数

表示成零点、极点形式:
m
G(s)
Y (s) X (s)
bm an
Q(s) P(s)
Kg
(s zi )
i 1 n
(s pj )
z 式中: 称为传递函数的零点, i
j 1
称为传递函p数j 的极点。
Kg
bm an
Tuesday, June 16, 2020
—传递系数(零极点形式传递函数增益)
9
传递函数的表现形式
零初始条件下输出量的拉氏变换与输入量拉氏变换之比。也可写成:Y(s)=G(s) X(s)。
通过拉氏反变换可求出时域表达式y(t)。
Tuesday, June 16, 2020
2
传递函数的基本概念
[总结]: 传递函数是由线性微分方程(线性系统)当初始值为零时进行拉氏变化得到
的。
已知传递函数G(s)和输入函数X(s),可得出输出Y(s)。通过反变换可求出 时域表达式y(t)。
Gm (s)M k f (t), G f
c (s) Gu (s) (s) U f (s)
(s)
Gm kf
(s)
U g (s) Mc (s)
5
传递函数的基本概念||例2-8a8'
求下图系统的传递函数。
R
L
方法1:见例2-1
求L上C式uo的'' (拉t)氏变R换C,uo得' (:t) uo (t) ui (t)
Tuesday, June 16, 2020
4
传递函数的基本概念||例2-8
上式有两个输入量,而传递函数只能处理单输入-单输出系统。对于线性系统, 可以将多个输入分别独立处理,然后叠加起来。下面分别讨论两个输入单独作用时 的传递函数。

控制系统的数学模型及传递函数【可编辑全文】

控制系统的数学模型及传递函数【可编辑全文】

可编辑修改精选全文完整版控制系统的数学模型及传递函数2-1 拉普拉斯变换的数学方法拉氏变换是控制工程中的一个基本数学方法,其优点是能将时间函数的导数经拉氏变换后,变成复变量S的乘积,将时间表示的微分方程,变成以S表示的代数方程。

一、拉氏变换与拉氏及变换的定义1、拉氏变换:设有时间函数,其中,则f(t)的拉氏变换记作:称L—拉氏变换符号;s-复变量; F(s)—为f(t)的拉氏变换函数,称为象函数。

f(t)—原函数拉氏变换存在,f(t)必须满足两个条件(狄里赫利条件):1)在任何一有限区间内,f(t)分断连续,只有有限个间断点。

2)当时,,M,a为实常数。

2、拉氏反变换:将象函数F(s)变换成与之相对应的原函数f(t)的过程。

—拉氏反变换符号关于拉氏及变换的计算方法,常用的有:①查拉氏变换表;②部分分式展开法。

二、典型时间函数的拉氏变换在实际中,对系统进行分析所需的输入信号常可化简成一个成几个简单的信号,这些信号可用一些典型时间函数来表示,本节要介绍一些典型函数的拉氏变换。

1.单位阶跃函数2.单位脉冲函数3.单位斜坡函数4.指数函数5.正弦函数sinwt由欧拉公式:所以,6.余弦函数coswt其它的可见表2-1:拉氏变换对照表F(s) f(t)11(t)t三、拉氏变换的性质1、线性性质若有常数k1,k2,函数f1(t),f2(t),且f1(t),f2(t)的拉氏变换为F1(s),F2(s),则有:,此式可由定义证明。

2、位移定理(1)实数域的位移定理若f(t)的拉氏变换为F(s),则对任一正实数a有, 其中,当t<0时,f(t)=0,f(t-a)表f(t)延迟时间a. 证明:,令t-a=τ,则有上式=例:, 求其拉氏变换(2)复数域的位移定理若f(t)的拉氏变换为F(s),对于任一常数a,有证:例:求的拉氏变换3、微分定理设f(t)的拉氏变换为F(s),则其中f(0+)由正向使的f(t)值。

控制工程基础第三章系统的传递函数

控制工程基础第三章系统的传递函数

如图所示为机械转动系统,由惯性负载和粘性摩擦阻 尼器构成,以转矩Ti为输入量,以角速度w为输出量
机械转动系统
dw ( t) 其运动方程式为:J + Bw ( t )= Ti ( t) dt W (s ) 1 K 其传递函数为:G ( s)= = = Ti (s ) Js + B Ts + 1 J 1 式中 T= , K = 。 B B
B
i(t)
C
uo (t)
x
机械平移系统
d 2x dx m 2 B k x f t dt dt
RLC电路
X s 1 1 2n Gs = 2 F s ms Bs k k s 2 2n s 2 n
n
k m

B 2 km
C
uo (t )
其微分方程为:Ri( t)+ u0 () t = ui () t du0 () t i( t)= C dt 消去中间变量后,得 du0 () t RC + u0 () t = ui () t dt 通过拉氏变换求得电路的传递函数为: U0 (s) 1 G( s)= = Ui (s) Ts+1 式中 T=RC
4. 微分环节
输出量与输入量的微分成比例的环节,称为微分环节 dxi ( t) 其运动方程式为:x0 ( t )= TD dt 其传递函数为: G ( s)= TD s
式中 TD ─ 微分环节的时 间常数 。
当输入量为单位阶跃信号时,输出量就是脉冲函数,这 在实际中是不可能的。因此,理想的微分环节不能实现,在 实际中用来执行微分作用的都是近似的,称为实际微分环节, 其传递函数具有如下形式:
一阶微分环节和二阶微分环节的微分方程分别为:

自动控制理论传递函数

自动控制理论传递函数

(is 1)
(
2 k
s2
2
k
k
s
1)
k 1
n2
(Tj s 1) (Tl2s2 2 lTl 1)
j 1
l 1
振荡环节
式中: m1 2m2 m, n1 2n2 n
从上式可以看出:传递函数是一些基本因子的乘积。这些
基本因子就是典型环节所对应的传递函数,是一些最简单、最
基本的一些形式。
2020年4月18日
[解]各环节的微分方程和传递函数分别为:
运放Ⅰ:
u1(t)
k1ue
(t),
G1(s)
U1(s) U e (s)
k1
运放Ⅱ: u2 (t) k2[u1(t) u1(t)], G2 (s)
U 2 (s) U1(s)
k2 (s
1)
功放:
ua
(t)
k3u2 (t),
G3 (s)
Ua (s) U 2 (s)
y (t )
k
(1
e
t T
)
,式中:k为放大系数,T为时间常数。
当k=1时,输入为单位阶跃函数时,时域响应曲线和零极点分
布图如下:y(t) 1
原点处斜率为1/T
0.8
j S平面
0.6
0.632
0.4 0.2
1 T
0
Re
0
t
T
通过原点的 斜率为1/T。只有一个极点(-1/T)。
2020年4月18日
17
R
1 Cs
1 Cs
ui (s) RCs 1
2020年4月18日
19
振荡环节
(四)振荡环节:
时域方程:a2 y'' (t) a1 y' (t) a0 y(t) b0 x(t)

课件:控制系统的传递函数

课件:控制系统的传递函数

s
Rs
如果H(s)=1,则下图所示的系统为单位反馈系统,它的闭环 传递函数为
CR s Rs
1
G1 s G2 s G1sG2s
Gs 1 Gs
(2 - 50)
5
如果H(s)=1
CR s Rs
1
G1 s G2 s G1sG2 s
1
Gs Gs
(2 - 50)
其中Gs
G1
s
G2
s
,
若令Gs
U V
s s
CR s R(s)
CR s Rs
1
G1 s G2 s G1 s G2 s H
s
pp58:练习2-3 15
2.7 控制系统的反馈特性
闭环控制系统又名反馈控制系统。这类系统之所以被人们 广泛应用,其原理是它有着下列开环系统所没有的特性。
一: 反馈能减小参数变化对系统的影响
图(a)和(b)分别为开环和闭环系统的方框图。开环系统的输出
s
H
s
Rs
1
G2 sHs G1sG2 sH
s
Ds
(2-57)
当满足|G1(s)H(s) |>>1和|G1(s)G2(s)H(s) |>>1时,可得出如下 的结论:
13
CR s Rs
1
G1 s G2 s G1 s G2 s H
s
(2- 49)
1)当 | G1(s) G2(s ) H(s) |>>1时,由式(2-49)得
20
图2-41 扰动作用下系统的框图
10
求得扰动误差的传递函数为:
ED s Ds
1
G2sH s G1 s G2 s H

反馈控制系统的传递函数

反馈控制系统的传递函数

第三章 自动控制系统的数学模型
R(s) 输入量
+ -
G1(s)
N(s) 扰动量
+ +
G2(s)
H(s)
C(s) 输出量
图 自动控制系统的典型结构
第三章 自动控制系统的数学模型
1、输入量R(s)作用
若仅考虑输入量R(s)的作用, 则可暂 略去扰动量N(s)。 由图 (a)可得输出量 C(s)对输入量的闭环传递函数GBr(s)为
GBr (s)

Cr (s) R(s)

1
G1(s)G2 (s) G1(s)G2 (s)H (s)
第三章 自动控制系统的数学模型
此时系统的输出量(拉氏式)Cr(s)为
Gr
(s)

GBr
(s)R(s)

1

G1(s)G2 (s) G1(s)G2 (s)H
பைடு நூலகம்
(s)
R(s)
R(s) +-
G1(s)
G2(s)
第三章 自动控制系统的数学模型
此时系统输出量(拉氏式)Cn(s) 为
Cn
(s)

CBn
(s)D(s)

1

G2 (s) G1(s)G2 (s)H
(s)
D(s)
第三章 自动控制系统的数学模型
3 在输入量和扰动量同时作用下系统的总 输出
由于设定此系统为线性系统, 因此 可以应用叠加原理, 即当输入量和扰动量 同时作用时, 系统的输出可看成两个作 用量分别作用的叠加。 于是有
结构图:
E_(s)G1(s1) + G2(s) 1B+(sG) 1(s)G2H((ss))H(s)
C(s)

控制系统的传递函数

控制系统的传递函数

控制系统的传递函数考虑扰动的闭环控制系统X i (s )到X o (s )的信号传递通路称为前向通道;X o (s )到B (s )的信号传递通路称为反馈通道;1.闭环系统的开环传递函数将闭环控制系统主反馈通道的输出断开,即H (s )的输出通道断开,此时,前向通道传递函数与反馈通道传递函数的乘积G 1(s )G 2(s )H (s )称为该 闭环控制系统的开环传递函数。

记为G K (s )。

闭环系统的开环传递函数也可定义为反馈信号B (s )和偏差信号ε (s )之间的传递函数,即:2..x i (t )作用下系统的闭环传递函数令n (t )=0,此时在输入x i (t )作用下系统的闭环传递函数为:输入作用下系统的偏差传递函数 令n (t )=0,此时系统输入X i (s )与偏差ε (s )之间的传递函数称为输入作用下的偏差传递函数。

用)(s i εΦ表示。

3.n (t )作用下系统的闭环传递函数令x i (t )=0,此时在扰动n (t )作用下系统的闭环传递函数(干扰传递函数)为:扰动作用下系统的偏差传递函数,令x i (t )=0,此时系统在扰动作用下的偏差传递函数(称扰动偏差传递函数)。

)()()(1)()()()()(212101s H s G s G s G s G s X s X s i i +==Φ)()()(11)()()(21s H s G s G s X s s i i i +==Φεε)()()(1)()()()(21202s H s G s G s G s N s X s N +==Φ)()()(1)()()()()(212s H s G s G s H s G s N s s N N +-==Φεε。

2.3 控制系统的传递函数

2.3  控制系统的传递函数
第三节
控制系统的传递函数
第三节 控制系统的传递函数
一、传递函数的概念 二、传递函数的性质 三、典型环节及其传递函数
引言
控制系统的微分方程:是在时域描述系统动态性能的数学模 型,在给定外作用及初始条件下,求解微分方程可以得到系 统的输出响应。但系统中某个参数变化或者结构形式改变, 便需要重新列写并求解微分方程。 传递函数:对线性常微分方程进行拉氏变换,得到的系统在 复数域的数学模型为传递函数。 传递函数不仅可以表征系统的动态特性,而且可以研究 系统的结构或参数变化对系统性能的影响。传递函数是经典 控制理论中最基本也是最重要的概念
U c (s) 1 = U r ( s) RCs + 1
在式(2.65 )中,如果把初始电压uc(0)也视为一个输入作用, 则根据线性系统的叠加原理,可以分别研究在输入电压ur (t) 和初始电压uc (0)作用时,电路的输出响应。若uc(0)=0,则 有: 1 U c ( s) = U r (s) (2.66)
(2.68)
式中c(t)是系统输出量,r(t)是系统输入量,a0,a1,… an,b0,b1,…,bm是与系统结构参数有关的常系数。 令C(s)=L[c(t)],R(s)=L[r(t)],在初始条件为零时,对式 (2.68)进行拉氏变换,可得到s的代数方程:
[ansn+an-1sn-1+…+a1s+a0]C(s) =[bmsm+bm-1sm-1+…+b1s+b0]R(s)
T1 s G (s) = T2 s + 1
(2.75)
它由理想微分环节和惯性环节组成,如图2-21(c)、(d)所示。在 低频时近似为理想微分环节,否则就有式(2.75)的传递函数。

自动控制原理--传递函数相关知识

自动控制原理--传递函数相关知识

26.5
1
s 17.25
17.25
26.5
s (s 17.25)2 (26.5)2 (s 17.25)2 (26.5)2
所以
y(t)
1 e17.25t
cos 26.5t 17.25 e17.25t 26.5
sin 26.5t
1 e17.25t
cos
26.5t
17.25 26.5
sin
26.5t
D(s) a0sn a1sn1 an1s an D(s) 0即是系统的特征方程。
G(s) N (s) b0 (s z1)(s z2 ) (s zm ) D(s) a0 (s p1)(s p2 ) (s pn )
s zi (i 1, 2 m)是N (s) 0的根,称为传递 函数的零点,s pi (i 1, 2 n)是D(s) 0的根 是传递函数的极点。
因为组成系统的元部件或多或少存在惯 性,所以G(s)的分母阶次大于等于分子阶 次,即 n,是m有理真分式,若 ,我们m 就 n 说这是物理不可实现的系统。
二、传递函数的性质
(1)传递函数是一种数学模型,是对微分方程在零初始条件 下进行拉氏变换得到的;
(2)传递函数与微分方程一一对应;
(3)传递函数描述了系统的外部特性。不反映系统的内部物 理结构的有关信息;
R(s)
式中 ——环节的时间常数。
特点:输出量正比输入量变化的速度,能预示输 入信号的变化趋势。
实例:测速发电机输出电压与输入角度间的传递 函数即为微分环节。
5)振荡环节:其输出量和输入量的关系,由下面的 二阶微分方程式来表示。
T2
d 2 y(t) dt 2
2 T
dy (t ) dt

控制系统的传递函数

控制系统的传递函数

求上式的拉氏变换,得:
ui
i
C
uo
UO (s) UI (s)

LCs 2
1 RCs
1
方法2:复阻抗(电阻、电容和电感)分别为 R、1 、Ls 。
则:(R

Ls

1 Cs
)
I
(
s)

U
i
(s)
Cs
1 Cs
I
(s)

U0
(s)
1
传递函数为:U0 (s)
Cs

1
Ui (s) R Ls 1 CLs 2 RCs 1
(s) U f (s) (s)
Gm kf
(
s)UMgc
(s) (s)
Saturday, December 28, 2019
6
传递函数的基本概念||例2-88a'
求下图系统的传递函数。 方法1:见例2-1
RL
LCuo''(t) RCuo'(t) uo (t) ui (t)
bm1sm1 b0 an1sn1 a0
G(s) Y (s) X (s) 称为系统或环节的传递函数,即:环节的传递函
数是它的微分方程在零初始条件下输出量的拉氏变换与输入量拉
氏变换之比。也可写成:Y(s)=G(s) X(s)。通过拉氏反变换可求
出时域表达式y(t)。
Saturday, December 28, 2019
3
传递函数的基本概念
[总结]:
传递函数是由线性微分方程(线性系统)当初始值为 零时进行拉氏变化得到的。
已知传递函数G(s)和输入函数X(s),可得出输出Y(s)。 通过反变换可求出时域表达式y(t)。

控制工程基础第二章控制系统传递函数推导举例

控制工程基础第二章控制系统传递函数推导举例

控制工程基础第二章控制系统传递函数推导举例嘿,大家好!今天咱们聊聊控制系统传递函数的推导。

可能有小伙伴会觉得:哎呀,这听起来很高深啊!其实不用担心,咱们就把它当成一种“魔法”来聊,保证你看懂了还觉得有趣。

大家都知道,控制系统就像是你家的空调,或者你车里的自动驾驶系统,它们都是通过某种方式“控制”你想要的目标,调节着温度、速度啥的。

而这个“控制”背后的原理,常常就是传递函数。

咱们今天就来拆解这个“神秘的传递函数”,看看它究竟是怎么来的,别怕,咱们一步步来,轻松愉快地搞定。

咱们得明白一个事情,什么叫控制系统的传递函数。

你想象一下,你开车,踩油门,车速开始变快,对吧?油门和车速之间的关系就可以通过传递函数来表示。

这个函数就告诉你,输入的油门大小会如何影响到输出的车速。

比如,油门踩了30%和踩了70%,车速变化的幅度是不一样的,这就是控制系统的“响应”。

传递函数就是描述这种输入与输出之间关系的数学工具,简单点说,它告诉你“输入多少,输出多少”的一个规律。

那传递函数怎么来呢?这就得讲讲拉普拉斯变换了。

别急,拉普拉斯变换其实不难,它就像是个“超级变压器”,能把复杂的时间域问题转换成比较简单的频率域问题,简化计算。

你想,咱们从时间域跳到频率域,就好像从三维空间跳到二维平面,一下子就好理解多了。

你现在是不是觉得拉普拉斯变换就像是一剂神奇的“解药”呢?哈哈,别着急,咱们往下说。

一般来说,控制系统的推导步骤差不多都可以分为两大部分:建模和求传递函数。

啥叫建模呢?简单来说,就是先给系统做个“影像图”,把系统的各个部件之间的关系搞明白。

比如说,车的油门、发动机、车轮之间怎么互动,反正你得先把这些“元素”都搞清楚。

然后,你就可以通过这些元素的物理特性来写出一堆数学方程。

这些方程就是系统的动态模型,它们描述了输入和输出之间的关系。

不过,建模归建模,咱们得回过头来聊传递函数。

传递函数就是你把这个系统的方程化简后的结果,通常用大写字母“G”来表示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线性定常系统的传递函数,定义为初始条件为零时,
系统输出量的拉氏变换与输入量的拉氏变换之比。
三要素:1) 线性定常系统 2) 零初始条件,即在外界输入作用前,输入、输出的初始条件 为 0。 3) 输出与输入的拉氏变换之比(复域模型)
第二章
形式上记为:
控制系统的传递函数
(n>m)
b0 s m b1s m 1 bm 1s bm C ( s) G( s) R( s ) a0 s n a1s n 1 an 1s an
第二章
2.3 传递函数模型
控制系统的传递函数
重点:传递函数的概念 传递函数的性质 传递函数的列写
2.3.1 定义
传递函数是经典控制理论对线性系统进行研究、分析和综合的数学工具。通过传递 函数可以将实数域中的微分、积分运算化为复数域中的代数运算,大大简化了计算工作 量,而且由传递函数导出的频率特性还具有物理意义,运用线性系统的传递函数和频率 特性有利于对系统研究、分析和综合。
第二章
控制系统的传递函数
(3)传递函数中(分子的阶次小于分母的阶次 n≥m)是一切物理系统 所固有的,这是因为任何物理系统均含有惯性。 (4)传递函数可以是有量纲的,也可以是无量纲的。 (5)可减化对系统动态性能分析的过程 R(s)一定时 C(s)完全由G(s)决定,因此: G(s)的特征和形态→分析系统的性能 另:对系统性能的要求→ 对G(s)的要求 ( 6) 记 b s m b s m 1 b sb C ( s)
G( s)
R( s )

= G( s) 式中:称
KG ( s z1 ) ( s zm ) ( s p1 ) ( s pn )
a0 s n a1s n 1 an 1s an
0
1
m 1
m
第二章

控制系统的传递函数
-为系统的特征根
-为系统的特征多项式。 (7)由于 可以是零、实数、复数,因此在复平 面上总能找到相对应的一点,故系统的传递函数与复平面有一一对应的 关系。这将引出经典控制论的一种重要分析方法:根轨迹法。
第二章
控制系统的传递函数
借助表达系统输入、输出之间动态关系的微分方程:
anxo ( n ) (t ) ... a1 xo (1) (t ) a0 xo(t ) bmxi ( m ) (t ) ... b1 xi (1) (t ) b0 xi (t )
i=0,1…n j=0,1,…m 可对系统进行描述。 1、线性定常系统 ai,bj 都不是xo(t)和xi(t)及它们导数的函数,也不 是时间的函数; 2、线性时变系统 ai,bj 是时间的函数; 3、非线性系统 ai,bj 有一个依赖xo(t)和xi(t)或它们导数,或者在 微分方程中出现时间的其他函数形式。
三、系统微分方程中变量形式的选择
四、 系统元件间的负载效应 对于两个物理元件组成的系统而言,若其中一个元件的存在,使 另一个元件在相同输入下的输出受到影响,则有如前者对后者施加了 负载,因此这一影响称为负载效应,也称耦合。这时,如只是孤立的 分别写出两个元件的动力学方程,则经过消去中间变量而得到的整个 系统的动力学方程将是错误的。 例1 复习:1、数学模型的类型 2、建立数学模型的方法 3、建立数学模型的步骤
-阻尼系数 与位移的变化量成正比
由上面两式有
整理得
注意: 习惯上将系统(元件)的输出及输出的各阶导数放在等式的 左边,输入及输入的各阶导数放在等式的右边; 由于系统总是存在着储能元件,一般地,等式左边的阶次高于 右边的阶次; 上式中左边输出的最高阶次为二,称该系统为二阶系统。
第二章
系式。
线性系统满足叠加原理,而非线性系统不满足叠加原理。
第二章
控制系统的传递函数
二、微分方程模型的建立 根据系统物理机理建立系统微分方程模型的基本步骤: (1)确定系统中各元件的输入、输出物理量; (2)根据物理定律或化学定律(机理),列出元件的原始方程,在条 件允许的情况下忽略次要因素,适当简化; (3)列出原始方程中中间变量与其他因素的关系; (4)消去中间变量,按模型要求整理出最后形式。
第二章
控制系统的传递函数
例 2 前一节例 1,机械位移系统 直接由得到的微分方程模型 求拉氏变换有: ,在零初始条件下,对上式两端 ,整理得该系统得传递函数:
例 3 前一节例 2 RLC 网络 由得到得微分方程模型 求拉氏变换有: ? ,在零初始条件下,对上式两端 ,整理得该系统得传递函数:
第二章
第二章
控制系统的传递函数
2.1 微分方程模型(时间域模型)
一、控制系统微分方程的分类
线性系统:可由线性微分方程描述的系统。线性微分方程是指微分方程 是定常和线性的。线性系统可应用叠加原理,将多输入及多输出的 系统转化为单输入和单输出的系统进行处理分析,最后进行叠加。 另外线性系统还有一个重要的性质,就是齐次性,即当输入量的数 值成比例增加时,输出量的数值也成比例增加,而且输出量的变化 规律只与系统的结构、参数及输入量的变化规律有关,与输入量数 值的大小是无关的。 非线性系统:研究非线性系统的运动规律和分析方法的一个分支学科。 非线性系统最重要的问题之一就是确定模型的结构,如果对系统的 运动有足够的知识,则可以按照系统运动规律给出它的数据模型。 一般来说,这样的模型是由非线性微分方程和非线性差分方程给出 的,对这类模型的辨别可以采用线性化,展开成特殊函数等方法。 非线性系统理论的研究对象是非线性现象,它反映出非线性系统运 动本质的一类现象,不能采用线性系统的理论来解释,主要原因是 非线性现象有频率对振幅的依赖性、多值响应和跳跃谐振、分谐波 振荡、自激振荡、频率插足、异步抑制、分岔和混沌等。
第二章
控制系统的传递函数
法二:列写系统中各元件(各环节)的微分方程 在零初始条件下求拉氏变换 整理拉氏变换后的代数方程组,消去中间变量 整理成传递函数的形式 举例一些常用典型元部件的传递函数的列写
例 1:齿轮系 一般地在伺服电动机与负载之间,往往通过齿轮系进行运动传递,其目的有 二:对负载提供必要地加速力矩,减速和增大力矩;调节精度。 转速比 传递函数 章重点:1 掌握控制系统建立数学模型的方法 2 应用拉普拉斯变换求解微分方程
2.0 概述 主要解决的问题: 1 2 3 什么是数学模型 为什么要建立系统的数学模型 对系统数学模型的基本要求
第二章
控制系统的传递函数
2.0 概述 一、数学模型的定义 1、 控制系统的数学模型是描述系统或环节内部、外部各物理量(或 变量)之间动、静态关系的数学表达式或图形表达式或数字表达 式。亦:描述系统性能的数学表达式(或数字、图像表达式)。 控制系统的数学模型按系统运动特性分为:静态模型 动态模型 静态模型:在稳态时(系统达到平衡状态)描述系统各变量间关系 的数学模型。 动态模型:在动态过程中描述系统各变量间关系的数学模型。 关系:静态模型是t时系统的动态模型。 控制系统的数学模型可以有多种形式,建立系统数学模型的方法 可以不同,不同的模型形式适用于不同的分析方法。
说明:一般由于机械系统比较复杂,参数调整不方便,在很多情况下,采用电模拟的 方法,对系统分析,特别是在现在,电气、电子技术的发展,为电模拟提供了良好的 条件。在专用模拟机或通用模拟机上,采用数学模型相似的电网络代替要研究的系统 来进行计算和研究,方便,易行。
第二章
控制系统的传递函数
3、同一控制系统可以有不同的数学模型 同一控制系统具有各种物质运动形式(机械传动、电磁量运动、热 变形等),而不同的物质运动形式又分别受不同的物理规律约束,因而 建立的数学模型可能不同。 因此,建立数学模型时,一定要搞清输入 量、输出量。 四、数学模型的分类 1、微分方程 时间域 t 单输入 单输出 2、传递函数 复数域 s=σ+iω --3、频率特性 频率域 ω --4、状态方程 时间域 t 多输入 多输出 用一组微分方程描 述系统的状态特性
例1:单自由度机械位移系统(如插床、刨床)如图, 建立 ~ 间的微分方程关系式。 分析: 输入: 力 输出: m的位移
第二章
控制系统的传递函数
质量-弹簧-阻尼器系统
(1)对于 m,由牛顿定律
m的受力分析
,质点所受的合力与惯性力相等。有
(2)弹簧力
-弹簧系数
与位移成正比
第二章
阻尼器力
控制系统的传递函数
分析方法:根轨迹法。
第二章
控制系统的传递函数
(8)传递函数的反拉氏变换是系统的单位脉冲响应
该式表明:系统的传递函数与系统的脉冲响应有单值对应的关系, 由于传递函数是系统的一种数学模型,能反映系统的静、动态性能, 故系统的脉冲响应也可以反映系统的静、动态性能,即系统的脉冲响 应也可以作为系统的数学模型。 2.3.3 传递函数的列写 法一:列写系统的微分方程 消去中间变量 在初始条件为0的情况下,取拉氏变换 求输出与输入拉氏变换之比
定关系时, 上述二个微分方程具有完全相同的形式。 也就是说, 在数学上 , ~
具有相同的关系(静、动态关系),由此可见利用数学模型
研究控制系统的重要性、方便性。另外,用电气系统模拟机械系统进行实验 研究也是工程中的常用方法,就系统理论而言,可以撇开系统的具体属性进 行普遍意义的分析和研究。
第二章
控制系统的传递函数
控制系统的传递函数
例 2:RLC 电路(L-R-C 无源四端网络)如图,建立输入输出间的微分方程关
由基尔霍夫定律,回路的压降为 0,即输入电压由电感、电阻、电容上的电压 平衡。 Ur=UL+UR+UC 电流 与 有 即 的关系
第二章
控制系统的传递函数
与 在数值上具有一 ~
注意:该系统也是一个二阶系统 与例 1 相比,它们具有相同的模型形式。当
控制系统的传递函数
例 4 如图表示一个汽车悬浮系统的原理图。当汽车沿着道路行驶时,轮胎的垂直位移作 为一个运动激励作用在汽车的悬浮系统上。该系统的运动,由质心的平移运动和围绕质心的 旋转运动组成。建立这个系统的数学模型相当复杂。 (b)图给出了一种大为简化的悬浮系统,设 p 点的运动 为系统的输入,车体的垂直运 动 为系统的输出,只考虑车体在垂直方向的运动时,求 。
相关文档
最新文档