分式乘除法教学设计教案
分式的乘除法 教案
分式的乘除法教案教学目标:1. 了解分式的乘法和除法的概念;2. 掌握分式的乘法和除法的运算规则;3. 能够运用分式的乘法和除法解决实际问题;4. 培养学生的分析和解决问题的能力。
教学步骤:一、导入(5分钟)教师出示一个简单的实际问题,比如:小明用了分之三的时间做完作业,分之二的时间看电视。
请问他一共用了多长时间?引出分式的乘法。
二、分式的乘法(20分钟)1. 定义:将两个分数相乘得到的结果,仍然是一个分数。
2. 示例:教师给出几个示例,让学生互相交流思路,解决问题,并进行整理。
3. 规则总结:分子相乘得到新的分子,分母相乘得到新的分母。
强调分式的简化。
三、练习分式的乘法(15分钟)1. 练习题目:教师设计一些简单的练习题,供学生进行练习。
2. 学生自主练习:学生独立完成一些练习题,教师巡回指导和帮助。
四、分式的除法(20分钟)1. 定义:将一个分数除以另一个分数得到的结果,仍然是一个分数。
2. 示例:教师给出几个示例,让学生互相交流思路,解决问题,并进行整理。
3. 规则总结:除法可以转化为乘法,通过倒数的方式进行计算。
五、练习分式的除法(15分钟)1. 练习题目:教师设计一些简单的练习题,供学生进行练习。
2. 学生自主练习:学生独立完成一些练习题,教师巡回指导和帮助。
六、综合运用(20分钟)1. 实际问题解决:教师给出一些实际问题,供学生运用所学的分式的乘法和除法进行解决。
2. 学生展示和分享:学生可以展示和分享自己解决问题的思路和方法。
七、总结和拓展(15分钟)1. 教师进行知识总结,并强调分式的乘法和除法在实际生活中的应用。
2. 提出拓展问题:教师给出一些拓展问题,供学生进一步思考和探索。
八、作业布置(5分钟)教师布置相应的作业,要求学生练习分式的乘法和除法,并解答相应的问题。
教学反思:通过本堂课的教学,学生对于分式的乘法和除法有了初步的了解和掌握,能够运用所学知识解决实际问题。
不局限于机械运算,本教案注重培养学生的分析和解决问题的能力。
分式的乘除_教案(教学设计)
分式的乘除【教学目标】1.让学生通过实践总结分式的乘除法,并能较熟练地进行式的乘除法运算。
2.使学生理解分式乘方的原理,掌握乘方的规律,并能运用乘方规律进行分式的乘方运算。
3.引导学生通过分析、归纳,培养学生用类比的方法探索新知识的能力。
【教学重难点】1.重点:分式的乘除法、乘方运算。
2.难点:分式的乘除法、混合运算,以及分式乘法,除法、乘方运算中符号的确定。
【教学过程】一、复习提问:(1)什么叫做分式的约分?约分的根据是什么?(2)下列各式是否正确?为什么?二、探索分式的乘除法的法则1.回忆: 计算:10965⨯; 4365÷。
2.例1计算:(1)x b ay by x a 2222⋅; (2)222222xb yz a z b xy a ÷。
由学生先试着做,教师巡视。
3.概括:分式的乘除法用式子表示即是:4. 例2计算:493222--⋅+-x x x x 。
分析:①本题是几个分式在进行什么运算?②每个分式的分子和分母都是什么代数式?③在分式的分子、分母中的多项式是否可以分解因式,怎样分解?④怎样应用分式乘法法则得到积的分式? 解:原式=)2)(2()3)(3(32-+-+⋅+-x x x x x x =23+-x x 。
5.练习: 计算:2()x y xy x xy --÷ 三、探索分式的乘方的法则1.思考我们都学过了有理数的乘方,那么分式的乘方该是怎样运算的呢?先做下面的乘法:(1)=∙∙=⎪⎭⎫ ⎝⎛b a b a b a b a 3=∙∙∙∙b b b a a a 33b a ; (2)=∙∙∙=⎪⎭⎫ ⎝⎛b a b a b a b a n n n b a 。
2.仔细观察这两题的结果,你能发现什么规律?与同伴交流一下,然后完成下面的填空: (mn )(k ) =___________(k 是正整数)。
3.22212(1)441x x x x x x x-+÷+⨯++-4.练习:(1)判断下列各式正确与否:(2)计算下列各题:【作业布置】1.怎样进行分式的乘除法?2.怎样进行分式的乘方?。
八年级数学上册《分式的乘除法》教案、教学设计
(三)情感态度与价值观
1.培养学生对数学学习的兴趣,激发学生的学习积极性,使学生乐于探索分式的乘除法;
2.培养学生严谨、细致的学习态度,让学生在解题过程中,养成认真审题、规范答题的良好习惯;
3.培养学生的团队协作意识,使学生学会倾听、交流、分享,提高学生的沟通能力;
三、教学重难点和教学设想
(一)教学重难点
1.重点:分式乘除法的运算法则,包括同分母分式相乘、相除,异分母分式相乘、相除的运算方法。
2.难点:理解并掌握分式乘除法的运算规律,能熟练地将实际问题转化为分式乘除运算,以及正确处理分式乘除中的符号问题。
(二)教学设想
1.创设情境,导入新课:通过生活中的实例,如购物打折、配料计算等,引出分式乘除法在实际问题中的应用,激发学生的学习兴趣,为新课的学习做好铺垫。
4.通过生活中的实例,让学生感受分式乘除法在实际问题中的应用,激发学生学习新知的兴趣。
(二)讲授新知,500字
1.教师讲解分式乘除法的概念,强调同分母分式相乘、相除的运算方法,以及异分母分式相乘、相除的运算方法。
2.通过具体的例题,演示分式乘除法的运算步骤,引导学生关注运算过程中的符号处理,特别是约分、通分等操作。
6.课堂评价,激励进步:注重课堂评价,及时反馈学生的学习情况,激发学生的学习积极性。对学生的进步给予充分肯定,培养学生的自信心。
7.课后作业,巩固成果:布置适量的课后作业,让学生在课后巩固所学知识,提高学生的自主学习能力。
8.家校合作,共同促进:加强与家长的沟通,了解学生的课后学习情况,鼓励家长参与学生的学习过程,共同促进学生数学素养的提高。
4.多元练习,巩固提高:设计不同难度的练习题,让学生在解答过程中,巩固所学知识。针对学生的个体差异,进行分层指导,提高学生的运算能力和解决问题的能力。
分式的乘除法教案
分式的乘除法教案一、教学目标:1. 让学生理解分式的乘法和除法运算规则。
2. 培养学生运用分式的乘除法解决实际问题的能力。
3. 提高学生对分式运算的兴趣和自信心。
二、教学内容:1. 分式的乘法运算:分子乘分子,分母乘分母;2. 分式的除法运算:将除法转化为乘法,即乘以倒数;3. 特殊情况的处理:分式的值为0和不存在的情况。
三、教学重点与难点:1. 教学重点:分式的乘法运算规则和除法运算规则;2. 教学难点:特殊情况下分式的处理和实际应用。
四、教学方法:1. 采用直观演示法,通过例题展示分式的乘除法运算过程;2. 采用归纳法,引导学生总结分式的乘除法运算规则;3. 采用小组讨论法,让学生合作解决实际问题。
五、教学准备:1. 教案、PPT、黑板;2. 练习题;3. 教学工具:多媒体设备。
【教学环节】1. 导入:通过生活实例引入分式的乘除法运算,激发学生兴趣。
2. 新课讲解:讲解分式的乘法运算规则,举例说明,让学生跟随老师一起动手操作。
3. 课堂练习:布置练习题,让学生独立完成,巩固新知识。
4. 讲解分式的除法运算:讲解除法转化为乘法的原理,举例说明。
5. 课堂练习:布置练习题,让学生独立完成,巩固新知识。
6. 特殊情况处理:讲解分式的值为0和不存在的情况,举例说明。
7. 课堂练习:布置练习题,让学生独立完成,巩固新知识。
8. 总结:让学生总结分式的乘除法运算规则,加深印象。
9. 课堂小测:进行课堂小测,了解学生掌握情况。
10. 课后作业:布置课后作业,让学生巩固所学知识。
六、教学评估:1. 通过课堂练习和小测,评估学生对分式乘除法的理解和应用能力。
2. 观察学生在小组讨论中的表现,了解他们的合作能力和解决问题的策略。
3. 收集学生的课后作业,分析他们的错误类型和解决问题的思路。
七、教学反思:1. 反思教学过程中的有效性和学生的参与度,考虑如何改进教学方法以提高学生的学习兴趣。
2. 分析学生的学习困难,针对性地调整教学内容和策略。
八年级分式的乘除说课稿9篇
八年级分式的乘除说课稿9篇八年级分式的乘除说课稿(精选篇1)教学目标(一)教学知识点1.分式乘除法的运算法则,2.会进行分式的乘除法的运算。
(二)能力训练要求1.类比分数乘除法的运算法则。
探索分式乘除法的运算法则。
2.在分式乘除法运算过程中,体会因式分解在分式乘除法中的作用,发展有条理的思考和语言表达能力。
3.用分式的乘除法解决生活中的实际问题,提高“用数学”的意识。
(三)情感与价值观要求1.通过师生共同交流探讨,使学生在掌握知识的基础上,认识事物之间的内在联系,获得成就感。
2.培养学生的创新意识和应用数学的意识。
教学重点让学生掌握分式乘除法的法则及其应用。
教学难点分子分母是多项式的分式的乘除法的运算。
教学方法引导启发探求教具准备投影片四张第一张:探索交流,(记作§3.2 A);第二张:例1,(记作§3.2 B);第三张:例2,(记作§3.2 C);第四张:做一做,(记作§3.2 D)。
教学过程Ⅰ。
创设情境,引入新课[师]上节课,我们学习了分式的基本性质,我们可以发现它与分数的基本性质类似,那么分式的运算是否也和分数的运算类似呢?下面我们看投影片(§3.2 A)探索交流--观察下列算式:× = , × = ,÷ = × = , ÷ = × = .猜一猜× =? ÷ =?与同伴交流。
[生]观察上面运算,可知:两个分数相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;两个分数相除,把除数的分子和分母颠倒位置后,再与被除数相乘。
即× = ;÷ = × = .这里字母a,b,c,d都是整数,但a,c,d不为零。
[师]如果让字母代表整式,那么就得到类似于分数的分式的乘除法。
Ⅱ。
讲授新课1.分式的乘除法法则[师生共析]分式的乘除法法则与分数的乘除法法则类似:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘。
(完整版)分式乘除法教案
分式的运算(1)一、教学目标1、知识与技能1.分式乘除法的运算法则,2.会进行分式的乘除法的运算.2、过程与方法:1.会通过类比的方法来理解和掌握分式的乘除法法则。
2.熟练运用分式乘除法法则,将分式乘除法全部化归为分式乘法进行计算。
3、情感、态度与价值观要求通过师生共同交流、探讨,使学生在掌握知识的基础上,认识事物之间的内在联系,获得成就感.培养学生的创新意识和应用数学的意识.二、教学重点与难点:重点:让学生掌握分式乘除法的法则及其应用.难点:分子、分母是多项式的分式的乘除法的运算.三、教学过程方法(1)经历观察、猜想、归纳等探索分式乘除法运算法则的过程,使学生感知数学知识具有普遍的联系性,并熟练掌握这一法则。
(2)继续熟悉“数、式通性”“类比、转化”的数学思想方法,让学生在学知识的同时,学到数学思考方法,受到思维训练四、教学过程1、回顾旧知,引出新知设计说明:利用“数、式通性”“类比转化”的思想方法引发学生猜测,归纳分式乘除法运算法则,从而获得新知。
师:我们一起来看一道计算题,你会做吗?5372⨯(黑板出示) 生:5732⨯⨯=(教师黑板书写答案)师:你能用文字来叙述出你做这道题的思路吗?生:分子乘以分子得到分子,分母乘以分母得到分母。
师:对,这就是小学所学的分数的乘法, 这位同学说的很好。
我们大家一起来看看分数的乘法法则多媒体出示分数乘法法则:两个分数相乘,分母与分母相乘的积做为积的分母,分子与分子相乘的积做为分子2、建立模型,引入新课师:刚才我们做的是分数之间的乘法运算,那换成我们刚学过的分式,cd a b ⨯(黑板出示),大家来猜想一下应该等于多少呢? 生:等于acbd 师:同学们还有没有不同的答案?(让学生讨论)师:对,分式的乘法与分数乘法类似,那你能说出分式乘法的法则吗?生:两个分式相乘,分母与分母相乘的积做为积的分母,分子与分子相乘的积做为积的分子。
师:说的太棒了,他已经帮我们归纳出了分式的乘法法则,(我们大家掌声鼓励一下)。
八年级数学下册《分式的乘除》教案、教学设计
4.使学生认识到数学知识在实际生活中的应用价值,提高学生的数学素养;
5.通过数学学习,引导学生树立正确的价值观,培养良好的道德品质。
二、学情分析
八年级学生在经过前两年的数学学习后,已经具备了一定的数学基础知识和基本的运算能力。在本章节学习分式的乘除之前,学生已经掌握了分式的概念、性质以及分式的基本运算,这为学习分式的乘除打下了基础。但考虑到分式乘除运算的复杂性和灵活性,学生在运用过程中可能会出现混淆运算规则、忽视细节等问题。
5.能够运用分式乘除知识解决相关实际问题,提高数学应用能力。
(二)过程与方法
1.通过实际问题的引入,激发学生探究分式乘除的兴趣,培养学生的数学建模意识;
2.以自主探究、合作交流的方式,引导学生发现分式乘除的规律,培养学生的逻辑思维能力和团队协作能力;
3.通过典型例题4.设置不同难度的练习题,使学生在解决问题的过程中,逐步提高分析问题和解决问题的能力;
5.引导学生总结分式乘除运算的技巧,培养学生自我反思和归纳总结的能力。
(三)情感态度与价值观
1.培养学生对数学学习的兴趣,激发学生主动探索新知的欲望;
2.培养学生严谨、踏实的学术态度,养成认真计算、仔细检查的好习惯;
五、作业布置
为了巩固学生对分式乘除法则的理解和应用,确保学生对本节课的知识点能够熟练掌握,特布置以下作业:
1.完成课本第56页的练习题第1-6题,重点加强对分式乘除运算的步骤和约分技巧的练习。
2.从第7题开始,尝试解决一些与实际生活相关的问题,将实际问题转化为分式乘除问题,并运用所学的知识进行解答。
-精选典型例题,详细讲解分式乘除的运算步骤,强调约分的重要性。
《分式的乘除》教案
《分式的乘除》教案分式的乘除教案一、教学目标1. 理解分式的定义和基本概念。
2. 掌握分式的乘法和除法运算规则。
3. 能够解决与分式有关的实际问题。
二、教学重点1. 分式的乘法和除法运算规则。
2. 实际问题的解决。
三、教学难点实际问题的解决。
四、教学准备1. 教师准备:课本、黑板、粉笔。
2. 学生准备:课本、笔记。
五、教学过程1. 概念解释和引入(老师在黑板上写下分式的定义)分式是由分子和分母组成的数,通常用a/b的形式表示,其中a为分子,b为分母,b不等于0。
2. 分式的乘法运算规则(老师在黑板上写下分式的乘法运算规则)分式的乘法运算规则:两个分式相乘时,分子与分子相乘,分母与分母相乘。
例如: 2/3 × 4/5 = (2 × 4)/(3 × 5)= 8/153. 分式的除法运算规则(老师在黑板上写下分式的除法运算规则)分式的除法运算规则:两个分式相除时,分子与分子相乘,分母与分母相乘,然后将被除数的倒数变为乘数。
例如: 2/3 ÷ 4/5 = (2/3)×(5/4)= (2 × 5)/(3 × 4)= 10/12 = 5/64. 例题讲解和练习(老师在黑板上列出一些练习题,学生们进行解答,并逐一讲解)例题1:计算 3/5 × 7/8解答: 3/5 × 7/8 = (3 × 7)/(5 × 8)= 21/40例题2:计算 4/9 ÷ 2/3解答: 4/9 ÷ 2/3 = (4/9)×(3/2)= (4 × 3)/(9 × 2)= 12/18 =2/3例题3:计算 5/6 × 2/5 ÷ 3/4解答: 5/6 × 2/5 ÷ 3/4 = (5/6)×(2/5)÷(3/4)= (5 × 2)/(6 ×5)÷(3/4)= 10/30 ÷(3/4)= 10/30 ×(4/3)= (10 × 4)/(30 × 3)= 40/90 = 4/95. 实际问题解决(老师给出一些与分式有关的实际问题,并帮助学生思考和解决)例题4:小明做了1/3个小时的作业,他又做了2/5个小时的作业,他总共做了多长时间的作业?解答:首先计算出1/3 + 2/5 = (1 × 5 + 2 × 3)/(3 × 5)= (5 + 6)/15 = 11/15,所以小明总共做了11/15个小时的作业。
5.2.分式的乘除法(教案)
小组讨论的环节,我发现学生们在交流中能够互补不足,互相学习。但是,也有个别小组在讨论时偏离了主题,这提醒我在今后的教学中,需要更加明确讨论的目标和范围,确保讨论的有效性。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解分式乘除法的基本概念。分式乘除法是指对两个或多个分式进行乘法或除法运算的方法。它在数学运算中非常重要,可以帮助我们解决生活中的许多实际问题。
2.案例分析:接下来,我们来看一个具体的案例。假设我们要计算两个物体的速度比,我们可以通过分式乘除法来得到答案。这个案例展示了分式乘除法在实际中的应用,以及它如何帮助我们解决问题。
5.2.分式的乘除法(教案)
一、教学内容
本节课选自教材第五章第二节“分式的乘除法”。主要内容包括:
1.掌握分式乘法的法则,能够正确进行分式的乘法运算。
-分式乘法法则:a/b × c/d = ac/bd(b、d不为0)
2.掌握分式除法的法则,能够正确进行分式的除法运算。
-分式除法法则:a/b ÷ c/d = a/b × d/c(b、c、d不为0)
3.重点难点解析:在讲授过程中,我会特别强调分式乘法法则和分式除法法则这两个重点。对于难点部分,比如分式乘除混合运算的顺序和符号处理,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与分式乘除法相关的实际问题,如计算购物打折后的价格。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,比如使用代数式的分式乘除法来计算几何图形的面积比。
八年级数学下册《分式的乘除法》教案、教学设计
一、教学目标
(一)知识与技能
1.理解并掌握分式乘除法的运算规则,包括同分母分式相乘除、异分母分式相乘除以及分式乘方、分式乘除混合运算。
2.能够运用分式乘除法解决实际问题,提高运算速度和准确性,培养良好的数学运算习惯。
3.能够运用分式乘除法简化表达式,解决方程、不等式等相关问题,为后续学习打下基础。
3.教师趁机提出:“如果小明的妈妈想要计算每瓶酱油和每瓶醋的平均价格,应该怎么计算呢?”引导学生思考,从而引出分式乘除法的概念。
(二)讲授新知,500字
1.教师讲解分式乘除法的运算规则,以同分母分式相乘除和异分母分式相乘除为例,解释运算过程中需要注意的问题,如通分、约分等。
2.通过示例,演示分式乘除法的具体步骤,让学生跟随教师一起完成计算,加深对规则的理解。
(二)过程与方法
在本章节的教学过程中,教师将采用以下方法:
1.以实际问题导入,激发学生的学习兴趣,引导学生通过观察、思考、探究来发现分式乘除法的运算规律。
2.通过小组合作、交流讨论等形式,让学生在实践中掌握分式乘除法的运算方法,培养合作意识和团队精神。
3.利用变式训练,巩固学生对分式乘除法的理解,提高学生的运算能力和解决问题的能力。
4.通过课后练习和拓展任务,让学生在自主探究中加深对分式乘除法的认识,培养自主学习能力。
(三)情感态度与价值观
在本章节的学习过程中,注重培养学生的以下情感态度与价值观:
1.培养学生对数学学习的兴趣和热情,使他们树立正确的数学观念,认识到数学在生活中的重要性。
2.培养学生勇于探索、积极思考的精神,使他们具备面对困难和挑战时的信心和勇气。
(2)鼓励学生将分式乘除法与其他数学知识相结合,提高解决问题的综合能力。
分式的乘除法教案
分式的乘除法教案教案:分式的乘除法教学目标:1. 理解分式的乘法和除法的概念。
2. 掌握分式的乘法和除法的运算方法。
3. 能够解决与分式乘除法相关的问题。
教学准备:1. 讲义或教材2. 小黑板/白板和彩色粉笔/白板笔教学过程:步骤一:复习回顾分式的概念和基本运算规则。
步骤二:引入分式的乘法1. 结合例子解释分式的乘法是什么意思。
例如:$\frac{a}{b} \times \frac{c}{d}$表示把两个分式相乘。
2. 解释如何进行分式的乘法运算。
例如:将分子与分子相乘,分母与分母相乘,再将结果化简。
步骤三:练习分式的乘法请学生做一些练习题,以巩固分式的乘法运算。
步骤四:引入分式的除法1. 结合例子解释分式的除法是什么意思。
例如:$\frac{a}{b} \div \frac{c}{d}$表示把两个分式相除。
2. 解释如何进行分式的除法运算。
例如:将除数转化为倒数,再与被除数进行乘法运算。
步骤五:练习分式的除法请学生做一些练习题,以巩固分式的除法运算。
步骤六:综合乘除法的练习请学生做一些综合乘除法的练习题,以加强对分式乘除法的掌握。
步骤七:总结总结分式的乘法和除法的运算规则,并检查学生的理解。
课堂扩展活动:1. 给学生一些应用题,例如:购物时打了九折,原价100元,问打折后的价格是多少?2. 让学生自己设计一道分式的乘法或除法题目,与同学们进行交流。
评估方式:1. 教师观察学生的参与情况,是否能正确进行分式的乘法和除法运算。
2. 教师布置习题,检查学生的掌握程度。
分式的乘除法(一)教学设计
分式的乘除法(一)教学设计一、教学目标1. 理解分式的乘法和除法的概念,掌握分式的乘法和除法的计算方法;2. 学会将含有分式的复杂表达式化简成最简分式;3. 能够灵活运用分式的乘法和除法解决实际问题。
二、教学内容1. 分式的乘法;2. 分式的除法;3. 含有分式的表达式的化简。
三、教学重点和难点1. 教学重点:掌握分式乘法和除法的计算方法;2. 教学难点:学会将含有分式的复杂表达式化简成最简分式。
四、教学方法和学时安排1. 教学方法:讲授与练相结合的方法;2. 学时安排:本单元共计6学时,其中3学时进行讲授,3学时进行练。
五、教学步骤第一步:导入(1学时)通过解决实际问题的方式,引入学生们对分式乘除法的兴趣。
第二步:讲授分式乘法(1学时)1. 先引入分式乘法的概念和性质;2. 讲授分式乘法的计算方法;3. 通过讲解实例,锻炼学生的分式乘法计算能力。
第三步:练分式乘法(1学时)1. 提供练材料,引导学生独立完成分式乘法计算;2. 在练中指导学生正确的计算方法,及时纠正错误。
第四步:讲授分式除法(1学时)1. 先引入分式除法的概念和性质;2. 讲授分式除法的计算方法;3. 通过讲解实例,锻炼学生的分式除法计算能力。
第五步:练分式除法(1学时)1. 提供练材料,引导学生独立完成分式除法计算;2. 在练中指导学生正确的计算方法,及时纠正错误。
第六步:讲授含有分式的表达式的化简(1学时)1. 先引入含有分式的表达式的化简的概念和方法;2. 讲授化简方法;3. 通过讲解实例,锻炼学生的化简能力。
第七步:练含有分式的表达式的化简(1学时)1. 提供练材料,引导学生独立完成复杂分式表达式的化简;2. 在练中指导学生正确的计算方法,及时纠正错误。
六、教学评估通过作业、小测验等方式,对学生的掌握情况进行评估。
七、教学反思1. 对教学步骤进行细化,增加课堂互动环节;2. 加强实际问题应用,提高学生的学习兴趣和学习效果。
分式的乘除法(精选7篇)
分式的乘除法(精选7篇)分式的乘除法篇1一、教学过程【复习提问】1.分式的基本性质?2.分式的变号法则?【新课】数学小笑话:(配上漫画插图幻灯片)从前有个不学无术的富家子弟,有一次,父母出远门去办事,把他交给厨师照看,厨师问他:“我每天三餐每顿给你做两个馒头,够吗?”他哭丧着脸说:“不够,不够!”厨师又问:“那我就一天给你吃六个,怎么样?”他立刻欣喜地说:“够了!够了!”问:这个富家子弟为什么会犯这样的错误?分数约分的方法及依据是什么?1.提出课题:分式可不行以约分?依据什么?怎样约分?约到何时为止?同学分组争论,最终达成共识.2.老师小结:(1)约分的概念:把一个分式的分子与分母的公因式约去,叫做分式的约分.(2)分式约分的依据:分式的基本性质.(3)分式约分的方法:把分式的分子与分母分解因式,然后约去分子与分母的公因式.(4)最简分式的概念:一个分式的分子与分母没有公因式时,叫做最简分式.3.例题与练习:例1 约分:(1);请同学观看思索:①有没有公因式?②公因式是什么?解:.小结:①分式的分子、分母都是几个因式的积的形式,所以约去分子、分母中相同因式的最低次幂,留意系数也要约分.②分子或分母的系数是负数时,一般先把负号提到分式本身的前边.(2);请同学分析如何约分.解:.小结:①当分式的分子、分母为多项式时,先要进行因式分解,才能够依据分式的基本性质进行约分.②留意对分子、分母符号的处理.(3);解:原式.(4);解:原式.(5);解:原式.例2 化简求值:.其中,.分析:约分是实现化简分式的一种手段,通过约分可把分式化成最简,而最简分式为分式间的进一步运算供应了便利条件.解:原式.当,时..二、随堂练习教材P65练习1、2.三、总结、扩展1.约分的依据是分式的基本性质.2.若分式的分子、分母都是几个因式的积的形式,则约去分子、分母中相同因式的最低次幂,分子、分母和系数约去它们的最大公约数.3.若分式的分子、分母中有多项式,则要先分解因式,再约分.四、布置作业教材P73中2、3.补充思索争论题:1.将下列各式约分:(1);(2);(3)2.已知,则五、板书设计分式的乘除法篇2一、教学过程【复习提问】1.分式的基本性质?2.分式的变号法则?【新课】数学小笑话:(配上漫画插图幻灯片)从前有个不学无术的富家子弟,有一次,父母出远门去办事,把他交给厨师照看,厨师问他:“我每天三餐每顿给你做两个馒头,够吗?”他哭丧着脸说:“不够,不够!”厨师又问:“那我就一天给你吃六个,怎么样?”他立刻欣喜地说:“够了!够了!”问:这个富家子弟为什么会犯这样的错误?分数约分的方法及依据是什么?1.提出课题:分式可不行以约分?依据什么?怎样约分?约到何时为止?同学分组争论,最终达成共识.2.老师小结:(1)约分的概念:把一个分式的分子与分母的公因式约去,叫做分式的约分.(2)分式约分的依据:分式的基本性质.(3)分式约分的方法:把分式的分子与分母分解因式,然后约去分子与分母的公因式.(4)最简分式的概念:一个分式的分子与分母没有公因式时,叫做最简分式.3.例题与练习:例1 约分:(1);请同学观看思索:①有没有公因式?②公因式是什么?解:.小结:①分式的分子、分母都是几个因式的积的形式,所以约去分子、分母中相同因式的最低次幂,留意系数也要约分.②分子或分母的系数是负数时,一般先把负号提到分式本身的前边.(2);请同学分析如何约分.解:.小结:①当分式的分子、分母为多项式时,先要进行因式分解,才能够依据分式的基本性质进行约分.②留意对分子、分母符号的处理.(3);解:原式.(4);解:原式.(5);解:原式.例2 化简求值:.其中,.分析:约分是实现化简分式的一种手段,通过约分可把分式化成最简,而最简分式为分式间的进一步运算供应了便利条件.解:原式.当,时..二、随堂练习教材P65练习1、2.三、总结、扩展1.约分的依据是分式的基本性质.2.若分式的分子、分母都是几个因式的积的形式,则约去分子、分母中相同因式的最低次幂,分子、分母和系数约去它们的最大公约数.3.若分式的分子、分母中有多项式,则要先分解因式,再约分.四、布置作业教材P73中2、3.补充思索争论题:1.将下列各式约分:(1);(2);(3)2.已知,则五、板书设计分式的乘除法篇3一、教学过程【复习提问】1.分式的基本性质?2.分式的变号法则?【新课】数学小笑话:(配上漫画插图幻灯片)从前有个不学无术的富家子弟,有一次,父母出远门去办事,把他交给厨师照看,厨师问他:“我每天三餐每顿给你做两个馒头,够吗?”他哭丧着脸说:“不够,不够!”厨师又问:“那我就一天给你吃六个,怎么样?”他立刻欣喜地说:“够了!够了!”问:这个富家子弟为什么会犯这样的错误?分数约分的方法及依据是什么?1.提出课题:分式可不行以约分?依据什么?怎样约分?约到何时为止?同学分组争论,最终达成共识.2.老师小结:(1)约分的概念:把一个分式的分子与分母的公因式约去,叫做分式的约分.(2)分式约分的依据:分式的基本性质.(3)分式约分的方法:把分式的分子与分母分解因式,然后约去分子与分母的公因式.(4)最简分式的概念:一个分式的分子与分母没有公因式时,叫做最简分式.3.例题与练习:例1 约分:(1);请同学观看思索:①有没有公因式?②公因式是什么?解:.小结:①分式的分子、分母都是几个因式的积的形式,所以约去分子、分母中相同因式的最低次幂,留意系数也要约分.②分子或分母的系数是负数时,一般先把负号提到分式本身的前边.(2);请同学分析如何约分.解:.小结:①当分式的分子、分母为多项式时,先要进行因式分解,才能够依据分式的基本性质进行约分.②留意对分子、分母符号的处理.(3);解:原式.(4);解:原式.(5);解:原式.例2 化简求值:.其中,.分析:约分是实现化简分式的一种手段,通过约分可把分式化成最简,而最简分式为分式间的进一步运算供应了便利条件.解:原式.当,时..二、随堂练习教材P65练习1、2.三、总结、扩展1.约分的依据是分式的基本性质.2.若分式的分子、分母都是几个因式的积的形式,则约去分子、分母中相同因式的最低次幂,分子、分母和系数约去它们的最大公约数.3.若分式的分子、分母中有多项式,则要先分解因式,再约分.四、布置作业教材P73中2、3.补充思索争论题:1.将下列各式约分:(1);(2);(3)2.已知,则五、板书设计分式的乘除法篇4第一课时一、教学过程【复习提问】1.分式的基本性质?2.分式的变号法则?【新课】数学小笑话:(配上漫画插图幻灯片)从前有个不学无术的富家子弟,有一次,父母出远门去办事,把他交给厨师照看,厨师问他:“我每天三餐每顿给你做两个馒头,够吗?”他哭丧着脸说:“不够,不够!”厨师又问:“那我就一天给你吃六个,怎么样?”他立刻欣喜地说:“够了!够了!”问:这个富家子弟为什么会犯这样的错误?分数约分的方法及依据是什么?1.提出课题:分式可不行以约分?依据什么?怎样约分?约到何时为止?同学分组争论,最终达成共识.2.老师小结:(1)约分的概念:把一个分式的分子与分母的公因式约去,叫做分式的约分.(2)分式约分的依据:分式的基本性质.(3)分式约分的方法:把分式的分子与分母分解因式,然后约去分子与分母的公因式.(4)最简分式的概念:一个分式的分子与分母没有公因式时,叫做最简分式.3.例题与练习:例1 约分:(1);请同学观看思索:①有没有公因式?②公因式是什么?解:.小结:①分式的分子、分母都是几个因式的积的形式,所以约去分子、分母中相同因式的最低次幂,留意系数也要约分.②分子或分母的系数是负数时,一般先把负号提到分式本身的前边.(2);请同学分析如何约分.解:.小结:①当分式的分子、分母为多项式时,先要进行因式分解,才能够依据分式的基本性质进行约分.②留意对分子、分母符号的处理.(3);解:原式.(4);解:原式.第 1 2 页分式的乘除法篇5第一课时一、教学过程【复习提问】1.分式的基本性质?2.分式的变号法则?【新课】数学小笑话:(配上漫画插图幻灯片)从前有个不学无术的富家子弟,有一次,父母出远门去办事,把他交给厨师照看,厨师问他:“我每天三餐每顿给你做两个馒头,够吗?”他哭丧着脸说:“不够,不够!”厨师又问:“那我就一天给你吃六个,怎么样?”他立刻欣喜地说:“够了!够了!”问:这个富家子弟为什么会犯这样的错误?分数约分的方法及依据是什么?1.提出课题:分式可不行以约分?依据什么?怎样约分?约到何时为止?同学分组争论,最终达成共识.2.老师小结:(1)约分的概念:把一个分式的分子与分母的公因式约去,叫做分式的约分.(2)分式约分的依据:分式的基本性质.(3)分式约分的方法:把分式的分子与分母分解因式,然后约去分子与分母的公因式.(4)最简分式的概念:一个分式的分子与分母没有公因式时,叫做最简分式.3.例题与练习:例1 约分:(1);请同学观看思索:①有没有公因式?②公因式是什么?解:.小结:①分式的分子、分母都是几个因式的积的形式,所以约去分子、分母中相同因式的最低次幂,留意系数也要约分.②分子或分母的系数是负数时,一般先把负号提到分式本身的前边.(2);请同学分析如何约分.解:.小结:①当分式的分子、分母为多项式时,先要进行因式分解,才能够依据分式的基本性质进行约分.②留意对分子、分母符号的处理.(3);解:原式.(4);解:原式.(5);解:原式.例2 化简求值:.其中,.分析:约分是实现化简分式的一种手段,通过约分可把分式化成最简,而最简分式为分式间的进一步运算供应了便利条件.解:原式.当,时..二、随堂练习教材P65练习1、2.三、总结、扩展1.约分的依据是分式的基本性质.2.若分式的分子、分母都是几个因式的积的形式,则约去分子、分母中相同因式的最低次幂,分子、分母和系数约去它们的最大公约数.3.若分式的分子、分母中有多项式,则要先分解因式,再约分.四、布置作业教材P73中2、3.补充思索争论题:1.将下列各式约分:(1);(2);(3)2.已知,则五、板书设计分式的乘除法篇6一、教学过程【复习提问】1.分式的基本性质?2.分式的变号法则?【新课】数学小笑话:(配上漫画插图幻灯片)从前有个不学无术的富家子弟,有一次,父母出远门去办事,把他交给厨师照看,厨师问他:“我每天三餐每顿给你做两个馒头,够吗?”他哭丧着脸说:“不够,不够!”厨师又问:“那我就一天给你吃六个,怎么样?”他立刻欣喜地说:“够了!够了!”问:这个富家子弟为什么会犯这样的错误?分数约分的方法及依据是什么?1.提出课题:分式可不行以约分?依据什么?怎样约分?约到何时为止?同学分组争论,最终达成共识.2.老师小结:(1)约分的概念:把一个分式的分子与分母的公因式约去,叫做分式的约分.(2)分式约分的依据:分式的基本性质.(3)分式约分的方法:把分式的分子与分母分解因式,然后约去分子与分母的公因式.(4)最简分式的概念:一个分式的分子与分母没有公因式时,叫做最简分式.3.例题与练习:例1 约分:(1);请同学观看思索:①有没有公因式?②公因式是什么?解:.小结:①分式的分子、分母都是几个因式的积的形式,所以约去分子、分母中相同因式的最低次幂,留意系数也要约分.②分子或分母的系数是负数时,一般先把负号提到分式本身的前边.(2);请同学分析如何约分.解:.小结:①当分式的分子、分母为多项式时,先要进行因式分解,才能够依据分式的基本性质进行约分.②留意对分子、分母符号的处理.(3);解:原式.(4);解:原式.(5);解:原式.例2 化简求值:.其中,.分析:约分是实现化简分式的一种手段,通过约分可把分式化成最简,而最简分式为分式间的进一步运算供应了便利条件.解:原式.当,时..二、随堂练习教材P65练习1、2.三、总结、扩展1.约分的依据是分式的基本性质.2.若分式的分子、分母都是几个因式的积的形式,则约去分子、分母中相同因式的最低次幂,分子、分母和系数约去它们的最大公约数.3.若分式的分子、分母中有多项式,则要先分解因式,再约分.四、布置作业教材P73中2、3.补充思索争论题:1.将下列各式约分:(1);(2);(3)2.已知,则五、板书设计分式的乘除法篇7各位评委:午安!今日我说课的题目是《分式的乘除法(第1课时)》,所选用是人教版的教材。
分式的乘除法教案
分式的乘除法教案一、教学目标1. 理解分式乘除法的概念和运算规则。
2. 能够运用分式乘除法解决实际问题。
3. 培养学生的逻辑思维能力和运算能力。
二、教学内容1. 分式乘法的概念和运算规则。
2. 分式除法的概念和运算规则。
3. 分式乘除法的实际应用。
三、教学重点与难点1. 重点:分式乘除法的概念和运算规则。
2. 难点:分式乘除法在实际问题中的应用。
四、教学方法1. 采用讲解法,讲解分式乘除法的概念和运算规则。
2. 采用案例分析法,分析分式乘除法在实际问题中的应用。
3. 采用练习法,让学生通过练习巩固所学知识。
五、教学准备1. 教案、PPT、教学素材。
2. 计算器、黑板、粉笔。
3. 练习题。
教学过程:一、导入(5分钟)1. 复习分式的概念和基本性质。
2. 引导学生思考分式乘除法的意义和必要性。
二、讲解(20分钟)1. 讲解分式乘法的概念和运算规则。
2. 讲解分式除法的概念和运算规则。
3. 通过PPT展示典型例题,讲解分式乘除法的应用。
三、案例分析(15分钟)1. 分析分式乘除法在实际问题中的应用。
2. 让学生尝试解决实际问题,巩固所学知识。
四、练习(15分钟)1. 让学生独立完成练习题。
2. 讲解练习题的答案,解析解题思路。
五、总结(5分钟)1. 回顾本节课所学内容,总结分式乘除法的概念和运算规则。
2. 强调分式乘除法在实际问题中的应用。
教学反思:通过本节课的教学,发现部分学生在理解分式乘除法时存在困难。
在今后的教学中,可以结合更多实际例子,让学生在实践中掌握分式乘除法的应用。
加强对学生的个别辅导,提高他们的学习兴趣和自信心。
六、教学拓展1. 引导学生探索分式乘除法的运算规律。
2. 介绍分式乘除法在数学竞赛中的应用。
3. 引导学生思考分式乘除法在其他学科中的应用。
七、课堂小结1. 回顾本节课所学内容,总结分式乘除法的概念和运算规则。
2. 强调分式乘除法在实际问题中的应用。
3. 提醒学生注意分式乘除法在运算过程中的符号判断。
分式的乘除法教案
分式的乘除法教案一、教学目标1. 知识与技能:(1)理解分式乘除法的概念和运算规则;(2)能够正确进行分式的乘除运算;(3)掌握分式乘除法在实际问题中的应用。
2. 过程与方法:(1)通过实例演示和练习,培养学生运用分式乘除法解决实际问题的能力;(2)引导学生运用转化思想,将分式乘除法问题转化为整式乘除法问题进行求解。
3. 情感态度与价值观:(1)培养学生对数学学科的兴趣和自信心;(2)培养学生勇于探索、合作交流的良好学习习惯。
二、教学重点与难点1. 教学重点:(1)分式乘除法的概念和运算规则;(2)分式乘除法在实际问题中的应用。
2. 教学难点:(1)分式乘除法运算的灵活运用;(2)将分式乘除法问题转化为整式乘除法问题进行求解。
三、教学准备1. 教学工具:黑板、粉笔、多媒体教学设备;2. 教学素材:分式乘除法的例题和练习题。
四、教学过程1. 导入新课:(1)复习相关知识点,如分式的基本概念、分式的加减法;(2)提问:分式乘除法与整式乘除法有何区别?2. 知识讲解:(1)讲解分式乘法法则;(2)讲解分式除法法则;(3)举例说明分式乘除法在实际问题中的应用。
3. 课堂练习:(1)让学生独立完成分式乘除法的练习题;(2)引导学生运用转化思想,将分式乘除法问题转化为整式乘除法问题进行求解。
(1)回顾本节课所学内容,让学生梳理知识体系;(2)强调分式乘除法在实际问题中的应用。
五、课后作业1. 请学生完成课后练习题,巩固分式乘除法的运算规则;2. 选取一些实际问题,让学生运用分式乘除法进行求解;3. 鼓励学生进行自主学习,探索分式乘除法的更多应用。
六、教学拓展1. 对比分式乘除法与整式乘除法的差异,分析各自的优缺点;2. 探讨分式乘除法在实际生活中的应用,如概率、统计等领域;3. 介绍分式乘除法的相关数学史,让学生了解其发展过程。
七、课堂小结1. 回顾本节课所学内容,让学生梳理知识体系;2. 强调分式乘除法在实际问题中的应用,激发学生学习兴趣;3. 提醒学生注意分式乘除法中的易错点,如约分、通分等。
§分式乘除法教学设计教案
§3.2分式的乘除法教学目标(一)知识与技能目标使学生理解并掌握分式的乘除法则,运用法则进行运算,能解决一些与分式有关的实际问题.(二)过程与方法目标经历探索分式的乘除运算法则的过程,并能结合具体情境说明其合理性(三)情感与价值目标渗透类比转化的思想,让学生在学知识的同时学到方法,受到思维训练.教学重点掌握分式的乘除运算教学难点分子、分母为多项式的分式乘除法运算.教学目标一、情境导入通常购买同一品种的西瓜时,西瓜的质量越大,花费的钱越多,因此人们希望西瓜瓤占整个西瓜的比例越大越好。
假如我们把西瓜都看成球形,并把西瓜瓤的密度看成是均匀的,西瓜的皮厚都d ,已知球的体积公式为334R v π=(其中R 为球的半径,)那么 (1)西瓜瓤与整个西瓜的体积各是多少?(2)西瓜瓤与整个西瓜的体积的比是多少?2.观察下列运算:,43524532543297259275,53425432⨯⨯=⨯=÷⨯⨯=⨯⨯⨯=⨯,.279529759275⨯⨯=⨯=÷ 猜一猜??=÷=⨯cd a b cd b a 与同伴交流。
二、讲授新课 经观察、类比不难发现,ac bd c d a b =⨯.adbc d c a b c d a b =⨯=÷ 由学生自己归纳总结出分式乘除法法则例1计算(1)223286a y y a ⋅ (2)aa a a 21222+⋅-+ 注意:分式运算的结果通常要化成最简分式或整式例2计算(1)x y xy 2263÷ (2)41441222--÷+--a a a a a 小结:①分式的分子、分母都是几个因式的积的形式,所以约去分子、分母中相同因式的最低次幂,注意系数也要约分②当分式的分子、分母为多项式时,先要进行因式分解,才能够依据分式的基本性质进行约分.做一做:通常购买同一品种的西瓜时,西瓜的质量越大,花费的钱越多,因此人们希望西瓜瓤占整个西瓜的比例越大越好。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§3.2分式的乘除法
教学目标
(一)知识与技能目标
使学生理解并掌握分式的乘除法则,运用法则进行运算,能解决一些与分式有关的实际问题.
(二)过程与方法目标
经历探索分式的乘除运算法则的过程,并能结合具体情境说明其合理性
(三)情感与价值目标
渗透类比转化的思想,让学生在学知识的同时学到方法,受到思维训练.
教学重点
掌握分式的乘除运算
教学难点
分子、分母为多项式的分式乘除法运算.
教学目标
一、情境导入
通常购买同一品种的西瓜时,西瓜的质量越大,花费的钱越多,因此人们希望西瓜瓤占整个西瓜的比例越大越好。
假如我们把西瓜都看成球形,并把西瓜瓤的密度看成是均匀的,西瓜的皮厚都d ,已知球的体积公式为33
4R v π=(其中R 为球的半径,)那么 (1)西瓜瓤与整个西瓜的体积各是多少?
(2)西瓜瓤与整个西瓜的体积的比是多少?
2.观察下列运算:
,43524532543297259275,5
3425432⨯⨯=⨯=÷⨯⨯=⨯⨯⨯=⨯,.279529759275⨯⨯=⨯=÷ 猜一猜??=÷=⨯c
d a b c
d b a 与同伴交流。
二、讲授新课 经观察、类比不难发现,ac bd c d a b =⨯.ad
bc d c a b c d a b =⨯=÷ 由学生自己归纳总结出分式乘除法法则
例1计算(1)223286a y y a ⋅ (2)a
a a a 21222+⋅-+ 注意:分式运算的结果通常要化成最简分式或整式
例2计算(1)x y xy 22
63÷ (2)41441222--÷+--a a a a a 小结:①分式的分子、分母都是几个因式的积的形式,所以约去分子、分母中相同因式的最低次幂,注意系数也要约分
②当分式的分子、分母为多项式时,先要进行因式分解,才能够依据分式的基本性质进行约分.
做一做:通常购买同一品种的西瓜时,西瓜的质量越大,花费的钱越多,因此人们希望西瓜瓤占整个西瓜的比例越大越好。
假如我们把西瓜都看成球形,并把西瓜瓤的密度看成是均匀的,西瓜的皮厚都d ,已知球的体积公式为33
4R v π=
(其中R 为球的半径,)那么(3)买
大西瓜合算还是买小西瓜合算?
三、课堂练习P69
四、课堂小结:通过本节课的学习,你学到了哪些知识和方法?
五、作业习题3.3。