人教版数学必修三期末测试题 附答案

合集下载

【人教版】高中数学必修三期末模拟试卷(带答案)

【人教版】高中数学必修三期末模拟试卷(带答案)

一、选择题1.袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为( )A.521B.1021C.1121D.12.若即时起10分钟内,甲乙两同学等可能到达某咖啡厅,则这两同学到达咖啡厅的时间间隔不超过3分钟的概率为( )A.0.3B.0.36C.0.49D.0.513.在二项式42nxx⎛+⎪⎝⎭的展开式,前三项的系数成等差数列,把展开式中所有的项重新排成一列,有理项都互不相邻的概率为()A.16B.14C.512D.134.从2017年到2019年的3年高考中,针对地区差异,理科数学全国卷每年都命了3套卷,即:全国I卷,全国II卷,全国III卷.小明同学马上进入高三了,打算从这9套题中选出3套体验一下,则选出的3套题年份和编号都各不相同的概率为()A.184B.142C.128D.1145.程大位是明代著名数学家,他的《新编直指算法统宗》是中国历史上一部影响巨大的著作.它问世后不久便风行宇内,成为明清之际研习数学者必读的教材,而且传到朝鲜、日本及东南亚地区,对推动汉字文化圈的数学发展起了重要的作用.卷八中第33问是:“今有三角果一垛,底阔每面七个,问该若干?”如图是解决该问题的程序框图.执行该程序框图,求得该垛果子的总数S为( )A.84 B.56 C.35 D.286.执行如图所示的程序框图,如果输入n=3,输出的S=()A.67B.37C.89D.497.执行如图所示的程序框图,若输入x=9,则循环体执行的次数为()A.1次B.2次C.3次D.4次8.明代数学家程大位(1533~1606年),有感于当时筹算方法的不便,用其毕生心血写出《算法统宗》,可谓集成计算的鼻祖.如图所示的程序框图的算法思路源于其著作中的“李白沽酒”问题.执行该程序框图,若输出的y的值为2,则输入的x的值为()A .74B .5627C .2D .164819.图1是某学习小组学生数学考试成绩的茎叶图,1号到16号的同学的成绩依次为1A ,216,,A A ⋯,图2是统计茎叶图中成绩在一定范围内的学生情况的程序框图,那么该程序框图输出的结果是( )A .10B .6C .7D .1610.如图是两组各7名同学体重(单位:kg )数据的茎叶图,设1、2两组数据的平均数依次为1x 和2x ,标准差依次为12s s 、,那么( )(注:标准差222121[()()...()]n s x x x x x x n=-+-++-A .1212,x x s s >>B .1212,x x s s ><C .1212,x xs s << D .1212,x x s s11.为了解某社区居民的家庭年收入所年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表: 收入x (万元)8.28.610.011.311.9支出y (万元)6.27.58.0 8.59.8根据上表可得回归直线方程ˆˆˆybx a =+,其中ˆˆˆ0.76,b a y bx ==-,据此估计,该社区一户收入为15万元家庭年支出为( ) A .11.4万元B .11.8万元C .12.0万元D .12.2万元12.已知一组数据12,,,n x x x 的平均数3x =,则数据1232,32,,32n x x x +++的平均数为( ) A .3B .5C .9D .11二、填空题13.设每门高射炮命中飞机的概率为0.06,且每一门高射炮是否命中飞机是独立的,若有一敌机来犯,则需要______门高射炮射击,才能以至少99%的概率命中它.14.北京市某银行营业点在银行大厅悬挂着不同营业时间段服务窗口个数的提示牌,如图所示. 设某人到达银行的时间是随机的,记其到达银行时服务窗口的个数为X ,则()E X =______________.15.在区间[0,2]上随机取两个数,a b ,则事件“函数()1f x bx a =+-在[0,1]内有零点”的概率为_______.16.图中的程序框图的算法思路来源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入,,a b i 的值分别为6,8,0,则输出的i =________.17.将二进制数110 101(2)转为七进制数,结果为________.18.程序框图如下图所示,其输出的结果是__________________________.19.某天有10名工人生产同一零部件,生产的件数分别是:15、17、14、10、15、17、17、16、14、12,设其平均数为a,中位数为b,众数为c,则a、b、c从小到大的关系依次是________20.已知某人连续5次射击的环数分别是8,9,10,x,8,若这组数据的平均数是9,则这组数据的方差为.三、解答题21.从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表和频率分布直方图:(1)求频率分布直方图中的a ,b 的值;(2)从阅读时间在[14,18)的学生中任选2人,求恰好有1人阅读时间在[14,16),另1人阅读时间在[16,18)的概率.22.在一个盒子中装有6支圆珠笔,其中3支一等品,2支二等品和1支三等品,从中任取3支.求(1)恰有1支一等品的概率; (2)恰有两支一等品的概率; (3)没有三等品的概率.23.如图,已知单位圆221x y +=与x 轴正半轴交于点P ,当圆上一动点Q 从P 出发沿逆时针旋转一周回到P 点后停止运动.设OQ 扫过的扇形对应的圆心角为xrad ,当02x π<<时,设圆心O 到直线PQ 的距离为y ,y 与x 的函数关系式()y f x =是如图所示的程序框图中的①②两个关系式.(1)写出程序框图中①②处的函数关系式; (2)若输出的y 值为12,求点Q 的坐标. 24.设计一个算法,已知函数2x y =的图象上,任意给定两点的横坐标1x 和212()x x x ≠,求过这两点的直线的斜率,并画出程序框图.25.有一个同学家开了一个小卖部,他为了研究气温对热饮销售的影响,经过统计,得到一个卖出的热饮杯数与当天气温的对比表: 摄氏温度C x ︒ 5-0 5 10 15 热饮杯数y1571271077237(1)求y 关于x 的线性回归直线方程;(2)如果某天的气温是–10C ︒,预测这天卖出的热饮杯数(四舍五入,取整数).附:对于线性回归直线方程ˆˆˆybx a =+,其中1122211()()ˆ()nnii i ii i nniii i xx y y x ynx yb xx xnx ====---==--∑∑∑∑,ˆˆay bx =-, 26.某城市100户居民的月平均用水量(单位:吨),以[0,2)[2,4)[4,6)[6,8)[8,10)[10,12)[12,14)分组的频率分布直方图如图.(1)求直方图中x的值;并估计出月平均用水量的众数.(2)求月平均用水量的中位数及平均数;(3)在月平均用水量为[6,8),[8,10),[10,12),[12,14)的四组用户中,用分层抽样的方法抽取22户居民,则应在[10,12)这一组的用户中抽取多少户?(4)在第(3)问抽取的样本中,从[10,12)[12,14)这两组中再随机抽取2户,深入调查,则所抽取的两户不是来自同一个组的概率是多少?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】由从共有15个球中任取2个球,共有215C种不同的取法,其中所取的2个球中恰有1个白球,1个红球,共有11510C C种不同的取法,再利用古典概型及其概率的计算公式,即可求解.【详解】由题意,从共有15个除了颜色外完全相同的球,任取2个球,共有215C种不同的取法,其中所取的2个球中恰有1个白球,1个红球,共有11510C C种不同的取法,所以概率为11510215501010521C CC==,故选B.【点睛】本题主要考查了排列、组合的应用,以及古典概型及其概率的应用,其中解答中认真审题,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.2.D解析:D 【分析】由几何概型中的面积型得:1277210.511010S P S ⨯⨯⨯==-=⨯阴正,即可得解.【详解】设甲、乙两同学等可能到达某咖啡厅的时间为(),x y ,则010x <≤,010y <≤,其基本事件可用正方形区域表示,如图,则甲、乙两同学等可能到达某咖啡厅的时间间隔不超过3分钟的事件为A , 则事件A 为:3x y -≤,其基本事件可用阴影部分区域表示,由几何概型中的面积型可得:1277210.511010S P S ⨯⨯⨯==-=⨯阴正.故选:D. 【点睛】本题考查了几何概型中的面积型,属于基础题.3.C解析:C 【分析】先根据前三项的系数成等差数列求n ,再根据古典概型概率公式求结果 【详解】因为42nx x 前三项的系数为1212111(1)1,,112448n n n n n n C C C C n -⋅⋅∴=+⋅∴-=163418118,0,1,2,82rr r r n n T C x r -+>∴=∴=⋅=,当0,4,8r =时,为有理项,从而概率为636799512A A A =,选C. 【点睛】本题考查二项式定理以及古典概型概率,考查综合分析求解能力,属中档题.4.D解析:D 【分析】先计算出9套题中选出3套试卷的可能,再计算3套题年份和编号都各不相同的可能,通过古典概型公式可得答案. 【详解】通过题意,可知从这9套题中选出3套试卷共有39=84C 种可能,而3套题年份和编号都各不相同共有336A =种可能,于是所求概率为61=8414.选D. 【点睛】本题主要考查古典概型,意在考查学生的分析能力,计算能力,难度不大.5.A解析:A 【分析】按照程序框图运行程序,直到满足7i ≥时输出结果即可. 【详解】按照程序框图运行程序,输入0i =,0n =,0S =, 则1i =,1n =,1S =,不满足7i ≥,循环;2i =,3n =,4S =,不满足7i ≥,循环; 3i =,6n =,10S =,不满足7i ≥,循环; 4i =,10n =,20S =,不满足7i ≥,循环;5i =,15n =,35S =,不满足7i ≥,循环; 6i =,21n =,56S =,不满足7i ≥,循环;7i =,28n =,84S =,满足7i ≥,输出84S =. 故选:A . 【点睛】本题考查根据程序框图循环结构计算输出结果的问题,属于基础题.6.B解析:B 【详解】试题分析:由题意得,输出的为数列的前三项和,而,∴,故选B.考点:1程序框图;2.裂项相消法求数列的和. 【名师点睛】本题主要考查了数列求和背景下的程序框图问题,属于容易题,解题过程中首先要弄清程序框图所表达的含义,解决循环结构的程序框图问题关键是列出每次循环后的变量取值情况,循环次数较多时,需总结规律,若循环次数较少可以全部列出.7.C解析:C 【分析】根据程序框图依次计算得到答案. 【详解】9,5x y ==,41y x -=>;115,3x y ==,413y x -=>; 1129,39x y ==,419y x -=<;结束. 故选:C . 【点睛】本题考查了程序框图的循环次数,意在考查学生的理解能力和计算能力.8.C解析:C 【分析】根据程序框图依次计算得到答案. 【详解】34y x =-,1i =;34916y y x =-=-,2i =;342752y y x =-=-,3i =;3481160y y x =-=-,4i =;34243484y y x =-=-,此时不满足3i ≤,跳出循环,输出结果为243484x -,由题意2434842y x =-=,得2x =. 故选:C 【点睛】本题考查了程序框图的计算,意在考查学生的理解能力和计算能力.9.A解析:A 【分析】先弄清楚程序框图中是统计成绩不低于90分的学生人数,然后从茎叶图中将不低于90分的个数数出来,即为输出的结果. 【详解】176A =,1i =,16i ≤成立,190A ≥不成立,112i =+=; 279A =,2i =,16i ≤成立,290A ≥不成立,112i =+=;792A =,7i =,16i ≤成立,790A ≥成立,011n =+=,718i =+=;依此类推,上述程序框图是统计成绩不低于90分的学生人数,从茎叶图中可知,不低于90分的学生数为10,故选A . 【点睛】本题考查茎叶图与程序框图的综合应用,理解程序框图的意义,是解本题的关键,考查理解能力,属于中等题.10.C解析:C 【分析】由茎叶图分别计算出两组数的平均数和标准差,然后比较大小 【详解】读取茎叶图得到两组数据分别为: (1)53565758617072,,,,,, (2)54565860617273,,,,,,()()11503678112022617x kg =+⨯++++++=,()()215046810112223627x kg =+⨯++++++=,()()()2221131653615661...726177s ⎡⎤=-+-++-=⎣⎦, ()()()2222134254625662 (736277)s ⎡⎤=-+-++-=⎣⎦, 则1212,x x s s << 故选C 【点睛】本题给出茎叶图,需要求出数据的平均数和方差,着重考查了茎叶图的认识,样本特征数的计算等知识,属于基础题.11.B解析:B 【解析】 试题分析:由题,,所以.试题 由已知,又因为ˆˆˆybx a =+,ˆˆˆ0.76,b a y bx ==- 所以,即该家庭支出为万元.考点:线性回归与变量间的关系.12.D解析:D 【解析】分析:一组数据中的每一个数加或减一个数,它的平均数也加或减这个数;;依此规律求解即可.详解::∵一组数据12,,,n x x x 的平均数为3, ∴另一组数据1232,32,,32n x x x +++的平均数121211323232[32]33211n n x x x x x x n n n=++++⋯++=++⋯++=⨯+=()(), 故选D.点睛:本题考查了平均数,平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.二、填空题13.【分析】设需要门高射炮由题意得出解出的取值范围可得出正整数的最小值【详解】设需要门高射炮则命不中的概率为由题意得出得解得而因此至少需要门高射炮故答案为:【点睛】本题考查独立事件概率乘法公式的应用在涉 解析:75【分析】设需要n 门高射炮,由题意得出()110.060.99n--≥,解出n 的取值范围,可得出正整数n 的最小值.【详解】设需要n 门高射炮,则命不中的概率为()10.06n-,由题意得出10.940.99n-≥,得0.940.01n≤,解得0.942log 0.01lg 0.94n ≥=-, 而274.43lg 0.94-≈,因此,至少需要75门高射炮.故答案为:75. 【点睛】本题考查独立事件概率乘法公式的应用,在涉及“至少”问题时,可以利用对立事件的概率公式来进行计算,考查运算求解能力,属于中等题.14.【解析】【分析】列出随机变量的分布列求解【详解】由题意知某人到达银行的概率为几何概型所以:其到达银行时服务窗口的个数为的分布列为: 5 4 3 4 2 则【点睛】本题考查几何概型及随 解析:3.5625【解析】 【分析】列出随机变量的分布列求解. 【详解】由题意知某人到达银行的概率为几何概型,所以: 其到达银行时服务窗口的个数为的分布列为:则()54342 3.56258161648E X =⨯+⨯+⨯+⨯+⨯=. 【点睛】本题考查几何概型及随机变量的分布列.15.【解析】【分析】在上任取两个数在以2为棱长的正方形内在内有零点等价于即求出可行域的面积利用几何概型概率公式求解即可【详解】在上任取两个数则在以2为棱长的正方形内因为在内有零点所以即表示如图所示的梯形 解析:38【解析】 【分析】在[]0,2上任取两个数,a b , (),a b 在以2为棱长的正方形内,()f x 在[]0,1内有零点, 等价于()()010f f ≤,即()()110a b a -+-≤,求出可行域的面积,利用几何概型概率公式求解即可. 【详解】在[]0,2上任取两个数,a b , 则(),a b 在以2为棱长的正方形内, 因为()f x 在[]0,1内有零点, 所以()()010f f ≤, 即()()110a b a -+-≤,(),a b 表示如图所示的梯形区域,由几何概型概率公式可得“函数()1f x bx a =+-在[]0,1内有零点”的概率为()112132228⨯+⨯=⨯,故答案为38. 【点睛】本题主要考查“面积型”的几何概型,属于中档题. 解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与面积有关的几何概型问题关鍵是计算问题的总面积以及事件的面积;几何概型问题还有以下几点容易造成失分,在备考时要高度关注:(1)不能正确判断事件是古典概型还是几何概型导致错误;(2)基本事件对应的区域测度把握不准导致错误 ;(3)利用几何概型的概率公式时 , 忽视验证事件是否等可能性导致错误.16.4【解析】当输入时运算程序继续此时进而有这时输出应填答案解析:4 【解析】当输入6,8,0a b i ===时,1,,2i a b b b a =<=-=,运算程序继续,此时6,2a b ==,2,,4i a b a a b =>=-=,进而有3,,2i a b a a b =>=-=,这时2,314a b i ===+=,输出2,314a b i ===+=,应填答案4.17.【解析】试题分析:把十进制的化为七进制则所以结果为考点:进位制 解析:7104()【解析】试题分析:245(2)110101112121253=+⨯+⨯+⨯=,把十进制的53化为七进制,则53774÷=,7710÷=,1701÷=,所以结果为(7)104.考点:进位制.18.127【分析】根据题意按照程序框图的顺序进行执行然后输出结果即可【详解】解:由程序框图知循环体被执行后a的值依次为37153163127故输出的结果是127故答案为127【点睛】本题考查程序框图的识解析:127【分析】根据题意,按照程序框图的顺序进行执行,然后输出结果即可【详解】解:由程序框图知,循环体被执行后a的值依次为3、7、15、31、63、127,故输出的结果是127.故答案为127.【点睛】本题考查程序框图的识别,通过对已知框图的分析与执行,写出运算结果,属于基础题.19.【详解】分析:将数据由小到大排列好根据众数中位数平均数的概念得到相应的数据即可详解:根据提干得到中位数为b=15众数为c=17平均数为=a故故答案为点睛:这个题目考查了中位数众数平均数的概念和计算较解析:a b c<<.【详解】分析:将数据由小到大排列好,根据众数,中位数,平均数的概念得到相应的数据即可.详解:根据提干得到中位数为b=15,众数为c=17,平均数为10+12+28+30+16+51=14.710=a.故a b c<<.故答案为a b c<<.点睛:这个题目考查了中位数,众数,平均数的概念和计算,较为基础,众数即出现次数最多的数据,中位数即最中间的数据,平均数即将所有数据加到一起,除以数据个数. 20.【解析】分析:先根据平均数求x的值再求数据的方差详解:由题得所以数据的方差为故答案为点睛:(1)本题主要考查平均数和方差的计算意在考查学生对这些基础知识的掌握水平(2)方差公式为解析:4 5【解析】分析:先根据平均数求x的值,再求数据的方差.详解:由题得8+9+8109,10.5xx++=∴=所以数据的方差为22222214[(89)(99)(109)(109)(89)]55S =-+-+-+-+-=.故答案为45. 点睛:(1)本题主要考查平均数和方差的计算,意在考查学生对这些基础知识的掌握水平.(2) 方差公式为222121[()()()]n S x x x x x x n=-+-+⋅⋅⋅+-. 三、解答题21.(1)a=0.11,b=0.04;(2)23. 【分析】(1)课外阅读时间落在[6,8)的有22人,频率为0.22,由此能求出a ,课外阅读时间落在[2,4)的有8人,频率为0.08,由此能求出b ;(2)课外阅读时间落在[14,16)的有2人,设为m ,n ;课外阅读时间落在[16,18)的有2人为x ,y ,由此利用列举法能求出从课外阅读时间落在[14,18)的学生中任选2人,其中恰好有1人阅读时间在[14,16),另1人阅读时间在[16,18)的概率. 【详解】(1)课外阅读时间落在[6,8)的有22人,频率为0.22,所以0.220.112a == 课外阅读时间落在[2,4)的有8人,频率为0.08, 所以0.080.042b == (2)课外阅读时间落在[14,16)的有2人,设为m ,n ;课外阅读时间落在[16,18)的有2人为x ,y ,则从课外阅读时间落在[14,18)的学生中任选2人包含:(,)m n ,(,)m x ,(,)m y ,(,)n x ,(,)n y ,(,)x y 共6种,其中恰好有1人阅读时间在[14,16),另1人阅读时间在[16,18)的有(,)m x ,(,)m y ,(,)n x ,(,)n y 共4种, 所以所求概率为:4263p ==. 【点睛】本题考查频率直方图的求法,考查概率的求法,考查古典概型、列举法等基础知识,是基础题. 22.(1)920;(2)920;(3)12.【分析】(1)恰有一支一等品,从3支一等品中任取一支,从二、三等品种任取两支利用分布乘法原理计算后除以基本事件总数;(2)恰有两枝一等品,从3支一等品中任取两支,从二、三等品种任取一支利用分布乘法原理计算后除以基本事件总数;(3)从5支非三等品中任取三支除以基本事件总数. 【详解】(1)恰有一枝一等品的概率123336920C C P C ⋅==; (2)恰有两枝一等品的概率123336920C C P C ⋅==; (3)没有三等品的概率353612C P C ==.【点睛】本题考查古典概型及其概率计算公式,考查逻辑思维能力和运算能力,属于常考题. 23.(1)cos 2x y =,cos 2x y =-.(2) 1(,2-. 【详解】分析:(1)利用三角函数的定义与性质求出两种情况下y 与x 的函数关系式,即可得结果;(2)0x π<≤时,1cos 22x =,得23x π=,此时点Q的坐标为1,22⎛⎫- ⎪ ⎪⎝⎭;当2x ππ<<时,1cos 22x -=,得43x π=,此时点Q的坐标为1,22⎛-- ⎝⎭. 详解:(1)当0x π<≤时,cos2x y =;当2x ππ<<时,cos cos 22x x y π⎛⎫=-=- ⎪⎝⎭; 综上可知,函数解析式为()(](),0,2,,22x cos x f x x cos x πππ⎧∈⎪⎪=⎨⎪-∈⎪⎩所以框图中①②处应填充的式子分别为cos 2x y =,cos 2xy =-. (2)若输出的y 值为12,则 0x π<≤时,1cos 22x =,得23x π=,此时点Q的坐标为1,22⎛⎫- ⎪ ⎪⎝⎭;当2x ππ<<时,1cos22x -=,得43x π=,此时点Q 的坐标为13,2⎛⎫-- ⎪ ⎪⎝⎭. 点睛:本题主要考查条件语句以及算法的应用,属于中档题 .算法是新课标高考的一大热点,其中算法的交汇性问题已成为高考的一大亮,这类问题常常与函数、数列、不等式等交汇自然,很好地考查考生的信息处理能力及综合运用知识解决问題的能力,解决算法的交汇性问题的方:(1)读懂程序框图、明确交汇知识,(2)根据给出问题与程序框图处理问题即可. 24.见解析 【解析】试题分析:输入12,x x ,然后计算112x y =,222xy =和1212y y k x x -=-,最后输出,利用顺序结构的程序框图表示即可. 试题 算法如下:第一步:输入12,x x .第二步:计算112xy =. 第三步:计算222xy =.第四步:计算1212y y k x x -=-. 第五步,输出k . 程序框图下:25.(1)ˆ 5.9129.5yx =-+;(2)189杯. 【分析】(1)根据表中数据计算可得所需数据,利用最小二乘法可求得回归直线方程;(2)代入10x =-即可求得预测值. 【详解】(1)由表中数据得:505101555x -++++==,15712710772371005y ++++==,517855357205551025i ii x y==-+++=∑,5212525100225375i i x ==+++=∑,102555100ˆ 5.9375525b-⨯⨯∴==--⨯,ˆ100 5.95129.5a ∴=+⨯=,y ∴关于x 的线性回归直线方程为:ˆ 5.9129.5y x =-+.(2)令10x =-,解得:188.5189y =≈,∴如果某天的气温是–10C ︒,预测这天卖出的热饮杯数为189杯.【点睛】本题考查利用最小二乘法求解回归直线、利用回归直线求解预测值的问题;关键是熟练掌握最小二乘法,考查学生的计算能力. 26.(1) x =0.075,7;(2) 6.4,5.36;(3) 2;(4)23. 【分析】(1)根据频率和为1,列方程求出x 的值;(2)根据频率分布直方图中,每个矩形的中点横坐标与该矩形的纵坐标、组距相乘后求和可得平均值,由最高矩形的数据组中点为众数;中位数两边的频率相等,由此求出中位数;(3)求出抽取比例数,计算应抽取的户数; (4)利用列举法,由古典概型概率公式可得结果. 【详解】(1)根据频率和为1,得2×(0.02+0.095+0.11+0.125+x +0.05+0.025)=1, 解得x =0.075;由图可知,最高矩形的数据组为[6,8),所以众数为()16872+=; (2) [2,6)内的频率之和为 (0.02+0.095+0.11)×2=0.45;设中位数为y ,则0.45+(y −6)×0.125=0.5, 解得y =6.4,∴中位数为6.4;平均数为()210.0230.09550.1170.12590.075110.025 5.36⨯+⨯+⨯+⨯+⨯+⨯= (3)月平均用电量为[10,12)的用户在四组用户中所占的比例为0.0520.1250.0750.050.02511=+++,∴月平均用电量在[10,12)的用户中应抽取11×211=2(户).(4)月平均用电量在[12,14)的用户中应抽取11×111=1(户),月平均用电量在[10,12)的用户设为A、B, 月平均用电量在[12,14)的用户设为C,从[10,12),[12,14)这两组中随机抽取2户共有,,AB AC BC,3种情况,其中,抽取的两户不是来自同一个组的有,,AC BC,2种情况,所以,抽取的两户不是来自同一个组的概率为2 3 .【点睛】本题主要考查频率分布直方图的应用,属于中档题. 直方图的主要性质有:(1)直方图中各矩形的面积之和为1;(2)组距与直方图纵坐标的乘积为该组数据的频率;(3)每个矩形的中点横坐标与该矩形的纵坐标、组距相乘后求和可得平均值;(4)直方图左右两边面积相等处横坐标表示中位数.。

高中数学必修三期末试题带答案

高中数学必修三期末试题带答案

一、选择题1.如图,正方形ABNH 、DEFM 的面积相等,23CN NG AB ==,向多边形ABCDEFGH 内投一点,则该点落在阴影部分内的概率为( )A .12B .34C .27D .382.质地均匀的正四面体的四个面上分别写有数字0,1,2,3,把两个这样的四面体抛在桌面上,露在外面的6个数字为2,0,1,3,0,3的概率为( ) A .19B .164C .18D .1163.底面是正多边形,顶点在底面的射影是底面中心的棱锥叫正棱锥.如图,半球内有一内接正四棱锥S ABCD -,该四棱锥的体积为423,现在半球内任取一点,则该点在正四棱锥内的概率为( )A .1πB 2C 3D .2π4.七巧板是古代中国劳动人民的发明,到了明代基本定型.清陆以湉在《冷庐杂识》中写道:近又有七巧图,其式五,其数七,其变化之式多至千余.如图,在七巧板拼成的正方形内任取一点,则该点取自图中阴影部分的概率是( )A.116B.18C.38D.3165.已知函数1()(1)g xx x=+,程序框图如图所示,若输出的结果1011S=,则判断框中可以填入的关于n的判断条件是()A.10?n≤B.10?n>C.11?n≤D.11?n>6.对任意非零实数a、b,若a b⊗的运算原理如图所示,则121log43-⎛⎫⊗ ⎪⎝⎭的值为()A .13B .1C .43D .27.定义语句“mod r m n =”表示把正整数m 除以n 所得的余数赋值给r ,如7mod31=表示7除以3的余数为1,若输入56m =,18n =,则执行框图后输出的结果为( )A .6B .4C .2D .18.如图的程序框图,当输出15y =后,程序结束,则判断框内应该填( )A .1x ≤B .2x ≤C .3x ≤D .4x ≤9.采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号1,2,⋯,960,分组后在第一组采用简单随机抽样的方法抽到的号码为29,则抽到的32人中,编号落入区间[]200,480的人数为 A .7B .9C .10D .1210.以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x ,y 的值分别为( )A .2,5B .5,5C .5,8D .8,811.若某校高一年级8个班参加合唱比赛的得分如茎叶图所示,则这组数据的中位数和平均数分别是( )A .91.5和91.5B .91.5和92C .91和91.5D .92和9212.为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验,得到5组数据:11(,)x y ,22(,)x y ,33(,)x y ,44(,)x y ,55(,)x y .根据收集到的数据可知12345150x x x x x ++++=,由最小二乘法求得回归直线方程为0.6754.9y x =+,则12345y y y y y ++++的值为( )A .75B .155.4C .375D .466.2二、填空题13.重庆一中高一,高二,高三的模联社团的人数分别为25,15,10,现采用分层抽样的方法从中抽取部分学生参加模联会议,已知在高二年级和高三年级中共抽取5名同学,若从这5名同学中再随机抽取2名同学承担文件翻译工作,则抽取的两名同学来自同一年级的概率为__________.14.若正方体1111ABCD A BC D -的棱长为3,E 为正方体内任意一点,则AE 的长度大于3的概率等于_________.15.现有编号为1,2,3,…,100的100把锁,利用中国剩余定理的原理设置开锁密码,规则为:将锁的编号依次除以3,5,7所得的三个余数作为该锁的开锁密码,这样,每把锁都有一个三位数字的开锁密码.例如,编号为52的锁所对应的开锁密码是123,开锁密码为232所对应的锁的编号是23.若一把锁的开锁密码为203,则这把锁的编号是__________.16.如下图,程序框图中,若输入4,10m n ==,则输出a 的值是________.17.某程序流程框图如图所示,现执行该程序,输入下列函数()2sin3f x x π=, ()2cos3f x x π=,()4tan 3f x x π=,则可以输出的函数是()f x =__________.18.执行如图所示的程序框图,输出的T =______.19.某校有高一学生n 名,其中男生数与女生数之比为6:5,为了解学生的视力情况,现要求按分层抽样的方法抽取一个样本容量为10n的样本,若样本中男生比女生多12人,则n =_______.20.由茎叶图可知,甲组数据的众数和乙组数据的极差分别是__________.三、解答题21.端午节吃粽子是我国的传统习俗,设一盘中装有6个粽子,其中豆沙粽1个,肉粽2个,白粽3个,这三种粽子的外观完全相同.(Ⅰ)从中不放回的任取3个,记X 表示取到的肉粽个数,求X 的分布列和()E X ; (Ⅱ)从中有放回的任取3个,记Y 表示取到的肉棕个数,求(2)P Y ≥; (Ⅲ)比较()E X 与()E Y 的大小(只需写出结论). 22.已知集合{(,)|[0,2],[1,1]}M x y x y =∈∈-. (1)若,x y Z ∈,求0x y +≥的概率; (2)若,x y R ∈,求0x y +≥的概率. 23.编写程序计算98246++⋅⋅⋅++的值.24.设计一个算法,找出闭区间[]20,25上所有能被3整除的整数.25.某“双一流”大学专业奖学金是以所学专业各科考试成绩作为评选依据,分为专业一等奖学金(奖金额3000元)、专业二等奖学金(奖金额1500元)及专业三等奖学金(奖金额600元),且专业奖学金每个学生一年最多只能获得一次.图(1)是统计了该校2018年500名学生周课外平均学习时间频率分布直方图,图(2)是这500名学生在2018年周课外平均学习时间段获得专业奖学金的频率柱状图.(Ⅰ)求这500名学生中获得专业三等奖学金的人数;(Ⅱ)若周课外平均学习时间超过35小时称为“努力型”学生,否则称为“非努力型”学生,列22⨯联表并判断是否有99.9%的把握认为该校学生获得专业一、二等奖学金与是否是“努力型”学生有关?(Ⅲ)若以频率作为概率,从该校任选一名学生,记该学生2018年获得的专业奖学金额为随机变量X ,求随机变量X 的分布列和期望.22()()()()()n ad bc K a b c d a c b d -=++++26.为鼓励职工积极参与健康步行,某单位组织职工进行了健身走活动.根据该单位的1000名职工在健身走中行走步数(单位:百步,步数均在50到210之间)得到如图的频率分布直方图,由频率分布直方图估计出这1000名职工中有56%的职工行走步数小于130(百步).(1)计算图中的a 值,并以此估计该单位职工行走步数的中位数;(2)为鼓励职工积极参与健康步行,该单位决定对本次步数排在前200名的职工进行奖励,授予“运动达人”称号.一名职工走了160(百步),请根据频率分布直方图判断该职工能否获得“运动达人”称号.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由正方形ABNH 、DEFM 的面积相等,可得两正方形边长相等,设边长为3,由23CN NG AB ==,可得正方形MCNG 的边长为2,分别求出阴影部分的面积及多边形ABCDEFGH的面积,由测度比为面积比得答案.【详解】如图所示,由正方形ABNH、DEFM的面积相等,可得两正方形边长相等,设边长为3,由23CN NG AB==,可得正方形MCNG的边长为2,则阴影部分的面积为224⨯=,多边形ABCDEFGH的面积为2332214⨯⨯-⨯=.则向多边形ABCDEFGH内投一点,则该点落在阴影部分内的概率为42 147=.故选:C.【点睛】本题主要考查了几何概型的概率的求法,关键是求出多边形ABCDEFGH的面积,着重考查了推理与运算能力,以及数形结合的应用,属于基础题.2.C解析:C【分析】露在外面的6个数字为2,0,1,3,0,3,则向下的数分别为1和2,求出所有的基本事件个数和向下数字为1和2的基本事件个数,代入概率公式即可.【详解】抛两个正四面体,共有4416⨯=个基本事件,向下数字为1和2的基本事件共有2个,分别是1,2和()2,1,所以向下数字为1和2的概率21168 P==,故选:C【点睛】本题主要考查随机事件概率的计算,难度较低.3.A解析:A【分析】先根据四棱锥的体积求出球的半径,再根据几何概型概率公式求结果.【详解】因为四棱锥的体积为3,设球半径为R,则1122332R R R R =⨯⨯⨯⨯∴=因此所求概率为3131423ππ=⨯,故选:A 【点睛】本题考查四棱锥体积、球体积以及几何概型概率公式,考查综合分析求解能力,属中档题.4.B解析:B 【分析】设阴影部分正方形的边长为a ,计算出七巧板所在正方形的边长,并计算出两个正方形的面积,利用几何概型概率公式可计算出所求事件的概率. 【详解】如图所示,设阴影部分正方形的边长为a,则七巧板所在正方形的边长为, 由几何概型的概率公式可知,在七巧板拼成的正方形内任取一点,则该点取自图中阴影部分的概率()2218a =,故选:B. 【点睛】本题考查几何概型概率公式计算事件的概率,解题的关键在于弄清楚两个正方形边长之间的等量关系,考查分析问题和计算能力,属于中等题.5.A解析:A 【分析】按照程序框图执行几次,找出此框图的算法功能,再根据已知条件1011S =进一步判断框内条件即可. 【详解】按照程序框图依次执行:110,1,01122S n S ===+=-⨯ 1111112,11+12232233n S ==-+=--=-⨯以此类推,可得111S n =-+ . 若1011S =,可得10n =,若要输出1011S =,则判断框内应填10n ≤?.故选:A. 【点睛】本题主要考查根据程序框图的输出结果判断程序框图中的选择条件,考查逻辑推理能力.6.B解析:B 【解析】模拟执行程序框图可得程序的功能是计算并输出分段函数1,2,b a b aa b a a b b-⎧⎪⎪⊗=⎨+⎪>⎪⎩的值,∵121log 4233-⎛⎫=<= ⎪⎝⎭.∴12131log 4132--⎛⎫⊗== ⎪⎝⎭.本题选择B 选项. 7.C解析:C 【解析】 【分析】模拟执行程序框图,只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可得到输出的m 的值. 【详解】第一次进入循环,因为56除以18的余数为2, 所以2r,18m =,2n =,判断r 不等于0,返回循环;第二次进入循环,因为18除以2的余数为0, 所以0r =,2m =,0n =,判断r 等于0, 跳出循环,输出m 的值为2.故选C. 【点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.8.C解析:C 【分析】计算出输出15y =时,3x =;继续运行程序可知继续赋值得:4x =,此时不满足判断框条件,结束程序,从而可得判断框条件. 【详解】解析 当x =-3时,y =3;当x =-2时,y =0;当x =-1时,y =-1;当x =0时,y =0; 当x =1时,y =3;当x =2时,y =8; 当x =3时,y =15,x =4,结束. 所以y 的最大值为15,可知x ≤3符合题意. 判断框应填:3x ≤ 故选C 【点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.9.C解析:C 【分析】根据系统抽样的定义,可知抽到的号码数可组成一个以301=-n a n 为通项公式的等差数列,令*200301480,≤-≤∈n n N ,解不等式可得结果. 【详解】每组人数=9603230÷=人,即抽到号码数的间隔为30,因为第一组抽到的号码为29,根据系统抽样的定义,抽到的号码数可组成一个等差数列,且*2930(1)301,=+-=-∈n n n n N a ,令200301480≤-≤n ,得2014813030≤≤n ,可得n 的取值可以从7取到16,共10个,故选C . 【点睛】本题主要考查系统抽样的定义及应用,转化为等差数列是解决本题的关键.10.C解析:C 【解析】试题分析:由题意得5x =,116.8(915101824)85y y =+++++⇒=,选C. 考点:茎叶图11.A解析:A 【解析】8个班参加合唱比赛的得分从小到大排列分别是87,89,90,91,92,93,94,96,中位数是91,92,的平均数91.5,平均数是87+89+90+91+92+93+94+968=91.512.C解析:C 【分析】首先求得x 的值,然后利用线性回归方程过样本中心点的性质求解12345y y y y y ++++的值即可. 【详解】 由题意可得:12345305x x x x x x ++++==,线性回归方程过样本中心点,则:0.6754.975y x =⨯+=, 据此可知:12345y y y y y ++++5375y ==. 本题选择C 选项. 【点睛】本题主要考查线性回归方程的性质及其应用等知识,意在考查学生的转化能力和计算求解能力.二、填空题13.【分析】由人数之比求出抽出的5名同学中高二高三年级人数通过列举出从这5名同学中再随机抽取2名同学的所有可能即可求出抽取的两名同学来自同一年级的概率【详解】解:高二高三抽取人数之比为所以5名同学中高二解析:25【分析】由人数之比求出抽出的5名同学中高二、高三年级人数,通过列举出从这5名同学中再随机抽取2名同学的所有可能即可求出抽取的两名同学来自同一年级的概率. 【详解】解:高二高三抽取人数之比为15:103:2=,所以5名同学中高二有3人,高三有2人, 设高二3人为123,,A A A ,高三2人为12,B B ,则随机抽取2名同学的可能有12131112232122313212A A A A A B A B A A A B A B A B A B B B ,,,,,,,,,共十种可能,其中抽取的两名同学来自同一年级的有12132312,,,A A A A A A B B 四种可能,则 抽取的两名同学来自同一年级的概率为42105=, 故答案为:25. 【点睛】本题考查了分层抽样,考查了古典概型概率的求解.本题的关键是求出高二、高三各抽出的人数.14.【解析】【分析】先求出满足题意的体积运用几何概型求出结果【详解】由题意可知总的基本事件为正方体内的点可用其体积满足的基本事件为为球心3为半径的求内部在正方体中的部分其体积为故则的长度大于3的概率【点 解析:16π-【解析】 【分析】先求出满足题意的体积,运用几何概型求出结果 【详解】由题意可知总的基本事件为正方体内的点,可用其体积3327=, 满足||3AE 的基本事件为A 为球心3为半径的求内部在正方体中的部分, 其体积为31493832V ππ=⨯⨯=,故则AE 的长度大于3的概率9211276P ππ=-=-.【点睛】本题考查了几何概型,读懂题意并计算出结果,较为基础15.80【分析】本道题一一列举把满足条件的编号一一排除即可【详解】该数可以表示为故该数一定是5的倍数所以5的倍数有5101520253035404550556065707580859095100该数满足解析:80 【分析】本道题一一列举,把满足条件的编号一一排除,即可. 【详解】该数可以表示为32,5,73k m n ++,故该数一定是5的倍数,所以5的倍数有5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,该数满足减去3能够被7整除,只有10,45,80,而同时要满足减去2被3整除,所以只有80. 【点睛】本道题考查了列举法计算锁编号问题,难度一般.16.20【解析】模拟执行程序可得:不满足条件整除以不满足条件整除以不满足条件整除以不满足条件整除以满足条件整除以退出循环输出的值为点睛:本题主要考查的程序框图的知识点解题的关键是要读懂程序框图模拟执行程解析:20 【解析】模拟执行程序,可得:4,10m n ==,1i =,4a =不满足条件n 整除以a2i =,8a =不满足条件n 整除以a3i =,12a =不满足条件n 整除以a4i =,16a =不满足条件n 整除以a5i =,20a =满足条件n 整除以a ,退出循环,输出a 的值为20点睛:本题主要考查的程序框图的知识点.解题的关键是要读懂程序框图.模拟执行程序,依次写出每次循环得到的i ,a 的值,当20a =的时候,满足条件n 整除以a ,退出循环,即可得到输出a 的值为20.17.【分析】根据得知函数的图象关于点对称由可得知函数的周期为于此可在题中三个函数中找出合乎条件的函数作出输出结果【详解】可知函数的图象关于点对称由得所以函数的周期为由三角函数的周期公式可知函数和的最小正解析:()2cos 3f x x π=. 【分析】根据()302f x f x ⎛⎫+--= ⎪⎝⎭得知函数()y f x =的图象关于点3,04⎛⎫- ⎪⎝⎭对称,由()f x + 302f x ⎛⎫+= ⎪⎝⎭可得知函数()y f x =的周期为3,于此可在题中三个函数中找出合乎条件的函数作出输出结果. 【详解】()302f x f x ⎛⎫+--= ⎪⎝⎭,可知函数()y f x =的图象关于点3,04⎛⎫- ⎪⎝⎭对称,由()302f x f x ⎛⎫++= ⎪⎝⎭,得()3322f x f x f x ⎛⎫⎛⎫+=-=- ⎪ ⎪⎝⎭⎝⎭,所以函数()y f x =的周期为3.由三角函数的周期公式可知,函数()2sin3f x x π=和()2cos 3f x x π=的最小正周期为3,函数()4tan3f x x π=的最小正周期为34,不合乎要求; 对于函数()2sin 3f x x π=,323sin sin 04342f ππ⎡⎤⎛⎫⎛⎫-=⨯-=-≠ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦;对于函数()2cos3f x x π=,323cos cos 04342f ππ⎡⎤⎛⎫⎛⎫⎛⎫-=⨯-=-= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,合乎题意. 所以,函数()2cos3f x x π=的图象关于点3,04⎛⎫- ⎪⎝⎭对称, 故输出的函数为()2cos 3f x x π=,故答案为()2cos 3f x x π=. 【点睛】本题考查程序框图,考查三角函数的周期性和对称性,能根据抽象函数关系式得出函数的基本性质,是解本题的关键,属于中等题.18.16【解析】第一次运行:;第二次运行:;第三次运行:此时程序结束所以输出的解析:16 【解析】第一次运行:1,145,123,134T S S n T ===+==+==+=;第二次运行:45,549,325,459T S S n T =<==+==+==+=;第三次运行:9,9413,527,9716T S S n T ===+==+==+=.此时1613T S =>=,程序结束,所以输出的16T =19.【分析】依题意可得解之即得解【详解】依题意可得解得故答案为1320【点睛】本题主要考查分层抽样意在考查学生对这些知识的理解掌握水平和分析推理能力 解析:1320【分析】 依题意可得6512111110n⎛⎫-⨯= ⎪⎝⎭,解之即得解. 【详解】 依题意可得6512111110n⎛⎫-⨯=⎪⎝⎭,解得1320n =. 故答案为1320 【点睛】本题主要考查分层抽样,意在考查学生对这些知识的理解掌握水平和分析推理能力.20.【分析】首先从茎叶图中找到出现次数最多的数从而得到甲组数据的众数找出乙组数据的最大值和最小值两者作差求得极差得到结果【详解】根据众数的定义可以断定甲组数据的众数是21;从茎叶图中可以发现其最大值为其 解析:21,43【分析】首先从茎叶图中找到出现次数最多的数,从而得到甲组数据的众数,找出乙组数据的最大值和最小值,两者作差求得极差,得到结果. 【详解】根据众数的定义,可以断定甲组数据的众数是21;从茎叶图中可以发现,其最大值为52,其最小值为9,所以极差为52943-=, 故答案为21,,43. 【点睛】该题考查的是茎叶图的应用,涉及到的知识点有一组数据的众数和极差的概念,只要明确众数是数据中出现次数最多的数,极差是最大值和最小值的差距,从而求得结果.三、解答题21.(Ⅰ)见解析,()1E X =;(Ⅱ)727;(Ⅲ)()()E X E Y =. 【分析】(Ⅰ)X 的取值分别为0,1,2,分别求出其概率可得分布列,再由期望公式计算期望;(Ⅱ)(2)P Y ≥(2)(3)P Y P Y ==+=,由此可得; (Ⅲ)Y 的取值分别为0,1,2,3,分别计算概率后可得期望. 【详解】(Ⅰ)由题意X 的取值分别为0,1,2,34361(0)5C P X C ===,1224363(1)5C C P X C ===,14361(2)5C P X C ===,X 的分布列为:期望为()0121555E X =⨯+⨯+⨯=; (Ⅱ)2233242(2)69C P Y ⨯⨯===,3321(3)627P Y ===, 所以217(2)(2)(3)92727P Y P Y P Y ≥==+==+=, (Ⅲ)又3348(0)627P Y ===,1233244(1)69C P Y ⨯⨯===,所以421()12319927E Y =⨯+⨯+⨯=. 所以()()E X E Y = 【点睛】本题考查随机变量的分布列与数学期望,掌握概率公式是解题基础. 22.(1)89 (2)78【解析】试题分析:(1)因为x ,y ∈Z ,且x ∈[0,2],y ∈[-1,1],基本事件是有限的,所以为古典概型,这样求得总的基本事件的个数,再求得满足x ,y ∈Z ,x+y≥0的基本事件的个数,然后求比值即为所求的概率.(2)因为x ,y ∈R ,且围成面积,则为几何概型中的面积类型,先求x ,y ∈Z ,求x+y≥0表示的区域的面积,然后求比值即为所求的概率. 试题(1)设"x+y 0,,"x y Z ≥∈为事件,,A x y Z ∈,[]0,2x ∈,即[]0,1,2;1,1x y =∈-,即1,0,1y =-.则基本事件有:()()()()()()()()()0,1,0,0,0,1,1,1,1,0,1,1,2,1,2,0,2,1---共9个,其中满足的基本事件有8个,所以()89p A =.故,,0x y Z x y ∈+≥的概率为89. (2)设"0,,"x y x y R +≥∈为事件B ,因为][0,2,1,1x y ⎡⎤∈∈-⎣⎦,则基本事件为如图四边形ABCD 区域,事件B 包括的区域为其中的阴影部分.所以()11-1122-11722===228ABCD ABCDABCD S S p B S S ⨯⨯⨯⨯⨯=⨯四边形阴影四边形四边形,故",0"x y R x y ∈+≥,的概率为78. 点睛:(1)当试验的结果构成的区域为长度、面积、体积等时,应考虑使用几何概型求解. (2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域.(3)几何概型有两个特点:一是无限性,二是等可能性.基本事件可以抽象为点,尽管这些点是无限的,但它们所占据的区域都是有限的,因此可用“比例解法”求解几何概型的概率.23.答案详见解析. 【解析】 【分析】根据题干要求写出循环结构的程序即可. 【详解】 程序如下: i=2 sum=0 DO sum=sum+i i=i+2LOOP UNTIL i>98 PRINT sum END 【点睛】应用循环语句编写程序时需注意: ①循环语句中的循环变量一般要设初始值.②在循环过程中需要有“结束”的语句,程序中最忌“死循环”. 24.见解析 【解析】试题分析:可通过循环结构的算法实现求闭区间[]20,25上所有能被3整除的整数. 试题第一步,用20除以3,余数不为0,故20不能被3整除; 第二步,用21除以3,余数为0,故21能被3整除; 第三步,用22除以3,余数不为0,故22不能被3整除; 第四步,用23除以3,余数不为0,故23不能被3整除; 第五步,用24除以3,余数为0,故24能被3整除; 第六步,用25除以3,余数不为0,故25不能被3整除; 第七步,指出在闭区间[20,25]上能被3整除的整数为21和24. 25.(Ⅰ)160人;(Ⅱ)有;(Ⅲ)见解析. 【分析】(Ⅰ)根据频率之和为1,得到获得三等奖学金的频率,再由总人数得到答案;(Ⅱ)根据频率分布直方图和频率柱状图,填写好列联表,再计算出2K 进行判断,得到答案;(Ⅲ)先得到X 可取的值,再分别求出其概率,根据数学期望的公式,得到答案. 【详解】()I 获得三等奖学金的频率为:()()()0.0080.0160.0450.150.040.0560.01650.40.0160.00850.40.32++⨯⨯+++⨯⨯++⨯⨯=5000.32160⨯=,故这500名学生获得专业三等奖学金的人数为160人.()II 每周课外学习时间不超过35小时的“非努力型”学生有()5000.0080.0160.040.040.0560.0165440⨯+++++⨯=人,其中获得一、二等奖学金学生有()()()5000.0080.0160.0450.055000.040.0560.01650.250.0592x ++⨯⨯+⨯++⨯⨯+=每周课外学习时间超过35小时称为“努力型”学生有5000.1260⨯=人,其中获得一、二等奖学金学生有()600.350.2536⨯+=人,22⨯列联表如图所示:()250034836922442.3610.8344060128372K ⨯⨯-⨯=≈>⨯⨯⨯故有99.9%的把握认为获得一二等奖学金与学习“努力型”学生的学习时间有关;()III X 的可能取值为0,600,1500,3000 ()6000.32P X ==, ()15000.198P X ==, ()30000.058P X ==,()010.320.1980.0580.424P X ==---=X 的分布列00.4246000.3215000.19830000.058192297174663EX x =⨯+⨯++⨯=++=元.【点睛】本题考查利用频率分布直方图求频率和频数,通过求2K 的值进行判断是否相关,随机变量的分布列和数学期望,属于中档题. 26.(1)0.012a =,中位数125;(2)能. 【分析】(1)由小于130步的频率是56%可计算出a ,同时也可计算出b ,由频率分布直方图可计算出中位数(频率0.5对应的步数);(2)前200人,即频率为0.2,求出频率0.2对应的步数后可得. 【详解】解(1)因为1000名职工中有56%的单位职工行走步数小于130(百步). 所以(0.0020.0060.008)200.56a +++⨯=. 所以0.012a =.因为[]50,110的频率为(0.0020.0060.008)200.32++⨯=, 又[]110,130的频率为0.24,所以中位数m 在[]110,130里面,所以1100.500.320.75200.560.32m --==-. 所以125m =.(2)设步数为y 百步能获得称号,前200名即占1000名职工的0.20由于[150,170]是0.16,[170,210]是0.08, 所以y 应在[150,170]中取值,1500.04200.16y -=,所以155y =百步, 160155>,该职工能获得“运动达人”称号.【点睛】本题考查频率分布直方图,由频率分布直方图计算中位数,属于基础题.。

【人教版】高中数学必修三期末模拟试卷带答案(1)

【人教版】高中数学必修三期末模拟试卷带答案(1)

一、选择题1.“二进制”来源于我国古代的《易经》,该书中有两类最基本的符号:“─”和“﹣﹣”,其中“─”在二进制中记作“1”,“﹣﹣”在二进制中记作“0”.如符号“☱”对应的二进制数011(2)化为十进制的计算如下:011(2)=0×22+1×21+1×20=3(10).若从两类符号中任取2个符号进行排列,则得到的二进制数所对应的十进制数大于2的概率为( ) A .12B .13C .23D .142.若函数()201)((1)x lnx e x f x e x e ⎧+<<=⎨≤<⎩在区间()0,e 上随机取一个实数x ,则()f x 的值小于常数2e 的概率是( ) A .1eB .11e-C .2eD .21e-3.类比“赵爽弦图”,可类似地构造如图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设2AD BD =,若在大等边三角形中随机取一点,则此点取自小等边三角形的概率是( )A .14B .13C .17D .4134.太极图是以黑白两个鱼形纹组成的图案,它形象化地表达了阴阳轮转、相反相成是万物生成变化根源的哲理,展现了一种相互转化,相对统一的形式美.按照太极图的构图方法,在平面直角坐标系中,圆O 被函数2sin8y x π=的图象分割为两个对称的鱼形图案(如图),其中阴影部分小圆的周长均为4π,现从大圆内随机取一点,则此点取自阴影部分的概率为( )A.136B.118C.116D.185.程大位是明代著名数学家,他的《新编直指算法统宗》是中国历史上一部影响巨大的著作.它问世后不久便风行宇内,成为明清之际研习数学者必读的教材,而且传到朝鲜、日本及东南亚地区,对推动汉字文化圈的数学发展起了重要的作用.卷八中第33问是:“今有三角果一垛,底阔每面七个,问该若干?”如图是解决该问题的程序框图.执行该程序框图,求得该垛果子的总数S为( )A.84 B.56 C.35 D.286.执行如图所示的程序框图,则输出的S=()A.1-B.2-C.2D.1 27.执行如图所示的程序框图,若输出的结果为126,则判断框内的条件可以为()A .5n ≤B .6n ≤C .7n ≤D .8n ≤8.执行如图所示的程序框图,若输出的结果为48,则输入k 的值可以为A .6B .10C .8D .49.为了了解某同学的数学学习情况,对他的6次数学测试成绩进行统计,作出的茎叶图如图所示,则下列关于该同学数学成绩的说法正确的是( )A .中位数为83B .众数为85C .平均数为85D .方差为1910.为了解一片经济树林的生长情况,随机测量了其中100株树木的底部周长(单位:cm ),根据所得数据画出样本的频率分布直方图如图所示.那么在这100株树木中,底部周长小于110cm 的株数n 是 ( )A .30B .60C .70D .8011.若某校高一年级8个班参加合唱比赛的得分如茎叶图所示,则这组数据的中位数和平均数分别是( )A .91.5和91.5B .91.5和92C .91和91.5D .92和9212.某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响.对近8年的年宣传费i x 和年销售量()1,2,...8i y i =数据作了初步处理,得到下面的散点图及一些统计量的值.有下列5个曲线类型:①ˆˆy bxa =+;②y x d =+;③ln y p q x =+;④21k xy k e =+;⑤212y c x c =+,则较适宜作为年销售量y 关于年宣传费x 的回归方程的是( ) A .①②B .②③C .②④D .③⑤二、填空题13.如图,在长方形OABC 内任取一点(,)P x y ,则点P 落在阴影部分BCD 内的概率为________.14.乒乓球赛规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换,每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,甲发球得1分的概率为35,乙发球得1分的概率为23,各次发球的胜负结果相互独立,甲、乙的一局比赛中,甲先发球.则开始第4次发球时,甲、乙的比分为1比2的概率为________.15.如图,在平放的边长为1的正方形中随机撒1000粒豆子,有380粒落到红心阴影部分上,据此估计红心阴影部分的面积为____.16.执行下面的程序框图,若输入的a,b,k分别为1,2,3,则输出的M _____17.已知某程序框图如图所示,则该程序运行后输出S的值为__________.18.如图,程序框图中,语句1被执行的次数为__________.19.下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;②设有一个回归方程ˆ35yx =-,若变量x 增加一个单位时,则y 平均增加5个单位; ③线性回归方程^^^y b x a =+所在直线必过(),x y ; ④曲线上的点与该点的坐标之间具有相关关系;⑤在一个22⨯列联表中,由计算得213.079K =,则其两个变量之间有关系的可能性是0090.其中错误的是________.20.对具有线性相关关系的变量x ,y ,有一组观察数据(,)(1,2,9)i i x y i =⋅⋅⋅,其回归直线方程是:2y x a =+,且919ii x==∑,9118i i y ==∑,则实数a 的值是__________.三、解答题21.袋中有9个大小相同颜色不全相同的小球,分别为黑球、黄球、绿球,从中任意取一球,得到黑球或黄球的概率是59,得到黄球或绿球的概率是23,试求: (1)从中任取一球,得到黑球、黄球、绿球的概率各是多少? (2)从中任取两个球,得到的两个球颜色不相同的概率是多少?22.“绿水青山就是金山银山”,为了响应国家政策,我市环保部门对市民进行了一次环境保护知识的网络问卷调查,每位市民仅有一次参加机会,通过随机抽样,得到参与问卷调查的50人的得分(满分:100分)数据,统计结果如表所示: 组别 [40,50)[50,60)[60,70)[70,80)[80,90)[90,100)男 1 2 2 10 9 6 女55532若规定问卷得分不低于70分的市民称为“环境保护关注者”,则上图中表格可得22⨯列联表如下:(1)请完成上述22⨯列联表,并判断能否在犯错误的概率不超过0.05的前提下认为“环境保护关注者”与性别有关?(2)若问卷得分不低于80分的人称为“环境保护达人”,现在从本次调查的“环境保护达人”中利用分层抽样的方法抽取4名市民参与环保知识问答,再从这4名市民中随机抽取2人参与座谈会,求抽取的2名市民中,既有男“环境保护达人”又有女“环境保护达人”的概率.附表及公式:22()()()()()n ad bcKa b c d a c b d-=++++,其中n a b c d=+++.2.07223.下面程序的功能是输出1~100之间的所有偶数.程序:i=1DOm=iMOD2IF①THENPRINTiENDIF②LOOPUNTILi>100END(1)试将上面的程序补充完整;(2)改写为WHILE型循环结构程序.24.一队士兵来到一条有鳄鱼的深河的左岸.只有一条小船和两个小孩,这条船只能承载两个小孩或一个士兵.试设计一个算法,将这队士兵渡到对岸.25.零部件生产水平是评判一个国家高端装备制造能力的重要标准之一,其中切割加工技术是一项重要技术某精密仪器制造商研发了一种切割设备,用来生产高精度的机械零件,经过长期生产检验,可以认为该设备生产的零件尺寸服从正态分布N(μ,σ2).某机械加工厂购买了该切割设备,在正式投入生产前进行了试生产,从试生产的零件中任意抽取10件作为样本,下面是样本的尺寸x i(i=1,2,3,…,10,单位:mm):100.03100.499.92100.5299.98100.3599.92100.44100.66100.78用样本的平均数x作为μ的估计值,用样本的标准差s作为σ的估计值.(1)按照技术标准的要求,若样本尺寸均在(μ﹣3σ,μ+3σ)范围内,则认定该设备质量合格,根据数据判断该切割设备的质量是否合格.(2)该机械加工厂将该切割设备投入生产,对生产的零件制定了两种销售方案(假设每种方案对销售量没有影响):方案1:每个零件均按70元定价销售;方案2:若零件的实际尺寸在(99.7,100.3)范围内,则该零件为A级零件,每个零件定价100元,否则为B级零件,每个零件定价60元.哪种销售方案的利润更大?请根据数据计算说明.附:1021iix=∑≈100601.8,样本方差()22221111n ni ii is x x x nxn n==⎛⎫=-=-⎪⎝⎭∑∑.若X~N(μ,σ2),则P(μ﹣σ<X<μ+σ)=0.6827,P(μ﹣2σ<X<μ+2σ)=0.9545 26.为培养学生在高中阶段的数学能力,某校将举行数学建模竞赛.已知该竞赛共有60名学生参加,他们成绩的频率分布直方图如图所示.(1)估计这60名参赛学生成绩的中位数;(2)为了对数据进行分析,将60分以下的成绩定为不合格.60分以上(含60分)的成绩定为合格,某评估专家决定利用分层抽样的方法从这60名学生中选取10人,然后从这10人中抽取4人参加座谈会,记ξ为抽取的4人中,成绩不合格的人数,求ξ的分布列与数学期望;(3)已知这60名学生的数学建模竞赛成绩Z服从正态分布()2,Nμσ,其中μ可用样本平均数近似代替,2σ可用样本方差近似代替(同一组数据用该区间的中点值作代表),若成绩在46分以上的学生均能得到奖励,本次数学建模竞赛满分为100分,估计此次竞赛受到奖励的人数(结果根据四舍五人保留整数).参考数据:()0.6827P Z μσμσ-<≤+≈,()220.9545P Z μσμσ-<≤+≈,()330.9973P Z μσμσ-<≤+≈.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】分类计算得到从两类符合中任取2个符号排列,则组成不同的十进制数为0,1,2,3,即可计算得到概率. 【详解】根据题意,不同符号可分为三类:第一类:由两个“─”组成,其二进制为:11(2)=3(10); 第二类:由两个“﹣﹣“组成,其二进制为:00(2)=0(10);第三类:由一个“─”和一个“﹣﹣”组成,其二进制为:10(2)=2(10),01(2)=1(10), 所以从两类符号中任取2个符号排列,则组成不同的十进制数为0,1,2,3, 则得到的二进制数所对应的十进制数大于2的概率P 14=. 故选:D . 【点睛】本题主要考查了古典概型及其概率的计算,以及转化的应用,意在考查学生的计算能力和应用能力,属于中档试题.2.C解析:C 【分析】首先求出分段函数在各区间段的值域,然后利用几何概型求其概率. 【详解】 由题意得,当01x <<时,2()ln f x x e =+,则恒有2()f x e <,满足题意; 当1x e ≤<时,()xf x e =,若满足2()xf x e e =<,可得12x ≤<; 所以()f x 的值小于常数2e 的概率是2e.故选:C. 【点睛】本题主要考查长度比值类型的几何概型,同时考查了分段函数值域的求解,属于基础题.3.C解析:C 【分析】由题意求出AB =,所求概率即为DEF ABCS P S=,即可得解.【详解】由题意易知120ADB ∠=,AF FD BD ==,由余弦定理得22222cos1207AB AD BD AD BD BD =+-⋅⋅=即AB =,所以AB =,则所求概率为217DEF ABCSFD P SAB ⎛⎫=== ⎪⎝⎭. 故选:C. 【点睛】本题考查了几何概型概率的求法和余弦定理的应用,属于中档题.4.D解析:D 【分析】根据几何概型的概率公式,求出大圆的面积和小圆的面积,计算面积比即可. 【详解】由已知,可得大圆的直径为y =3sin 8πx 的周期,由T 2168ππ==,可知大圆半径为8, 则面积为S =64π,一个小圆的周长242l r r π==∴= 故小圆的面积S ′=π•22=4π, 在大圆内随机取一点,此点取自阴影部分的概率为: P 2'81648S S ππ===, 故选:D . 【点睛】本题考查了几何概型的概率计算问题,关键是明确测度比为面积比,是基础题.5.A解析:A 【分析】按照程序框图运行程序,直到满足7i ≥时输出结果即可. 【详解】按照程序框图运行程序,输入0i =,0n =,0S =,则1i =,1n =,1S =,不满足7i ≥,循环;2i =,3n =,4S =,不满足7i ≥,循环;3i =,6n =,10S =,不满足7i ≥,循环;4i =,10n =,20S =,不满足7i ≥,循环;5i =,15n =,35S =,不满足7i ≥,循环;6i =,21n =,56S =,不满足7i ≥,循环;7i =,28n =,84S =,满足7i ≥,输出84S =.故选:A .【点睛】本题考查根据程序框图循环结构计算输出结果的问题,属于基础题.6.D解析:D【分析】列举出前四次循环,可知,该算法循环是以3为周期的周期循环,利用周期性可得出输出的S 的值.【详解】第一次循环,02020k =≤成立,1112S ==--,011k =+=; 第二次循环,12020k =≤成立,()11112S ==--,112k =+=; 第三次循环,22020k =≤成立,12112S ==-,213k =+=;第四次循环,32020k =≤成立,1112S ==--,314k =+=; 由上可知,该算法循环是周期循环,且周期为3,依次类推,执行最后一次循环,20202020k =≤成立,且202036731=⨯+,此时12S =, 202012021k =+=,20212020k =≤不成立,跳出循环体,输出S 的值为12. 故选:D.【点睛】本题考查利用程序框图计算输出结果,推导出循环的周期性是解题的关键,考查计算能力,属于中等题.7.B解析:B【分析】根据框图,模拟程序运行即可求解.【详解】根据框图,执行程序,12,2S n ==;1222,3S n =+=;⋯12222,1i S n i =++⋯+=+,令12222126i S =++⋯+=,解得6i =,即7n =时结束程序,所以6n ≤,故选 :B【点睛】本题主要考查了程序框图,循环结构,条件分支结构,等比数列求和,属于中档题.genju 8.C解析:C【分析】执行如图所示的程序框图,逐次循环,计算其运算的结果,根据选项即可得到答案.【详解】由题意可知,执行如图所示的程序框图,可知:第一循环:134,2146n S =+==⨯+=;第二循环:437,26719n S =+==⨯+=;第三循环:7310,2191048n S =+==⨯+=,要使的输出的结果为48,根据选项可知8k,故选C. 【点睛】本题主要考查了循环结构的计算与输出问题,其中解答中正确理解循环结构的程序框图的计算功能,逐次准确计算是解答的关键,着重考查了运算与求解能力,属于基础题. 9.C解析:C【解析】试题分析:A 选项,中位数是84;B 选项,众数是出现最多的数,故是83;C 选项,平均数是85,正确;D 选项,方差是,错误.考点:•茎叶图的识别 相关量的定义10.C解析:C【解析】解:由图可知:则底部周长小于110cm 段的频率为(0.01+0.02+0.04)×10=0.7, 则频数为100×0.7=70人.故选C .11.A解析:A【解析】8个班参加合唱比赛的得分从小到大排列分别是87,89,90,91,92,93,94,96,中位数是91,92,的平均数91.5,平均数是87+89+90+91+92+93+94+968=91.5 12.B解析:B【解析】分析:先根据散点图确定函数趋势,再结合五个选择项函数图像,进行判断选择.详解:从散点图知,样本点分布在开口向右的抛物线(上支)附近或对数曲线(上部分)的附近,所以y=d 或y =p +q ln x 较适宜,故选B .点睛:本题考查散点图以及函数图像,考查识别能力.二、填空题13.【分析】利用微积分基本定理先计算出阴影部分的面积根据几何概型的知识可知:阴影部分的面积与长方形面积比等于对应的概率即可计算出概率值【详解】由几何概型的知识可知:阴影部分的面积与长方形的面积之比等于所 解析:1e【分析】利用微积分基本定理先计算出阴影部分的面积,根据几何概型的知识可知:阴影部分的面积与长方形面积比等于对应的概率,即可计算出概率值.【详解】由几何概型的知识可知:阴影部分的面积与长方形OABC 的面积之比等于所求概率, 记阴影部分面积为1S ,长方形面积为2S , 所以()11100111x xS e e dx e e e e =⨯-=-=--=⎰,21S e e =⨯=, 所以所求概率为121S P S e ==. 故答案为:1e. 【点睛】 本题考查几何概型中的面积模型以及利用微积分基本定理求解定积分的值,属于综合型问题,难度一般.几何概型中的面积模型的计算公式:()A A P =构成事件的区域面积全部试验结果所构成的区域面积. 14.【分析】先确定比分为1比2时甲乙在三次发球比赛中得分情况再分别求对应概率最后根据互斥事件概率公式求结果【详解】比分为1比2时有三种情况:(1)甲第一次发球得分甲第二次发球失分乙第一次发球得分(2)甲 解析:2875【分析】先确定比分为1比2时甲乙在三次发球比赛中得分情况,再分别求对应概率,最后根据互斥事件概率公式求结果【详解】比分为1比2时有三种情况:(1)甲第一次发球得分,甲第二次发球失分,乙第一次发球得分(2)甲第一次发球失分,甲第二次发球得分,乙第一次发球得分(3)甲第一次发球失分,甲第二次发球失分,乙第一次发球失分 所以概率为3222322212855355355375⨯⨯+⨯⨯+⨯⨯= 【点睛】本题考查根据互斥事件概率公式求概率,考查基本分析求解能力,属中档题. 15.38【解析】【分析】根据几何槪型的概率意义即可得到结论【详解】正方形的面积S =1设阴影部分的面积为S ∵随机撒1000粒豆子有380粒落到阴影部分∴由几何槪型的概率公式进行估计得即S =038故答案为:解析:38【解析】【分析】根据几何槪型的概率意义,即可得到结论.【详解】正方形的面积S =1,设阴影部分的面积为S ,∵随机撒1000粒豆子,有380粒落到阴影部分,∴由几何槪型的概率公式进行估计得38011000S =, 即S =0.38,故答案为:0.38.【点睛】本题主要考查几何槪型的概率的计算,利用豆子之间的关系建立比例关系是解决本题的关键,比较基础. 16.12【分析】由题意可知从开始判断框条件成立执行第一次循环得到一组新的的值再从开始判断框条件成立执行第一次循环得到一组新的的值当时判断条件框不成立输出此时的值即可得出答案【详解】当时执行程序框图得;当【分析】由题意可知,从1n =开始,判断框条件成立,执行第一次循环,得到一组新的,,M a b 的值,再从2n =开始,判断框条件成立,执行第一次循环,得到一组新的,,M a b 的值,当3n =时,判断条件框不成立,输出此时M 的值,即可得出答案.【详解】当1n =时,执行程序框图得,1225,2,5M a b =+⨯===;当2n =时,执行程序框图得,22512,5,12M a b =+⨯===;当3n =时,不满足判断条件框,直接输出 12M =.故答案为12.【点睛】本题主要考查了根据程序框图写出执行结果的问题,对于这类题目,首先要弄清框图的结构和执行过程,本题为循环结构的程序框图.17.【分析】执行程序框图依次写出每次循环得到的Si 的值当i =2019时不满足条件退出循环输出S 的值为【详解】执行程序框图有S =2i =1满足条件执行循环Si =2满足条件执行循环Si =3满足条件执行循环Si 解析:12- 【分析】执行程序框图,依次写出每次循环得到的S ,i 的值,当i =2019时,不满足条件2018i ≤退出循环,输出S 的值为12-. 【详解】执行程序框图,有S =2,i =1满足条件2018i ≤ ,执行循环,S 3=-,i =2满足条件2018i ≤ ,执行循环,S 12=-,i =3 满足条件2018i ≤ ,执行循环,S 13=,i =4 满足条件2018i ≤ ,执行循环, S =2,i =5…观察规律可知,S 的取值以4为周期,由于2018=504*4+2,故有: S 12=-, i =2019, 不满足条件2018i ≤退出循环,输出S 的值为12-, 故答案为12-.本题主要考查了程序框图和算法,其中判断S 的取值规律是解题的关键,属于基本知识的考查.18.34【解析】循环次数=(循环终值-循环初值)/步长+1又循环的初值为退出循环时终值为步长为故循环次数次故答案为解析:34【解析】循环次数=(循环终值-循环初值)/步长+1,又循环的初值为1,退出循环时终值为100,步长为3,故循环次数10011343-=+=次,故答案为34. 19.②④⑤【解析】分析:根据方程性质回归方程性质及其含义卡方含义确定命题真假详解:由方差的性质知①正确;由线性回归方程的特点知③正确;回归方程若变量增加一个单位时则平均减少5个单位;曲线上的点与该点的坐解析:②④⑤【解析】分析:根据方程性质、回归方程性质及其含义、卡方含义确定命题真假.详解:由方差的性质知①正确;由线性回归方程的特点知③正确;回归方程ˆ35yx =-中若变量x 增加一个单位时,则y 平均减少5个单位; 曲线上的点与该点的坐标之间不一定具有相关关系;在一个22⨯列联表中,由计算得213.079K =,只能确定两个变量之间有相关关系的可能性,所以②④⑤均错误.点睛:本题考查方程性质、回归方程性质及其含义、卡方含义,考查对基本概念理解与简单应用能力.20.0【解析】分析:根据回归直线方程过样本中心点计算平均数代入方程求出的值详解:根据回归直线方程过样本中心点即答案为0点睛:本题考查了线性回归方程过样本中心点的应用问题是基础题解析:0【解析】 分析:根据回归直线方程过样本中心点x y (,), 计算平均数代入方程求出a 的值. 详解:根据回归直线方程ˆ2y x a =+过样本中心点x y (,),191191,99i i x x ==∑=⨯= 191118299i i y y ==∑=⨯=, 22210a y x ∴=-=-⨯=;即答案为0.点睛:本题考查了线性回归方程过样本中心点的应用问题,是基础题.三、解答题21.(1)黑球、黄球、绿球的概率分别是13,29,49;(2)1318.【分析】(1)从中任取一球,分别记得到黑球、黄球、绿球为事件A,B,C,由已知列出()()()P A P B P C、、的方程组可得答案;(2)求出从9个球中取出2个球的样本空间中共有的样本点,再求出两个球同色的样本点可得答案.【详解】(1)从中任取一球,分别记得到黑球、黄球、绿球为事件A,B,C,由于A,B,C为互斥事件,根据已知,得()()()()()()()()()()59231 P A B P A P BP B C P B P CP A B C P A P B P C⎧+=+=⎪⎪⎪+=+=⎨⎪++=++=⎪⎪⎩,解得() () ()132949P AP BP C⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩,所以,任取一球,得到黑球、黄球、绿球的概率分别是13,29,49.(2)由(1)知黑球、黄球、绿球个数分别为3,2,4,从9个球中取出2个球的样本空间中共有36个样本点,其中两个是黑球的样本点是3个,两个黄球的是1个,两个绿球的是6个,于是,两个球同色的概率为3165 3618 ++=,则两个球颜色不相同的概率是513 11818 -=.【点睛】本题考查互斥事件和对立事件的概率,一般地,如果事件A1、A2、…、A n彼此互斥,那么事件A1+A2+…+A n发生(即A1、A2、…、A n中有一个发生)的概率,等于这n个事件分别发生的概率的和,即P(A1+A2+…+A n)=P(A1)+P(A2)+…+P(A n).22.()122⨯列联表见解析,在犯错误的概率不超过0.05的前提下认为“环境保护关注者”与性别有关;()21 2【分析】()1根据表中的数据重新整合,完成22⨯列联表,然后将列联表中的数据代入2K的公式计算求解,结合临界值表进行判断即可;()2列举出所有可能的情况和既有男“环境保护达人”又有女“环境保护达人”包含的情况,再利用古典概型的概率计算公式求解即可.【详解】()1由表中数据可得22⨯列联表如下,2K的观测值()25051025106.349 3.84115353020k⨯⨯-⨯=≈>⨯⨯⨯,所以在犯错误的概率不超过0.05的前提下认为“环境保护关注者”与性别有关; ()2由题可知,利用分层抽样的方法可得,抽取4名市民中男环保达人3人,女环保达人1人,设男环保达人为,,A B C,女环保达人为a,从中抽取两人参与座谈会所有的情况为()()()()()(),,,,,,,,,,,A B A C A a B C B a C a共6种情况,既有男“环境保护达人”又有女“环境保护达人”包含的情况为()()(),,,,,A aB aC a共3种情况,由古典概型的概率计算公式可得,所求概率3162 P==.【点睛】本题考查独立性检验和古典概型概率计算公式;考查运算求解能力;注意所给数表的使用方法和题目设为方式和熟练掌握2K公式是求解本题的关键;属于基础题、常考题型. 23.(1)①m=0②i=i+1;(2)见解析【分析】(1)如果除以2的余数为零,则为偶数,故填0m =.i 每次增加1,故填1i i =+.(2)根据WHILE 型循环的结构,对原有程序进行改写.【详解】(1)①m=0②i=i+1(2)改写为WHILE 型循环程序如下:i=1WHILE i<=100m=I MOD 2IF m=0 THENPRINT iEND IFi=i+1WENDEND【点睛】本小题主要考查循环结构的两种编写程序的方法,属于基础题.24.见解析【解析】试题分析:根据算法的概念和算法的流程为一个循环结构的算法,可把该算法分为五步,即可写出算法.试题第一步,两个小孩将船划到右岸.第二步,他们中一个上岸,另一个划回来.第三步,小孩上岸,一个士兵划过去.第四步,士兵上岸,让小孩划回来.第五步,如果左岸没有士兵,那么结束,否则转第一步点睛:本题考查了算法的一个实际应用问题,解题时要主语熟练掌握循环结构算法的性质和应用是解答的关键,算法时新课标中新增内容,也一直是命题的一个热点,试题比较基础,属于基础题.25.(1)合格,理由见解析;(2)方案2,理由见详解.【分析】(1)求得10个数据的平均数和标准差,根据题意,即可判断;(2)设出方案2中零件价格的随机变量,结合正态分布求得零件价格的分布列和数学期望,即可比较大小,则问题得解.【详解】(1)由表格中数据可得: x 1011100.310i i x ===∑, ()101022221111(10)0.091010i i i i s x x x x ===-=-=∑∑.故可得:100.3μ=,0.3σ=.因为所有样本都在区间()99.4,101.2,故该切割设备质量合格.(2)对方案2,设零件价格的随机变量为X ,故X 可取60,100,根据(1)中所求,可得()()()10099.7100.320.47725P X P x P x μσμ==<<=-<<=;()()6011000.52275P X P X ==-==.故()600.522751000.47725600.51000.477770E X =⨯+⨯>⨯+⨯=>.又方案1中,每个零件售价均为70,故可得方案2的利润更大.【点睛】本题考查平均数和方差标准差的计算,涉及正态分布,随即变量数学期望的求解,属综合中档题.26.(1)中位数为65;(2)分布列见解析;期望为5635;(3)50. 【分析】(1)由图中的数据可判断中位数在60分到80分之间,若设中位数为x ,则()0.005200.01520600.020.5x ⨯+⨯+-⨯=,从而可求得中位数;(2)结合频率分布直方图和分层抽样的方法可知,抽取的10人中合格的人数为6人,不合格的人数为4人,则ξ的可能取值为0,1,2,3,4,求出各自的概率,从而可得ξ的分布列与数学期望;(3)由已知求出=64=18μσ,,从而可得()()6418641846820.6827P Z P Z -<≤+=<≤≈,再利用正态分布的对称性可求得结果【详解】(1)设中位数为x ,则()0.005200.01520600.020.5x ⨯+⨯+-⨯=,解得65x =,所以这60名参赛学生成绩的中位数为65.(2)结合频率分布直方图和分层抽样的方法可知,抽取的10人中合格的人数为()0.010.0220106+⨯⨯=,不合格的人数为1064-=.由题意可知ξ的可能取值为0,1,2,3,4.则()464101014C P C ξ===,()134********C C P C ξ===,()2246410327C C P C ξ===,()31464103435C C C P ξ===,()4441014210C P C ξ===. 所以ξ的分布列为所以ξ的数学期望01234142173521035E ξ=⨯+⨯+⨯+⨯+⨯=. (3)由题意可得,()300.005500.015700.02900.012064μ=⨯+⨯+⨯+⨯⨯=,()()()222230640.150640.370640.4σ=-⨯+-⨯+-⨯()290640.2324+-⨯=,则18σ=,由Z 服从正态分布()2,N μσ,得()()6418641846820.6827P Z P Z -<≤+=<≤≈,则()()18210.68270.158652P Z >≈-=,()460.68270.158650.84135P Z >≈+=,所以此次竞赛受到奖励的人数为600.8413550⨯≈.【点睛】此题考查频率分布直方图、分层抽样、离散型随机变量的分布列、正态分布等知识,考查分析问题的能力和计算能力,属于中档题。

必修三数学试卷人教版期末

必修三数学试卷人教版期末

【一、选择题(每题5分,共25分)】1. 已知函数f(x) = 2x - 3,则f(2)的值为()A. 1B. 3C. 5D. 72. 在三角形ABC中,若∠A = 60°,∠B = 45°,则∠C的度数为()A. 75°B. 105°C. 120°D. 135°3. 下列函数中,y = √(x^2 - 1)的图象是()A. ①B. ②C. ③D. ④4. 已知数列{an}的通项公式为an = 3^n - 2^n,则数列{an}的前5项和为()A. 170B. 180C. 190D. 2005. 已知函数f(x) = x^2 - 4x + 3,则f(x)的对称轴为()A. x = 1B. x = 2C. x = 3D. x = 4【二、填空题(每题5分,共25分)】6. 已知函数f(x) = x^2 - 2x + 1,则f(1)的值为______。

7. 在三角形ABC中,若∠A = 60°,∠B = 45°,则sinC的值为______。

8. 已知数列{an}的通项公式为an = 2^n - 1,则数列{an}的第6项为______。

9. 已知函数f(x) = |x - 2|,则f(x)在x = 1处的导数为______。

10. 已知函数f(x) = x^3 - 3x^2 + 4x - 1,则f'(1)的值为______。

【三、解答题(每题15分,共45分)】11. (15分)已知函数f(x) = x^2 + 2x + 1,求f(x)的顶点坐标和对称轴。

12. (15分)已知数列{an}的通项公式为an = 3^n + 2^n,求该数列的前5项和。

13. (15分)已知函数f(x) = x^3 - 3x^2 + 4x - 1,求f(x)的导函数f'(x)。

【四、证明题(20分)】14. (20分)证明:在三角形ABC中,若∠A = 60°,∠B = 45°,则cosC =√3/2。

【人教版】高中数学必修三期末模拟试题带答案

【人教版】高中数学必修三期末模拟试题带答案

一、选择题1.甲、乙两人约定某天晚上6:00~7:00之间在某处会面,并约定甲早到应等乙半小时,而乙早到无需等待即可离去,那么两人能会面的概率是()A.58B.13C.18D.382.若即时起10分钟内,甲乙两同学等可能到达某咖啡厅,则这两同学到达咖啡厅的时间间隔不超过3分钟的概率为( )A.0.3B.0.36C.0.49D.0.513.已知三棱锥P﹣ABC的6条棱中,有2条长为1,有4条长为2,则从中任意取出的两条,这两条棱长度相等的概率为()A.815B.715C.45D.354.如图所示的图形中,每个三角形上各有一个数字,若六个三角形上的数字之和为26,则称该图形是“和谐图形”.已知其中四个三角形上的数字之和为20,现从1、2、3、4、5中任取两个数字标在另外两个三角形上,则恰好使该图形为“和谐图形”的概率为()A.310B.15C.110D.3205.执行如图所示的程序框图,若输入的a,b的值分别为1,1,则输出的S是()A.25 B.18 C.11 D.3⨯⨯⨯⨯的值的一个程序框图,则其中判断框内应填入的6.如图给出的是计算1232018是()A .2018i <B .2018i =C .2018i ≤D .2018i >7.元朝著名数学家朱世杰在《四元玉鉴》中有一首诗:“我有一壶酒,携着游春走,遇店添一倍,逢友饮一斗,店友经三处,没了壶中酒,借问此壶中,当原多少酒?”用程序框图表达如图所示,即最终输出的0x =,则一开始输入的x 的值为( )A .34B .78C .1516 D .31328.定义语句“mod r m n =”表示把正整数m 除以n 所得的余数赋值给r ,如7mod31=表示7除以3的余数为1,若输入56m =,18n =,则执行框图后输出的结果为( )A .6B .4C .2D .19.如图是某手机商城2018年华为、苹果、三星三种品牌的手机各季度销量的百分比堆积图(如:第三季度华为销量约占50%,苹果销量约占20%,三星销量约占30%).根据该图,以下结论中一定正确的是( )A .华为的全年销量最大B .苹果第二季度的销量大于第三季度的销量C .华为销量最大的是第四季度D .三星销量最小的是第四季度10.有线性相关关系的变量有观测数据,已知它们之间的线性回归方程是,若,则( ) A .B .C .D .11.总体由编号为01,02,,29,30的30个个体组成,利用下面的随机数表选取4个个体.选取的方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出的第4个个体的编号为( ).7806 6572 0802 6314 2947 1821 98003204 9234 4935 3623 4869 6938 7481A .02B .14C .18D .2912.高二某班共有学生60名,座位号分别为01, 02, 03,···, 60.现根据座位号,用系统抽样的方法,抽取一个容量为4的样本.已知03号、18号、48号同学在样本中,则样本中还有一个同学的座位号是( ) A .31号B .32号C .33号D .34号二、填空题13.连续抛掷同一颗骰子3次,则3次掷得的点数之和为9的概率是____.14.设{}{}1,3,5,7,2,4,6a b ∈∈,则函数()log a bf x x =是增函数的概率为__________.15.某公司的班车在8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是__________ 16.执行下面的程序框图,若输入的a ,b ,k 分别为1,2,3,则输出的M =_____17.如下图,程序框图中,若输入4,10m n ==,则输出a 的值是________.18.一个算法的程序框图如下图所示,若该程序输出的结果为,则判断框中应填入的条件是____.19.随机抽取100名年龄在[10,20),[20,30),…,[50,60)年龄段的市民进行问卷调查,由此得到样本的频率分布直方图如图所示.从不小于40岁的人中按年龄段分层抽样的方法随机抽取12人,则在[50,60)年龄段抽取的人数为______.20.已知某产品连续4个月的广告费i x(千元)与销售额i y(万元)(1,2,3,4i=)满足4115 iix ==∑,4112 iiy ==∑,若广告费用x和销售额y之间具有线性相关关系,且回归直线方程为^y bx a=+,0.6b=,那么广告费用为5千元时,可预测的销售额为___万元.三、解答题21.手机运动计步已经成为一种新时尚.某单位统计了职工一天行走步数(单位:百步),绘制出如下频率分布直方图:(1)求直方图中a的值,并由频率分布直方图估计该单位职工一天步行数的中位数;(2)若该单位有职工200人,试估计职工一天行走步数不大于13000的人数;(3)在(2)的条件下,该单位从行走步数大于15000的3组职工中用分层抽样的方法选取6人参加远足拉练活动,再从6人中选取2人担任领队,求这两人均来自区间(170]的概率.150,22.班级新年晚会设置抽奖环节.不透明纸箱中有大小相同的红球3个,黄球2个,且这5个球外别标有数字1、2、3、4、5.有如下两种方案可供选择:方案一:一次性...抽取两球,若颜色相同,则获得奖品;方案二:依次有放回...地抽取两球,若数字之和大于5,则获得奖品.(1)写出按方案一抽奖的试验的所有基本事件;(2)哪种方案获得奖品的可能性更大?23.下面程序的功能是输出1~100之间的所有偶数.程序:i=1DOm=iMOD2IF①THENPRINTiENDIF②LOOPUNTILi>100END(1)试将上面的程序补充完整;(2)改写为WHILE型循环结构程序.24.任意输入三个赋值变量a,b,c,编写计算22-+的值的程序.35a b c25.为培养学生在高中阶段的数学能力,某校将举行数学建模竞赛.已知该竞赛共有60名学生参加,他们成绩的频率分布直方图如图所示.(1)估计这60名参赛学生成绩的中位数;(2)为了对数据进行分析,将60分以下的成绩定为不合格.60分以上(含60分)的成绩定为合格,某评估专家决定利用分层抽样的方法从这60名学生中选取10人,然后从这10人中抽取4人参加座谈会,记ξ为抽取的4人中,成绩不合格的人数,求ξ的分布列与数学期望;Nμσ,其中μ可用样本(3)已知这60名学生的数学建模竞赛成绩Z服从正态分布()2,平均数近似代替,2σ可用样本方差近似代替(同一组数据用该区间的中点值作代表),若成绩在46分以上的学生均能得到奖励,本次数学建模竞赛满分为100分,估计此次竞赛受到奖励的人数(结果根据四舍五人保留整数).参考数据:()0.6827P Z μσμσ-<≤+≈,()220.9545P Z μσμσ-<≤+≈,()330.9973P Z μσμσ-<≤+≈.26.假设关于某设备的使用年限x 和所支出的维修费用y (万元),有如下的统计资料:若由资料可知y 对x 呈线性相关关系,试求: (1)回归直线方程;(2)估计使用年限为10年时,维修费用约是多少?(参考:1221ni ii nii x ynxyb xnx ==-=-∑∑,a y bx =-)【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】由题意知本题是一个几何概型,试验包含的所有事件是{(,)|01x y x Ω=,01}y ,写出满足条件的事件是{(,)|01A x y x =,01y ,12y x -≤,}x y ≤,算出事件对应的集合表示的面积,根据几何概型概率公式得到结果. 【详解】解:由题意知本题是一个几何概型,设甲到的时间为x ,乙到的时间为y ,则试验包含的所有事件是{(,)|01x y x Ω=,01}y , 事件对应的集合表示的面积是1S =,满足条件的事件是{(,)|01A x y x =,01y ,12y x -≤,}x y ≤, 则()1,1B ,1,12C ⎛⎫⎪⎝⎭,10,2D ⎛⎫ ⎪⎝⎭,则事件A对应的集合表示的面积是11113 1122228⨯⨯-⨯⨯=,根据几何概型概率公式得到33818P==;所以甲、乙两人能见面的概率38P=.故选:D.【点睛】本题主要考查几何概型的概率计算,要解决此问题,一般要通过把试验发生包含的事件所对应的区域求出,根据集合对应的图形面积,用面积的比值得到结果.2.D解析:D【分析】由几何概型中的面积型得:1277210.511010SPS⨯⨯⨯==-=⨯阴正,即可得解.【详解】设甲、乙两同学等可能到达某咖啡厅的时间为(),x y,则010x<≤,010y<≤,其基本事件可用正方形区域表示,如图,则甲、乙两同学等可能到达某咖啡厅的时间间隔不超过3分钟的事件为A , 则事件A 为:3x y -≤,其基本事件可用阴影部分区域表示,由几何概型中的面积型可得:1277210.511010S P S ⨯⨯⨯==-=⨯阴正.故选:D. 【点睛】本题考查了几何概型中的面积型,属于基础题.3.B解析:B 【分析】从中任意取出的两条,基本事件总数2615n C ==,这两条棱长度相等包含的基本事件个数22247m C C =+=,由此能求出这两条棱长度相等的概率. 【详解】解:三棱锥P ABC -的6条棱中,有2条长为1,有4条长为2,从中任意取出的两条,基本事件总数2615n C ==,这两条棱长度相等包含的基本事件个数22247m C C =+=, ∴这两条棱长度相等的概率715m p n ==. 故选:B . 【点睛】本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是基础题.4.B解析:B 【分析】由题意可知,另外两个三角形上的数字之和为6,列出所有的基本事件,并确定基本事件的数目,并确定事件“两个三角形上的数字之和为6”所包含的基本事件数,再利用古典概型的概率公式计算出所求事件的概率. 【详解】由题意可知,若该图形为“和谐图形”,则另外两个三角形上的数字之和恰为26206-=.从1、2、3、4、5中任取两个数字的所有情况有()1,2、()1,3、()1,4、()1,5、()2,3、()2,4、()2,5、()3,4、()3,5、()4,5,共10种,而其中数字之和为6的情况有()1,5、()2,4,共2种,因此,该图形为“和谐图形”的概率为21105=,故选:B. 【点睛】本题考查利用古典概型的概率公式计算事件的概率,解题的关键就是列举出基本事件,考查分析问题与解决问题的能力,属于中等题.5.C解析:C 【分析】该程序的功能是利用循环结构计算并输出变量S 的值,模拟程序的运行过程,分析循环中各变量的变化情况,即可得到答案. 【详解】模拟执行程序框图,可得:1,1,1a b n ===, 第1次循环,可得3,1,3,2S a b n ====; 第2次循环,可得5,3,5,3S a b n ====; 第3次循环,可得11,5,11,4S a b n ====, 满足判断条件,输出11S =. 故选:C. 【点睛】本题主要考查了循环结构的程序框图的计算与输出,其中解答中模拟程序框图的运行过程,逐次计算,结合判断条件求解是解答的关键,意在考查运算与求解能力,属于基础题.6.D解析:D 【分析】可先结合输出结果预判,满足某一条件时,输出结果s ,综合判断D 正确 【详解】由输出结果判断,显然是经过多次运算的结果,运算中i 是不断递加的,满足某一条件时,输出结果,排除A ,C ;接下来计算:设001,1s i ==,不满足判断条件,100101,12s s i i i =⋅==+=; 不满足判断条件,2112112,13s s i i i =⋅=⨯=+=; 不满足判断条件,32232123,14s s i i i =⋅=⨯⨯=+=;直到201820172017201820171232018,12019s s i i i =⋅=⨯⨯⨯=+=,此时满足判断条件,说明20192018>,故判断语句为:2018i >故选:D 【点睛】本题考查由输出值辨别判断语句,属于中档题7.B解析:B 【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算输入时变量x 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得到答案. 【详解】本题由于已知输出时x 的值,因此可以逆向求解: 输出0x =,此时4i =; 上一步:1210,2x x -==,此时3i =; 上一步:1321,24x x -==,此时2i =; 上一步:3721,48x x -==,此时1i =; 故选:B . 【点睛】本题考查了程序框图的循环结构,考查了学生逻辑推理和数学运算的能力,属于基础题.8.C解析:C 【解析】 【分析】模拟执行程序框图,只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可得到输出的m 的值. 【详解】第一次进入循环,因为56除以18的余数为2,所以2r,18m =,2n =,判断r 不等于0,返回循环;第二次进入循环,因为18除以2的余数为0, 所以0r =,2m =,0n =,判断r 等于0, 跳出循环,输出m 的值为2.故选C. 【点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.9.A解析:A【分析】根据图象即可看出,华为在每个季度的销量都最大,从而得出华为的全年销量最大,从而得出A正确;由于不知每个季度的销量多少,从而苹果、华为和三星在哪个季度的销量大或小是没法判断的,从而得出选项B,C,D都错误.【详解】根据图象可看出,华为在每个季度的销量都最大,所以华为的全年销量最大;每个季度的销量不知道,根据每个季度的百分比是不能比较苹果在第二季度和第三季度销,量多少的,同样不能判断华为在哪个季度销量最大,三星在哪个季度销量最小;B C,D都错误,故选A.【点睛】本题主要考查对销量百分比堆积图的理解.10.D解析:D【解析】【分析】先计算,代入回归直线方程,可得,从而可求得结果.【详解】因为,所以,代入回归直线方程可求得,所以,故选D.【点睛】该题考查的是有关回归直线的问题,涉及到的知识点有回归直线一定会过样本中心点,利用相关公式求得结果,属于简单题目.11.D解析:D【解析】分析:根据随机数表法则取数:取两个数,不小于30的舍去,前面已取的舍去.详解:从表第1行5列,6列数字开始由左到右依次选取两个数字中小于30的编号为:08,02,14,29.∴第四个个体为29.选D.点睛:本题考查随机数表,考查对概念基本运用能力.12.C解析:C【解析】【分析】根据系统抽样知,组距为604=15÷,即可根据第一组所求编号,求出各组所抽编号.【详解】学生60名,用系统抽样的方法,抽取一个容量为4的样本,所以组距为604=15÷,已知03号,18号被抽取,所以应该抽取181533+=号,故选C.【点睛】本题主要考查了抽样,系统抽样,属于中档题.二、填空题13.;【分析】利用分步计数原理连续拋掷同一颗骰子3次则总共有:6×6×6=216种情况再列出满足条件的所有基本事件利用古典概型的计算公式计算可得概率【详解】每一次拋掷骰子都有123456六种情况由分步计解析:25 216;【分析】利用分步计数原理,连续拋掷同一颗骰子3次,则总共有:6×6×6=216种情况,再列出满足条件的所有基本事件,利用古典概型的计算公式计算可得概率.【详解】每一次拋掷骰子都有1,2,3,4,5,6,六种情况,由分步计数原理:连续抛掷同一颗骰子3次,则总共有:6×6×6=216种情况,则3次掷得的点数之和为9的基本事件为25种情况即:(1,2,6),(1,3,5),(1,4,4),(1,5,3),(1,6,2),(2,1,6),(2,2,5),(2,3,4),(2,4,3),(2,5,2),(2,6,1),(3,1,5),(3,2,4),(3,3,3),(3,4,2),(3,5,1),(4,1,4),(4,2,3),(4,3,2),(4,4,1),(5,1,3),(5,2,2),(5,3,1),(6,1,2),(6,2,1),共25个基本事件,所以25216 P=.【点睛】本题考查分步计数原理和古典概型概率计算,计数过程中如果前两个数固定,则第三个数也相应固定.14.【解析】【分析】列举出所有的结果选出的所有的结果根据古典概型概率公式可求出函数是增函数的概率【详解】所有取值有:共12个值当时为增函数有共有6个所以函数是增函数的概率为故答案为【点睛】本题主要考查古解析:12【解析】 【分析】 列举出ab所有的结果,选出1a b >的所有的结果,根据古典概型概率公式可求出函数()log a bf x x =是增函数的概率.【详解】a b 所有取值有:135713571157,,,,,,,,,,,222244446266共12个值, 当1a b >时,()f x 为增函数,有357577,,,,,222446共有6个, 所以函数()log a bf x x =是增函数的概率为61122=,故答案为12. 【点睛】本题主要考查古典概型概率公式的应用以及对数函数的性质,属于中档题. 在求解有关古典概型概率的问题时,首先求出样本空间中基本事件的总数n ,其次求出概率事件中含有多少个基本事件m ,然后根据公式mP n=求得概率. 15.【分析】求出小明等车时间不超过10分钟的时间长度代入几何概型概率计算公式可得答案【详解】设小明到达时间为当在7:50至8:00或8:20至8:30时小明等车时间不超过10分钟故故答案为【点睛】本题考解析:12【分析】求出小明等车时间不超过10分钟的时间长度,代入几何概型概率计算公式,可得答案. 【详解】设小明到达时间为y ,当y 在7:50至8:00,或8:20至8:30时, 小明等车时间不超过10分钟, 故201402P ==. 故答案为12. 【点睛】本题考查的知识点是几何概型,难度不大,属于基础题.16.12【分析】由题意可知从开始判断框条件成立执行第一次循环得到一组新的的值再从开始判断框条件成立执行第一次循环得到一组新的的值当时判断条件框不成立输出此时的值即可得出答案【详解】当时执行程序框图得;当解析:12 【分析】由题意可知,从1n =开始,判断框条件成立,执行第一次循环,得到一组新的,,M a b 的值,再从2n =开始,判断框条件成立,执行第一次循环,得到一组新的,,M a b 的值,当3n =时,判断条件框不成立,输出此时M 的值,即可得出答案. 【详解】当1n =时,执行程序框图得,1225,2,5M a b =+⨯===; 当2n =时,执行程序框图得,22512,5,12M a b =+⨯===; 当3n =时,不满足判断条件框,直接输出 12M =.故答案为12. 【点睛】本题主要考查了根据程序框图写出执行结果的问题,对于这类题目,首先要弄清框图的结构和执行过程,本题为循环结构的程序框图.17.20【解析】模拟执行程序可得:不满足条件整除以不满足条件整除以不满足条件整除以不满足条件整除以满足条件整除以退出循环输出的值为点睛:本题主要考查的程序框图的知识点解题的关键是要读懂程序框图模拟执行程解析:20 【解析】模拟执行程序,可得:4,10m n ==,1i =,4a =不满足条件n 整除以a2i =,8a =不满足条件n 整除以a 3i =,12a =不满足条件n 整除以a 4i =,16a =不满足条件n 整除以a5i =,20a =满足条件n 整除以a ,退出循环,输出a 的值为20点睛:本题主要考查的程序框图的知识点.解题的关键是要读懂程序框图.模拟执行程序,依次写出每次循环得到的i ,a 的值,当20a =的时候,满足条件n 整除以a ,退出循环,即可得到输出a 的值为20.18.【解析】试题分析:由于第一次执行循环体之后条件成立第二次执行循环体之后条件成立第三次执行循环体之后条件成立第四次执行循环体之后条件成立第五次执行循环体之后条件不成立退出循环输出结果故判断框的条件考点 解析:6i <【解析】 试题分析:由于,第一次执行循环体之后,,条件成立,第二次执行循环体之后,,条件成立,第三次执行循环体之后,,条件成立,第四次执行循环体之后,,条件成立,第五次执行循环体之后,,条件不成立,退出循环,输出结果,故判断框的条件.考点:程序框图的应用.19.3【分析】根据频率分布直方图求得不小于40岁的人的频率及人数再利用分层抽样的方法即可求解得到答案【详解】根据频率分布直方图得样本中不小于40岁的人的频率是0015×10+0005×10=02所以不小解析:3【分析】根据频率分布直方图,求得不小于40岁的人的频率及人数,再利用分层抽样的方法,即可求解,得到答案.【详解】根据频率分布直方图,得样本中不小于40岁的人的频率是0.015×10+0.005×10=0.2,所以不小于40岁的人的频数是100×0.2=20;从不小于40岁的人中按年龄段分层抽样的方法随机抽取12人,在[50,60)年龄段抽取的人数为0.0051010012320⨯⨯⨯=.【点睛】本题主要考查了频率分布直方图的应用,其中解答中熟记频率分布直方图的性质,以及频率分布直方图中概率的计算方法是解答的关键,着重考查了推理与运算能力,属于基础题.20.75【解析】【分析】计算然后将代入回归直线得从而得回归方程然后令x =5解得y即为所求【详解】∵∴∵∴∴样本中心点为(3)又回归直线过(3)即3=06×+解得=所以回归直线方程为y=06x+令x=5时解析:75【解析】【分析】计算x,y,然后将x,y代入回归直线得a,从而得回归方程,然后令x=5解得y即为所求.【详解】∵4115 iix ==∑,∴154x=,∵4112i i y ==∑,∴1234y ==, ∴样本中心点为(154,3), 又回归直线0.6ˆyx a =+过(154,3),即3=0.6×154+a ,解得a =34, 所以回归直线方程为y =0.6x +34, 令x =5时,y =0.6×5+34=3.75万元 故答案为:3.75. 【点睛】本题考查线性回归方程的应用,以及利用线性回归方程进行预测,要注意回归直线必过样本中心点.三、解答题21.(1)0.012a =,125;(2)112人;(3)25【分析】(1)根据频率分布直方图中矩形的面积和为1求出0.012a =,再求中位数得解;(2)直接利用频率分布直方图估计职工一天行走步数不大于13000的人数;(3)先求出在区间(]150,170中有32人,在区间(]170,190中有8人,在区间(]190,210中有8人,再利用古典概型的概率公式求出这两人均来自区间150,(170]的概率. 【详解】 (1)由题意得0.002200.006200.00820200.010200.008200.002200.002201a ⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯=解得0.012a = . 设中位数为110x +,则0.002200.006200.008200.0120.5x ⨯+⨯+⨯+=解得15x = . ∴中位数是125.(2)由()2000.002200.006200.008200.01220112⨯⨯+⨯+⨯+⨯= ∴估计职工一天步行数不大于13000步的人数为112人 (3)在区间(]150,170中有2000.0082032⨯⨯=人 在区间(]170,190中有2000.002208⨯⨯=人 在区间(]190,210中有2000.002208⨯⨯=人按分层抽样抽取6人,则从(]150,170抽取4人,(]170,190抽取1人,(]190,210抽取1人设从(]150,170抽取职工为1A ,2A ,3A ,4A ,从(]170,190抽取职工为B ,从(]190,210抽取职工为C ,则从6人中抽取2人的情况有12A A ,13A A ,41A A ,1A B ,1A C ,23A A ,24A A ,2A B ,2A C ,34A A ,3A B ,3A C ,4A B ,4A C ,BC 共15种情况,它们是等可能的,其中满足两人均来自区间(]150,170的有12A A ,13A A ,41A A ,23A A ,24A A ,34A A 共有6种情况, ∴62155P == ∴两人均来自区间(]150,170的概率为25. 【点睛】本题主要考查频率分布直方图的应用,考查频率分布直方图中中位数的计算,考查古典概型的概率的计算,意在考查学生对这些知识的理解掌握水平和分析推理能力》 22.(1)见解析(2)方案二获得奖品的可能性更大. 【分析】(1)根据题意,设三个红球分别为:123,,A A A ,两个黄球分别为12,B B ,利用列举法一一列举出来即可;(2)方案一二中,根据古典概型,分别求出两种方案的概率,即可得出结论. 【详解】(1)方案一中,设三个红球分别为:123,,A A A ,两个黄球分别为12,B B , 则方案一所有可能的基本事为:{}{}{}{}{}{}{}{}{}{}12131112232122313212,,,,,,,,,A A A A A B A B A A A B A B A B A B B B共10个基本事件.(2)方案二中,设两次抽查取的球所标的数字分别为x 、y ,则所有可能的基本事件对应的二元有序数组(),x y 表示如下表,共25个基本事件:且每个基本事件发生的可能性均相同,故它们都是古典概型. 方案一,设事件A :两球颜色相同,则A 包含{}12A A 、{}13A A 、{}23A A 、{}12B B 共4个基本事件, 故()42105P A ==. 方案二中,设事件B :两球所标数字之和大于5,则B 包含()1,5、()2,4、()2,5、()3,3、()3,4、()3,5、()4,2、()4,3、()4,4、()4,5()5,1、()5,2、()5,3、()5,4、()5,5共15个基本事件,故()153255P B ==. 因为()()P A P B <,所以选择方案二获得奖品的可能性更大. 【点睛】本题考查古典概型以及概率在生活中的应用等知识点,同时考查推理论证能力以及考查逻辑推理与数据分析素养.23.(1)①m=0②i=i+1;(2)见解析 【分析】(1)如果除以2的余数为零,则为偶数,故填0m =.i 每次增加1,故填1i i =+.(2)根据WHILE 型循环的结构,对原有程序进行改写. 【详解】(1)①m=0②i=i+1(2)改写为WHILE 型循环程序如下: i=1 WHILE i<=100 m=I MOD 2 IF m=0 THEN PRINT i END IF i=i+1 WEND END 【点睛】本小题主要考查循环结构的两种编写程序的方法,属于基础题. 24.见解析 【解析】试题分析:输入,,a b c ,计算35S a a b b c =*-**+*,输出S 即可. 试题根据题意,所求的程序如下: INPUT a ,b ,cS =a *a –3*b *b +5*cPRINT SEND25.(1)中位数为65;(2)分布列见解析;期望为5635;(3)50. 【分析】(1)由图中的数据可判断中位数在60分到80分之间,若设中位数为x ,则()0.005200.01520600.020.5x ⨯+⨯+-⨯=,从而可求得中位数;(2)结合频率分布直方图和分层抽样的方法可知,抽取的10人中合格的人数为6人,不合格的人数为4人,则ξ的可能取值为0,1,2,3,4,求出各自的概率,从而可得ξ的分布列与数学期望;(3)由已知求出=64=18μσ,,从而可得()()6418641846820.6827P Z P Z -<≤+=<≤≈,再利用正态分布的对称性可求得结果【详解】(1)设中位数为x ,则()0.005200.01520600.020.5x ⨯+⨯+-⨯=,解得65x =,所以这60名参赛学生成绩的中位数为65.(2)结合频率分布直方图和分层抽样的方法可知,抽取的10人中合格的人数为()0.010.0220106+⨯⨯=,不合格的人数为1064-=.由题意可知ξ的可能取值为0,1,2,3,4.则()464101014C P C ξ===,()134********C C P C ξ===,()2246410327C C P C ξ===,()31464103435C C C P ξ===,()4441014210C P C ξ===. 所以ξ的分布列为所以ξ的数学期望01234142173521035E ξ=⨯+⨯+⨯+⨯+⨯=. (3)由题意可得,()300.005500.015700.02900.012064μ=⨯+⨯+⨯+⨯⨯=,()()()222230640.150640.370640.4σ=-⨯+-⨯+-⨯()290640.2324+-⨯=,则18σ=,由Z 服从正态分布()2,N μσ,得()()6418641846820.6827P Z P Z -<≤+=<≤≈,则()()18210.68270.158652P Z >≈-=,()460.68270.158650.84135P Z >≈+=,所以此次竞赛受到奖励的人数为600.8413550⨯≈.【点睛】此题考查频率分布直方图、分层抽样、离散型随机变量的分布列、正态分布等知识,考查分析问题的能力和计算能力,属于中档题26.(1) 1.2308ˆ.0yx =+;(2)12.38万元.. 【分析】(1)由已知表格中的数据,易计算出变量x ,y 的平均数,及2i x ,i i x y 的累加值,代入回归直线系数公式1221n ii i n i i x y nxy b xnx ==-=-∑∑,a y bx =-,即可求出回归直线的系数,进而求出回归直线方程.(2)把使用年限10代入回归直线方程,即可估算出维修费用的值.【详解】(1)4x =,5y =,52190ii x==∑,51112.3i i i x y ==∑, 12215 1.235n ii i n ii x y xy b xx ==-==-∑∑,0.08a y bx =-=,所以回归直线方程为 1.2308ˆ.0yx =+; (2) 1.23100.0812.3ˆ8y=⨯+=, 即估计用10年时维修费约为12.38万元.【点评】本题考查回归直线的方程求解,关键是要求出回归直线方程的系数,由已知的变量x ,y 的值,我们计算出变量x ,y 的平均数,及2i x ,i i x y 的累加值,代入回归直线系数公式1221n ii i n i i x y nxy b xnx ==-=-∑∑,a y bx =-,即可求出回归直线的系数,进而求出回归直线方程.属于中等题.。

【人教版】高中数学必修三期末一模试卷(附答案)(1)

【人教版】高中数学必修三期末一模试卷(附答案)(1)

一、选择题1.某同学用“随机模拟方法”计算曲线ln y x =与直线,0x e y ==所围成的曲边三角形的面积时,用计算机分别产生了10个在区间[]1,e 上的均匀随机数i x 和10个区间[]0,1上的均匀随机数()*,110i y i N i ∈≤≤,其数据如下表的前两行. x 2.50 1.01 1.90 1.22 2.52 2.17 1.89 1.96 1.36 2.22 y 0.84 0.25 0.98 0.15 0.01 0.60 0.59 0.88 0.84 0.10 lnx0.900.010.640.200.920.770.640.670.310.80由此可得这个曲边三角形面积的一个近似值是 A .()215e + B .()215e - C .()315e + D .()315e - 2.甲、乙两人约定某天晚上6:00~7:00之间在某处会面,并约定甲早到应等乙半小时,而乙早到无需等待即可离去,那么两人能会面的概率是( ) A .58B .13C .18D .383.若数列{a n }满足a 1=1,a 2=1,a n +2=a n +a n +1,则称数列{a n }为斐波那契数列,斐波那契螺旋线是根据斐波那契数列画出来的螺旋曲线,自然界中存在许多斐波那契螺旋线的图案,是自然界最完美的经典黄金比例.作图规则是在以斐波那契数为边的正方形拼成的长方形中画一个圆心角为90°的扇形,连起来的弧线就是斐波那契螺旋线,如图所示的7个正方形的边长分别为a 1,a 2,…,a 7,在长方形ABCD 内任取一点,则该点不在任何一个扇形内的概率为( )A .1103156π-B .14π-C .17126π-D .681237π-4.类比“赵爽弦图”,可类似地构造如图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设2AD BD =,若在大等边三角形中随机取一点,则此点取自小等边三角形的概率是( )A .14B .13C .17D .4135.运行如图所示的程序框图,若输出S 的值为129,则判断框内可填入的条件是( )A .4?k <B .5?k <C .6?k <D .7?k <6.如图所示的程序框图输出的结果是( )A .34B .55C .78D .897.执行如图所示的程序框图,若输入x =9,则循环体执行的次数为( )A .1次B .2次C .3次D .4次8.在如图算法框图中,若6a =,程序运行的结果S 为二项式5(2)x +的展开式中3x 的系数的3倍,那么判断框中应填入的关于k 的判断条件是( )A .3k <B .3k >C .4k <D .4k >9.采用系统抽样的方法从400人中抽取20人做问卷调查,为此将他们随机编号为1,2,3…,400.适当分组后在第一组采用随机抽样的方法抽到的号码为5,则抽到的20人中,编号落入区间[201,319]内的人员编号之和为( ) A .600B .1225C .1530D .185510.演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是 A .中位数 B .平均数 C .方差D .极差11.学校为了解新课程标准提升阅读要求对学生阅读兴趣的影响情况,随机抽取了100名学生进行调查.根据调查结果绘制学生周末阅读时间的频率分布直方图如图所示:将阅读时间不低于30分钟的观众称为“阅读霸”,则下列命题正确的是( ) A .抽样表明,该校有一半学生为阅读霸 B .该校只有50名学生不喜欢阅读 C .该校只有50名学生喜欢阅读 D .抽样表明,该校有50名学生为阅读霸12.为了解某社区居民的家庭年收入所年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表: 收入x (万元)8.28.610.011.311.9支出y (万元)6.27.58.0 8.59.8根据上表可得回归直线方程ˆˆˆybx a =+,其中ˆˆˆ0.76,b a y bx ==-,据此估计,该社区一户收入为15万元家庭年支出为( ) A .11.4万元B .11.8万元C .12.0万元D .12.2万元二、填空题13.采用简单随机抽样从含10个个体的总体中抽取一个容量为4的样本,若个体a 前两次未被抽到,则第三次被抽到的概率为_____.14.某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为23和35.现安排甲组研发新产品A,乙组研发新产品B,设甲、乙两组的研发相互独立,则至少有一种新产品研发成功的概率为________.15.农历戊戌年即将结束,为了迎接新年,小康、小梁、小谭、小刘、小林每人写了一张心愿卡,设计了一个与此心愿卡对应的漂流瓶.现每人随机的选择一个漂流瓶将心愿卡放入,则事件“至少有两张心愿卡放入对应的漂流瓶”的概率为___16.若下面程序中输入的n值为2017,则输出的值为__________.17.如图是某算法流程图,则程序运行后输出S的值为____.18.执行如图所示的程序框图,若输出的结果是5,则判断框内的取值范围是________________.19.已知样本数据为40,42,40,a ,43,44,且这个样本的平均数为43,则该样本的标准差为_________.20.能够说明“若甲班人数为m ,平均分为a ;乙班人数为n n m ≠(),平均分为b ,则甲乙两班的数学平均分为2a b+”是假命题的一组正整数a ,b 的值依次为_____. 三、解答题21.高铁和航空的飞速发展不仅方便了人们的出行,更带动了我国经济的巨大发展,据统计,在2018年这一年内从A 市到B 市乘坐高铁或飞机出行的成年人约为50万人次.为了解乘客出行的满意度,现从中随机抽取100人次作为样本.得到下表(单位:人次):(1)在样本中任取1个,求这个出行人恰好不是青年人的概率;(2)在2018年从A 市到B 市乘坐高铁的所有成年人中,随机选取2人次,记其中老年人出行的人次为X .以频率作为概率.求X 的分布列和数学期望;(3)如果甲将要从A 市出发到B 市,那么根据表格中的数据,你建议甲是乘坐高铁还是 飞机?并说明理由.22.某公司结合公司的实际情况针对调休安排展开问卷调查,提出了A ,B ,C 三种放假方案,调查结果如下:支持A 方案支持B 方案支持C 方案35岁以下 20 40 80 35岁以上(含35岁)101040(1)在所有参与调查的人中,用分层抽样的方法抽取n 个人,已知从“支持A 方案”的人中抽取了6人,求n 的值;(2)在“支持B 方案”的人中,用分层抽样的方法抽取5人看作一个总体,从这5人中任意选取2人,求恰好有1人在35岁以上(含35岁)的概率.23.如图,在边长为4的正方形ABCD 的边上有一点P ,沿着折线BCDA 由点B (起点)向点A (终点)运动.设点P 运动的路程为x ,APB △的面积为y ,求y 与x 之间的函数关系式,并画出程序框图.24.编写一个程序,求11111 (35799)s =+++++的值,并画出程序框图,要求用两种循环结构编写.25.学校食堂统计了最近5天到餐厅就餐的人数x (百人)与食堂向食材公司购买所需食材(原材料)的数量y (袋),得到如下统计表:第一天 第二天 第三天 第四天 第五天 就餐人数x (百人) 13 9 8 10 12 原材料y (袋)3223182428(1)根据所给的5组数据,求出关于的线性回归方程ˆˆybx a =+; (2)已知购买食材的费用C (元)与数量y (袋)的关系为()()40020,036380,36y y x N C y y y N ⎧-<<∈⎪=⎨≥∈⎪⎩,投入使用的每袋食材相应的销售单价为700元,多余的食材必须无偿退还食材公司,据悉下周一大约有1500人到食堂餐厅就餐,根据(1)中求出的线性回归方程,预测食堂应购买多少袋食材,才能获得最大利润,最大利润是多少?(注:利润L =销售收入-原材料费用)参考公式:()()()1122211nniii ii i nniii i x x y y x y nx yb x x xnx====---==--∑∑∑∑,a y bx =-参考数据:511343i ii x y==∑,521558i i x ==∑,5213237i i y ==∑26.近年来,国家对西部发展出台了很多优惠政策,为了更有效促进发展,需要对一种旧能源材料进行技术革新,为了了解此种材料年产量x (吨)对价格y (万元/吨)和年利润z (万元)的影响,有关部门对近五年此种材料的年产量和价格统计如表,若 5.5y =.x1 2 3 4 5y8764c(1)求表格中c的值;(2)求y关于x的线性回归方程y bx a=+;(3)若每吨该产品的成本为2万元,假设该产品可全部卖出,预测当年产量为多少时,年利润z取得最大值?参考公式:1221ni iiniix y nx ybx nx==-=-∑∑,a y bx=-.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【详解】由题意可得ACBABCD=10S nS∆曲线矩形,n为阴影部分的点的个数,即满足y<lnx,共6个点,即ACBABCD6=101S SS e∆=-曲线矩形,所以S=()315e-,选D.2.D解析:D【分析】由题意知本题是一个几何概型,试验包含的所有事件是{(,)|01x y xΩ=,01}y,写出满足条件的事件是{(,)|01A x y x=,01y,12y x-≤,}x y≤,算出事件对应的集合表示的面积,根据几何概型概率公式得到结果.【详解】解:由题意知本题是一个几何概型,设甲到的时间为x,乙到的时间为y,则试验包含的所有事件是{(,)|01x y x Ω=,01}y , 事件对应的集合表示的面积是1S =,满足条件的事件是{(,)|01A x y x =,01y ,12y x -≤,}x y ≤, 则()1,1B ,1,12C ⎛⎫⎪⎝⎭,10,2D ⎛⎫ ⎪⎝⎭, 则事件A 对应的集合表示的面积是111131122228⨯⨯-⨯⨯=,根据几何概型概率公式得到33818P ==; 所以甲、乙两人能见面的概率38P =. 故选:D .【点睛】本题主要考查几何概型的概率计算,要解决此问题,一般要通过把试验发生包含的事件所对应的区域求出,根据集合对应的图形面积,用面积的比值得到结果.3.D解析:D 【分析】由题意求得数列{}n a 的前8项,求得长方形ABCD 的面积,再求出6个扇形的面积和,由测度比是面积比得答案. 【详解】由题意可得,数列{}n a 的前8项依次为:1,1,2,3,5,8,13,21.∴长方形ABCD 的面积为1321273⨯=.6个扇形的面积之和为222222(1235813)684ππ+++++=.∴所求概率681273P π=-. 故选:D . 【点睛】本题考查几何概型概率的求法,考查扇形面积公式的应用,是基础题.4.C解析:C 【分析】由题意求出AB =,所求概率即为DEF ABCS P S=,即可得解.【详解】由题意易知120ADB ∠=,AF FD BD ==,由余弦定理得22222cos1207AB AD BD AD BD BD =+-⋅⋅=即AB =,所以AB =,则所求概率为217DEF ABCSFD P SAB ⎛⎫=== ⎪⎝⎭. 故选:C. 【点睛】本题考查了几何概型概率的求法和余弦定理的应用,属于中档题.5.C解析:C 【分析】最常用的方法是列举法,即依次执行循环体中的每一步,直到循环终止,但在执行循环体时要明确循环终止的条件是什么,什么时候要终止执行循环体. 【详解】0S =,1k =;110121S -=+⨯=,2k =;211225S -=+⨯=, 3k =;3153217S -=+⨯=,4k =;41174249S -=+⨯=, 5k =;514952129S -=+⨯=,6k =,此时输出S ,即判断框内可填入的条件是“6?k <”.故选:C . 【点睛】本题考查循环结构程序框图. 解决程序框图填充问题的思路(1)要明确程序框图的顺序结构、条件结构和循环结构. (2)要识别、执行程序框图,理解框图所解决的实际问题. (3)按照题目的要求完成解答并验证.6.B解析:B 【分析】通过不断的循环赋值,得到临界值,即可得解. 【详解】1,1,21,2,32,3,53,5,85,8,138,13,2113,21,3421,34,55x y z x y z x y z x y z x y z x y z x y z x y z ========================不满足50z ≤,输出即可, 故选:B. 【点睛】本题考查了程序框图循环结构求输出结果,考查了计算能力,属于中当题.7.C解析:C 【分析】根据程序框图依次计算得到答案. 【详解】9,5x y ==,41y x -=>;115,3x y ==,413y x -=>; 1129,39x y ==,419y x -=<;结束. 故选:C . 【点睛】本题考查了程序框图的循环次数,意在考查学生的理解能力和计算能力.8.C解析:C 【分析】根据二项式(2+x )5展开式的通项公式,求出x 3的系数,模拟程序的运行,可得判断框内的条件. 【详解】∵二项式5(2)x +展开式的通项公式是5152r r r r T C x -+=⋅⋅,令3r =,3233152T C x +∴=⋅⋅,332356(4)21408x x C x∴⨯⋅⋅=,∴程序运行的结果S 为120, 模拟程序的运行,由题意可得 k=6,S=1不满足判断框内的条件,执行循环体,S=6,k=5 不满足判断框内的条件,执行循环体,S=30,k=4 不满足判断框内的条件,执行循环体,S=120,k=3此时,应该满足判断框内的条件,退出循环,输出S 的值为120. 故判断框中应填入的关于k 的判断条件是k <4? 故选:C 【点睛】本题考查了二项式展开式的通项公式的应用问题,考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,属于中档题.9.C解析:C 【分析】根据系统抽样所得的编号为等差数列,再用等差数列的求和公式求解即可. 【详解】由系统抽样的定义可知,在区间[201,319]内抽取的编号数构成以205为首项,公差为20的等差数列,并且项数为6,所以6(61)62052015302⨯-⨯+⨯=. 故选:C 【点睛】本题考查系统抽样的知识,考查数据处理能力和应用意识.10.A解析:A 【分析】可不用动笔,直接得到答案,亦可采用特殊数据,特值法筛选答案. 【详解】设9位评委评分按从小到大排列为123489x x x x x x ≤≤≤≤≤.则①原始中位数为5x ,去掉最低分1x ,最高分9x ,后剩余2348x x x x ≤≤≤,中位数仍为5x ,∴A 正确. ②原始平均数1234891()9x x x x x x x =+++++,后来平均数234817x x x x x '=+++()平均数受极端值影响较大,∴x 与x '不一定相同,B 不正确③()()()222219119S x x x x x x ⎡⎤=-+-++-⎣⎦()()()222223817s x x x x x x ⎡⎤'=-'+-'++-'⎢⎥⎣⎦由②易知,C 不正确.④原极差91=x -x ,后来极差82=x -x 可能相等可能变小,D 不正确. 【点睛】本题旨在考查学生对中位数、平均数、方差、极差本质的理解.11.A解析:A 【分析】根据频率分布直方图得到各个时间段的人数,进而得到结果. 【详解】根据频率分布直方图可列下表: 阅读时间(分) [0,10)[10,20)[20,30) [30,40) [40,50) [50,60]抽样人数(名)10 18 22 25 20 5抽样100名学生中有50名为阅读霸,占一半,据此可判断该校有一半学生为阅读霸. 故选A. 【点睛】这个题目考查了频率分布直方图的实际应用,以及样本体现整体的特征的应用,属于基础题.12.B解析:B 【解析】 试题分析:由题,,所以.试题 由已知,又因为ˆˆˆybx a =+,ˆˆˆ0.76,b a y bx ==- 所以,即该家庭支出为万元.考点:线性回归与变量间的关系.二、填空题13.【详解】第一-次没有抽到且第二次没有抽到第三次被抽到的概率是解析:110【详解】第一-次没有抽到且第二次没有抽到第三次被抽到的概率是14.【分析】利用对立事件的概率公式计算即可【详解】解:设至少有一种新产品研发成功的事件为事件事件为事件的对立事件则事件为一种新产品都没有成功因为甲乙研发新产品成功的概率分别为和则再根据对立事件的概率之间 解析:1315【分析】利用对立事件的概率公式,计算即可, 【详解】解:设至少有一种新产品研发成功的事件为事件m ,事件n 为事件m 的对立事件,则事件n 为一种新产品都没有成功,因为甲乙研发新产品成功的概率分别为23和35. 则()232(1)(1)3515p n =--=,再根据对立事件的概率之间的公式可得()()213111515P m P n =-=-=, 故至少有一种新产品研发成功的概率1315. 故答案为:1315. 【点睛】本题主要考查了对立事件的概率,考查学生的计算能力,属于基础题.15.【解析】【分析】基本事件总数事件至少有两张心愿卡放入对应的漂流瓶包含的基本事件个数由此能求出事件至少有两张心愿卡放入对应的漂流瓶的概率【详解】为了迎接新年小康小梁小谭小刘小林每人写了一张心愿卡设计了 解析:31120【解析】 【分析】基本事件总数55n A =,事件“至少有两张心愿卡放入对应的漂流瓶”包含的基本事件个数21335255m C C C C =++,由此能求出事件“至少有两张心愿卡放入对应的漂流瓶”的概率.为了迎接新年,小康、小梁、小谭、小刘、小林每人写了一张心愿卡, 设计了一个与此心愿卡对应的漂流瓶.现每人随机的选择一个漂流瓶将心愿卡放入,基本事件总数55120n A ==,事件“至少有两张心愿卡放入对应的漂流瓶”包含的基本事件个数2133525531m C C C C =++=,∴事件“至少有两张心愿卡放入对应的漂流瓶”的概率为31120m p n ==, 故答案为31120. 【点睛】本题考查概率的求法,考查古典概型等基础知识,考查运算求解能力,是基础题.16.【分析】根据程序框图的算法功能可知该程序是计算的值再根据裂项相消法即可求出【详解】根据程序框图的算法功能可知该程序是计算的值所以故答案为:【点睛】本题主要考查程序框图的算法功能的理解以及数列求和属于 解析:20172018【分析】根据程序框图的算法功能可知,该程序是计算111112233420172018++++⨯⨯⨯⨯的值,再根据裂项相消法即可求出. 【详解】根据程序框图的算法功能可知,该程序是计算111112233420172018++++⨯⨯⨯⨯的值. 所以111112233420172018++++⨯⨯⨯⨯111111112017122334201720182018⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 故答案为:20172018. 【点睛】本题主要考查程序框图的算法功能的理解以及数列求和,属于基础题.常见的数列求和方法有:公式法,裂项相消法,分组求和法,倒序相加求和法,并项求和法,错位相减法等,根据数列的特征选择对应的方法是解题的关键.17.41【分析】根据给定的程序框图计算逐次循环的结果即可得到输出的值得到答案【详解】由题意运行程序框图可得第一次循环不满足判断框的条件;第二次循环不满足判断框的条件;第三次循环不满足判断框的条件;第四次【分析】根据给定的程序框图,计算逐次循环的结果,即可得到输出的值,得到答案. 【详解】由题意,运行程序框图,可得第一次循环,1n =,不满足判断框的条件,1415S =+⨯=; 第二次循环,2n =,不满足判断框的条件,54213S =+⨯=; 第三次循环,3n =,不满足判断框的条件,134325S =+⨯=; 第四次循环,4n =,不满足判断框的条件,254441S =+⨯=; 第五次循环,5n =,满足判断框的条件,输出41S =, 故答案为41. 【点睛】本题主要考查了循环结构的程序框图的计算与输出问题,其中利用循环结构表示算法,一定要先确定是用当型循环结构,还是用直到型循环结构;当型循环结构的特点是先判断再循环,直到型循环结构的特点是先执行一次循环体,再判断;注意输入框、处理框、判断框的功能,不可混用,着重考查了分析问题和解答问题的能力,属于基础题.18.【详解】试题分析:若输出的结果是5那么说明循环运行了4次因此判断框内的取值范围是考点:程序框图 解析:【详解】试题分析:若输出的结果是5,那么说明循环运行了4次,.因此判断框内的取值范围是.考点:程序框图.19.【分析】由平均数的公式求得再利用方差的计算公式求得即可求解【详解】由平均数的公式可得解得所以方差为所以样本的标准差为【点睛】本题主要考查了样本的平均数与方差标准差的计算着重考查了运算与求解能力属于基 221【分析】由平均数的公式,求得49a =,再利用方差的计算公式,求得2283s =,即可求解. 【详解】由平均数的公式,可得1(4042404344)436a +++++=,解得49a =, 所以方差为2222222128[(4043)(4243)(4043)(4943)(4343)(4443)]63s =-+-+-+-+-+-=,所以样本的标准差为s = 【点睛】本题主要考查了样本的平均数与方差、标准差的计算,着重考查了运算与求解能力,属于基础题.20.是不相等的正整数即可【解析】∵甲班人数为平均分为乙班人数为平均分为∴甲乙两班的数学平均分为∵∴当时∴该命题是假命题时应满足是不相等的正整数故答案为:是不相等的正整数解析:,a b 是不相等的正整数即可 【解析】∵甲班人数为m ,平均分为a ,乙班人数为()n n m ≠,平均分为b ∴甲、乙两班的数学平均分为ma nbm n++ ∵m n ≠∴当a b =时,2ma nb a bm n ++=+ ∴该命题是假命题时,应满足,a b 是不相等的正整数故答案为:,a b 是不相等的正整数三、解答题21.(1)2950(2)见解析(3)乘坐高铁,见解析 【分析】(1)根据分层抽样的特征可以得知,样本中出行的老年人、中年人、青年人人次分别为19,39,42,即可按照古典概型的概率计算公式计算得出;(2)依题意可知X 服从二项分布,先计算出随机选取1人次,此人为老年人概率是151755=,所以1~(2,)5X B ,即2211()()(1)55k kk P x k C -==-,即可求出X 的分布列和数学期望;(3)可以计算满意度均值来比较乘坐高铁还是飞机. 【详解】(1)设事件:“在样本中任取1个,这个出行人恰好不是青年人”为M , 由表可得:样本中出行的老年人、中年人、青年人人次分别为19,39,42, 所以在样本中任取1个,这个出行人恰好不是青年人的概率193929()10050P M +==;(2)由题意,X 的所有可能取值为:0,1,2,因为在2018年从A 市到B 市乘坐高铁的所有成年人中,随机选取1人次,此人 为老年人概率是151755=, 所以022116(0)(1)525P X C ==⨯-=, 12118(1)(1)5525P X C ==⨯⨯-=,22211(2)()525P X C ==⨯=,所以随机变量X 的分布列为:故()0122525255E X =⨯+⨯+⨯=; (3)从满意度的均值来分析问题如下: 由表可知,乘坐高铁的人满意度均值为:521012511011652121115⨯+⨯+⨯=++,乘坐飞机的人满意度均值为:410145702241475⨯+⨯+⨯=++,因为11622155>, 所以建议甲乘坐高铁从A 市到B 市. 【点睛】本题主要考查分层抽样的应用、古典概型的概率计算、以及离散型随机变量的分布列和期望的计算,解题关键是对题意的理解,概率模型的判断,属于中档题. 22.(1)40n =(2)25【分析】(1)根据分层抽样按比例抽取,列出方程,能求出n 的值;(2)35岁以下有4人,35岁以上(含35岁) 有1人.设将35岁以下的4人标记为1,2, 3, 4, 35岁以上(含35岁) 的1人记为a , 利用列举法能求出恰好有1人在35岁以上(含35岁) 的概率. 【详解】(1)根据分层抽样按比例抽取,得:61020204080101040n=++++++,解得40n =.(2)35岁以下:540450⨯=(人),35岁以上(含35岁):510150⨯=(人)设将35岁以下的4人标记为1,2,3,4,35岁以上(含35岁)的1人记为a,()()()()()()()()()(){}1,2,1,3, 1,4,1,,2,3,2,4,2,,3,4,3,,4,a a a aΩ=,共10个样本点.设A:恰好有1人在35岁以上(含35岁)()()()(){}1,,2,,3,,4,A a a a a=,有4个样本点,故()42105P A==.【点睛】本题考查概率的求法,分层抽样、古典概型、列举法等基础知识,考查运算求解能力,属于中档题.23.()()()()204848212812x xy xx x⎧≤≤⎪=≤≤⎨⎪-≤≤⎩;程序框图见解析;【解析】试题分析:根据题意可得到面积函数是一个分段函数,写出函数后,利用条件分支结构写出程序框图即可.试题由题意可得y=.程序框图如图:点睛:本题考查分段函数的算法写法,属于中档题,注意当分段函数为两段时,需要一个分支结构,如果分段函数三段时,需要两个分支结构才能完成,特别在写算法程序时,注意分支结构的连接,是与否的处理一定要细心.24.程序图见解析.【解析】【分析】求和程序设置一个计数变量,一个累加变量,根据结束条件设置成直到型或当型. 【详解】【点睛】本题考查循环结构,考查基本分析能力.25.(1) 2.51y x =-;(2)食堂购买36袋食,能获得最大利润,最大利润为11520元. 【分析】(1)本题首先可根据题中所给数据求出x 、y ,然后根据51522155i ii ii x y x yb xx==-⋅=-∑∑求出b ,最后根据a y bx =-求出a ,即可得出结果;(2)本题首先可根据 2.51y x =-得出预计需要购买食材36.5袋,然后分为36y <、36y ≥两种情况进行讨论,分别求出最大值后进行比较,即可得出结果.【详解】(1)由所给数据可得:1398101210.45x ++++==,3223182428255y ++++==, 515222151343510.425 2.5558510.45i ii i i x y x y b x x==-⋅-⨯⨯===-⨯-∑∑,25 2.510.41a y bx =-=-⨯=-, 故y 关于x 的线性回归方程为 2.51y x =-.(2)因为 2.51y x =-,所以当15x =时36.5y =,即预计需要购买食材36.5袋, 因为()()40020,036380,36y y x N C y y y N ⎧-<<∈⎪=⎨≥∈⎪⎩, 所以当36y <时,利润()7004002030020L y y y =--=+,此时当35y =时,max 300352010520L =⨯+=,当36y ≥时,由题意可知,剩余的食材只能无偿退还,此时当36y 时,700363803611520L =⨯-⨯=,当37y =时,利润70036.53803711490L =⨯-⨯=,综上所述,食堂应购买36袋食,才能获得最大利润,最大利润为11520元.【点睛】本题考查线性回归直线方程,考查回归方程的应用,考查学生的数据处理能力以及运算求解能力.考查分类讨论思想,属于中档题.26.(1)2.5;(2) 1.49.7y x =-+;(3)年产量约为3.5吨时,年利润z 取得最大值.【分析】(1)由均值概念求得c ;(2)根据所给数据计算系数即得;(3)利用(2)中回归直线方程作出预估值进行计算利润后,再由二次函数性质得最大值.【详解】(1)8764 5.55c y ++++==,解得 2.5c =; (2)1234535x ++++==, 5118275 2.568.5ii i x y ==⨯+⨯++⨯=∑, 1222222168.553 5.5 1.4(125)53n i ii n i i x y nx y b xnx ==--⨯⨯===-+++-⨯-∑∑,5.5(1.4)39.7a y bx =-=--⨯=,所以回归直线方程为 1.49.7y x =-+.(3)由(2)2(2)(1.49.7) 1.49.7z y x x x x x =-=-+=-+,所以9.7 3.52( 1.4)x =-≈⨯-(吨)利润最大. 【点睛】本题考查线性回归直线方程,考查回归方程的实际应用.考查学生的数据处理能力,运算求解能力.。

【人教版】高中数学必修三期末试卷带答案

【人教版】高中数学必修三期末试卷带答案

一、选择题1.已知点(,)P x y 满足||||2x y +≤,则到坐标原点O 的距离1d ≤的点P 的概率为( ) A .16π B .8π C .4π D .2π 2.如图的折线图是某公司2018年1月至12月份的收入与支出数据,若从6月至11月这6个月中任意选2个月的数据进行分析,则这2个月的利润(利润=收入﹣支出)都不高于40万的概率为( )A .15B .25C .35D .453.素数指整数在一个大于1的自然数中,除了1和此整数自身外,不能被其他自然数整除的数。

我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果。

哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如1037=+。

在不超过15的素数中,随机选取两个不同的数,其和小于18的概率是( ) A .15B .1115C .35D .134.赵爽是三国时期吴国的数学家,他创制了一幅“勾股圆方图”,也称“赵爽弦图”,如图,若在大正方形内随机取-点,这一点落在小正方形内的概率为15,则勾与股的比为( )A .13B .12C 3D .225.若执行如图所示的程序框图,则输出S 的值是( )A.63 B.15 C.31 D.32 6.执行如图的程序框图,若输入1t=-,则输出t的值等于( )A.3 B.5 C.7 D.15 7.执行如图所示的程序框图,若输入的6n=,则输出S=A.514B.13C.2756D.3108.执行如图所示的程序框图,输出的结果为()A .201921-B .201922-C .202022-D .202021- 9.某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:°C )的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(,)(1,2,,20)i i x y i =得到下面的散点图:由此散点图,在10°C 至40°C 之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是( ) A .y a bx =+ B .2y a bx =+ C .e x y a b =+D .ln y a b x =+10.某班有50名学生,在一次考试中统计出平均分数为70,方差为75,后来发现有2名学生的成绩统计有误,学生甲实际得分是80分却误记为60分,学生乙实际得分是70分却误记为90分,更正后的平均分数和方差分别是( ) A .70和50B .70和67C .75和50D .75和6711.以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x ,y 的值分别为( )A .2,5B .5,5C .5,8D .8,812.设有一个直线回归方程为2 1.5y x =-,则变量x 增加一个单位时( ) A .y 平均增加1.5个单位 B .y 平均增加2个单位 C .y 平均减少1.5个单位D .y 平均减少2个单位二、填空题13.在区间[2,4]-上随机地取一个实数x ,若实数x 满足||x m ≤的概率为23,则m =_______.14.现有编号为1,2,3,…,100的100把锁,利用中国剩余定理的原理设置开锁密码,规则为:将锁的编号依次除以3,5,7所得的三个余数作为该锁的开锁密码,这样,每把锁都有一个三位数字的开锁密码.例如,编号为52的锁所对应的开锁密码是123,开锁密码为232所对应的锁的编号是23.若一把锁的开锁密码为203,则这把锁的编号是__________.15.如图,在平放的边长为1的正方形中随机撒1000粒豆子,有380粒落到红心阴影部分上,据此估计红心阴影部分的面积为____.16.如果执行如图的程序框图,那么输出的S =__________.17.执行如图所示的程序框图,若1ln2a=,22be=,ln22c=(其中e是自然对数的底),则输出的结果是__________.18.一个算法的程序框图如图所示,则该程序运行后输出的结果是.19.某社会爱心组织面向全市征召义务宣传志愿者.现从符合条件的志愿者中随机抽取100名按年龄分组:第1组[20,25),第2组[25,30),第3组[30,35),第4组[35,40),第5组[40,45),得到的频率分布直方图如图所示.若从第3,4,5组中用分层抽样的方法抽取6名志愿者参与广场的宣传活动,应从第3组抽取__________名志愿者.20.已知一组数据126,,,x x x ⋅⋅⋅的方差是2,并且()()()22212611118x x x -+-+⋅⋅⋅+-=,0x ≠,则x =______.三、解答题21.某校从高三年级期末考试的学生中抽出60名学生,其成绩(均为整数)的频率分布直方图如图所示:(1)估计这次考试的及格率(60分及以上为及格)和平均分;(2)按分层抽样从成绩是80分以上(包括80分)的学生中选取6人,再从这6人中选取两人作为代表参加交流活动,求他们在不同分数段的概率.22.手机运动计步已经成为一种新时尚.某单位统计了职工一天行走步数(单位:百步),绘制出如下频率分布直方图:(1)求直方图中a 的值,并由频率分布直方图估计该单位职工一天步行数的中位数; (2)若该单位有职工200人,试估计职工一天行走步数不大于13000的人数; (3)在(2)的条件下,该单位从行走步数大于15000的3组职工中用分层抽样的方法选取6人参加远足拉练活动,再从6人中选取2人担任领队,求这两人均来自区间150,(170]的概率.23.某算法框图如图所示.(1)求函数()y f x =的解析式及7[()]6f f -的值;(2)若在区间[2,2]-内随机输入一个x 值,求输出y 的值小于0的概率.24.某城市规定,在法定工作时间内每小时的工资是8元,在法定工作时间外每小时的加班工资为16元,某人在一周内工作60小时,其中加班20小时.编写程序,计算这个人这一周所得的工资.25.某县畜牧技术员张三和李四9年来一直对该县山羊养殖业的规模进行跟踪调查,张三提供了该县某山羊养殖场年养殖数量y (单位:万只)与相应年份x (序号)的数据表和散点图(如图所示),根据散点图,发现y 与x 有较强的线性相关关系,李四提供了该县山羊养殖场的个数z (单位:个)关于x 的回归方程ˆ230z x =-+.年份序号x 1 2 3 4 5 6 7 8 9 年养殖山羊y /万只1.21.51.61.61.82.52.52.62.7y x (2)试估计:①该县第一年养殖山羊多少万只? ②到第几年,该县养殖山羊的数量与第1年相比减少了? 参考统计量:()92160ii x x =⋅-=∑,()()9112i i i x x y y =⋅--=∑.附:对于一组数据()11,u v ,()22,u v ,…,(),n n u v ,其回归直线v u βα=+的斜率和截距的最小二乘估计分别为()()()121ˆnii i ni i uu v v u u β==--=-∑∑,ˆˆv u αβ=-. 26.学校为了了解高三学生每天自主学习中国古典文学的时间,随机抽取了高三男生和女生各50名进行问卷调查,其中每天自主学习中国古典文学的时间超过3小时的学生称为“古文迷”,否则为“非古文迷”,调查结果如表:古文迷 非古文迷 合计 男生 26 24 50 女生 30 20 50 合计5644100(Ⅰ)根据表中数据能否判断有60%的把握认为“古文迷”与性别有关?(Ⅱ)现从调查的女生中按分层抽样的方法抽出5人进行调查,求所抽取的5人中“古文迷”和“非古文迷”的人数;(Ⅲ)现从(Ⅱ)中所抽取的5人中再随机抽取3人进行调查,记这3人中“古文迷”的人数为ξ,求随机变量ξ的分布列与数学期望.参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.参考数据:【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】作出图象,得到点P 的坐标围成的图形是以原点为中心的边长为O 的距离1d ≤的点P 围成的图形是以原点为圆心,半径为1的圆,由此利用几何概型能求出到坐标原点O 的距离1d ≤的点P 的概率. 【详解】点(),P x y 满足2x y +≤,∴当0x ≥,0y ≥时,2x y +≤;当0x ≥,0y ≤时,2x y -≤; 当0x ≤,0y ≥时,2x y -+≤; 当0x ≤,0y ≤时,2x y --≤. 作出图象,得到点P 的坐标围成的图形是以原点为中心的边长为2正方形,到坐标原点O 的距离1d ≤的点P 围成的图形是以原点为圆心,半径为1的圆,∴到坐标原点O 的距离1d ≤的点P 的概率为:282222S p S π===⨯圆正方形.故选:B . 【点睛】本题考查概率的求法,几何概型等基础知识,考查运算求解能力,是中档题.2.B解析:B 【分析】从7月至12月这6个月中任意选2个月的数据进行分析,基本事件总数2615n C ==,由折线图得6月至11月这6个月中利润(利润=收入-支出)低于40万的有6月,9月,10月,由此即可得到所求. 【详解】如图的折线图是某公司2017年1月至12月份的收入与支出数据, 从6月至11月这6个月中任意选2个月的数据进行分析,基本事件总数2615n C ==,由折线图得6月至11月这6个月中利润(利润=收入-支出)不高于40万的有6月,8月,9月,10月,∴这2个月的利润(利润=收入-支出)都不高于40万包含的基本事件个数246m C ==,∴这2个月的利润(利润=收入-支出)都低于40万的概率为62155m P n ===, 故选:B 【点睛】本题主要考查了古典概型,考查了运算求解能力,属于中档题.3.B解析:B 【分析】找出不超过15的素数,从其中任取2个共有多少种取法,找到取出的两个和小于18的个数,根据古典概型求解即可. 【详解】不超过15的素数为2,3,5,7,11,13,共6个,任取2个分别为2,3(),2,5(),2,7(),2,11(),2,13(),3,5(),3,7(),3,11(),3,13(),5,7(),5,11(),5,13(),7,11(),7,13(),11,13(),共15个基本事件,其中两个和小于18的共有11个基本事件,根据古典概型概率公式知1115P=. 【点睛】本题主要考查了古典概型,基本事件,属于中档题. 4.B解析:B【分析】 分别求解出小正方形和大正方形的面积,可知面积比为15,从而构造方程可求得结果. 【详解】由图形可知,小正方形边长为b a - ∴小正方形面积为:()2b a -,又大正方形面积为:2c()()2222222221115b a b a ab a b c a b a b b a --∴==-=-=+++,即:25a b b a ⎛⎫+= ⎪⎝⎭ 解得:12a b = 本题正确选项:B【点睛】本题考查几何概型中的面积型的应用,关键是能够利用概率构造出关于所求量的方程.5.C解析:C【分析】根据程序框图模拟程序计算即可求解.【详解】模拟程序的运行,可得1S =,1i =;满足条件5i <,执行循环体,3S =,2i =;满足条件5i <,执行循环体,7=S ,3i =;满足条件5i <,执行循环体,15S =,4i =;满足条件5i <,执行循环体,31S =,5i =;此时,不满足条件5i <,退出循环,输出S 的值为31.故选:C【点睛】本题主要考查了程序框图,循环结构,属于中档题.6.C【分析】直接根据程序框图依次计算得到答案.【详解】模拟执行程序,可得1t =-,不满足条件0t >,0t =,满足条件()()250t t +-<,不满足条件0t >,1t =,满足条件()()250t t +-<,满足条件0t >,3t =,满足条件()()250t t +-<,满足条件0t >,7t =,不满足条件()()250t t +-<,退出循环,输出t 的值为7.故选:C.【点睛】本题考查了程序框图,意在考查学生的计算能力和理解能力.7.B解析:B【解析】【分析】首先确定流程图所实现的功能,然后利用裂项求和的方法即可确定输出的数值.【详解】 由流程图可知,程序输出的值为:1111023344556S =++++⨯⨯⨯⨯, 即1111111123344556S ⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭111263=-=. 故选B .【点睛】本题主要考查流程图功能的识别,裂项求和的方法等知识,意在考查学生的转化能力和计算求解能力.8.C解析:C【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量2320192222S =+++⋯+的值,利用等比数列的求和公式即可计算得解.【详解】模拟程序的运行,可得该程序的功能是利用循环结构计算并输出变量2320192222S =+++⋯+的值,由于()2019232019202021222222212S -=+++⋯+==--.【点睛】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.9.D解析:D【分析】根据散点图的分布可选择合适的函数模型.【详解】由散点图分布可知,散点图分布在一个对数函数的图象附近,因此,最适合作为发芽率y 和温度x 的回归方程类型的是ln y a b x =+.故选:D.【点睛】本题考查函数模型的选择,主要观察散点图的分布,属于基础题.10.B解析:B【解析】【分析】根据平均数、方差的概念表示出更正前的平均数、方差和更正后的平均数、方差,比较其异同,然后整体代入即可求解.【详解】设更正前甲,乙,…的成绩依次为a 1,a 2,…,a 50,则a 1+a 2+…+a 50=50×70,即60+90+a 3+…+a 50=50×70,(a 1﹣70)2+(a 2﹣70)2+…+(a 50﹣70)2=50×75,即102+202+(a 3﹣70)2+…+(a 50﹣70)2=50×75. 更正后平均分为x =150×(80+70+a 3+…+a 50)=70; 方差为s 2=150×[(80﹣70)2+(70﹣70)2+(a 3﹣70)2+…+(a 50﹣70)2] =150×[100+(a 3﹣70)2+…+(a 50﹣70)2] =150×[100+50×75﹣102﹣202]=67. 故选B .【点睛】本题考查平均数与方差的概念与应用问题,是基础题.11.C解析:C【解析】试题分析:由题意得5x =,116.8(915101824)85y y =+++++⇒=,选C. 考点:茎叶图 12.C解析:C【解析】【分析】 细查题意,根据回归直线方程中x 的系数是 1.5-,得到变量x 增加一个单位时,函数值要平均增加 1.5-个单位,结合回归方程的知识,根据增加和减少的关系,即可得出本题的结论.【详解】因为回归直线方程是2 1.5ˆyx =-, 当变量x 增加一个单位时,函数值平均增加 1.5-个单位,即减少1.5个单位,故选C.【点睛】本题是一道关于回归方程的题目,掌握回归方程的分析时解题的关键,属于简单题目.二、填空题13.2【分析】画出数轴利用满足的概率可以求出的值即可【详解】如图所示区间的长度是6在区间上随机地取一个数若满足的概率为则有解得故答案是:2【点睛】该题考查的是有关长度型几何概型的问题涉及到的知识点有长度解析:2【分析】画出数轴,利用x 满足||x m ≤的概率,可以求出m 的值即可.【详解】如图所示,区间[2,4]-的长度是6,在区间[2,4]-上随机地取一个数x ,若x 满足||x m ≤的概率为23, 则有2263m =,解得2m =, 故答案是:2.【点睛】该题考查的是有关长度型几何概型的问题,涉及到的知识点有长度型几何概型的概率公式,属于简单题目.14.80【分析】本道题一一列举把满足条件的编号一一排除即可【详解】该数可以表示为故该数一定是5的倍数所以5的倍数有5101520253035404550556065707580859095100该数满足解析:80【分析】本道题一一列举,把满足条件的编号一一排除,即可.【详解】该数可以表示为32,5,73k m n ++,故该数一定是5的倍数,所以5的倍数有5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,该数满足减去3能够被7整除,只有10,45,80,而同时要满足减去2被3整除,所以只有80.【点睛】本道题考查了列举法计算锁编号问题,难度一般.15.38【解析】【分析】根据几何槪型的概率意义即可得到结论【详解】正方形的面积S =1设阴影部分的面积为S ∵随机撒1000粒豆子有380粒落到阴影部分∴由几何槪型的概率公式进行估计得即S =038故答案为:解析:38【解析】【分析】根据几何槪型的概率意义,即可得到结论.【详解】正方形的面积S =1,设阴影部分的面积为S ,∵随机撒1000粒豆子,有380粒落到阴影部分,∴由几何槪型的概率公式进行估计得38011000S =, 即S =0.38,故答案为:0.38.【点睛】本题主要考查几何槪型的概率的计算,利用豆子之间的关系建立比例关系是解决本题的关键,比较基础. 16.42【分析】输入由循环语句依次执行即可计算出结果【详解】当时当时当时当时当时当时故答案为42【点睛】本题主要考查了程序框图中的循环语句的运算求出输出值较为基础解析:42【分析】输入1k =,由循环语句,依次执行,即可计算出结果【详解】当1k =时,0212S =+⨯=当2k =时,021226S =+⨯+⨯=当3k =时,021222312S =+⨯+⨯+⨯=当4k =时,021********S =+⨯+⨯+⨯+⨯=当5k =时,0212223242530S =+⨯+⨯+⨯+⨯+⨯=当6k =时,021222324252642S =+⨯+⨯+⨯+⨯+⨯+⨯=故答案为42【点睛】本题主要考查了程序框图中的循环语句的运算,求出输出值,较为基础17.(注:填也得分)【解析】分析:执行如图所示的程序框图可知该程序的功能是输出三个数的大小之中位于中间的数的数值再根据指数函数与对数函数的性质得到即可得到输出结果详解:由题意执行如图所示的程序框图可知该 解析:ln 22(注:填c 也得分). 【解析】 分析:执行如图所示的程序框图可知,该程序的功能是输出,,a b c 三个数的大小之中,位于中间的数的数值,再根据指数函数与对数函数的性质,得到b c a <<,即可得到输出结果.详解:由题意,执行如图所示的程序框图可知,该程序的功能是输出,,a b c 三个数的大小之中,位于中间的数的数值, 因为212ln 2,,ln 22a b c e ===,则221ln 21132ln 2e <<<<,即b c a <<, 所以此时输出ln 22c =. 点睛:识别算法框图和完善算法框图是近年高考的重点和热点.解决这类问题:首先,要明确算法框图中的顺序结构、条件结构和循环结构;第二,要识别运行算法框图,理解框图解决的问题;第三,按照框图的要求一步一步进行循环,直到跳出循环体输出结果,完成解答.近年框图问题考查很活,常把框图的考查与函数和数列等知识考查相结合.18.4【分析】执行程序当时循环结束即可得出【详解】因为第一次进入循环后;第二次进入循环后;第三次进入循环后;第四次进入循环后循环结束所以输出的结果为4【点睛】本题主要考查了程序框图求输出的值做题时要仔细解析:4【分析】执行程序,当4K =时循环结束,即可得出【详解】因为第一次进入循环后1,1S K ==;第二次进入循环后3,2S K ==;第三次进入循环后11,3S K ==;第四次进入循环后2059,4S K ==,循环结束,所以输出的结果为4【点睛】本题主要考查了程序框图求输出的值,做题时要仔细点,属于基础题.19.【分析】先分别求出这3组的人数再利用分层抽样的方法即可得出答案【详解】第3组的人数为第4组的人数为第5组的人数为所以这三组共有60名志愿者所以利用分层抽样的方法在60名志愿者中抽取6名志愿者第三组应解析:3【分析】先分别求出这3组的人数,再利用分层抽样的方法即可得出答案.【详解】第3组的人数为10050.0630⨯⨯=,第4组的人数为10050.0420⨯⨯=,第5组的人数为1000.02510⨯⨯=,所以这三组共有60名志愿者,所以利用分层抽样的方法在60名志愿者中抽取6名志愿者,第三组应抽取306360⨯=名, 故答案为:3.【点睛】关键点点睛:该题考查的是有关频率分布直方图的识别以及分层抽样某层抽取个数的问题,正确解题的关键是掌握在抽取过程中每个个题被抽到的机会均等. 20.2【解析】【分析】由题意结合方差的定义整理计算即可求得最终结果【详解】由题意结合方差的定义有:①而②①-②有:③注意到将其代入③式整理可得:又故故答案为2【点睛】本题主要考查方差的计算公式整体的数学解析:2【解析】【分析】由题意结合方差的定义整理计算即可求得最终结果.【详解】由题意结合方差的定义有:()()()22212612x x x x x x -+-++-= ①, 而()()()22212611118x x x -+-+⋅⋅⋅+-=, ②,①-②有:()()212612666226x x x x x x x x --+++++++=-, ③,注意到1266x x x x +++=,将其代入③式整理可得:26120x x -+=, 又0x ≠,故2x =.故答案为2.【点睛】本题主要考查方差的计算公式,整体的数学思想等知识,意在考查学生的转化能力和计算求解能力.三、解答题21.(1)及格率是80%;平均分是72分(2)13【分析】(1)由频率分布直方图直接可计算得及格率以及平均分;(2)按分层抽样知[80,90)5人A ,B ,C ,D ,E ,[90,100]”1人F ,写出基本事件,事件“不同分数段”所包含的基本事件数5种,利用古典概型即可得到结论.【详解】(1)依题意,60及以上的分数所在的第三、四、五、六组,频率和为(0.0200.0300.0250.005)100.80+++⨯=,所以抽样学生成绩的合格率是80%.-利用组中值估算抽样学生的平均分:123456455565758595f f f f f f ⋅+⋅+⋅+⋅+⋅+⋅450.05550.15650.2750.3850.25950.05=⨯+⨯+⨯+⨯+⨯+⨯72=.估计这次考试的平均分是72分(2)按分层抽样抽取[80,90)5人A ,B ,C ,D ,E ,[90,100]”1人F .,则基本事件(A ,B ),(A ,C ),(A ,D ),(A ,E ),(A ,F ),(B ,C ),(B ,D ),(B ,E ),(B ,F ),(C ,D ),(C ,E ),(C ,F ),(D ,E ),(D ,F ),(E ,F ),共15种,事件“不同分数段”所包含的基本事件数5种, 故所求概率为:51153p ==. 【点睛】本题考查利用频率分布直方图求平均数,考查分层抽样的定义,古典概型,属于基础题. 22.(1)0.012a =,125;(2)112人;(3)25 【分析】(1)根据频率分布直方图中矩形的面积和为1求出0.012a =,再求中位数得解;(2)直接利用频率分布直方图估计职工一天行走步数不大于13000的人数;(3)先求出在区间(]150,170中有32人,在区间(]170,190中有8人,在区间(]190,210中有8人,再利用古典概型的概率公式求出这两人均来自区间150,(170]的概率.【详解】(1)由题意得0.002200.006200.00820200.010200.008200.002200.002201a ⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯=解得0.012a = .设中位数为110x +,则0.002200.006200.008200.0120.5x ⨯+⨯+⨯+=解得15x = .∴中位数是125.(2)由()2000.002200.006200.008200.01220112⨯⨯+⨯+⨯+⨯=∴估计职工一天步行数不大于13000步的人数为112人(3)在区间(]150,170中有2000.0082032⨯⨯=人在区间(]170,190中有2000.002208⨯⨯=人在区间(]190,210中有2000.002208⨯⨯=人按分层抽样抽取6人,则从(]150,170抽取4人,(]170,190抽取1人,(]190,210抽取1人设从(]150,170抽取职工为1A ,2A ,3A ,4A ,从(]170,190抽取职工为B ,从(]190,210抽取职工为C ,则从6人中抽取2人的情况有12A A ,13A A ,41A A ,1A B ,1A C ,23A A ,24A A ,2A B ,2A C ,34A A ,3A B ,3A C ,4A B ,4A C ,BC 共15种情况,它们是等可能的,其中满足两人均来自区间(]150,170的有12A A ,13A A ,41A A ,23A A ,24A A ,34A A 共有6种情况, ∴62155P == ∴两人均来自区间(]150,170的概率为25. 【点睛】本题主要考查频率分布直方图的应用,考查频率分布直方图中中位数的计算,考查古典概型的概率的计算,意在考查学生对这些知识的理解掌握水平和分析推理能力》23.(1)24;(2)14 【分析】 (1)从程序框图可提炼出分段函数的函数表达式,从而计算得到76f f ⎡⎤⎛⎫- ⎪⎢⎥⎝⎭⎣⎦的值; (2)此题为几何概型,分类讨论得到满足条件下的函数x 值,从而求得结果.【详解】(1)由算法框图得:当0x >时,2πcos 2x y =,当0x =时,0y =,当0x <时,1y x =--,()2πcos ,020,01,0x xy f xx x x ⎧>⎪⎪∴===⎨⎪--<⎪⎩7711666f ⎛⎫⎛⎫-=---= ⎪ ⎪⎝⎭⎝⎭,2π1cos 71π236cos 66122f f f +⎡⎤+⎛⎫⎛⎫∴-==== ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ (2)当02x ≤≤时,()[]0,1f x ∈,当20x -≤<时,由0y <得10x -<< 故所求概率为()()011224P --==-- 【点睛】本题主要考查分段函数的应用,算法框图的理解,意在考查学生分析问题的能力. 24.见解析;【解析】试题分析: 先利用INPUT 语句输入法定工作时间以及加班工作时间,再分别赋值法定工作时间工资,加班工作时间工资以及总工资,最后输出一周所得的工资.试题程序如下:点睛:25.(1)ˆ0.21yx =+;(2)①33.6万只;②到第10年该县养殖山羊的数量相比第1年减少了.【分析】(1)由已知求得,x y ,进一步套公式求出ˆb 和ˆa 的值,就求出线性回归方程; (2)由题意求得()()2ˆˆ0.212300.4430z y x x x x ⋅=+⋅-+=-++, 在①中,令x =1求解,在②中,令20.443033.6x x -++<,解不等式即可.【详解】解:(1)设y 关于x 的线性回归方程为y bx a =+,12345678959x ++++++++==, 1.2 1.5 1.6 1.6 1.8 2.5 2.5 2.6 2.729y ++++++++==, ()()()9192112ˆ0.260i ii i i x x y y b x x ==--===-∑∑, ˆ20.251a=-⨯=. 所以y 关于x 的线性回归方程为ˆ0.21yx =+. (2)估计第x 年山羊养殖的只数为()()2ˆˆ0.212300.4430z y x x x x ⋅=+⋅-+=-++ 令1x =,则0.443033.6-++=,故该县第一年养殖山羊约33.6万只.由题意,得20.443033.6x x -++<,整理得()()910x x -->,解得9x >或1x <(舍去),所以到第10年该县养殖山羊的数量相比第1年减少了.【点睛】方法点睛:求线性回归方程的步骤:(1)先求 x 、y 的平均数,x y ;(2)套公式求出ˆb和ˆa 的值:()()()91921ˆi i i i i x x y y b x x ==--=-∑∑,ˆa y b x =-⨯; (3)写出回归直线的方程.26.(I )没有的把握认为“古文迷”与性别有关;(II )“古文迷”的人数为3,“非古文迷”有2;(III )分布列见解析,期望为95. 【详解】(I)由列联表得所以没有的把握认为“古文迷”与性别有关.(II)调查的50名女生中“古文迷”有30人,“非古文迷”有20人,按分层抽样的方法抽出5人,则“古文迷”的人数为人,“非古文迷”有人.即抽取的5人中“古文迷”和“非古文迷”的人数分别为3人和2人(III)因为为所抽取的3人中“古文迷”的人数,所以的所有取值为1,2,3.,,.所以随机变量ξ的分布列为123于是.。

高中数学必修三期末试题(附答案)

高中数学必修三期末试题(附答案)

一、选择题1.第24届国际数学大会会标是以我国古代数学家赵爽的弦图为基础进行设计的.如图,会标是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形的一个锐角为θ,且πsin 2sin 52θθ⎛⎫++= ⎪⎝⎭.若在大正方形内随机取一点,则该点取自小正方形区域的概率为( ).A .14B .15C .25D .352.从单词“book ”的四个字母中任取2个,则取到的2个字母不相同的概率为( ) A .13B .12C .23D .343.算盘是中国传统的计算工具,其形长方,周为木框,内贯直柱,俗称“档”,档中横以梁,梁上两珠,每珠作数五,梁下五珠,每珠作数一.算珠梁上部分叫上珠,梁下部分叫下珠.例如:在十位档拨上一颗上珠和一颗下珠,个位档拨上一颗上珠,则表示数字65.若在个、十、百位档中随机选择一档拨一颗上珠,再随机选择两个档位各拨一颗下珠,则所拨数字为奇数的概率为( )A .13B .49C .59D .234.设向量()()1,,a x y x y R =-∈,若1a ≤,则y x ≥的概率为( ) A .14B .1142π- C .114π-D .3142π+ 5.执行如图所示的程序框图,结果是( )A.11 B.12 C.13 D.14 6.下列赋值语句正确的是 ()A.S=S+i2B.A=-AC.x=2x+1 D.P=7.执行如图所示的程序框图,若输出的结果为48,则输入k的值可以为A.6B.10C.8D.4) 8.执行如图所示程序框图,当输入的x为2019时,输出的y(A .28B .10C .4D .29.某农业科学研究所分别抽取了试验田中的海水稻以及对照田中的普通水稻各10株,测量了它们的根系深度(单位:cm ),得到了如图所示的茎叶图,其中两竖线之间表示根系深度的十位数,两边分别是海水稻和普通水稻根系深度的个位数,则下列结论中不正确的是( )A .海水稻根系深度的中位数是45.5B .普通水稻根系深度的众数是32C .海水稻根系深度的平均数大于普通水稻根系深度的平均数D .普通水稻根系深度的方差小于海水稻根系深度的方差10.已知变量,x y 之间的线性回归方程为0.47.6=-+y x ,且变量,x y 之间的一组相关数据如表所示,则下列说法错误的是( )A .变量,x y 之间呈现负相关关系B .m 的值等于5C .变量,x y 之间的相关系数0.4=-rD .由表格数据知,该回归直线必过点()9,411.PM2.5是指空气中直径小于或等于2.5微米的颗粒物(也称可入肺颗粒物),为了探究车流量与PM2.5的浓度是否相关,现采集到某城市周一至周五某时间段车流量与PM2.5浓度的数据如下表:根据上表数据,用最小二乘法求出y 与x 的线性回归方程是( )参考公式:121()()()niii ni i x x y y b x x ==--=-∑∑,a y b x =-⋅;参考数据:108x =,84y =;A .0.6274ˆ.2yx =+ B .0.7264ˆ.2y x =+ C .0.7164ˆ.1y x =+ D .0.6264ˆ.2y x =+ 12.有一个同学家开了一个小卖部,他为了研究气温对热饮销售的影响,经统计,得到一个卖出的热饮杯数与当天气温的对比表:根据上表数据确定的线性回归方程应该是( )A .ˆ 2.352147.767yx =-+ B .ˆ 2.352127.765yx =-+ C .ˆ 2.35275.501yx =+D .ˆ 2.35263.674yx =+ 二、填空题13.甲、乙两人进行象棋比赛,采取五局三胜制(不考虑平局,先赢得三场的人为获胜者,比赛结束).根据前期的统计分析,得到甲在和乙的第一场比赛中,取胜的概率为0.5,受心理方面的影响,前一场比赛结果会对甲的下一场比赛产生影响,如果甲在某一场比赛中取胜,则下一场取胜率提高0.1,反之,降低0.1,则甲以3:1取得胜利的概率为______________.14.如图所示,分别以,,A B C 为圆心,在ABC 内作半径为2的三个扇形,在ABC内任取一点P ,如果点P 落在这三个扇形内的概率为13,那么图中阴影部分的面积是____________.15.从1,2,3,4中任取两个不同的数,则取出的2个数之差的绝对值小于或等于2的概率为__________.16.执行如图所示的程序框图,输出S 的值为___________.17.用秦九韶算法求多项式()5432357911f x x x x x x =+-+-+当4x =时的值为____________.18.如图是一个算法的流程图,则输出的a 的值是___________.19.为了了解2100名学生早晨到校时间,计划采用系统抽样的方法从全体学生中抽取容量为100栋样本,则分段间隔为__________.20.已知一组数据:5.7,5.8,6.1,6.4,6.5,则该数据的方差是__________.三、解答题21.从广安市某中学校的800名男生中随机抽取50名测量身高,被测学生身高全部介于155cm 和195cm 之间,将测量结果按如下方式分成八组:第一组[)155160,,第二组[)160165,,...,第八组[)190,195,如图是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组人数相同,第六组的人数为4人.(1)求第七组的频率;(2)估计该校800名男生的身高的中位数。

【人教版】高中数学必修三期末试题(含答案)

【人教版】高中数学必修三期末试题(含答案)

一、选择题1.盒中有形状、大小都相同的2个红色球和3个黄色球,从中取出一个球,观察颜色后放回并往盒中加入同色球4个,再从盒中取出一个球,则此时取出黄色球的概率为( ) A .35B .79C .715D .31452.在《九章算术》中,将四个面都为直角三角形的三棱锥称为“鳖臑”.那么从长方体八个顶点中任取四个顶点,则这四个顶点组成的几何体是“鳖臑”的概率为( ) A .435B .635C .1235D .18353.如图,一个边长为2的正方形里有一个月牙形的图案,为了估算这个月牙形图案的面积,向这个正方形里随机投入500粒芝麻,经过统计,落在月牙形图案内的芝麻有150粒,则这个月牙图案的面积约为( )A .35B .45C .1D .654.某比赛为甲、乙两名运动员制订下列发球规则:规则一:投掷一枚硬币,出现正面向上,甲发球,否则乙发球;规则二:从装有2个红球与2个黑球的布袋中随机地取出2个球,如果同色,甲发球,否则乙发球;规则三:从装有3个红球与1个黑球的布袋中随机地取出2个球,如果同色,甲发球,否则乙发球. 其中对甲、乙公平的规则是( ) A .规则一和规则二B .规则一和规则三C .规则二和规则三D .规则二5.正整数N 除以正整数m 后的余数为n ,记为()N n MODm ≡,例如()2516MOD ≡.如图所示程序框图的算法源于“中国剩余定理”,若执行该程序框图,当输入49N =时,则输出结果是( )A.58 B.61 C.66 D.766.若执行如图所示的程序框图,输出S的值为511,则输入n的值是()A.7B.6C.5D.4 7.执行如图所示的程序框图,若输人的n值为2019,则S=A .B .C .D .8.执行如图所示的程序框图,若输入的6n =,则输出S =A .514B .13C .2756D .3109.若一组数据12345,,,,x x x x x 的平均数为5,方差为2,则12323,23,23x x x ---,4523,23x x --的平均数和方差分别为( )A .7,-1B .7,1C .7,2D .7,810.在一次53.5公里的自行车个人赛中,25名参赛选手的成绩(单位:分钟)的茎叶图如图所示,现将参赛选手按成绩由好到差编为125-号,再用系统抽样方法从中选取5人,已知选手甲的成绩为85分钟,若甲被选取,则被选取的其余4名选手的成绩的平均数为()A .95B .96C .97D .9811.下列说法正确的是( )①设某大学的女生体重(kg)y 与身高(cm)x 具有线性相关关系,根据一组样本数据(,)(1,2,3,,)i i x y i n =,用最小二乘法建立的线性回归方程为0.8585.71y x =- ,则若该大学某女生身高增加1cm ,则其体重约增加0.85kg ;②关于x 的方程210(2)x mx m -+=>的两根可分别作为椭圆和双曲线的离心率; ③过定圆C 上一定点A 作圆的动弦AB ,O 为原点,若1()2OP OA OB =+,则动点P 的轨迹为椭圆;④已知F 是椭圆22143x y +=的左焦点,设动点P 在椭圆上,若直线FP 的斜率大于3,则直线OP (O 为原点)的斜率的取值范围是3333(,)(,)282-∞-. A .①②③B .①③④C .①②④D .②③④12.某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响.对近8年的年宣传费i x 和年销售量()1,2,...8i y i =数据作了初步处理,得到下面的散点图及一些统计量的值.有下列5个曲线类型:①ˆˆy bxa =+;②y c x d =+;③ln y p q x =+;④21k xy k e =+;⑤212y c x c =+,则较适宜作为年销售量y 关于年宣传费x 的回归方程的是( ) A .①②B .②③C .②④D .③⑤二、填空题13.如图,在圆心角为23π,半径为2的扇形AOB 中任取一点P ,则2OA OP ⋅≤的概率为________.14.在区间[-1,2]上随机取一个数x,则x ∈[0,1]的概率为 .15.从1,2,3,4中任取两个不同的数,则取出的2个数之差的绝对值小于或等于2的概率为__________.16.根据下列算法语句,当输入x 为60时,输出y 的值为_______.17.更相减损术是出自《九章算术》的一种算法.如图所示的程序框图是根据更相减损术写出的,若输入91a =,39b =, 则输出的值为______.18.阅读如图所示的流程图,运行相应的程序,则输出n 的值为______.19.已知一组数据为2,3,4,5,6,则这组数据的方差为______.20.某校高一年级10个班级参加国庆歌咏比赛的得分(单位:分)如茎叶图所示,若这10个班级的得分的平均数是90,则19a b+的最小值为__________.三、解答题21.空气质量指数(Air Quality Index,简称AQI)是定量描述空气质量状况的指数,空气质量按照AOI大小分为六级.某地区一监测站记录自2019年9月起连续n天空气质量状况,得如下频数统计表及频率分布直方图.空气质量指数(AOI)(0,50](50,100](100,150](150,200](200,250](250,)空气质量等级优良轻度污染中度污染重度污染严重污染频数(天)2540m1050(Ⅰ)求m,n的值,并完成频率分布直方图;(Ⅱ)由频率分布直方图,求该组数据的平均数与中位数;(Ⅲ)在空气质量指数分别为(50,100]和(100,150]的监测数据中,用分层抽样的方法抽取6天,再从中任意选取2天,求事件“两天空气质量等级不同”发生的概率.22.班级新年晚会设置抽奖环节.不透明纸箱中有大小相同的红球3个,黄球2个,且这5个球外别标有数字1、2、3、4、5.有如下两种方案可供选择:方案一:一次性...抽取两球,若颜色相同,则获得奖品;方案二:依次有放回...地抽取两球,若数字之和大于5,则获得奖品.(1)写出按方案一抽奖的试验的所有基本事件;(2)哪种方案获得奖品的可能性更大?23.如图,在边长为4的正方形ABCD的边上有一点P,沿着折线BCDA由点B(起点)向点A(终点)运动.设点P运动的路程为x,APB△的面积为y,求y与x之间的函数关系式,并画出程序框图.24.下面程序的功能是输出1~100之间的所有偶数.程序:i=1 DO m=iMOD2 IF ①THEN PRINTi ENDIF ②LOOPUNTILi>100 END(1)试将上面的程序补充完整; (2)改写为WHILE 型循环结构程序.25.某市政府针对全市10所由市财政投资建设的企业进行了满意度测评,得到数据如下表: 企业abcdefghij满意度x (%) 21 33 24 20 25 21 24 23 25 12 投资额y (万元)79868978767265625944y x (2)约定:投资额y 关于满意度x 的相关系数r 的绝对值在0.7以上(含0.7)是线性相关性较强,否则,线性相关性较弱.如果没有达到较强线性相关,则根据满意度“末位淘汰”规定,关闭满意度最低的那一所企业,求关闭此企业后投资额y 关于满意度x 的线性回归方程(精确到0.1).参考数据:22.8x =,71y =,1022110248i i x x =-≈∑,10102222111010643.7i i i i x x y y ==⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭∑∑,10110406i i i x y x y =-=∑,222851984=,2287116188⨯=.附:对于一组数据()11,x y ,()22,x y ,…,(),n n x y ,其回归直线ˆˆˆybx a =+的斜率和截距的最小二乘估计公式分别为:1221ˆni ii nii x ynx y bxnx==-=-∑∑,ˆˆay bx =-.线性相关系数ni ix y nx yr -=∑.26.某大学为了了解数学专业研究生招生的情况,对近五年的报考人数进行了统计,得到如下统计数据:(1)经分析,y 与x 存在显著的线性相关性,求y 关于x 的线性回归方程ˆˆˆybx a =+并预测2020年(按6x =计算)的报考人数;(2)每年报考该专业研究生的考试成绩大致符合正态分布()2,Nμσ,根据往年统计数据385μ=,2225σ=,录取方案:总分在400分以上的直接录取,总分在[]385,400之间的进入面试环节,录取其中的80%,低于385分的不予录取,请预测2020年该专业录取的大约人数(最后结果四舍五入,保留整数).参考公式和数据:()()()121ˆniii ni i x x y y bx x ==--=-∑∑,ˆˆay bx =-,()()51360i i i x x y y =--=∑. 若随机变量()2~,X Nμσ,则()0.6826P X μσμσ-<<+=,()220.9544P X μσμσ-<<+=,()330.9974P X μσμσ-<<+=.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】若取出的是红色球,再从盒中取出一个球,则此时取出黄色球的概率为:13925P =⨯,若取出的是黄色球,再从盒中取出一个球,则此时取出黄色球的概率为:23759P =⨯,由此能求出再从盒中取出一个球,则此时取出黄色球的概率. 【详解】盒中有形状、大小都相同的2个红色球和3个黄色球, 从中取出一个球,观察颜色后放回并往盒中加入同色球4个, 若取出的是红色球,再从盒中取出一个球,则此时取出黄色球的概率为:13295152P =⨯=, 若取出的是黄色球,再从盒中取出一个球,则此时取出黄色球的概率为:23775915P =⨯=, ∴再从盒中取出一个球,则此时取出黄色球的概率为:1221573155P P P =+=+=, 故选:A . 【点睛】本题考查概率的求法,考查相互独立事件概率乘法公式、互斥事件概率计算公式等基础知识,考查运算求解能力,属于中档题.2.C解析:C 【分析】本题是一个等可能事件的概率,从正方体中任选四个顶点的选法是48C ,四个面都是直角三角形的三棱锥有4×6个,根据古典概型的概率公式进行求解即可求得. 【详解】由题意知本题是一个等可能事件的概率,从长方体中任选四个顶点的选法是4870C =,以A 为顶点的四个面都是直角三角形的三棱锥有:111111111111,,,,,A A D C A A B C A BB C A BCC A DCC DD C A ------共6个.同理以1111,,,,,,B C D A B C D 为顶点的也各有6个, 但是,所有列举的三棱锥均出现2次,∴四个面都是直角三角形的三棱锥有186242⨯⨯=个, ∴所求的概率是24127035=故选:C . 【点睛】本题主要考查了古典概型问题,解题关键是掌握将问题转化为从正方体中任选四个顶点问题,考查了分析能力和计算能力,属于中档题.3.D解析:D 【分析】利用与面积有关的几何概型概率计算公式求解即可. 【详解】由题可知,正方形的面积为=22=4S ⨯正,设这个月牙图案的面积为S , 由与面积有关的几何概型概率计算公式可得,向这个正方形里随机投入芝麻,落在月牙形图案内的概率为150=4500S S P S ==正,解得65S =. 故选:D 【点睛】本题考查与面积有关的几何概型概率计算公式;属于基础题、常考题型.4.B解析:B 【分析】计算出三种规则下甲发球和乙发球的概率,当两人发球的概率均为12时,该规则对甲、乙公平,由此可得出正确选项. 【详解】对于规则一,每人发球的机率都是12,是公平的; 对于规则二,记2个红球分别为红1,红2,2个黑球分别为黑1、黑2,则随机取出2个球的所有可能的情况有(红1,红2),(红1,黑1),(红1,黑2),(红2,黑1),(红2,黑2),(黑1,黑2),共6种,其中同色的情况有2种, 所以甲发球的可能性为13,不公平; 对于规则三,记3个红球分别为红1、红2、红3,则随机取出2个球所有可能的情况有(红1,红2),(红1,红3),(红1,黑),(红2,红3),(红2,黑),(红3,黑),共6种,其中同色的情况有3种,所以两人发球的可能性均为12,是公平的. 因此,对甲、乙公平的规则是规则一和规则三. 故选B. 【点睛】本题考查利用规则的公平性问题,同时也考查了利用古典概型的概率公式计算事件的概率,正确理解题意是解题的关键,考查计算能力,属于中等题.5.B解析:B 【分析】该程序框图的作用是求被3和5除后的余数为1的数,根据所给的选项,得出结论. 【详解】模拟程序的运行,可得49N =,50N =, 不满足条件()13N MOD ≡,51N =; 不满足条件()13N MOD ≡,52N =;满足条件()13N MOD ≡,不满足条件()15N MOD ≡,53N =;不满足条件()13N MOD ≡,54N =;不满足条件()13N MOD ≡,55N =; 满足条件()13N MOD ≡,不满足条件()15N MOD ≡,56N =;不满足条件()13N MOD ≡,57N =;不满足条件()13N MOD ≡,58N =; 满足条件()13N MOD ≡,不满足条件()15N MOD ≡,59N =;不满足条件()13N MOD ≡,60N =;不满足条件()13N MOD ≡,61N =; 满足条件()13N MOD ≡,满足条件()15N MOD ≡,输出61N =. 故选:B. 【点睛】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答,属于基础题.6.C解析:C 【分析】将所有的算法循环步骤列举出来,得出5i =不满足条件,6i =满足条件,可得出n 的取值范围,从而可得出正确的选项. 【详解】110133S =+=⨯,112i =+=; 2i n =>不满足,执行第二次循环,1123355S =+=⨯,213i =+=; 3i n =>不满足,执行第三次循环,2135577S =+=⨯,314i =+=; 4i n =>不满足,执行第四次循环,3147799S =+=⨯,415i =+=; 5i n =>不满足,执行第五次循环,415991111S =+=⨯,516i =+=;6i n=>满足,跳出循环体,输出S的值为511,所以,n的取值范围是56n≤<.因此,输入的n的值为5,故选C.【点睛】本题考查循环结构框图的条件的求法,解题时要将算法的每一步列举出来,结合算法循环求出输入值的取值范围,考查分析问题和推理能力,属于中等题.7.B解析:B【分析】根据程序框图可知,当时结束计算,此时 .【详解】计算过程如下表所示:周期为6n2019k12 (20182019)S…k<n是是是是否【点睛】本题考查程序框图,选用表格计算更加直观,此题关键在于判断何时循环结束.8.B解析:B【解析】【分析】首先确定流程图所实现的功能,然后利用裂项求和的方法即可确定输出的数值.【详解】由流程图可知,程序输出的值为:1111 023344556S=++++⨯⨯⨯⨯,即1111111123344556S⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭111263=-=.故选B.【点睛】本题主要考查流程图功能的识别,裂项求和的方法等知识,意在考查学生的转化能力和计算求解能力.9.D解析:D【分析】根据平均数的性质,方差的性质直接运算可得结果. 【详解】令23(1,2,,5)i i y x i =-=1234555x x x x x x ++++==,1234523232323232310375x x x x x y x -+-+-+-+-∴==-=-=,(也可()(23)2()32537E y E x E x =-=-=⨯-=)()()()2y 232428D D x D x =-==⨯=故选:D 【点睛】本题主要考查方差及平均值的性质的简单应用,属于中档题.10.C解析:C 【分析】结合系统抽样法的方法,得出其他四名选手的成绩,然后计算平均数,即可. 【详解】结合系统抽样法,可知间隔5个人抽取一次,甲为85,则其他人分别是88,94,99,107,故平均数为88+94+99+107=974,故选C.【点睛】考查了系统抽样法,关键该抽取方法每间隔相同人数中抽取一人,计算平均数,即可,难度中等.11.C解析:C 【分析】利用线性回归方程系数的几何意义,圆锥曲线离心率的范围,椭圆的性质,逐一判断即可. 【详解】①设某大学的女生体重y (kg )与身高x (cm )具有线性相关关系,根据一组样本数据(x i ,y i )(i =1,2,…,n ),用最小二乘法建立的线性回归方程为y ∧=0.85x ﹣85.71,则若该大学某女生身高增加1cm ,则其体重约增加0.85kg ,正确;②关于x 的方程x 2﹣mx +1=0(m >2)的两根之和大于2,两根之积等于1,故两根中,一根大于1,一根大于0小于1,故可分别作为椭圆和双曲线的离心率.正确; ③设定圆C 的方程为(x ﹣a )2+(x ﹣b )2=r 2,其上定点A (x 0,y 0),设B (a +r cosθ,b +r sinθ),P (x ,y ),由12OP =(OA OB +)得0022x a rcos x y b rsin y θθ++⎧=⎪⎪⎨++⎪=⎪⎩,消掉参数θ,得:(2x ﹣x 0﹣a )2+(2y﹣y 0﹣b )2=r 2,即动点P 的轨迹为圆, ∴故③不正确;④由22143x y +=,得a 2=4,b 2=3,∴1c ==.则F (﹣1,0),如图:过F 作垂直于x 轴的直线,交椭圆于A (x 轴上方),则x A =﹣1,代入椭圆方程可得32A y =. 当P 为椭圆上顶点时,P (0FP k =32OA k =-, ∴当直线FP时,直线OP 的斜率的取值范围是32⎛⎫-∞- ⎪⎝⎭,. 当P 为椭圆下顶点时,P (0,∴当直线FP时,直线OP,32), 综上,直线OP (O 为原点)的斜率的取值范围是32⎛⎫-∞- ⎪⎝⎭,∪(8,32). 故选C 【点睛】本题以命题真假的判断为载体,着重考查了相关系数、离心率、椭圆简单的几何性质等知识点,属于中档题.12.B解析:B 【解析】分析:先根据散点图确定函数趋势,再结合五个选择项函数图像,进行判断选择. 详解:从散点图知,样本点分布在开口向右的抛物线(上支)附近或对数曲线(上部分)的附近,所以y=d 或y =p +q ln x 较适宜,故选B . 点睛:本题考查散点图以及函数图像,考查识别能力.二、填空题13.【分析】根据题意建立坐标系求出圆心角扇形区域的面积进而设由数量积的计算公式可得满足的区域求出其面积代入几何概率的计算公式即可求解【详解】根据题意建立如图的坐标系则则扇形的面积为设若则有即;则满足的区解析:128π+【分析】根据题意,建立坐标系,求出圆心角扇形区域的面积,进而设(),P x y ,由数量积的计算公式可得满足2OA OP ⋅≤的区域,求出其面积,代入几何概率的计算公式即可求解. 【详解】根据题意,建立如图的坐标系,则()(2,0,3A B - 则扇形AOB 的面积为21242233ππ⨯⨯= 设(),P x y若2OA OP ⋅≤,则有22x ≤,即1x ≤; 则满足2OA OP ⋅≤的区域为如图的阴影区域,直线1x =与弧AB 的交点为P ',易得P '的坐标为(3, 则阴影区域的面积为2332π+故2OA OP ⋅≤的概率2313332423P ππ==+故答案为:1332+【点睛】本题考查几何概型,涉及数量积的计算,属于综合题.14.【分析】直接利用长度型几何概型求解即可【详解】因为区间总长度为符合条件的区间长度为所以由几何概型概率公式可得在区间-12上随机取一个数x 则x ∈01的概率为故答案为:【点睛】解决几何概型问题常见类型有解析:13【分析】直接利用长度型几何概型求解即可. 【详解】因为区间总长度为()213--=, 符合条件的区间长度为101-=, 所以,由几何概型概率公式可得,在区间[-1,2]上随机取一个数x,则x ∈[0,1]的概率为13, 故答案为:13. 【点睛】解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与长度有关的几何概型问题关鍵是计算问题的总长度以及事件的长度.15.【解析】【分析】由题意从中任取两个不同的数共有中不同的取法再找出取出的2个数之差的绝对值大于2的只有取得到两个数只有一种取法利用对立事件的概率计算公式即可求解【详解】由题意从中任取两个不同的数共有中解析:56【解析】 【分析】由题意,从1,2,3,4中任取两个不同的数,共有246C =中不同的取法,再找出取出的2个数之差的绝对值大于2的只有取得到两个数只有一种取法,利用对立事件的概率计算公式,即可求解. 【详解】由题意,从1,2,3,4中任取两个不同的数,共有246C =中不同的取法,其中取出的2个数之差的绝对值大于2的只有取得到两个数为1,4时,只有一种取法, 所以取出的2个数之差的绝对值小于或等于2的概率为15166P =-=. 【点睛】本题主要考查了古典概型及其概率的计算问题,其中解答中认真审题,找出基本时间的总数和所求事件的对立事件的个数,利用对立时间的概率计算公式求解是解答的关键,着重考查了分析问题和解答问题的能力.16.31【解析】分析程序中各变量各语句的作用再根据流程图所示的顺序可知:该程序的作用是计算并输出分段函数的函数值当时则故答案为31点睛:算法是新课程中的新增加的内容也必然是新高考中的一个热点应高度重视程解析:31 【解析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是计算并输出分段函数()0.550{250.65050x x y x x ≤=+-,,> 的函数值,当60x =时,则y 250.6605031=+-=(),故答案为31.点睛:算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.程序填空也是重要的考试题型,这种题考试的重点有:①分支的条件②循环的条件③变量的赋值④变量的输出.其中前两点考试的概率更大.此种题型的易忽略点是:不能准确理解流程图的含义而导致错误.17.【解析】输入执行程序框图第一次;第二次;第三次;第四次满足输出条件输出的的值为故答案为 解析:13【解析】输入91,39a b ==,执行程序框图,第一次52,39a b ==;第二次13,39a b ==;第三次13,26a b ==;第四次13,13,a b a b ===,满足输出条件,输出的a 的值为13,故答案为13.18.4【解析】不成立;不成立;不成立;成立输出故答案为【方法点睛】本题主要考查程序框图的循环结构流程图属于中档题解决程序框图问题时一定注意以下几点:(1)不要混淆处理框和输入框;(2)注意区分程序框图是解析:4 【解析】()1,0,0111,2n S S S ===+-⨯=-≥ 不成立; ()22,1121,2n S S ==-+-⨯=≥ 不成立;()33,1132,2n S S ==+-⨯=-≥ 不成立;()44,2142,2n S S ==-+-⨯=≥ 成立,输出4n = ,故答案为4 .【方法点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.19.2【解析】分析:根据方差的计算公式先算出数据的平均数然后代入公式计算即可得到结果详解:平均数为:即答案为2点睛:本题考查了方差的计算解题的关键是方差的计算公式的识记它反映了一组数据的波动大小方差越大解析:2 【解析】分析:根据方差的计算公式,先算出数据的平均数,然后代入公式计算即可得到结果. 详解:平均数为:2345645+++++=,()22222211[2434445464]4114255s =⨯-+-+-+-+-=⨯+++=()()()()().即答案为2.点睛:本题考查了方差的计算,解题的关键是方差的计算公式的识记.它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.20.2【解析】由茎叶图及10个班级的得分的平均数是90可得∴当且仅当即时取等号故答案为2解析:2 【解析】由茎叶图及10个班级的得分的平均数是90可得8a b += ∴1911919191()()(19)(10)(1023)28888b a b a a b a b a b a b a b +=⨯++=+++=++≥+⨯=,当且仅当9b aa b=,即36b a ==时,取等号 故答案为2三、解答题21.(Ⅰ)20m =,100n =,直方图见解析;(Ⅱ)90,81.25;(Ⅲ)815. 【分析】(Ⅰ)由频率的计算公式,即可求得参数,m n ,根据表格中数据,即可补全直方图; (Ⅱ)根据频率分布直方图中平均数和中位数的求解方法,即可容易求得;(Ⅲ)先用分层抽样求得6天中在区间(50,100]和(100,150]的天数,列举出所有任取2天的可能性,找出满足题意的可能性,根据古典概型的概率求解公式即可求得结果. 【详解】(Ⅰ)由题知100.00250n⨯=,解得100n =,所以20m =. 频率分布直方图如图:(Ⅱ)平均数为[250.005750.0081250.0041750.0022250.001]50⨯+⨯+⨯+⨯+⨯⨯6.25302517.511.2590=++++=;中位数为0.50.25505081.250.4-+⨯= ; (Ⅲ)按分层抽样在(50,100]和(100,150]中抽取分别抽取4天和2天,在所抽取的6天中,将空气质量指数为(50,100]的4天分别记为1A ,2A ,3A ,4A , 空气质量指数为(100,150]的2天分别记为1B ,2B , 从中任取2天的基本事件为()()()()()()()()()()(){1213142324341112212231,,,,,,,,,,,,,,,,,,,,,A A A A A A A A A A A A AB A B A B A B A B()()()()}32414212,,,,,,,A B A B A B B B 共15个,其中事件M “两天空气质量等级不同”发生基本事件包括8个, 所以概率8()15P M =. 【点睛】本题考查频率的计算,频率分布直方图的绘制,以及由频率分布直方图计算中位数和平均数,古典概型的概率计算,涉及分层抽样,属综合中档题. 22.(1)见解析(2)方案二获得奖品的可能性更大. 【分析】(1)根据题意,设三个红球分别为:123,,A A A ,两个黄球分别为12,B B ,利用列举法一一列举出来即可;(2)方案一二中,根据古典概型,分别求出两种方案的概率,即可得出结论. 【详解】(1)方案一中,设三个红球分别为:123,,A A A ,两个黄球分别为12,B B , 则方案一所有可能的基本事为:{}{}{}{}{}{}{}{}{}{}12131112232122313212,,,,,,,,,A A A A A B A B A A A B A B A B A B B B共10个基本事件.(2)方案二中,设两次抽查取的球所标的数字分别为x 、y ,则所有可能的基本事件对应的二元有序数组(),x y 表示如下表,共25个基本事件:方案一、方案二的基本事件总数均为有限个,且每个基本事件发生的可能性均相同,故它们都是古典概型. 方案一,设事件A :两球颜色相同,则A 包含{}12A A 、{}13A A 、{}23A A 、{}12B B 共4个基本事件, 故()42105P A ==.方案二中,设事件B :两球所标数字之和大于5,则B 包含()1,5、()2,4、()2,5、()3,3、()3,4、()3,5、()4,2、()4,3、()4,4、()4,5()5,1、()5,2、()5,3、()5,4、()5,5共15个基本事件,故()153255P B ==. 因为()()P A P B <,所以选择方案二获得奖品的可能性更大. 【点睛】本题考查古典概型以及概率在生活中的应用等知识点,同时考查推理论证能力以及考查逻辑推理与数据分析素养.23.()()()()204848212812x x y x x x ⎧≤≤⎪=≤≤⎨⎪-≤≤⎩;程序框图见解析;【解析】试题分析:根据题意可得到面积函数是一个分段函数,写出函数后,利用条件分支结构写出程序框图即可. 试题 由题意可得y =.程序框图如图:点睛:本题考查分段函数的算法写法,属于中档题,注意当分段函数为两段时,需要一个分支结构,如果分段函数三段时,需要两个分支结构才能完成,特别在写算法程序时,注意分支结构的连接,是与否的处理一定要细心.24.(1)①m=0②i=i+1;(2)见解析【分析】(1)如果除以2的余数为零,则为偶数,故填0m =.i 每次增加1,故填1i i =+.(2)根据WHILE 型循环的结构,对原有程序进行改写.【详解】(1)①m=0②i=i+1(2)改写为WHILE 型循环程序如下:i=1WHILE i<=100m=I MOD 2IF m=0 THENPRINT iEND IFi=i+1WENDEND【点睛】本小题主要考查循环结构的两种编写程序的方法,属于基础题.25.(1)0.63;(2)ˆ0.757.4yx =+. 【分析】(1)代入公式即可得出结果.(2)由(1)可知,因为0.630.7<,所以投资额y 关于满意度x 没有达到较强线性相关,所以要关闭j 企业.重新计算,代入公式即可求出结果.【详解】(1)由题意,根据相关系数的公式,可得10104060.63643.7ii x y x y r -=≈≈∑ (2)由(1)可知,因为0.630.7<,所以投资额y 关于满意度x 没有达到较强线性相关,所以要关闭j 企业. 重新计算得22.810122162499x ⨯-'===,7110446667499y ⨯-'===, 922222192481022.812924118.4i i xx ='-≈+⨯--⨯=∑, 9194061022.87112449247482i ii x y x y =''-≈+⨯⨯-⨯-⨯⨯=∑.所以919221982ˆ0.690.7118.49ii i i i x y x y b xx ==''-=≈≈≈'-∑∑, ˆˆ740.692457.4457.4ay bx ''=-≈-⨯=≈. 所以所求线性回归方程为ˆ0.757.4yx =+. 26.(1)ˆ368yx =-;208人;(2)90. 【分析】(1)由已知表格中的数据求得ˆb与ˆa 的值,则线性回归方程可求,取6x =求得y 值即可;(2)研究生的考试成绩大致符合正态分布(385N ,215),求出(400)P X >,乘以208可得直接录取人数,再求出[385,400]之间的录取人数,则答案可求.【详解】解:(1)()11234535x =++++= ()130601001401701005y =++++= 可求:()25110i i x x =-=∑, 由()()()121360ˆ3610niii n i i x x y y b x x ==--===-∑∑, ˆˆ1003638ay bx =-=-⨯=- ∴y 关于x 的线性回归方程是ˆ368yx =-. 当2020年即6x =时,ˆ3668208y=⨯-=人 即2020年的报考人数大约为208人(2)研究生的考试成绩大致符合正态分布()2385,15N , 则400=385+15,()10.68264000.15872P x ->==, 直接录取人数为2800.158733.0133⨯=≈人[]385,400之间的录取人数为0.68262800.856.8572⨯⨯=≈ 所以2020年该专业录取的大约为33+57=90人【点睛】本题考查线性回归方程的求法,考查正态分布曲线的特点及所表示的意义,考查运算求解能力,属于中档题.。

【人教版】高中数学必修三期末试卷(带答案)

【人教版】高中数学必修三期末试卷(带答案)

一、选择题1.《九章算术》勾股章有一“引葭 [jiā] 赴岸”问题:“今有池方一丈, 葭生其中央,出水两尺,引葭赴岸,适与岸齐.问水深、葭长各几何.”其意思是:有一水池一丈见方,池中心生有一颗类似芦苇的植物,露出水面两尺,若把它引向岸边,正好与岸边齐(如图所示),问水有多深,该植物有多长?其中一丈为十尺.若从该葭上随机取一点,则该点取自水下的概率为( )A .2129B .2329C .1112D .12132.盒中有形状、大小都相同的2个红色球和3个黄色球,从中取出一个球,观察颜色后放回并往盒中加入同色球4个,再从盒中取出一个球,则此时取出黄色球的概率为( ) A .35B .79C .715D .31453.若即时起10分钟内,甲乙两同学等可能到达某咖啡厅,则这两同学到达咖啡厅的时间间隔不超过3分钟的概率为( ) A .0.3B .0.36C .0.49D .0.514.已知0.5log 5a =、3log 2b =、0.32c =、212d ⎛⎫= ⎪⎝⎭,从这四个数中任取一个数m ,使函数()32123x mx x f x =+++有极值点的概率为( ) A .14B .12C .34D .15.元朝著名数学家朱世杰在《四元玉鉴》中有一首诗:“我有一壶酒,携着游春走,遇店添一倍,逢友饮一斗,店友经三处,没了壶中酒,借问此壶中,当原多少酒?”用程序框图表达如图所示,即最终输出的0x =,则一开始输入的x 的值为( )A.34B.78C.1516D.31326.明代数学家程大位(1533~1606年),有感于当时筹算方法的不便,用其毕生心血写出《算法统宗》,可谓集成计算的鼻祖.如图所示的程序框图的算法思路源于其著作中的“李白沽酒”问题.执行该程序框图,若输出的y的值为2,则输入的x的值为()A.74B.5627C.2D.164817.鸡兔同笼,是中国古代著名的趣味题之一.《孙子算经》中就有这样的记载:今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各有几何?设计如右图的算法来解决这个问题,则判断框中应填入的是()A .94m >B .94m =C .35m =D .35m ≤8.下列赋值语句正确的是 ( )A .S =S +i 2B .A =-AC .x =2x +1D .P =9.我校高中生共有2700人,其中高一年级900人,高二年级1200人,高三年级600人,现采取分层抽样法抽取容量为135的样本,那么高一、高二、高三各年级抽取的人数分别为 ( ) A .45,75,15B .45,45,45C .45,60,30D .30,90,1510.从两个班级各随机抽取5名学生测量身高(单位:cm ),甲班的数据为169,162,150,160,159,乙班的数据为180,160,150,150,165.据此估计甲、乙两班学生的平均身高x 甲,x 乙及方差2s 甲,2s 乙的关系为( )A .x 甲>x 乙,2s 甲>2s 乙B .x 甲>x 乙,2s 甲<2s 乙C .x 甲<x 乙,2s 甲<2s 乙D .x 甲<x 乙,2s 甲>2s 乙11.通过实验,得到一组数据如下:2,5,8,9,x ,已知这组数据的平均数为6,则这组数据的方差为( ) A .3.2B .4C .6D .6.512.根据如下样本数据x345678y﹣4.0﹣2.50.5﹣0.5 2.0 3.0得到的回归方程为y bx a=+,则()A.a>0,b<0 B.a>0,b>0 C.a<0,b<0 D.a<0,b>0二、填空题13.辛普森悖论(Simpson’sParadox)有人译为辛普森诡论,在统计学中亦有人称为“逆论”,甚至有人视之为“魔术”.辛普森悖论为英国统计学家E.H.辛普森(E.H.Simpson)于1951年提出的,辛普森悖论的内容大意是“在某个条件下的两组数据,分别讨论时都会满足某种性质,可是一旦合并考虑,却可能导致相反的结论.”下面这个案例可以让我们感受到这个悖论:关于某高校法学院和商学院新学期已完成的招生情况,现有如下数据:某高校申请人数性别录取率男50%法学院200人女70%男60%商学院300人女90%①法学院的录取率小于商学院的录取率;②这两个学院所有男生的录取率小于这两个学院所有女生的录取率;③这两个学院所有男生的录取率不一定小于这两个学院所有女生的录取率;④法学院的录取率不一定小于这两个学院所有学生的录取率.其中,所有正确结论的序号是___________.14.为长方形,,,为的中点,在长方形内随机取一点,取到的点到的距离大于1的概率为________.15.袋中有2个白球,1个红球,这些球除颜色外完全相同.现从袋中往外取球,每次任取1个记下颜色后放回,直到红球出现2次时停止,设停止时共取了X次球,则(4)P X==_______.t=,则输出的k=______.16.某程序框图如图所示,若输入的417.执行如图所示的程序框图,若输入的255a =,68b =,则输出的a 是__________.18.某程序框图如图所示,该程序运行后输出的S 为____________.19.为调查某高校学生对“一带一路”政策的了解情况,现采用分层抽样的方法抽取一个容量为500的样本.其中大一年级抽取200人,大二年级抽取100人.若其他年级共有学生2000人,则该校学生总人数是_______..20.变量X与Y相对应的5组数据和变量U与V相对应的5组数据统计如表:X1011.311.812.513U1011.311.812.513 Y12345V54321用b1表示变量Y与X之间的回归系数,b2表示变量V与U之间的回归系数,则b1与b2的大小关系是___.三、解答题21.某市幸福社区在“9.9重阳节”向本社区征召100名义务宣传“敬老爱老”志愿者,现把该100名志愿者的成员按年龄分成5组,如表所示:(1)若从第1,2,3组中用分层抽样的方法选出6名志愿者参加某社区宣传活动,应从第1,2,3组各选出多少名志愿者?(2)在(1)的条件下,宣传决定在这6名志愿者中随机选2名志愿者介绍宣传经验,求第3组至少有1名志愿者被选中的概率.22.手机运动计步已经成为一种新时尚.某单位统计了职工一天行走步数(单位:百步),绘制出如下频率分布直方图:(1)求直方图中a的值,并由频率分布直方图估计该单位职工一天步行数的中位数;(2)若该单位有职工200人,试估计职工一天行走步数不大于13000的人数;(3)在(2)的条件下,该单位从行走步数大于15000的3组职工中用分层抽样的方法选取6人参加远足拉练活动,再从6人中选取2人担任领队,求这两人均来自区间150,(170]的概率.23.画出程序框图,要求输入自变量x 的值,输出函数值,并写出用基本语句编写的程序.2,0()23,10.,1x x f x x x x x ⎧≥⎪=--<<⎨⎪-≤-⎩24.以下程序流程图是实现用二分法求近似值,但步骤并没有全部给出,请补上适当的语句或条件,以保证该流程图能顺利运行并达到预期的目的.25.随着中美贸易战的不断升级,越来越多的国内科技巨头加大了科技研发投入的力度.中华技术有限公司拟对“麒麟”手机芯片进行科技升级,根据市场调研与模拟,得到科技升级投入x (亿元与科技升级直接收益y (亿元)的数据统计如下: 序号 1 2 3 4 5 6 7 8 9 10 11 12 x 2 3 4 6 8 10 13 21 22 23 24 25 y1322314250565868.56867.56666当017x <≤时,建立了y 与x 的两个回归模型:模型①:ˆ 4.111.8yx =+;模型②:ˆ21.314.4yx =;当17x >时,确定y 与x 满足的线性回归方程为ˆ0.7y x a =-+. (1)根据下列表格中的数据,比较当017x <≤时模型①、②的相关指数2R 的大小,并选择拟合精度更高、更可靠的模型,预测对“麒麟”手机芯片科技升级的投入为17亿元时的直接收益.(附:刻画回归效果的相关指数()()22121ˆ1ni i i nii y yR y y ==-=--∑∑ 4.1≈)(2)为鼓励科技创新,当科技升级的投入不少于20亿元时,国家给予公司补贴5亿元,以回归方程为预测依据,比较科技升级投入17亿元与20亿元时公司实际收益的大小.(附:用最小二乘法求线性回归方程ˆˆˆybx a =+的系数:()()()1122211ˆn ni iiii i nni i i i x y nx y x x y y bx nx x x ====-⋅--==--∑∑∑∑,ˆˆay bx =-) (3)科技升级后,“麒麟”芯片的效率X 大幅提高,经实际试验得X 大致服从正态分布()20.52,0.01N .公司对科技升级团队的奖励方案如下:若芯片的效率不超过50%,不予奖励:若芯片的效率超过50%,但不超过53%,每部芯片奖励2元;若芯片的效率超过53%,每部芯片奖励4元记为每部芯片获得的奖励,求()E Y (精确到0.01). (附:若随机变量()2~,(0)X N μσσ>,则()0.6827P X μσμσ-<≤+=,(22)0.9545P X μσμσ-<≤+=)26.学生甲在一次试验中用显微镜观察某种环境下细菌的个数,发现时间x (分钟)时刻的细菌个数为y 个,统计结果如下:(Ⅰ)在给出的坐标系中画出x ,y 的散点图,说明细菌个数和时间是正相关还是负相关.(Ⅱ)根据表格中的5组数据,求y 关于x 的回归直线方程ˆˆˆybx a =+,并根据回归直线方程估计从实验开始,什么时刻细菌个数为12.参考公式:(1221ˆˆˆ,ni ii ni i x y nx yx n axby bx ====---∑∑)【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】试题分析:设水深为x 尺,利用勾股定理求出水深,结合葭长13尺,代入几何概型概率计算公式,可得答案. 详解: 设水深为x 尺, 则(x+2)2=x 2+52, 解得x=214, 即水深214尺. 又葭长294尺, 则所求概率为2129. 故选A .点睛:本题考查了几何概型概率的求法;在利用几何概型的概率公式来求其概率时,几何“测度”可以是长度、面积、体积、角度等,其中对于几何度量为长度,面积、体积时的等可能性主要体现在点落在区域Ω上任置都是等可能的,而对于角度而言,则是过角的顶点的一条射线落在Ω的区域(事实也是角)任一位置是等可能的.2.A解析:A 【分析】若取出的是红色球,再从盒中取出一个球,则此时取出黄色球的概率为:13925P =⨯,若取出的是黄色球,再从盒中取出一个球,则此时取出黄色球的概率为:23759P =⨯,由此能求出再从盒中取出一个球,则此时取出黄色球的概率. 【详解】盒中有形状、大小都相同的2个红色球和3个黄色球, 从中取出一个球,观察颜色后放回并往盒中加入同色球4个, 若取出的是红色球,再从盒中取出一个球,则此时取出黄色球的概率为:13295152P =⨯=, 若取出的是黄色球,再从盒中取出一个球,则此时取出黄色球的概率为:23775915P =⨯=, ∴再从盒中取出一个球,则此时取出黄色球的概率为:1221573155P P P =+=+=, 故选:A . 【点睛】本题考查概率的求法,考查相互独立事件概率乘法公式、互斥事件概率计算公式等基础知识,考查运算求解能力,属于中档题.3.D解析:D 【分析】由几何概型中的面积型得:1277210.511010S P S ⨯⨯⨯==-=⨯阴正,即可得解.【详解】设甲、乙两同学等可能到达某咖啡厅的时间为(),x y ,则010x <≤,010y <≤,其基本事件可用正方形区域表示,如图,则甲、乙两同学等可能到达某咖啡厅的时间间隔不超过3分钟的事件为A , 则事件A 为:3x y -≤,其基本事件可用阴影部分区域表示,由几何概型中的面积型可得:1277210.511010S P S ⨯⨯⨯==-=⨯阴正.故选:D. 【点睛】本题考查了几何概型中的面积型,属于基础题.4.B解析:B 【分析】求出函数的导数,根据函数的极值点的个数求出m 的范围,通过判断a ,b ,c ,d 的范围,得到满足条件的概率值即可. 【详解】f ′(x )=x 2+2mx +1, 若函数f (x )有极值点, 则f ′(x )有2个不相等的实数根, 故△=4m 2﹣4>0,解得:m >1或m <﹣1,而a =log 0.55<﹣2,0<b =log 32<1、c =20.3>1,0<d =(12)2<1, 满足条件的有2个,分别是a ,c , 故满足条件的概率p 2142==, 故选:B . 【点睛】本题考查了函数的单调性、极值问题,考查导数的应用以及对数、指数的性质,是一道中档题.5.B解析:B由已知中的程序语句可知:该程序的功能是利用循环结构计算输入时变量x 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得到答案. 【详解】本题由于已知输出时x 的值,因此可以逆向求解: 输出0x =,此时4i =; 上一步:1210,2x x -==,此时3i =; 上一步:1321,24x x -==,此时2i =; 上一步:3721,48x x -==,此时1i =; 故选:B . 【点睛】本题考查了程序框图的循环结构,考查了学生逻辑推理和数学运算的能力,属于基础题.6.C解析:C 【分析】根据程序框图依次计算得到答案. 【详解】34y x =-,1i =;34916y y x =-=-,2i =;342752y y x =-=-,3i =;3481160y y x =-=-,4i =;34243484y y x =-=-,此时不满足3i ≤,跳出循环,输出结果为243484x -,由题意2434842y x =-=,得2x =. 故选:C 【点睛】本题考查了程序框图的计算,意在考查学生的理解能力和计算能力.7.B解析:B 【分析】由题意知i 为鸡的数量,j 为兔的数量,m 为足的数量,根据题意可得出判断条件. 【详解】由题意可知i 为鸡的数量,j 为兔的数量,m 为足的数量,根据题意知,在程序框图中,当计算足的数量为94时,算法结束,因此,判断条件应填入“94m =”. 故选B. 【点睛】本题考查算法程序框图中判断条件的填写,考查分析问题和解决问题的能力,属于中等题.8.B【解析】在程序语句中乘方要用“^”表示,所以A 项不正确;乘号“*”不能省略,所以C 项不正确;DSQR(x)表示,所以D 项不正确;B 选项是将变量A 的相反数赋给变量A ,则B 项正确.选B.9.C解析:C 【解析】因为共有学生2700,抽取135,所以抽样比为1352700,故各年级分别应抽取135900452700⨯=,1351200602700⨯=,135600302700⨯=,故选C. 10.C解析:C 【解析】 【分析】利用公式求得x 甲和x 乙,从而得到x 甲和x 乙的大小,观察两组数据的波动程度,可以得到2s 甲与2s 乙的大小,从而求得结果.【详解】 甲班平均身高1691621501601591605x ++++==甲,乙班平均身高1801601501501651615x ++++==乙,所以x x <甲乙,方差表示数据的波动,当波动越大时,方差越大,甲班的身高都差不多,波动比较小,而乙班身高差距则比加大,波动比较大,所以22s s >乙甲,故选C. 【点睛】该题考查的是有关所给数据的平均数与方差的比较大小的问题,涉及到的知识点有平均数的公式,观察数据波动程度来衡量方差的大小,属于简单题目.11.C解析:C 【解析】分析:利用平均数的公式,求得6x =,得到数据2,5,8,9,6,再利用方差的计算公式,即求解数据的方差.详解:由题意,一组数据2,5,8,9,x 的平均数为6,即258924655x xx +++++===,解得6x =,所以数据2,5,8,9,6的方差为2222221[(26)(56)(86)(96)(66)]65s =-+-+-+-+-=,故选C.点睛:本题主要考查了数据的数字特的计算,其中熟记数据的平均数的公式和数据的方差的计算公式是解答的关键,着重考查了推理与运算能力,属于基础题.12.D解析:D 【解析】分析:利用公式求出ˆb,ˆa ,即可得出结论. 详解:样本平均数x =5.5,y =﹣0.25, ∴()()61iii x x yy =--∑=23,621()i i x x =-∑=17.5,∴ˆb=2317.5=4635>0, ∴ˆa =﹣0.25﹣4635•5.5<0, 故选:D .点睛:求回归直线方程的步骤:①依据样本数据画出散点图,确定两个变量具有线性相关关系;②计算211,,,n ni i i i i x y x x y ==∑∑的值;③计算回归系数ˆˆ,ab ;④写出回归直线方程为ˆˆˆybx a =+; 回归直线过样本点中心(),x y 是一条重要性质,利用线性回归方程可以估计总体,帮助我们分析两个变量的变化趋势.二、填空题13.②④【分析】根据题意结合古典概型的概率计算公式逐项进行判定即可求解【详解】设申请法学院的男生人数为女生人数为则法学院的录取率为设申请商学院的男生人数为女生人数为则商学院的录取率为由该值的正负不确定所解析:②④ 【分析】根据题意,结合古典概型的概率计算公式,逐项进行判定,即可求解. 【详解】设申请法学院的男生人数为x ,女生人数为y ,则200x y +=,法学院的录取率为0.50.70.50.7(200)0.70.001200200x y x x x ++⨯-==-,设申请商学院的男生人数为m ,女生人数为n ,则300m n +=,商学院的录取率为0.60.90.60.9(300)0.90.001200200m n m m m ++⨯-==-,由()()0.90.0010.70.0010.20.001()0.001(200)m x m x m x ---=--=-+, 该值的正负不确定,所以①错误,④正确; 这两个学院所有男生的录取率为0.50.6x mx m++,这两个学院所有女生的录取率为0.70.9y ny n++,因为0.50.60.70.90.20.40.10.30()()x m y n xy xn my nmx m y n x m y n +++++-=<++++,所以②正确;③错误. 故答案为:②④. 【点睛】本题主要考查了古典概型的概率公式的应用,其中解答中正确理解题意,结合古典概型的概率计算公式求得相应的概率是解答的关键,着重考查数学阅读能力,属于基础题.14.1-π12【解析】【分析】由题意得长方形的面积为S=3×2=6以O 点为原型半径为1作圆此时圆在长方形内部的部分的面积为Sn=π2再由面积比的几何概型即可求解【详解】由题意如图所示可得长方形的面积为S 解析:【解析】 【分析】由题意,得长方形的面积为,以O 点为原型,半径为1作圆,此时圆在长方形内部的部分的面积为,再由面积比的几何概型,即可求解.【详解】由题意,如图所示,可得长方形的面积为,以O 点为原型,半径为1作圆,此时圆在长方形内部的部分的面积为,所以取到的点到的距离大于1的表示圆的外部在矩形内部分部分, 所以概率为.【点睛】本题主要考查了几何概型的概率的计算问题,解决此类问题的步骤:求出满足条件A 的基本事件对应的“几何度量”,再求出总的基本事件对应的“几何度量”,然后根据求解,着重考查了分析问题和解答问题的能力.15.【解析】【分析】由题意可知最后一次取到的是红球前3次有1次取到红球由古典概型求得概率【详解】由题意可知最后一次取到的是红球前3次有1次取到红球所以填【点睛】求古典概型的概率关键是正确求出基本事件总数解析:427 【解析】 【分析】由题意可知最后一次取到的是红球,前3次有1次取到红球,由古典概型求得概率。

【人教版】高中数学必修三期末一模试题含答案

【人教版】高中数学必修三期末一模试题含答案

一、选择题1.在区间11,22⎡⎤-⎢⎥⎣⎦上随机取一个数x ,则cos x π的值介于22与32之间的概率为( ) A .13B .14C .15 D .162.类比“赵爽弦图”,可类似地构造如图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设2AD BD =,若在大等边三角形中随机取一点,则此点取自小等边三角形的概率是( )A .14B .13C .17 D .413 3.假设△ABC 为圆的内接正三角形,向该圆内投一点,则点落在△ABC 内的概率为( ) A .334πB .2πC .4πD .334π4.勒洛三角形是具有类似圆的“定宽性”的面积最小的曲线,它由德国机械工程专家,机构运动学家勒洛首先发现,其作法是:以等边三角形每个顶点为圆心,以边长为半径,在另两个顶点间作一段弧,三段弧围成的曲边三角形就是勒洛三角形,现在勒洛三角形中随机取一点,则此点取自正三角形外的概率为( )A ()3323π- B ()323π-C ()323π+ D ()23323ππ-+5.阅读下面的框图,运行相应的程序,输出S 的值为________.A.2 B.4 C.-4 D.-86.执行如图所示的程序框图,若输入的a,b的值分别为1,1,则输出的S是()A.25 B.18 C.11 D.3n ,则输出的结果是()7.执行如图所示的程序框图,如果输入4A .32B .116C .2512D .137608.更相减损术是出自中国古代数学专著《九章算术》的一种算法,其内容如下:“可半者半之,不可半者,副置分母、子之数,以少减多,更相减损,求其等也,以等数约之”下图是该算法的程序框图,如果输入102a =,238b =,则输出的a 值是A .17B .34C .36D .689.某农业科学研究所分别抽取了试验田中的海水稻以及对照田中的普通水稻各10株,测量了它们的根系深度(单位:cm ),得到了如图所示的茎叶图,其中两竖线之间表示根系深度的十位数,两边分别是海水稻和普通水稻根系深度的个位数,则下列结论中不正确的是( )A .海水稻根系深度的中位数是45.5B .普通水稻根系深度的众数是32C .海水稻根系深度的平均数大于普通水稻根系深度的平均数D .普通水稻根系深度的方差小于海水稻根系深度的方差10.为了解某社区居民的家庭年收入所年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:根据上表可得回归直线方程ˆˆˆybx a =+,其中ˆˆˆ0.76,b a y bx ==-,据此估计,该社区一户收入为15万元家庭年支出为( ) A .11.4万元B .11.8万元C .12.0万元D .12.2万元11.为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下:则y 对x 的线性回归方程为 A .y = x-1B .y = x+1C .y =88+12x D .y = 17612.某校高中三个年级共有学生1050人,其中高一年级300人,高二年级350人,高三年级400人.现要从全体高中学生中通过分层抽样抽取一个容量为42的样本,那么应从高三年级学生中抽取的人数为 A .12B .14C .16D .18二、填空题13.在区间[]0,2上分别任取两个数m ,n ,若向量(),a m n =,()1,1b =,则满足1a b -≤的概率是______ .14.在区间[0,2]上随机取两个数,a b ,则事件“函数()1f x bx a =+-在[0,1]内有零点”的概率为_______.15.已知集合{1,U =2,3,⋯,}n ,集合A 、B 是集合U 的子集,若A B ⊆,则称“集合A 紧跟集合B ”,那么任取集合U 的两个子集A 、B ,“集合A 紧跟集合B ”的概率为______. 16.执行如图所示的程序框图,若输入的1,7S K ==则输出的k 的值为_______.17.下图是某算法的程序框图,则程序运行后输出的结果是 .18.一个算法的程序框图如图所示,则该程序运行后输出的结果是.19.已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为________.20.为弘扬我国优秀的传统文化,某小学六年级从甲、乙两个班各选出7名学生参加成语知识竞赛,他们取得的成绩的茎叶图如图,其中甲班学生的平均分是85,乙班学生成绩的中位数是83,则的值为__________.三、解答题21.某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.已知这100位顾客中一次购物量超过10件的顾客占40%.一次购物量1至5件6至10件11至15件16至20件21件及以上顾客数(人)x3025y5结算时间(分钟/人)12345(1)确定,x y的值,并估计顾客一次购物的结算时间的平均值;(2)求一位顾客一次购物的结算时间不超过3分钟的概率.(将频率视为概率)22.某消费者协会在3月15号举行了以“携手共治,畅享消费”为主题的大型宣传咨询服务活动,着力提升消费者维权意识.组织方从参加活动的1000名群众中随机抽取n名群众,按他们的年龄分组:第1组[20,30),第2组[30,40),第3组[40,50),第4组[50,60),第5组[60,70],其中第1组[20,30)有6人,得到的频率分布直方图如图所示.(1)求m,n的值,并估计抽取的n名群众中年龄在[40,60)的人数;(2)已知第1组群众中男性有2人,组织方要从第1组中随机抽取3名群众组成维权志愿者服务队,求至少有两名女生的概率.23.函数y=x1,x0,0,x0,x1,x0,-+>⎧⎪=⎨⎪+<⎩试写出给定自变量x,求函数值y的算法.24.电脑游戏中,“主角”的生存机会往往被预先设定,如某枪战游戏中,“主角”被设定生存机会5次,每次生存承受射击8枪(被击中8枪则失去一次生命机会).假设射击过程均为单子弹发射,试为“主角”耗用生存机会的过程设计一个算法,并画出程序框图.25.为保护农民种粮收益,促进粮食生产,确保国家粮食安全,调动广大农民生产粮食的积极性,从2014年开始,国家实施了对种粮农民直接补贴的政策通过对2014~2018年的数据进行调查,发现某地区发放粮食补贴额x(单位:亿元)与该地区粮食产量y(单位:万亿吨)之间存在着线性相关关系,统计数据如下表:年份20142015201620172018(1)请根据上表所给的数据,求出y 关于x 的线性回归直线方程ˆˆˆybx a =+; (2)通过对该地区粮食产量的分析研究,计划2019年在该地区发放粮食补贴7亿元,请根据(1)中所得到的线性回归直线方程,预测2019年该地区的粮食产量.参考公式:()()()121ˆniii nii x x y y bx x ==--=-∑∑,ˆˆay bx =-. 26.随着各国经贸关系的进一步加深,许多国外的热带水果进入国内市场,牛油果作为一种热带水果,越来越多的中国消费者对这种水果有了一种全新的认识,它富含多种维生素、丰富的脂肪和蛋白质,钠、钾、镁、钙等含量也高,除作生果食用外也可作菜肴和罐头.牛油果原产于墨西哥和中美洲,后在加利福尼亚州被普遍种植.因此加利福尼亚州成为世界上最大的牛油果生产地,在全世界热带和亚热带地区均有种植,但以美国南部、危地马拉、墨西哥及古巴栽培最多,并形成了墨西哥系、危地马拉系、西印度系三大种群,我国的广东、海南、福建、广西、台湾、云南及四川等地都有少量栽培.市场上的牛油果大部分都是进口的.为了调查市场上牛油果的等级代码数值x 与销售单价y 之间的关系,经统计得到如下数据:(1)已知销售单价y 与等级代码数值x 之间存在线性相关关系,利用前5组数据求出y 关于x 的线性回归方程;(2)若由(1)中线性回归方程得到的估计值与最后一组数据的实际值之间的误差不超过1,则认为所求回归方程是有效可靠的,请判断所求回归直线方程是否有效可靠? (3)若一果园估计可以收获等级代码数值为85的牛油果980kg ,求该果园估计收入为多少元.参考公式:对一组数据()11,x y ,()22,x y ,…,(),n n x y ,其回归直线y bx a =+的斜率和截距的最小二乘估计分别为:1221ni ii nii x y nx yb xnx==-=-∑∑,b y bx =-.参考数据:516169.6i ii x y==∑,52117820i i x ==∑.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据余弦函数的图象和性质,求出cos x π之间时,自变量x 的取值范围,代入几何概型概率计算公式,可得答案. 【详解】cos 2x π≤≤,11,22x ⎡⎤∈-⎢⎥⎣⎦ 则:1164x ≤≤或1146x -≤≤- 在区间11,22⎡⎤-⎢⎥⎣⎦上随机取一个数,cos x π的值介于2与2之间的概率:11214611622P ⎛⎫⨯- ⎪⎝⎭==+ 故选:D. 【点睛】本题主要考查了余弦函数的图象与性质,几何概型,考查了分析问题的能力,属于中档题.2.C解析:C 【分析】由题意求出AB =,所求概率即为DEF ABCS P S=,即可得解.【详解】由题意易知120ADB ∠=,AF FD BD ==,由余弦定理得22222cos1207AB AD BD AD BD BD =+-⋅⋅=即AB =,所以AB =,则所求概率为217DEF ABCSFD P SAB ⎛⎫=== ⎪⎝⎭.故选:C. 【点睛】本题考查了几何概型概率的求法和余弦定理的应用,属于中档题.3.A解析:A 【分析】设圆的半径为R,且由题意可得是与面积有关的几何概率构成试验的全部区域的面积及正三角形的面积代入几何概率的计算公式可求. 【详解】解:设圆的半径为R构成试验的全部区域的面积:2S R π=记“向圆O 内随机投一点,则该点落在正三角形内”为事件A , 则构成A22) 由几何概率的计算公式可得, ()224P A R π==故选:A . 【点睛】本题主要考查了与面积有关的几何概型概率的计算公式的简单运用,关键是明确满足条件的区域面积,属于基础试题.4.A解析:A 【分析】设2BC =,将圆心角为3π的扇形面积减去等边三角形的面积可得出弓形的面积,由此计算出图中“勒洛三角形”的面积,然后利用几何概型的概率公式可计算出所求事件的概率. 【详解】如下图所示,设2BC =,则以点B 为圆心的扇形面积为2122=233ππ⨯⨯, 等边ABC ∆的面积为212sin 23π⨯⨯=23π- 所以,勒洛三角形的面积可视为一个扇形面积加上两个弓形的面积,即222233πππ⎛+⨯-=- ⎝ ∴在勒洛三角形中随机取一点,此点取自正三角形外部的概率()()323312323πππ--=--,故选A.【点睛】本题考查几何概型概率的计算,解题的关键就是要求出图形相应区域的面积,解题时要熟悉一些常见平面图形的面积计算方法,考查计算能力,属于中等题.5.C解析:C 【解析】执行程序一次,8,2s n =-=,执行第二次,4,1s n =-=,满足判断框条件,跳出循环,输出4s =-,故选C.6.C解析:C 【分析】该程序的功能是利用循环结构计算并输出变量S 的值,模拟程序的运行过程,分析循环中各变量的变化情况,即可得到答案. 【详解】模拟执行程序框图,可得:1,1,1a b n ===, 第1次循环,可得3,1,3,2S a b n ====; 第2次循环,可得5,3,5,3S a b n ====; 第3次循环,可得11,5,11,4S a b n ====, 满足判断条件,输出11S =. 故选:C. 【点睛】本题主要考查了循环结构的程序框图的计算与输出,其中解答中模拟程序框图的运行过程,逐次计算,结合判断条件求解是解答的关键,意在考查运算与求解能力,属于基础题.7.B解析:B 【分析】根据题意,运行程序可实现111112341S n =++++⋯+-运算求值,从而得答案. 【详解】第一次执行程序,1,2S i ==,第二次执行程序,11,32S i =+=, 第三次执行程序,111,423S i =++=, 因为44=,满足条件,跳出循环,输出结果116S =. 故选:B . 【点睛】本题主要考查了程序框图,循环结构,条件分支结构,属于容易题.8.B解析:B 【分析】根据程序框图进行模拟运算即可得出. 【详解】根据程序框图,输入的102a =,238b =,因为ab ,且a b <,所以238102136b =-=;第二次循环,13610234b =-=;第三次循环,1023468a =-=;第四次循环,683434a =-= ,此时34a b ==,输出34a =,故选B . 【点睛】本题主要考查更相减损术的理解以及程序框图的理解、识别和应用. 9.D解析:D 【分析】选项A 求出海水稻根系深度的中位数是444745.52+=,判断选项A 正确;选项B 写出普通水稻根系深度的众数是32,判断选项B 正确;选项C 先求出海水稻根系深度的平均数,再求出普通水稻根系深度的平均数,判断选项C 正确;选项D 先求出普通水稻根系深度的方差,再求出海水稻根系深度的方差,判断选项D 错误. 【详解】解:选项A :海水稻根系深度的中位数是444745.52+=,故选项A 正确; 选项B :普通水稻根系深度的众数是32,故选项B 正确;选项C :海水稻根系深度的平均数393938434447495050514510+++++++++=,普通水稻根系深度的平均数252732323436384041453510+++++++++=,故选项C 正确;选项D :普通水稻根系深度的方差2222222211[(3845)(3945)(3945)(4345)(4445)(4745)(4945)(5045)10S =-+-+-+-+-+-+-+-+, 海水稻根系深度的方差2222222221[(2535)(2735)(3235)(3235)(3435)(3635)(3835)(4035)(10S =-+-+-+-+-+-+-+-+,故选项D 错误 故选:D. 【点睛】本题考查根据茎叶图求中位数、众数、平均数、方差,是基础题. 10.B解析:B 【解析】 试题分析:由题,,所以.试题 由已知,又因为ˆˆˆybx a =+,ˆˆˆ0.76,b a y bx ==- 所以,即该家庭支出为万元.考点:线性回归与变量间的关系.11.C解析:C 【详解】试题分析:由已知可得176,176x y ==∴中心点为()176,176, 代入回归方程验证可知,只有方程y =88+12x 成立,故选C 12.C解析:C 【解析】 【分析】根据分层抽样的定义求出在各层中的抽样比,即样本容量比上总体容量,按此比例求出在高三年级中抽取的人数. 【详解】根据题意得,用分层抽样在各层中的抽样比为421105020=,则在高三年级抽取的人数是14001625⨯=人, 故选C. 【点睛】该题所考查的是有关分层抽样的问题,在解题的过程中,需要明确无论采用哪种抽样方法,都必须保证每个个体被抽到的概率是相等的,所以注意成比例的问题.二、填空题13.【分析】由已知向量的坐标求出满足的所满足的条件结合数形结合得出答案【详解】由得由得即满足作出图像如图:圆的面积为正方形的面积为则的概率是故答案为:【点睛】本题考查了几何概型的概率求法解题的关键是变量解析:4π【分析】由已知向量的坐标求出满足1a b -≤的,m n 所满足的条件,结合[],0,2m n ∈,数形结合得出答案. 【详解】由(),a m n =,()1,1b =,得()1,1a b m n -=-- 由1a b -≤,得()()22111m n -+-≤,即()()22111m n -+-≤,,m n 满足0202m n ≤≤⎧⎨≤≤⎩,作出图像如图:圆()()22111m n -+-=的面积为π,正方形OABC 的面积为4. 则1a b -≤的概率是4π . 故答案为:4π 【点睛】本题考查了几何概型的概率求法,解题的关键是变量满足的条件,属于基础题.14.【解析】【分析】在上任取两个数在以2为棱长的正方形内在内有零点等价于即求出可行域的面积利用几何概型概率公式求解即可【详解】在上任取两个数则在以2为棱长的正方形内因为在内有零点所以即表示如图所示的梯形解析:38【解析】【分析】在[]0,2上任取两个数,a b,(),a b在以2为棱长的正方形内,()f x在[]0,1内有零点,等价于()()010f f≤,即()()110a b a-+-≤,求出可行域的面积,利用几何概型概率公式求解即可.【详解】在[]0,2上任取两个数,a b,则(),a b在以2为棱长的正方形内,因为()f x在[]0,1内有零点,所以()()010f f≤,即()()110a b a-+-≤,(),a b表示如图所示的梯形区域,由几何概型概率公式可得“函数()1f x bx a=+-在[]0,1内有零点”的概率为()112132228⨯+⨯=⨯,故答案为38.【点睛】本题主要考查“面积型”的几何概型,属于中档题. 解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与面积有关的几何概型问题关鍵是计算问题的总面积以及事件的面积;几何概型问题还有以下几点容易造成失分,在备考时要高度关注:(1)不能正确判断事件是古典概型还是几何概型导致错误;(2)基本事件对应的区域测度把握不准导致错误;(3)利用几何概型的概率公式时 , 忽视验证事件是否等可能性导致错误.15.【解析】【分析】由题意可知集合U 的子集有个然后求出任取集合U 的两个子集AB 的个数m 及时AB 的所有个数n 根据可求结果【详解】解:集合23的子集有个集合AB 是集合U 的子集任取集合U 的两个子集AB 的所有个解析:3()4n【解析】 【分析】由题意可知集合U 的子集有2n 个,然后求出任取集合U 的两个子集A 、B 的个数m ,及A B ⊆时A 、B 的所有个数n ,根据nP m=可求结果. 【详解】 解:集合{1,U =2,3,⋯,}n 的子集有2n 个,集合A 、B 是集合U 的子集,∴任取集合U 的两个子集A 、B 的所有个数共有22n n ⨯个,A B ⊆,①若A =∅,则B 有2n 个,②若A 为单元数集,则B 的个数为112n nC -⨯个, ⋯同理可得,若{1,A =2,3}n ⋯,则B =只要1个即012n n C =⨯,则A 、B 的所有个数为112202222(12)3n n n n n nn n n C C C --+⨯+⨯+⋯+⨯=+=个,集合A 紧跟集合B ”的概率为33()224n nn nP ==⨯. 故答案为3()4n【点睛】本题考查古典概率公式的简单应用,解题的关键是基本事件个数的确定.16.5【分析】模拟执行程序框图依次写出每次循环得到的的值当时根据题意退出循环输出结果【详解】模拟执行程序框图可得;;;;此时退出循环输出结果故答案为5【点睛】该题考查的是有关程序框图的问题涉及到的知识点解析:5 【分析】模拟执行程序框图,依次写出每次循环得到的,S K 的值,当5,58S K ==时,根据题意,退出循环,输出结果. 【详解】模拟执行程序框图,可得1,7S K ==;771,688S K =⋅==;763,5874S K =⋅==;355,5468S K =⋅==; 此时,57810<,退出循环,输出结果, 故答案为5. 【点睛】该题考查的是有关程序框图的问题,涉及到的知识点有计算循环结构程序框图输出结果的问题,属于简单题目.17.10【解析】当时则;当时则;当时则;当时此时运算程序结束输出应填答案解析:10 【解析】当0,1s n ==时,0(1)109s =+-+=<,则112n =+=;当0,2s n ==时,20(1)239s =+-+=<,则213n =+=;当3,3s n ==时,33(1)359s =+-+=<,则314n =+=;当5,4s n ==时,45(1)4109s =+-+=>,此时运算程序结束,输出10s =,应填答案10.18.4【分析】执行程序当时循环结束即可得出【详解】因为第一次进入循环后;第二次进入循环后;第三次进入循环后;第四次进入循环后循环结束所以输出的结果为4【点睛】本题主要考查了程序框图求输出的值做题时要仔细解析:4 【分析】执行程序,当4K =时循环结束,即可得出 【详解】因为第一次进入循环后1,1S K ==; 第二次进入循环后3,2S K ==; 第三次进入循环后11,3S K ==;第四次进入循环后2059,4S K ==,循环结束,所以输出的结果为4 【点睛】本题主要考查了程序框图求输出的值,做题时要仔细点,属于基础题.19.【解析】分析:先由茎叶图得数据再根据平均数公式求平均数详解:由茎叶图可知5位裁判打出的分数分别为故平均数为点睛:的平均数为解析:【解析】分析:先由茎叶图得数据,再根据平均数公式求平均数.详解:由茎叶图可知,5位裁判打出的分数分别为8989909191,,,,,故平均数为89+89+90+91+91905=.点睛:12,,,n x x x 的平均数为12nx x x n+++.20.35【解析】79+78+80+80+x+85+92+967=85解得x=5根据中位数为83可知y=3故yx=35 解析:【解析】,解得,根据中位数为,可知,故.三、解答题21.(1)30,10x y ==;2.3分钟;(2)1720. 【分析】(1)已知得25540,3060y x ++=+=,可求得,x y ,再运用1230325455100x y ⨯+⨯+⨯+⨯+⨯可估计顾客一次购物的结算时间的平均值;(2)利用古典概率公式可求得所求和概率. 【详解】(1)由已知得25540,3060y x ++=+=,解得30,10x y ==.该超市所以顾客一次购物的结算时间可视为一个总体,所收集的100位顾客一次购物的结算时间可视为一个容量为100的简单随机样本,顾客一次购物的结算时间的平均值可用样本平均数估计,其估计值为130230325410552.3100⨯+⨯+⨯+⨯+⨯=分钟.(2)记A 为事件“一位顾客一次购买的结算时间不超过3分钟”,12,A A 分别表示事件“该顾客一次购物的结算时间为4分钟”,“该顾客一次购物的结算时间为5分钟”,将频率视为概率得1210151(),()1001010020P A P A ====, 12()1()()P A P A P A =--11171102020=--=, 故一位顾客一次购物的结算时间不超过3分钟的概率为1720. 【点睛】本题考查数据的分析和处理,平均数的求得,以及古典概率的求法,属于中档题. 22.(1)120n =,0.035m =,年龄在[40,60)的人数为60(2)45【分析】(1)根据第一组的频数和频率可得n ,由所有频率和为1可得m ,再求得[40,60)间的频率后可得人数;(2)把第一组人数编号,如男性为1,x 2x ,女性为1,y 2,y 3,y 4y ,然后用列举法写出任取3人的所有基本事件及至少有两名女生的基本事件,计数后可得所求概率. 【详解】 (1)61200.00510n ==⨯,设第2组[30,40)的频率为f ,1(0.0050.010.020.03)100.35f =-+++⨯=, 所以0.350.03510m ==, 第3组和第4组的频率为0.03100.02100.5⨯+⨯=, 年龄在[40,60)的人数为1200.560⨯=;(2)记第1组中的男性为1,x 2x ,女性为1,y 2,y 3,y 4y ,随机抽取3名群众的基本事件是:()121,,,x x y ()122,,,x x y ()123,,,x x y ()124,,x x y ,()121,,,x y y ()132,,,x y y ()113,,,x y y ()141,,,x y y ()124,,,x y y ()134,,,x y y ()221,,,x y y ()232,,x y y ,()213,,,x y y ()241,,,x y y ()224,,,x y y ()234,,,x y y ()123,,,y y y ()124,,,y y y ()234,,,y y y ()134,,y y y 共20种;其中至少有两名女性的基本事件是:()121,,,x y y ()132,,,x y y ()113,,,x y y ()141,,,x y y ()124,,,x y y ()134,,,x y y ()221,,,x y y ()232,,,x y y ()213,,,x y y ()241,,,x x y ()244,,,x y y ()234,,,x y y ()123,,,y y y ()124,,,y y y ()234,,,y y y ()134,,y y y 共16种.所以至少有两名女性的概率为2164205P ==. 【点睛】本题考查频率分布直方图,考查古典概型.解题关键是掌握性质:频率分布直方图中所有频率(小矩形面积)之和为1. 23.见解析 【解析】试题分析:本题考查的知识点是设计程序框图解决实际问题,我们根据题目已知中分段函数的解析式y=1,0,0,0,1,0,x x x x x -+>⎧⎪=⎨⎪+<⎩ ,然后根据分类标准,设置两个判断框的并设置出判断框中的条件,再由函数各段的解析式,确定判断框的“是”与“否”分支对应的操作,由此即可写出算法. 试题因为函数是分段函数,故要先输入变量值,再进行判断,分别进行不同的计算. 算法如下: 第一步,输入x.第二步,若x>0,则令y=-x+1后执行第五步;否则执行第三步. 第三步,若x=0,则令y=0后执行第五步;否则执行第四步. 第四步,令y=x+1. 第五步,输出y 的值.点睛:分析题意,解答此类问题,可以依据已知的分段函数,将x 的取值范围作为条件设计算法;联系题设,依据不同x 的取值范围下对应不同的函数式结合算法的概念写出算法过程. 24.见解析 【解析】试题分析:(方法一)“主角”的所有生存机会共能承受8×5=40枪(第40枪被击中,则生命结束).设“主角”被击中枪数为i ,设计程序框图如图甲所示.(方法二)电脑中预设共承受枪数为40,“主角”的生存机会以“减数”计数,设计程序框图如图乙所示. 试题(方法一)“主角”的所有生存机会共能承受8×5=40枪(第40枪被击中,则生命结束).设“主角”被击中枪数为i ,程序框图如图甲所示.(方法二)电脑中预设共承受枪数为40,“主角”的生存机会以“减数”计数,程序框图如图乙所示.25.(1)ˆ 2.24yx =+;(2)19.4万亿吨. 【分析】(1)利用最小二乘法公式求回归直线的系()()()51521ˆiii ii x x y y bx x ==--=-∑∑,即可得答案;(2)将7x =代入回归方程ˆ 2.24yx =+,可得,ˆ19.4y =,即可得答案; 【详解】解:(1)由表中所给数据可得,91012118105x ++++==,2526312721265y ++++==,代入公式()()()51521ˆiii ii x x y y bx x ==--=-∑∑,解得ˆ 2.2b=,所以ˆˆ4a y bx =-=. 故所求的y 关于x 的线性回归直线方程为ˆ 2.24yx =+. (2)由题意,将7x =代入回归方程ˆ 2.24yx =+,可得,ˆ19.4y =. 所以预测2019年该地区的粮食产量大约为19.4万亿吨. 【点睛】本题考查利用最小二乘法求回归直线方程、回归方程进行预报,考查数据处理能力. 26.(1)0.1849.968y x =+;(2)所求回归直线方程是有效可靠的;(3)该果园预计收入25095.84元. 【分析】(1)求出x 的平均值x ,y 的平均值y ,再根据公式求出b 和a ,即可得出回归方程; (2)将88x =代入(1)中的回归方程,求出y ,然后用25.8y 和1比较即可判断;(3)将85x =代入回归方程估计出单价,即可计算出收入. 【详解】(1)由题意,得3848586878585x ++++==,16.818.820.822.82420.645y ++++==,则515222156169.655820.641840.1841782055810005i ii ii x y x yb xx ==-⋅-⨯⨯====-⨯-∑∑,20.640.184589.968a y bx =-=-⨯=,故所求回归方程为0.1849.968y x =+;(2)当88x =时,0.184889.96826.16y =⨯+=,所以26.1625.80.361-=<,所以所求回归直线方程是有效可靠的; (3)当85x =,0.184859.96825.608y =⨯+=, 所以25.60898025095.84⨯=(元), 所以该果园预计收入25095.84元.【点睛】本题考查回归方程的求法以及利用回归方程估计值,属于基础题.。

【人教版】高中数学必修三期末模拟试题附答案

【人教版】高中数学必修三期末模拟试题附答案

一、选择题1.七巧板是我们祖先的一项创造,被誉为“东方魔板”,它是由五块等腰直角三角形(两块全等的小三角形、一块中三角形和两块全等的大三角形)、一块正方形和一块平行四边形组成的.如图是一个用七巧板拼成的正方形,现从该正方形中任取一点,则此点取自黑色部分的概率是A.316B.38C.14D.182.袋中有白球2个,红球3个,从中任取两个,则互斥且不对立的两个事件是()A.至少有一个白球;都是白球B.两个白球;至少有一个红球C.红球、白球各一个;都是白球D.红球、白球各一个;至少有一个白球3.设袋中有80个红球,20个白球,若从袋中任取10个球,则其中恰好有6个白球的概率为()A.46801010100C CC⋅B.642081010C CC⋅C.462081010C CC⋅D.64801010100C CC⋅4.在编号分别为(0,1,2,,1)i i n=⋅⋅⋅-的n名同学中挑选一人参加某项活动,挑选方法如下:抛掷两枚骰子,将两枚骰子的点数之和除以n所得的余数如果恰好为i,则选编号为i 的同学.下列哪种情况是不公平的挑选方法()A.2n=B.3n=C.4n=D.6n=5.执行如图所示的程序框图,则输出的S=()A.1-B.2-C .2D .126.执行如图所示的程序框图,则输出的k 的值为( )A .3B .4C .5D .67.执行如下的程序框图,则输出的S 是( )A .36B .45C .36-D .45-8.执行如图的程序框图,如果输出a 的值大于100,那么判断框内的条件为( )A .5k <?B .5k ≥?C .6k <?D .6k ≥?9.2020年,一场突如其来的“新型冠状肺炎”使得全国学生无法在春季正常开学,不得不在家“停课不停学”.为了解高三学生居家学习时长,从某校的调查问卷中,随机抽取n 个学生的调查问卷进行分析,得到学生可接受的学习时长频率分布直方图(如下图所示),已知学习时长在[)9,11的学生人数为25,则n 的值为( )A .40B .50C .80D .10010.总体由编号为01,02,,29,30的30个个体组成,利用下面的随机数表选取4个个体.选取的方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出的第4个个体的编号为( ).7806 6572 0802 6314 2947 1821 98003204 9234 4935 3623 4869 6938 7481A .02B .14C .18D .2911.为了了解某社区居民是否准备收看电视台直播的“龙舟大赛”,某记者分别从社区60~70岁,40~50岁,20~30岁的三个年龄段中的128,192,x 人中,采用分层抽样的方法共抽出了30人进行调查,若60~70岁这个年龄段中抽查了8人,那么x 为( ) A .64B .96C .144D .16012.预测人口的变化趋势有多种方法,“直接推算法”使用的公式是()0 1nn P P k =+(1k >-),n P 为预测人口数,0P 为初期人口数,k 为预测期内年增长率,n 为预测期间隔年数.如果在某一时期有10k -<<,那么在这期间人口数 A .呈下降趋势B .呈上升趋势C .摆动变化D .不变二、填空题13.乒乓球赛规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换,每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,甲发球得1分的概率为35,乙发球得1分的概率为23,各次发球的胜负结果相互独立,甲、乙的一局比赛中,甲先发球.则开始第4次发球时,甲、乙的比分为1比2的概率为________.14.在区间[2,4]-上随机地取一个实数x ,若实数x 满足||x m ≤的概率为23,则m =_______.15.设每门高射炮命中飞机的概率为0.06,且每一门高射炮是否命中飞机是独立的,若有一敌机来犯,则需要______门高射炮射击,才能以至少99%的概率命中它. 16.已知某程序框图如图所示,则该程序运行后输出S 的值为__________.17.执行如图所示的程序框图,若输入的1,7S K ==则输出的k 的值为_______.18.如果执行如图的程序框图,那么输出的S =__________.19.已知某市A社区35岁至45岁的居民有450人,46岁至55岁的居民有750人,56岁至65岁的居民有900人.为了解该社区35岁至65岁居民的身体健康状况,社区负责人采用分层抽样技术抽取若干人进行体检调查,若从46岁至55岁的居民中随机抽取了50人,试问这次抽样调查抽取的人数是________人.20.目前北方空气污染越来越严重,某大学组织学生参加环保知识竞赛,从参加学生中抽取40名,将其成绩(均为整数)整理后画出的频率分布直方图如图,若从成绩是80分以上(包括80分)的学生中选两人,则他们在同一分数段的概率为_______.三、解答题21.党的十九大报告指出,要以创新理念提升农业发展新动力,引领经济发展走向更高形态.为进一步推进农村经济结构调整,某村举办水果观光采摘节,并推出配套乡村游项目现统计了4月份200名游客购买水果的情况,得到如图所示的频率分布直方图:(1)若将购买金额不低于80元的游客称为“水果达人”,现用分层抽样的方法从样本的“水果达人”中抽取5人,求这5人中消费金额不低于100元的人数;(2)从(1)中的5人中抽取2人作为幸运客户免费参加山村旅游项目,请列出所有的基本事件,并求2人中至少有1人购买金额不低于100元的概率; (3)为吸引顾客,该村特推出两种促销方案, 方案一:每满80元可立减8元;方案二:金额超过50元但又不超过80元的部分打9折,金额超过80元但又不超过100元的部分打8折,金额超过100元的部分打7折.若水果的价格为11元/千克,某游客要购买10千克,应该选择哪种方案更优惠.22.某学校为了了解高中生的艺术素养,从学校随机选取男,女同学各50人进行研究,对这100名学生在音乐、美术、戏剧、舞蹈等多个艺术项目进行多方位的素质测评,并把调查结果转化为个人的素养指标x 和y ,制成下图,其中“*”表示男同学,“+”表示女同学. 若00.6x <<,则认定该同学为“初级水平”,若0.60.8x ≤≤,则认定该同学为“中级水平”,若0.81x <≤,则认定该同学为“高级水平”;若100y ≥,则认定该同学为“具备一定艺术发展潜质”,否则为“不具备明显艺术发展潜质”.(1)从50名女同学的中随机选出一名,求该同学为“初级水平”的概率;(2)从男同学所有“不具备明显艺术发展潜质的中级或高级水平”中任选2名,求选出的2名均为“高级水平”的概率;(3)试比较这100名同学中,男、女生指标y 的方差的大小(只需写出结论). 23.编写程序计算98246++⋅⋅⋅++的值.24.已知某算法的程序框图如图所示,若将输出的(x ,y )值依次记为(x 1,y 1),(x 2,y 2),…,(x n ,y n ),… (1)若程序运行中输出的一个数组是(9,t ),求t 的值.(2)程序结束时,共输出(x ,y )的组数为多少? (3)写出程序框图的程序语句.25.某同学在生物研究性学习中,对春季昼夜温差大小与黄豆种子发芽多少之间的关系进行研究,于是他在4月份的30天中随机挑选了5天进行研究,且分别记录了每天昼夜温差与每天每100颗种子浸泡后的发芽数,得到如下资料: 日期 4月1日 4月7日 4月15日 4月21日 4月30日 温差x C ︒ 10 11 13 12 8 发芽数y 颗2325302616(1)从这5天中任选2天,若选取的是4月1日与4月30日的两组数据,请根据这5天中的另三天的数据,求出y 关于x 的线性回归方程y bx a =+;(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(1)中所得的线性回归方程是否可靠? 附:回归直线的斜率和截距的最小二乘估计公式分别为:()()()1122211nniii ii i nniii i x x y y x y nx yb x x xnx====---==--∑∑∑∑,a y bx =-.26.在社会实践活动中,“求知”小组为了研究某种商品的价格x (元)和需求量y (件)之间的关系,随机统计了11月1日至11月5日该商品价格和需求量的情况,得到如下资料: 日期 11月1日 11月2日 11月3日 11月4日 11月5日 x (元) 14 16 18 20 22 y (件)1210743该小组所确定的研究方案是:先从这五天中选取2天数据,用剩下的3天数据求线性回归方程,再对被选取的2天数据进行检验.(1)若选取的是11月1日与11月5日两天数据,请根据11月2日至11月4日的数据,求出y 关于x 的线性回归方程y bx a =+;(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2件,则认为得到的线性回归方程是可靠的,试问(1)中所得的线性回归方程是否可靠?参考公式:()()()1122211nniii ii i nniii i x x y y x y nx yb x x xnx====---==--∑∑∑∑,ay bx =-.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】设2AB =,则1BC CD DE EF ====. ∴1124BCI S ∆==,112242BCI EFGHS S ∆==⨯=平行四边形 ∴所求的概率为113422216P +==⨯ 故选A. 2.C解析:C 【分析】从装有3个红球和2个白球的红袋内任取两个球,所有的情况有3种:“2个白球”、“一个白球和一个红球”、“2个红球”.由于对立事件一定是互斥事件,且它们之中必然有一个发生而另一个不发生,结合所给的选项,逐一进行判断,从而得出结论. 【详解】从装有3个红球和2个白球的红袋内任取两个球,所有的情况有3种:“2个白球”、“一个白球和一个红球”、“2个红球”.由于对立事件一定是互斥事件,且它们之中必然有一个发生而另一个不发生, 对于A ,至少有1个白球;都是白球,不是互斥事件.故不符合.对于B 两个白球;至少有一个红球,是互斥事件,但也是对立事件,故不符合. 对于C 红球、白球各一个;都是白球是互斥事件,但不是对立事件,故符合. 对于D 红球、白球各一个;至少有一个白,不是互斥事件.故不符合. 故选:C .【点睛】本题主要考查互斥事件与对立事件的定义,意在考查学生对这些知识的理解掌握水平.3.C解析:C 【分析】根据古典概型的概率公式求解即可. 【详解】从袋中任取10个球,共有10100C 种,其中恰好有6个白球的有468020C C ⋅种即其中恰好有6个白球的概率为46208001010C C C ⋅ 故选:C 【点睛】本题主要考查了计算古典概型的概率,属于中档题.4.C解析:C 【分析】首先求出两枚骰子的点数之和可能的取值对应的概率,再分别讨论四个选项中n 的取值对应的余数的概率,若每一个余数的概率都相等则是公平的,若不相等则不公平,即可得正确选项. 【详解】由题意知两枚骰子的点数之和为X ,则X 可能为2,3,4,5,6,7,8,9,10,11,12,()1236P X ==, ()2336P X ==,()3436P X ==,()4536P X ==,()5636P X ==()6736P X ==,()5836P X ==,()4936P X ==,()31036P X ==,()21136P X ==,()11236P X ==, 对于选项A :2n =时,0,1,i = ()1351023636362P i ⎛⎫==++⨯= ⎪⎝⎭,()246421136363636362P i ==++++=,所以2n =是公平的,故选项A 不正确; 对于选项B :3n =时,0,1,2i =,()254110363636363P i ==+++=,()363113636363P i ==++=, ()145212363636363P i ==+++=,所以3n =是公平的,故选项B 不正确;对于选项C :4n =时,0,1,2,3i =()351103636364P i ==++=,()442136369P i ==+=, ()153123636364P i ==++=,()2625336363618P i ==++= 因为概率不相等,所以4n =不公平,故选项C 正确; 对于选项D :6n =时,0,1,2,3,4,5i =()511036366P i ==+=,()611366P i ===,()151236366P i ==+=, ()241336366P i ==+=,()331436366P i ==+=,()421536366P i ==+=,所以6n =是公平的,故选项D 不正确, 故选:C 【点睛】关键点点睛:本题解题的关键点是理解题意,对于所给n 的值的每一个余数出现的概率相等即为公平,不相等即为不公平.5.D解析:D 【分析】列举出前四次循环,可知,该算法循环是以3为周期的周期循环,利用周期性可得出输出的S 的值. 【详解】第一次循环,02020k =≤成立,1112S ==--,011k =+=; 第二次循环,12020k =≤成立,()11112S ==--,112k =+=;第三次循环,22020k =≤成立,12112S ==-,213k =+=;第四次循环,32020k =≤成立,1112S ==--,314k =+=; 由上可知,该算法循环是周期循环,且周期为3,依次类推,执行最后一次循环,20202020k =≤成立,且202036731=⨯+,此时12S =, 202012021k =+=,20212020k =≤不成立,跳出循环体,输出S 的值为12. 故选:D. 【点睛】本题考查利用程序框图计算输出结果,推导出循环的周期性是解题的关键,考查计算能力,属于中等题.6.C解析:C 【分析】根据框图模拟程序运算即可. 【详解】第一次执行程序,2111S =⨯-=,25S >-,继续循环,第二次执行程序,2k =,2121S =⨯-=-,25S >-,继续循环, 第三次执行程序,3k =,2(1)35S =⨯--=-,25S >-,继续循环, 第四次执行程序,4k =,2(5)414S =⨯--=-,25S >-,继续循环,第五次执行程序,5k =,2(14)532S =⨯--=-,25S <-,跳出循环,输出5k =,结束.故选C. 【点睛】本题主要考查了程序框图,涉及循环结构,解题关键注意何时跳出循环,属于中档题.7.A解析:A 【分析】列出每一步算法循环,可得出输出结果S 的值. 【详解】18i =≤满足,执行第一次循环,()120111S =+-⨯=-,112i =+=; 28i =≤成立,执行第二次循环,()221123S =-+-⨯=,213i =+=; 38i =≤成立,执行第三次循环,()323136S =+-⨯=-,314i =+=; 48i =≤成立,执行第四次循环,()4261410S =-+-⨯=,415i =+=; 58i =≤成立,执行第五次循环,()52101515S =+-⨯=-,516i =+=; 68i =≤成立,执行第六次循环,()62151621S =-+-⨯=,617i =+=; 78i =≤成立,执行第七次循环,()72211728S =+-⨯=-,718i =+=;88i =≤成立,执行第八次循环,()82281836S =-+-⨯=,819i =+=; 98i =≤不成立,跳出循环体,输出S 的值为36,故选A. 【点睛】本题考查算法与程序框图的计算,解题时要根据算法框图计算出算法的每一步,考查分析问题和计算能力,属于中等题.8.C解析:C 【解析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量a 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案. 【详解】由题意,模拟程序的运算,可得k 1=,a 1=满足判断框内的条件,执行循环体,a 6=,k 3= 满足判断框内的条件,执行循环体,a 33=,k 5= 满足判断框内的条件,执行循环体,a 170=,k 7= 此时,不满足判断框内的条件,退出循环,输出a 的值为170. 则分析各个选项可得程序中判断框内的“条件”应为k 6<? 故选:C . 【点睛】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.9.B解析:B 【分析】由频率分布直方图的性质,求得0.25x =,再结合频率分布直方图的频率的计算方法,即可求解. 【详解】由频率分布直方图的性质,可得()20.050.150.051x +++=,解得0.25x =, 所以学习时长在[)9,11的频率2520.5x n==,解得50n =. 故选:B . 【点睛】本题主要考查了频率分布直方图性质及其应用,其中解答中熟记频率分布直方图的性质是解答的关键,着重考查了数据分析能力,以及计算能力.10.D解析:D 【解析】分析:根据随机数表法则取数:取两个数,不小于30的舍去,前面已取的舍去. 详解:从表第1行5列,6列数字开始由左到右依次选取两个数字中小于30的编号为:08,02,14,29.∴第四个个体为29. 选D .点睛:本题考查随机数表,考查对概念基本运用能力.11.D【解析】 【分析】根据60~70岁这个年龄段中128人中抽查了8人,可知分层抽样的抽样比为81=12816,因为共抽出30人,所以总人数为3016=480⨯人,即可求出20~30岁年龄段的人数. 【详解】根据60~70岁这个年龄段中128人中抽查了8人,可知分层抽样的抽样比为81=12816, 因为共抽出30人,所以总人数为3016=480⨯人,所以,20~30岁龄段的人有480128192160--=,故选D. 【点睛】本题主要考查了分层抽样,抽样,样本容量,属于中档题12.A解析:A 【分析】可以通过n P 与0P 之间的大小关系进行判断. 【详解】当10k -<<时,()011011nk k <+<<+<,, 所以()001nn P P k P =+<,呈下降趋势. 【点睛】判断变化率可以通过比较初始值与变化之后的数值之间的大小来判断.二、填空题13.【分析】先确定比分为1比2时甲乙在三次发球比赛中得分情况再分别求对应概率最后根据互斥事件概率公式求结果【详解】比分为1比2时有三种情况:(1)甲第一次发球得分甲第二次发球失分乙第一次发球得分(2)甲 解析:2875【分析】先确定比分为1比2时甲乙在三次发球比赛中得分情况,再分别求对应概率,最后根据互斥事件概率公式求结果 【详解】比分为1比2时有三种情况:(1)甲第一次发球得分,甲第二次发球失分,乙第一次发球得分(2)甲第一次发球失分,甲第二次发球得分,乙第一次发球得分(3)甲第一次发球失分,甲第二次发球失分,乙第一次发球失分所以概率为3222322212855355355375⨯⨯+⨯⨯+⨯⨯= 【点睛】本题考查根据互斥事件概率公式求概率,考查基本分析求解能力,属中档题.14.2【分析】画出数轴利用满足的概率可以求出的值即可【详解】如图所示区间的长度是6在区间上随机地取一个数若满足的概率为则有解得故答案是:2【点睛】该题考查的是有关长度型几何概型的问题涉及到的知识点有长度解析:2 【分析】画出数轴,利用x 满足||x m ≤的概率,可以求出m 的值即可. 【详解】 如图所示,区间[2,4]-的长度是6,在区间[2,4]-上随机地取一个数x , 若x 满足||x m ≤的概率为23, 则有2263m =,解得2m =, 故答案是:2. 【点睛】该题考查的是有关长度型几何概型的问题,涉及到的知识点有长度型几何概型的概率公式,属于简单题目.15.【分析】设需要门高射炮由题意得出解出的取值范围可得出正整数的最小值【详解】设需要门高射炮则命不中的概率为由题意得出得解得而因此至少需要门高射炮故答案为:【点睛】本题考查独立事件概率乘法公式的应用在涉 解析:75【分析】设需要n 门高射炮,由题意得出()110.060.99n--≥,解出n 的取值范围,可得出正整数n 的最小值.【详解】设需要n 门高射炮,则命不中的概率为()10.06n-,由题意得出10.940.99n -≥,得0.940.01n ≤,解得0.942log 0.01lg 0.94n ≥=-,而274.43lg 0.94-≈,因此,至少需要75门高射炮. 故答案为:75. 【点睛】本题考查独立事件概率乘法公式的应用,在涉及“至少”问题时,可以利用对立事件的概率公式来进行计算,考查运算求解能力,属于中等题.16.【分析】执行程序框图依次写出每次循环得到的Si 的值当i =2019时不满足条件退出循环输出S 的值为【详解】执行程序框图有S =2i =1满足条件执行循环Si =2满足条件执行循环Si =3满足条件执行循环Si解析:12-【分析】执行程序框图,依次写出每次循环得到的S ,i 的值,当i =2019时,不满足条件2018i ≤退出循环,输出S 的值为12-. 【详解】 执行程序框图,有 S =2,i =1满足条件2018i ≤ ,执行循环,S 3=-,i =2 满足条件2018i ≤ ,执行循环,S 12=-,i =3 满足条件2018i ≤ ,执行循环,S 13=,i =4 满足条件2018i ≤ ,执行循环, S =2,i =5 …观察规律可知,S 的取值以4为周期,由于2018=504*4+2,故有: S 12=-, i =2019, 不满足条件2018i ≤退出循环,输出S 的值为12-, 故答案为12-. 【点睛】本题主要考查了程序框图和算法,其中判断S 的取值规律是解题的关键,属于基本知识的考查.17.5【分析】模拟执行程序框图依次写出每次循环得到的的值当时根据题意退出循环输出结果【详解】模拟执行程序框图可得;;;;此时退出循环输出结果故答案为5【点睛】该题考查的是有关程序框图的问题涉及到的知识点解析:5 【分析】模拟执行程序框图,依次写出每次循环得到的,S K 的值,当5,58S K ==时,根据题意,退出循环,输出结果. 【详解】模拟执行程序框图,可得1,7S K ==;771,688S K =⋅==;763,5874S K =⋅==;355,5468S K =⋅==; 此时,57810<,退出循环,输出结果, 故答案为5. 【点睛】该题考查的是有关程序框图的问题,涉及到的知识点有计算循环结构程序框图输出结果的问题,属于简单题目.18.42【分析】输入由循环语句依次执行即可计算出结果【详解】当时当时当时当时当时当时故答案为42【点睛】本题主要考查了程序框图中的循环语句的运算求出输出值较为基础解析:42 【分析】输入1k =,由循环语句,依次执行,即可计算出结果 【详解】当1k =时,0212S =+⨯= 当2k =时,021226S =+⨯+⨯= 当3k =时,021222312S =+⨯+⨯+⨯= 当4k =时,021********S =+⨯+⨯+⨯+⨯= 当5k =时,0212223242530S =+⨯+⨯+⨯+⨯+⨯= 当6k =时,021222324252642S =+⨯+⨯+⨯+⨯+⨯+⨯= 故答案为42 【点睛】本题主要考查了程序框图中的循环语句的运算,求出输出值,较为基础19.【解析】根据题意可得抽样比为则这次抽样调查抽取的人数是即答案为140 解析:140【解析】根据题意可得抽样比为501,75015= 则这次抽样调查抽取的人数是()114507509002100140,1515++=⨯= 即答案为140.20.【解析】设第二组及第五组数据对应矩形的高为a 则10×(a+0015+0025+0035+a+0005)=1解得a=0010故各组的频率依次为:010015025035010005∵前三组的累积频率为 解析:715【解析】设第二组及第五组数据对应矩形的高为a , 则10×(a+0.015+0.025+0.035+a+0.005)=1, 解得a=0.010,故各组的频率依次为:0.10,0.15,0.25,0.35,0.10,0.05, ∵前三组的累积频率为:0.10+0.15+0.25=0.50, 故这次环保知识竞赛成绩的中位数为70; 成绩在[80,90)段的人数有10×0.010×40=4人, 成绩在[90,100]段的人数有10×0.005×40=2人,从成绩是80分以上(包括80分)的学生中任选两人共有15种不同的基本事件, 其中他们在同一分数段的基本事件有:7, 故他们在同一分数段的概率为7.15故答案为:7 15.三、解答题21.(1)2;(2)710;(3)应该选择方案二更优惠. 【分析】(1)由题意可求出金额在[)80,100“水果达人”的人数30人和消费金额在[]100,120“水果达人”的人数20人,然后利用分层抽样的比求出5人中消费金额不低于100元的人数为20523020⨯=+人;(2)由(1)可知抽取的5人中消费金额在[)80,100的有3人,分别记为A ,B ,C ,消费金额在[]100,120的有2人,记为a ,b ,即可列出所有的基本事件共有10种,其中满足条件的有7种,从而可求出概率;(3)由题意可得该游客要购买110元水果,分别计算两种方案所需支付金额,即可得解. 【详解】解:(1)由图可知,消费金额在[)80,100“水果达人”的人数为:200200.007530⨯⨯=人, 消费金额在[]100,120“水果达人”的人数为:200200.00520⨯⨯=人,分层抽样的方法从样本的“水果达人”中抽取5人,这5人中消费金额不低于100元的人数为:20523020⨯=+人;(2)由(1)得,消费金额在[)80,100的3个“水果达人”记为A ,B ,C , 消费金额在[]100,120的2个“水果达人”记为a ,b , 所有基本事件有:(),A B ,(),A C ,(),B C ,(),A a ,(),A b ,(),B a ,(),B b ,(),C a ,(),C b ,(),a b 共10N =种,2人中至少有1人购买金额不低于100元的有7n =种, 所求概率为710n N ==. (3)依题可知该游客要购买110元的水果, 若选择方案一,则需支付()80830102-+=元,若选择方案二,则需支付50300.9200.8100.7100+⨯+⨯+⨯=元, 所以应该选择方案二更优惠. 【点睛】此题考查了频率分布直方图,古典概型,函数等基础知识,考查了数据分析能力,运算求解能力,考查了化归与转化思想,属于中档题. 22.(I ) 310P =.(Ⅱ)15P =.(Ⅲ)这100名同学中男同学指标y 的方差大于女同学指标y 的方差. 【分析】(I )由图知,在50名参加测试的女同学中,指标x <0.6的有15人,由此能求出该同学为“初级水平”的概率;(Ⅱ)利用古典概型概率公式即可得到结果;(Ⅲ)由图可知,这100名同学中男同学指标y 的方差大于女同学指标y 的方差. 【详解】(I )由图知,在50名参加测试的女同学中,指标0.6x <的有15人, 所以,从50名女同学中随机选出一名,该名同学为“初级水平”的概率为1535010P ==. (Ⅱ)男同学“不具备明显艺术发展潜质的中级或高级水平”共有6人,其中“中级水平”有3人,分别记为1A ,2A ,3A .“高级水平”有3人,分别记为1B ,2B ,3B ,所有可能的结果组成的基本事件有:{}12,A A ,{}13,A A ,{}11,A B ,{}12,A B ,{}13,A B ,{}23,A A ,{}21,A B ,{}22,A B ,{}23,A B ,{}31,A B ,{}32,A B ,{}33,A B ,{}12,B B ,{}13,B B ,{}23,B B ,共15个,其中两人均为“高级水平”的共有3个,所以,所选2人均为“高级水平”的概率31155P ==. (Ⅲ)由图可知,这100名同学中男同学指标y 的方差大于女同学指标y 的方差. 【点睛】本题考查概率的求法,考查列举法等基础知识,考查运算求解能力,考查函数与方程思想,是基础题. 23.答案详见解析. 【解析】 【分析】根据题干要求写出循环结构的程序即可. 【详解】 程序如下: i=2 sum=0 DO sum=sum+i i=i+2LOOP UNTIL i>98 PRINT sum END 【点睛】应用循环语句编写程序时需注意: ①循环语句中的循环变量一般要设初始值.②在循环过程中需要有“结束”的语句,程序中最忌“死循环”. 24.(1)-4;(2)1009;(3)答案见解析. 【解析】 试题分析:(1)利用所给的程序框图运行程序可得当x=9时,y=-4,则t 的值为-4. (2)结合程序的算法和循环结构的特点可知共输出(x ,y )的组数为1009;(3)将所给的程序框图翻译为算法语句,利用循环语句设计相应的程序即可,注意循环语句应设计为DO 语句的形式. 试题(1)由程序框图知,当x=1时,y=0; 当x=3时,y=-2; 当x=9时,y=-4,所以t=-4.(2)当n=1时,输出一对,当n=3时,又输出一对,…,当n=2 017时,输出最后一对,共输出(x ,y )的组数为20182=1 009.(3)程序框图的程序语句如下: x =1 y =0 n =1 DOPRINT (x ,y ) n =n +2 x =3*x y =y -2LOOP UNTIL n >2 017 END点睛:程序框图的条件结构和循环结构分别对应算法语句的条件语句和循环语句,两种语句的阅读理解是复习重点.输入、输出和赋值语句是任何一个算法必不可少的语句,一个语句可以输出多个表达式.在赋值语句中,一定要注意其格式的要求,如“=”的右侧必须是表达式,左侧必须是变量;一个语句只能给一个变量赋值;变量的值始终等于最近一次赋给它的值,先前的值将被替换. 25.(1)532y x =-;(2)线性回归方程是可靠的. 【分析】(1)根据最小二乘法公式,分别将数据代入计算,即可得答案;(2)选取的是4月1日与4月30日的两组数据,即10x =和8x =代入判断即可; 【详解】解:(1)由数据得12x =,27y =,3972x y =,23432x =; 又31977i i i x y ==∑,321434i i x ==∑;97797254344322b -==-,5271232a =-⨯=-;所以y 关于x 的线性回归方程为:532y x =-. (2)当10x =时,5103222y =⨯-=,22232-<; 当8x =时,583222y =⨯-=,17162-<, 所得到的线性回归方程是可靠的. 【点睛】本题考查最小二乘法求回归直线方程及利用回归方程进行判断拟合效果,考查数据处理能力,求解时注意回归直线必过样本点中心的应用. 26.(1) 1.534y x =-+;(2)详见解析. 【分析】(1)利用表中数据,分别求得:,x y ,再利用公式求得,b a ,然后写出回归直线方程即可. (2)根据(1)中的回归直线方程,令14x =, 22x =求得相应的y 值,再与实际值结合误差要求比较即可.【详解】由表中数据得: ()()1116182018,10747,33x y =++==++= 311610187204366ii i x y ==⨯+⨯+⨯=∑, 322221161820980i i x==++=∑,313222133663187 1.59803183i ii i i x y x y b x x==--⨯⨯===--⨯-∑∑, ()7 1.51834a y bx =-=--⨯=,所以y 关于x 的线性回归方程是 1.534y x =-+.(2)当14x =时, 1.5143413y =-⨯+=,131212-=<, 当22x =时, 1.522341y =-⨯+=,1322-=≤, 所以(1)中所得到的线性回归方程是可靠的.【点睛】本题主要考查回归直线方程的求法以及应用,还考查了运算求解的能力,属于中档题.。

【人教版】高中数学必修三期末一模试卷及答案

【人教版】高中数学必修三期末一模试卷及答案

一、选择题1.如图,,,A B C 表示三个开关,设在某段时间内它们正常工作的概率分别是0.9、0.8、0.7,那么该系统正常工作的概率是( ).A .0.994B .0.686C .0.504D .0.4962.口袋里装有大小相同的5个小球,其中2个白球,3个红球,现一次性从中任意取出3个,则其中至少有1个白球的概率为( ) A .910B .710C .310D .1103.如图,在圆心角为2π,半径为1的扇形中,在弦AB 上任取一点,则38AOC π∠≤的概率为( )A .14B .222C .34D .2 4.赵爽是三国时期吴国的数学家,他创制了一幅“勾股圆方图”,也称“赵爽弦图”,如图,若在大正方形内随机取-点,这一点落在小正方形内的概率为15,则勾与股的比为( )A .13B .12C 3D 2 5.执行如图所示的程序框图,则输出的a=( )A.-9 B.60 C.71 D.81 6.执行如图所示的程序框图,若输入10n=,则输出的结果是()A.11114135717P⎛⎫=-+-++⎪⎝⎭B.11114135719P⎛⎫=-+-+-⎪⎝⎭C.11114135721P⎛⎫=-+-+⋯+⎪⎝⎭D.11114135721P⎛⎫=-+-+-⎪⎝⎭7.《张丘建算经》中如下问题:“今有马行转迟,次日减半,疾五日,行四百六十五里,问日行几何?”根据此问题写出如下程序框图,若输出465S=,则输入m的值为()A.240 B.220 C.280 D.2608.执行如图的程序框图,则输出x的值是 ()A.2018B.2019C.12D.29.某赛季甲、乙两名篮球运动员每场比赛得分用茎叶图表示,茎叶图中甲得分的部分数据丢失(如图),但甲得分的折线图完好,则下列结论正确的是()A.甲得分的极差是11B.乙得分的中位数是18.5C.甲运动员得分有一半在区间[]20,30上D.甲运动员得分的平均值比乙运动员得分的平均值高10.总体由编号为01,02,,29,30的30个个体组成,利用下面的随机数表选取4个个体.选取的方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出的第4个个体的编号为().7806657208026314294718219800 3204923449353623486969387481A.02B.14C.18D.2911.甲、乙两名同学在五次数学考试中的成绩统计如下面的茎叶图所示,若甲、乙两人的平均成绩分别是1x,2x,观察茎叶图,下列结论正确的是()A .12x x <,乙比甲成绩稳定B .12x x >,乙比甲成绩稳定C .12x x <,甲比乙成绩稳定D .12x x >,甲比乙成绩稳定12.某校高一年级有学生1800人,高二年级有学生1500人,高三年级有1200人,为了调查学生的视力状况,采用分层抽样的方法抽取学生,若在抽取的样本中,高一年级的学生有60人,则该样本中高三年级的学生人数为( ) A .60B .50C .40D .30二、填空题13.疫情防控期间,口罩的需求量很大,某地区有A .B 两家小型口罩加工厂,A 厂每天生产口罩4万到6万只,B 厂每天生产口罩3万到5万只.某药店预计购进至少10万只口罩,那么,他可以去该地区购买到所需口罩的概率是________.14.某种产品每箱装6个,其中有4个合格,2个不合格,现质检人员从中随机抽取2个进行检测,则检测出至少有一个不合格产品的概率是_______.15.袋中有2个白球,1个红球,这些球除颜色外完全相同.现从袋中往外取球,每次任取1个记下颜色后放回,直到红球出现2次时停止,设停止时共取了X 次球,则(4)P X ==_______.16.执行如图所示的程序框图,若输入n 的值为8,则输出的s 的值为_____.17.右图程序框图的运行结果是____________________18.程序如下:以上程序输出的结果是_________________19.水痘是一种传染性很强的病毒性疾病,容易在春天爆发,武汉疾控中心为了调查某高校高一年级学生注射水痘疫苗的人数,在高一年级随机抽取了5个班级,每个班级的人数互不相同,若把每个班抽取的人数作为样本数据,已知样本平均数为5,样本方差为4,则样本数据中最大值为__________.20.某校对全校1200名男女学生进行健康调查,采用分层抽样法抽取一个容量为200的样本,已知女生抽了95人,则该校的男生数是__________.三、解答题21.2020年寒假,因为“新冠”疫情全体学生只能在家进行网上学习,为了研究学生网上学习的情况,某学校随机抽取100名学生对线上教学进行调查,其中男生与女生的人数之比为9:11,抽取的学生中男生有30人对线上教学满意,女生中有10名表示对线上教学不满意.(1)完成22列联表,并回答能否有90%的把握认为“对线上教学是否满意与性别有关”;满意不满意合计男生女生合计100(2)从被调查的对线上教学满意的学生中,利用分层抽样抽取5名学生,再在这5名学生中抽取2名学生,作线上学习的经验介绍,求其中抽取一名男生与一名女生的概率.附:22()()()()()n ad bcKa b c d a c b d-=++++.()2P K k≥0.150.100.050.0250.0100.0050.001 k 2.072 2.706 3.841 5.024 6.6357.87910.82 22.一个盒子里装有m个均匀的红球和n个均匀的白球,每个球被取到的概率相等,已知从盒子里一次随机取出1个球,取到的球是红球的概率为13,从盒子里一次随机取出2个球,取到的球至少有1个是白球的概率为10 11.(1)求m,n的值;(2)若一次从盒子里随机取出3个球,求取到的白球个数不小于红球个数的概率. 23.给出30个数:1,2,4,7,,其规律是:第1个数是1,第2个数比第1个数大1,第3个数比第2个数大2,第4个数比第3个数大3,以此类推,要计算这30个数的和,现已给出了解决该问题的算法框图(如图所示).(1)请在图中处理框内①处和判断框中的②处填上合适的语句,使之能完成该题算法功能;(2)根据算法框图写出算法语句.24.读下列程序,写出此程序表示的函数,并求当输出的6y=时,输入的x的值.25.某学校因为今年寒假延期开学,根据教育部的停课不停学指示,该学校组织学生线上教学,高一年级在线上教学一个月后,为了了解线上教学的效果,在线上组织了学生数学学科考试,随机抽取50名学生的成绩并制成频率分布直方图如图.(1)求m 的值并估计这50名学生的平均成绩;(2)估计高一年级所有学生数学成绩在[90,100)分与[)70,100分的学生所占的百分比. 26.全世界越来越关注环境保护问题,某监测站点于2016年8月某日起连续n 天监测空气质量指数(AQI ),数据统计如下: 空气质量指数(3/g m μ) 0-50 51-100 101-150 151-200 201-250 空气质量等级 空气优 空气良 轻度污染中度污染 重度污染 天数2040m105(1)根据所给统计表和频率分布直方图中的信息求出,n m 的值,并完成频率分布直方图;(2)在空气质量指数分别为51-100和151-200的监测数据中,用分层抽样的方法抽取5天,从中任意选取2天,求事件A “两天空气都为良”发生的概率.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】由题中意思可知,当A 、B 元件至少有一个在工作,且C 元件在工作时,该系统正常公式,再利用独立事件的概率乘法公式可得出所求事件的概率. 【详解】由题意可知,该系统正常工作时,A 、B 元件至少有一个在工作,且C 元件在元件, 当A 、B 元件至少有一个在工作时,其概率为()()110.910.80.98--⨯-=, 由独立事件的概率乘法公式可知,该系统正常工作的概率为0.980.70.686⨯=, 故选B . 【点睛】本题考查独立事件的概率乘法公式,解题时要弄清楚各事件之间的关系,在处理至少等问题时,可利用对立事件的概率来计算,考查计算能力,属于中等题.2.A解析:A 【分析】根据题意,求出总的基本事件数和至少有1个白球包含的基本事件数,然后利用古典概型的概率计算公式求解即可. 【详解】由题意可知,从5个大小相同的小球中,一次性任意取出3个小球包含的总的基本事件数为n =35C 10=,一次性任意取出的3个小球中,至少有1个白球包含的基本事件数为122123239m C C C C =+=,由古典概型的概率计算公式得,一次性任意取出的3个小球中,至少有1个白球的概率为910m P n ==. 故选:A 【点睛】 本题考查利用组合数公式和古典概型的概率计算公式求随机事件的概率;正确求出总的基本事件数和至少有1个白球包含的基本事件数是求解本题的关键;属于中档题、常考题型.3.D解析:D 【分析】由题意可知,38AOCπ∠的概率为AC AB,由题意结合平面几何知识求得1AC =,2AB =,则答案可求.【详解】 如图,4OAB π∠=,若38AOC π∠=,则33488ACO ππππ∠=--=, OAC ∴∆为等腰三角形,即1AC OA ==.在Rt AOB ∆中, 1OA OB ==,2AB ∴=.由测度比为长度比可得38AOC π∠的概率为222AC AB ==. 故选:D . 【点睛】本题考查几何概型,考查灵活变形能力,是中档题.4.B解析:B 【分析】分别求解出小正方形和大正方形的面积,可知面积比为15,从而构造方程可求得结果. 【详解】由图形可知,小正方形边长为b a -∴小正方形面积为:()2b a -,又大正方形面积为:2c()()2222222221115b a b a ab a b c a b a b b a--∴==-=-=+++,即:25a b b a ⎛⎫+= ⎪⎝⎭ 解得:12a b = 本题正确选项:B 【点睛】本题考查几何概型中的面积型的应用,关键是能够利用概率构造出关于所求量的方程.5.C解析:C 【分析】根据程序框图,模拟运算即可求解. 【详解】第一次执行程序后,1a =-,i=2; 第二次执行程序后,9a =-,i=3;第三次执行程序后,a=71,i=4>3,跳出循环,输出a=71. 故选:C 【点睛】本题主要考查了程序框图,循环结构,条件分支结构,属于中档题.6.B解析:B 【分析】按照程序框图运行程序,寻找规律,直到i n >输出结果即可. 【详解】按照程序框图运行程序,输入10n =,0S =,1i =,则1S =,2i =,不满足i n >,循环;113S =-,3i =,不满足i n >,循环;11135S =-+,4i =,不满足i n >,循环;以此类推,1111135719S =-+--⋅⋅⋅-,11=i ,满足i n >,则4P S =, 11114135719P ⎛⎫∴=-+--⋅⋅⋅- ⎪⎝⎭.故选:B . 【点睛】本题考查根据程序框图循环结构计算输出结果的问题,属于常考题型.7.A解析:A 【分析】根据程序框图,依次循环计算,可得输出的S 表达式.结合465S =,由等比数列求和公式,即可求得m 的值. 【详解】由程序框图可知,0,0S i ==,1S m i ==,22mS m i =+= ,324m mS m i =++= ,4248m m mS m i =+++= ,524816m m m mS m i =++++= 此时输出S .所以46524816m m m mm ++++= 即1111146524816m ⎛⎫++++= ⎪⎝⎭由等比数列前n 项和公式可得5112465112m ⎛⎫- ⎪⎝⎭⨯=- 解得240m = 故选:A 【点睛】本题考查了循环结构程序框图的应用,等比数列求和的应用,属于中档题.8.D解析:D 【分析】模拟执行程序框图,依次写出每次循环得到的x ,y 的值,当2019y = 时,不满足条件退出循环,输出x 的值即可得解. 【详解】解:模拟执行程序框图,可得2,0x y ==.满足条件2019y <,执行循环体,1,1x y =-=;满足条件2019y <,执行循环体,1,22x y == ; 满足条件2019y <,执行循环体,2,3x y ==;满足条件2019y <,执行循环体,1,4x y =-= ; …观察规律可知,x 的取值周期为3,由于20196733⨯=,可得: 满足条件2019y <,执行循环体,当2,2019x y == ,不满足条件2019y <,退出循环,输出x 的值为2. 故选D . 【点睛】本题主要考查了循环结构的程序框图,依次写出每次循环得到的x ,y 的值,根据循环的周期,得到跳出循环时x 的值是解题的关键.9.D解析:D 【分析】根据茎叶图和折线图依次判断每个选项得到答案. 【详解】A. 甲得分的极差是28919-=,A 错误;B. 乙得分的中位数是161716.52+=,B 错误; C. 甲运动员得分在区间[]20,30上有3个,C 错误; D. 甲运动员得分的平均值为:912131315202628178+++++++=,乙运动员得分的平均值为:914151617181920168+++++++=,故D 正确.故选:D . 【点睛】本题考查了茎叶图和折线图,意在考查学生的计算能力和理解能力.10.D解析:D 【解析】分析:根据随机数表法则取数:取两个数,不小于30的舍去,前面已取的舍去. 详解:从表第1行5列,6列数字开始由左到右依次选取两个数字中小于30的编号为:08,02,14,29.∴第四个个体为29. 选D .点睛:本题考查随机数表,考查对概念基本运用能力.11.A解析:A 【解析】 【分析】根据茎叶图中的数据,即可计算出两人平均分,再根据茎叶图的分布情况可知乙成绩稳定. 【详解】由茎叶图知, 甲的平均数是110210410511413391.65x ++++==,乙的平均数是2108115116122123116.85x ++++==,所以12x x <,从茎叶图上可以看出乙的数据比甲的数据集中,乙比甲成绩稳定 故选:A . 【点睛】本题考查茎叶图中两组数据的平均数和稳定程度,平均数要进行计算,稳定程度可通过计算方差或通过数据排布形状作出比较.12.C解析:C 【分析】设该样本中高三年级的学生人数为x ,则1800601200x=,解之即可 【详解】设该样本中高三年级的学生人数为x ,则1800601200x =,解得40x =, 故选C . 【点睛】本题考查了分层抽样方法的应用问题,属基础题.二、填空题13.【分析】设A 厂每天生产口罩x 万只B 厂每天生产口罩y 万只则画出可行域计算正方形与三角形面积利用几何概型求即可【详解】设A 厂每天生产口罩x 万只B 厂每天生产口罩y 万只则可行域面积为因为药店预计购进至少10解析:18【分析】设A 厂每天生产口罩x 万只, B 厂每天生产口罩y 万只,则4635x y ≤≤⎧⎨≤≤⎩,画出可行域,计算正方形与三角形面积,利用几何概型求即可. 【详解】设A 厂每天生产口罩x 万只, B 厂每天生产口罩y 万只,则4635x y ≤≤⎧⎨≤≤⎩,可行域面积为224⨯=,因为药店预计购进至少10万只,所以10x y +≥,满足条件的阴影部分面积为111122⨯⨯=, 所以可以去该地区购买到所需口罩的概率是11248=,故答案为:18.【点睛】本题主要考查几何概型求概率,考查了线性规划的应用,属于中档题.14.【分析】首先明确试验发生包含的事件是从6个产品中抽2个共有种结果满足条件的事件是检测出至少有一个不合格产品共有种结果根据古典概型概率公式得到结果【详解】由题意知本题是一个等可能事件的概率因为试验发生解析:35【分析】首先明确试验发生包含的事件是从6个产品中抽2个,共有26C 种结果,满足条件的事件是检测出至少有一个不合格产品,共有112242C C C +种结果,根据古典概型概率公式得到结果.【详解】由题意知本题是一个等可能事件的概率,因为试验发生包含的事件是6个产品中抽取2个,共有2615C =种结果, 满足条件的事件是检测出至少有一个不合格产品,共有1122429C C C +=种结果,所以检测出至少有一个不合格产品的概率是93155=, 故答案是:35. 【点睛】该题考查的是有关等可能事件的概率的求解问题,在解题的过程中,注意对试验所包含的基本事件数以及满足条件的基本事件数,以及概率公式,属于简单题目.15.【解析】【分析】由题意可知最后一次取到的是红球前3次有1次取到红球由古典概型求得概率【详解】由题意可知最后一次取到的是红球前3次有1次取到红球所以填【点睛】求古典概型的概率关键是正确求出基本事件总数解析:427 【解析】 【分析】由题意可知最后一次取到的是红球,前3次有1次取到红球,由古典概型求得概率。

高中数学人教版必修三期末试卷

高中数学人教版必修三期末试卷

高二测试卷一、选择题(3*12=36)1、儿子的身高和父亲的身高是: ( )(A)确定性关系 (B) 相关关系 (C)函数关系 (D)无任何关系2、任何一个算法都必须有的基本结构是().A顺序结构 B 条件结构 C 循环结构 D 三个都有3.有20位同学,编号从1至20,现在从中抽取4人作问卷调查,用系统抽样方法确定所抽的编号为( )A.5,10,15,20B.2,6,10,14C.2,4,6,8D.5,8,11,144.有一农场种植一种水稻在同一块稻田中连续8年的年平均产量如下:(kg)450 430 460 440 450 440 470 460则其方差为( )A.120B.80C.15D.1505.在10枝铅笔中,有8枝正品和2枝次品,从中不放回地任取2枝,至少取到1枝次品的概率是( )A. B. C.D.6.下列给出的赋值语句中正确的是().A.4M B.M M C.3B A D.0x y7.阅读右面的流程图,若输入的a、b、c分别是21、32、75,则开始输入a,b,cx:=aa:=cc:=bb:=x输出a,b,c结束装订线输出的a、b、c分别是:A.75、21、32 B.21、32、75 C.32、21、75 D.75、32、21 8、甲、乙两位同学都参加了由学校举办的篮球比赛,它们都参加了全部的7场比赛,平均得分均为16分,标准差分别为 5.09和3.72,则甲、乙两同学在这次篮球比赛活动中,发挥得更稳定的是A、甲B、乙C、甲、乙相同D、不能确定9、甲、乙、丙三名同学站成一排,甲站在中间的概率是A、16 B、12C、13D、2310.用“辗转相除法”求得459和357的最大公约数是().A.3 B.9 C.17 D.5111.同时向上抛100个铜板,落地时100个铜板朝上的面都相同,你认为对这100个铜板下面情况更可能正确的是()A.这100个铜板两面是一样的B.这100个铜板两面是不同的C.这100个铜板中有50个两面是一样的,另外50个两面是不相同的D.这100个铜板中有20个两面是一样的,另外80个两面是不相同的12.设,A B为两个事件,且3.0AP,则当()时一定有7.0BP A.A与B互斥 B.A与B对立C.BAD.A不包含B 二、填空题(3*4=12)13.为了了解1200名学生对学校某项教改试验的意见,打算从中抽取一个容量为40的样本,考虑用系统抽样,则分段的间隔k为______14.掷两枚骰子,出现点数之和为3的概率是____。

【人教版】高中数学必修三期末模拟试卷(及答案)

【人教版】高中数学必修三期末模拟试卷(及答案)

一、选择题1.从单词“book ”的四个字母中任取2个,则取到的2个字母不相同的概率为( )A .13B .12C .23D .342.如图,在圆心角为2π,半径为1的扇形中,在弦AB 上任取一点,则38AOC π∠≤的概率为( )A .14B .222C .34D .223.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如40337=+.(注:如果一个大于1的整数除1和自身外无其他正因数,则称这个整数为素数.)在不超过11的素数中,随机选取2个不同的数,其和小于等于10的概率是( ) A .12B .13C .14D .154.素数指整数在一个大于1的自然数中,除了1和此整数自身外,不能被其他自然数整除的数。

我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果。

哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如1037=+。

在不超过15的素数中,随机选取两个不同的数,其和小于18的概率是( ) A .15B .1115C .35D .135.执行如图所示的程序框图,若输入10n =,则输出的结果是( )A.11114135717P⎛⎫=-+-++⎪⎝⎭B.11114135719P⎛⎫=-+-+-⎪⎝⎭C.11114135721P⎛⎫=-+-+⋯+⎪⎝⎭D.11114135721P⎛⎫=-+-+-⎪⎝⎭6.如图所示的程序框图输出的结果是()A.34 B.55 C.78 D.89 7.某程序框图如图所示,该程序运行后输出S的值是()A .910B .1011C .1112D .1118.执行如图所示的程序框图,若输人的n 值为2019,则S =A .B .C .D .9.一组数据的平均数为m ,方差为n ,将这组数据的每个数都加上(0)a a >得到一组新数据,则下列说法正确的是( ) A .这组新数据的平均不变 B .这组新数据的平均数为am C .这组新数据的方差为2a n D .这组新数据的方差不变10.已知某8个数的平均数为3,方差为2,现加入一个新数据3,此时这9个数的平均数为x ,方差为2s ,则( ) A .3x =,22s < B .3x =,22s > C .3x >,22s <D .3x >,22s >11.某产品的广告费用x 与销售额y 的统计数据如下表:根据上表可得回归方程ˆˆˆybx a =+中的ˆb 为9.4,据此模型预报广告费用为6万元时销售额为( ) A .61.5万元B .62.5万元C .63.5万元D .65.0万元12.有一个同学家开了一个小卖部,他为了研究气温对热饮销售的影响,经统计,得到一个卖出的热饮杯数与当天气温的对比表:根据上表数据确定的线性回归方程应该是( )A .ˆ 2.352147.767yx =-+ B .ˆ 2.352127.765yx =-+ C .ˆ 2.35275.501yx =+D .ˆ 2.35263.674yx =+ 二、填空题13.古代“五行”学说认为:“物质分金、木、水、火、土五种属性,金克木,木克土,土克水,水克火,火克金”,从五种不同属性的物质中随机抽取两种,则抽取的两种物质不相克的概率为_________14.天气预报说,在今后的三天中,每一天下雨的概率均为40%.现采用随机模拟试验的方法估计这三天中恰有两天下雨的概率:先利用计算器产生0到9之间取整数值的随机数,用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨;再以每三个随机数作为一组,代表这三天的下雨情况.经随机模拟试验产生了如下20组随机数: 488 932 812 458 989 431 257 390 024 556 734 113 537 569 683 907 966 191 925 271据此估计,这三天中恰有两天下雨的概率近似为__________.15.甲、乙两人玩猜数字游戏,先由甲心中任想一个数字,记为a ,再由乙猜甲刚才想的数字,把乙猜的数字记为b ,且,{0,1,2,,9}a b ∈.若||1a b -,则称甲乙“心有灵犀”.现任意找两人玩这个游戏,则这两人“心有灵犀”的概率为______. 16.某程序框图如图所示,则执行该程序后输出的结果是_______.17.执行下面的程序框图,若输入的a ,b ,k 分别为1,2,3,则输出的M =_____18.根据如图所示算法流程图,则输出S 的值是__.19.设一个回归方程为0.4 1.8y x =-,则当25x =时,y 的估计值是_______. 20.能够说明“若甲班人数为m ,平均分为a ;乙班人数为n n m ≠(),平均分为b ,则甲乙两班的数学平均分为2a b+”是假命题的一组正整数a ,b 的值依次为_____. 三、解答题21.为了解中学生课余观看热门综艺节目“爸爸去哪儿”是否与性别有关,某中学一研究性学习小组从该校学生中随机抽取了n 人进行问卷调查.调查结果表明:女生中喜欢观看该节目的占女生总人数的34,男生喜欢看该节目的占男生总人数的13.随后,该小组采用分层抽样的方法从这n 份问卷中继续抽取了5份进行重点分析,知道其中喜欢看该节目的有3人.(1) 现从重点分析的5人中随机抽取了2人进行现场调查,求这两人都喜欢看该节目的概率;(2) 若有99%的把握认为“爱看该节目与性别有关”,则参与调查的总人数n 至少为多少? 参考数据:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.22.为响应国家“精准扶贫、精准脱贫”的号召,某贫困县在精准推进上下功夫,在精准扶贫上见实效.根据当地气候特点大力发展中医药产业,药用昆虫的使用相应愈来愈多,每年春暖以后到寒冬前,昆虫大量活动与繁殖,易于采取各种药用昆虫.已知一只药用昆虫的产卵数y (单位:个)与一定范围内的温度x (单位:℃)有关,于是科研人员在3月份的31天中随机选取了5天进行研究,现收集了该种药物昆虫的5组观察数据如表:(1)从这5天中任选2天,记这2天药用昆虫的产卵数分别为m ,n ,求“事件m ,n 均不小于24”的概率?(2)科研人员确定的研究方案是:先从这5组数据中任选2组,用剩下的3组数据建立线性回归方程,再对被选取的2组数据进行检验.①若选取的是3月2日与3月30日这2组数据,请根据3月7日、15日和22日这三组数据,求出y 关于x 的线性回归方程?②若由线性回归方程得到的估计数据与所选出的检验数据的差的绝对值均不超过2个,则认为得到的线性回归方程是可靠的,试问①中所得的线性回归方程是否可靠?附公式:ˆybx a =+,()()()121niii nii x x y y b x x ==--=-∑∑23.给出求满足不等式122010n ++⋅⋅⋅+>的最小正整数n 的一种算法,并作出程序框图.24.设计程序求π的近似值可以用公式:2222π1116123=+++…+21n ,用此公式求2π6,即逐项进行累加,直到21n<0.000 01为止(该项不累加),然后求出π的近似值.25.为了解某市家庭用电量的情况,该市统计局调查了100户居民去年一年的月均用电量,发现他们的用电量都在50kW·h至350kW·h之间,进行适当分组后,画出频率分布直方图如图所示.(I)求a的值;(Ⅱ)求被调查用户中,用电量大于250kW·h的户数;(III)为了既满足居民的基本用电需求,又提高能源的利用效率,市政府计划采用阶梯定价,希望使80%的居民缴费在第一档(费用最低),请给出第一档用电标准(单位:kW·h)的建议,并简要说明理由.26.某学校进行体验,现得到所有男生的身高数据,从中随机抽取50人进行统计(已知这50个身高介于155cm到195cm之间),现将抽取结果按如下方式分成八组:第一组[155,160),第二组[160,165),...,第八组[190,195],并按此分组绘制如图所示的频率分布直方图,其中第六组[180,185)和第七组[185,190)还没有绘制完成,已知第一组与第八组人数相同,第六组和第七组人数的比为5:2.(1)补全频率分布直方图;(2)根据频率分布直方图估计这50位男生身高的中位数;(3)用分层抽样的方法在身高为[170,180]内抽取一个容量为5的样本,从样本中任意抽取2位男生,求这两位男生身高都在[175,180]内的概率.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】从四个字母中取2个,列举出所有的基本事件,即得所求的概率. 【详解】从四个字母中取2个,所有的基本事件为:,,,bo bk oo ok ,共有4个; 其中“取到的2个字母不相同”含有,,bo bk ok 3个, 故所求概率为34. 故选:D. 【点睛】本题考查古典概型,属于基础题.2.D解析:D 【分析】由题意可知,38AOCπ∠的概率为AC AB,由题意结合平面几何知识求得1AC =,2AB =,则答案可求.【详解】 如图,4OAB π∠=,若38AOC π∠=,则33488ACO ππππ∠=--=, OAC ∴∆为等腰三角形,即1AC OA ==.在Rt AOB ∆中, 1OA OB ==,2AB ∴=.由测度比为长度比可得38AOC π∠的概率为2AC AB ==. 故选:D . 【点睛】本题考查几何概型,考查灵活变形能力,是中档题.3.A解析:A 【分析】先列出不超过11的素数,再列举出随机选取2个不同的数的情况,进而找到和小于等于10的情况,即可求解 【详解】不超过11的素数有:2,3,5,7,11,共有5个, 随机选取2个不同的数可能为:()2,3,()2,5,()2,7,()2,11,()3,5,()3,7,()3,11,()5,7,()5,11,()7,11,共有10种情况, 其中和小于等于10的有:()2,3,()2,5,()2,7,()3,5,()3,7,共有5种情况, 则概率为51102P , 故选:A 【点睛】本题考查列举法求古典概型的概率,属于基础题4.B解析:B 【分析】找出不超过15的素数,从其中任取2个共有多少种取法,找到取出的两个和小于18的个数,根据古典概型求解即可. 【详解】不超过15的素数为2,3,5,7,11,13,共6个,任取2个分别为2,3(),2,5(),2,7(),2,11(),2,13(),3,5(),3,7(),3,11(),3,13(),5,7(),5,11(),5,13(),7,11(),7,13(),11,13(),共15个基本事件,其中两个和小于18的共有11个基本事件,根据古典概型概率公式知1115P=. 【点睛】本题主要考查了古典概型,基本事件,属于中档题.5.B解析:B 【分析】按照程序框图运行程序,寻找规律,直到i n >输出结果即可.【详解】按照程序框图运行程序,输入10n =,0S =,1i =,则1S =,2i =,不满足i n >,循环;113S =-,3i =,不满足i n >,循环;11135S =-+,4i =,不满足i n >,循环;以此类推,1111135719S =-+--⋅⋅⋅-,11=i ,满足i n >,则4P S =, 11114135719P ⎛⎫∴=-+--⋅⋅⋅- ⎪⎝⎭.故选:B . 【点睛】本题考查根据程序框图循环结构计算输出结果的问题,属于常考题型.6.B解析:B 【分析】通过不断的循环赋值,得到临界值,即可得解. 【详解】1,1,21,2,32,3,53,5,85,8,138,13,2113,21,3421,34,55x y z x y z x y z x y z x y z x y z x y z x y z ========================不满足50z ≤,输出即可, 故选:B. 【点睛】本题考查了程序框图循环结构求输出结果,考查了计算能力,属于中当题.7.B解析:B 【分析】模拟程序运行后,可得到输出结果,利用裂项相消法即可求出答案. 【详解】模拟程序运行过程如下: 0)1,0kS,判断为否,进入循环结构,1)110,2122S k =+==⨯,判断为否,进入循环结构,2)11,3223S k =+=⨯,判断为否,进入循环结构, 3)111,422334S k =++=⨯⨯,判断为否,进入循环结构, …… 9)111,10223910S k =+++=⨯⨯,判断为否,进入循环结构, 10)1111,112239101011S k =++++=⨯⨯⨯,判断为是, 故输出1112231011S =+++⨯⨯111111101122310111111=-+-++-=-=, 故选:B. 【点睛】本题主要考查程序框图,考查裂项相消法,难度不大.一般遇见程序框图求输出结果时,常模拟程序运行以得到结论.8.B解析:B 【分析】根据程序框图可知,当时结束计算,此时.【详解】计算过程如下表所示:周期为6 n 2019k 1 2 (2018)2019S…k<n 是是是是否【点睛】本题考查程序框图,选用表格计算更加直观,此题关键在于判断何时循环结束.9.D解析:D 【分析】考查平均数和方差的性质,基础题. 【详解】设这一组数据为()1,n X a a =,由()()E X a E X a +=+,()()D X a D X +=,故选:D .【点睛】本题主要考查方差的性质,考查了运算能力,属于容易题.10.A解析:A 【分析】由题意计算出加入新数据后的平均数,然后比较方差 【详解】()18138x x +⋯+=, ()181339x x +⋯++=, 3x ∴=,由方差的定义可知加入新数据3,样本数据会变得更加稳定 故22s < 故选A 【点睛】本题主要考查了加入数据后平均数和方差的变化,代入公式计算出结果,较为基础11.C解析:C 【分析】先求出所给数据的平均数,得到样本中心点,根据回归直线经过样本中心点,求出ˆa,得到线性回归方程,把6x =代入即可求出答案. 【详解】 由题意知4235 3.54x +++==,44253754404y +++==, 则40ˆˆ9.4 3.57.1ay bx =-=-⨯=, 所以回归方程为9.4.1ˆ7yx =+, 则广告费用为6万元时销售额为9.467.163.5⨯+=, 故答案为C. 【点睛】本题考查了线性回归方程的求法与应用,属于基础题.12.A解析:A 【解析】分析:先观察表中数据的规律,确定回归系数b 的符号,再计算x 和y ,代入选项确定正确答案.详解:由表中数据规律发现:热饮杯数y 随当天气温x 升高而减少,则0b <,排除C 、D.计算1169=(504712151923273136)1111x-++++++++++=11228=(15615013212813011610489937654)111.64 1111y++++++++++=≈将x代入选项A,得1692.352147.767111.6311ˆy=-⨯+=将x代入选项B,得1692.352127.76591.6311ˆy=-⨯+=所以选项A正确.故选A.点睛:本题考查线性回归方程的求法与应用,一次项系数b符号的判断和回归直线过样本中心点(,)x y是解题关键.二、填空题13.【解析】五种抽出两种的抽法有种相克的种数有5种故不相克的种数有5种故五种不同属性的物质中随机抽取两种则抽取的两种物质不相克的概率是故答案为解析:1 2【解析】五种抽出两种的抽法有2510C=种,相克的种数有5种,故不相克的种数有5种,故五种不同属性的物质中随机抽取两种,则抽取的两种物质不相克的概率是12,故答案为12.14.3【分析】在20组随机数中表示三天中恰有两天下雨的可以通过列举得到共6组随机数根据概率公式得到结果【详解】由题意知模拟三天的下雨情况经随机模拟产生了20组随机数在20组随机数中表示三天中恰有两天下雨解析:3【分析】在20组随机数中表示三天中恰有两天下雨的可以通过列举得到共6组随机数,根据概率公式,得到结果.【详解】由题意知模拟三天的下雨情况,经随机模拟产生了20组随机数,在20组随机数中表示三天中恰有两天下雨的有:932、812、024、734、191、271,共6组随机数,∴所求概率为60.320P==.故答案为:0.3【点睛】本题主要考查了模拟方法估计概率,解题主要依据是等可能事件的概率,注意列举法在本题的应用,属于中档题.15.【分析】由题意知本题是一个古典概型从0~9中任意取两个数(可重复)共有100种取法列出满足所有可能情况代入公式得到结果【详解】从0~9中任意取两个数(可重复)共有100种取法则的情况有:共有28种所 解析:725【分析】由题意知本题是一个古典概型,从0~9中任意取两个数(可重复)共有100种取法,列出满足||1a b -所有可能情况,代入公式得到结果。

【人教版】高中数学必修三期末一模试卷含答案

【人教版】高中数学必修三期末一模试卷含答案

一、选择题1.已知点(,)P x y 满足||||2x y +≤,则到坐标原点O 的距离1d ≤的点P 的概率为( ) A .16π B .8π C .4π D .2π 2.据《孙子算经》中记载,中国古代诸侯的等级从低到高分为:男、子、伯、侯、公,共五级,若给获得巨大贡献的7人进行封爵,要求每个等级至少有一人,至多有两人,则伯爵恰有两人的概率为( ) A .310B .25C .825D .353.如图,一个边长为2的正方形里有一个月牙形的图案,为了估算这个月牙形图案的面积,向这个正方形里随机投入500粒芝麻,经过统计,落在月牙形图案内的芝麻有150粒,则这个月牙图案的面积约为( )A .35B .45C .1D .654.甲乙两艘轮船都要在某个泊位停靠,甲停靠的时间为4小时,乙停靠的时间为6小时,假定他们在一昼夜的时间段中随机到达,则这两艘船停靠泊位时都不需要等待的概率为( ) A .916B .58C .181288D .5125.阅读下面的框图,运行相应的程序,输出S 的值为________.A.2 B.4 C.-4 D.-8 6.执行如图所示的程序框图,则输出S的值为()A.-1010 B.-1009 C.1009 D.1010 7.若执行如图所示的程序框图,则输出S的值为()A .9-B .16-C .25-D .36-8.执行如图所示的程序框图,若输入的,a b 的值分别为1,2,则输出的S 是( )A .70B .29C .12D .59.某商场为了了解毛衣的月销售量y (件)与月平均气温x (C ︒)之间的关系,随机统计了某4个月的月销售量与当月平均气温,其数据如下表: 月平均气温x C ︒171382月销售量y (件)24334055由表中数据算出线性回归方程y bx a =+中的2b =-,气象部门预测下个月的平均气温为6C ︒,据此估计该商场下个月毛衣销售量约为( )A .58件B .40件C .38件D .46件10.某农业科学研究所分别抽取了试验田中的海水稻以及对照田中的普通水稻各10株,测量了它们的根系深度(单位:cm ),得到了如图所示的茎叶图,其中两竖线之间表示根系深度的十位数,两边分别是海水稻和普通水稻根系深度的个位数,则下列结论中不正确的是( )A .海水稻根系深度的中位数是45.5B .普通水稻根系深度的众数是32C .海水稻根系深度的平均数大于普通水稻根系深度的平均数D .普通水稻根系深度的方差小于海水稻根系深度的方差11.下表是某两个相关变量x ,y 的几组对应数据,根据表中提供的数据,求出y 关于x 的线性回归方程ˆ0.70.35yx =+,那么表中t 的值为( ) x 3 4 5 6 y2.5t44.5A .3B .3.15C .3.5D .4.512.为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下: 父亲身高x (cm )174176176176178儿子身高y (cm )175175176177177则y 对x 的线性回归方程为 A .y = x-1B .y = x+1C .y =88+12x D .y = 176二、填空题13.将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是________.14.口袋里装有1红,2白,3黄共6个形状相同的小球,从中取出2球,事件A =“取出的两球同色”,B =“取出的2球中至少有一个黄球”,C =“取出的2球至少有一个白球”,D “取出的两球不同色”,E =“取出的2球中至多有一个白球”.下列判断中正确的序号为________.①A 与D 为对立事件;②B 与C 是互斥事件;③C 与E 是对立事件:④()1P CE =;⑤()()P B P C =.15.某同学进行投篮训练,在甲、乙、丙三个不同的位置投中的概率分别13,12,p ,该同学站在这三个不同的位置各投篮一次,恰好投中两次的概率为718,则p 的值为_____. 16.运行下边的流程图,输出的结果是__________.17.执行如图所示的程序框图,若输出的结果是5,则判断框内的取值范围是________________.18.某程序流程框图如图所示,现执行该程序,输入下列函数()2sin3f x x π=, ()2cos3f x x π=,()4tan 3f x x π=,则可以输出的函数是()f x =__________.19.玉林市有一学校为了从254名学生选取部分学生参加某次南宁研学活动,决定采用系统抽样的方法抽取一个容量为42的样本,那么从总体中应随机剔除的个体数目为__________. 20.下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;②设有一个回归方程ˆ35yx =-,若变量x 增加一个单位时,则y 平均增加5个单位; ③线性回归方程^^^y b x a =+所在直线必过(),x y ; ④曲线上的点与该点的坐标之间具有相关关系;⑤在一个22⨯列联表中,由计算得213.079K =,则其两个变量之间有关系的可能性是0090.其中错误的是________.三、解答题21.某大学综合评价面试测试中,共设置两类考题:A 类题有4个不同的小题,B 类题有3个不同的小题.某考生从中任抽取3个不同的小题解答. (1)求该考生至少抽取到2个A 类题的概率;(2)设所抽取的3个小题中B 类题的个数为X ,求随机变量X 的分布列与均值. 22.在这智能手机爆发的时代,大部分高中生都有手机,在手机面前,有些学生无法抵御手机尤其是手机游戏和短视频的诱惑,从而导致无法专心完成学习任务,成绩下滑;但是对于自制力强,能有效管理自己的学生,手机不仅不会对他们的学习造成负面影响,还能成为他们学习的有力助手,我校某研究型学习小组调查研究“中学生使用智能手机对学习的影响部分统计数据如下表:不使用手机 使用手机 合计 学习成绩优秀人数 28 12 40 学习成绩不优秀人数 14 26 40 合计423880参考数据:22()()()()()n ad bc K a c b d a b c d -=++++,其中n a b c d =+++.()20P K k ≥ 0.10 0.05 0.025 0.010 0.005 0.001 0k2.7063.8415.0246.6357.87910.828(1)试根据以上数据,运用独立性检验思想,指出有多大把握认为中学生使用手机对学习有影响?(2)研究小组将该样本中不使用手机且成绩优秀的同学记为A 组,使用手机且成绩优秀的同学记为B 组,计划从A 组推选的4人和B 组推选的2人中,随机挑选两人来分享学习经验,求挑选的两人中一人来自A 组、另一人来自B 组的概率.23.已知某算法的程序框图如图所示,若将输出的(x ,y)值依次记为(x 1,y 1),(x 2,y 2),…,(x n ,y n ),….(1)若程序运行中输出的一个数组是(9,t),求t 的值; (2)程序结束时,共输出(x ,y)的组数为多少; (3)写出程序框图的程序语句.24.给出30个数:1,2,4,7,,其规律是:第1个数是1,第2个数比第1个数大1,第3个数比第2个数大2,第4个数比第3个数大3,以此类推,要计算这30个数的和,现已给出了解决该问题的算法框图(如图所示).(1)请在图中处理框内①处和判断框中的②处填上合适的语句,使之能完成该题算法功能;(2)根据算法框图写出算法语句.25.2018年8月8日是我国第十个全民健身日,其主题是:新时代全民健身动起来.某市为了解全民健身情况,随机从某小区居民中抽取了40人,将他们的年龄分成7段:[10,20),[20,30),[30,40),[40,50),[50,60),[60,70),[70,80]后得到如图所示的频率分布直方图.(1)试求这40人年龄的平均数的估计值;(2)(i)若从样本中年龄在[50,70)的居民中任取2人赠送健身卡,求这2人中至少有1人年龄不低于60岁的概率;(ⅱ)已知该小区年龄在[10,80]内的总人数为2000,若18岁以上(含18岁)为成年人,试估计该小区年龄不超过80岁的成年人人数.26.某校为了了解甲、乙两班的数学学习情况,从两班各抽出10名学生进行数学水平测试,成绩如下(单位:分):甲班:82848589798091897974乙班:90768681848786828583(1)求两个样本的平均数; (2)求两个样本的方差和标准差; (3)试分析比较两个班的学习情况.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】作出图象,得到点P 的坐标围成的图形是以原点为中心的边长为22正方形,到坐标原点O 的距离1d ≤的点P 围成的图形是以原点为圆心,半径为1的圆,由此利用几何概型能求出到坐标原点O 的距离1d ≤的点P 的概率. 【详解】点(),P x y 满足2x y +≤,∴当0x ≥,0y ≥时,2x y +≤;当0x ≥,0y ≤时,2x y -≤; 当0x ≤,0y ≥时,2x y -+≤; 当0x ≤,0y ≤时,2x y --≤. 作出图象,得到点P 的坐标围成的图形是以原点为中心的边长为2正方形,到坐标原点O 的距离1d ≤的点P 围成的图形是以原点为圆心,半径为1的圆,∴到坐标原点O 的距离1d ≤的点P 的概率为:282222S p S π===⨯圆正方形.故选:B . 【点睛】本题考查概率的求法,几何概型等基础知识,考查运算求解能力,是中档题.2.B解析:B 【分析】根据部分平均分组分配的方法可求得分法总数和伯爵恰有两人的分法数,根据古典概型概率公式可求得结果. 【详解】7人进行封爵,每个等级至少一人,至多两人,则共有2211225575327555322322C C C C C C A A A A A ⋅=种分法;其中伯爵恰有两人的分法有2211142247532247543232C C C C C A C C A A A ⋅=种分法, ∴伯爵恰有两人的概率2247542257552225C C A p C C A A ==.故选:B . 【点睛】本题考查数学史与古典概型概率问题的求解,关键是能够利用排列组合中不平均分组分配的方法确定分法总数和符合题意的分法数.3.D解析:D 【分析】利用与面积有关的几何概型概率计算公式求解即可. 【详解】由题可知,正方形的面积为=22=4S ⨯正,设这个月牙图案的面积为S , 由与面积有关的几何概型概率计算公式可得,向这个正方形里随机投入芝麻,落在月牙形图案内的概率为150=4500S S P S ==正,解得65S =. 故选:D 【点睛】本题考查与面积有关的几何概型概率计算公式;属于基础题、常考题型.4.C解析:C 【分析】设甲、乙到达的时间分别为,x y ,列出所有基本事件的约束条件,同时列出两艘船停靠泊位时都不需要等待的约束条件,利用线性规划做出平面区域,利用几何概型概率关系转化为面积比. 【详解】设甲、乙到达的时间分别为,x y ,则所有基本事件的构成的区域024{|}024x x y ≤≤⎧Ω=⎨≤≤⎩, 则这两艘船停靠泊位时都不需要等待包含的基本事件构成的区域024024{(,)|}46x y A x y y x x y ≤≤⎧⎪≤≤⎪=⎨≥+⎪⎪≥+⎩,做出Ω构成的区域,其面积为224=576,阴影部分为集合A 构成的区域,面积为221(2018)3622+=, 这两艘船停靠泊位时都不需要等待的概率362181()576288P A ==. 故选:C.【点睛】本题考查利用线性规划做出事件对应的平面区域,再利用几何概型概率公式求出事件的概率,属于中档题.5.C解析:C 【解析】执行程序一次,8,2s n =-=,执行第二次,4,1s n =-=,满足判断框条件,跳出循环,输出4s =-,故选C.6.D解析:D 【分析】根据程序框图,先计算出N 和T 的含义,再根据S N T =-即可求得输出值.或利用等差数列的求和公式求解. 【详解】依题意:得1352019N =+++⋯+,02462018T =++++⋯+. 解法一:(10)(32)(54)(20192018)1010S N T =-=-+-+-++-=,故选:D.解法二:(12019)1010101010102N +⨯==⨯,(02018)1010100910102T +⨯==⨯,所以10101010101010091010(10101009)1010S N T =-=⨯-⨯=⨯-=,故选:D. 【点睛】本题考查了程序框图的简单应用,数列求和公式的应用,属于中档题.7.D解析:D 【分析】执行循环结构的程序框图,逐次运算,根据判断条件终止循环,即可得到运算结果,得到答案. 【详解】由题意,执行循环结构的程序框图,可知:第一次运行时,1(1)11,0(1)1,3T S n =-=-=+-=-=•; 第二次运行时,3(1)33,1(3)4,5T S n =-=-=-+-=-=•; 第三次运行时,5(1)55,4(5)9,7T S n =-=-=-+-=-=•; 第四次运行时,7(1)77,9(7)16,9T S n =-=-=-+-=-=•; 第五次运行时,9(1)99,16(9)25,11T S n =-=-=-+-=-=•; 第六次运行时,11(1)1111,25(11)36T S =-=-=-+-=-•, 此时刚好满足9n >,所以输出S 的值为36-.故选D. 【点睛】本题主要考查了循环结构的程序框图的计算与输出问题,其中解答中熟练应用给定的程序框图,逐次运算,根据判断条件,终止循环得到结果是解答的关键,着重考查了推理与运算能力,属于基础题.8.B解析:B 【分析】此程序框图是循环结构图,模拟程序逐层判断,得出结果. 【详解】 解: 模拟程序:,,a b n 的初始值分别为1,2,4,第1次循环:s 1225=+⨯=,,,a 2b 5n 3===,不满足2n <; 第2次循环:s 22512=+⨯=,,,a 5b 12n 2===,不满足2n <; 第3次循环:s 521229=+⨯=,,,a 12b 29n 1===,满足2n <,故输出29S =. 故选B. 【点睛】本题考查了程序框图的循环结构,解题的关键是要读懂循环结构的流程图,根据判断框内的条件逐步解题.9.D解析:D 【解析】试题分析:由表格得(),x y 为:()10,38,因为(),x y 在回归方程y bx a =+上且2b =-,()38102a ∴=⨯-+,解得58a =∴2ˆ58y x =-+,当6x =时,26ˆ5846y=-⨯+=,故选D. 考点:1、线性回归方程的性质;2、回归方程的应用.10.D解析:D 【分析】选项A 求出海水稻根系深度的中位数是444745.52+=,判断选项A 正确;选项B 写出普通水稻根系深度的众数是32,判断选项B 正确;选项C 先求出海水稻根系深度的平均数,再求出普通水稻根系深度的平均数,判断选项C 正确;选项D 先求出普通水稻根系深度的方差,再求出海水稻根系深度的方差,判断选项D 错误. 【详解】解:选项A :海水稻根系深度的中位数是444745.52+=,故选项A 正确; 选项B :普通水稻根系深度的众数是32,故选项B 正确;选项C :海水稻根系深度的平均数393938434447495050514510+++++++++=,普通水稻根系深度的平均数252732323436384041453510+++++++++=,故选项C 正确;选项D :普通水稻根系深度的方差2222222211[(3845)(3945)(3945)(4345)(4445)(4745)(4945)(5045)10S =-+-+-+-+-+-+-+-+, 海水稻根系深度的方差2222222221[(2535)(2735)(3235)(3235)(3435)(3635)(3835)(4035)(10S =-+-+-+-+-+-+-+-+,故选项D 错误 故选:D. 【点睛】本题考查根据茎叶图求中位数、众数、平均数、方差,是基础题.11.A解析:A 【分析】计算得到 4.5x =,114t y +=,代入回归方程计算得到答案. 【详解】3456 4.54x +++==, 2.54 4.51144t t y ++++==,中心点(),x y 过ˆ0.70.35yx =+, 即114.50.70.354t +=⨯+,解得3t =. 故选:A . 【点睛】本题考查了回归方程的相关问题,意在考查学生的计算能力.12.C解析:C 【详解】试题分析:由已知可得176,176x y ==∴中心点为()176,176, 代入回归方程验证可知,只有方程y =88+12x 成立,故选C 二、填空题13.【解析】基本事件总数为36点数之和小于10的基本事件共有30种所以所求概率为【考点】古典概型【名师点睛】概率问题的考查侧重于对古典概型和对立事件的概率的考查属于简单题江苏对古典概型概率的考查注重事件解析:56【解析】基本事件总数为36,点数之和小于10的基本事件共有30种,所以所求概率为305.366= 【考点】古典概型【名师点睛】概率问题的考查,侧重于对古典概型和对立事件的概率的考查,属于简单题.江苏对古典概型概率的考查,注重事件本身的理解,淡化计数方法.因此先明确所求事件本身的含义,然后一般利用枚举法、树形图解决计数问题,而当正面问题比较复杂时,往往利用对立事件的概率公式进行求解.14.①④【分析】在①中由对立事件定义得与为对立事件;有②中与有可能同时发生;在③中与有可能同时发生;在④中(C )(E );在⑤中从而(B )(C )【详解】口袋里装有1红2白3黄共6个形状相同小球从中取出2球解析:①④ 【分析】在①中,由对立事件定义得A 与D 为对立事件;有②中,B 与C 有可能同时发生;在③中,C 与E 有可能同时发生;在④中,()P CUE P =(C )P +(E )()1P CE -=;在⑤中C B ≠,从而P (B )P ≠(C ).【详解】口袋里装有1红,2白,3黄共6个形状相同小球,从中取出2球, 事件A = “取出的两球同色”, B = “取出的2球中至少有一个黄球”,C = “取出的2球至少有一个白球”,D “取出的两球不同色”,E = “取出的2球中至多有一个白球”,①,由对立事件定义得A 与D 为对立事件,故①正确;②,B 与C 有可能同时发生,故B 与C 不是互斥事件,故②错误; ③,C 与E 有可能同时发生,不是对立事件,故③错误;④,P (C )631=155=-,P (E )1415=,8()15P CE =,从而()P CE P =(C )P +(E )()1P CE -=,故④正确;⑤,C B ≠,从而P (B )P ≠(C ),故⑤错误. 故答案为:①④. 【点睛】本题考查命题真假的判断,是基础题,考查对立互斥事件,解题时要认真审题,注意对立事件、互斥事件等基本概念的合理运用.15.【分析】在甲乙丙处投中分别记为事件恰好投中两次为事件发生由此利用相互独立事件概率乘法公式能求出结果【详解】在甲乙丙处投中分别记为事件ABC 恰好投中两次为事件发生故恰好投中两次的概率P (1)解得p 故答解析:23【分析】在甲、乙、丙处投中分别记为事件A ,B ,C ,恰好投中两次为事件ABC ,ABC ,ABC 发生,由此利用相互独立事件概率乘法公式能求出结果.【详解】在甲、乙、丙处投中分别记为事件A ,B ,C , 恰好投中两次为事件ABC ,ABC ,ABC 发生, 故恰好投中两次的概率P ()1111113232p p ⎛⎫=⨯⨯-+⨯-⨯+ ⎪⎝⎭(113-)17218p ⨯⨯=, 解得p 23=. 故答案为:23.【点睛】本题考查概率的求法,考查相互独立事件概率乘法公式等基础知识,考查运算求解能力,是基础题.16.94【解析】不成立执行不成立执行成立所以输出解析:94 【解析】3,3311050a a =∴=⨯+=>不成立,执行31013150a =⨯+=>,不成立, 执行33119450a =⨯+=>,成立, 所以输出94.a =17.【详解】试题分析:若输出的结果是5那么说明循环运行了4次因此判断框内的取值范围是考点:程序框图 解析:【详解】试题分析:若输出的结果是5,那么说明循环运行了4次,.因此判断框内的取值范围是.考点:程序框图.18.【分析】根据得知函数的图象关于点对称由可得知函数的周期为于此可在题中三个函数中找出合乎条件的函数作出输出结果【详解】可知函数的图象关于点对称由得所以函数的周期为由三角函数的周期公式可知函数和的最小正解析:()2cos 3f x x π=. 【分析】根据()302f x f x ⎛⎫+--= ⎪⎝⎭得知函数()y f x =的图象关于点3,04⎛⎫- ⎪⎝⎭对称,由()f x + 302f x ⎛⎫+= ⎪⎝⎭可得知函数()y f x =的周期为3,于此可在题中三个函数中找出合乎条件的函数作出输出结果. 【详解】()302f x f x ⎛⎫+--= ⎪⎝⎭,可知函数()y f x =的图象关于点3,04⎛⎫- ⎪⎝⎭对称,由()302f x f x ⎛⎫++= ⎪⎝⎭,得()3322f x f x f x ⎛⎫⎛⎫+=-=- ⎪ ⎪⎝⎭⎝⎭,所以函数()y f x =的周期为3.由三角函数的周期公式可知,函数()2sin3f x x π=和()2cos 3f x x π=的最小正周期为3,函数()4tan3f x x π=的最小正周期为34,不合乎要求; 对于函数()2sin 3f x x π=,323sin sin 04342f ππ⎡⎤⎛⎫⎛⎫-=⨯-=-≠ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦;对于函数()2cos3f x x π=,323cos cos 04342f ππ⎡⎤⎛⎫⎛⎫⎛⎫-=⨯-=-= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,合乎题意. 所以,函数()2cos3f x x π=的图象关于点3,04⎛⎫- ⎪⎝⎭对称, 故输出的函数为()2cos 3f x x π=,故答案为()2cos 3f x x π=. 【点睛】本题考查程序框图,考查三角函数的周期性和对称性,能根据抽象函数关系式得出函数的基本性质,是解本题的关键,属于中等题.19.2【解析】【分析】根据系统抽样的概念结合可得最后结果为2【详解】学生总数不能被容量整除根据系统抽样的方法应从总体中随机剔除个体保证整除∵故应从总体中随机剔除个体的数目是2故答案为2【点睛】本题主要考解析:2 【解析】 【分析】根据系统抽样的概念结合2544262=⨯+,可得最后结果为2. 【详解】学生总数不能被容量整除,根据系统抽样的方法,应从总体中随机剔除个体,保证整除. ∵2544262=⨯+,故应从总体中随机剔除个体的数目是2,故答案为2. 【点睛】本题主要考查系统抽样,属于基础题;从容量为N 的总体中抽取容量为n 的样本,系统抽样的前面两个步骤是:(1)将总体中的N 个个体进行编号;(2)当Nn为整数时,抽样距即为N n ;当N n 不是整数时,从总体中剔除一些个体,使剩下的总体中的个体的个数N '能被n 整除.20.②④⑤【解析】分析:根据方程性质回归方程性质及其含义卡方含义确定命题真假详解:由方差的性质知①正确;由线性回归方程的特点知③正确;回归方程若变量增加一个单位时则平均减少5个单位;曲线上的点与该点的坐解析:②④⑤【解析】分析:根据方程性质、回归方程性质及其含义、卡方含义确定命题真假. 详解:由方差的性质知①正确;由线性回归方程的特点知③正确;回归方程ˆ35yx =-中若变量x 增加一个单位时,则y 平均减少5个单位; 曲线上的点与该点的坐标之间不一定具有相关关系;在一个22⨯列联表中,由计算得213.079K =,只能确定两个变量之间有相关关系的可能性,所以②④⑤均错误.点睛:本题考查方程性质、回归方程性质及其含义、卡方含义,考查对基本概念理解与简单应用能力.三、解答题21.(1)2235;(2)分布列见解析,97EX = 【分析】(1)利用古典概率与互斥事件概率计算公式即可得出.(2)设所抽取的3个小题中B 类题的个数为X ,则X 的取值为0,1,2,3.利用超几何分布列计算公式即可得出. 【详解】(1)该考生至少抽取到2个A 类题的概率213434372235P +==. (2)设所抽取的3个小题中B 类题的个数为X ,则X 的取值为0,1,2,3.34374(0)35P X ===, 21433718(1)35P X ===, 12433712(2)35P X ===, 33371(3)35P X ===, ∴随机变量X 的分布列为:均值0123353535357EX =⨯+⨯+⨯+⨯=. 【点睛】本题考查古典概率与互斥事件概率计算公式、超几何分布列计算公式及其数学期望计算公式,考查推理能力与计算能力. 22.(1)99.5%;(2)815. 【分析】(1)根据22⨯列联表中的数据,代入卡方计算,即可求解; (2)根据古典概型,列出基本时间,根据概率公式,即可求解. 【详解】 (1)根据公式得2280(28261412)9.8257.87942384040K ⨯⨯-⨯==≥⨯⨯⨯.所以有99.5%的把握认为中学生使用手机对学习有影响.(2)记A 组推选的4人为a ,b ,c ,d ,B 组推选的2人为e ,f , 则从这6人中任取两人有15种取法:()()()()(),,,,,a b a c a d a e a f ()()()(),,,,b c b d b e b f ()()()c,,,d c e c f ()(),,d e d f(),e f其中一人来自A 组、另一人来自B 组有8种取法, 故概率为815p =. 【点睛】本题考查(1)独立性检验(2)古典概型概率计算,考查计算能力,属于中等题型. 23.(1)-4;(2)1008;(3)详见解析. 【解析】 【分析】(1)根据程序框图的运算流程,依次求解x =1,x =3,x =9时y 的值,即可得t 的值; (2)根据程序框图的运算流程,当n =1时,输出第1对,当n =3时,输出第2对,…,以此类推,已知求到当n =2015时,即可确定输出的组数. (3)程序框图利用DO LOOP UNTIL 语句写出程序语句即可. 【详解】(1)开始x =1时,y =0;接着x =3,y =-2;然后x =9,y =-4,所以t =-4. (2)当n =1时,输出一对, 当n =3时,又输出一对,…, 当n =2015时,输出最后一对,由上可知,程序循环变量n 的初值为1,终值为2015,步长为2故循环共执行(2015﹣1)÷2+1=1008次共输出(x,y)的组数为1 008.(3)程序框图的程序语句如下:【点睛】本题考查解决程序框图中的循环结构时,常采用框图的流程写出前几次循环的结果,找规律,属于中档题.24.(1) ①处应填;②处应填 (2)见解析【解析】分析:(1)由已知中程序的功能是给出个数,其规律是:第个数是;第个数是;第个数比第个数大,第个数比第大,,依次类推,要计算区间个数的和,可以根据循环此时,循环变量的初值、步长计算出循环变量的终值,得到①中的条件;再根据累加的变化规律,得到②中累加通项的表达式;(2)利用直到型循环结构,写出程序.详解:(1)因为是求30个数的和,故循环体应执行30次,其中是计数变量,因此判断框内的条件就是限制计数变量的,故应为,算法中的变量实质是表示参与求和的各个数,由于它也是变化的,且满足第个数比其前一个数大,第个数比其前一个数大,故应有,故①处应填;②处应填.(2)根据框图,写出算法如下:点睛:本题主要考查了直到型的循环结构的算法框图,解答中循环体的循环次数=(循环终值-初值)+步长+1,确定循环的次数,其中循环次数、终值、初值、步长中,能知道其中的三个可求解另一个,对于循环结构的程序框图,判断框内的内容容易出错,做题时要注意,同时注意循环点所在的位置.25.(1)37;(2)(ⅰ)35;(ⅱ)1760. 【分析】 (1)用每组数据中间点值乘以频率相加即得;(2)(i )年龄在[50,70)的人有6人,其中年龄在[50,60)的有4人,6人分别编号后用列举法写出任选2人的所有基本事件,同时得出至少有1人年龄不低于60岁的基本事件,计数后可得概率;(ⅱ)求出18岁以上的居民所占频率即可得.【详解】解:(1)平均数()150.15250.2350.3450.15550.165750.0537x =⨯+⨯+⨯+⨯+⨯++⨯=.(2)(ⅰ)样本中,年龄在[50,70)的人共有40×0.15=6人,其中年龄在[50,60)的有4人,设为a ,b ,c ,d ,年龄在[60,70)的有2人,设为x ,y .则从中任选2人共有如下15个基本事件:(a ,b ),(a ,c ),(a ,d ),(a ,x ),(a ,y ),(b ,c ),(b ,d ),(b ,x ),(b ,y ),(c ,d ),(c ,x ),(c ,y ),(d ,x ),(d ,y ),(x ,y ).至少有1人年龄不低于60岁的共有如下9个基本事件:(a ,x ),(a ,y ),(b ,x ),(b ,y ),(c ,x ),(c ,y ),(d ,x ),(d ,y ),(x ,y ).记“这2人中至少有1人年龄不低于60岁”为事件A ,故所求概率()93155P A ==. (ⅱ)样本中年龄在18岁以上的居民所占频率为1-(18-10)×0.015=0.88, 故可以估计,该小区年龄不超过80岁的成年人人数约为2000×0.88=1760.【点睛】本题考查频率分布直方图,考查古典概型,考查频率分布直方图的应用,考查了学生的数据处理能力,运算求解能力,属于中档题.26.(1)=83.2x 甲,=84x 乙;(2)22=26.36=13.2S S 甲乙,,=5.13S 甲,=3.63S 乙;(3)乙班的总体学习情况比甲班好【解析】试题分析:每组样本数据有10个,求样本的平均数利用平均数公式,10个数的平均数等于这10个数的和除以10;比较平均分的大小可以看出两个班学生平均水平的高低,求样本的方差只需使用方差公式,求这10个数与平均数的差的平方方和再除以10;比较两组数据方差的大小就可得出两组数据的标准差的大小,标准差较小者成绩较稳定 . 试题 (1)x 甲=110×(82+84+85+89+79+80+91+89+79+74)=83. 2, x 乙=110×(90+76+86+81+84+87+86+82+85+83)=84.(2)2S 甲=110×[(82-83. 2)2+(84-83. 2)2+(85-83. 2)2+(89-83. 2)2+(79-83. 2)2+(80-83. 2)2+(91-83. 2)2+(89-83. 2)2+(79-83. 2)2+(74-83. 2)2]=26. 36, 2S 甲=110[(90-84)2+(76-84)2+(86-84)2+(81-84)2+(84-84)2+(87-84)2+(86-84)2+(82-84)2+(85-84)2+(83-84)2]=13. 2,则s 甲,s 乙≈3. 63.(3)由于x x <甲乙,则甲班比乙班平均水平低.由于S S >甲乙,则甲班没有乙班稳定. 所以乙班的总体学习情况比甲班好【点睛】怎样求样本的平均数,n 个数的平均数等于这n 个数的和除以n ;比较平均数的大小可以看出两个样本平均水平的高低,怎样求样本的方差,就是求这n 个数与平均数的差的平方方和再除以n ;比较两组数据方差的大小就可得出两组数据的标准差的大小,标准差较小者成绩较稳定 .。

【人教版】高中数学必修三期末试卷及答案

【人教版】高中数学必修三期末试卷及答案

一、选择题1.如图,,,A B C表示三个开关,设在某段时间内它们正常工作的概率分别是0.9、0.8、0.7,那么该系统正常工作的概率是().A.0.994 B.0.686 C.0.504 D.0.4962.如图是一边长为8的正方形苗圃图案,中间黑色大圆与正方形的内切圆共圆心,圆与圆之间是相切的,且中间黑色大圆的半径是黑色小圆半径的2倍.若在正方形图案上随机取一点,则该点取自黑色区域的概率为()A.8πB.16πC.18π-D.116π-3.如图所示,已知圆1C和2C的半径都为2,且1223C C=,若在圆1C或2C中任取一点,则该点取自阴影部分的概率为()A33533π+B33533π+C331033π+D331033π+4.在二项式42nxx的展开式,前三项的系数成等差数列,把展开式中所有的项重新排成一列,有理项都互不相邻的概率为()A.16B.14C.512D.135.在如图所示的程序框图中,若函数12log(),?0 ()2,?0xx xf xx-<⎧⎪=⎨⎪≥⎩,则输出的结果是()A.16B.8C.162D.826.某程序框图如图所示,该程序运行后输出S的值是()A.910B.1011C.1112D.1117.如图给出的是计算1111246102+++⋅⋅⋅+的值的一个程序框图,其中判断框中应填入的是()A .102i >B .102i ≤C .100i >D .100i ≤8.执行如图所示的程序框图,若输入的6n =,则输出S =A .514B .13C .2756D .3109.某教研机构随机抽取某校20个班级,调查各班关注汉字听写大赛的学生人数,根据所得数据的茎叶图,以组距为5将数据分组成[)[)[)[)[)[)[)[]0,5,5,10,10,15,15,20,20,25,25,30,30,35,35,40时,所作的频率分布直方图如图所示,则原始茎叶图可能是( )A .B .C.D.10.学校为了解新课程标准提升阅读要求对学生阅读兴趣的影响情况,随机抽取了100名学生进行调查.根据调查结果绘制学生周末阅读时间的频率分布直方图如图所示:将阅读时间不低于30分钟的观众称为“阅读霸”,则下列命题正确的是()A.抽样表明,该校有一半学生为阅读霸B.该校只有50名学生不喜欢阅读C.该校只有50名学生喜欢阅读D.抽样表明,该校有50名学生为阅读霸11.以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x,y的值分别为()A.2,5 B.5,5 C.5,8 D.8,812.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况. 下列叙述中正确的是()A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C.甲车以80千米/小时的速度行驶1小时,消耗10升汽油D.某城市机动车最高限速80千米/小时. 相同条件下,在该市用丙车比用乙车更省油二、填空题13.某种饮料每箱装6听,若其中有2听不合格,质检员从中随机抽出2听,则含有不合格品的概率为________.14.重庆一中高一,高二,高三的模联社团的人数分别为25,15,10,现采用分层抽样的方法从中抽取部分学生参加模联会议,已知在高二年级和高三年级中共抽取5名同学,若从这5名同学中再随机抽取2名同学承担文件翻译工作,则抽取的两名同学来自同一年级的概率为__________.15.甲乙两艘轮船都要在某个泊位停靠8个小时,假定它们在一昼夜的时间段内随机地到达,则两船中有一艘在停靠泊位时、另一艘船必须等待的概率为______.16.某程序框图如图所示,则该程序运行后输出的S的值为________.17.执行如图所示的程序框图,若输入n的值为8,则输出的s的值为_____.18.执行下面的程序框图,如果输入的0.02t =,则输出的n =_______________.19.某公司的广告费支出x 与销售额y (单位:万元)之间有下列对应数据:由资料显示y 对x 呈线性相关关系。

【人教版】高中数学必修三期末模拟试卷带答案

【人教版】高中数学必修三期末模拟试卷带答案

一、选择题1.2019年5月22日具有“国家战略”意义的“长三角一体化”会议在芜潮举行,长三角城市群包括,上海市以及江苏省、浙江省、安徽省三省部分城市,简称“三省一市".现有4名高三学生准备高考后到上海市、江苏省、浙江省、安徽省四个地方旅游,假设每名同学均从这四个地方中任意选取一个去旅游则恰有一个地方未被选中的概率为( ) A .2764B .916C .81256D .7162.如图,在圆心角为2π,半径为1的扇形中,在弦AB 上任取一点,则38AOC π∠≤的概率为( )A .14B .222C .34D .223.已知0.5log 5a =、3log 2b =、0.32c =、212d ⎛⎫= ⎪⎝⎭,从这四个数中任取一个数m ,使函数()32123x mx x f x =+++有极值点的概率为( ) A .14B .12C .34D .14.现有10个数,它们能构成一个以1为首项,3-为公比的等比数列,若从这个10个数中随机抽取一个数,则它小于8的概率是( ) A .710B .35C .12D .255.给出一个算法的程序框图如图所示,该程序框图的功能是( )A .求出,,a b c 三数中的最小数B .求出,,a b c 三数中的最大数C .将,,a b c 从小到大排列D .将,,a b c 从大到小排列6.在如图所示的程序框图中,若函数12log (),?0()2,?0x x x f x x -<⎧⎪=⎨⎪≥⎩,则输出的结果是( )A .16B .8C .162D .827.鸡兔同笼,是中国古代著名的趣味题之一.《孙子算经》中就有这样的记载:今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各有几何?设计如右图的算法来解决这个问题,则判断框中应填入的是( )A .94m >B .94m =C .35m =D .35m ≤8.读下面的程序:上面的程序在执行时如果输入6,那么输出的结果为() A .6B .720C .120D .50409.从两个班级各随机抽取5名学生测量身高(单位:cm ),甲班的数据为169,162,150,160,159,乙班的数据为180,160,150,150,165.据此估计甲、乙两班学生的平均身高x 甲,x 乙及方差2s 甲,2s 乙的关系为( )A .x 甲>x 乙,2s 甲>2s 乙B .x 甲>x 乙,2s 甲<2s 乙C .x 甲<x 乙,2s 甲<2s 乙D .x 甲<x 乙,2s 甲>2s 乙10.下列说法正确的是( )①设某大学的女生体重(kg)y 与身高(cm)x 具有线性相关关系,根据一组样本数据(,)(1,2,3,,)i i x y i n =,用最小二乘法建立的线性回归方程为0.8585.71y x =- ,则若该大学某女生身高增加1cm ,则其体重约增加0.85kg ;②关于x 的方程210(2)x mx m -+=>的两根可分别作为椭圆和双曲线的离心率; ③过定圆C 上一定点A 作圆的动弦AB ,O 为原点,若1()2OP OA OB =+,则动点P 的轨迹为椭圆;④已知F 是椭圆22143x y +=的左焦点,设动点P 在椭圆上,若直线FP 的斜率大于3,则直线OP (O 为原点)的斜率的取值范围是3333(,)(,)282-∞-.A .①②③B .①③④C .①②④D .②③④11.某产品的广告费用x 与销售额y 的统计数据如下表: 广告费用(万元)4235销售额(万元)49263954根据上表可得回归方程ˆˆˆybx a =+中的ˆb 为9.4,据此模型预报广告费用为6万元时销售额为A .63.6万元B .65.5万元C .67.7万元D .72.0万元12.已知一组数据12,,,n x x x 的平均数3x =,则数据1232,32,,32n x x x +++的平均数为( ) A .3B .5C .9D .11二、填空题13.乒乓球赛规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换,每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,甲发球得1分的概率为35,乙发球得1分的概率为23,各次发球的胜负结果相互独立,甲、乙的一局比赛中,甲先发球.则开始第4次发球时,甲、乙的比分为1比2的概率为________.14.若某学校要从5名男同学和2名女同学中选出3人参加社会考察活动,则选出的同学中男女生均不少于1名的概率是_____.15.如图,在半径为1的圆上随机地取两点,B E,连成一条弦BE,则弦长超过圆内接正BCD∆边长的概率是__________.16.执行如图所示的伪代码,若输出的y的值为10,则输入的x的值是________.17.如图所示的程序框图,输出S的结果是__________.18.将二进制数110 101(2)转为七进制数,结果为________.19.某市有A、B、C三所学校,各校有高三文科学生分别为650人,500人,350人,在三月进行全市联考后,准备用分层抽样的方法从所有高三文科学生中抽取容量为120的样本,进行成绩分析,则应从B校学生中抽取______人.20.已知一组数据x,8,7,9,7,若这组数据的平均数为8,则它们的方差为______.三、解答题21.考试结束以后,学校对甲、乙两个班的数学考试成绩进行分析,规定:大于或等于80分为优秀,80分以下为非优秀.统计成绩后,得到如下的22⨯列联表,且已知在甲、乙两个班全部110人中随机抽取1人为优秀的概率为3 11.(1)若按99.9%的可靠性要求,能否认为“成绩与班级有关系”;(2)若按下面的方法从甲班优秀的学生中抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号.试求抽到9号或10号的概率.参考公式与临界值表:22()()()()()n ad bc K a b c d a c b d -=++++.优秀 非优秀 合计甲班 10 乙班 30合计11022.某鲜花批发店每天早晨以每支2元的价格从鲜切花生产基地购入某种玫瑰,经过保鲜加工后全部装箱(每箱500支,平均每支玫瑰的保鲜加工成本为1元),然后以每箱2000元的价格整箱出售.由于鲜花的保鲜特点,制定了如下促销策略:若每天下午3点以前所购进的玫瑰没有售完,则对未售出的玫瑰以每箱1200元的价格降价处理.根据经验,降价后能够把剩余玫瑰全部处理完毕,且当天不再购进该种玫瑰.因库房限制每天最多加工6箱.(1)若某天此鲜花批发店购入并加工了6箱该种玫瑰,在下午3点以前售出4箱,且6箱该种玫瑰被6位不同的顾客购买.现从这6位顾客中随机选取2人赠送优惠卡,求恰好一位是以2000元价格购买的顾客且另一位是以1200元价格购买的顾客的概率: (2)此鲜花批发店统计了100天该种玫瑰在每天下午3点以前的销售量t (单位:箱),统计结果如下表所示(视频率为概率): t /箱 4 5 6 频数30xs①估计接下来的一个月(30天)该种玫瑰每天下午3点前的销售量不少于5箱的天数并说明理由;②记2log x s b x ⎡⎤=+⎢⎥⎣⎦,64x ≤,若此批发店每天购进的该种玫瑰箱数为5箱时所获得的平均利润最大,求实数b 的最小值(不考虑其他成本,2log x x ⎡⎤⎢⎥⎣⎦为2log x x 的整数部分,例如:[]2.12=,[]0.10=).23.编写一个程序,要求输入两个正数a 和b 的值,输出a b 和b a 的值,并画出程序框图.24.图是求239111112222S =+++++的一个程序框图. (1)在程序框图的①处填上适当的语句; (2)写出相应的程序.25.为研究冬季昼夜温差大小对某反季节大豆新品种发芽率的影响,某校课外兴趣小组记录了5组昼夜温差与100颗种子发芽数,得到如下资料: 组号 1 2 3 4 5 温差x (C ︒) 10 11 13 12 8 发芽数y (颗)2325302616经分析,这组数据具有较强的线性相关关系,因此该小组确定的研究方案是:先从这五组数据中选取3组数据求出线性回归方程,再用没选取的2组数据进行检验.(1)若选取的是第2,3,4组的数据,求出y 关于x 的线性回归方程ˆˆˆybx a =+; (2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(1)中所得的线性回归方程是否可靠?(参考公式:()()()1122211ˆnni i i i i i nn i i i i x x y y x y nxy bx x x nx====---==--∑∑∑∑,ˆˆay bx =-) 26. 2.5PM 是指空气中直径小于或等于2.5微米的颗粒物(也称可入肺颗粒物),为了探究车流量与 2.5PM 的浓度是否相关,现采集到某城市周一至周五某时间段车流量与2.5PM浓度的数据如下表:(1)根据上表数据,求出这五组数据组成的散点图的样本中心坐标;(2)用最小二乘法求出y关于x的线性回归方程y bx a=+;(3)若周六同一时间段车流量是100万辆,试根据(2)求出的线性回归方程预测,此时2.5PM的浓度是多少?(参考公式:()()()121ni iiniix x y ybx x==--=-∑∑,a y bx=-)【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】求出4名同学去旅游的所有情况种数,再求出恰有一个地方未被选中的种数,由概率公式计算出概率.【详解】4名同学去旅游的所有情况有:44256=种恰有一个地方未被选中共有2113424322144C CC AA⋅⋅=种情况;所以恰有一个地方未被选中的概率:144925616 p==;故选:B.【点睛】本题考查古典概型,解题关键是求出基本事件的个数,本题属于中档题.2.D解析:D【分析】由题意可知,38AOCπ∠的概率为AC AB,由题意结合平面几何知识求得1AC =,2AB =,则答案可求.【详解】 如图,4OAB π∠=,若38AOC π∠=,则33488ACO ππππ∠=--=, OAC ∴∆为等腰三角形,即1AC OA ==.在Rt AOB ∆中, 1OA OB ==,2AB ∴=.由测度比为长度比可得38AOC π∠的概率为222AC AB ==. 故选:D . 【点睛】本题考查几何概型,考查灵活变形能力,是中档题.3.B解析:B 【分析】求出函数的导数,根据函数的极值点的个数求出m 的范围,通过判断a ,b ,c ,d 的范围,得到满足条件的概率值即可. 【详解】f ′(x )=x 2+2mx +1, 若函数f (x )有极值点, 则f ′(x )有2个不相等的实数根, 故△=4m 2﹣4>0,解得:m >1或m <﹣1,而a =log 0.55<﹣2,0<b =log 32<1、c =20.3>1,0<d =(12)2<1, 满足条件的有2个,分别是a ,c , 故满足条件的概率p 2142==, 故选:B . 【点睛】本题考查了函数的单调性、极值问题,考查导数的应用以及对数、指数的性质,是一道中档题.4.B解析:B 【分析】先由题意写出成等比数列的10个数,然后找出小于8的项的个数,代入古典概率的计算公式即可求解 【详解】解:由题意()13n n a -=-成等比数列的10个数为:1,3-,2(3)-,39(3)(3)-⋯-其中小于8的项有:1,3-,3(3)-,5(3)-,7(3)-,9(3)-共6个数 这10个数中随机抽取一个数, 则它小于8的概率是63105P ==. 故选:B . 【点睛】本题主要考查了等比数列的通项公式及古典概率的计算公式的应用,属于基础试题5.A解析:A 【分析】对a 、b 、c 赋三个不等的值,并根据程序框图写出输出的结果,可得知该程序的功能. 【详解】令2a =,3b =,1c =,则23>不成立,21>成立,则1a =,输出的a 的值为1, 因此,该程序的功能是求出a 、b 、c 三数中的最小数,故选A . 【点睛】本题考查程序框图的功能,解题的关键就是根据题意将每个步骤表示出来,考查分析问题的能力,属于中等题.6.A解析:A 【解析】模拟执行程序框图,可得160a =-≤,执行循环体,12log 1640b ==-<,12log 420a ==-<,不满足条件4a >,执行循环体,12log 210b ==-<,12log 10a ==,不满足条件4a >,执行循环体,0210b ==>,1220a ==>,不满足条件4a >,执行循环体,2240b ==>,4216a ==,满足条件4a >,退出循环,输出a 的值为16.选A.点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.7.B解析:B 【分析】由题意知i 为鸡的数量,j 为兔的数量,m 为足的数量,根据题意可得出判断条件. 【详解】由题意可知i 为鸡的数量,j 为兔的数量,m 为足的数量,根据题意知,在程序框图中,当计算足的数量为94时,算法结束,因此,判断条件应填入“94m =”. 故选B. 【点睛】本题考查算法程序框图中判断条件的填写,考查分析问题和解决问题的能力,属于中等题.8.B解析:B 【解析】 【分析】执行程序,逐次计算,根据判断条件终止循环,即可求解输出的结果,得到答案. 【详解】由题意,执行程序,可得:第1次循环:满足判断条件,1,2S i ==; 第2次循环:满足判断条件,2,3S i ==; 第3次循环:满足判断条件,6,4S i ==; 第4次循环:满足判断条件,24,5S i ==; 第5次循环:满足判断条件,120,6S i ==; 第6次循环:满足判断条件,720,7S i ==; 不满足判断条件,终止循环,输出720S =,故选B. 【点睛】本题主要考查了循环结构的程序框图的计算输出,其中解答中正确理解循环结构的程序框图的计算功能,逐次计算是解答的关键,着重考查了推理与运算能力,属于基础题.9.C解析:C 【解析】 【分析】利用公式求得x 甲和x 乙,从而得到x 甲和x 乙的大小,观察两组数据的波动程度,可以得到2s 甲与2s 乙的大小,从而求得结果.【详解】 甲班平均身高1691621501601591605x ++++==甲,乙班平均身高1801601501501651615x ++++==乙,所以x x <甲乙,方差表示数据的波动,当波动越大时,方差越大,甲班的身高都差不多,波动比较小,而乙班身高差距则比加大,波动比较大,所以22s s >乙甲,故选C. 【点睛】该题考查的是有关所给数据的平均数与方差的比较大小的问题,涉及到的知识点有平均数的公式,观察数据波动程度来衡量方差的大小,属于简单题目.10.C解析:C 【分析】利用线性回归方程系数的几何意义,圆锥曲线离心率的范围,椭圆的性质,逐一判断即可. 【详解】①设某大学的女生体重y (kg )与身高x (cm )具有线性相关关系,根据一组样本数据(x i ,y i )(i =1,2,…,n ),用最小二乘法建立的线性回归方程为y ∧=0.85x ﹣85.71,则若该大学某女生身高增加1cm ,则其体重约增加0.85kg ,正确;②关于x 的方程x 2﹣mx +1=0(m >2)的两根之和大于2,两根之积等于1,故两根中,一根大于1,一根大于0小于1,故可分别作为椭圆和双曲线的离心率.正确; ③设定圆C 的方程为(x ﹣a )2+(x ﹣b )2=r 2,其上定点A (x 0,y 0),设B (a +r cosθ,b +r sinθ),P (x ,y ),由12OP =(OA OB +)得0022x a rcos x y b rsin y θθ++⎧=⎪⎪⎨++⎪=⎪⎩,消掉参数θ,得:(2x ﹣x 0﹣a )2+(2y﹣y 0﹣b )2=r 2,即动点P 的轨迹为圆, ∴故③不正确;④由22143x y +=,得a 2=4,b 2=3,∴1c ==.则F (﹣1,0),如图:过F 作垂直于x 轴的直线,交椭圆于A (x 轴上方),则x A =﹣1,代入椭圆方程可得32A y =. 当P 为椭圆上顶点时,P (0FP k =32OA k =-, ∴当直线FP时,直线OP 的斜率的取值范围是32⎛⎫-∞- ⎪⎝⎭,. 当P 为椭圆下顶点时,P (0,∴当直线FP 时,直线OP 的斜率的取值范围是(8,32),综上,直线OP (O 为原点)的斜率的取值范围是32⎛⎫-∞- ⎪⎝⎭,∪,32). 故选C 【点睛】本题以命题真假的判断为载体,着重考查了相关系数、离心率、椭圆简单的几何性质等知识点,属于中档题.11.B解析:B 【详解】试题分析:4235492639543.5,4244x y ++++++====, ∵数据的样本中心点在线性回归直线上,回归方程ˆˆˆybx a =+中的ˆb 为9.4, ∴42=9.4×3.5+a , ∴ˆa =9.1,∴线性回归方程是y=9.4x+9.1,∴广告费用为6万元时销售额为9.4×6+9.1=65.5 考点:线性回归方程12.D解析:D 【解析】分析:一组数据中的每一个数加或减一个数,它的平均数也加或减这个数;;依此规律求解即可.详解::∵一组数据12,,,n x x x 的平均数为3, ∴另一组数据1232,32,,32n x x x +++的平均数121211323232[32]33211n n x x x x x x n n n=++++⋯++=++⋯++=⨯+=()(), 故选D.点睛:本题考查了平均数,平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.二、填空题13.【分析】先确定比分为1比2时甲乙在三次发球比赛中得分情况再分别求对应概率最后根据互斥事件概率公式求结果【详解】比分为1比2时有三种情况:(1)甲第一次发球得分甲第二次发球失分乙第一次发球得分(2)甲解析:2875【分析】先确定比分为1比2时甲乙在三次发球比赛中得分情况,再分别求对应概率,最后根据互斥事件概率公式求结果 【详解】比分为1比2时有三种情况:(1)甲第一次发球得分,甲第二次发球失分,乙第一次发球得分(2)甲第一次发球失分,甲第二次发球得分,乙第一次发球得分(3)甲第一次发球失分,甲第二次发球失分,乙第一次发球失分 所以概率为3222322212855355355375⨯⨯+⨯⨯+⨯⨯= 【点睛】本题考查根据互斥事件概率公式求概率,考查基本分析求解能力,属中档题.14.【解析】【分析】选出的男女同学均不少于1名有两种情况:1名男生2名女生和2名男生1名女生根据组合数公式求出数量再用古典概型计算公式求解【详解】从5名男同学和2名女同学中选出3人有种选法;选出的男女同 解析:57【解析】 【分析】选出的男女同学均不少于1名有两种情况: 1名男生2名女生和2名男生1名女生,根据组合数公式求出数量,再用古典概型计算公式求解. 【详解】从5名男同学和2名女同学中选出3人,有3735C = 种选法;选出的男女同学均不少于1名,有12215252··25C C C C += 种选法; 故选出的同学中男女生均不少于1名的概率:255357P == . 【点睛】本题考查排列组合和古典概型. 排列组合方法:1、直接考虑,适用包含情况较少时;2、间接考虑,当直接考虑情况较多时,可以用此法.15.【解析】【分析】取圆内接等边三角形的顶点为弦的一个端点当另一端点在劣弧上时求出劣弧的长度运用几何概型的计算公式即可得结果【详解】记事件{弦长超过圆内接等边三角形的边长}如图取圆内接等边三角形的顶点为解析:13【解析】 【分析】取圆内接等边三角形BCD 的顶点B 为弦的一个端点,当另一端点在劣弧CD 上时,BEBC >,求出劣弧CD 的长度,运用几何概型的计算公式,即可得结果.【详解】记事件A ={弦长超过圆内接等边三角形的边长},如图,取圆内接等边三角形BCD 的顶点B 为弦的一个端点, 当另一端点在劣弧CD 上时,BE BC >, 设圆的半径为r ,劣弧CD 的长度是23rπ, 圆的周长为2r π,所以()21323rP A r ππ==,故答案为13. 【点睛】本题主要考查“长度型”的几何概型,属于中档题. 解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与长度有关的几何概型问题关鍵是计算问题的总长度以及事件的长度;几何概型问题还有以下几点容易造成失分,在备考时要高度关注:(1)不能正确判断事件是古典概型还是几何概型导致错误;(2)基本事件对应的区域测度把握不准导致错误 ;(3)利用几何概型的概率公式时 , 忽视验证事件是否等可能性导致错误.16.3【解析】【分析】分析出算法的功能是求分段函数的值根据输出的值为10分别求出当时和当时的值即可【详解】由程序语句知:算法的功能是求的值当时解得(或不合題意舍去);当时解得舍去综上的值为3故答案为3【解析:3 【解析】 【分析】分析出算法的功能是求分段函数22,31,3x x y x x <⎧=⎨+≥⎩的值,根据输出的值为10 ,分别求出当3x <时和当3x ≥时的x 值即可. 【详解】由程序语句知:算法的功能是求22,31,3x x y x x <⎧=⎨+≥⎩的值, 当3x ≥时,2110y x =+=,解得3x =(或3- ,不合題意舍去); 当3x <时,210y x ==,解得5x = ,舍去, 综上,x 的值为3,故答案为3 . 【点睛】本题主要考查条件语句以及算法的应用,属于中档题 .算法是新课标高考的一大热点,其中算法的交汇性问题已成为高考的一大亮,这类问题常常与函数、数列、不等式等交汇自然,很好地考查考生的信息处理能力及综合运用知识解决问題的能力,解决算法的交汇性问题的方:(1)读懂程序框图、明确交汇知识,(2)根据给出问题与程序框图处理问题即可.17.【解析】阅读流程图可得该流程图计算的数值为: 解析:【解析】阅读流程图可得,该流程图计算的数值为:13sin 0sin 1sin 52626262S ππππππ⎛⎫⎛⎫⎛⎫=⨯++⨯+++⨯+=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 18.【解析】试题分析:把十进制的化为七进制则所以结果为考点:进位制解析:7104()【解析】试题分析:245(2)110101112121253=+⨯+⨯+⨯=,把十进制的53化为七进制,则53774÷=,7710÷=,1701÷=,所以结果为(7)104.考点:进位制.19.40【分析】设应从B 校抽取n 人利用分层抽样的性质列出方程组能求出结果【详解】设应从B 校抽取n 人某市有ABC 三所学校各校有高三文科学生分别为650人500人350人在三月进行全市联考后准备用分层抽样的解析:40 【分析】设应从B 校抽取n 人,利用分层抽样的性质列出方程组,能求出结果. 【详解】设应从B 校抽取n 人,某市有A 、B 、C 三所学校,各校有高三文科学生分别为650人,500人,350人, 在三月进行全市联考后,准备用分层抽样的方法从所有高三文科学生中抽取容量为120的样本,120n650500350500∴=++,解得n 40=.故答案为40. 【点睛】本题考查应从B 校学生中抽取人数的求法,考查分层抽样的性质等基础知识,考查运算求解能力,是基础题.20.【解析】因为平均数为所以方差为解析:45【解析】因为平均数为8,所以9,x = 方差为222214[10111]55++++=三、解答题21.(1)不能;(2)736. 【分析】(1)根据已知条件求得优秀人数,填写22⨯列联表,计算出2K 的值,由此作出判断. (2)根据古典概型概率计算方法,计算出所求概率. 【详解】(1)依题意,在甲、乙两个班全部110人中随机抽取1人为优秀的概率为311,所以总的优秀人数为31103011⨯=人.由于甲班优秀10人,故乙班优秀20人,由此填写22⨯列联表如下:根据列联表中的数据,得到()22110103020507.48610.82830805060K ⨯⨯-⨯=≈<⨯⨯⨯,因此按99.9%的可靠性要求,不能认为“成绩与班级有关系”.(2)设“抽到9或10号”为事件A ,先后两次抛掷一枚均匀的骰子,出现的点数为(x ,y ).所有的基本事件有:(1,1)、(1,2)、(1,3)、…、(6,6)共36个.事件A 包含的基本事件有:(3,6)、(4,5)、(5,4)、(6,3)、(5,5)、(4,6)(6,4)共7个. 所以P (A )=736,即抽到9号或10号的概率为736. 【点睛】本小题主要考查22⨯列联表独立性检验,考查古典概型概率计算,属于中档题. 22.(1)815;(2)①21;②4- 【分析】(1)根据古典概型概率公式计算可得; (2)①用100−30可得;②用购进5箱的平均利润>购进6箱的平均利润,解不等式可得. 【详解】解:(1)设这6位顾客是A ,B ,C ,D ,E ,F .其中3点以前购买的顾客是A ,B ,C ,D .3点以后购买的顾客是E ,F .从这6为顾客中任选2位有15种选法:(A ,B ),(A ,C ),(A ,D ),(A ,E ),(A ,F ),(B ,C ),(B ,D ),(B ,E ),(B ,F ),(C ,D ),(C ,E ),(C ,F ),(D ,E ),(D ,F ),(E ,F ),其中恰好一位是以2000元价格购买的顾客,另一位是以1200元价格购买的顾客的有8种:(A ,E ),(A ,F ),(B ,E ),(B ,F ),(C ,E ),(C ,F ),(D ,E ),(D ,F ). 根据古典概型的概率公式得815P =; (2)①依题意30100x s ++=, ∴70x s +=,所以估计接下来的一个月(30天)内该种玫瑰每天下午3点以前的销售量不少于5箱的天数是3070%21⨯=天;②批发店每天在购进4箱数量的玫瑰时所获得的平均利润为: 4×2000−4×500×3=2000元;批发店每天在购进5箱数量的玫瑰时所获得的平均利润为:3070(420001120055003)(5200055003)2260100100⨯⨯+⨯-⨯⨯+⨯⨯-⨯⨯=元; 批发店每天在购进6箱数量的玫瑰时所获得的平均利润为:30(420002120065003)(520001120065003)100100x ⨯⨯+⨯-⨯⨯+⨯⨯+⨯-⨯⨯ (6200065003)4202230100x s s+⨯⨯-⨯⨯=++ 由()2260420223070x x >++-, 解得:32.5x >, 则32.564x <≤所以270log x x b x ⎡⎤++=⎢⎥⎣⎦,要求b 的最小值,则求()2log x g x x x ⎡⎤=+⎢⎥⎣⎦的最大值,令()2log x f x x =,则()()()'22ln 2ln 1log ln x x f x x x -==,(]32.5,64x ∈ 明显()'0f x >,则()2log xf x x=在(]32.5,64上单调递增,则()2log x gx x x⎡⎤=+⎢⎥⎣⎦在(]32.5,64上单调递增, ()264646464641074log 646g x ⎡⎤⎡⎤∴=+=+=+=⎢⎥⎢⎥⎣⎦⎣⎦, 则b 的最小值为70744-=-. 【点睛】本题考查了古典概型及其概率计算公式,属中档题. 23.见解析; 【解析】试题分析: 先利用INPUT 语句输入两个正数a 和b 的值,再分别赋值a b 和b a 的值,最后输出a b 和b a 的值 试题程序和程序框图分别如下:24.(1)2TT =;(2)见解析 【解析】 【分析】⑴要计算239111112222S =+++++的一个程序框图的值需要用直到型循环结构,利用被累加数列的通项公式求解即可⑵根据框图写出对应得程序语句,即可得解 【详解】(1)的意图为表示各累加项,即数列的通项公式,故为2T T = (2)程序如下:【点睛】本题主要考查了程序框图的补全,结合题意运用数列的通项公式求出结果,然后再给出程序,需要熟练掌握各知识点。

【人教版】高中数学必修三期末一模试题(附答案)(1)

【人教版】高中数学必修三期末一模试题(附答案)(1)

一、选择题1.将曲线22x yx y +=+围成的区域记为Ⅰ,曲线1x y +=围成的区域记为Ⅱ,在区域Ⅰ中随机取一点,此点取自区域Ⅱ的概率为( ) A .12π+ B .11π+ C .22π+ D .21π+ 2.如图是一边长为8的正方形苗圃图案,中间黑色大圆与正方形的内切圆共圆心,圆与圆之间是相切的,且中间黑色大圆的半径是黑色小圆半径的2倍.若在正方形图案上随机取一点,则该点取自黑色区域的概率为( )A .8π B .16π C .18π-D .116π-3.某校从高一(1)班和(2)班的某次数学考试(试卷满分为100分)的成绩中各随机抽取了6份数学成绩组成一个样本,如茎叶图所示.若分别从(1)班、(2)班的样本中各取一份,则(2)班成绩更好的概率为( )A .1636B .1736C .12D .19364.在二项式42nx x 的展开式,前三项的系数成等差数列,把展开式中所有的项重新排成一列,有理项都互不相邻的概率为( ) A .16B .14C .512D .135.给出一个算法的程序框图如图所示,该程序框图的功能是( )A .求出,,a b c 三数中的最小数B .求出,,a b c 三数中的最大数C .将,,a b c 从小到大排列D .将,,a b c 从大到小排列6.执行如图所示的程序框图,输出S 的值为( )A .1B .0C .1D .27.执行如图所示的程序框图,若输人的n 值为2019,则S =A .B .C .D .8.执行如图所示的程序框图,若输出的结果为48,则输入k 的值可以为A .6B .10C .8D .49.根据表中提供的全部数据,用最小二乘法得出y 关于x 的线性回归方程是9944y x =+,则表中m 的值为( ) x 8 10 11 12 14 y2125m2835A .26B .27C .28D .2910.若某中学高二年级8个班参加合唱比赛的得分如茎叶图所示,则这组数据的中位数是()A.90.5 B.91.5 C.90 D.9111.甲、乙两名选手参加歌手大赛时,5名评委打的分数用如图所示的茎叶图表示,s1,s2分别表示甲、乙选手分数的标准差,则s1与s2的关系是().A.s1>s2B.s1=s2C.s1<s2D.不确定12.某校为了提高学生身体素质,决定组建学校足球队,学校为了解报名学生的身体素质,对他们的体重进行了测量,将所得的数据整理后,画出了频率分布直方图(如右图),已知图中从左到右3个小组的频率之比为1:2:3,其中第2小组的频数为12,则该校报名学生总人数()A.40 B.45 C.48 D.50二、填空题13.将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是________.14.高三某位同学参加物理、化学、政治科目的等级考,已知这位同学在物理、化学、政治科目考试中达A的概率分别为56、78、34,这三门科目考试成绩的结果互不影响,则这位考生至少得1个A 的概率为____15.已知7个实数1,2,4,,,,a b c d -依次构成等比数列,若从这7个数中任取2个,则它们的和为正数的概率为___________.16.若45a =,则以下程序运行后的结果是_____.17.运行下边的流程图,输出的结果是__________.18.阅读如图所示的流程图,运行相应的程序,则输出n 的值为______.19.某地区共有4所普通高中,这4所普通高中参加2018年高考的考生人数如下表所示: 学校 A 高中B 高中C 高中D 高中参考人数80012001000600现用分层抽样的方法在这4所普通高中抽取144人,则应在D 高中中抽取的学生人数为_______.20.某班运动队由足球运动员18人、篮球运动员12人、乒乓球运动员6人组成(每人只参加一项),现从这些运动员中抽取一个容量为n 的样本,若分别采用系统抽样法和分层抽样法,则都不用剔除个体;当样本容量为n +1时,若采用系统抽样法,则需要剔除1个个体,那么样本容量n 为________.三、解答题21.手机支付也称为移动支付(Mobile Payment ),是当今社会比较流行的一种付款方式.某金融机构为了了解移动支付在大众中的熟知度,对15—65岁的人群作了问题为“你会使用移动支付吗?”的随机抽样调查,把回答“会”的100个人按照年龄分成5组,绘制成如图所示的频数分布表和频率分布直方图.(1)求x ,a 的值;(2)若从第1,3组中用分层抽样的方法抽取5人,求两组中分别抽取的人数; (3)在(2)抽取的5人中再随机抽取2人,求所抽取的2人来自同一个组的概率. 22.我国科学家屠呦呦教授由于在发现青蒿素和治疗疟疾的疗法上的贡献获得诺贝尔医学奖,以青蒿素类药物为主的联合疗法已经成为世界卫生组织推荐的抗疟疾标准疗法,目前,国内青蒿人工种植发展迅速,调查表明,人工种植的青蒿的长势与海拔高度、土壤酸碱度、空气湿度的指标有极强的相关性,现将这三项的指标分别记为x ,y ,z ,并对它们进行量化:0表示不合格,1表示临界合格,2表示合格,再用综合指标x y z ω=++的值评定人工种植的青蒿的长势等级:若4ω≥,则长势为一级;若23ω≤≤,则长势为二级;若01ω≤≤,则长势为三级;为了了解目前人工种植的青蒿的长势情况,研究人员随机抽取了10块青蒿人工种植地,得到如下结果: 种植地编号1A2A3A 4A 5A(),,x y z ()0,1,0 ()1,2,1 ()2,1,1 ()2,2,2 ()0,1,1(1)在这10块青蒿人工种植地中任取两地,求这两地的空气湿度的指标z 相同的概率; (2)从长势等级是一级的人工种植地中任取一地,其综合指标为m ,从长势等级不是一级的人工种植地中任取一地,其综合指标为n ,记随机变量X m n =-,求X 的分布列.23.写出一个求解任意二次函数()20y ax bx c a =++≠的最值的算法.24.某城市规定,在法定工作时间内每小时的工资是8元,在法定工作时间外每小时的加班工资为16元,某人在一周内工作60小时,其中加班20小时.编写程序,计算这个人这一周所得的工资.25.据了解,温带大陆性气候,干燥,日照时间长,昼夜温差大,有利于植物糖分积累.某课题研究组欲研究昼夜温差大小()/x ℃与某植物糖积累指数()/y GI 之间的关系,得到如下数据:下的2组数据进行检验,假设这剩下的2组数据恰好是第一组与第六组数据.(1)求y 关于x 的线性回归方程ˆˆˆybx a =+(2)若由线性回归方程得到的估计数据与所选出的检验数据的差的绝对值均不超过2.58,则认为得到的线性回归方程是理想的,试问(1)中所得线性回归方程是否理想?(参考公式:回归直线方程ˆˆˆybx a =+的斜率和截距的最小二乘估计()()()211ˆˆˆ,iii ni ni x x y y bay bx x x ==--==--∑∑ 26.经营费用指流通企业对在经营过程中发生除经营成本以外的所有费用,如管理费用、财务费用、法律费用等,这些费用没有直接用于生产产品或提供服务,但它是影响公司收益的重要因素.某创业公司从2014年开始创业到2019年每年的经营费用y (万元)、年份及其编号t ,有如下统计资料:t 1 2 3 4 5 6 y9.512.214.617.419.6m已知该公司从2014年到2019年年平均经营费用为16万元,且经营费用y 与年份编号t 呈线性相关关系.(1)求2019年该公司的经营费用;(2)y 关于t 的回归方程为 2.6y t a =+,求a ,并预测2020年所需要支出的经营费用; (3)该公司对2019年卖出的产品进行质量指标值检测,由检测结果得如图所示频率分布直方图:预计2020年生产产品质量指标值分布与上一年一致,将图表中频率作为总体的概率.当每件产品质量指标值不低于215时为优质品,指标值在185到215之间是合格品,指标值低于185时为次品.出售产品时,每件优质品可获利1.5万元,每件合格品可获利0.7万元,次品不仅全额退款,还要对客户进行赔付,所以每件次品亏损1.3万元.若2020年该公司的产量为500台,请你预测2020年该公司的总利润(总利润=销售利润-经营费用).【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C【分析】画出曲线22x y x y +=+与曲线1x y +=的图像,再根据几何概型的方法求解即可. 【详解】当0,0x y >>时,曲线22x y x y +=+、曲线1x y +=分别为2222111222x y x y x y ⎛⎫⎛⎫+=+⇒-+-= ⎪ ⎪⎝⎭⎝⎭,1x y +=.又22x y x y +=+、1x y +=均关于,x y 轴,原点对称.故两曲线围成的区域Ⅰ(正方形和四个半圆)、Ⅱ(正方形)如图:可知区域Ⅰ的面积为22222S ππ⎛⎫+⋅=+ ⎪ ⎪⎝⎭正方形;区域Ⅱ的面积为()222=;∴由几何概率公式得:22p π=+.故选:C. 【点睛】本题主要考查了几何概型的运用,需要根据题意去绝对值画出一象限的图像,再根据对称性补全图像.同时也考查了几何概型中面积型的问题.属于中档题.2.C解析:C 【分析】设黑色小圆的半径为r ,则黑色大圆的半径为2r ,由题意求得r ,进一步求出黑色区域的面积,由测度比是面积比得答案. 【详解】解:设黑色小圆的半径为r ,则黑色大圆的半径为2r , 由题意可知,88r =,即1r =.∴图中黑色区域的面积为222884412648ππππ⨯-⨯+⨯⨯+⨯=-,又正方形的面积为64.∴在正方形图案上随机取一点,则该点取自黑色区域的概率为6481648ππ-=-. 故选:C . 【点睛】本题考查几何概型的概率的求法,考查数形结合的解题思想方法,属于中档题.3.C解析:C 【分析】由题意从(1)班、(2)班的样本中各取一份,(2)班成绩更好即(2)班成绩比(1)班成绩高,用列举法列出所有可能结果,由此计算出概率. 【详解】根据题意,两次取出的成绩一共有36种情况;分别为()67,68、()67,72、()67,73、()67,85、()67,89、()67,93()76,68、()76,72、()76,73、()76,85、()76,89、()76,93 ()78,68、()78,72、()78,73、()78,85、()78,89、()78,93 ()82,68、()82,72、()82,73、()82,85、()82,89、()82,93 ()85,68、()85,72、()85,73、()85,85、()85,89、()85,93 ()92,68、()92,72、()92,73、()92,85、()92,89、()92,93满足条件的有18种,故183126p ==, 故选C 【点睛】本题考查概率的求法,考查古典概型、列举法等基础知识,考查运算求解能力,是基础题.4.C解析:C 【分析】先根据前三项的系数成等差数列求n ,再根据古典概型概率公式求结果 【详解】因为n前三项的系数为1212111(1)1,,112448n n n n n n C C C C n -⋅⋅∴=+⋅∴-= 163418118,0,1,2,82rr r r n n T C x r -+>∴=∴=⋅=,当0,4,8r =时,为有理项,从而概率为636799512A A A =,选C. 【点睛】本题考查二项式定理以及古典概型概率,考查综合分析求解能力,属中档题.5.A解析:A 【分析】对a 、b 、c 赋三个不等的值,并根据程序框图写出输出的结果,可得知该程序的功能. 【详解】令2a =,3b =,1c =,则23>不成立,21>成立,则1a =,输出的a 的值为1, 因此,该程序的功能是求出a 、b 、c 三数中的最小数,故选A . 【点睛】本题考查程序框图的功能,解题的关键就是根据题意将每个步骤表示出来,考查分析问题的能力,属于中等题.6.C解析:C 【分析】 由函数()πsin2xf x =,可求周期为4,()(1)(2)(3)40+++=f f f f ,由题意可知()(1)(2)(2021)=2021(1)1=+++==S f f f f f【详解】由函数()πsin 2x f x =的周期为2π4π2T ==, ()π1sin 12f ==,()2π2sin 02f ==,()3π3sin12f ==-,()4π4sin 02f ==,()(1)(2)(3)40+++=f f f f ()(1)(2)(2021)=2021(1)1∴=+++==S f f f f f .故选:C 【点睛】本题考查了程序框图求和,正弦型三角函数的周期等基本知识,考查了运算求解能力和逻辑推理能力,属于一般题目.7.B解析:B 【分析】根据程序框图可知,当时结束计算,此时.【详解】计算过程如下表所示:周期为6n 2019k 1 2 (2018)2019S …k<n 是是是是否【点睛】本题考查程序框图,选用表格计算更加直观,此题关键在于判断何时循环结束.8.C解析:C 【分析】执行如图所示的程序框图,逐次循环,计算其运算的结果,根据选项即可得到答案. 【详解】由题意可知,执行如图所示的程序框图,可知: 第一循环:134,2146n S =+==⨯+=; 第二循环:437,26719n S =+==⨯+=; 第三循环:7310,2191048n S =+==⨯+=, 要使的输出的结果为48,根据选项可知8k ,故选C.【点睛】本题主要考查了循环结构的计算与输出问题,其中解答中正确理解循环结构的程序框图的计算功能,逐次准确计算是解答的关键,着重考查了运算与求解能力,属于基础题.9.A解析:A 【解析】 【分析】首先求得x 的平均值,然后利用线性回归方程过样本中心点求解m 的值即可. 【详解】 由题意可得:810111214115x ++++==,由线性回归方程的性质可知:99112744y =⨯+=, 故21252835275m++++=,26m ∴=.故选:A . 【点睛】本题考查回归分析,考查线性回归直线过样本中心点,在一组具有相关关系的变量的数据间,这样的直线可以画出许多条,而其中的一条能最好地反映x 与y 之间的关系,这条直线过样本中心点.10.A解析:A 【分析】共有8个数据,中位数就是由小到大中间两数的平均数,求解即可. 【详解】根据茎叶图,由小到大排列这8个数为84,85,89,90,91,92,93,95, 所以中位数为90+91=90.52,故选A. 【点睛】本题主要考查了中位数,茎叶图,属于中档题.11.C解析:C 【分析】先求均值,再根据标准差公式求标准差,最后比较大小. 【详解】乙选手分数的平均数分别为7885848192767780949384,84,55++++++++====因此s 1<s 2,选C. 【点睛】本题考查标准差,考查基本求解能力.12.C解析:C 【分析】根据频数关系,求出前三段每段的频数,由直方图求出四五组的频率,进而求出前三组的频率和,从而可求该校报名学生的总人数. 【详解】从左到右3个小组的频率之比为1:2:3,其中第2小组的频数为12,∴从左到右3个小组的频数分别为6,12,18,共有36人,第4,5小组的频率之和为()0.03750.012550.25+⨯=, 则前3小组的频率之和为10.250.75-=, 则该校报名学生的总人数为360.7548÷=,故选C. 【点睛】本题主要考查频率分布直方图的应用,属于中档题. 直方图的主要性质有:(1)直方图中各矩形的面积之和为1;(2)组距与直方图纵坐标的乘积为该组数据的频率;(3)每个矩形的中点横坐标与该矩形的纵坐标相乘后求和可得平均值;(4)直观图左右两边面积相等处横坐标表示中位数.二、填空题13.【解析】基本事件总数为36点数之和小于10的基本事件共有30种所以所求概率为【考点】古典概型【名师点睛】概率问题的考查侧重于对古典概型和对立事件的概率的考查属于简单题江苏对古典概型概率的考查注重事件解析:5 6【解析】基本事件总数为36,点数之和小于10的基本事件共有30种,所以所求概率为305. 366=【考点】古典概型【名师点睛】概率问题的考查,侧重于对古典概型和对立事件的概率的考查,属于简单题.江苏对古典概型概率的考查,注重事件本身的理解,淡化计数方法.因此先明确所求事件本身的含义,然后一般利用枚举法、树形图解决计数问题,而当正面问题比较复杂时,往往利用对立事件的概率公式进行求解.14.【分析】先求对立事件概率:三门科目考试成绩都不是A再根据对立事件概率关系求结果【详解】这位考生三门科目考试成绩都不是A的概率为所以这位考生至少得1个A的概率为故答案为:【点睛】本题考查利用对立事件求解析:191 192【分析】先求对立事件概率:三门科目考试成绩都不是A,再根据对立事件概率关系求结果.【详解】这位考生三门科目考试成绩都不是A的概率为5731 (1)(1)(1)684192 ---=,所以这位考生至少得1个A的概率为1191 1192192 -=故答案为:191 192【点睛】本题考查利用对立事件求概率,考查基本分析求解能力,属基础题.15.【分析】根据前几项可知数列的首项为公比为由此求得的值基本事件的总数有和为正数分成两种情况一种是取出的两个数都是正数另一种是一个正数一个负数由此计算出和为正数的方法数根据古典概型概率计算公式求得概率的解析:47【分析】根据前几项可知,数列的首项为1,公比为2-,由此求得,,,a b c d 的值.基本事件的总数有27C .和为正数分成两种情况,一种是取出的两个数都是正数,另一种是一个正数一个负数,由此计算出和为正数的方法数,根据古典概型概率计算公式求得概率的值. 【详解】由题意得,这7个实数为1,2,48,16,32,64---①所选2个数均为正数:246C =(种);②所选2个数一正一负:2,4-、2,16-、2,64-、8,16-、8,64-、32,64-,共6(种)276647P C +∴==,故填4.7【点睛】本小题主要考查古典概型的概率计算,考查了等比数列的概念.在计算古典概率的过程中,首先求得分母,也即是基本事件的总数,由于抽取时没有顺序,故用组合数来计算.然后考虑分子,分子是符合题意事件的个数,要用分类加法计数原理分成两种情况来求解.中档题.16.5【分析】根据条件就是求a 除以10的整数减去a 除以10的商加上a 除以10的余数【详解】【点睛】本题考查除法与取整同余等概念考查基本求解能力解析:5 【分析】根据条件就是求a 除以10 的整数减去a 除以10 的商加上a 除以10 的余数. 【详解】4545\10/1010[]54 4.55 4.5.1010a a aMOD -+=-+=-+= 【点睛】本题考查除法与取整、同余等概念,考查基本求解能力.17.94【解析】不成立执行不成立执行成立所以输出解析:94 【解析】3,3311050a a =∴=⨯+=>不成立,执行31013150a =⨯+=>,不成立, 执行33119450a =⨯+=>,成立, 所以输出94.a =18.4【解析】不成立;不成立;不成立;成立输出故答案为【方法点睛】本题主要考查程序框图的循环结构流程图属于中档题解决程序框图问题时一定注意以下几点:(1)不要混淆处理框和输入框;(2)注意区分程序框图是解析:4 【解析】()1,0,0111,2n S S S ===+-⨯=-≥ 不成立; ()22,1121,2n S S ==-+-⨯=≥ 不成立;()33,1132,2n S S ==+-⨯=-≥ 不成立;()44,2142,2n S S ==-+-⨯=≥ 成立,输出4n = ,故答案为4 .【方法点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.19.24【分析】计算出高中人数占总人数的比例乘以得到在高中抽取的学生人数【详解】应在高中抽取的学生人数为【点睛】本小题主要考查分层抽样考查频率的计算属于基础题解析:24 【分析】计算出D 高中人数占总人数的比例,乘以144得到在D 高中抽取的学生人数. 【详解】应在D 高中抽取的学生人数为6001442480012001000600⨯=+++.【点睛】本小题主要考查分层抽样,考查频率的计算,属于基础题.20.6【解析】n 为18+12+6=36的正约数因为18:12:6=3:2:1所以n 为6的倍数因此因为当样本容量为时若采用系统抽样法则需要剔除1个个体所以n+1为35的正约数因此解析:6 【解析】n 为18+12+6=36的正约数,因为18:12:6=3:2:1,所以n 为6的倍数,因此6,12,18,24,30,36n =因为当样本容量为1n +时,若采用系统抽样法,则需要剔除1个个体,所以n+1为35的正约数,因此6n =三、解答题21.(1)20x,0.03a =;(2)第1组抽取的人数为2,第3组抽取的人数为3;(3)25. 【分析】(1)由频率计算出x 后可得y ,从而得频率分布图中的a ;(2)由总体比例可得各组抽取人数;(3)把抽取的人编号,用列举法写出任取2人的所有基本事件,并得出2人来自同一组的基本事件,计数后可计算概率. 【详解】(1)由题意可知,0.021010020x =⨯⨯=, 所以100(2035123)30y =-+++=, 从而11300.0310010a =⨯⨯=. (2)第1,3组共有50人,所以抽取的比例是110, 则从第1组抽取的人数为120210⨯=, 从第3组抽取的人数为130310⨯=. (3)设第1组抽取的2人为1A ,2A ,第3组抽取的3人为1B ,2B ,3B , 则从这5人中随机抽取2人有如下种情形:12(,)A A ,11(,)A B ,12(,)A B ,13(,)A B ,21(,)A B ,22(,)A B ,23(,)A B ,12(,)B B ,13(,)B B ,23(,)B B 共有10个基本事件.其中符合“抽取的2人来自同一个组”的基本事件有12(,)A A ,12(,)B B ,13(,)B B ,23(,)B B 共4个基本事件,所以抽取的2人来自同一个组的概率42105P ==. 【点睛】本题考查频率分布直方图,频数分布表,考查分层抽样和古典概型,列举法是求解古典概型的常用方法.本题考查了学生的数据处理能力,运算求解能力,属于中档题. 22.(1)25;(2)分布列见解析 【分析】()1由表可知:空气湿度指标为0的有A 1,空气湿度指标为1的有A 2,A 3,A 5,A 8,A9,A10,空气湿度指标为2的有A4,A6,A7,由此能求出这两地的空气温度的指标z 相同的概率;()2由题意得长势等级是一级()4ω≥有A2,A 3,A4,A6,A7,A9,长势等级不是一级(4)ω<的有A 1,A 5,A 8,A10,从而随机变量X 的所有可能取值为1,2,3,4,5,分别求出相应的概率,由此能求出X 的分布列和()E X . 【详解】(1)由表可以知道:空气湿度指标为0的有1A ,空气湿度指标为1的有2A ,3A ,5A ,8A ,9A ,10A ,空气湿度指标为2的有4A ,6A ,7A ,在这10块青蒿人工种植地中任取两地,基本事件总数21045n C ==,这两地的空气温度的指标z 相同包含的基本事件个数226318m C C =+=,所以这两地的空气温度的指标z 相同的概率182455m p n ===. (2)根据题意得10块青蒿人工种植的综合指标如下表:其中长势等级是一级4ω≥有2A ,3A ,4A ,6A ,7A ,9A ,共6个, 长势等级不是一级()4ω<的有1A ,5A ,8A ,10A ,共4个, 随机变量X 的所有可能取值为1,2,3,4,5,()11321164114C C P X C C ===,()1111312211647224C C C C P X C C +===, ()11111131122111647324C C C C C C P X C C ++===,()111121111164148C C C C P X C C +===, ()111111641524C C P X C C ===, 所以X 的分布列为:本题考查概率的求法,考查离散型随机变量的分布列的求法,是中档题,解题时要认真审题,注意排列组合知识的合理运用. 23.见解析 【分析】由二次函数的性质知,当0a >时,二次函数()20y ax bx c a =++≠开口方向向上,函数有最小值为244ac b a -;当0a <时, 二次函数()20y ax bx c a =++≠开口方向向下,函数有最大值为244ac b a-. 【详解】第一步,输入a ,b ,c第二步,计算244ac b m a-=;第三步,若0a >,min y m =,否则, max y m =. 【点睛】本题考查算法步骤的书写和一元二次函数的最值问题;同时让学生体会算法在解决数学问题中的作用;求解本题的关键是对一元二次函数最值情况必须熟悉;属于中档题. 24.见解析; 【解析】试题分析: 先利用INPUT 语句输入法定工作时间以及加班工作时间,再分别赋值法定工作时间工资,加班工作时间工资以及总工资,最后输出一周所得的工资. 试题 程序如下:点睛:25.(1)171277y =⨯;(2)该小组所得线性回归方程是理想的. 【分析】(1)根据数据求出ˆb与ˆa 的值,即可求出y 关于x 的线性回归方程; (2)分别计算出1月份和6月份对应的预测值,与检验数据作差取绝对值,再与2.58进行比较即可得到结论.【详解】(1)由表中2月至5月份的数据, 得11(1113128)11,(24302818)2544x y =+++==+++=,故有()()520(1)2513(3)(7)34iii x x y y =--=⨯-+⨯+⨯+-⨯-=∑,()5222222021(3)14i i x x =-=+++-=∑,34171712,251114777b a y bx ∴===-=-⨯=-, 即y 关于x 的线性回归方程为171277y =⨯; (2)由171277y =⨯,当10x =时,171215810777y =⨯-=, 1581820 2.5877-=<, 当6x =时,1712906777y =⨯=, 901515 2.5877-=<, 则该小组所得线性回归方程是理想的. 【点睛】方法点睛:该题考查的是有关回归分析的问题,解题方法如下:(1)结合题中所给的数据,根据最小二乘法系数公式起的ˆb与ˆa 的值,得到回归直线方程;(2)将相应的变量代入,得到的值域题中条件比较,得到结论. 26.(1)22.7万元;(2)6.9;25.1万元;(3)254.9万元. 【分析】(1)根据均值定义列式计算;(2)求出t ,代入方程可得a ,令7t =代入可得估计值;(3)由频率分布直方图是三种产品的概率,得三种产品的件数,根据各产品赢利可计算出总赢利,注意减去(2)中估计的经营费用. 【详解】 (1)9.512.214.617.419.6166my +++++==.解得22.7m =,即2019年该公司的经营费用为22.7万元. (2) 3.5t =,16y =,所以 2.6 6.9a y t =-=,取7t =,代入得25.1y =,预测2020年所需要支出的经营费用为25.1万元. (3)由图可得生产优质品的概率是0.1,生产合格品的概率是0.79,生产次品的概率是0.11,则预测该公司2020年的总利润为1.50.15000.70.79500 1.30.1150025.1254.9⨯⨯+⨯⨯-⨯⨯-=(万元).【点睛】本题考查线性回归方程及其应用,考查频率分布直方图及其期望,考查学生的数据处理能力,运算求解能力,属于中档题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

必修三 期末测试题
考试时间:90分钟 试卷满分:100分
一、选择题:本大题共14小题,每小题4分,共56分.在每小题给出的四个选项中,只有一项是符合要求的.
1.如果输入n =2,那么执行右图中算法的结果是( ). A .输出3 B .输出4 C .输出5
D .程序出错,输不出任何结果
2.一个容量为1 000的样本分成若干组,已知某组的频率为0.4,则该组的频数是( ). A .400
B .40
C .4
D .600
3.从1,2,3,4这4个数中,不放回地任意取两个数,两个数都是奇数的概率是( ). A .
6
1
B .
4
1
C .3
1
D .
2
1 4.通过随机抽样用样本估计总体,下列说法正确的是( ). A .样本的结果就是总体的结果 B .样本容量越大,可能估计就越精确
C .样本的标准差可以近似地反映总体的平均状态
D .数据的方差越大,说明数据越稳定 5.把11化为二进制数为( ). A .1 011(2)
B .11 011(2)
C .10 110(2)
D .0 110(2)
6.已知x 可以在区间[-t ,4t ](t >0)上任意取值,则x ∈[-2
1
t ,t ]的概率是( ). A .
6
1 B .103 C .3
1
D .
2
1 7.执行右图中的程序,如果输出的结果是4,那么输入的只可能是( ).
A .4
B .2
第一步,输入n . 第二步,n =n +1. 第三步,n =n +2. 第四步,输出n .
C.±2或者-4 D.2或者-4
8.右图是根据某赛季甲、乙两名篮球运动员每场比赛
得分情况画出的茎叶图.从这个茎叶图可以看出甲、乙两名
运动员得分的中位数分别是().
A.31,26
B.36,23
C.36,26
D.31,23
9.按照程序框图(如右图)执行,第3个输出的数是().
A.3
B.4
C.5
D.6
10.在下列各图中,两个变量具有线性相关关系的图是().
(1)(2)(3)(4)
A.(1)(2)B.(1)(3)C.(2)(4)D.(2)(3) 11.右图执行的程序的功能是().
A.求两个正整数的最大公约数
B.求两个正整数的最大值
C.求两个正整数的最小值
D.求圆周率的不足近似值
12.已知n 次多项式f (x )=a n x n +a n -1x n -1
+…+a 1x +a 0,用秦九韶算法求f (x 0)的值,需要进行的乘法运算、加法运算的次数依次是( ).
A .n ,n
B .2n ,n
C .
2
1+)
(n n ,n D .n +1,n +1
13.有一位同学家开了一个小卖部,他为了研究气温对热饮销售的影响,经过统计得到了一天所卖的热饮杯数(y )与当天气温(x ℃)之间的线性关系,其回归方程为y
ˆ=-2.35x +147.77.如果某天气温为2℃时,则该小卖部大约能卖出热饮的杯数是( ).
A .140
B .143
C .152
D .156
14.若以连续掷两次骰子分别得到的点数m ,n 作为点P 的坐标,求点P 落在圆x 2+y 2
=16外部的概率是( ).
A .9
5
B .
3
2 C .
9
7 D .
9
8
二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 15.假设要抽查某种品牌的850颗种子的发芽率,抽取60粒进行实验.利用随机数表抽取种子时,先将850颗种子按001,002,…,850进行编号,如果从随机数表第8行第7列的数7开始向右读,请你依次写出最先检测的4颗种子的编号 , , , .
(下面摘取了随机数表第7行至第9行)
84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76 63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79 33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54 16.由经验得知,在某商场付款处排队等候付款的人数及其概率如下:
则排队人数为2或3人的概率为 .
17.一个社会调查机构就某地居民的月收入调查了10 000人,并根据所得数据画了样 本的频率分布直方图(如下图).为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10 000人中再用分层抽样方法抽出80人作进一步调查,则在[1 500,2 000)(元)月收入段应抽出 人.
18.已知数列{a n },a 1=1,a n +1=a n -n ,计算数列{a n }的第20项.现已给出该问题算法的程序框图(如图所示).
为使之能完成上述的算法功能,则在右图判断框中(A )处应填上合适的语句是 ;在处理框中(B )处应填上合适的语句是 .
三、解答题:本大题共3小题,共28分. 解答应写出文字说明,证明过程或演算步骤. 19.(本小题满分8分)
从甲、乙两名学生中选拔一人参加射箭比赛,为此需要对他们的射箭水平进行测试.现这两名学生在相同条件下各射箭10次,命中的环数如下:
甲 8 9 7 9 7 6 10 10 8 6 乙
10
9
8
6
8
7
9
7
8
8
(1)计算甲、乙两人射箭命中环数的平均数和标准差; (2)比较两个人的成绩,然后决定选择哪名学生参加射箭比赛.
0.000 1
0.000 2 0.000 3 0.000 4 0.000 5 1 000 1 500 2 000 2 500 3 000 3 500 4 000 月收入/元
频率 组距
20.(本小题满分10分)
按右图所示的程序框图操作:
(1)写出输出的数所组成的数集.若将输出的数按照
输出的顺序从前往后依次排列,则得到数列{a n},请写出
数列{a n}的通项公式;
(2)如何变更A框内的赋值语句,使得根据这个程序
框图所输出的数恰好是数列{2n}的前7项?
(3)如何变更B框内的赋值语句,使得根据这个程序
框图所输出的数恰好是数列{3n-2}的前7项?
21.(本小题满分10分)
在甲、乙两个盒子中分别装有标号为1,2,3,4的四个球,现从甲、乙两个盒子中各取出1个球,每个球被取出的可能性相等.
(1)求取出的两个球上标号为相同数字的概率;
(2)求取出的两个球上标号之积能被3整除的概率.
参考答案
一、选择题: 1.C 2.A 3.A 4.B 5.A 6.B 7.B 8.C 9.C
10.D 11.A
12.A
13.B
14.C
解析:
7.解:如x ≥0,则x 2=4,得x =2;
如x <0,则由y =x ,不能输出正值,所以无解.故选B . 14.解:点P (m ,n )的坐标的所有可能有6×6=36种, 而点P 在圆x 2+y 2=16内部只有8种,即
⎩⎨⎧ ⎩⎨⎧ ⎩⎨⎧ ⎩⎨⎧ ⎩⎨⎧ ⎩⎨⎧ ⎩⎨⎧ ⎩⎨⎧ 故点P 在圆x 2+y 2=16内部概率为92,而点P 落在该圆外部的概率为9
7. 二、填空题:
15. 785,567,199,810. 16. 0.6.
17. 16 .
18.n ≤19?(或n <20?);S =S -n .
三、解答题:
19.解:(1)计算得甲x =8,乙x =8;s 甲≈1.41,s 乙≈1.10.
(2)由(1)可知,甲、乙两名学生射箭命中环数的平均数相等,但s 乙<s 甲,这表明乙的成绩比甲更稳定一些. 故选择乙参赛更合适.
20.解:(1)输出的数依次为1,3,5,7,9,11,13; 数列{a n }的通项公式为a n =2n -1,n ∈N *且n ≤7.
(2)将A 框内的语句改为“a =2”即可. (3)将B 框内的语句改为“a =a +3”即可.
21.解:设从甲、乙两个盒子中各取1个球,其数字分别为x ,y . 用(x ,y )表示抽取结果,则所有可能的结果有16种,即
(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),
m =1 n =3 m =1 n =1 m =1 n =2 m =2 n =1 m =2 n =2 m =2 n =3 m =3 n =1 m =3 n =2
(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4). (1)设“取出的两个球上的标号相同”为事件A , 则A ={(1,1),(2,2),(3,3),(4,4)}. 事件A 由4个基本事件组成,故所求概率P (A )=
164=4
1. (2)设“取出的两个球上标号的数字之积能被3整除”为事件B , 则B ={(1,3),(3,1),(2,3),(3,2),(3,3),(3,4),(4,3)} 事件B 由7个基本事件组成,故所求概率P (A )=
16
7.。

相关文档
最新文档