1线性规划及单纯形法

合集下载

第1讲线性规划及单纯形法

第1讲线性规划及单纯形法
21
解:目标函数: Min 约束条件:
f = 2x1 + 3 x2
s.t.
x1 + x2 ≥ 350
x1 ≥ 125
2 x1 + x2 ≤ 600
x1 , x2 ≥ 0 采用图解法。如下图:得Q点坐标(250,100)为最优解。
x2
x1 =125
600
500
2x1+3x2 =1200
400
2x1+x2 =600
26
凸集
定义 2.2.1:设 S Rn 是 n 维欧氏空间的点集,若对任意 x S, y S 的和任意 [0,1] 都有 x (1 ) y S 就称 S 是一个凸集。
定理 2.2.1 线性规划的可行域 D { x Ax b, x 0} 是凸集 定理 2.2.2 任意多个凸集 Si 的交还是凸集
例1 目标函数: max 50x1+100x2 约束条件:x1+x2+s1=300,
2x1+x2+s2=400, x2+s3=250.
xj≥0 (j=1,2),sj≥0 (j=1,2,3)
30
它的系数矩阵 ,
1 1 1 0 0
A(p1,p2,p3,p4,p5)2 1 0 1 0
0 1 0 0 1
其中pj为系数矩阵A第j列的向量。A的秩为3,A的秩m小于此方程组的变
a i1 x 1 a i 2 x 2 a in x n s i b i , s i 0

a i1 x 1 a i 2 x 2 a in x n b i
松弛变量
a i1 x 1 a i 2 x 2 a in x n s i b i , s i 0

单纯形法与线性规划问题

单纯形法与线性规划问题

单纯形法与线性规划问题线性规划是一种优化问题,其基本形式是在给定的约束条件下,使目标函数最大或最小。

这种问题在工业、商业、农业和社会等领域有着广泛的应用。

在解决线性规划问题时,单纯形法是一种经典和常用的算法。

本文将介绍单纯形法和其在线性规划问题中的应用。

一、单纯形法概述单纯形法是一种基于向量空间的方法,其基本思想是沿着可行解空间中的边缘逐步搜索找到最优解。

单纯形法的运算是建立在基向量的概念上,基向量是指满足线性不可约条件的可行解基组成的向量。

单纯形法的步骤如下:1. 构造首行,确定初始基向量。

2. 选择离目标函数最远并且为正的变量,称为入基变量。

3. 选择离约束最近的基变量,称为出基变量。

4. 通过 Gauss-Jordan 消元法计算新的基向量组,确定更新后的基向量。

5. 重复步骤 2-4 直至无法选择入基变量为止。

6. 找到目标函数的最优解。

二、线性规划问题线性规划问题的一般形式如下:$$\max_{x_1,x_2,\dots,x_n\ge0}f(x_1,x_2,\dots,x_n)$$$$\text{s.t.}\begin{cases}\sum_{j=1}^na_{1j}x_j\le b_1\\\sum_{j=1}^na_{2j}x_j\le b_2\\\dots\dots\\\end{cases}$$其中,$f(x_1,x_2,\dots,x_n)$ 为线性目标函数,$a_{ij}$ 和$b_i$ 均为常数。

三、单纯形法解决线性规划问题1. 转化为标准型单纯形法只能用于标准型的线性规划问题,因此需要将原始问题转化为标准型。

标准型的形式如下:$$\max_{x_1,x_2,\dots,x_n\ge0}\sum_{j=1}^nc_jx_j$$$$\text{s.t.}\begin{cases}\sum_{j=1}^na_{1j}x_j\le b_1\\\sum_{j=1}^na_{2j}x_j\le b_2\\\dots\dots\\\end{cases}$$2. 添加松弛变量将约束条件转化为等式形式时需要添加松弛变量,松弛变量是一种关于决策变量的人工变量,其值可以取负数。

第一章线性规划问题及单纯形解法演示文稿

第一章线性规划问题及单纯形解法演示文稿
线性规划问题的可行解集S是凸集 设X属于S,若x=0,则一定为极点;若x 0,则为极点的充要条件是:x的正分量所 对应的系数列向量线性无关。
只要存在可行解,就一定存在极点
极点的个数是有限的
最优解只可能在凸集的极点上,而不可能发生 在凸集的内部
38
第38页,共65页。
关于标准型解的若干基本概念:
Z=15x11+21x12+18x13+
20x21+25x22+16x23, x11+x12+x13≤200, x21+x22+x23≤150, x11+ x21 =100, x12+x22=80, x13+x23≥90, x13+x23≤120, xij≥0 ﹙i=1,2 j=1,2,3﹚.
10
第10页,共65页。
maxz( x) c x c x c x
11
22
nn
s.t.
a x a x a x b
11 1
12 2
1n n
1
ax 21 1
a x 22 2
a x 2n n
b 2
am1
x 1
a x m2 2
a x mn n
b m
x , x ,, x 0
1
2
n
12
第12页,共65页。
1、标准型的几种不同的表示方式
对有限个约束条件则其可行域的顶点也是有限的。
z=10000=50x1+100x
2
z=0=50x1+100x2
x2
x1+x2=300
AB C
E
z=27500=50x1+100x

第一章 线性规划及单纯形法

第一章 线性规划及单纯形法
37
线性规划问题的标准形式: 线性规划问题的标准形式:
max f = ∑ c j x
j =1 j n
n ∑ aij x j = bi , i = 1,2,L , m j =1 x j ≥ 0, j = 1,2,L , n
日产量( 日产量(吨) 9 5 7 21
11
)(模型 例2(运输问题)(模型) (运输问题)(模型)
minf = 2 x11 + 9 x12 + 10 x13 + 7 x14 + x21 + 3 x22 + 4 x23 + 2 x24 + 8 x31 + 4 x32 + 2 x33 + 5 x34 x11 + x12 + x13 + x14 = 9 x +x +x +x =5 23 24 21 22 x31 + x32 + x33 + x34 = 7 x11 + x21 + x31 = 3 s.t. x12 + x22 + x32 = 8 x13 + x23 + x33 = 4 x14 + x24 + x34 = 6 xij ≥ 0(i = 1,2,3; j = 1,2,3,4)
18
3、(线性规划)数学模型的三要素 、(线性规划) 、(线性规划 变量/决策变量 决策变量; ①变量 决策变量; 目标函数( ②目标函数(max/min); ); 约束条件。 ③约束条件。
19
决策变量: ①变量/决策变量:指决策者为实现规划目标采 变量 决策变量 取的方案、措施,是问题中要确定的未知量; 取的方案、措施,是问题中要确定的未知量;

线性规划与单纯形法

线性规划与单纯形法

线性规划与单纯形法线性规划(Linear Programming)是一种在资源有限的情况下,通过最优化目标函数来确定最佳解决方案的数学优化方法。

而单纯形法(Simplex Method)则是一种常用的求解线性规划问题的算法。

本文将介绍线性规划与单纯形法的基本概念和运算步骤,以及实际应用中的一些注意事项。

一、线性规划的基本概念线性规划的基本思想是在一组线性不等式约束条件下,通过线性目标函数的最小化(或最大化)来求解最优解。

其中,线性不等式约束条件可表示为:```a1x1 + a2x2 + ... + anxn ≤ b```其中,x1、x2、...、xn为决策变量,a1、a2、...、an为系数,b为常数。

目标函数的最小化(或最大化)可表示为:```min(c1x1 + c2x2 + ... + cnxn)```或```max(c1x1 + c2x2 + ... + cnxn)```其中,c1、c2、...、cn为系数。

二、单纯形法的基本思想单纯形法是由乔治·丹尼尔·丹齐格尔(George Dantzig)于1947年提出的求解线性规划问题的算法。

其基本思想是通过逐步迭代改进当前解,直至达到最优解。

三、单纯形法的运算步骤1. 初等列变换:将线性规划问题转化为标准型,即将所有约束条件转化为等式形式,并引入松弛变量或人工变量。

2. 初始化:确定初始可行解。

通常使用人工变量法来获得一个初始可行解。

3. 检验最优性:计算当前基础解的目标函数值,若目标函数值小于等于零,则该基础解即为最优解。

否则,进入下一步。

4. 基本可行解的变换:选择一个入基变量和一个出基变量,并进行基本变换,得到新的基础解。

5. 迭代求解:根据目标函数值是否小于等于零,判断是否达到最优解。

若达到最优解,则算法终止;若未达到最优解,则返回步骤3进行下一轮迭代。

四、单纯形法的实际应用注意事项1. 线性规划问题的约束条件必须是线性的,且可行解集合必须是有界的。

第1章-线性规划及单纯形法-课件(1)

第1章-线性规划及单纯形法-课件(1)

✓ x1、 x2 0
IБайду номын сангаас
设备
1
原材料 A 4
原材料 B 0
利润
2
II 资源限量
2 8 台时
0
16kg
4
12kg
3
第一章 线性规划及单纯形法 运筹学
该计划的数学模型
✓ 目标函数 ✓ 约束条件
Max Z = 2x1 + 3x2
x1 + 2x2 8 4x1 16 4x2 12 x1、 x2 0
x1
✓ 美国航空公司关于哪架飞机用于哪一航班和哪些 机组人员被安排于哪架飞机的决策。
✓ 美国国防部关于如何从现有的一些基地向海湾运 送海湾战争所需要的人员和物资的决策。
✓ ……
第一章 线性规划及单纯形法 运筹学
二、线性规划问题的数学模型
✓ 1、一般形式 ✓ 2、简写形式 ✓ 3、表格形式 ✓ 4、向量形式 ✓ 5、矩阵形式
1、唯一最优解
max Z 2 x 1 3 x 2
2 x 1 2 x 2 12 ⑴
x1 4 x1
2 x2
8 16
⑵ ⑶
4 x 2 12 ⑷
x 1 0 , x 2 0
1 234 56
x2
⑶ ⑷
(4,2)
0 1 234 5678
x1


✓最优解:x1 = 4,x2 = 2,有唯一最优解Z=14。
第一章 线性规划及单纯形法 运筹学
三、线性规划模型的标准形式
✓ 1、标准形式 ✓ 2、转换方式
第一章 线性规划及单纯形法 运筹学
1、标准形式
maZx cjxj
xj
aijxj 0
bi

第1章线性规划及单纯形法

第1章线性规划及单纯形法

表1-17
原料 甲


A ≥60% ≥3%
B C ≤20% ≤50% ≤60 加工费 0.50 0.40 0.30 (元/kg) 售价 3.4 2.85 2.25 (元/kg)
原料成本 每月限 (元/kg) 制用量
(kg)
2.00 2000
1.50 2500
1.00 1200
(二) 产品计划问题
Min z= 13x1 +9x2 +10x3 +11x4 +12x5 +8x6
s.t.
x1 +x4 =300
x2 +x5 =500
x3 +x6 =400
0.4x1 +1.1x2
+x3 ≤700
0.5x4 +1.2x5 +1.3x6 ≤800
xj ≥0 (j=1, 2, …, 6)
例3:某昼夜服务的公共交通系统每天各时间段 ( 每4小时为一个时间段)所需的值班人数如下表, 这些值班人员在某一时段开始上班后要连续工作8个 小时 ( 包括轮流用膳时间在内),问该公交系统至
少需多少名工作人员才能满足值班的需要。
班次
时间段
所需人数
1
6:00—10:00
60
2
10:00—14:00
70
3
14:00—18:00
60
4
18:00—22:00
50
5
22:00—2:00
20
6
2:00—6:00
30
设xi为第i个时段开始上班的人员数,由此可得数 学模型如下:
Min z= x1 +x2
+x3 +x4 +x5 +x6

第一章线性规划及单纯形法

第一章线性规划及单纯形法

第一章线性规划及单纯形法6.6单纯形法小结Drawingontheexampl,thetwoaxisinterceptsareplotted.2、求初始基可行解并进行最优性检验Cj比值CBXBb 检验数?jx1x2x3x4x53500081010012020103634001x3x4x5000035000令非基变量x1=0,x2=0,找到一个初始基可行解:x1=0,x2=0,x3=8,x4=12,x5=36,σj>0,此解不是最优(因为z=3x1+5x2+0x3+0x4+0x5)即X0=(0,0,8,12,36)T,此时利润Z=03、寻找另一基可行解Cj比值CBXBb检验数?jx1x2x3x4x53500081010012020103634001x3x4x5000035000-12/2=636/4=9主元首先确定入基变量再确定出基变量检验数?j81010060101/2012300-21x3x2x5050-30300-5/20Cj比值CBXBb检验数?jx1x2x3x4x53500081010012020103634001x3x4x5000035000-12/2=636/4=9令x1=0,x4=0,得x2=6,x3=8,x5=12,即得基可行解X1=(0,6,8,0,12)T此时Z=30σ1=3>0,此解不是最优迭代4、寻找下一基可行解Cj比值CBXBb检验数?jx1x2x3x4x53500081010060101/2012300-21x3x2x5050-30300-5/208-4检验数?j40012/3-1/360101/204100-2/31/3x3x2x1053-42000-1/2-1令x4=0,x5=0,得x1=4,x2=6,x3=4,即X0=(4,6,4,0,0)T?j<0最优解:X=(4,6,4,0,0)T最优值:Z=42小结:单纯形表格法的计算步骤①将线性规划问题化成标准型。

②找出或构造一个m阶单位矩阵作为初始可行基,建立初始单纯形表。

第一章 线性规划及单纯形法1图解2006

第一章 线性规划及单纯形法1图解2006

简写为:
n
ma或 x(minz) cjxj
j1
jn1aijxj (,)bi (i 1,,m)
xj 0 (j 1,,n)
向量表达形式:
ma或 xm ( izn)CX
n
j 1
Pj
x
j
(, )b
X 0
C(c1,c2,,cn)
x 1
X
x2 xn
a 1 j
Pj
a2j
目标函数 mzi n 28(x1 0 1x 0 2 1x3 1x4)145(x1 02 0 x22 x3)260(x1 0 3x 0 2)373x10 4 0
约束条件
x11 x12 x13 x14 15
xx1132
x13 x14
x14 x22
x21 x23
x22 x31
x23 x32
第一章 线性规划及单纯形法
第一节 线性规划问题及其数学模型
例:某公司计划生产甲、乙两种产品,已知各生产一件时分别 占用的设备A、B的台时、调试时间和调试工序每天可用于这两 种产品的能力、各销售一件时的获利情况,如下表所示。问该 公司应生产两种产品各多少件,使获取的利润为最大。

乙 每天可用能力
设备A(h)
可行域中使目标函数值达到最优的可行解称为最优解。
图解法的步骤:
(1)在平面上建立直角坐标系 (2)图示约束条件,找出可行域 (3)图示目标函数,寻求最优解
线性规划的图解
max z = x1+3x2 s.t. x1+ x2≤6
-x1+2x2≤8 x1 ≥0, x2≥0
x2 6
4
最优解 可行域
-8
0
目标函数等ห้องสมุดไป่ตู้线

运筹学基础及应用第五版胡运权第一章

运筹学基础及应用第五版胡运权第一章
问题的提出 某企业计划生产Ⅰ、Ⅱ两种产品。这两种产品都要分别在A、B、C、D四种不同设备上加工。生产每件产品Ⅰ需占用各设备分别为2、1、4、0h,生产每件产品Ⅱ,需占用各设备分别为2、2、0、4h。已知各设备计划期内用于生产这两种产品的能力分别为12、8、16、12h,又知每生产一件产品Ⅰ企业能获得2元利润,每生产一件产品Ⅱ企业能获得3元利润,问企业应安排生产两种产品各多少件,使总的利润收入为最大。
xi 0
aij
aLj
xL 0
i
∴ P1 , P2,······,PL-1, PL+1,······ Pm, Pj 线性无关。
∴ X1 也为基本可行解。
四、最优性检验和解的判别

,其中 随基的改变而改变
X1 = (x1 0- a1j ,x2 0- a2j ,···,xm 0- amj ,0,···,,···,0)T
必要性:X非基本可行解 X非凸集顶点 不失一般性,设X=(x1,x2,······,xm,0,0,······,0)T,为非基本可行解, ∵ X为可行解,
证:等价于 X非基本可行解X非凸集顶点
又 X是非基本可行解, ∴ P1,P2,······,Pm线性相关,即有 1P1+2P2+······+mPm=0, 其中1,2,······,m不全为0,两端同乘≠0,得 1P1+2P2+······+mPm=0,······(2)
∵ >0, 1->0 ,当xj=0, 必有yj=zj=0

pjyj =
j=1
n
pjyj=b ······(1)
j=1
r
pjzj =
j=1
n
pjzj=b ······(2)

运筹学第1章线性规划及单纯形法复习题

运筹学第1章线性规划及单纯形法复习题

max (min)
Z = CX
AX ≤ ( = , ≥ ) b X ≥ 0
3、线性规划的标准形式 、
ma0
4、线性规划问题的解 、 (一)求解方法
一 般 有 两种方法 图 解 法 单纯形法 两个变量、 两个变量、直角坐标 三个变量、 三个变量、立体坐标
适用于任意多个变量、 适用于任意多个变量、但需将 一般形式变成标准形式
(二)线性规划问题的解
1、解的概念 可行解:满足约束条件② 的解为可行解。 ⑴ 可行解:满足约束条件②、③的解为可行解。 所有解的集合为可行解的集或可行域。 所有解的集合为可行解的集或可行域。 最优解: 达到最大值的可行解。 ⑵ 最优解:使目标函数①达到最大值的可行解。 ⑶ 基:B是矩阵A中m×m阶非奇异子矩阵 是矩阵A ≠0), ),则 是一个基。 (∣B∣≠0),则B是一个基。
§2 图 解 法
例一、 例一、 max
Z = 2 x 2 x 2 x 4 x
2 2 1
+ 3 x
2
2 x1 + x + 1 4 x1 x1 ≥
≤ 12 ≤ 8 ≤ 16 ≤ 12
2
⑴ ⑵ ⑶ ⑷
2
0, x
≥ 0
max
Z = 2 x1 + 3 x 2 x 2 x
2 2
当xj=0时, 必有 j=zj=0, 因此 时 必有y
∑P x = ∑P y = ∑P z
j =1
r
r
r
r
j
j
j =1
j
j
j =1
j
j
=b
∑(y
j =1
j
− z j ) Pj = 0

运筹学第一章

运筹学第一章

第一章、 线性规划和单纯形法1.1 线性规划的概念一、线性规划问题的导出1.(引例) 配比问题——用浓度为45%和92%的硫酸配置100t 浓度为80%的硫酸。

取45%和92%的硫酸分别为x1和x2t,则有: 求解二元一次方程组得解。

目的相同,但有5种不同浓度的硫酸可选(30%,45%,73%,85%,92%)会出现什么情况?设取这5种硫酸分别为 x1、x2、x3、x4、x5 t, 则有: ⎩⎨⎧⨯=++++=++++1008.092.085.073.045.03.01005432154321x x x x x x x x x x 请问有多少种配比方案?为什么?哪一种方案最好?假设5种硫酸价格分别为:400,700,1400,1900,2500元/t ,则有:2.生产计划问题如何制定生产计划,使三种产品总利润最大?考虑问题:⎩⎨⎧⨯=+=+1008.092.045.01002121x x x x ⎪⎩⎪⎨⎧=≥⨯=++++=++++++++=5,,2,1,01008.092.085.073.045.03.0100..250019001400700400543215432154321 j x x x x x x x x x x x t s x x x x x MinZ j(1)何为生产计划?(2)总利润如何描述?(3)还要考虑什么因素?(4)有什么需要注意的地方(技巧)?(5)最终得到的数学模型是什么?二、线性规划的定义和数学描述(模型)1.定义:对于求取一组变量xj (j =1,2,......,n),使之既满足线性约束条件,又使具有线性表达式的目标函数取得极大值或极小值的一类最优化问题称为线性规划问题,简称线性规划。

2.配比问题和生产计划问题的线性规划模型的特点:用一组未知变量表示要求的方案,这组未知变量称为决策变量;存在一定的限制条件,且为线性表达式;有一个目标要求(最大化,当然也可以是最小化),目标表示为未知变量的线性表达式,称之为目标函数; 对决策变量有非负要求。

线性规划单纯形法

线性规划单纯形法

线性规划单纯形法线性规划是一种优化问题求解方法,它通过建立数学模型,来寻找使目标函数达到最优的决策变量取值。

线性规划的主要特点是目标函数和约束条件都是线性的。

单纯形法是线性规划中最常用的求解方法之一,它是由美国数学家Dantzig在1947年提出的。

单纯形法通过迭代计算的方式,逐步优化目标函数的值,直到找到最优解为止。

单纯形法的步骤如下:1. 建立线性规划模型:确定决策变量、目标函数和约束条件,并确定它们的线性关系。

2. 初始可行解:选择一个初始可行解,使得所有的约束条件都得到满足。

一般来说,可以通过将约束条件全部转化为等式约束,从而求解出一个初始可行解。

3. 判断最优解:计算当前可行解对应的目标函数值,判断是否是最优解。

如果是最优解,则终止算法;如果不是最优解,则进入下一步。

4. 寻找进入变量:选择一个进入变量,即目标函数可以通过增加该变量的值而增大。

5. 寻找离开变量:选择一个离开变量,即通过增加进入变量来保持其他约束条件满足的同时,尽可能减小目标函数的值。

6. 更新可行解:根据进入变量和离开变量的取值更新可行解,并转化为下一个迭代的初始可行解。

7. 重复以上步骤,直到找到最优解为止。

单纯形法的优势在于它可以在有限的迭代次数内找到最优解。

然而,单纯形法的缺点也是显著的,它在处理大规模问题时计算复杂度很高,可能需要大量的计算时间。

总结来说,线性规划单纯形法是一种求解线性规划问题的有效方法。

通过迭代计算,单纯形法不断改进可行解,最终找到使目标函数达到最优的决策变量取值。

虽然单纯形法在处理大规模问题时存在一定的局限性,但在许多实际问题中仍然得到广泛应用。

第1章线性规划与单纯形法

第1章线性规划与单纯形法
26
线性规划问题的数学模型
7. 线性规划问题的解
线性规划问题
n
max Z cj xj (1) j 1
s.t
n j 1
aij
xj
bi
(i 1, 2,
, m) (2)
x
j
0,
j
1, 2,
, n (3)
求解线性规划问题,就是从满足约束条件(2)、(3)的方程组 中找出一个解,使目标函数(1)达到最大值。
解: Max z = 3x1–5x2’+5x2”–8x3 +7x4 s.t. 2x1–3x2’+3x2”+5x3+6x4+x5= 28 4x1+2x2’-2x2”+3x3-9x4-x6= 39 -6x2’+6x2”-2x3-3x4-x7 = 58 x1 ,x2’,x2”,x3 ,x4 ,x5 ,x6 ,x7 ≥ 0
x1 , x2 0, x3无约束
解:(1)因为x3无符号要求 ,即x3取正值也可取负值,标准 型中要求变量非负,所以
用 x3 x3 替换 x3 ,且 x3 , x3 0
20
线性规划问题的数学模型
(2) 第一个约束条件是“≤”号,在“≤”左端加入松驰变量x4, x4≥0,化为等式;
(3) 第二个约束条件是“≥”号,在“≥”左端减去剩余变量x5, x5≥0;
11
线性规划问题的数学模型
3. 建模条件 (1) 优化条件:问题所要达到的目标能用线型函数描述,且 能够用极值 (max 或 min)来表示;
(2) 限定条件:达到目标受到一定的限制,且这些限制能够 用决策变量的线性等式或线性不等式表示;
(3) 选择条件:有多种可选择的方案供决策者选择,以便找 出最优方案。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
营业面积m2 120 B2 B1 决策单元B1位于数 据包络线右上方, 连接O-B1,交于包 络线D点,坐标为 (5.6,93.3) B3 60
90
D
B4
30
O
3
6
9
12
职员数
【解】为进行分析,以职员数为横坐标、营 业面积为纵坐标,将四个储蓄所的投入绘图
营业面积m2 120 B2 B1
5.6 93.3 因有: 93.3% 6 100 即:将B1的职员和面积数 减少至原来的 93.3%,达
s ur yrj r 1 1 ( j 1,...,n) m s.t. vi xij i 1 vi 0(i 1,...,m), ur 0(r 1,...,s ) 1 令:t m , i t vi , vi xij0
i 1
min 8000 1 6500 2 8500 3 7500 4 8000
[例12] 有4所医院,其投入产出情况如表所 示。试分析评价上述4所医院是否DEA有效。
医院 H1 H2 H3 H4 引入对 偶变量 投入 职员数 285 162 275 230 床位数 100 64 90 85 面积m2 8000 6500 8500 7500 产出 年门诊病人次 35500 28000 33000 30000 住院病人日 25000 18000 24000 21000
i 1
r t ur
可以转化为:
s m i xij r yrj 0 ( j 1,...,n) r i i 1 m s.t. i xij0 1 i 1 vi 0(i 1,...,m), ur 0(r 1,...,s )
【解】为进行分析,以职员数为横坐标、营 业面积为纵坐标,将四个储蓄所的投入绘图
营业面积m2 120 B2 B1
90 B3 60
B4
30
O
3
6
9
12
职员数
【解】为进行分析,以职员数为横坐标、营 业面积为纵坐标,将四个储蓄所的投入绘图
营业面积m2 120 B2 B1 连接B2-B3-B4形成 一条凸折线。 构成生产可行集合。 说明集合内的点对 应的职员数和营业 面积数的储蓄所均 有能力完成10,000 笔存取款业务。 B4
6-2
评价决策单元DEA有效性C2R模型
设:有n个决策单元( j 1,2,...,n) , 每个决策单元有相同的 m项投入(i 1,2,...,m)和相同的s项产出(r 1,2,...,s), 用xij 表示第j个单元的第i项投入量,yij 表示第j个单元的第 r项产出量。其投入产出 情况表示如下: 决策单元 1 2 ... n 1 x11 2 x21 投入 ...... ... m xm1
[解]先以医院H1为例,确定其是否 DEA有效, 写出H1绩效评价的线性规划模 型:
[例12] 有4所医院,其投入产出情况如表所 示。试分析评价上述4所医院是否DEA有效。
医院 H1 H2 H3 H4 引入对 偶变量 投入 职员数 285 162 275 230 床位数 100 64 90 85 面积m2 8000 6500 8500 7500 产出 年门诊病人次 35500 28000 33000 30000 住院病人日 25000 18000 24000 21000
min 2851 1622 2753 2304 285
[例12] 有4所医院,其投入产出情况如表所 示。试分析评价上述4所医院是否DEA有效。
医院 H1 H2 H3 H4 引入对 偶变量 投入 职员数 285 162 275 230 床位数 100 64 90 85 面积m2 8000 6500 8500 7500 产出 年门诊病人次 35500 28000 33000 30000 住院病人日 25000 18000 24000 21000
给每一产出项赋权值u1 y11 u2 y21 ... ... u s ys1
若用vi 表示第i项投入的权值, ur 表示第r项产出的权值, 则:第j决策单元的投入产出比 h j的表达式为: hj
u y
r 1 m r
s
rj
v x
i 1
( j 1,2,...,n)
1.
线性规划及单纯形法
主讲教师:王旭 本章学时:12 h 剩余学时: 4 h
§6
数据包络分析
数据包络分析 (data envelopment analysis,DEA) 是一种对具有相同类型决策单元 (decision making unit,DMU)进行绩效评价的 方法。 相同类型决策单元——是指这类决策单元具有相同 性质的投入产出。 ——例如:医院投入的是医护人员、面积、床位数、 医疗设备和药品等,产出的是门诊病人人数、住 院病人人日、代培实习的医护人员数等。
6-2
评价决策单元DEA有效性C2R模型
设:有n个决策单元( j 1,2,...,n) , 每个决策单元有相同的 m项投入(i 1,2,...,m)和相同的s项产出(r 1,2,...,s), 用xij 表示第j个单元的第i项投入量,yij 表示第j个单元的第 r项产出量。其投入产出 情况表示如下: 决策单元 1 2 ... n 1 x11 2 x21 投入 ...... ... m xm1 x12 x22 ... xm 2
y11 y 21 ... ys1
x12
... x1n ... x2 n ... ... xmn
... y1n 1 ... y2 n 2 ... ... ... ysn s 产出
其对偶问题可写成: min n (i 1,...,m) j xij xij0 j 1 n s.t. j yrj yrj 0 (r 1,...,s ) j 1 0 ( j 1,...,n) 该模型显示出对偶问题 的经济意义十分明显: 为了评价j0决策单元的绩效,可用 一个假想的组合决策单 元 与其比较。约束条件的 左端项分别是这个组合 决策单元的 投入和产出。 因此,上述模型的含义 为,如果的最优值小于 1,则表明可 以找到这样一个假想的 决策单元,它可以用比 评价决策单元 更少的投入,获得不少 于被评价决策单元的产 出,从而表明 被评价的决策单元为非 DEA有效。只有 1时,才表明被评 价的决策单元DEA有效。
i ij
通过适当的选取权值 vi (i 1,...,m)和ur (r 1,...,s ), 使得j 1,...,n, 有h j 1,则对第j0个决策单元的绩效评价 可归结为如下优化模型 :
max h j0
u y
r 1 m r
s
rj 0
v x
i 1
i ij0
s ur yrj r 1 1 ( j 1,...,n) m s.t , vi xij i 1 vi 0(i 1,...,m), ur 0(r 1,...,s) 这是一个非线性规划问 题,为便于应用和求解 我们将其 转化为一个等价的线性 规划问题。
单位绩效衡量
• 衡量一个单位的绩效,通常用投入产出比 这个指标,当所有投入和产出指标均分别 可折算成同一单位时(如货币值),容易 根据投入产出比大小对要评定的决策单元 进行绩效排序,但大多数情况下做不到这 一点。 • 由A. Charnes等人提出的DEA方法为具有 多个投入和多个产出的同类型决策单元的 绩效评价提供了依据。
30
O
3
6
9
12
职员数
【解】为进行分析,以职员数为横坐标、营 业面积为纵坐标,将四个储蓄所的投入绘图
营业面积m2 120 B2 B1 处于包络线以内的 决策单元称为DEA有 效(或Pareto有效) 即:减少人员数就 增加营业面积,并 不超出数据包络线 B3 60
90
B4
30
O
3
6
9
12
职员数
【解】为进行分析,以职员数为横坐标、营 业面积为纵坐标,将四个储蓄所的投入绘图
令:t
1
v x
i 1
m
,
i t vi ,
r t ur
i ij0
则: max h j0
u y
r 1 m r i 1 s
s
rj 0
vi xij0
可转化为max h j0 t ur yrj 0 r yrj 0
r 1 r 1
s
s
即: max h j0 r yrj 0
r 1
s ur yrj r 1 1 ( j 1,...,n) m s.t. vi xij i 1 vi 0(i 1,...,m), ur 0(r 1,...,s ) 1 令:t m , i t vi , vi xij0
90 B3 60
30
O
3
6
9
12
职员数
【解】为进行分析,以职员数为横坐标、营 业面积为纵坐标,将四个储蓄所的投入绘图
营业面积m2 120 B2 B1 由虚线和折线形成 的数据包络线称为 生产前沿面。 即:不可能由这条 包络线以外的点对 应的职员数和营业 面积完成10,000笔 存取款业务, B4
90 B3 60
90
D
(5.6,93.3) 到D点水平,才算DEA有 效。而D点则可由 35%的 B3 B2和65% 的B4线性组合而 成。 B4
60
30
O
3
6
9
12
职员数
6-2
评价决策单元DEA有效性C2R模型
该模型由Charenes、Coopper和Rhodes提出, 故名,DEA有效性的评价是对已有决策单元绩 效的比较评价,属相对评价。
相关文档
最新文档