数据结构课后习题及解析第六章

合集下载

数据结构-习题-第六章-树

数据结构-习题-第六章-树

数据结构-习题-第六章-树和二叉树E F D G A B / + + * - C * 第六章 树和二叉树一、选择题1.已知一算术表达式的中缀形式为 A+B*C-D/E ,后缀形式为ABC*+DE/-,其前缀形式为( )A .-A+B*C/DE B. -A+B*CD/EC .-+*ABC/DE D. -+A*BC/DE【北京航空航天大学 1999 一、3 (2分)】2.算术表达式a+b*(c+d/e )转为后缀表达式后为( )【中山大学 1999 一、5】A .ab+cde/*B .abcde/+*+C .abcde/*++D .abcde*/++ 3. 设有一表示算术表达式的二叉树(见下图), 它所表示的算术表达式是( )【南京理工大学1999 一、20(2分)】A. A*B+C/(D*E)+(F-G)B.(A*B+C)/(D*E)+(F-G)C. (A*B+C)/(D*E+(F-G ))D.A*B+C/D*E+F-G4. 设树T 的度为4,其中度为1,2,3和4的结点个数分别为4,2,1,1 则T 中的叶子数为( )A .5B .6C .7D.8【南京理工大学 2000 一、8 (1.5分)】5. 在下述结论中,正确的是()【南京理工大学 1999 一、4 (1分)】①只有一个结点的二叉树的度为0; ②二叉树的度为2;③二叉树的左右子树可任意交换;④深度为K的完全二叉树的结点个数小于或等于深度相同的满二叉树。

A.①②③ B.②③④ C.②④ D.①④6. 设森林F对应的二叉树为B,它有m个结点,B的根为p,p的右子树结点个数为n,森林F中第一棵树的结点个数是()A.m-n B.m-n-1 C.n+1 D.条件不足,无法确定【南京理工大学2000 一、17(1.5分)】7. 树是结点的有限集合,它( (1))根结点,记为T。

其余结点分成为m(m>0)个((2))的集合T1,T2,…,Tm,每个集合又都是树,此时结点T称为Ti的父结点,Ti称为T的子结点(1≤i≤m)。

数据结构课后习题答案及解析第六章

数据结构课后习题答案及解析第六章

第六章树和二叉树(下载后用阅读版式视图或web版式可以看清)习题一、选择题1.有一“遗传”关系:设x是y的父亲,则x可以把它的属性遗传给y。

表示该遗传关系最适合的数据结构为( )。

A.向量B.树 C图 D.二叉树2.树最合适用来表示( )。

A.有序数据元素 B元素之间具有分支层次关系的数据C无序数据元素 D.元素之间无联系的数据3.树B的层号表示为la,2b,3d,3e,2c,对应于下面选择的( )。

A. la (2b (3d,3e),2c)B. a(b(D,e),c)C. a(b(d,e),c)D. a(b,d(e),c)4.高度为h的完全二叉树至少有( )个结点,至多有( )个结点。

A. 2h_lB.h C.2h-1 D. 2h5.在一棵完全二叉树中,若编号为f的结点存在右孩子,则右子结点的编号为( )。

A. 2iB. 2i-lC. 2i+lD. 2i+26.一棵二叉树的广义表表示为a(b(c),d(e(,g(h)),f)),则该二叉树的高度为 ( )。

A.3B.4C.5D.67.深度为5的二叉树至多有( )个结点。

A. 31B. 32C. 16D. 108.假定在一棵二叉树中,双分支结点数为15,单分支结点数为30个,则叶子结点数为( )个。

A. 15B. 16C. 17D. 479.题图6-1中,( )是完全二叉树,( )是满二叉树。

..专业知识编辑整理..10.在题图6-2所示的二叉树中:(1)A结点是A.叶结点 B根结点但不是分支结点 C根结点也是分支结点 D.分支结点但不是根结点(2)J结点是A.叶结点 B.根结点但不是分支结点 C根结点也是分支结点 D.分支结点但不是根结点(3)F结点的兄弟结点是A.EB.D C.空 D.I(4)F结点的双亲结点是A.AB.BC.CD.D(5)树的深度为A.1B.2C.3D.4(6)B结点的深度为A.1B.2C.3D.4(7)A结点所在的层是A.1B.2C.3D.4..专业知识编辑整理..11.在一棵具有35个结点的完全二叉树中,该树的深度为( )。

数据结构第六章题目讲解

数据结构第六章题目讲解

数据结构第六章题⽬讲解02⼀选择题:1、以下说法错误的是①树形结构的特点是⼀个结点可以有多个直接前趋②线性结构中的⼀个结点⾄多只有⼀个直接后继③树形结构可以表达(组织)更复杂的数据④树(及⼀切树形结构)是⼀种"分⽀层次"结构⑤任何只含⼀个结点的集合是⼀棵树2.深度为6的⼆叉树最多有( )个结点①64 ②63 ③32 ④313 下列说法中正确的是①任何⼀棵⼆叉树中⾄少有⼀个结点的度为2②任何⼀棵⼆叉树中每个结点的度都为2 ⼆叉树可空③任何⼀棵⼆叉树中的度肯定等于2 ④任何⼀棵⼆叉树中的度可以⼩于24 设森林T中有4棵树,第⼀、⼆、三、四棵树的结点个数分别是n1,n2,n3,n4,那么当把森林T转换成⼀棵⼆叉树后,且根结点的右⼦树上有()个结点。

①n1-1 ②n1③n1+n2+n3④n2+n3+n4⼆.名词解释:1 结点的度 3。

叶⼦ 4。

分⽀点 5。

树的度三填空题⼆叉树第i(i>=1)层上⾄多有_____个结点。

1、深度为k(k>=1)的⼆叉树⾄多有_____个结点。

2、如果将⼀棵有n个结点的完全⼆叉树按层编号,则对任⼀编号为i(1<=i<=n)的结点X有:若i=1,则结点X是_ ____;若i〉1,则X的双亲PARENT(X)的编号为__ ____。

若2i>n,则结点X⽆_ _____且⽆_ _____;否则,X的左孩⼦LCHILD(X)的编号为____。

若2i+1>n,则结点X⽆__ ____;否则,X的右孩⼦RCHILD(X)的编号为_____。

4.以下程序段采⽤先根遍历⽅法求⼆叉树的叶⼦数,请在横线处填充适当的语句。

Void countleaf(bitreptr t,int *count)/*根指针为t,假定叶⼦数count的初值为0*/ {if(t!=NULL){if((t->lchild==NULL)&&(t->rchild==NULL))__ __;countleaf(t->lchild,&count);countleaf(t->rchild,&count);}}5 先根遍历树和先根遍历与该树对应的⼆叉树,其结果_____。

数据结构第六章图理解练习知识题及答案解析详细解析(精华版)

数据结构第六章图理解练习知识题及答案解析详细解析(精华版)

图1. 填空题⑴设无向图G中顶点数为n,则图G至少有()条边,至多有()条边;若G为有向图,则至少有()条边,至多有()条边。

【解答】0,n(n-1)/2,0,n(n-1)【分析】图的顶点集合是有穷非空的,而边集可以是空集;边数达到最多的图称为完全图,在完全图中,任意两个顶点之间都存在边。

⑵任何连通图的连通分量只有一个,即是()。

【解答】其自身⑶图的存储结构主要有两种,分别是()和()。

【解答】邻接矩阵,邻接表【分析】这是最常用的两种存储结构,此外,还有十字链表、邻接多重表、边集数组等。

⑷已知无向图G的顶点数为n,边数为e,其邻接表表示的空间复杂度为()。

【解答】O(n+e)【分析】在无向图的邻接表中,顶点表有n个结点,边表有2e个结点,共有n+2e个结点,其空间复杂度为O(n+2e)=O(n+e)。

⑸已知一个有向图的邻接矩阵表示,计算第j个顶点的入度的方法是()。

【解答】求第j列的所有元素之和⑹有向图G用邻接矩阵A[n][n]存储,其第i行的所有元素之和等于顶点i的()。

【解答】出度⑺图的深度优先遍历类似于树的()遍历,它所用到的数据结构是();图的广度优先遍历类似于树的()遍历,它所用到的数据结构是()。

【解答】前序,栈,层序,队列⑻对于含有n个顶点e条边的连通图,利用Prim算法求最小生成树的时间复杂度为(),利用Kruskal 算法求最小生成树的时间复杂度为()。

【解答】O(n2),O(elog2e)【分析】Prim算法采用邻接矩阵做存储结构,适合于求稠密图的最小生成树;Kruskal算法采用边集数组做存储结构,适合于求稀疏图的最小生成树。

⑼如果一个有向图不存在(),则该图的全部顶点可以排列成一个拓扑序列。

【解答】回路⑽在一个有向图中,若存在弧、、,则在其拓扑序列中,顶点vi, vj, vk的相对次序为()。

【解答】vi, vj, vk【分析】对由顶点vi, vj, vk组成的图进行拓扑排序。

数据结构课后习题及解析第六章

数据结构课后习题及解析第六章

第六章习题1.试分别画出具有3个结点的树和3个结点的二叉树的所有不同形态。

2.对题1所得各种形态的二叉树,分别写出前序、中序和后序遍历的序列。

3.已知一棵度为k的树中有n1个度为1的结点,n2个度为2的结点,……,nk个度为k的结点,则该树中有多少个叶子结点并证明之。

4.假设一棵二叉树的先序序列为EBADCFHGIKJ,中序序列为ABCDEFGHIJK,请画出该二叉树。

5.已知二叉树有50个叶子结点,则该二叉树的总结点数至少应有多少个?6.给出满足下列条件的所有二叉树:①前序和后序相同②中序和后序相同③前序和后序相同7. n个结点的K叉树,若用具有k个child域的等长链结点存储树的一个结点,则空的Child 域有多少个?8.画出与下列已知序列对应的树T:树的先根次序访问序列为GFKDAIEBCHJ;树的后根次序访问序列为DIAEKFCJHBG。

9.假设用于通讯的电文仅由8个字母组成,字母在电文中出现的频率分别为:0.07,0.19,0.02,0.06,0.32,0.03,0.21,0.10请为这8个字母设计哈夫曼编码。

10.已知二叉树采用二叉链表存放,要求返回二叉树T的后序序列中的第一个结点指针,是否可不用递归且不用栈来完成?请简述原因.11. 画出和下列树对应的二叉树:12.已知二叉树按照二叉链表方式存储,编写算法,计算二叉树中叶子结点的数目。

13.编写递归算法:对于二叉树中每一个元素值为x的结点,删去以它为根的子树,并释放相应的空间。

14.分别写函数完成:在先序线索二叉树T中,查找给定结点*p在先序序列中的后继。

在后序线索二叉树T中,查找给定结点*p在后序序列中的前驱。

15.分别写出算法,实现在中序线索二叉树中查找给定结点*p在中序序列中的前驱与后继。

16.编写算法,对一棵以孩子-兄弟链表表示的树统计其叶子的个数。

17.对以孩子-兄弟链表表示的树编写计算树的深度的算法。

18.已知二叉树按照二叉链表方式存储,利用栈的基本操作写出后序遍历非递归的算法。

数据结构 第6章习题答案

数据结构 第6章习题答案

第6章树和二叉树习题解答一、下面是有关二叉树的叙述,请判断正误(每小题1分,共10分)(√)1. 若二叉树用二叉链表作存贮结构,则在n个结点的二叉树链表中只有n—1个非空指针域。

(×)2.二叉树中每个结点的两棵子树的高度差等于1。

(√)3.二叉树中每个结点的两棵子树是有序的。

(×)4.二叉树中每个结点有两棵非空子树或有两棵空子树。

(×)5.二叉树中每个结点的关键字值大于其左非空子树(若存在的话)所有结点的关键字值,且小于其右非空子树(若存在的话)所有结点的关键字值。

(应当是二叉排序树的特点)(×)6.二叉树中所有结点个数是2k-1-1,其中k是树的深度。

(应2i-1)(×)7.二叉树中所有结点,如果不存在非空左子树,则不存在非空右子树。

(×)8.对于一棵非空二叉树,它的根结点作为第一层,则它的第i层上最多能有2i—1个结点。

(应2i-1)(√)9.用二叉链表法(link-rlink)存储包含n个结点的二叉树,结点的2n个指针区域中有n+1个为空指针。

(正确。

用二叉链表存储包含n个结点的二叉树,结点共有2n个链域。

由于二叉树中,除根结点外,每一个结点有且仅有一个双亲,所以只有n-1个结点的链域存放指向非空子女结点的指针,还有n+1个空指针。

)即有后继链接的指针仅n-1个。

(√)10. 〖01年考研题〗具有12个结点的完全二叉树有5个度为2的结点。

最快方法:用叶子数=[n/2]=6,再求n2=n0-1=5二、填空(每空1分,共15分)1.由3个结点所构成的二叉树有5种形态。

2. 【计算机研2000】一棵深度为6的满二叉树有n1+n2=0+ n2= n0-1=31 个分支结点和26-1 =32个叶子。

注:满二叉树没有度为1的结点,所以分支结点数就是二度结点数。

3.一棵具有257个结点的完全二叉树,它的深度为9。

(注:用⎣ log2(n) ⎦+1= ⎣ 8.xx ⎦+1=94.【全国专升本统考题】设一棵完全二叉树有700个结点,则共有350个叶子结点。

数据结构课后习题(第6章)

数据结构课后习题(第6章)

【课后习题】第6章树和二叉树网络工程2010级()班学号:姓名:一、填空题(每空1分,共16分)1.从逻辑结构看,树是典型的。

2.设一棵完全二叉树具有999个结点,则此完全二叉树有个叶子结点,有个度为2的结点,有个度为1的结点。

3.由n个权值构成的哈夫曼树共有个结点。

4.在线索化二叉树中,T所指结点没有左子树的充要条件是。

5.在非空树上,_____没有直接前趋。

6.深度为k的二叉树最多有结点,最少有个结点。

7.若按层次顺序将一棵有n个结点的完全二叉树的所有结点从1到n编号,那么当i为且小于n时,结点i的右兄弟是结点,否则结点i没有右兄弟。

8.N个结点的二叉树采用二叉链表存放,共有空链域个数为。

9.一棵深度为7的满二叉树有___ ___个非终端结点。

10.将一棵树转换为二叉树表示后,该二叉树的根结点没有。

11.采用二叉树来表示树时,树的先根次序遍历结果与其对应的二叉树的遍历结果是一样的。

12.一棵Huffman树是带权路径长度最短的二叉树,权值的外结点离根较远。

二、判断题(如果正确,在对应位置打“√”,否则打“⨯”。

每题0.5分,共5分)1.对于一棵非空二叉树,它的根结点作为第一层,则它的第i层上最多能有2i-1个结点。

2.二叉树的前序遍历并不能唯一确定这棵树,但是,如果我们还知道该二叉树的根结点是那一个,则可以确定这棵二叉树。

3.一棵树中的叶子结点数一定等于与其对应的二叉树中的叶子结点数。

4.度≤2的树就是二叉树。

5.一棵Huffman树是带权路径长度最短的二叉树,权值较大的外结点离根较远。

6.采用二叉树来表示树时,树的先根次序遍历结果与其对应的二叉树的前序遍历结果是一样的。

7.不存在有偶数个结点的满二叉树。

8.满二叉树一定是完全二叉树,而完全二叉树不一定是满二叉树。

9.已知二叉树的前序遍历顺序和中序遍历顺序,可以惟一确定一棵二叉树;10.已知二叉树的前序遍历顺序和后序遍历顺序,不能惟一确定一棵二叉树;三、单项选择(请将正确答案的代号填写在下表对应题号下面。

数据结构与算法第六章课后答案第六章 树和二叉树

数据结构与算法第六章课后答案第六章  树和二叉树

第6章 树和二叉树(参考答案)6.1(1)根结点a6.2三个结点的树的形态: 三个结点的二叉树的形态:(1) (1) (2) (4) (5)6.3 设树的结点数是n ,则n=n0+n1+n2+……+nm+ (1)设树的分支数为B ,有n=B+1n=1n1+2n2+……+mnm+1 (2)由(1)和(2)有:n0=n2+2n3+……+(m-1)nm+16.4(1) k i-1 (i 为层数)(2) (n-2)/k+1(3) (n-1)*k+i+1(4) (n-1)%k !=0; 其右兄弟的编号 n+16.5(1)顺序存储结构注:#为空结点6.6(1) 前序 ABDGCEFH(2) 中序 DGBAECHF(3) 后序 GDBEHFCA6.7(1) 空二叉树或任何结点均无左子树的非空二叉树(2) 空二叉树或任何结点均无右子树的非空二叉树(3) 空二叉树或只有根结点的二叉树6.8int height(bitree bt)// bt是以二叉链表为存储结构的二叉树,本算法求二叉树bt的高度{ int bl,br; // 局部变量,分别表示二叉树左、右子树的高度if (bt==null) return(0);else { bl=height(bt->lchild);br=height(bt->rchild);return(bl>br? bl+1: br+1); // 左右子树高度的大者加1(根) }}// 算法结束6.9void preorder(cbt[],int n,int i);// cbt是以完全二叉树形式存储的n个结点的二叉树,i是数// 组下标,初始调用时为1。

本算法以非递归形式前序遍历该二叉树{ int i=1,s[],top=0; // s是栈,栈中元素是二叉树结点在cbt中的序号 // top是栈顶指针,栈空时top=0if (n<=0) { printf(“输入错误”);exit(0);}while (i<=n ||top>0){ while(i<=n){visit(cbt[i]); // 访问根结点if (2*i+1<=n) s[++top]=2*i+1; //若右子树非空,其编号进栈i=2*i;// 先序访问左子树}if (top>0) i=s[top--]; // 退栈,先序访问右子树} // END OF while (i<=n ||top>0)}// 算法结束//以下是非完全二叉树顺序存储时的递归遍历算法,“虚结点”用‘*’表示void preorder(bt[],int n,int i);// bt是以完全二叉树形式存储的一维数组,n是数组元素个数。

第六章数据结构基础习题及参考答案

第六章数据结构基础习题及参考答案

第六章数据结构基础习题及参考答案第六章数据结构基础一、选择题1.下列数据结构中,(C)不是数据逻辑结构。

A.树结构B.线性表结构C.存储器物理结构D.二叉树2.数据结构是(D)。

A.一种数据类型B.数据的存储结构C.一组性质相同的数据元素的结合D.相互之间存在一种或多种特定关系的数据元素的集合3.下列关于队列的叙述中,正确的是(C)。

A.在队列中只能入数据B.在队列中只能删除数据C.队列是先进先出的线性表D.队列是后进先出的线性表4.如果进栈序列为a1,a2,a3,a4,则可能的出栈序列是(B)A.a3,a1,a4,a2B.a2,a4,a3,a1C.a3,a4,a1,a2D.任意顺序5.链表不具备的特点是(A)A.可能随机访问任意一个节点B.插入和删除不需要移动任何元素C.不必事先估计存储空间D.所需空间与其长度成正比、6.已知某二叉树的后续遍历序列是DACBE,中序遍历序列是DEBAC,则它的前序遍历序列是(D)。

A.ACBEDB.DEABCC.DECABD.EDBCA7.某二叉树中度为2的结点有18个,则该二叉树中有(C)个叶子结点。

A.17B.18C.19D.20二、填空题1.数据元素是(数据)的基本单位,是对一个客观实体的数据描述。

2.简单地说,数据结构是指数据之间的(逻辑关系),即数据的逻辑结构。

3.数据的逻辑结构可用一个二元B=(K,R)来表示,其中K表示(数据元素集合),R表示(数据元素之间的前后关系)。

4.数据元素之间的关系有4种基本的存储表示方法,即(集合)、(线性结构)、(树)和(图)。

5.数据的运算中,(移位)是一个很重要的运算过程,插入、删除、修改和排序都包含着这种运算。

6.线性表是一种最简单、最常用的数据结构,通常一个线性表是由n 个性质相同的数据元素组成的(有限序列),其长度即线性表中元素的个数n,当n=0时,称为(空表)。

7.线性表是一种(线性)结构。

8.如果线性表中最常用的操作是存取第i个元素及其前驱的值,则采用(双向链表)存储方式节省时间。

数据结构课后习题答案第六章

数据结构课后习题答案第六章

所以
n=n1+2×n2+…+m×nm+1 由(1)(2)可知 n0= n2+2×n3+3×n4+…+(m-1) ×nm+1
(2)
八、证明:一棵满 K 叉树上的叶子结点数 n0 和非叶子结点数 n1 之间满足以下关 系:n0=(k-1)n1+1。 证明:n=n0+n1
n=n1k+1 由上述式子可以推出 n0=(k-1)n1+1 十五、请对右图所示的二叉树进行后序线索化,为每个空指针建立相应的前驱或 后继线索。
四十三、编写一递归算法,将二叉树中的所有结点的左、右子树相互交换。 【分析】 依题意,设 t 为一棵用二叉链表存储的二叉树,则交换各结点的左右子树的
运算基于后序遍历实现:交换左子树上各结点的左右子树;交换右子树上各结点 的左右子树;再交换根结点的左右子树。
【算法】 void Exchg(BiTree *t){ BinNode *p; if (t){ Exchg(&((*t)->lchild)); Exchg(&((*t)->rchild)); P=(*t)->lchild; (*t)->lchild=(*t)->rchild; (*t)->rchild=p; } }
(4)编号为 i 的结点的有右兄弟的条件是什么? 其右兄弟的编号是多少? 解:
(1) 层号为 h 的结点数目为 kh-1 (2) 编号为 i 的结点的双亲结点的编号是:|_ (i-2)/k _|+1(不大于(i-2)/k 的最大整数。也就是(i-2)与 k 整除的结果.以下/表示整除。 (3) 编号为 i 的结点的第 j 个孩子结点编号是:k*(i-1)+1+j; (4) 编号为 i 的结点有右兄弟的条件是(i-1)能被 k 整除

数据结构第六章作业及答案

数据结构第六章作业及答案
1
3、试分别画出具有3个结点的树和3个结点的二叉树 的所有不同形态。 4、对右图所示的二叉树求出 A 以下的遍历序列: B C (1)先序序列 D E F (2)中序序列 (3)后序序列 G H 5、假设一棵二叉树的先序序列为 EBADCFHGIKJ 和 中序序列为 ABCDEFGHIJK。请画出该树,并给 出后序序列。 6、假设一棵二叉树的中序序列为 DCBGEAHFIJK和 后序序列为 DCEGBFHKJIA 。请画出该树,并给 出先序序列。
2
7、将以下森林转换成二叉树。
A
B
C
D
E F G J I
H
L K
3
8、画出和下列二叉树相应的森林。
(a)
A
(b) (c)
A B C
(d)
A B C B C D B
(e)
A
C E F
A
G
J
H
K M
I
4
第六章作业解答 1、(1) M、N、D、L、F、J、K是叶子结点
(2) C是结点G的双亲 (3) A、C是结点G的祖先 (4) I、M、N是结点E的子孙 (5) 树的深度是5 2、(1)二叉树与树的区别: 二叉树的一个结点至多有2个子树,树则不然; 二叉树的一个结点有左、右之分,而树则没有此要求 (2)一棵度为2的树有2个分支,没有左、右之分, 一棵二叉树也可以有2个分支,但有左、右之分, 且左、右不能交换。 3、具有3个结点的树的形态为:
C D
E
F
K
7
7、解:转换后的二叉树为:
A B C D E F G J K I L H
8
8、解:转换后的森林为: (a) (b) (c)
A A B A B C

数据结构_第六章_图_练习题与答案详细解析(精华版)

数据结构_第六章_图_练习题与答案详细解析(精华版)

图1. 填空题⑴ 设无向图G中顶点数为n,则图G至少有()条边,至多有()条边;若G为有向图,则至少有()条边,至多有()条边。

【解答】0,n(n-1)/2,0,n(n-1)【分析】图的顶点集合是有穷非空的,而边集可以是空集;边数达到最多的图称为完全图,在完全图中,任意两个顶点之间都存在边。

⑵ 任何连通图的连通分量只有一个,即是()。

【解答】其自身⑶ 图的存储结构主要有两种,分别是()和()。

【解答】邻接矩阵,邻接表【分析】这是最常用的两种存储结构,此外,还有十字链表、邻接多重表、边集数组等。

⑷ 已知无向图G的顶点数为n,边数为e,其邻接表表示的空间复杂度为()。

【解答】O(n+e)【分析】在无向图的邻接表中,顶点表有n个结点,边表有2e个结点,共有n+2e个结点,其空间复杂度为O(n+2e)=O(n+e)。

⑸ 已知一个有向图的邻接矩阵表示,计算第j个顶点的入度的方法是()。

【解答】求第j列的所有元素之和⑹ 有向图G用邻接矩阵A[n][n]存储,其第i行的所有元素之和等于顶点i的()。

【解答】出度⑺ 图的深度优先遍历类似于树的()遍历,它所用到的数据结构是();图的广度优先遍历类似于树的()遍历,它所用到的数据结构是()。

【解答】前序,栈,层序,队列⑻ 对于含有n个顶点e条边的连通图,利用Prim算法求最小生成树的时间复杂度为(),利用Kruskal 算法求最小生成树的时间复杂度为()。

【解答】O(n2),O(elog2e)【分析】Prim算法采用邻接矩阵做存储结构,适合于求稠密图的最小生成树;Kruskal算法采用边集数组做存储结构,适合于求稀疏图的最小生成树。

⑼ 如果一个有向图不存在(),则该图的全部顶点可以排列成一个拓扑序列。

【解答】回路⑽ 在一个有向图中,若存在弧、、,则在其拓扑序列中,顶点vi, vj, vk的相对次序为()。

【解答】vi, vj, vk【分析】对由顶点vi, vj, vk组成的图进行拓扑排序。

数据结构第六章树和二叉树习题及答案

数据结构第六章树和二叉树习题及答案

习题六树和二叉树一、单项选择题1.以下说法错误的是 ( )A.树形结构的特点是一个结点可以有多个直接前趋B.线性结构中的一个结点至多只有一个直接后继C.树形结构可以表达(组织)更复杂的数据D.树(及一切树形结构)是一种"分支层次"结构E.任何只含一个结点的集合是一棵树2.下列说法中正确的是 ( )A.任何一棵二叉树中至少有一个结点的度为2B.任何一棵二叉树中每个结点的度都为2C.任何一棵二叉树中的度肯定等于2D.任何一棵二叉树中的度可以小于23.讨论树、森林和二叉树的关系,目的是为了()A.借助二叉树上的运算方法去实现对树的一些运算B.将树、森林按二叉树的存储方式进行存储C.将树、森林转换成二叉树D.体现一种技巧,没有什么实际意义4.树最适合用来表示 ( )A.有序数据元素 B.无序数据元素C.元素之间具有分支层次关系的数据 D.元素之间无联系的数据5.若一棵二叉树具有10个度为2的结点,5个度为1的结点,则度为0的结点个数是()A.9 B.11 C.15 D.不确定6.设森林F中有三棵树,第一,第二,第三棵树的结点个数分别为M1,M2和M3。

与森林F 对应的二叉树根结点的右子树上的结点个数是()。

A.M1 B.M1+M2 C.M3 D.M2+M37.一棵完全二叉树上有1001个结点,其中叶子结点的个数是()A. 250 B. 500 C.254 D.505 E.以上答案都不对8. 设给定权值总数有n 个,其哈夫曼树的结点总数为( )A.不确定 B.2n C.2n+1 D.2n-19.二叉树的第I层上最多含有结点数为()A.2I B. 2I-1-1 C. 2I-1 D.2I -110.一棵二叉树高度为h,所有结点的度或为0,或为2,则这棵二叉树最少有( )结点A.2h B.2h-1 C.2h+1 D.h+111. 利用二叉链表存储树,则根结点的右指针是()。

A.指向最左孩子 B.指向最右孩子 C.空 D.非空12.已知一棵二叉树的前序遍历结果为ABCDEF,中序遍历结果为CBAEDF,则后序遍历的结果为()。

数据结构课后习题答案第六章

数据结构课后习题答案第六章
(1) 前序遍历序列和中序遍历序列相同。 (2) 中序遍历序列和后序遍历序列相同。 (3) 前序遍历序列和后序遍历序列相同。
欢迎下载
6
-
9.已知信息为“ ABCD BCD CB DB ACB ”,请按此信息构造哈夫曼树,求出每一字符的最优编码。 10. 己知中序线索二叉树采用二叉链表存储结构,链结点的构造为:
_,双分支结点的个数为 ____, 3 分支结点的个数为 ____, C 结点的双亲结点为 ____ ,其孩子结点为 ____。
5. 一棵深度为 h 的满 k 叉树有如下性质:第 h 层上的结点都是叶子结点,其余各层上的每个结点都有
k 棵非空子树。
如果按层次顺序(同层自左至右)从 1 开始对全部结点编号,则:
7.二叉树的遍历分为 ____ ,树与森林的遍历包括 ____。 8.一棵二叉树的第 i(i>=1) 层最多有 ____ 个结点;一棵有 n(n>0) 个结点的满二叉树共有 ____ 个叶子和 ____个非终端结点。
9.在一棵二叉树中,假定双分支结点数为 5 个,单分支结点数为 6 个,则叶子结点为 ____个。
A. 逻辑 B.逻辑和存储 C.物理 D.线性 19.由权值分别是 8,7, 2, 5 的叶子结点生成一棵哈夫曼树,它的带权路径长度为
A. 23 B. 37 C. 46 D. 43 20.设 T 是哈夫曼树,具有 5 个叶结点,树 T 的高度最高可以是 ( )。
A.2 B . 3 C. 4 D. 5
()
6.在叶子数目和权值相同的所有二叉树中,最优二叉树一定是完全二叉树。
()
7.由于二叉树中每个结点的度最大为 2,所以二叉树是一种特殊的树。 8.二叉树的前序遍历序列中,任意一个结点均处在其子树结点的前面。

《数据结构及其应用》笔记含答案第六章_图

《数据结构及其应用》笔记含答案第六章_图

1第6章 图一、填空题1、用顶点表示活动,用弧表示活动间优先关系的有向图称为顶点表示活动的网(AOV-网)。

2、有n(n-1)/2条边的无向图称为_无向完全图__;有n(n-1)条边的有向图称为_有向完全图。

3、一个含n 个结点的完全无向图中,其最大边数为__ n(n-1)/2_。

4、顶点表示事件,弧表示活动,权表示活动持续时间的有向图称为AOE-网。

二、判断题1、任何无向图都存在生成树。

( )2、连通分量是无向图中的极小连通子图。

( )3、强连通分量是有向图中的极大强连通子图。

( )4、用邻接矩阵法存储一个图时,在不考虑压缩存储的情况下,所占用的存储空间大小只与图中结点个数有关,而与图的边数无关。

( )5、邻接表法只用于有向图的存储,邻接矩阵对于有向图和无向图的存储都适用。

( )6、求最小生成树的Prim 算法在边较少、结点较多时效率较高。

( )7、图的最小生成树的形状可能不唯一。

( )8、一个AOV 网的拓扑序列一定是唯一的。

网的拓扑序列一定是唯一的。

( ) 9、若AOV 网中存在环,则不能求它的拓扑排序序列。

( )10、若AOV 网中所有顶点都在它的拓扑有序序列中,则该AOV 网必定不存在环。

( ) 11、缩短关键路径上活动的工期一定能够缩短整个工程的工期。

( ) 12、AOE 网中一定只有一条关键路径。

( )三、单项选择题1、在一个图中,所有顶点的度数之和等于图的边数的(、在一个图中,所有顶点的度数之和等于图的边数的( C )倍。

)倍。

A .1/2 B .1 C .2D .4 2、在一个有向图中,所有顶点的入度之和等于所有顶点的出度之和的(、在一个有向图中,所有顶点的入度之和等于所有顶点的出度之和的( B )倍。

)倍。

A .1/2 B .1 C .2 D .4 解释:有向图所有顶点入度之和等于所有顶点出度之和。

3、具有n 个顶点的有向图最多有(个顶点的有向图最多有( B )条边。

)条边。

(完整版) 《数据结构》教材课后习题+答案

(完整版) 《数据结构》教材课后习题+答案

第1章绪论习题1.简述下列概念:数据、数据元素、数据项、数据对象、数据结构、逻辑结构、存储结构、抽象数据类型。

2.试举一个数据结构的例子,叙述其逻辑结构和存储结构两方面的含义和相互关系。

3.简述逻辑结构的四种基本关系并画出它们的关系图。

4.存储结构由哪两种基本的存储方法实现?5.选择题(1)在数据结构中,从逻辑上可以把数据结构分成()。

A.动态结构和静态结构B.紧凑结构和非紧凑结构C.线性结构和非线性结构D.内部结构和外部结构(2)与数据元素本身的形式、内容、相对位置、个数无关的是数据的()。

A.存储结构B.存储实现C.逻辑结构D.运算实现(3)通常要求同一逻辑结构中的所有数据元素具有相同的特性,这意味着()。

A.数据具有同一特点B.不仅数据元素所包含的数据项的个数要相同,而且对应数据项的类型要一致C.每个数据元素都一样D.数据元素所包含的数据项的个数要相等(4)以下说法正确的是()。

A.数据元素是数据的最小单位B.数据项是数据的基本单位C.数据结构是带有结构的各数据项的集合D.一些表面上很不相同的数据可以有相同的逻辑结构(5)以下与数据的存储结构无关的术语是()。

A.顺序队列 B. 链表 C. 有序表 D. 链栈(6)以下数据结构中,()是非线性数据结构A.树B.字符串C.队D.栈6.试分析下面各程序段的时间复杂度。

(1)x=90; y=100;while(y>0)if(x>100){x=x-10;y--;}else x++;(2)for (i=0; i<n; i++)for (j=0; j<m; j++)a[i][j]=0;(3)s=0;for i=0; i<n; i++)for(j=0; j<n; j++)s+=B[i][j];sum=s;(4)i=1;while(i<=n)i=i*3;(5)x=0;for(i=1; i<n; i++)for (j=1; j<=n-i; j++)x++;(6)x=n; //n>1y=0;while(x≥(y+1)* (y+1))y++;(1)O(1)(2)O(m*n)(3)O(n2)(4)O(log3n)(5)因为x++共执行了n-1+n-2+……+1= n(n-1)/2,所以执行时间为O(n2)(6)O(n)第2章线性表1.选择题(1)一个向量第一个元素的存储地址是100,每个元素的长度为2,则第5个元素的地址是()。

数据结构课后习题部分参考答案

数据结构课后习题部分参考答案

数据结构课后习题部分参考答案第一章一、选择题1.C 2.C 3.A 4.D 5.B二、判断题1.╳2.╳ 3.╳ 4.╳5.∨三、简答题1.常见逻辑结构:集合结构,数据元素之间的关系仅仅是属于同一个集合。

线性结构,除第一个元素只有一个直接后继、最后一个元素只有一个直接前驱,其余元素有且只有唯一一个直接前驱、有且只有唯一一个直接后继,数据元素之间存在一对一的关系。

树形结构,树中只有唯一一个根元素,除根元素之外,其余元素只有一个直接前驱,但可以有多个直接后继元素,数据元素之间存在一对多的关系。

图形结构,元素之间关系任意,数据元素之间存在多对多的关系。

常用的存储结构:顺序存储,把逻辑上相邻的元素存储在物理位置相邻的存储单元中,由此得到的存储表示称为顺序存储结构。

通常用数组实现。

链式存储,对逻辑上相邻的元素不要求其物理位置相邻,元素间的逻辑关系通过附加的指针字段来表示,由此得到的存储表示称为链式存储结构。

通常用指针来实现。

除上述两种方法外,有时为了查找方便还采用索引存储方法和散列存储方法。

索引存储:在存储结点信息的同时,还建立附加的索引表来标识结点的地址。

散列存储:根据元素的关键码确定元素存储位置的存储方式。

2.算法与程序的区别:程序不一定满足有穷性(如操作系统);程序中的指令必须是机器可执行的,算法中的指令则无此限制;算法代表了对问题的解,程序则是算法在计算机上的特定的实现(一个算法若用程序设计语言来描述,它才是一个程序);数据结构+算法=程序。

3.例如有一张学生成绩表,记录了一个班的学生各门课的成绩。

按学生的姓名为一行记成的表。

这个表就是一个数据结构。

每个记录就是一个结点,对于整个表来说,只有一个开始结点和一个终端结点,其他的结点则各有一个也只有一个直接前趋和直接后继。

这几个关系就确定了这个表的逻辑结构——线形结构。

那么我们怎样把这个表中的数据存储到里呢? 用高级语言如何表示各结点之间的关系呢? 是用一片连续的内存单元来存放这些记录(顺序存储)还是随机存放各结点数据再用指针进行链接(链式存储)呢? 这就是存储结构的问题,我们都是从高级语言的层次来讨论这个问题的。

数据结构课后习题第六章

数据结构课后习题第六章

一.选择题1.设高度为h的二叉树只有为0和2的结点,则此类二叉树的结点数至少有()个,至多有几个()A.2hB.2h-1C.2h+1D.2h-1E.2h-1F.2h+12.高度为h的完全二叉树有()个结点,至多有()个结点。

A.2hB. 2h-1C. 2h+1D. 2h-13.具有n个结点的满二叉树有()个叶结点。

A.n/2B.(n-1)/2C.(n+1)/2D.n/2+14.一棵具有n个叶节点的哈夫曼树,共有()个结点。

A.2nB. 2n-1C.2n+1D.2n-15.一棵具有25个结点的完全二叉树最多有()个结点。

A.48B.49C.50D.516.已知二叉树的前序遍历序列为ABCDEF,中序遍历序列为CBAEDF,则后序遍历序列是()。

A.CBEFDAB.FEDCBAC.CBEDFAD.不定7.已知二叉树的中序遍历序列是debac,后序遍历序列是dabec,则前序遍历序列是()。

A.acbedB.decabC.deabcD.cedba8.下面4棵二叉树中,()不是完全二叉树。

AC D9.在线索化二叉树中,t所指结点没有左子树的充分必要条件是()。

A.t->left=nullB. t->ltag=1C. t->left=null且t->ltag=1D.以上都不对10.下列线索二叉树中(用虚线表示线索),符合后续线索树的定义的是()。

11.算术表达式a+b*(c+d/c)转换为后缀表达式是()。

A.ab+cde/* B.abcde/+*+C.abcde/*++ D. abcde*/++12.具有10个叶结点的二叉树中有()个度为2的结点。

A.8 B.9 C.10 D.1113.一个具有1025个结点的二叉树的高h为()。

A.11B.10C.11~1025D.10~102414.前序遍历与中序遍历结果相同的二叉树为();前序遍历和后序遍历结果相同的二叉树为()的二叉树。

A.空二叉树B.只有根结点C.根结点无左孩子D.根结点无右孩子15.一棵非空二叉树的先序遍历序列与后序遍历序列正好相反,则该二叉树一定满足()。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章习题1.试分别画出具有3个结点的树和3个结点的二叉树的所有不同形态。

2.对题1所得各种形态的二叉树,分别写出前序、中序和后序遍历的序列。

3.已知一棵度为k的树中有n1个度为1的结点,n2个度为2的结点,……,n k个度为k的结点,则该树中有多少个叶子结点并证明之。

4.假设一棵二叉树的先序序列为EBADCFHGIKJ,中序序列为ABCDEFGHIJK,请画出该二叉树。

5.已知二叉树有50个叶子结点,则该二叉树的总结点数至少应有多少个?6.给出满足下列条件的所有二叉树:①前序和后序相同②中序和后序相同③前序和后序相同7.n个结点的K叉树,若用具有k个child域的等长链结点存储树的一个结点,则空的Child域有多少个?8.画出与下列已知序列对应的树T:树的先根次序访问序列为GFKDAIEBCHJ;树的后根次序访问序列为DIAEKFCJHBG。

9.假设用于通讯的电文仅由8个字母组成,字母在电文中出现的频率分别为:0.07,0.19,0.02,0.06,0.32,0.03,0.21,0.10请为这8个字母设计哈夫曼编码。

10.已知二叉树采用二叉链表存放,要求返回二叉树T的后序序列中的第一个结点指针,是否可不用递归且不用栈来完成?请简述原因.11. 画出和下列树对应的二叉树:12.已知二叉树按照二叉链表方式存储,编写算法,计算二叉树中叶子结点的数目。

13.编写递归算法:对于二叉树中每一个元素值为x的结点,删去以它为根的子树,并释放相应的空间。

14.分别写函数完成:在先序线索二叉树T中,查找给定结点*p在先序序列中的后继。

在后序线索二叉树T中,查找给定结点*p在后序序列中的前驱。

15.分别写出算法,实现在中序线索二叉树中查找给定结点*p在中序序列中的前驱与后继。

16.编写算法,对一棵以孩子-兄弟链表表示的树统计其叶子的个数。

17.对以孩子-兄弟链表表示的树编写计算树的深度的算法。

18.已知二叉树按照二叉链表方式存储,利用栈的基本操作写出后序遍历非递归的算法。

19.设二叉树按二叉链表存放,写算法判别一棵二叉树是否是一棵正则二叉树。

正则二叉树是指:在二叉树中不存在子树个数为1的结点。

20.计算二叉树最大宽度的算法。

二叉树的最大宽度是指:二叉树所有层中结点个数的最大值。

21.已知二叉树按照二叉链表方式存储,利用栈的基本操作写出先序遍历非递归形式的算法。

22. 证明:给定一棵二叉树的前序序列与中序序列,可唯一确定这棵二叉树;给定一棵二叉树的后序序列与中序序列,可唯一确定这棵二叉树;23. 二叉树按照二叉链表方式存储,编写算法,计算二叉树中叶子结点的数目。

24. 二叉树按照二叉链表方式存储,编写算法,将二叉树左右子树进行交换。

实习题1.[问题描述] 建立一棵用二叉链表方式存储的二叉树,并对其进行遍历(先序、中序和后序),打印输出遍历结果。

[基本要求] 从键盘接受输入先序序列,以二叉链表作为存储结构,建立二叉树(以先序来建立)并对其进行遍历(先序、中序、后序),然后将遍历结果打印输出。

要求采用递归和非递归两种方法实现。

[测试数据] ABCффDEфGффFффф(其中ф表示空格字符)输出结果为:先序:ABCDEGF中序:CBEGDFA后序:CGBFDBA2.已知二叉树按照二叉链表方式存储,编写算法,要求实现二叉树的竖向显示(竖向显示就是二叉树的按层显示)。

3.如题1要求建立好二叉树,按凹入表形式打印二叉树结构,如下图所示。

2.按凹入表形式打印树形结构,如下图所示。

第六章答案6.1分别画出具有3个结点的树和3个结点的二叉树的所有不同形态。

【解答】具有3个结点的树具有3个结点的二叉树6.3已知一棵度为k的树中有n1个度为1的结点,n2个度为2的结点,……,n k个度为k的结点,则该树中有多少个叶子结点?【解答】设树中结点总数为n,则n=n0 + n1 + …… + n k树中分支数目为B,则B=n1 + 2n2 + 3n3+ …… + kn k因为除根结点外,每个结点均对应一个进入它的分支,所以有n= B + 1即n0 + n1 + …… + n k = n1 + 2n2 + 3n3+ …… + kn k + 1由上式可得叶子结点数为:n0 = n2 + 2n3+ …… + (k-1)n k + 16.5已知二叉树有50个叶子结点,则该二叉树的总结点数至少应有多少个?【解答】n0表示叶子结点数,n2表示度为2的结点数,则n0 = n2+1所以n2=n0 –1=49,当二叉树中没有度为1的结点时,总结点数n=n0+n2=99 6.6 试分别找出满足以下条件的所有二叉树:(1) 前序序列与中序序列相同;(2) 中序序列与后序序列相同;(3) 前序序列与后序序列相同。

【解答】(1) 前序与中序相同:空树或缺左子树的单支树;(2) 中序与后序相同:空树或缺右子树的单支树;(3) 前序与后序相同:空树或只有根结点的二叉树。

6.9 假设通讯的电文仅由8个字母组成,字母在电文中出现的频率分别为:0.07,0.19,0.02,0.06,0.32,0.03,0.21,0.10请为这8个字母设计哈夫曼编码。

【解答】构造哈夫曼树如下:哈夫曼编码为:I1:11111I5:1100I2:11110I6:10I3:1110 I7:01I4:1101 I8:006.11画出如下图所示树对应的二叉树。

【解答】6.15分别写出算法,实现在中序线索二叉树T中查找给定结点*p在中序序列中的前驱与后继。

在先序线索二叉树T中,查找给定结点*p在先序序列中的后继。

在后序线索二叉树T中,查找给定结点*p在后序序列中的前驱。

(1)找结点的中序前驱结点BiTNode *InPre (BiTNode *p)/*在中序线索二叉树中查找p的中序前驱结点,并用pre指针返回结果*/ { if (p->Ltag= =1) pre = p->LChild; /*直接利用线索*/else{/*在p的左子树中查找“最右下端”结点*/for ( q=p->LChild; q->Rtag= =0; q=q->RChild);pre = q;}return (pre);}(2)找结点的中序后继结点BiTNode *InSucc (BiTNode *p)/*在中序线索二叉树中查找p的中序后继结点,并用succ指针返回结果*/ { if (p->Rtag= =1) succ = p->RChild; /*直接利用线索*/else{/*在p的右子树中查找“最左下端”结点*/for ( q=p->RChild; q->Ltag= =0; q=q->LChild);succ= q;}return (succ);}(3) 找结点的先序后继结点BiTNode *PreSucc (BiTNode *p)/*在先序线索二叉树中查找p的先序后继结点,并用succ指针返回结果*/ { if (p->Ltag= =0) succ = p->LChild;else succ= p->RChild;return (succ);}(4) 找结点的后序前驱结点BiTNode *SuccPre (BiTNode *p)/*在后序线索二叉树中查找p的后序前驱结点,并用pre指针返回结果*/{ if (p->Ltag= =1) pre = p->LChild;else pre= p->RChild;return (pre);}6.21已知二叉树按照二叉链表方式存储,利用栈的基本操作写出先序遍历非递归形式的算法。

【解答】Void PreOrder(BiTree root) /*先序遍历二叉树的非递归算法*/{InitStack(&S);p=root;while(p!=NULL || !IsEmpty(S) ){ if(p!=NULL){Visit(p->data);push(&S,p);p=p->Lchild;}else{Pop(&S,&p);p=p->RChild;}}}6.24已知二叉树按照二叉链表方式存储,编写算法,将二叉树左右子树进行交换。

【解答】算法(一)Void exchange ( BiTree root ){p=root;if ( p->LChild != NULL || p->RChild != NULL ){temp = p->LChild;p->LChild = p->RChild;p->RChild = temp;exchange ( p->LChild );exchange ( p->RChild );}}算法(二)Void exchange ( BiTree root ){p=root;if ( p->LChild != NULL || p->RChild != NULL ){exchange ( p->LChild );exchange ( p->RChild );temp = p->LChild;p->LChild = p->RChild;p->RChild = temp;}}第六章习题解析1.试分别画出具有3个结点的树和3个结点的二叉树的所有不同形态。

2.对题1所得各种形态的二叉树,分别写出前序、中序和后序遍历的序列。

3.已知一棵度为k的树中有n1个度为1的结点,n2个度为2的结点,……,n k个度为k的结点,则该树中有多少个叶子结点?[提示]:参考P.116 性质3∵n=n0 + n1 + …… + n kB=n1 + 2n2 + 3n3+ …… + kn kn= B + 1∴n0 + n1 + …… + n k = n1 + 2n2 + 3n3+ …… + kn k + 1∴n0 = n2 + 2n3+ …… + (k-1)n k + 14.假设一棵二叉树的先序序列为EBADCFHGIKJ,中序序列为ABCDEFGHIJK,请画出该二叉树。

[提示]:参考P.1486.已知二叉树有50个叶子结点,则该二叉树的总结点数至少应有多少个?[提示]:[方法1](1)一个叶子结点,总结点数至多有多少个?结论:可压缩一度结点。

(2)满二叉树或完全二叉树具有最少的一度结点(3)可能的最大满二叉树是几层?有多少叶结点?如何增补?25<50<26可能的最大满二叉树是6层有25 = 32个叶结点假设将其中x个变为2度结点后,总叶结点数目为50则:2x + (32 – x) = 50得:x = 18此时总结点数目= ( 26–1) + 18×2[方法2]假设完全二叉树的最大非叶结点编号为m,则最大叶结点编号为2m+1,(2m+1)-m=50m=49总结点数目=2m+1=99[方法3]由性质3:n0=n2+1即:50=n2+1所以:n2=49令n1=0得:n= n0 + n2=997.给出满足下列条件的所有二叉树:a)前序和中序相同b)中序和后序相同c)前序和后序相同[提示]:去异存同。

相关文档
最新文档