人教版初中数学七年级下册相交线练习题附参考答案

合集下载

七年级下数学相交线练习题含答案

七年级下数学相交线练习题含答案
A. 个B. 个C. 个D. 个
9.如图,与 是同旁内角的角有()
A. 个B. 个C. 个D. 个
10.如图,直线 、 被直线 所截,则 与 是()
A.同位角B.同旁内角C.内错角D.对顶角
11.如图, , ,若 ,则 ________.
12.如图, , 为垂足, , 为垂足,那么点 到 的距离是线段________的长,点 到 的距离是线段________的长,点 到 的距离是线段________的长, 的依据是________.
【解答】
此题暂无解答
24.
【答案】
解: , ,
.
与 是对顶角,
.
, ,



.

.
【考点】
邻补角
对顶角
【解析】
此题暂无解析
【解答】
此题暂无解答
25.
【答案】
解:如图:
【考点】
同位角、内错角、同旁内角
【解析】
此题暂无解析
【解答】
此题暂无解答
26.
【答案】
∵ = , = ,
∴ = = ,
∴ = = ,
∴ = = .
(1)当五条直线相交时交点最多会有多少个?
(2)猜想 条直线相交时最多有几个交点?(用含 的代数式表示)
(3)算一算,同一平面内 条直线最多有多少个?
(4)平面上有 条直线,无任何 条交于一点( 条以上交于一点也无),也无重合,它们会出现 个交点吗?如果能给出一个画法;如果不能请说明理由.
39.如图所示,某自来水厂计划把河流 中的水引到蓄水池 中,问从河岸 的何处开渠,才能使所开的渠道最短?画图表示,并说明设计的理由.
【考点】

人教版七年级下册数学第五章《相交线与平行线》单元练习题(含答案)

人教版七年级下册数学第五章《相交线与平行线》单元练习题(含答案)

人教版七年级下册数学第五章《相交线与平行线》单元练习题(含答案)一、单选题1.如图,AB CD ∥ ,点E 在CA 的延长线上若50BAE ∠=︒,则ACD ∠的大小为( )A .100°B .120°C .130°D .110°2.如图,要修建一条公路,从A 村沿北偏东75°方向到B 村,从B 村沿北偏西25°方向到C 村.若要保持公路CE 与从A 村到B 村的方向一致,则应顺时针转动的度数为( )A .50°B .75°C .100°D .105°3.如图,直线AB ∥CD ,如果∠1=70°,那么∠BOF 的度数是( )A .70°B .100°C .110°D .120°4.具有下列关系的两角:①互为补角;②同位角;③对顶角;④内错角;⑤邻补角;⑥同旁内角.其中一定有公共顶点的两角的对数为( )A .1对B .2对C .3对D .4对5.如图,将三角板与直尺贴在一起,使三角板的直角顶点C (∠ACB =90°)在直尺的一边上,若∠2=65°,则∠1的度数是( )A .15°B .25°C .35°D .65°6.下列命题中,真命题是( )A .一条直线截另外两条直线所得到的同位角相等B .两个无理数的和仍是无理数C .有公共顶点且相等的两个角是对顶角D .等角的余角相等7.如图,AB ∥CD ,AE 平分∠CAB 交CD 于点E ,若∠C=70°,则∠AED=( )A .55°B .125°C .135°D .140°8.如图,12l l //,点O 在直线1l 上,若90AOB ︒∠=,135︒∠=,则2∠的度数为()A .65°B .55°C .45°D .35°9.下列命题是真命题的是( )A .如果一个数的相反数等于这个数本身,那么这个数一定是0B .如果一个数的倒数等于这个数本身,那么这个数一定是1C .如果一个数的平方等于这个数本身,那么这个数一定是0D .如果一个数的算术平方根等于这个数本身,那么这个数一定是010.如图,直线AB ∥ CD ,∠ B=50°,∠ C=40°,则∠E 等于( )A .70°B .80°C .90°D .100°二、填空题 11.如图,AD ∥BC ,EF ∥BC ,BD 平分∠ABC ,图中与∠ADO 相等的角有_______ 个,分别是___________.因为AB ∥CD ,EF ∥AB ,根据_____________________________,所以_____________.12.如图,在正方形网格中,三角形DEF 是由三角形ABC 平移得到的,则点C 移动了________格.13.如图,在ABC ∆中,4AB =,6BC =,60B ∠=︒,将ABC ∆沿射线BC 的方向平移2个单位后,得到A B C '''∆,连结A C ',则A B C ∆''的周长为______.14.下面三个命题: ①若是方程组的解,则或; ②函数通过配方可化为; ③最小角等于的三角形是锐角三角形. 其中正确命题的序号为 .15.设圆上有n 个不同的点,连接任两点所得线段,将圆分成若干个互不重合的区域,记()f n 为区域数的最大值,则(5)_________f =,(6)________f =.16.如图,已知AB ∥ED,∠ABC=300,∠EDC=400,则∠BCD 的度数是 .17.点M ,N 在线段AB 上,且MB =6cm ,NB =9cm ,且N 是AM 的中点,则AB =___cm ,AN =____cm .18.把命题“三个角都相等的三角形是等边三角形”改写成“如果……,那么……”的形式是_____;该命题的条件是_____,结论是_____.三、解答题19.如图,已知点A 是射线OP 上一点.(1)过点A 画OQ 的垂线,垂足为B ;过点B 画OP 的平行线BC ;(2)若50POQ ∠=,求ABC ∠的度数.20.(1)问题背景:已知:如图①-1,//AB CD ,点P 的位置如图所示,连结,PA PC ,试探究APC ∠与PAB ∠、PCD ∠之间有什么数量关系,并说明理由.(将下面的解答过程补充完整,括号内写上相应理由或数学式)解:(1)APC ∠与PAB ∠、PCD ∠之间的数量关系是:360APC PAB PCD ∠+∠+∠=︒(或360()APC PAB PCD ∠=︒∠+∠只要关系式形式正确即可)理由:如图①-2,过点P 作//PE AB .∵//PE AB (作图),∴180PAB APE ∠+∠=︒( ),∴//AB CD (已知)//PE AB (作图),∴//PE _______( ),∴CPE PCD ∠+∠=_______( ),∴180180360PAB APE CPE PCD ∠+∠+∠+∠=+︒=︒(等量代换)又∵APE CPE APC ∠+∠=∠(角的和差),∴360APC PAB PCD ∠+∠+∠=︒(等量代换)总结反思:本题通过添加适当的辅助线,从而利用平行线的性质,使问题得以解决.(2)类比探究:如图②,//AB CD ,点P 的位置如图所示,连结PA 、PC ,请同学们类比(1)的解答过程,试探究APC ∠与PAB ∠、PCD ∠之间有什么数量关系,并说明理由.(3)拓展延伸:如图③,//AB CD ,ABP ∠与CDP ∠的平分线相交于点1P ,若128P ∠=︒,求P ∠的度数,请直接写出结果,不说明理由.21.如图,抛物线y =ax 2+bx ﹣3与x 轴交于A (﹣1,0),B (3,0),与y 轴交于点C ,顶点为D .(1)求抛物线的解析式及点D的坐标.(2)在线段BC下方的抛物线上,是否存在异于点D的点E,使S△BCE=S△BCD?若存在,求出点E的坐标;若不存在,请说明理由.(3)点M3,2m⎛⎫- ⎪⎝⎭在抛物线上,点P为y轴上一动点,求2MP+2PC的最小值.22.如图,在96⨯网格中,已知△ABC,请按下列要求画格点三角形A' B' C'(三角形的三个顶点都是小正方形的顶点).(1)在图①中,将△ABC平移,使点O落在△ABC的边AB(不包括点A和点B)上;(2)在图②中,将△ABC平移,使点O落在△ABC的内部.23.如图.一次函数y=12x+1的图象L1交y轴于点A,一次函数y=﹣x+3的图象L2交x轴于点B,L1与L2交于点C.(1)求点A与点B的坐标;(2)求△ABC的面积.24.在如图所示的方格纸中,每个小正方形的边长为1,每个小正方形的顶点都叫做格点.△ABC的顶点A、B、C都在格点上.(1)过B作AC的平行线BD.(2)作出表示B到AC的距离的线段BE.(3)线段BE与BC的大小关系是:BE BC(填“>”、“<”、“=”).(4)△ABC的面积为.25.如图,点E在直线DF上,点B在直线AC上,若∠1=∠2,∠3=∠4,则∠A=∠F,请说明理由.解:∵∠1=∠2(已知)∠2=∠DGF∴∠1=∠DGF(____________)∴BD∥CE∴∠3+∠C=180°( )又∵∠3=∠4(已知)∴∠4+∠C=180°∴∥(同旁内角互补,两直线平行)∴∠A=∠F( ).26.如图,所有小正方形的边长都为1,A、B、C都在格点上.(1)过点C画直线AB的平行线(不写画法,下同);(2)过点A画直线BC的垂线,并注明垂足为G;过点A画直线AB的垂线,交BC于点H.(3)线段_____的长度是点A到直线BC的距离;(4)线段AG、AH的大小关系为AG_____AH.(填“>”或“<”或“=”),理由________.27.如图,AB∥CD,∠1=∠2,求证:AM∥CN参考答案1.C2.C3.C4.B5.B6.D7.B8.B9.A10.C11.4 ∠DOF、∠EOB、∠ABD、∠DBC平行于同一直线的两条直线平行CD∥EF 12.513.1214.②③15.16;3116.70°17. 12 318.如果一个三角形的三个角都相等,那么这个三角形是等边三角形一个三角形的三个角都相等这个三角形是等边三角形19.(2)40°20.(1)∠APC+∠PAB+∠PCD=360°,理由见解析;两直线平行,同旁内角互补;CD,如果两条直线都和第三条直线平行,那么这两条直线也互相平行;180°,两直线平行,同旁内角互补;(2)∠APC=∠PAB+∠PCD,(3)∠P=56°.21.(1)y=x2﹣2x﹣3,D的坐标为(1,﹣4);(2)存在异于点D的点E,使S△BCE=S△BCD,点E的坐标为(2,﹣3);(3)最小值为23.(1)A(0,1),B(3,0);(2)5 324. (3) <;(4) 9 26.(3)AG;(4)<.。

人教版初中七年级数学下册第五单元《相交线与平行线》经典习题(含答案解析)

人教版初中七年级数学下册第五单元《相交线与平行线》经典习题(含答案解析)

一、选择题1.如图,每个圆纸片的面积都是30,圆纸片A 与B ,B 与C ,C 与A 的重叠面积分别为6,8,5,三个圆纸片覆盖的总面积为73,则图中阴影部分面积为( )A .54B .56C .58D .692.如图33⨯网格中,每一横行、每一竖列以及两条斜对角线上的三个数的和都相等,则b a -的值是( )A .3-B .2-C .2D .3 3.把方程13124x x -+=-去分母,得( ) A .2(1)1(3)x x -=-+ B .2(1)4(3)x x -=++C .2(1)43x x -=-+D .2(1)4(3)x x -=-+ 4.定义运算“*”,其规则为2*3a b a b +=,则方程4*4x =的解为( ) A .3x =-B .3x =C .2x =D .4x = 5.已知5x =是关于x 的方程4231x m x +=+的解,则方程3261x m x +=+的解是_________.A .53B .53-C .-2D .16.若三个连续偶数的和是24,则它们的积为( )A .48B .240C .480D .1207.某市为提倡节约用水,采取分段收费.若每户每月用水不超过20m 3,每立方米收费2元;若用水超过20m 3,超过部分每立方米加收1元.小明家5月份交水费64元,则他家该月用水( )m 3.A .38B .34C .28D .448.关于y 的方程331y k +=与350y +=的解相同,则k 的值为( )A .-2B .34C .2D .43-9.若正方形的边长增加3cm ,它的面积就增加39cm ,则正方形的边长原来是( ) A .8cmB .6cmC .5cmD .10cm 10.在解分式方程31x -+21x x+-=2时,去分母后变形正确的是( ) A .()()3221x x -+=- B .()3221x x -+=-C .()322x -+=D .()()3221x x ++=- 11.如图,将长和宽分别是 a ,b 的长方形纸片的四个角都剪去一个边长为 x 的正方形.用含 a ,b ,x 的代数式表示纸片剩余部分的面积为( ) A .ab+2x 2 B .ab ﹣2x 2 C .ab+4x 2 D .ab ﹣4x 2 12.下列方程的变形,符合等式的性质的是( )A .由2x ﹣3=7,得2x=7﹣3B .由3x ﹣2=x+1,得3x ﹣x=1﹣2C .由﹣2x=5,得x=﹣3D .由﹣13x=1,得x=﹣3 13.若关于x 的方程230x m -+=无解,340x n -+=只有一个解,450x k -+=有两个解,则,,m n k 的大小关系是( )A .m>n>kB .n>k>mC .k>m>nD .m> k> n 14.某商场的老板销售一种商品,标价为360元,可以获得80%的利润,则这种商品进价多少( )A .80元B .200元C .120元D .160元15.某工厂一、二月份共完成生产任务57吨,其中二月份比一月份的23多13吨,设一月份完成x 吨,则下列所列方程正确的是( )A .x +23x −13=57B .x +23x +13=57C .x +23x =57+13D .3x +2x =57−13二、填空题16.如果3m -与21m +互为相反数,则m =________.17.一条河的水流速度为3km/h ,船在静水中的速度为xkm/h ,则船在这条河中顺水行驶的速度是____km/h ;18.某公司销售,,A B C 三种电子产品,在去年的销售中,产品C 的销售额占总的销售额的60%,由于受新冠肺炎疫情的影响,估计今年,A B 两种产品的销售额都将比去年减少45%,公司将产品C 定为今年销售的重点,要使今年的总销售额与去年持平,那么今年产品C 的销售额应比去年增加__________.19.定义一种运算:1(1)(1)x a b a b a b *=++++,若设5213*=,则34*=________. 20.某商品每件标价为150元,若按标价打8折后,仍可获利20%,则该商品每件的进价为______元.21.一般情况下2323m n m n ++=+不成立,但也有数可以使得它成立,例如:m =n =0.使得2323m n m n ++=+成立的一对数m 、n 我们称为“相伴数对”,记为(m ,n ).若(x ,1)是“相伴数对”,则x 的值为_____.22.一个长方形周长是44cm ,长比宽的3倍少10cm ,则这个长方形的面积是______. 23.解方程:1225y y -+=. 解:去分母,得____________.去括号,得______________.移项,得_______________.合并同类项,得______________.方程两边同除以3,得_______________.24.已知关于x 的方程3223x m -=+的解是x m =,则m 的值为_________.25.(1)由等式325x x =+的两边都________,得到等式5x =,这是根据____________;(2)由等式1338x -=的两边都______,得到等式x=_____,这是根据__________________. 26.已知21535a x y -和2547a x y +是同类项,则可得关于a 的方程为________. 三、解答题27.根据国家发改委实施“阶梯电价”的有关文件要求,某市结合地方实际,决定从2015年5月1日起对居民生活用电试行“阶梯电价”收费,具体收费标准见下表.若2015年5月份,该市居民甲用电100千瓦时,交电费60元.(1)上表中,a= ,若居民乙用电200千瓦时,交电费 元.(2)若某用户某月用电量超过300千瓦时,设用电量为x 千瓦时,请你用含x 的代数式表示应交的电费.(3)试行“阶梯电价”收费以后,该市一户居民月用电多少千瓦时时,其当月的平均电价每千瓦时不超过0.62元?28.某家具厂生产一种课桌和椅子,课桌每张定价200元,椅子每把定价80元,厂方在开展促销活动期间,向客户提供两种优惠方案:方案一:每买一张课桌就赠送一把椅子;方案二:课桌和椅子都按定价的80%付款.某校计划添置100张课桌和x把椅子.(1)若x=100,请计算哪种方案划算;(2)若x>100,请用含x的代数式分别把两种方案的费用表示出来;(3)若x=300,如果两种方案可以同时使用,请帮助学校设计一种最省钱的方案.29.一批皮鞋,按成本加5成作为售价,后因季节性原因,按原售价的七五折降低价格出售,降价后的新售价是每双63元,问这批皮鞋每双的成本价是多少元按降价后的新售价每双还可赚多少元?30.解方程:2x13+=x24+-1.。

人教版七年级数学下册第五章相交线练习试题(含答案) (20)

人教版七年级数学下册第五章相交线练习试题(含答案) (20)

人教版七年级数学下册第五章相交线练习试题(含答案) 如图,直线AB,CD,EF相交于点O,且AB⊥CD,∠1=25°,求∠2的度数?【答案】65°【解析】试题分析:直接利用邻补角的定义得出∠BOE=65°,再根据对顶角相等,即可得出答案.试题解析:∵直线AB,CD,EF相交于点O,且AB⊥CD∴∠BOC=90°,∵∠1=25°,∴∠BOE=65°,∴∠2=∠BOE=65°.92.如图,直线AB,CD相交于点O,且∠1=∠2.(1)指出∠1的对顶角;(2)若∠2和∠3的度数比是2:5,求∠4和∠AOC的度数.【答案】(1)∠1的对顶角是∠AOC;(2)∠AOC=40°.【解析】分析:(1)根据对顶角的定义解答;(2)先求出∠1、∠2、∠3的比,再根据平角的定义列式求出这三个角,再根据对顶角相等求解.详解:(1)∠1的对顶角是∠AOC;(2)∵∠1=∠2,∠2和∠3的度数比是2:5,∴∠1:∠2:∠3=2:2:5,设∠2=2x,则∠1=2x,∠3=5x,由题意得,2x+2x+5x=180∘,解得x=20,所以,∠1=40∘,∠2=40∘,∠3=100∘,根据对顶角相等,∠4=∠BOC=40∘,∠AOC=∠1=40∘.点睛:考查对顶角的概念以及平角的概念,熟练掌握对顶角的性质,平角的性质是解题的关键.93.如图:已知直线AB、CD相交于点O,∠COE=90°(1)若∠AOC=36°,求∠BOE的度数;(2)若∠BOD:∠BOC=1:5,求∠AOE的度数.【答案】(1)54°;(2)120°【解析】试题分析:(1)根据平角的定义求解即可;(2)根据平角的定义可求∠BOD,根据对顶角的定义可求∠AOC,根据角的和差关系可求∠AOE的度数.试题解析:解:(1)∠∠AOC=36°,∠COE=90°,∠∠BOE=180°﹣∠AOC﹣∠COE=54°;=30°,∠∠AOC=30°,(2)∠∠BOD:∠BOC=1:5,∠∠BOD=180°×115∠∠AOE=30°+90°=120°.94.如图,△ABC中,∠A+∠B=900.⑴根据要求画图:①过点C画直线MN∥AB②过点C画AB的垂线,交AB于点D.⑵请在⑴的基础上回答下列问题:①已知∠B+∠DCB=900,则∠A与∠DCB的大小关系为__________,理由是__________.②图中线段_________的长度表示点A到直线CD的距离.【答案】(1)作图见解析(2)①;∠A=∠DCB;同角的余角相等;②AD 【解析】【分析】【详解】试题分析:(1)根据题意画出MN∠AB,CD∠AB于D;(2)①根据同角的余角相等可判断∠A=∠DCB;②根据点到直线的距离的定义求解.试题解析:解:(1)①如图,MN为所求;②如图,CD为所求;(2)①∠∠B+∠DCB=90°,∠B+∠A=90°,∠∠A=∠DCB;②线段AD长度表示点A到直线CD的距离.故答案为∠A=∠DCB,同角的余角相等;AD.95.如图所示,射线OM与直线交于点O,OM平分∠AOB,求∠AOM 度数,并用符号表示OM与AB的位置关系.【答案】90°.【解析】试题分析:根据角平分线定义得出∠AOM=12∠AOB,代入求出∠AOM=90°,根据垂直定义得出即可.试题解析:∵∠AOB=180°,OM平分∠AOB,∴∠AOM=12∠AOB=12×180°=90°,∴OM⊥AB.96.如图,是一条河,C是河边AB外一点:(1)过点C要修一条与河平行的绿化带,请作出正确的示意图.(2)现欲用水管从河边AB,将水引到C处,请在图上测量并计算出水管至少要多少?(本图比例尺为1:2000)【答案】详见解析.【解析】试题分析:(1)过点C作AB的平行线.(2)过点C作CD垂直于AB交AB于点D.根据垂线段最短,可得CD长度最小,量出CD的长度,然后按比例尺求出实际的距离.试题解析:如图:(1)过点C画一平行线平行于AB.(2)过点C作CD垂直于AB交AB于点D.然后用尺子量CD的长度,再按1:2000的比例求得实际距离即可.经测量0.9,=CD cm⨯==cm m0.92000180018.97.已知:如图所示,∠1=∠2,∠3=∠4,GF ∠AB 于G 点,那么CD 与AB 是否互相垂直?试判断并说明理由.【答案】相互垂直,证明详见解析.【解析】试题分析:首先由GF AB ⊥可得2490∠+∠=︒, 又因为1234∠=∠∠=∠,, 得到1390∠+∠=︒, 由此即可得到CD 与AB 的位置关系.试题解析:相互垂直.理由:∵GF AB ⊥∴2490∠+∠=︒,而1234∠=∠∠=∠,,∴1390∠+∠=︒,CD AB ∴⊥.98.如图,将一副三角尺的直角顶点重合在一起.()1若DOB ∠与DOA ∠的比是2:11,求BOC ∠的度数.()2若叠合所成的(090)BOC n n ∠=<<,则AOD ∠的补角的度数与BOC ∠的度数之比是多少?【答案】(1)70°;(2)1:1.【解析】试题分析:根据条件可知∠AOB =∠COD =90°,并且∠AOD =∠AOB +∠COD ﹣∠BOC =180°﹣∠BOC ,根据这个关系就可以求解.试题解析:解:(1)设∠DOB =2x °,则∠DOA =11x °.∵∠AOB =∠COD ,∴∠AOC =∠DOB =2x °,∠BOC =7x °.又∵∠AOD =∠AOB +∠COD ﹣∠BOC =180°﹣∠BOC ,则得方程:11x =180﹣7x ,解得:x =10,∴∠BOC =70°.(2)∵∠AOD =∠AOB +∠COD ﹣∠BOC =180°﹣∠BOC ,∴∠AOD 与∠BOC 互补,则∠AOD 的补角等于∠BOC .故∠AOD 的补角的度数与∠BOC 的度数之比是1:1.点睛:正确认识∠AOD =∠AOB +∠COD ﹣∠BOC =180°﹣∠BOC 这一个关系是解题的关键,这是一个常用的关系,需熟记.99.如图,//30100CE AB B AOB ∠=∠=,,,求C ∠和ODE ∠的度数.【答案】30°,130°.【解析】试题分析:由已知能得出∠COD =∠AOB =100°(对顶角相等),再由CE ∥AB ,可求出∠C =∠B =30°,根据三角形外角定理可求出∠ODE 的度数.试题解析:解:∵CE ∥AB ,∴∠C =∠B =30°.∠COD =∠AOB =100°(对顶角相等),∠ODE =∠C +∠COD =30°+100°=130°(三角形外角和定理).点睛:本题考查了的知识点是平行线的性质、对顶角及三角形外角定理,解题的关键是由平行线的性质和对顶角求出∠C 和∠ODE 的度数.100.如图,直线AB 与CD 相交于点O OP ,是BOC ∠的平分线,OF CD ⊥,如果40AOD ∠=.求:()1COP ∠的度数;()2BOF ∠的度数.【答案】(1)20°;(2)50°【解析】试题分析:(1)先由对顶角相等得出∠BOC =∠AOD =40°,再根据角平分线定义即可求解;(2)先由OF ⊥CD 得出∠COF =90°,再根据∠BOF =∠COF ﹣∠BOC 即可求解.试题解析:解:(1)∵直线AB 与CD 相交于点O ,∴∠BOC =∠AOD =40°.∵OP 是∠BOC 的平分线,∴∠COP =12∠BOC =20°; (2)∵OF ⊥CD ,∴∠COF =90°,∴∠BOF =∠COF ﹣∠BOC =90°﹣40°=50°.点睛:本题考查了对顶角的性质,垂直的定义,角平分线的定义,是基础知识,需熟练掌握.。

人教版七年级数学下册 第5章 相交线和平行线 综合练习(含答案)

人教版七年级数学下册 第5章 相交线和平行线 综合练习(含答案)

人教版 七年级数学 第5章 相交线与平行线综合练习(含答案)一、单选题(共有11道小题)1.下面各图中∠1与∠2是对顶角是( ).2.如图,直线123,,l l l 交于一点,直线14l l P ,若∠=124°,∠2=88°,则∠3的度数为()A.26°B.36° C.46° D.56°3.下列图形中,与是对顶角的是( )4.如图,直线l ∥m ∥n ,等边△ABC 的顶点B 、C 分别在直线n 和m 上,边BC 与直线n 所夹锐角为25°,则∠ 的度数为( )A .25°B .45°C .35°D .30°5.下列命题中的真命题是( )A .三个角相等的四边形是矩形B .对角线互相垂直且相等的四边形是正方形C .顺次连接矩形四边中点得到的四边形是菱形D .正五边形既是轴对称图形又是中心对称图形CBl 4DCBA6.如图,AB ∥CD,EF 交AB 、CD 于点E 、F ,EG 平分∠BEF ,交CD 于点G. 若∠1=40°,则∠EGF=( )A .20°B .40°C .70°D .110° 7.下列说法中正确的是( )A .两直线被第三条直线所截得的同位角相等B .两直线被第三条直线所截得的同旁内角互补C .两平行线被第三条直线所截得的同位角的平分线互相垂直D .两平行线被第三条直线所截得的同旁内角的平分线互相垂直8.下列四个图中,α∠与β∠成邻补角的是( )A BC D9.下列命题是真命题的有( ) ①对顶角相等;②两直线平行,内错角相等;③两个锐角对应相等的两个直角三角形全等; ④有三个角是直角的四边形是矩形;⑤平分弦的直径垂直于弦,并且平分弦所对的弧。

A .1个 B .2个 C .3个 D.4个10.如图,若AB CD ∥,70BEF ∠=︒,则B F C ∠+∠+∠的度数为( )A.215︒B.250︒C.320︒D.360︒11.如图,已知直线a ∥b ,且a 与b 之间的距离为4,点A 到直线a 的距离为2,点B 到直线b 的距离为3,AB=a 上找一点M ,在直线b 上找一点N ,满足MN ⊥a 且AM+MN+NB 的长度和最短,则此时AM+NB=( )A .6B .8C .10D .12DBβαβαβαβαDC FEBA12.如图,直线a //b ,n 直线l 与a 相交于点P ,与直线b 相交于点Q ,PM ⊥l 于点P ,若∠1=50 °,则∠2= °.命题“相等的角是对顶角”是 命题. (填“真”或“假”) 14.根据图在( )内填注理由:①∵B CEF ∠=∠(已知)∵AB CD ∥( ) ②∵B BED ∠=∠(已知)∴AB CD ∥( ) ③∵180B CEB ∠+∠=°(已知)∴AB CD ∥( )15.若平面上有4条直线两两相交且无三线共点,则共有同旁内角 对.16.如图AB CD EF CG ∥∥,平分140110ACE A E ∠∠=︒∠=︒,,.则______DCG ∠=.三、计算题(共有1道小题)17.已知如图所示,AB DE ∥,116D ∠=︒,93DCB ∠=︒,求B ∠的度数.图2FC EB DA GF EDCB AD C EBADCFEBA18.找出下图中用数字表示的各角中,哪些是同位角,内错角?哪些是同旁内角?19.如图,一条公路修在湖边时,需拐弯绕湖而过,如果第一次拐的角A ∠是120o ,第二次拐的角B ∠是150︒,第三次拐的角是C ∠,这时的道路恰好和第一次拐弯之前的道路平行,求C ∠的大小.20.已知,如图360B BED D ∠+∠+∠=︒.求证:AB CD ∥.21.⑴ 两条平行直线被第三条直线所截,有几对同位角,几对内错角,几对同旁内角.⑵ 三条平行直线呢?四条、五条呢? ⑶ 你发现了什么规律.22.证明:三角形三个内角的和等于180︒.23.平面上有()2n n ≥条直线两两相交,试证明:所得的角中至少有一个角不大于180n︒.1234图1CEB DA NEDCBA24.已知AB CD ∥,点M N ,分别在AB CD ,上.(1)AB CD ,间有一点E ,点E 在直线MN 左侧,如图1,求证AME CNE MEN ∠+∠=∠.(2)当AB CD ,间的点E 在直线MN 右侧时,如图2,AME CNE MEN ∠∠∠,,直线有什么关系?(3)如图3,当点E 在AB CD ,外侧时,探索AME CNE MEN ∠∠∠,,之间有何关系?图1NME DCBA图2NME D CBA图3NMEDCB A答案一、单选题(共有11道小题)1.下面各图中∠1与∠2是对顶角是( ).参考答案:B2.如图,直线123,,l l l 交于一点,直线14l l P ,若∠=124°,∠2=88°,则∠3的度数为( )A.26°B.36°C.46°D.56°参考答案:B3.下列图形中,与是对顶角的是( )参考答案:C4.如图,直线l ∥m ∥n ,等边△ABC 的顶点B 、C 分别在直线n 和m上,边BC 与直线n 所夹锐角为25°,则∠ 的度数为( )CBl 4DCBAA .25°B .45°C .35°D .30°参考答案:C5.下列命题中的真命题是( )A .三个角相等的四边形是矩形B .对角线互相垂直且相等的四边形是正方形C .顺次连接矩形四边中点得到的四边形是菱形D .正五边形既是轴对称图形又是中心对称图形参考答案:C6.如图,AB ∥CD,EF 交AB 、CD 于点E 、F ,EG 平分∠BEF ,交CD 于点G. 若∠1=40°,则∠EGF=( )A .20°B .40°C .70°D .110°参考答案:C7.下列说法中正确的是( )A .两直线被第三条直线所截得的同位角相等B .两直线被第三条直线所截得的同旁内角互补C .两平行线被第三条直线所截得的同位角的平分线互相垂直D .两平行线被第三条直线所截得的同旁内角的平分线互相垂直参考答案:D8.下列四个图中,α∠与β∠成邻补角的是( )A BC D参考答案:C9.下列命题是真命题的有( ) ①对顶角相等;②两直线平行,内错角相等;③两个锐角对应相等的两个直角三角形全等; ④有三个角是直角的四边形是矩形;⑤平分弦的直径垂直于弦,并且平分弦所对的弧。

人教版七年级数学下册 相交线 同步练习含答案

人教版七年级数学下册 相交线 同步练习含答案

人教版七年级数学下册相交线同步练习含答案一、单选题(共10题;共30分)1.如图所示,∠1和∠2是对顶角的图形有( )A. 1个B. 2个C. 3个D. 4个2.如图,下列说法不正确的是()A. ∠1和∠2是同旁内角B. ∠1和∠3是对顶角C. ∠3和∠4是同位角D. ∠1和∠4是内错角3.如图所示,∠1和∠2是对顶角的是()A. B. C. D.4.下列说法中正确的个数为()①两条直线相交成四个角,如果有两个角相等,那么这两条直线垂直;②两条直线相交成四个角,如果有一个角是直角,那么这两条直线垂直;③一条直线的垂线可以画无数条;④在同一平面内,经过一个已知点能画一条且只能画一条直线和已知直线垂直.A. 1B. 2C. 3D. 45.如图,∠1=15°,∠AOC=90°,点B,O,D在同一直线上,则∠2的度数为()A. 75°B. 15°C. 105°D. 165°6.如图所示,下列说法错误的是()A. ∠A和∠B是同旁内角B. ∠A和∠3是内错角C. ∠1和∠3是内错角D. ∠C和∠3是同位角7.如图,三条直线相交于点O.若CO⊥AB,∠1=56°,则∠2等于()A. 30°B. 34°C. 45°D. 56°8.在下列语句中,正确的是().A. 在平面上,一条直线只有一条垂线;B. 过直线上一点的直线只有一条;C. 过直线上一点且垂直于这条直线的直线有且只有一条;D. 垂线段就是点到直线的距离9.如图,下列6种说法:①∠1与∠4是内错角;②∠1与∠2是同位角;③∠2与∠4是内错角;④∠4与∠5是同旁内角;⑤∠2与∠4是同位角;⑥∠2与∠5是内错角.其中正确的有( )A. 1个B. 2个C. 3个D. 4个10.如图所示,OA⊥OC,OB⊥OD,下面结论中,其中说法正确的是()①∠AOB=∠COD;②∠AOB+∠COD=90°;③∠BOC+∠AOD=180°;④∠AOC-∠COD=∠BOC.A. ①②③B. ①②④C. ①③④D. ②③④二、填空题(共10题;共30分)11.如图,直线AB,CD相交于点O,EO⊥AB,垂足为点O,若∠AOD=132°,则∠EOC=________12.如图,已知直线AB与CD相交于点O,OA平分∠COE,若∠DOE=70°,则∠BOD=________.13.如图,∠1和∠2是________角,∠2和∠3 是________角。

人教版初中数学七年级下册相交线练习题附参考答案

人教版初中数学七年级下册相交线练习题附参考答案

人教版初中数学七年级下册相交线练习题附参考答案1.在两条直线相交所成的四个角中,( )不能判定这两条直线垂直A.对顶角互补 B.四对邻补角 C.三个角相等 D.邻补角相等答案:B说明:两条直线相交,已有四对邻补角,因此,选项B不足以判定这两条直线垂直;而根据垂直的定义,对顶角、邻补角的性质不难判断其它选项的说法都可以判定这两条直线垂直;所以答案为B.2.如图,在三角形ABC中,AC⊥BC,CD⊥AB于D,则下列关系不成立的是( )A.AB>AC>ADB.AB>BC>CDC.AC+BC>ABD.AC>CD>BC答案:D说明:由垂线段最短的性质,可知AB>AC,AB>BC,AC>AD,BC>CD都成立,即选项A、B中的关系都是正确的;再由两点之间线段最短,可知AB<AC+BC成立,所以选项C也正确;只有选项D中CD>BC不成立,答案为D.3.图中,∠1和∠2是同位角的是( )A B C D答案:D说明:由同位角的概念可知,一条直线与两条直线相交,同位角位置相同且有一边在同一直线上,这样可以判断选项A、B、C中的∠1与∠2都不是同位角,只有选项D中的∠1与∠2是同位角,答案为D.填空题:1.如图,直线a,b,c交于O,∠1 = 30º,∠2 = 50º,则∠3 =________.答案:100º说明:如图,∠3的对顶角为∠4,所以∠3 =∠4;又∠1+∠2+∠4 = 180º,∠1 = 30º,∠2 = 50º,所以∠4 = 180º−30º−50º = 100º,即∠3 = 100º.2.如图,直线AB、CD交于O,OA平分∠EOC,且∠EOD = 120º,则∠BOD =_______.答案:30º说明:因为∠BOD =∠COA,∠EOD+∠EOC = 180º,OA平分∠EOC,所以∠EOD+2∠COA = 180º,再由∠EOD = 120º,可得∠COA = 30º,即∠BOD = 30º.3.已知如图,①∠1与∠2是_______被_______所截成的_______角;②∠2与∠3是_______被_______截成的_______角;③∠3与∠A是_______被_______截成的_______角;④AB、AC被BE截成的同位角_______,内错角_______,同旁内角_______;⑤DE、BC被AB截成的同位角是_______,内错角_______,同旁内角_______.答案:①DE、BC;BE;内错角②AC、BC;BE;同旁内角③AB、BE;AC;同位角④不存在;∠ABE与∠3;∠ABE与∠AEB⑤∠ADE与∠ABC;不存在;∠EDB与∠DBC4.在三角形ABC中,AC⊥BC,CD⊥AB于D,如图,则在图中共有______对互余的角,______对互补的角,______对邻补角,点A到CD的距离是______,到BC的距离是______,到点B的距离是______,点C 到直线AB的距离是______.答案:有4对互余的角:∠ACD与∠A;∠A与∠B;∠B与∠BCD;∠BCD与∠ACD;有3对互补的角:∠CDA与∠CDB;∠ACB与∠CDA;∠ACB与∠CDB;有1对邻补角:∠CDA与∠CDB;点A到CD的距离是AD;点A到BC的距离是AC;点A到点B的距离是AB;点C到直线AB的距离是CD.解答题:1.如图,已知直线AB、CD、EF相交于O,OG⊥AB,且∠FOG = 32º,∠COE = 38º,求∠BOD.答案:因为AB、CD、EF交于O,所以∠FOD =∠COE =38º又因为OG⊥AB,所以∠BOD = 90º−∠FOD−∠FOG = 90º−32º−38º = 20º.2.如图,已知OA⊥OB,OC⊥OD,且∠AOD:∠BOC = 4:5,求∠BOC的度数.答案:因为OA⊥OB,OC⊥OD所以∠AOB =∠DOC =90º即∠AOD+∠BOC = 180º又因为∠AOD:∠BOC = 4:5所以∠BOC = ×180º = 100º.3.如图,直线AB、CD交于O,∠AOE = 30º,∠BOC = 2∠AOC,求∠DOF.解答:∵AB、CD交于O∴∠AOC+∠BOC = 180º又∵∠BOC = 2∠AOC∴3∠AOC = 180º∴∠AOC = 60º又∵∠AOE = 30º∴∠DOF = 30º。

最新人教版初中数学七年级下册相交线练习题附参考答案

最新人教版初中数学七年级下册相交线练习题附参考答案

人教版初中数学七年级下册相交线练习题附参考答案1.在两条直线相交所成的四个角中,( )不能判定这两条直线垂直A.对顶角互补 B.四对邻补角 C.三个角相等 D.邻补角相等答案:B说明:两条直线相交,已有四对邻补角,因此,选项B不足以判定这两条直线垂直;而根据垂直的定义,对顶角、邻补角的性质不难判断其它选项的说法都可以判定这两条直线垂直;所以答案为B.2.如图,在三角形ABC中,AC⊥BC,CD⊥AB于D,则下列关系不成立的是( )A.AB>AC>ADB.AB>BC>CDC.AC+BC>ABD.AC>CD>BC答案:D说明:由垂线段最短的性质,可知AB>AC,AB>BC,AC>AD,BC>CD都成立,即选项A、B中的关系都是正确的;再由两点之间线段最短,可知AB<AC+BC成立,所以选项C也正确;只有选项D中CD>BC不成立,答案为D.3.图中,∠1和∠2是同位角的是( )A B C D答案:D说明:由同位角的概念可知,一条直线与两条直线相交,同位角位置相同且有一边在同一直线上,这样可以判断选项A、B、C中的∠1与∠2都不是同位角,只有选项D中的∠1与∠2是同位角,答案为D.填空题:1.如图,直线a,b,c交于O,∠1 = 30º,∠2 = 50º,则∠3 =________.答案:100º说明:如图,∠3的对顶角为∠4,所以∠3 =∠4;又∠1+∠2+∠4 = 180º,∠1 = 30º,∠2 = 50º,所以∠4 = 180º−30º−50º = 100º,即∠3 = 100º.2.如图,直线AB、CD交于O,OA平分∠EOC,且∠EOD = 120º,则∠BOD =_______.答案:30º说明:因为∠BOD =∠COA,∠EOD+∠EOC = 180º,OA平分∠EOC,所以∠EOD+2∠COA = 180º,再由∠EOD = 120º,可得∠COA = 30º,即∠BOD = 30º.3.已知如图,①∠1与∠2是_______被_______所截成的_______角;②∠2与∠3是_______被_______截成的_______角;③∠3与∠A是_______被_______截成的_______角;④AB、AC被BE截成的同位角_______,内错角_______,同旁内角_______;⑤DE、BC被AB截成的同位角是_______,内错角_______,同旁内角_______.答案:①DE、BC;BE;内错角②AC、BC;BE;同旁内角③AB、BE;AC;同位角④不存在;∠ABE与∠3;∠ABE与∠AEB⑤∠ADE与∠ABC;不存在;∠EDB与∠DBC4.在三角形ABC中,AC⊥BC,CD⊥AB于D,如图,则在图中共有______对互余的角,______对互补的角,______对邻补角,点A到CD的距离是______,到BC的距离是______,到点B的距离是______,点C 到直线AB的距离是______.答案:有4对互余的角:∠ACD与∠A;∠A与∠B;∠B与∠BCD;∠BCD与∠ACD;有3对互补的角:∠CDA与∠CDB;∠ACB与∠CDA;∠ACB与∠CDB;有1对邻补角:∠CDA与∠CDB;点A到CD的距离是AD;点A到BC的距离是AC;点A到点B的距离是AB;点C到直线AB的距离是CD.解答题:1.如图,已知直线AB、CD、EF相交于O,OG⊥AB,且∠FOG = 32º,∠COE = 38º,求∠BOD.答案:因为AB、CD、EF交于O,所以∠FOD =∠COE =38º又因为OG⊥AB,所以∠BOD = 90º−∠FOD−∠FOG = 90º−32º−38º = 20º.2.如图,已知OA⊥OB,OC⊥OD,且∠AOD:∠BOC = 4:5,求∠BOC的度数.答案:因为OA⊥OB,OC⊥OD所以∠AOB =∠DOC =90º即∠AOD+∠BOC = 180º又因为∠AOD:∠BOC = 4:5所以∠BOC = ×180º = 100º.3.如图,直线AB、CD交于O,∠AOE = 30º,∠BOC = 2∠AOC,求∠DOF.解答:∵AB、CD交于O∴∠AOC+∠BOC = 180º又∵∠BOC = 2∠AOC∴3∠AOC = 180º∴∠AOC = 60º又∵∠AOE = 30º∴∠DOF = 30º。

七年级数学下册第五章《相交线与平行线》测试卷-人教版(含答案)

七年级数学下册第五章《相交线与平行线》测试卷-人教版(含答案)

七年级数学下册第五章《相交线与平行线》测试卷-人教版(含答案)三总分题号一二19 20 21 22 23 24分数一、选择题(每题3分,共30分)1.下列四个图案中,可能通过如图平移得到的是()A.B.C.D.2.下列说法正确的是()A.直线AB和直线BA是同一条直线 B.直线是射线的2倍C.射线AB与射线BA是同一条射线 D.三条直线两两相交,有三个交点3.下列各图中,∠1=∠2一定成立的是()A.B.C.D.4.如图,直线BC,DE相交于点O,AO⊥BC于点O.OM平分∠BOD,如果∠AOE =50°,那么∠BOM的度数()A.20°B.25°C.40°D.50°5.如图,在铁路旁有一李庄,现要建一火车站,为了使李庄人乘车最方便,请你在铁路线上选一点来建火车站,应建在()A.A点B.B点C.C点D.D点6.如图,点P在直线L外,点A,B在直线l上,PA=3,PB=7,点P到直线l 的距离可能是()A.2 B.4 C.7 D.87.如图所示,∠1和∠2不是同位角的是()A.①B.②C.③D.④8.如图所示,同位角共有()A.6对B.8对C.10对D.12对9.下列说法正确的有()个.①不相交的两条直线是平行线;②在同一平面内,两条不相交的线段是平行线;③过一点可以而且只可以画一条直线与已知直线平行;④如果一条直线与两条平行线中的一条平行,那么它与另一条直线也互相平行.A.1 B.2 C.3 D.410.如图,a∥b,M、N分别在a,b上,P为两平行线间一点,那么∠1+∠2+∠3=()A .180°B .360°C .270°D .540°二、填空题(每题3分,共24分)11.把命题“等角的补角相等”改写成“如果…那么…”的形式是______. 12.如图所示,12//l l ,点A ,E ,D 在直线1l 上,点B ,C 在直线2l 上,满足BD 平分ABC ∠,BD CD ⊥,CE 平分DCB ∠,若136BAD =︒∠,那么AEC ∠=___________.13.把一个直角三角板(90GEF ∠=︒,30GFE ∠=︒)如图放置,已知AB ∥CD ,AF 平分BAE ∠,则AEG ∠=_____________14.如图,点E 在BC 延长线上,四个条件中:①13∠=∠;②25180+=︒∠∠,③4∠=∠B ;④B D ∠=∠;⑤180D BCD ∠+∠=︒,能判断//AB CD 的是______.(填序号).15.如图,已知12//l l ,直线l 分别与12,l l 相交于,C D 两点,现把一块含30角的直角三角中尺按如图所示的位置摆放.若1130∠=︒,则2∠=___________.16.如图,∠AEM=∠DFN=a,∠EMN=∠MNF=b,∠PEM=12∠AEM,∠MNP=12∠FNP,∠BEP,∠NFD的角平分线交于点I,若∠I=∠P,则a和b的数量关系为_____(用含a的式子表示b).17.如图所示,将△ABC沿BC边平移得到△A1B1C1,若BC1=8,B1C=2,则平移距离为.18.如图,△ABC的边长AB =3 cm,BC=4 cm,AC=2 cm,将△ABC沿BC方向平移a cm(a<4 cm),得到△DEF,连接AD,则阴影部分的周长为_______cm.三.解答题(共46分)19.(7分)如图,直线l1,l2,l3相交于点O,∠1=40°,∠2=50°,求∠3的度数.20.(7分)已知:如图,AB∥CD,CD∥EF.求证:∠B+∠BDF+∠F=360°.21.(8分)如图,直线DE与∠ABC的边BC相交于点P,现直线AB,DE被直线BC所截,∠1与∠2.∠1与∠3,∠1与∠4分别是什么角?22.(8分)如图,已知∠1+∠2=180°,∠3=∠B.(1)试判断DE与BC的位置关系,并说明理由.(2)若DE平分∠ADC,∠2=3∠B,求∠1的度数.23.(8分)图1,点E在直线AB上,点F在直线CD上,EG⊥FG.(1)若∠BEG+∠DFG=90°,请判断AB与CD的位置关系,并说明理由;(2)如图2,在(1)的结论下,当EG⊥FG保持不变,EG上有一点M,使∠MFG=2∠DFG,则∠BEG与∠MFG存在怎样的数量关系?并说明理由;(3)如图2,若移动点M,使∠MFG=n∠DFG,请直接写出∠BEG与∠MFG的数量关系.24.(8分)已知,E、F分别是直线AB和CD上的点,AB∥CD,G、H在两条直线之间,且∠G=∠H.(1)如图1,试说明:∠AEG=∠HFD;(2)如图2,将一45°角∠ROS如图放置,OR交AB于E,OS交CD于F,设K为SO上一点,若∠BEO=∠KEO,EG∥OS,判断∠AEG,∠GEK的数量关系,并说明理由;(3)如图3,将∠ROS=(n为大于1的整数)如图放置,OR交AB于E,OS交CD于F,设K为SO上一点,连接EK,若∠AEK=n∠CFS,则=.参考答案一、选择题: 题号 1 2 3 4 5 6 7 8 9 10 答案 CACAAACCDB二、填空题:11.如果两个角是等角的补角,那么它们相等. 12.146° 13.30°解:∵AB ∥CD ,AF 平分∠BAE , ∴∠BAF=∠EAF=∠AFE , 又∵∠GFE=30°,∴∠BAF=∠EAF=30°,即∠BAE=60°, ∴∠AEF=180°-60°=120°, 又∵∠GEF=90°,∴∠AEG=120°-90°=30°, 14.②③解:①∵∠1=∠3,∴AD ∥BC ;②∵∠2+∠5=180°,∵∠5=∠AGC ,∴∠2+∠AGC=180°,∴AB ∥DC ; ③∵∠4=∠B ,∴AB ∥DC ; ④∠B=∠D 无法判断出AD ∥BC ; ⑤∵∠D+∠BCD=180°,∴AD ∥BC . 15.20︒如图,∵121130,l l ∠=︒∥, ∴50CDB ∠=︒, ∵30ADB ∠=︒,∴2503020CDB ADB ∠=∠-∠=︒-︒=︒.16.如图1,ABCD是长方形纸带(AD∥BC),∠DEF=18°,将纸带沿EF折叠成图2,再沿BF折叠成图3,则图3中的∠CFE的度数是126°.【分析】在图1中,由AD∥BC,利用“两直线平行,内错角相等”可得出∠BFE的度数,由折叠的性质可知,在图3中∠BFE处重叠了三次,进而可得出∠CFE+3∠BFE=180°,再代入∠BFE的度数即可求出结论.【解答】解:在图1中,AD∥BC,∴∠BFE=∠DEF=18°.由折叠的性质可知,在图3中,∠BFE处重叠了三次,∴∠CFE+3∠BFE=180°,∴∠CFE=180°﹣3×18°=126°.故答案为:126°.17.解:∵△ABC沿BC边平移得到△A1B1C1,∴BC=B1C1,BB1=CC1,∵BC1=8,B1C=2,∴BB1=CC1=,即平移距离为3,故答案为:3.18.180;3;内错角相等,两直线平行;两直线平行,同位角相等三.解答题:19.解:∵∠1=40°,∠2=50°,∴∠5=∠1=40°,∠4=∠2=50°,∴∠3=180°﹣∠5﹣∠4=180°﹣40°﹣50°=90°.20.证明:∵AB∥CD(已知)∴∠B+∠BDC=180°(两直线平行,同旁内角互补)∵CD∥EF(已知)∴∠CDF+∠F=180°(两直线平行,同旁内角互补)∴∠B+∠BDC+∠CDF+∠F=360°,∵∠BDF=∠BDC+∠CDF(已知)∴∠B+∠BDF+∠F=360°.21.解:∵直线AB,DE被直线BC所截,∴∠1与∠2是同旁内角,∠1与∠3是内错角,∠1与∠4是同位角.22.解:(1)如图1,作直线GH交AB于M,交CD于Q,∵AB∥CD,∴∠BMG=∠FQH,∵∠EGH=∠GHF,∴∠AEG=∠EGH﹣∠BMG=∠FHG﹣∠FQH=∠HFD;(2)∠GEK﹣2∠AEG=45°,如图2,延长KO交AB于M,∵EG∥MS,∴∠AEG=∠EMF,∠GEK=∠OKE,设∠OEM=α,则∠OEK=2α,∠OME=45°﹣α,∴∠OKE=180°﹣∠MEK﹣∠OME=135°﹣2α,∵EG∥OS,∴∠GEK=∠OKE=135°﹣2α,∴∠AEG=180°﹣∠GEK﹣∠MEK=180°﹣135°+2α﹣3α=45°﹣α,即∠GEK﹣2∠AEG=45°.(3)作OH∥AB,∵AB∥CD,∴OH∥CD,如图3,∵AB∥OH,∴∠OEB=∠EOH,又∵OH∥CD,∴∠FOH=∠OFD,又∵∠OFD=∠CFS=∠AEK,而∠EOH+∠HOF=,∴∠EOH =﹣∠AEK,即180°﹣n∠EOH=∠AEK,又∵∠OEK+∠AEK+∠EOH=180°,∴∠OEK+180°﹣n∠EOH+∠EOH=180°,∴∠OEK=(n﹣1)∠EOH,∴,又∵∠EOH=∠BEO,∴.故答案为:.。

人教版七年级数学下册第五章相交线与平行线单元卷附解析

人教版七年级数学下册第五章相交线与平行线单元卷附解析

人教版七年级数学下册第五章相交线与平行线单元卷附解析一、选择题(共12题;共36分)1.直线a、b、c、d的位置如图所示,如果∠1=58°,∠2=58°,∠3=70°,那么∠4等于()A. 58°B. 70°C. 110°D. 116°2.如图,直线AB,CD相交于点O,OE⊥AB于O,若∠BOD=40°,则不正确的结论是()A. ∠AOC=40°B. ∠COE=130°C. ∠EOD=40°D. ∠BOE=90°3.如图,已知直线EF⊥MN垂足为F,且∠1=140°,则当∠2等于()时,AB∥CD.A. 50°B. 40°C. 30°D. 60°4.如图,a∥b,∠1=70°,则∠2等于()A. 20°B. 35°C. 70D. 110°5.下列说法正确的是()A. 若两条直线被第三条直线所截,则同旁内角互补B. 相等的角是对顶角C. 有一条公共边并且和为180°的两个角互为邻补角D. 若三条直线两两相交,则共有6对对顶角6.如图,是我们学过的用直尺和三角尺画平行线的方法示意图,画图的原理是()A. 同位角相等,两直线平行B. 内错角相等,两直线平行C. 两直线平行,同位角相等D. 两直线平行,内错角相等7.下列说法错误的是()A. 无数条直线可交于一点B. 直线的垂线有无数条,但过一点与直线垂直的直线只有一条C. 直线的平行线有无数条,但过直线外一点的平行线只有一条D. 互为邻补角的两个角一个是钝角,一个是锐角8.下列四个命题:①对顶角相等;②内错角相等;③平行于同一条直线的两条直线互相平行;④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等.其中真命题的个数是( )A. 1个B. 2个C. 3个D. 4个9.一个角的两边分别垂直于另一个角的两边,那么这两个角之间的关系是( ).A. 相等B. 互补C. 相等或互补D. 无法确定10.如图,已知AB⊥BD,CB⊥CD,AD=14 cm,BC=10 cm,若线段BD的长度为偶数,则线段BD的长度为( )A. 8 cmB. 10 cmC. 12 cmD. 14 cm11.如图,已知直线a∥b,AC⊥AB,AC交直线b于点C,如果∠1=62°,则∠2的度数是()A. 36°B. 32°C. 30°D. 28°12.某班有20位同学参加围棋、象棋比赛,甲说:“只参加一项的人数大于14人。

人教版初中数学七年级下册第五章第一节《5.1相交线》同步练习题(含答案)

人教版初中数学七年级下册第五章第一节《5.1相交线》同步练习题(含答案)

人教版初中数学七年级下册第五章第一节《 5.1相交线》同步练习题(含答案)5.1《相交线》同步练习题、选择题(每小题只有一个正确答案) 1 •如图所示,/ 1与/2不是同位角的是()A.2 .在同一平面内,下列说法中,错误的是 A. 过两点有且只有一条直线B. 过一点有无数条直线与已知直线平行C. 过直线外一点有且只有一条直线与已知直线平行D. 过一点有且只有一条直线与已知直线垂直3 .已知:0A 丄 0C , / AOB :/ AOC , 2 : 3,则/ BOC 的度数为( ),A. 30 °B.60 °C. 150 °D.30。

或 150 °4.如图,点A 到线段BC 所在直线的距离是线段()A. / 1和/ 3是同位角B. / 1和/ 5是同位角C. / 1和/ 2是同旁内角D. / 5和/6是内错角6 .两条直线相交所构成的四个角中:①有三个角都相等;②有一对对顶角互补;③有 一个角是直角;④有一对邻补角相等.其中能判定这两条直线垂直的有 ( ) A. 1个 B. 2个 C. 3个 D. 4个7 .平面上三条直线两两相交最多能构成对顶角的对数是( A. 7 B. 6 C. 5 D. 4二、填空题8.如图,直线a 与b 相交于点 0,直线c 丄b ,且垂足为0,若/仁35 °,则/2= ______________D.A. AC 的长度B. AD 的长度C. AE 的长度5. 如图所示,下列说法错误的是()D. AB 的长度9 .如图,计划把河水引到水池 A 中,先作AB 丄CD ,垂足为B ,然后沿AB 开渠,能使 所开的渠道最短,这样设计的依据是 _______________10 .两条直线相交所成的四个角中,有两个角分别是(2x -10)°和(110-x) °,则 x= _________11 .如图,在平面内,两条直线 l i , 12相交于点0,对于平面内任意一点 M ,若p , q 分 别是点M 到直线11,12的距离,则称(p, q)为点M 的距离坐标”.根据上述规定, 距离 坐标”是(2,1的点共有 _____________________ 个.三、解答题13 .如图,直线 AB, CD 相交于点 0, / BOE=90°,OF 平分/ AOD / COE=20°,求/ BOD 与/ DOF 的度数.BC D(1)/ 1和/ 3是直线 被直线 所截得的 (2)/ 1和/ 4是直线 被直线 所截得的 (3)/ B 和/2是直线被直线 所截得的 (4)/ B 和/4是直线被直线所截得的12 .看图填空:人教版初中数学七年级下册第五章第一节《 5.1相交线》同步练习题(含答案)14 .在同一平面内三条直线交点有多少个? 甲:同一平面三直线相交交点的个数为 0个,因为a , b ,c 如图(1)所示.乙:同一平面内三条直线交点个数只有 1个,因为a , b,c 交于同一点0,如图(2)所示.以上说法谁对谁错?为什么?15 .已知,如图,直线AB 和CD 相交于点 0, / C0E 是直角,0F 平分/ AOE, / COF=34°, 求/ A0C和/ BOD 的度数.16 .探究题:(I)(1) 三条直线相交,最少有____ 个交点;最多有 _____ 个交点,画出图形,并数出图形中的对顶角和邻补角的对数;(2) 四条直线相交,最少有____ 个交点;最多有 _______ 个交点,画出图形,并数出图形中的对顶角和邻补角的对数;(3) 依次类推,n条直线相交,最少有________ 个交点;最多有_______ 个交点,对顶角有对,邻补角有__________ 对.参考答案I. B2. B3. D4. B5. B6. D7. B8. 55°9•垂线段最短10. 40 或80II. 4,12. 解析:根据同旁内角、同位角及内错角的概念可得:(1) / 1和/3是直线AB、BC被直线AC所截得的同旁内角;(2) / 1和/ 4是直线AB, BC被直线AC所截得的同位角;(3) / B和/ 2是直线AB, AC被直线BC所截得的同位角;(4) / B和/4是直线AC, BC被直线AB所截得的内错角•13. / BOD=70°, / DOF=55°解:•••/ COE=20°,Z BOE=90°,•••/ BOD=180°, 20°, 90° =70°,•••/ AOD—180°, 70° =110°,•/ OF 平分/ AOD ,1• / DOF=-/AOD=55°,•••/ BOD=70°,Z DOF=55°.14. 甲,乙说法都不对,各自少了三种情况,具体见解析解析:甲、乙说法都不对,都少了三种情况.a// b,c与a,b相交如图(1);a,b,c两两相交如图(2),所以三条直线互不重合,交点有0个或1个或2个或3个,共四种情况15. / AOC=22 , / BOD=22 .解析:,,COE=90 , , COF=34 ,,,EOF= COE , COF=56°,,OF是,AOE的平分线,,,AOE=2, EOF=112°,,,AOC=112°, 90 ° =22 ° ,,,BOD和,AOC是对顶角,,,BOD=22°,16. (1)1,3,画图见解析,对顶角有6对,邻补角有12对;(2)1,6, 画图见解析,对顶角有12对,邻补角有24对;(3)1, n n 1,n(n —1),2 n(n —1).2分析:当直线同交于一点时,只有一个交点;当直线两两相交,且不过同一点时,交点个数2最多;根据对顶角与邻补角的定义找出即可.;1三条直线相交,最少有 1个交点,最多有3个交点,如图:对顶角:6对,邻补角:12对;;2四条直线相交,最少有 1个交点,最多有6个交点,如图:对顶角:12对,邻补角:24对;n n 1(3) n 条直线相交,最少有 1个交点,最多有 个交点,对顶角有 n (n - 1)对,2邻补角有2n (n - 1)对. 丄,“宀,n n 1故答案为:(1) 1, 3 ; (2) 1, 6; (3) 1, , n ( n- 1), 2n (n - 1).2。

人教版数学七年级下册 第五章 相交线与平行线 单元练习含答案

人教版数学七年级下册 第五章 相交线与平行线 单元练习含答案

人教版数学七年级下册第五章相交线与平行线单元练习含答案人教版数学七年级下册第五章相交线与平行线单元练习1.下列说法中正确的是( )A.两条直线相交所成的角是对顶角B.互补的两个角是邻补角C.互补且有一条公共边的两个角是邻补角D.不相等的角一定不是对顶角2. 如图,OB⊥CD于点O,∠1=∠2,则∠2与∠3的关系是( )A.∠2与∠3互余 B.∠2与∠3互补C.∠2=∠3 D.不能确定3. 如图是一跳远运动员跳落沙坑时留下的痕迹,则表示该运动员成绩的是( )A.线段AP1的长 B.线段AP2的长 C.线段BP3的长 D.线段CP3的长4. 如图,已知直线b,c被直线a所截,则∠1与∠2是一对( )A.同位角 B.内错角 C.同旁内角 D.对顶角5. 若a⊥b,c⊥d,则a与c的关系是( )A.平行 B.垂直 C.相交 D.以上都不对6. 如图,下列条件中不能判定AB∥CD的是( )A.∠3=∠4 B.∠1=∠5 C.∠1+∠4=180° D.∠3=∠57. 如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=70°,则∠AED=( )A.55° B.125° C.135° D.140°8. 下列命题:①有理数和数轴上的点一一对应;②内错角相等;③平行于同一条直线的两条直线互相平行;④邻补角一定互补.其中真命题的个数是( )A.1个 B.2个 C.3个 D.4个9. 如图,将周长为8的△ABC沿BC方向平移1个单位得到△DEF,则四边形ABFD的周长为( )A.8 B.9 C.10 D.1110. 如图所示,OA⊥OB,∠AOC=120°,则∠BOC等于______度.11. 如图,直线AB,CD相交于点O,若∠AOD=28°,则∠BOC =__________,∠AOC=___________.12. 自来水公司为某小区A改造供水系统,如图所示,沿路线AO铺设管道和BO主管道衔接(AO⊥BO),路线最短、工程造价最低,其根据是垂线段_____________13. 如图,直线BD上有一点C,则:(1)∠1和∠ABC是直线AB,CE被直线_______所截得的_______角;(2)∠2和∠BAC是直线CE,AB被直线______所截得的________角;(3)∠3和∠ABC是直线_______,_______被直线_______所截得的__________角;14. 如图,过点A画直线l的平行线,能画条15. 如图,用两个相同的三角板按照如图所示的方式作平行线,能解释其中道理的是内错角,两直线 .16. 如图,四边形ABCD中,A D∥BC,∠A=110°,则∠B=___________.17. 两个锐角之和是钝角,其条件是两个锐角之和,结论是钝角,这是一个________命题(填“真”或“假”).18. 如图所示,将直角三角形ABC沿BC方向平移4 cm,得到直角三角形DEF,连接AD,若AB=5 cm,则图中阴影部分的面积为_____________.19. 如图,O为直线AB上一点,∠AOC=13∠BOC,OC是∠AOD的平分线.判断OD与AB的位置关系,并说明理由.20. 如图,直线a,b被直线l所截,已知∠1=40°,试求∠2的同位角及同旁内角的度数.21. 如图,AB∥CD,点E是CD上一点,∠AEC=42°,EF平分∠AED交AB于点F,求∠AFE的度数.22. 如图,AD∥BC,且AD<BC,△ABC经过平移后到了△DEF,(1)平移的方向是射线___________的方向,平移距离是线段________________的长度;(2)在观察图形时,小明发现了AD+BC=BF这一结论,你觉得这一结论成立吗?为什么?参考答案:1---9 DABAD DBBC10. 3011. 28° 152°12. 最短13. (1) DB 同位(2) AC 内错(3) AB AC BC 同旁内14. 115. 相等平行16. 70°17. 假18. 20cm219. 解:OD⊥AB.理由:因为OC平分∠AOD,所以可设∠AOC=∠COD=x°,而∠AOC=13∠BOC,所以∠BOC=3∠AOC=3x°.因为∠AOC+∠BOC=180°,所以x+3x=180,所以x=45,所以∠AOD=2∠COD=90°,即OD⊥AB.20. 解:∵∠1=40°,∴∠3=∠1=40°,4=180°-∠1=140°,即∠2的同位角是140°,∠2的同旁内角是40°. 21. 解:∵∠AEC=42°,∴∠AED=180°-∠AEC=138°.∵EF 平分∠AED,∴∠DEF=∠AED=69°.又∵AB∥CD,∴∠AFE=∠DEF=69°.22. (1) BC BE或CF或AD(2) 解:结论成立.理由:∵△A BC经过平移后到了△DEF,∴AD =BE=CF,BC=EF,∴AD+BC=BE+EF=BF.人教版七年级数学下册第五章相交线平行线单元检测题一、选择题。

人教版七年级数学下册5-1-1 相交线 习题(含答案及解析)(4)

人教版七年级数学下册5-1-1 相交线 习题(含答案及解析)(4)

5.1.1 相交线学校:__________ 姓名:__________ 班级:__________ 考号:__________一、单选题1.在同一平面内,画出三条直线,使它们满足下列条件:①没有交点;②有一个交点;③有两个交点;④有三个交点.其中能画出图形的是()A.①②③④B.①②③C.①②④D.①③答案:A解析:根据直线的位置关系,确定每种情况下三直线的位置即可.①三条直线分别平行时,没有交点,故图形可以画出;②三条直线可以同时经过一个点,故图形可以画出;③其中两直线平行,第三条直线与平行的直线相交,故图形可以画出;④三条直线任意两条都相交时,有三个交点,故图形可以画出.故选A.2.互不重合的三条直线公共点的个数是()A.只可能是0个,1个或3个B.只可能是0个,1个或2个C.只可能是0个,2个或3个D.0个,1个,2个或3个都有可能答案:D解析:如下图,有4种情况.图1,三条直线平行时,无交点;图2,有一个交点;图3,当其中两条直线平行,与第三条直线不平行时,有两个交点;图4,有三个交点.故选D.3.如图1,其中∠1与∠2是同位角的是()A.②③B.②③④C.①②④D.③④答案:C解析:试题根据同位角定义可知①②④中∠1与∠2是同位角.故选C.4.如图,直线a,b相交于点O,若∠1=50°,则∠2和∠3的度数分别是( ) A.50°,40°B.50°,130°C.130°,50°D.50°,50°答案:B解析:由图示可得,∠1与∠2互为对顶角,∠1与∠3互为邻补角,根据两直线相交,对顶角相等,邻补角互补求解.详解:解:∵∠1与∠2是对顶角,∴∠2=∠1=50°,∵∠1+∠3=180°,∴∠3=130°.故选B.点睛:本题考查对顶角的性质以及邻补角的定义,是一个需要熟记的内容.5.如图,AB,CD,EF相交于点O,则∠1+∠2+∠3等于( )A.90°B.120°C.150°D.180°答案:D解析:根据对顶角相等可得∠3=∠AOC,再根据∠1+∠2+∠AOC=180°即可得到答案.详解:∵∠1+∠2+∠AOC=180°,∠3=∠AOC(对顶角相等),∴∠1+∠2+∠3=180°.故选D.点睛:本题考点:对顶角的相等.6.已知∠α和∠β是对顶角,若∠α=30°,则∠β的度数为()A.30°B.60°C.70°D.150°答案:A详解:解:∵∠α和∠β是对顶角,∴∠α=∠β∵∠α=30°,∴∠β=30°故选:A点睛:本题考查对顶角的性质.7.平面内两两相交的8条直线,其交点个数最少为m个,最多为n个,则m+n等于()A.16 B.18 C.29 D.28答案:C解析:试题根据题意可得:8条直线相交于一点时交点最少,此时交点为1个,即m=1;任意两直线相交都产生一个交点时交点最多,∵任意三条直线不过同一点,∴此时交点为:8×(8﹣1)÷2=28,即n=28;则故选C.8.下列图形中,∠1与∠2是对顶角的是( )A.(A)B.(B)C.(C)D.(D)答案:C解析:由对顶角的定义:“有公共顶点,且两边分别互为反向延长线的两个角互为对顶角”分析可知,A、B、D三幅图中的∠1、∠2都不是对顶角,只有C图中的∠1、∠2是对顶角. 故选C.二、填空题1.如图,枕木与枕木的位置关系是___,铁轨与枕木的位置关系是___.答案:平行垂直解析:由图像不难得出枕木与枕木的位置关系是平行,铁轨与枕木的位置关系是垂直.故答案为(1). 平行;(2). 垂直.2.如图,枕木与枕木的位置关系是___,铁轨与枕木的位置关系是___.答案:平行垂直解析:由图像不难得出枕木与枕木的位置关系是平行,铁轨与枕木的位置关系是垂直.故答案为(1). 平行;(2). 垂直.3.探究题:(1)三条直线相交,最少有__________个交点,最多有__________个交点,分别画出图形,并数出图形中的对顶角和邻补角的对数;(2)四条直线相交,最少有__________个交点,最多有__________个交点,分别画出图形,并数出图形中的对顶角和邻补角的对数;(3)依次类推,n条直线相交,最少有__________个交点,最多有__________个交点,对顶角有_________对,邻补角有__________对.答案:(1)1,3;(2)1,6;(3)1,(1)2n n,n(n-1),2n(n-1)解析:试题分析:当直线同交于一点时,只有一个交点;当直线两两相交,且不过同一点时,交点个数最多;根据对顶角与邻补角的定义找出即可.(1)三条直线相交,最少有1个交点,最多有3个交点,如图:对顶角:6对,邻补角:12对;(2)四条直线相交,最少有1个交点,最多有6个交点,如图:对顶角:12对,邻补角:24对;(3)n条直线相交,最少有1个交点,最多有(1)2n n-个交点,对顶角有n(n﹣1)对,邻补角有2n(n﹣1)对.故答案为(1)1,3;(2)1,6;(3)1,(1)2n n-,n(n﹣1),2n(n﹣1).4.在同一平面内,直线a,b相交于点P,若a⊥c,则b,c的位置关系是_____.答案:相交或平行解析:当a⊥b时,由于a⊥c,a⊥b,根据“同一平面内,垂直于同一条直线的两条直线平行”可得b∥c;当a、b相交(不垂直)时,由于a⊥c,a、b相交,可得b与c相交.故答案为:相交或平行.5.如图,直线AB、CD相交于点O,OE平分∠BOD.(1)若∠EOD=25°,则∠AOC=________°,∠BOC=________°;(2)若∠AOD=140°,则∠BOE=________°.答案:(1)50,130;(2)20.解析:(1) 利用角平分线的性质以及对顶角、邻补角的知识进行求解;(2)根据角平分线的性质和平角的定义解答即可.详解:(1)∵OE平分∠BOD,∠EOD=25°,∴∠BOD=2∠EOD=50°.根据对顶角相等,得:∠AOC=∠BOD=50°,∠BOC=180°-∠BOD=130°.(2) ∵∠AOD+∠BOD=180°, ∠AOD=140°, ∴∠BOD=180°-140°=40°,∵OE 平分∠BOD, ∴∠BOE=12∠BOD=12×40°=20°.故答案为(1)50,130;(2)20. 点睛:本题考查了角平分线性质及平角定义,关键是灵活运用这些性质.6.如图,直线AB 、CD 相交于点O ,∠DOE∶∠DOB=4∶5,OF 平分∠AOD,∠AOC=∠AOF-15°,则∠EOF 的度数为__________. 答案:105°分析:根据题目中∠DOE∶∠DOB=4∶5的关系设未知数,再由∠AOC=∠AOF-15°列出方程,求解未知数的值,最后可求得∠EOF 的度数. 详解:解:∵∠DOE∶∠DOB=4:5设∠DOE=4x ,则∠DOB=5x ∴∠AOC=∠BOD=5x∵∠AOC+∠AOD=180∴∠AOD=180°-∠AOC=180-5x∵OF 平分∠AOD∴∠AOF=∠FOD=18052x - ∵∠AOC=∠AOF -15 ∴5x =18052x --15 解的:x =10 ∴∠DOE=40,∠FOD=1805102-⨯=65 ∴∠EOF=∠FOD+∠DOE=105故答案是:105点睛:本题主要考察角度计算问题,合理的设未知数及方程的建立是解题的关键.7.如图,已知直线AB、CD相交于O,如果∠AOC=2x°,∠BOC=(x+y+9)°,∠BOD=(y +4)°,则∠AOD的度数为____.答案:110°解析:根据图示知,∠AOC=∠BOD,即2x°=(y+4)°,①∠AOC+∠BOC=180°,即2x°+(x+y+9)°=180°,②由①②解得,x°=35°,y°=66°,所以∠AOD=∠BOC=(x+y+9)°=110°,故答案是:110°.8.如图,AB,CD相交于点O,OE⊥AB,垂足为O,∠COE=44°,则∠AOD=______.答案:134°解析:试题分析:根据题意可得∠AOE=90°,则∠AOC=46°,则∠AOD=180°-∠AOC=180°-46°=134°.考点:角度的计算.9.猜谜语(打两个数学名词)从最后一个数起:________ 两牛相斗:________ .答案:倒数;对顶角解析:从最后一个数起即倒数,两牛相斗即对顶角.详解:从最后一个数起即倒数,两牛相斗即对顶角.故答案为倒数、对顶角.点睛:本题考查了倒数和对顶角的概念,趣味性较强.三、解答题1.如图,直线AB,CD互相垂直,垂足为O,直线EF过点O,∠DOF=32°,你能求出∠AOE 的度数吗?答案:∠AOE=58°.解析:根据对顶角相等可得∠EOC=∠DOF,由垂直定义可得∠AOE+∠EOC=90°,所以∠AOE =90°-∠EOC=90°-32°=58°.详解:解:能,因为直线CD与EF交于O,所以∠EOC=∠DOF.因为∠DOF=32°.所以∠EOC=32°.因为AB,CD互相垂直,所以∠AOC=90°.所以∠AOE+∠EOC=90°.所以∠AOE=90°-∠EOC=90°-32°=58°.点睛:此题主要考查了对顶角,邻补角,以及垂直的定义,题目比较简单,要注意领会由垂直得直角这一要点.2.如图,已知直线AB,CD,EF相交于点O,∠1=15°,∠2=95°,求∠3的度数.答案:70°.解析:根据平角等于180°求出∠EOB,再根据对顶角相等解答.详解:因为∠1=15°,∠2=95°,所以∠EOB=180°-∠1-∠2=180°-15°-95°=70°,所以∠3=∠EOB=70°.点睛:本题考查了的对顶角相等的性质,主要利用了平角的定义和性质,熟记性质并准确识图是解题的关键.3.如图,直线AB,CD,EF相交于点O.(1)写出∠COE的邻补角;(2)分别写出∠COE和∠BOE的对顶角;(3)如果∠BOD=60°,∠BOF=90°,求∠AOF和∠FOC的度数.答案:(1)∠COE的邻补角为∠COF和∠EOD;(2)∠COE和∠BOE的对顶角分别为∠DOF和∠AOF;(3)∠FOC=150°.解析:(1)根据邻补角的定义(两个角有一条公共边,它们的另一条边互为反向延长线,具有这种关系的两个角)可得,∠COE的邻补角有∠COF和∠EOD两个角;(2)根据对顶角的定义(一个角的两边分别是另一个角两边的反向延长线,且这两个角有公共顶点)可得,∠COE和∠BOE的对顶角分别为∠DOF和∠AOF;(3)由∠BOF=90°可得:AB⊥EF,所以∠AOF=90°,由∠AOC=∠BOD可得:∠AOC =60°,由∠FOC=∠AOF+∠AOC即可求出∠FOC的度数;详解:(1)∠COE的邻补角为∠COF和∠EOD;(2)∠COE和∠BOE的对顶角分别为∠DOF和∠AOF;(3)∵∠BOF=90°,∴AB⊥EF∴∠AOF=90°,又∵∠AOC=∠BOD=60°∴∠FOC=∠AOF+∠AOC=90°+60°=150°.4.如图,直线AB,CD互相垂直,垂足为O,直线EF过点O,∠DOF=32°,你能求出∠AOE 的度数吗?答案:∠AOE=58°.解析:根据对顶角相等可得∠EOC=∠DOF,由垂直定义可得∠AOE+∠EOC=90°,所以∠AOE =90°-∠EOC=90°-32°=58°.详解:解:能,因为直线CD与EF交于O,所以∠EOC=∠DOF.因为∠DOF=32°.所以∠EOC=32°.因为AB,CD互相垂直,所以∠AOC=90°.所以∠AOE+∠EOC=90°.所以∠AOE=90°-∠EOC=90°-32°=58°.点睛:此题主要考查了对顶角,邻补角,以及垂直的定义,题目比较简单,要注意领会由垂直得直角这一要点.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版初中数学七年级下册相交线练习题附参考答案
1.在两条直线相交所成的四个角中,( )不能判定这两条直线垂直
A.对顶角互补 B.四对邻补角 C.三个角相等 D.邻补角相等
答案:B
说明:两条直线相交,已有四对邻补角,因此,选项B不足以判定这两条直线垂直;而根据垂直的定义,对顶角、邻补角的性质不难判断其它选项的说法都可以判定这两条直线垂直;所以答案为B.
2.如图,在三角形ABC中,AC⊥BC,CD⊥AB于D,则下列关系不成立的是( )
A.AB>AC>AD
B.AB>BC>CD
C.AC+BC>AB
D.AC>CD>BC
答案:D
说明:由垂线段最短的性质,可知AB>AC,AB>BC,AC>AD,BC>CD都成立,即选项A、B中的关系都是正确的;再由两点之间线段最短,可知AB<AC+BC成立,所以选项C也正确;只有选项D中CD>BC不成立,答案为D.
3.图中,∠1和∠2是同位角的是( )
A B C D
答案:D
说明:由同位角的概念可知,一条直线与两条直线相交,同位角位置相同且有一边在同一直线上,这样可以判断选项A、B、C中的∠1与∠2都不是同位角,只有选项D中的∠1与∠2是同位角,答案为D.填空题:
1.如图,直线a,b,c交于O,∠1 = 30º,∠2 = 50º,则∠3 =________.
答案:100º
说明:如图,∠3的对顶角为∠4,所以∠3 =∠4;又∠1+∠2+∠4 = 180º,∠1 = 30º,∠2 = 50º,所以∠4 = 180º−30º−50º = 100º,即∠3 = 100º.
2.如图,直线AB、CD交于O,OA平分∠EOC,且∠EOD = 120º,则∠BOD =_______.
答案:30º
说明:因为∠BOD =∠COA,∠EOD+∠EOC = 180º,OA平分∠EOC,所以∠EOD+2∠COA = 180º,再由∠EOD = 120º,可得∠COA = 30º,即∠BOD = 30º.
3.已知如图,
①∠1与∠2是_______被_______所截成的_______角;
②∠2与∠3是_______被_______截成的_______角;
③∠3与∠A是_______被_______截成的_______角;
④AB、AC被BE截成的同位角_______,内错角_______,同旁内角_______;
⑤DE、BC被AB截成的同位角是_______,内错角_______,同旁内角_______.
答案:①DE、BC;BE;内错角
②AC、BC;BE;同旁内角
③AB、BE;AC;同位角
④不存在;∠ABE与∠3;∠ABE与∠AEB
⑤∠ADE与∠ABC;不存在;∠EDB与∠DBC
4.在三角形ABC中,AC⊥BC,CD⊥AB于D,如图,则在图中共有______对互余的角,______对互补的角,______对邻补角,点A到CD的距离是______,到BC的距离是______,到点B的距离是______,点C 到直线AB的距离是______.
答案:有4对互余的角:∠ACD与∠A;∠A与∠B;∠B与∠BCD;∠BCD与∠ACD;
有3对互补的角:∠CDA与∠CDB;∠ACB与∠CDA;∠ACB与∠CDB;
有1对邻补角:∠CDA与∠CDB;
点A到CD的距离是AD;
点A到BC的距离是AC;
点A到点B的距离是AB;
点C到直线AB的距离是CD.
解答题:
1.如图,已知直线AB、CD、EF相交于O,OG⊥AB,且∠FOG = 32º,∠COE = 38º,求∠BOD.
答案:因为AB、CD、EF交于O,
所以∠FOD =∠COE =38º
又因为OG⊥AB,
所以∠BOD = 90º−∠FOD−∠FOG = 90º−32º−38º = 20º.
2.如图,已知OA⊥OB,OC⊥OD,且∠AOD:∠BOC = 4:5,求∠BOC的度数.
答案:因为OA⊥OB,OC⊥OD
所以∠AOB =∠DOC =90º
即∠AOD+∠BOC = 180º
又因为∠AOD:∠BOC = 4:5
所以∠BOC = ×180º = 100º.
3.如图,直线AB、CD交于O,∠AOE = 30º,∠BOC = 2∠AOC,求∠DOF.
解答:∵AB、CD交于O
∴∠AOC+∠BOC = 180º
又∵∠BOC = 2∠AOC
∴3∠AOC = 180º
∴∠AOC = 60º
又∵∠AOE = 30º
∴∠DOF = 30º。

相关文档
最新文档