高中数学-合情推理
合情推理与演绎推理
合情推理与演绎推理一、基础知识1.合情推理(1)归纳推理①定义:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理,称为归纳推理(简称归纳).②特点:由部分到整体、由个别到一般的推理.(2)类比推理①定义:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理(简称类比).②特点:由特殊到特殊的推理.类比推理的注意点在进行类比推理时要尽量从本质上去类比,不要被表面现象迷惑,如果只抓住一点表面现象的相似甚至假象就去类比,那么就会犯机械类比的错误.(3)合情推理归纳推理和类比推理都是根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的推理,我们把它们统称为合情推理.合情推理的关注点(1)合情推理是合乎情理的推理.(2)合情推理既可以发现结论也可以发现思路与方向.2.演绎推理(1)演绎推理从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理.简言之,演绎推理是由一般到特殊的推理.↓演绎推理:常用来证明和推理数学问题,解题时应注意推理过程的严密性,书写格式的规范性.(2)“三段论”是演绎推理的一般模式,包括:①大前提——已知的一般原理;②小前提——所研究的特殊情况;③结论——根据一般原理,对特殊情况做出的判断.二、常用结论(1)合情推理的结论是猜想,不一定正确;演绎推理在大前提、小前提和推理形式都正确时,得到的结论一定正确.(2)合情推理是发现结论的推理;演绎推理是证明结论的推理. 考点一 归纳推理考法(一) 与数字有关的推理[典例] 《聊斋志异》中有这样一首诗:“挑水砍柴不堪苦,请归但求穿墙术.得诀自诩无所阻,额上坟起终不悟.”在这里,我们称形如以下形式的等式具有“穿墙术”:223=223,3 38= 338,4 415= 4415,5 524= 5524,…,则按照以上规律,若99n= 99n具有“穿墙术”,则n =( ) A .25 B .48 C .63 D .80[解析] 由223=223,338=338,4415=4415,5524= 5524,…, 可得若99n = 99n具有“穿墙术”,则n =92-1=80. [答案] D考法(二) 与式子有关的推理[典例] 已知f (x )=xe x ,f 1(x )=f ′(x ),f 2(x )=[f 1(x )]′,…,f n +1(x )=[f n (x )]′,n ∈N *,经计算:f 1(x )=1-x e x ,f 2(x )=x -2e x ,f 3(x )=3-xex ,…,照此规律,则f n (x )=________.[解析] 因为导数分母都是e x,分子为(-1)n(x -n ),所以f n (x )=(-1)n (x -n )e x.[答案] (-1)n (x -n )e x考法(三) 与图形有关的推理[典例] 分形几何学是数学家伯努瓦·曼德尔布罗在20世纪70年代创立的一门新的数学学科,它的创立为解决传统科学众多领域的难题提供了全新的思路.按照如图(1)所示的分形规律可得如图(2)所示的一个树形图.若记图(2)中第n 行黑圈的个数为a n ,则a 2 019=________.[解析] 根据题图(1)所示的分形规律,可知1个白圈分形为2个白圈1个黑圈,1个黑圈分形为1个白圈2个黑圈,把题图(2)中的树形图的第1行记为(1,0),第2行记为(2,1),第3行记为(5,4),第4行的白圈数为2×5+4=14,黑圈数为5+2×4=13,所以第4行的“坐标”为(14,13),同理可得第5行的“坐标”为(41,40),第6行的“坐标”为(122,121),….各行黑圈数乘2,分别是0,2,8,26,80,…,即1-1,3-1,9-1,27-1,81-1,…,所以可以归纳出第n 行的黑圈数a n =3n -1-12(n ∈N *),所以a 2 019=32 018-12.[答案] 32 018-12[题组训练]1.(2019·兰州实战性测试)观察下列式子:1,1+2+1,1+2+3+2+1,1+2+3+4+3+2+1,…,由以上可推测出一个一般性结论:对于n ∈N *,则1+2+…+n +…+2+1=________.解析:由1=12,1+2+1=4=22,1+2+3+2+1=9=32,1+2+3+4+3+2+1=16=42,…,归纳猜想可得1+2+…+n +…+2+1=n 2.答案:n 22.某种平面分形图如图所示,一级分形图是由一点出发的三条线段,长度均为1,两两夹角为120°;二级分形图是在一级分形图的每条线段的末端出发再生成两条长度为原来13的线段,且这两条线段与原线段两两夹角为120°,…,依此规律得到n 级分形图.则n 级分形图中共有________条线段.解析:分形图的每条线段的末端出发再生成两条线段, 由题图知,一级分形图有3=3×2-3条线段, 二级分形图有9=3×22-3条线段, 三级分形图中有21=3×23-3条线段, 按此规律n 级分形图中的线段条数a n =3×2n -3. 答案:3×2n -3考点二 类比推理[典例] 我国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一直角边为股,斜边为弦.若a ,b ,c 为直角三角形的三边,其中c 为斜边,则a 2+b 2=c 2,称这个定理为勾股定理.现将这一定理推广到立体几何中:在四面体O -ABC 中,∠AOB =∠BOC =∠COA =90°,S 为顶点O 所对面△ABC 的面积,S 1,S 2,S 3分别为侧面△OAB ,△OAC ,△OBC 的面积,则下列选项中对于S ,S 1,S 2,S 3满足的关系描述正确的为( )A .S 2=S 21+S 22+S 23B .S 2=1S 21+1S 22+1S 23C .S =S 1+S 2+S 3D .S =1S 1+1S 2+1S 3[解析] 如图,作OD ⊥BC 于点D ,连接AD ,则AD ⊥BC ,从而S 2=⎝⎛⎭⎫12BC ·AD 2=14BC 2·AD 2=14BC 2·(OA 2+OD 2)=14(OB 2+OC 2)·OA 2+ 14BC 2·OD 2=⎝⎛⎭⎫12OB ·OA 2+⎝⎛⎭⎫12OC ·OA 2+⎝⎛⎭⎫12BC ·OD 2=S 21+S 22+S 23. [答案] A[题组训练]1.给出下面类比推理(其中Q 为有理数集,R 为实数集,C 为复数集):①“若a ,b ∈R ,则a -b =0⇒a =b ”类比推出“a ,c ∈C ,则a -c =0⇒a =c ”; ②“若a ,b ,c ,d ∈R ,则复数a +b i =c +d i ⇒a =c ,b =d ”类比推出“a ,b ,c ,d ∈Q ,则a +b 2=c +d 2⇒a =c ,b =d ”;③“a ,b ∈R ,则a -b >0⇒a >b ”类比推出“若a ,b ∈C ,则a -b >0⇒a >b ”; ④“若x ∈R ,则|x |<1⇒-1<x <1”类比推出“若z ∈C ,则|z |<1⇒-1<z <1”. 其中类比结论正确的个数为( ) A .1 B .2 C .3D .4解析:选B 类比结论正确的有①②.2.设等差数列{a n }的前n 项和为S n ,则S 3,S 6-S 3,S 9-S 6,S 12-S 9成等差数列.类比以上结论:设等比数列{b n }的前n 项积为T n ,则T 3,________,________,T 12T 9成等比数列.解析:等比数列{b n }的前n 项积为T n , 则T 3=b 1b 2b 3,T 6=b 1b 2…b 6,T 9=b 1b 2…b 9,T 12=b 1b 2…b 12,所以T 6T 3=b 4b 5b 6,T 9T 6=b 7b 8b 9,T 12T 9=b 10b 11b 12,所以T 3,T 6T 3,T 9T 6,T 12T 9的公比为q 9,因此T 3,T 6T 3,T 9T 6,T 12T 9成等比数列.答案:T 6T 3 T 9T 6考点三 演绎推理[典例] 数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=n +2nS n (n ∈N *).证明:(1)数列⎩⎨⎧⎭⎬⎫S n n 是等比数列;(2)S n +1=4a n .[证明] (1)∵a n +1=S n +1-S n ,a n +1=n +2n S n ,∴(n +2)S n =n (S n +1-S n ),即nS n +1=2(n +1)S n . 故S n +1n +1=2·S nn ,(小前提)∴⎩⎨⎧⎭⎬⎫S n n 是以1为首项,2为公比的等比数列.(结论)(大前提是等比数列的定义) (2)由(1)可知S n +1n +1=4·S n -1n -1(n ≥2),∴S n +1=4(n +1)·S n -1n -1=4·n -1+2n -1·S n -1=4a n (n ≥2).(小前提)又∵a 2=3S 1=3,S 2=a 1+a 2=1+3=4=4a 1,(小前提) ∴对于任意正整数n ,都有S n +1=4a n .(结论) [解题技法] 演绎推理问题求解策略(1)演绎推理是由一般到特殊的推理,常用的一般模式为三段论.(2)演绎推理的前提和结论之间有着某种蕴含关系,解题时要找准正确的大前提,一般地,若大前提不明确时,可找一个使结论成立的充分条件作为大前提.[题组训练]1.正弦函数是奇函数,f (x )=sin(x 2+1)是正弦函数,因此f (x )=sin(x 2+1)是奇函数,以上推理( )A .结论正确B .大前提不正确C .小前提不正确D .全不正确解析:选C因为f(x)=sin(x2+1)不是正弦函数,所以小前提不正确.2.已知函数y=f(x)满足:对任意a,b∈R,a≠b,都有af(a)+bf(b)>af(b)+bf(a),试证明:f(x)为R上的单调增函数.证明:设x1,x2∈R,取x1<x2,则由题意得x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1),∴x1[f(x1)-f(x2)]+x2[f(x2)-f(x1)]>0,(x2-x1)[f(x2)-f(x1)]>0,∵x1<x2,∴f(x2)-f(x1)>0,f(x2)>f(x1).∴y=f(x)为R上的单调增函数.考点四逻辑推理问题[典例](2019·安徽示范高中联考)某参观团根据下列要求从A,B,C,D,E五个镇选择参观地点:①若去A镇,也必须去B镇;②D,E两镇至少去一镇;③B,C两镇只去一镇;④C,D两镇都去或者都不去;⑤若去E镇,则A,D两镇也必须去.则该参观团至多去了()A.B,D两镇B.A,B两镇C.C,D两镇D.A,C两镇[解析]假设去A镇,则也必须去B镇,但去B镇则不能去C镇,不去C镇则也不能去D镇,不去D镇则也不能去E镇,D,E镇都不去则不符合条件.故若去A镇则无法按要求完成参观.同理,假设不去A镇去B镇,同样无法完成参观.要按照要求完成参观,一定不能去B 镇,而不去B镇的前提是不去A镇.故A,B两镇都不能去,则一定不能去E镇,所以能去的地方只有C,D两镇.故选C.[答案] C[解题技法] 逻辑推理问题求解的2种途径求解此类推理性试题,要根据所涉及的人与物进行判断,通常有两种途径:(1)根据条件直接进行推理判断;(2)假设一种情况成立或不成立,然后以此为出发点,联系条件,判断是否与题设条件相符合.[题组训练]1.数学老师给同学们出了一道证明题,以下四人中只有一人说了真话,只有一人会证明此题.甲:“我不会证明.”乙:“丙会证明.”丙:“丁会证明.”丁:“我不会证明.”根据以上条件,可以判断会证明此题的人是()A.甲B.乙C.丙D.丁解析:选A四人中只有一人说了真话,只有一人会证明此题,由丙、丁的说法知丙与丁中有一个人说的是真话,若丙说了真话,则甲必是假话,矛盾;若丁说了真话,则甲说的是假话,甲就是会证明的那个人,符合题意,故选A.2.(2019·大连模拟)甲、乙、丙、丁、戊和己6人围坐在一张正六边形的小桌前,每边各坐一人.已知:①甲与乙正面相对;②丙与丁不相邻,也不正面相对.若己与乙不相邻,则以下选项正确的是()A.若甲与戊相邻,则丁与己正面相对B.甲与丁相邻C.戊与己相邻D.若丙与戊不相邻,则丙与己相邻解析:选D由题意可得到甲、乙位置的示意图如图(1),因此,丙和丁的座位只可能是1和2,3和4,4和3,2和1,由己和乙不相邻可知,己只能在1或2,故丙和丁只能在3和4,4和3,示意图如图(2)和图(3),由此可排除B、C两项.对于A项,若甲与戊相邻,则己与丁可能正面相对,也可能不正面相对,排除A.对于D项,若丙与戊不相邻,则戊只能在丙的对面,则己与丙相邻,正确.故选D.图(1)图(2)图(3)[课时跟踪检测]1.下列三句话按三段论的模式排列顺序正确的是()①2 020能被2整除;②一切偶数都能被2整除;③2 020是偶数.A.①②③B.②①③C.②③①D.③②①解析:选C根据题意并按照演绎推理的三段论可知,大前提:一切偶数都能被2整除.小前提:2 020是偶数.结论:2 020能被2整除.所以正确的排列顺序是②③①.故选C.2.下列推理中属于归纳推理且结论正确的是()A .设数列{a n }的前n 项和为S n .由a n =2n -1,求出S 1=12,S 2=22,S 3=32,…,推断:S n =n 2B .由f (x )=x cos x 满足f (-x )=-f (x )对∀x ∈R 都成立,推断:f (x )=x cos x 为奇函数C .由圆x 2+y 2=r 2的面积S =πr 2,推断:椭圆x 2a 2+y 2b2=1(a >b >0)的面积S =πabD .由(1+1)2>21,(2+1)2>22,(3+1)2>23,…,推断:对一切n ∈N *,(n +1)2>2n 解析:选A 选项A 由一些特殊事例得出一般性结论,且注意到数列{a n }是等差数列,其前n 项和等于S n =n (1+2n -1)2=n 2,选项D 中的推理属于归纳推理,但结论不正确.3.观察一列算式:1⊗1,1⊗2,2⊗1,1⊗3,2⊗2,3⊗1,1⊗4,2⊗3,3⊗2,4⊗1,…,则式子3⊗5是第( )A .22项B .23项C .24项D .25项解析:选C 由题意可知,两数的和为2的有1个,和为3的有2个,和为4的有3个,和为5的有4个,和为6的有5个,和为7的有6个,前面共有21个,3⊗5是和为8的第3项,所以为该列算式的第24项.故选C.4.(2018·南宁摸底联考)甲、乙、丙三人中,一人是工人,一人是农民,一人是知识分子.已知:丙的年龄比知识分子大;甲的年龄和农民不同;农民的年龄比乙小.根据以上情况,下列判断正确的是( )A .甲是工人,乙是知识分子,丙是农民B .甲是知识分子,乙是农民,丙是工人C .甲是知识分子,乙是工人,丙是农民D .甲是农民,乙是知识分子,丙是工人解析:选C 由“甲的年龄和农民不同”和“农民的年龄比乙小”可以推得丙是农民,所以丙的年龄比乙小;再由“丙的年龄比知识分子大”,可知甲是知识分子,故乙是工人.所以选C.5.若等差数列{a n }的前n 项之和为S n ,则一定有S 2n -1=(2n -1)a n 成立.若等比数列{b n }的前n 项之积为T n ,类比等差数列的性质,则有( )A .T 2n -1=(2n -1)+b nB .T 2n -1=(2n -1)b nC .T 2n -1=(2n -1)b nD .T 2n -1=b 2n -1n解析:选D 在等差数列{a n }中,a 1+a 2n -1=2a n , a 2+a 2n -2=2a n, …,故有S 2n -1=(2n -1)a n , 在等比数列{b n }中,b 1b 2n -1=b 2n ,b 2·b 2n -2=b 2n ,…,故有T 2n -1=b 1b 2…b 2n -1=b 2n -1n.6.我国的刺绣有着悠久的历史,如图,(1)(2)(3)(4)为刺绣最简单的四个图案,这些图案都是由小正方形构成,小正方形个数越多刺绣越漂亮.现按同样的规律刺绣(小正方形的摆放规律相同),设第n 个图形包含f (n )个小正方形,则f (n )的表达式为( )A .f (n )=2n -1B .f (n )=2n 2C .f (n )=2n 2-2nD .f (n )=2n 2-2n +1解析:选D 因为f (2)-f (1)=4,f (3)-f (2)=8,f (4)-f (3)=12,…,结合图形不难得到f (n )-f (n -1)=4(n -1),累加得f (n )-f (1)=2n (n -1)=2n 2-2n ,故f (n )=2n 2-2n +1.7.在正整数数列中,由1开始依次按如下规则,将某些数染成红色:先染1;再染两个偶数2,4;再染4后面最近的3个连续奇数5,7,9;再染9后面的最近的4个连续偶数10,12,14,16;再染16后面最近的5个连续奇数17,19,21,23,25,…,按此规则一直染下去,得到一个红色子数列1,2,4,5,7,9,10,12,14,16,17,…,则在这个红色子数列中,由1开始的第2 019个数是( )A .3 971B .3 972C .3 973D .3 974解析:选D 按照染色步骤对数字进行分组.由题意可知,第1组有1个数,第2组有2个数,…,根据等差数列的前n 项和公式,可知前n 组共有n (n +1)2个数.由于2 016=63×(63+1)2<2 019<64×(64+1)2=2 080,因此,第2 019个数是第64组的第3个数,由于第1组最后一个数是1,第2组最后一个数是4,第3组最后一个数是9,…,所以第n 组最后一个数是n 2,因此第63组最后一个数为632=3 969,第64组为偶数组,其第1个数为3 970,第2个数为3 972,第3个数为3 974,故选D.8.观察下列等式:1=1 2+3+4=9 3+4+5+6+7=25 4+5+6+7+8+9+10=49……照此规律,第n 个等式为________.解析:观察所给等式可知,每行最左侧的数分别为1,2,3,…,则第n 行最左侧的数为n ;每个等式左侧的数的个数分别为1,3,5,…,则第n 个等式左侧的数的个数为2n -1,而第n 个等式右侧为(2n -1)2,所以第n 个等式为n +(n +1)+(n +2)+…+(3n -2)=(2n -1)2.答案:n +(n +1)+(n +2)+…+(3n -2)=(2n -1)29.(2018·上饶二模)二维空间中,圆的一维测度(周长)l =2πr ,二维测度(面积)S =πr 2;三维空间中,球的二维测度(表面积)S =4πr 2,三维测度(体积)V =43πr 3.应用合情推理,若四维空间中,“特级球”的三维测度V =12πr 3,则其四维测度W =________.解析:∵二维空间中圆的一维测度(周长)l =2πr ,二维测度(面积)S =πr 2,观察发现S ′=l ,三维空间中球的二维测度(表面积)S =4πr 2,三维测度(体积)V =43πr 3,观察发现V ′=S ,∴四维空间中“特级球”的三维测度V =12πr 3,猜想其四维测度W 满足W ′=V =12πr 3,∴W =3πr 4.答案:3πr 410.在数列{a n }中,a 1=2,a n +1=λa n +λn +1+(2-λ)2n (n ∈N *),其中λ>0,{a n }的通项公式是________________.解析:a 1=2,a 2=2λ+λ2+(2-λ)·2=λ2+22, a 3=λ(λ2+22)+λ3+(2-λ)·22=2λ3+23, a 4=λ(2λ3+23)+λ4+(2-λ)·23=3λ4+24.由此猜想出数列{a n }的通项公式为a n =(n -1)λn +2n . 答案:a n =(n -1)λn +2n11.(2019·吉林实验中学测试)如图所示,椭圆中心在坐标原点,F 为左焦点,当FB ⊥AB 时,其离心率为5-12,此类椭圆被称为“黄金椭圆”.类比“黄金椭圆”可推出“黄金双曲线”的离心率e 等于________.解析:类比“黄金椭圆”,设双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0),则F (-c,0),B (0,b ),A (a,0), 所以FB ―→=(c ,b ),AB ―→=(-a ,b ). 易知FB ―→⊥AB ―→,所以FB ―→·AB ―→=b 2-ac =0, 所以c 2-a 2-ac =0,即e 2-e -1=0, 又e >1,所以e =5+12. 答案:5+1212.已知O 是△ABC 内任意一点,连接AO ,BO ,CO 并延长,分别交对边于A ′,B ′,C ′,则OA ′AA ′+OB ′BB ′+OC ′CC ′=1,这是一道平面几何题,其证明常采用“面积法”: OA ′AA ′+OB ′BB ′+OC ′CC ′=S △OBC S △ABC +S △OCA S △ABC +S △OAB S △ABC =S △ABC S △ABC=1. 请运用类比思想,对于空间中的四面体A BCD ,存在什么类似的结论,并用“体积法”证明.解:在四面体A BCD 中,任取一点O ,连接AO ,DO ,BO ,CO 并延长,分别交四个面于E ,F ,G ,H 点.则OE AE +OF DF +OG BG +OH CH =1.证明:在四面体O BCD 与A BCD 中,OE AE =h 1h =13S △BCD ·h 113S △BCD ·h=V O BCDV A BCD .同理有OF DF =V O -ABC V D -ABC ,OG BG =V O-ACD V B -ACD ,OH CH =V O-ABDV C -ABD .∴OE AE +OF DF +OG BG +OH CH=V O -BCD +V O -ABC +V O -ACD +V O -ABDV A -BCD =V A -BCD V A -BCD=1.。
高中数学 选修1-2 4.合情推理与演绎推理
4.合情推理与演绎推理教学目标 班级______姓名_________1.了解合情推理的含义,能利用归纳和类比等进行简单的推理.2.理解演绎推理的意义,掌握演绎推理的基本模式,能进行简单推理.3.了解合情推理与演绎推理的区别和联系.教学过程一、合情推理.1.归纳推理:(1)定义:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理;或者由个别事实概括出一般结论的推理,称为归纳推理(简称归纳).【B A ⊆,且A 具有特征P ⇒B 具有特征P 】(2)特征:部分⇒整体;个别⇒一般.(3)举例:①铜、铁、铝等金属能导电⇒一切金属都能导电;②哥德巴赫猜想:336+=;538+=;5510+=;......8631391002+=......⇒任何一个不小于6的偶数都等于两个奇质数之和.2.类比推理:(1)定义:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理,称为类比推理(简称类比).【A 、B 具有相同性质P ,且A 具有特征Q ⇒B 具有特征Q 】(2)特征:相似⇒相似.(3)举例:①加法运算与乘法运算都满足交换律,且加法运算满足结合律⇒乘法运算满足结合律; ②平面内和空间内,平行于同一条直线的两条直线相互平行,且平面内,垂直于同一条直线的两条直线相互平行⇒空间内,垂直于同一条直线的两条直线相互平行.3.合情推理:根据已有事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的推理.(1)归纳推理与类比推理都属于合情推理;(2)合情推理能帮我们猜测和发现结论,能为我们提供证明的思路和方向;(3)一般来说,由合情推理所获得的结论,仅仅是一种猜想,未必可靠.二、演绎推理.1.定义:从一般性的原理出发,推出某个特殊情况下的结论的推理,称为演绎推理.【B A ⊇,且A 具有特征P ⇒B 具有特征P 】2.特征:一般⇒特殊;整体⇒部分.3.举例:①所有的金属都能导电,铀是金属⇒铀能导电;②所有奇数都不能被2整除,101是奇数⇒101不能被2整除.4.结构:演绎推理三段论:(1)大前提——已知的一般原理;(2)小前提——所研究的特殊情况;(3)结论——根据一般原理,对特殊情况作出的判断.(应用三段论解决问题时,若大前提是显而易见的,则可省略)5.在演绎推理中,只要大前提和推理形式是正确的,结论必定是正确的。
合情推理的含义与作用-高中数学知识点讲解
合情推理的含义与作用1.合情推理的含义与作用【知识点的认识】1.定义:(1)推理:根据一个或几个已知的判断来确定一个新的判断的思维过程就叫做推理.(2)合情推理:前提为真时结论可能为真的推理叫做合情推理.2.合情推理包括:(1)归纳推理(2)类比推理.3.合情推理和演绎推理的区别:推理推理形式推理结论合情推理归纳推理部分→整体,个别→一般结论不一定正确,有待进一步证明类比推理特殊→特殊演绎推理一般→特殊在大前提、小前提和推理形式都正确的前提下,得到的结论一定正确.【命题方向】一般以选择题、填空题的形式出现,主要考查基础概念问题,注意与演绎推理的区分,以及掌握归纳和类比推理的特点及运用.例 1:下列说法中正确的是()A.合情推理就是正确的推理B.合情推理就是归纳推理C.归纳推理是从一般到特殊的推理过程D.类比推理是从特殊到特殊的推理过程分析:合情推理的结论不一定正确可判定选项A,合情推理包含归纳推理与类比推理可判定选项B,归纳推理是从特殊到一般的推理过程可判定选项C,类比推理是从特殊到特殊的推理过程可判定选项D.解答:合情推理的结论不一定正确,有待证明,而演绎推理的结论是一定正确的,故选项A 不正确;合情推理包含归纳推理与类比推理,故选项B 不正确;所谓归纳推理,就是从个别性知识推出一般性结论的推理,是从特殊到一般的推理过程,故选项C 不正确;类比推理是根据两个或两类对象有部分属性相同,从而推出它们的其他属性也相同的推理,是从特殊到特殊的推理过程.故选项D 正确.故选D.点评:判断一个推理过程是否是归纳推理关键是看他是否符合归纳推理的定义,即是否是由特殊到一般的推理过程.判断一个推理过程是否是类比推理关键是看他是否符合类比推理的定义,即是否是由特殊到与它类似的另一个特殊的推理过程.判断一个推理过程是否是演绎推理关键是看他是否符合演绎推理的定义,即是否是由一般到特殊的推理过程.例 2:下面几种推理是合情推理的是()(1)由圆的性质类比出球的有关性质;(2)由直角三角形、等腰三角形、等边三角形内角和是 180°,归纳出所有三角形的内角和都是 180°;(3)某次考试张军成绩是 100 分,由此推出全班同学成绩都是 100 分;(4)三角形内角和是 180°,四边形内角和是 360°,五边形内角和是 540°,由此得凸多边形内角和是(n﹣2)•180°.A.(1)(2)B.(1)(3)C.(1)(2)(4)D.(2)(4)分析:本题考查的是合情推理、演绎推理的定义,判断一个推理过程是否是类比推理关键是看他是否符合类比推理的定义,即是否是由特殊到与它类似的另一个特殊的推理过程,类比推理的是看是否符合类比推理的定义.解答:(1)为类比推理,在推理过程由圆的性质类比出球的有关性质.(2)为归纳推理,关键是看他直角三角形、等腰三角形、等边三角形内角和是 180°推出所有三角形的内角和都是 180°,符合归纳推理的定义,即是由特殊到一般的推理过程.(3)不是合情推理,是由个别到全体的推理过程.(4)为归纳推理故选C.点评:判断一个推理过程是否是归纳推理关键是看他是否符合归纳推理的定义,即是否是由特殊到一般的推理过程.判断一个推理过程是否是类比推理关键是看他是否符合类比推理的定义,即是否是由特殊到与它类似的另一个特殊的推理过程.判断一个推理过程是否是演绎推理关键是看他是否符合演绎推理的定义,能否从推理过程中找出“三段论”的三个组成部分.。
高中数学合情推理(一)
通俗地说,合情推理是指“合乎情理”的推理。
合情推理的应用
数学研究中,得到一个新结论之前,合情推理 常常能帮助我们猜测和发现结论。
证明一个数学结论之前,合情推理常常能为我 们提供证明的思路和方向
在印度,有这么一个古老的传说:在世界 中心贝拿勒斯(在印度北部)的圣庙里,一块 黄铜板上插着三根宝石针。印度教的主神梵天 在创造世界的时候,在其中一根针上从下到上 地穿好了由大到小的64片金片,这就是所谓 的汉诺塔。不论白天黑夜,总有一个僧侣在按 照下面的法则移动这些金片:一次只移动一片 ,不管在哪根针上,小片必须在大片上面。僧 侣们预言,当所有的金片都从梵天穿好的那根 针上移到另外一根和众生也都将针上时,世界 就将在一声霹雳中消灭,而梵塔、庙宇同归于 尽。
目前最佳的结果是中国数学家陈景润於1966年证明的, 称为陈氏定理(Chen‘s Theorem) “任何充份大的偶数都 是一个质数与一个自然数之和,而後者仅仅是两个质数 的乘积。” 通常都简称这个结果为大偶数可表示为 “1 + 2 ”的形式。
歌德巴赫猜想的提出过程:
3+7=10,3+17=20,13+17=30,
观察可得:数列的前4项都等于相应项数的倒数。
1 由此猜想(归纳)这个数列的通项公式为: an n
归纳推理的一般步骤:
⑴ 对有限的资料进行观察、分析、 归纳整理; ⑵ 提出带有规律性的结论,即猜想; ⑶ 检验猜想。
练 根据图中5个图形及相应点的个数的变化规律, 习 试猜测第n个图形中有 n2 n 1 个点.
歌尼斯堡七桥猜想
18世纪在哥尼斯堡城(今俄罗斯加里宁格勒)的 普莱格尔河上有7座桥,将河中的两个岛和河 岸连结,如图所示。城中的居民经常沿河过桥 散步,于是提出了一个问题:能否一次走遍7 座桥,而每座桥只许通过一次,最后仍回到起多面体的 欧拉定理、四色问题等都是拓扑学发展史的重要 问题。拓扑学的英文名是Topology,直译是地志 学, 拓扑学是几何学的一个分支,但是这种几何 学又和通常的平面几何、立体几何不同。通常的 平面几何或立体几何研究的对象是点、线、面之 间的位置关系以及它们的度量性质。拓扑学对于 研究对象的长短、大小、面积、体积等度量性质 和数量关系都无关。
高中数学新课程(北师大版)复习教案-第五节-合情推理与演绎推理
第五节-合情推理与演绎推理高考要求:1.了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学中的作用。
2.了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用他们进行一些简单的推理。
3.了解要以推理和合情推理的联系和区别。
直接证明和间接证明:1.了解直接证明的两种基本方法:分析法、综合法;2.3.了解间接证明的方法:反证法;反证法的思考过程,特点。
归纳法:了解数学归纳法的原理,能用数学归纳法证明一些简单的问题。
知识体系:备考方略:推理与证明是新课标的新增内容,推理是中学数学的重点内容,是高考重点考察的内容之一,每年都有涉及推理的试题,题型为选择题、填空题、解答题都有。
难度为易、中、难。
推理与证明是数学的基本思维过程,也是人们学习和生活中经常使用的思维方法,。
本章的课程目标就是让学生结合自己学过的生活实例,了解合情推理和演绎推理的意义。
以及它们之间的联系和区别,并利用合情推理去猜测和发现一些新的结论,探索和提供解决一些问题的思路和方向,利用演绎推理区进行一些简单的推理,证明一些数学结论证明包括直接证明和间接证明,其中数学归纳法是将无穷的归纳过程,更具归纳原理转化为有限的特殊(直接和演绎推理相结合)的过程,要很好的掌握其原理和灵活运用。
对于类比问题可以说是创新要求的具体体现,最常见的就是二维问题和三维问题的类比,同结构问题的类比,比如圆锥曲线问题内的类比,数列内部的类比,等。
较少对照不同结构的类比问题。
关于归纳、猜想、证明是考得比较多的、比较成熟的题型了。
归纳、演绎和类比推理在数学中占有非常重要的地位,在高考中归纳、猜想、证明这一类问题是常考常新的。
这类问题综合了函数、方程、不等式、解析几何、立体几何等多个知识点,需要采用多种数学方法才能解决问题,如:函数与方程思想、划归思想、分类讨论思想、等,对学生的知识和能力要求较高,是对学生的思维品质和逻辑思维能力,表达能力的全面考察,可以弥补选择题和填空题等客观试题的不足,是提高区分度、增强选拔功能的重要题型,因此高考试题中,推理与证明问题在正在成为热点题型,应当引起我们的高度重视。
高中数学 第二章 推理与证明 2.合情推理课件7 b选修22b高二选修22数学课件
④ aba1b1a2b2 ④ aba 1 b 1 a 2 b 2 a 3 b 3
⑤a //b a 1 b 1 ,a 2 b 2 ( R )⑤a / /b a 1 b 1 ,a 2 b 2 ,a 3 b 3 ( R )
数V和棱数E,填表并探求它们之间的关系.
第十六页,共三十六页。
三、实践(shíjiàn)应用训练升华
【活动(huó dòng)二】:我们一起来推
理
多面体
面数F
顶点数V
三棱锥
三棱柱
四棱锥
四棱柱 五棱锥
五棱柱
正八面体
棱数E
足球有12块黑皮子,20块白皮子,黑皮是五边 形,白皮是六边形,有60个顶点,猜想(cāixiǎng): 足球有多少条棱?
第六页,共三十六页。
二、抽象思维形成概念
【活动一】:感受(gǎnshòu)归纳推理的魅力 请同学(tóng xué)展示歌德巴赫猜想过程
6=3+3
8=3+5
10=3+7 12=5+7 14=7+7
…… 40= +
猜想:
归纳推理可以 发现新事实、 获得新结论
陈氏定理
2np1p2p3
“任何一个不小于6的偶数都等于(děngyú)两个奇质数之和”
第九页,共三十六页。
人们仿照 鱼类 (fǎngzhào) 的外型和它们在水 中沉浮的原理,发明
了潜水艇.
第十页,共三十六页。
火星上是否存在生命?
地球
火星
行星、围绕太阳运行、绕 轴自转
有大气层
一年中有四季的变更
高中数学合情推理教案6
高中数学合情推理教案6
教学目标:
1. 熟练掌握合情推理相关概念;
2. 能够运用合情推理解决实际问题;
3. 提高学生的逻辑思维能力和分析问题的能力。
教学内容:
1. 合情推理的基本概念;
2. 含有合情推理的问题解决方法;
3. 合情推理在生活中的应用。
教学步骤:
1. 导入:通过生活中的实际例子引出合情推理的概念,引发学生的兴趣;
2. 讲解:介绍合情推理的定义和基本原理,引导学生理解合情推理的重要性;
3. 练习:提供一些含有合情推理的问题,让学生在小组中讨论解决方法,并进行答疑;
4. 拓展:引导学生通过课堂讨论,了解合情推理在科学研究和工程设计中的应用;
5. 总结:让学生总结今天学习到的知识点,并提出自己的看法和感想;
6. 作业:布置合情推理相关的练习题,巩固学生的知识。
教学资源:
1. PowerPoint课件;
2. 含有合情推理的题目练习册;
3. 实际生活中的例子和案例。
教学反馈:
1. 收集学生的作业,及时批改并指导学生改错;
2. 让学生互相交流,分享自己的解题思路和方法;
3. 给予学生积极的反馈和建议,鼓励他们继续学习合情推理。
高中数学选修《合情推理与演绎推理》教案
高中数学选修《合情推理与演绎推理》教案第一章:合情推理概述1.1 推理的定义与分类引导学生理解推理的定义介绍合情推理与演绎推理的区别与联系举例说明合情推理在数学中的应用1.2 合情推理的方法介绍归纳推理、类比推理、归纳猜想等合情推理方法通过具体例子讲解各种合情推理方法的步骤与特点引导学生掌握合情推理的方法并能够运用到实际问题中第二章:演绎推理的基本形式2.1 演绎推理的定义与特点引导学生理解演绎推理的定义与特点强调演绎推理的逻辑严密性与结论的必然性2.2 演绎推理的基本形式介绍演绎推理的三段论形式及其结构引导学生理解假言推理、选言推理等演绎推理的基本形式通过例题讲解各种演绎推理形式的应用与解题步骤第三章:演绎推理的应用3.1 演绎推理在数学证明中的应用引导学生理解演绎推理在数学证明中的重要性通过具体例子讲解演绎推理在证明题中的应用与步骤3.2 演绎推理在解决实际问题中的应用介绍演绎推理在解决实际问题中的应用范围与方法通过具体例子讲解演绎推理在实际问题解决中的步骤与技巧第四章:合情推理与演绎推理的综合应用4.1 合情推理与演绎推理的综合案例分析提供综合案例,要求学生运用合情推理与演绎推理的方法进行分析与解答引导学生理解合情推理与演绎推理在不同情境下的作用与重要性4.2 合情推理与演绎推理的综合练习提供综合练习题目,要求学生运用合情推理与演绎推理的方法进行解答引导学生通过练习巩固合情推理与演绎推理的知识与技能第五章:推理能力培养5.1 推理能力的培养方法介绍推理能力的培养方法与技巧引导学生掌握推理能力的培养方法并能够运用到实际学习中5.2 推理能力的学习与应用提供推理能力的学习与应用题目,要求学生进行练习与解答引导学生通过练习与应用提高自己的推理能力并能够运用到实际问题中第六章:数学归纳法与合情推理6.1 数学归纳法的概念与步骤介绍数学归纳法的定义与基本步骤通过具体例子讲解数学归纳法的应用与解题技巧6.2 数学归纳法在合情推理中的应用引导学生理解数学归纳法在合情推理中的作用与重要性提供合情推理题目,要求学生运用数学归纳法进行解答与证明第七章:演绎推理与数学证明7.1 演绎推理在数学证明中的作用强调演绎推理在数学证明中的重要性通过具体例子讲解演绎推理在数学证明中的应用与步骤7.2 演绎推理在证明题中的综合应用提供证明题目,要求学生运用演绎推理的方法进行解答与证明引导学生通过练习巩固演绎推理在数学证明中的知识与技能第八章:逻辑推理与演绎推理8.1 逻辑推理的基本概念介绍逻辑推理的定义与基本概念强调逻辑推理在演绎推理中的重要性8.2 逻辑推理在演绎推理中的应用提供演绎推理题目,要求学生运用逻辑推理的方法进行解答与证明引导学生通过练习与应用提高逻辑推理在演绎推理中的能力第九章:演绎推理与问题解决9.1 演绎推理在问题解决中的作用强调演绎推理在问题解决中的重要性通过具体例子讲解演绎推理在问题解决中的应用与步骤9.2 演绎推理在实际问题解决中的综合应用提供实际问题题目,要求学生运用演绎推理的方法进行解答与解决引导学生通过练习与应用提高演绎推理在问题解决中的能力第十章:总结与提高10.1 合情推理与演绎推理的总结对本课程的合情推理与演绎推理进行总结与回顾强调合情推理与演绎推理在数学学习与问题解决中的重要性10.2 推理能力的进一步提高提供推理能力提高的练习与题目,要求学生进行解答与实践引导学生通过练习与实践不断提高自己的推理能力,并能够运用到实际学习中。
高中数学合情推理类比推理资料
我古代的作文6篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作计划、工作总结、述职报告、合同协议、演讲致辞、条据文书、心得体会、策划方案、教学资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work plans, work summaries, job reports, contract agreements, speeches, documents, insights, planning plans, teaching materials, other sample essays, and more. If you want to learn about different sample formats and writing methods, please stay tuned!我古代的作文6篇作文质量的评判应该看重内容的深度和观点的独特性,而不是片面地以篇幅的长短作为评判标准,写作文可以让我们学会如何运用比喻和象征等修辞手法,使我们的语言更具有形象和生动性,本店铺今天就为您带来了我古代的作文6篇,相信一定会对你有所帮助。
数学:2.1.1《合情推理与演绎推理-合情推理》PPT课件
哥德巴赫猜想(Goldbach Conjecture)
在陈景润之前,关於偶数可表示为 s个质数的乘积 与t个质数的乘积之和( 简称“s + t ”问题)之进展情况如下: 1920年,挪威的布朗(Brun)证明了 “9 + 9 ”。 1924年,德国的拉特马赫(Rademacher)证明了“7 + 7 ”。 1932年,英国的埃斯特曼(Estermann)证明了 “6 + 6 ”。 1937年,意大利的蕾西(Ricei)先後证明了“5 + 7 ”, “4 + 9 ”, “3 + 15 ”和“2 + 366 ”。 1938年,苏联的布赫 夕太勃(Byxwrao)证明了“5 + 5 ”。 1940年,苏联的布赫 夕太勃(Byxwrao)证明了 “4 + 4 ”。 1948年,匈牙利的瑞尼(Renyi)证明了“1 + c ”,其中c是一很大的自然 数。 1956年,中国的王元证明了 “3 + 4 ”。 1957年,中国的王元先後证明了 “3 + 3 ”和 “2 + 3 ”。 1962年,中国的潘承洞和苏联的巴尔巴恩(BapoaH)证明了 “1 + 5 ”, 中 国的王元证明了“1 + 4 ”。 1965年,苏联的布赫 夕太勃(Byxwrao)和小维诺格拉多夫(BHHopappB),及 意大利的朋比利(Bombieri)证明了“1 + 3 ”。 1966年,中国的陈景润证明了 “1 + 2 ”。 最终会由谁攻克 “1 + 1 ”这个难题呢?现在还没法预测。
即:偶数=奇质数+奇质数
第五页,编辑于星期日:十二点 一分。
哥德巴赫猜想(Goldbach Conjecture)
高中数学合情推理与演绎推理
合情推理是从已知的 结论推测未知的结论, 发现与猜想的结论都 要经过进一步严格证 明.
演绎推理是由一般到 特殊的推理,它常用 来证明和推理数学问 题,注意推理过程的 严密性,书写格式的 规范性.
归纳推理、类比推理、演绎推理等问题是 高考的热点,归纳、类比推理大多数出现 在填空题中,为中、低档题.演绎推理大 多数出现在解答题中,为中、高档题 目.在知识的交汇点处命题,背景新颖的 创新问题,常考常新,值得重视.
34.
新课标 ·文科数学(安徽专用)
自 主
(2)归纳三角恒等式sin2α+cos2(30°-α)-sin
落 实 ·
cos(30°-α)=34.
固
基
证明如下:
础
sin2α+cos2(30°-α)-sin αcos(30°-α)
高
α考 体 验
· 明 考 情
=
1-cos 2
2α +
1+cos(620°-2α) -sin
【思路点拨】
从特殊②计算结果为
3 4
,观察每个三角
函数式中三角函数名称与角的变化规律,归纳出一般性结
论;然后利根用据演(1绎)的推计理算进结行果证,将明该.同学的发现推
广为三角恒等式,并证明你的结论.
【尝试解答】 (1)选择②式,计算如下:
sin215°+cos215°+sin 15°cos 15°=1-12sin 30°=
01
归纳推理和类比推理的共同特点和区别是什么?
02
【提示】 共同点:两种推理的结论都有待于证明.
03
不同点:归纳推理是由特殊到一般的推理,类比推理是由特殊到特殊的推理.
二.演绎推理所获得的结论一定可靠吗?
【提示】 演绎推理是由一般性的命题推出特殊性命 题的一种推理模式,是一种必然性推理.演绎推理的 前提与结论之间有蕴含关系,因而,只要前提是真实 的,推理的形式是正确的,那么结论必定是真实的, 但是错误的前提可能导致错误的结论.
2.1.1合情推理
第一个芒果是 甜的 第二个芒果是 甜的 第三个芒果是 甜的
这个果园 的芒果都 是甜的
35
例1:已知 ABC 三边长为a , b, c , 面积为S,则
2S ABC内切圆半径r= ___________ . abc
分析:面积法
1 由2r(a+b+c)=S 2S r= a+b+c
36
变式: 已知 ABC 三边长为a , b, c , 面积为S,则 2S ABC内切圆半径r= . abc 根据类比推理的方法, 若一个四面体A-BCD四个面的 A 面积分别为S1 , S2 , S3 , S4 , 体积为V ,
26
在形状上和概念上,都有类似的地方,即具有完美的对称性, 都是到定点的距离等于定长的点的集合。
圆的性质
圆的周长 C 2R 圆的面积 S =πR 圆心与弦(非直径)中点的连线 垂直于弦 与圆心距离相等的两弦相等
2
球的性质
球的表面积 S = 4πR 2
球的体积 V = πR 3
球心与不过球心的截面(圆面) 的圆心的连线垂直于截面
6=3+3, 8=3+5, 10=5+5, „„ 1000=29+971, 1002=139+863, „„
猜想任何一个不小于6的 偶数都等于两个奇质数的和.
4
归纳推理的过程: 哥德巴赫猜想的过程:
具体的材料 观察分析 猜想出一般性的结论
5
由某类事物的部分对象具有某些特征, 推出该类事物的 全部对象都具有这些特征 的推理,或者由个别事实概括出 一般结论 的推理,称为归纳推理(简称归纳).
温度适合生物的生存
有生命存在
可能有生命存在
高中数学选修2《合情推理与演绎推理》课件
【推理】
推理是根据一个或几个已知的判断来确定一个新 的判断的思维过程. 合情推理具有猜测和发现新结论、探索和提供解 决问题的思路和方向的作用; 演绎推理则具有证明结 论, 整理和建构知识体系的作用.
合情推理又分归纳推理与类比推理.
问题1. 观察以下几个一元二次方程的根与常数 项, 你有什么发现? 5x2+2x+3=0, 5x2+2x-3=0, x2+x+1=0, x2+x-1=0, 2x2-3x+4=0, 2x2-3x-4=0. 问题2. 观察下面几个偶数的分解, 你有什么发现? 6=3+3, 8=3+5, 10=5+5, 12=5+7, 14=7+7, 16=5+11. 方程 5x2+2x+3=0, x2+x+1=0, 2x2-3x+4=0 无实根; 方程 5x2+2x-3=0, x2+x-1=0, 2x2-3x-4=0 有二不 等实根. 由问题 1 猜测: 一元二次方程中, 常数项为正时, 方程无实根; 常数项为负时, 方程有两不等实根.
归纳推理可以发现新事实, 获得新结论.
【课时小结】
2. 归纳推理的基本思路
(1) 在部分对象中寻找相同点. 如问题 1, 2. (2) 在部分对象中分析运行结果的相同点. 如例1, 例4. (3) 在部分对象中寻找相关关系. 如练习第2题.
习题 2.1 A组 第 1、2、3 题.
习题 2.1 A 组 2an 1. 在数列{an}中, a1=1, an+1 = (nN*), 试 2 + an 猜想这个数列的通项公式. 解: a1=1. 2a1 21 2 = = . a2 = 2 + a1 2 + 1 3 2 2 2a2 1 3 = . = a3 = ∴猜想: 2 2 2 + a2 2 + 3 an = 2 . n+1 1 2 2a3 2 2 = . = a4 = 2 + a3 2 + 1 5 2 2 2 1 2 2 观察前 4 项: a1 = 1 = , a2 = , a3 = = , a4 = . 2 3 2 4 5
最新人教版高中数学选修2-2第二章《合情推理与演绎推理》教材梳理
庖丁巧解牛知识²巧学一、合情推理1.归纳推理由某类事件的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者是由个别事实概括出一般结论的推理,称为归纳推理(简称归纳).要点提示①归纳推理的前提是已知的几个特殊现象,归纳所得的结论是尚属于未知的一般现象,该结论超越了前提所包容的范围.②由归纳推理得到的结论具有猜测的性质,结论是否真实,还需经过逻辑证明和实践检验.因此,它不能作为数学证明的工具.③归纳推理是一种具有创造性的推理,通过归纳推理得到的猜想,可以作为进一步研究的起点,帮助人们发现问题和提出问题.知识拓展归纳推理的步骤:①通过观察个别情况发现某些相同的性质;②从已知的相同性质中推出一个明确表述的一般性命题.深化升华①归纳推理的实质是由部分到整体、由个别到一般.②应用归纳推理获得的新结论,一般只能作为猜想,虽然猜想是否正确还有待严格的证明,但是这个猜想可以为我们的研究提供一种方向.2.类比推理由两类对象具有某些类似的特征和已知其中一类对象的某些特征,推出另一类对象也具有这些特征的推理称为类比推理(简称类比).方法点拨①类比推理实质是由特殊到特殊的推理.②运用类比推理常常要先寻找合适的类比对象,我们可以从不同角度出发确定类比对象,基本原则是根据当前的实际,选择适当的类比对象.知识拓展类比推理的一般步骤:①找出两类事物之间的相似性或一致性;②用一类事物的性质去推测另一类事物的性质,得出一个明确的命题.3.合情推理归纳推理和类比推理都是根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的推理,我们把它们统称为合情推理.深化升华①合情推理是指“合乎情理”的推理,得到一个新结论之前,合情推理常常能帮助我们猜想和发现结论;证明一个数学结论之前,合情推理常常能为我们提供证明的思想和方向.②一般来说,由合情推理所获得的结论,仅仅是一种猜想,未必可靠,例如费马猜想就被大数学家欧拉推翻了.③合情推理的过程概括为:二、演绎推理1.演绎推理从一般性原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理,演绎推理又称为逻辑推理.深化升华①演绎推理是由一般到特殊的推理.②数学中的证明主要是通过演绎推理来进行的.2.三段论推理(1)“三段论”是演绎推理的一般模式,包括:①大前提——已知的一般原理;②小前提——所研究的特殊情况;③结论——根据一般原理,对特殊情况作出的判断.(2)“三段论”可以表示为:大前提:M是P小前提:S是M结论:S是P.(3)公理化方法:尽可能少地选择原始概念和一组不加证明的原始命题(公理、公设),以此为出发点,应用演绎推理,推出尽可能多的结论的方法,称为公理法.公理化方法的精髓是:利用尽可能少的前提,推出尽可能多的结论.深化升华①利用集合知识说明“三段论”:若集合M的所有元素都有性质P,S是M的一个子集,那么S中所有元素也都具有性质P.②应用三段论解决问题时,首先应该明确什么是大前提和小前提,但为了叙述简洁,如果大前提是显然的,则可以省略.知识拓展假言推理①定义:如果一个推理规则能用符号表示为“如果p q,p真,则q真”,那么这种推理规则叫做假言推理.假言推理的本质是,通过验证结论的充分条件为真,判断结论为真.②假言推理的步骤:确定命题p能够推出命题q;判断命题p是否为真,如果p为真,则q为真.知识拓展关系推理①定义:如果一个推理规则可以用符号表示为“如果a≥b,b≥c,则a≥c”,那么这种推理规则叫做关系推理.②关系推理的步骤:确定原式a和式子b存在的关系a≥b;论证式子b和c存在关系b≥c,从而推出a≥c.知识拓展完全归纳推理把所有情况都考虑在内的演绎推理规则叫做完全归纳推理.例如,对所有的n(3≤n<+∞),证明n边形的内角和为(n-2)π就是完全归纳推理.3.合情推理与演绎推理合情推理与演绎推理是常见的两种推理方式.从推理形式上看,合情推理是由局部到整体、个别到一般的推理(归纳),或是由特殊到特殊的推理(类比);而演绎推理是由一般到特殊的推理.从推理所得的结论来看,合情推理的结论不一定正确,有待于进一步证明;演绎推理在大前提、小前提和推理形式都正确的情况下,得到的结论一定正确.方法点拨在数学中,证明命题的正确性,都是用演绎推理,而合情推理不能用作证明. 问题²探究问题1 类比平面向量和空间向量,列出它们相似(相同)的性质.思路:从平面向量和空间向量的定义、运算法则、运算律、数量积、共线,共面以及向量基本定理等几个方面来进行类比.探究:(1)从定义的角度考虑:平面向量:平面内既有大小又有方向的向量;空间向量:空间内既有大小又有方向的向量. (2)从运算法则的角度考虑:两个平面向量相加的三角形法则和平行四边形法则在空间中仍成立.始点相同的三个不共面的向量之和,等于以这三个向量为棱的平行六面体的以公共始点为始点的对角线所表示的向量,这是平面向量加法的平行四边形法则在空间的推广.(3)从运算律、数量积的角度考虑,平面向量和空间向量是相同的.运算律:①a+b=b+a(加法交换律);②(a+b)+c=a+(b+c)(加法结合律);③λ(a+b)=λa+λb(数乘分配律).数量积的性质:①a²e=|a|cos〈a,e〉(e是单位向量);②a⊥b a²b=0;③|a|2=a²a.数量积的运算律:①(λa)²b=λ(a²b);②a²b=b²a(交换律);③a²(b+c)=a²b+a²c(分配律).(4)从向量共线,共面的角度考虑:共线向量定理:向量b与a(a≠0)共线的充要条件是:有且只有一个实数λ,使得b=λa.共面向量定理:如果两个向量a、b不共线,则向量p与向量a、b共面的充要条件是存在实数对x,y,使p=x a+y b.(5)从向量基本定理的角度考虑:平面向量基本定理:如果e1,e2是同一平面内的两个不共线的向量,那么对于这一平面内任一向量a,有且只有一对实数λ1,λ2,使得a=λ1e1+λ2e2,其中e1,e2表示平面向量的一组基底. 空间向量基本定理:如果三个向量a、b、c不共面,那么对于空间任一向量p,存在一个唯一的有序实数组x,y,z,使p=x a+y b+z c,其中{a,b,c}叫做空间的一个基底,a、b、c都叫基向量. 问题2 将三角形与四面体进行类比,你能想出几种类比呢?思路:可以取三角形为类比源,由三角形的已知知识预测和发现关于四面体的某些新命题. 探究:第一,三角形的内角平分线交于一点,这一点是三角形的内切圆的圆心.于是得到类比猜想:四面体各个面所成二面角的平分面交于一点,该点为四面体内切球的球心.第二,三角形的三条中线交于一点,这一点是三角形的重心,并分各条中线成2∶1两部分.由此得到类比猜想:四面体的四条中线(顶点与相对面三角形重心的连线)交于一点,该点是四面体的重心,且分各中线成2∶1两部分.第三,直角三角形的三边之间有关系c2=a2+b2.由此猜想:三个侧面两两垂直的四面体的各面面积之间有关系D2=A2+B2+C2.问题3 从A地出发到河边饮完马再到B地去,在河边哪个地方饮马可使路途最短?如图2-1-1所示.图2-1-1思路:先作点A关于MN的对称点A′,连结BA′,交MN于P,则P点即为所求.探究:用演绎法证明如下:如图2-1-1所示,在MN上取一点P′(异于点P),则AP ′=P ′A ′,AP=PA ′,从而AP ′+P ′B=A ′P ′+P ′B>A ′P+PB=AP+PB. 由此可知:A 到B 经P 点距离最短. 典题²热题例1设平面内有n 条直线(n ≥3),其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用f(n)表示这n 条直线交点的个数,则f(4)=___________;当n>4时,f(n)=___________. 思路解析:f(2)=0,f(4)-f(3)=3,f(5)-f(4)=4,…, f(n)-f(n-1)=n-1.累加得f(n)=f(2)+2+3+4+…+n-1=2)]1(2)[2(-+-n n =21(n+1)(n-2).答案:521(n+1)(n-2) 深化升华 本小题考查观察、分析、归纳推理、累加求通项等知识,是一个很灵活的题目. 例2在数列{a n }中,a 1=1,a n+1=nn a a +22(n ∈N *),猜想这个数列的通项公式.思路分析:根据已知条件和递推关系,先求出数列的前几项.然后总结归纳其中的规律,写出通项.解:{a n }中,a 1=1,a 2=322211=+a a ,a 3=,42212222==+a a a 4=522233=+a a ,…. ∴{a n }的通项公式为a n =12+n . 证明:∵a 1=1,a n+1=211221122+=+=+∴+n n n n n n a a a a a a ∴21111=-+n n a a . 即数列{n a 1}是以11a =1为首项,公差为21的等差数列.na 1=1+21(n-1)=21(n+1),a n =12+n .例3已知在△ABC 中,不等式π9111≥∠+∠+∠C B A ,在四边形ABCD 中,不等式π2161111≥∠+∠+∠+∠D C B A 成立, 在五边形ABCDE 中,不等式π32511111≥∠+∠+∠+∠+∠E D C B A ,猜想在n 边形A 1A 2…A n 中,有怎样的不等式成立? 思路分析:根据已知特殊的值: πππ3252169、、,…,总结归纳出一般性的规律:π)2(2-n n (n ≥3).s解:在n 边形A 1A 2…A n 中,π)2(1111121321-≥∠+∠++∠+∠+∠-n n A A A A A n n (n ≥3). 拓展延伸 平面内有n 条直线,其中任何两条都不平行,任何三条不过同一点,试归纳它们的交点的个数.解:n=2时,交点的个数f(2)=1. n=3时,交点的个数f(3)=3. n=4时,交点的个数f(4)=6. n=5时,交点的个数f(5)=10. 猜想归纳:f(n)=21n(n-1)(n ≥2). 深化升华 运用归纳推理可以去发现一些新的几何命题,再运用相关的方法证明它的真假,这是数学发明,创新的一条途径.例4已知在Rt △ABC 中,若∠C=90°,则cos 2A+cos 2B=1;在立体几何中,给出四面体性质的猜想.思路分析:考虑到平面中的图形是直角三角形,所以我们在空间选取有3个面两两垂直的直四面体P —A ′B ′C ′,且三个面分别与面A ′B ′C ′所成的二面角为α、β、γ.解:如图212所示,在Rt △ABC 中,cos 2A+cos 2B=(c b )2+2222)(cb ac a +==1. 于是把结论类比到四面体P —A ′B ′C ′中,我们猜想,三棱锥P-A ′B ′C ′中,若三个侧面PA ′B ′,PB ′C ′,PC ′A ′两两互相垂直,且分别与底面所成的角为α、β、γ,则cos 2α+cos 2β+cos 2γ=1.图2-1-2深化升华 类比推理应从具体问题出发,通过观察、分析、联想进行对比,归纳,提出猜想.拓展延伸 在Rt △ABC 中,若∠C=90°,AC=b,BC=a,则△ABC 的外接圆半径r=222b a +.把上面的结论推广到空间,写出相似的结论.解:我们同样取空间有三条侧棱两两垂直的四面体A —BCD,且AB=a,AC=b,AD=c,则此三棱锥外接球的半径R=2222c b a ++.例5设a 1,a 2,a 3,…,a n ,…均为自然数,称a 1++++43211a a a 为无穷连分数,例如2=(2-1)+1=1+++++=+2121211121,这里a 1=1,a n =2(n ∈N *,n ≥2).请你与上式类似地将3写成无穷连分数,并写出a n .思路分析:本题给出了无穷连分数的定义以及范例,依定义仿范例,即可解决问题. 解:3=1+(3-1)=1+13111121311121311132+++=-++=++=++++++=-+++=211121111)13(21111同时有a 1=a 2n =1,a 2n+1=2(n ∈N *).深化升华 对有些提供了范例的信息迁移型创新题,解答时可根据所给的信息与所求的问题的相似性,运用类比推理,使问题得以解决,另外在解有些信息迁移型创新题时,也可类比旧的问题的解决方法,依照它解决新信息中的问题. 例6试将下列演绎推理写成三段论的形式.(1)太阳系的大行星都以椭圆形轨道绕太阳运行;(2)所有导体通电时发热,铁是导体,所以铁通电时发热;(3)一次函数是单调函数,函数y=2x-1是一次函数,所以y=2x-1是单调函数;(4)等差数列的通项公式具有形式a n =pn+q(p,q 是常数),数列1,2,3,…,n 是等差数列,所以数列1,2,3,…,n 的通项具有a n =pn+q 的形式.思路分析:分清三段论的大前提、小前提、结论是解题的关键. 解:(1)大前提:太阳系的大行星都以椭圆形轨道绕太阳运行; 小前提:冥王星是太阳系里的大行星; 结论:冥王星以椭圆形轨道绕太阳运行. (2)大前提:所有导体通电发热; 小前提:铁是导体; 结论:铁通电时发热.(3)大前提:一次函数是单调函数; 小前提:函数y=2x-1是一次函数; 结论:y=2x-1是单调函数.(4)大前提:等差数列的通项公式具有形式a n =pn+q; 小前提:数列1,2,3,…,n 是等差数列;结论:数列1,2,3,…,n 的通项具有a n =pn+q 的形式.深化升华 分清楚“三段论”中的大前提、小前提、结论,要抓住它们的定义,即大前提——已知的一般原理;小前提——所研究的特殊情况;结论——根据一般原理,对特殊情况作出判断.例7用三段论证明:x 2+3>3x.思路分析:证明本例所依据的是:a-b>0⇔a>b.小前提是证明:(x 2+3)-3x>0,这是证明本例的关键.解:∵(x 2+3)-3x=(x-23)2+43≥43>0, ∴根据“三段论”,得x 2+3>3x.深化升华 由于本例所依据的大前提a-b>0⇔a>b 很明显,因此在证明过程中往往将其省略掉了.例8求证函数y=1212+-x x 是奇函数,且在定义域上是增函数.思路分析:本题在证明过程中使用了三段论推理,假言推理等推理规则.解:y=1221122)12(+-=+-+xx x 所以f(x)的定义域为x ∈R . f(-x)+f(x)=(1-122+-x )+(1-122+x )=2-(122+x +122+-x) =2-(1222121+∙++x x x )=2-12)12(2++xx =2-2=0, 即f(-x)=-f(x),所以f(x)是奇函数.任取x 1,x 2∈R ,且x 1<x 2. 则f(x 1)-f(x 2)=(1-1221+x )-(1-1222+x )=2(1222+x -1221+x ) =2²)12)(12(221221++-x x x x . 由于x 1<x 2,从而022,222121<-<x x x x ,所以f(x 1)<f(x 2),故f(x)为增函数.例9(2005全国高考 )设f(x)=sin(2x+φ)(-π<φ<0)的图象的一条对称轴是直线x=8π. (1)求φ;(2)求y=f(x)的单调增区间;(3)证明直线5x-2y+c=0与函数y=f(x)的图象不相切. (1)解:∵x=8π是函数y=f(x)的图象的对称轴,∴sin(2³8π+φ)=±1. ∴4π+φ=k π+2π,k ∈Z . ∵-π<φ<0,∴φ=43π-.(2)解:由(1)知φ=43π-,因此y=sin(2x-43π-).由题意得2k π-2π≤2x 43π-≤2k π+2π,k ∈Z .∴函数y=sin(2x-43π-)的单调增区间为[k π+8π,k π+85π],k ∈Z .(3)证明:∵|y ′|=|[sin(2x-43π-)]′|=|2cos(2x-4π)|≤2,∴曲线y=f(x)的切线斜率的取值范围为[-2,2]. 而直线5x-2y+c=0的斜率为25>2, ∴直线5x-2y+c=0与函数y=sin(2x-43π-)的图象不相切. 深化升华 第三问考查直线与三角函数图象的位置关系,很有新意.把函数值域、导数、斜率有机地联系在一起,是一道灵活的好题.。
高中数学 2.1.1《合情推理与演绎推理》课件 新人教选修2-2
B c2=a2+b2
a
c
s1 o s2
s3
Cb
A
B
C
猜想: S2△ABC =S2△AOB+S2△AOC+S2△BOC
第十二页,共20页。
例3:(2001年上海)已知两个圆①x2+y2=1:与② x2+(y-3)2=1,则由①式减去②式可得上述两圆 的对称轴方程.将上述命题在曲线仍然为圆 的情况下加以推广,即要求得到一个更一般 的命题,而已知命题应成为所推广命题的一 个特例,推广的命题为----设--圆---的---方--程---为---①-------(b-x≠---a-d-)-)2-+,-(则-y---由-b-)①-2-=-r式-2-与减---②去--(②-x---式-c-)可-2-+-得(--y上---d述-)-2-两=-r-圆-2-(-的-a-≠对---称c-或-轴-----
第十九页,共20页。
谢谢大家
2023/5/16
生产计划部
第二十页,共20页。
统称为合情推理。
合情推理常常能为我们提供证明的思路和方向
第十四页,共20页。
例:如图有三根针和套在一根针上的若干金属片. 按下
列规则,把金属片从一根针上全部移到另一根针上.
1.每次只能移动1个金属片;
2.较
大的金属片不能放在较小的金属片上面.试推测;把n个金属
片从1号针移到3号针,最少需要移动多少次?
归纳是立足于观察、经验、实验和对有限资料分析
的基础上.提出带有规律性的结论.
需证明
第三页,共20页。
练:数一数图中的凸多面体的面数F、顶点数V
和棱数E,然后用归纳法推理得出它们之间 的关系.
高中数学总结归纳 高考中的合情推理
高考中的合情推理合情推理是根据已有的事实和正确的结论(包括定义、公理、定理等)、实验和实践的结果,以及个人的经验和直觉等推测某些结果的推理过程,其主要形式有归纳和类比。
一、归纳推理例1、在德国不莱梅举行的第48届世乒赛期间,某商场橱窗里用同样的乒乓球堆成若干准“正三棱锥”形的展品,其中第一堆只有一层,就一个乒乓球;第2、3、4、…堆最底层(第一层)分别按图4所示方式固定摆放.从第一层开始,每层的小球自然垒放在下一层之上,第n 堆第n 层就放一个乒乓球,以)(n f 表示第n 堆的乒乓球总数,则=)3(f ;=)(n f (答案用n 表示)分析:解决本题的关键之一是找出相邻两项的关系,即下一堆的个数是上一堆的个数加上其第一层的个数;其次是求出第一层的通项公式。
解:f (1)=1,观察图象可知f (2)=4,f (3)=10,f (4)=20,下一堆的个数是上一堆的个数加上其第一层的个数,而第一层的个数满足1,3,6,10,……,通项公式是2)1(+n n ,所以f (n )=f (n -1)+2)1(+n n , 所以有:f (2)-f (1)=2)12(2+⨯ f (3)-f (2)=2)13(3+⨯ f (4)-f (3)=2)14(4+⨯ ……………………………………f (n )-f (n -1)=2)1(+n n 以上各式相加得:f (n )=f (1)+24433222222n n ++++++++Λ =2)4321()4321(22222n n +++++++++++ΛΛ=22)1(6)12)(1(++++n n n n n =6)2)(1(++n n n 所以应该填:10;6)2)(1(++n n n 点评:求f (n )的通项公式时运用累差法思想求解。
可见高考题多数依据课本知识、思想或方法的设计题目。
解决问题的关键是找到相邻两项的关系。
二、类比推理(类比)例2、半径为r 的圆的面积2)(r r S ⋅=π,周长r r C ⋅=π2)(,若将r 看作),0(+∞上的变量,则r r ⋅=⋅ππ2)'(2, ①,①式可用语言叙述为:圆的面积函数的导数等于圆的周长函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
回顾小结
1.推理:
从一个或几个已知命题得出另一个新命题 的思维过程称为推理.
2.归纳推理: 即由特殊到一般;由部分到整体
实验、观察 概括、推广 猜测一般性结论
【引例1】 观察下列算式
及右图:
1 + 3 = 4 = 22 1 + 3 + 5 = 9 = 32 1 + 3 + 5 + 7 = 16 = 42 1 + 3 + 5 + 7 + 9 = 25 = 52
合情推理
--归纳推理
教学目标
1.了解归纳推理的概念及其特点;
2.了解归纳推理的过程;
3.能正确地运用归纳推理进行简单 的推理。
歌德巴赫猜想: “任何一个不小于6的偶数都等于两个奇 质数之和”
即:偶数=奇质数+奇质数
从而简称 1+1
前提:
6=3+3, 8=3+5, 10=5+5, 12=5+7, 14=7+7, 16=5+11, 18 =7+11,
你能得出怎样的结论? 1 + 3 + 5 + 7 + 9 + +(2n – 1)=n2
定义:
由某类事物的部分对象具有某种特征,推出该类事物 的全部对象都具有这些特征的推理,或者由个别事实 概括出一般结论的推理,称为归纳推理(简称归纳)
特点:
(1)由部分到整体、由个别到一般 (2)推理要在观察和实验的基础上进行 (3)能够发现新事实、获得新结论
小结 ☞
归纳推理和类比推理的过程
从具体问 题出发
观察、分析、 比较、联想
归纳推理
合情推理 类比推理
归纳、 类比
提出 猜想
通俗地说,合情推理是指“合乎情理”的推理.
例题4:请同学们看课本P26 (3分钟)
B
P
S1
பைடு நூலகம்
S2 D
S3
F
C
AE
传说在古老的印度有一座神庙,神庙中有三根针和套在一 根针上的64个圆环.古印度的天神指示他的僧侣们按下列规则, 把圆环从一根针上全部移到另一根针上,第三根针起“过渡” 的作用.
有生命存在
大部分时间的温度适合地 球上某些已知生物的生存
可能有生命存在
火星与地球类比的思维过程:
存在类似特征
地球
火星
地球上有生命存在
猜测火星上也可能有生命存在
由两类对象具有某些类似特征和其中 一类对象的某些已知特征,推出另一类对 象也具有这些特征的推理称为类比推理.
我们已经学习过“等差数列”与“等比数 列”.
20=7+13 …, 1000=29+971 1002=139+863,
…
结论:
“任何不小于6的偶数都可以 表示为两个素数之和”
----歌德巴赫猜想
哥德巴赫猜想 (Goldbach Conjecture)
目前最佳的结果是中国数学家陈景润於 1966年证明的,称为陈氏定理 .“任何充份大 的偶数都是一个质数与一个自然数之和,而後 者仅仅是两个质数的乘积。” 通常都简称这 个结果为大偶数可表示为 “1 + 2 ”的形式。
(n
1)
1,
n1 n2
n=4时, f (4) f (3) 1 f (3) 15
2
1
3
n=1时, f (1) 1 n=2时, f (2) 3 n=3时, f (3) 7 f (2) 1 f (2) n=4时, f (4) 15 f (3) 1 f (3)
归纳: f (n) 2n 1
f
(n)
1, 2 f
13 1 13 23 9 32 (1 2)2
13 23 33 36 62 (1 2 3)2 13 23 33 43 100
13 23 33 L n3 (1 2 3 L n)2
( n(n 1))2 2
归纳推理的一般步骤:
⑴ 对有限的资料进行观察、分析、归纳 整理; ⑵ 提出带有规律性的结论,即猜想;
1.每次只能移动1个圆环;
2.较大的圆环不能放在较小的圆环上面. 如果有一天,僧侣们将这64个圆环全部移到另一根针上, 那么世界末日就来临了.
请你试着推测:把 n个圆环从1号针移到3号针,最少需要移
动多少次?
2
1
3
n=1时, f (1) 1
2
1
3
n=1时, f (1) 1 n=2时, f (2) 3
你是否想过“等和数列”、“等积数 列” ?
从第二项起,每一项与其前一项的 差等于一个常数的数列是等差数列.
类 推
从第二项起,每一项与其前一项的 和等于一个常数的数列是等和数列.
圆的概念和性质
球的类似概念和性质
圆心与弦(非直径)中点连线垂直 球心与截面圆(不经过球心的截面圆)
于弦.
圆心连线垂直于截面圆.
实验、观察
概括、推广
猜测一般 性结论
⑴ 以下归纳推理的结论正确吗?
2 费马猜想:任何形如 2+n 1(n∈N*)的数都是质数.
反例:
在创造发明中, 人们经常应用 类比
地球
火星
行星、围绕太阳运行、绕 行星、围绕太阳运行、绕
轴自转
轴自转
有大气层
有大气层
一年中有四季的变更
一年中有四季的变更
温度适合生物的生存
2
1
3
n=1时, f (1) 1 n=2时, f (2) 3 n=3时, f (3) 7
2
1
3
n=1时, f (1) 1 n=2时, f (2) 3
n=3时, f (3) 3 13
f (2) 1 f (2)
2
1
3
n=1时, f (1) 1 n=2时, f (2) 3 n=3时, f (3) 7 f (2) 1 f (2)
例1、已知数列{an}中,a1=1,且
an+1=
1
a
n
a
n
(n=1,2,…)
试归纳出这个数列的通项公式。
解:由递推公式
a n1
an 1 an
及a1=1 将n=1、2、3、代入可得
1
1
1
1
a2 2 , a3 3 , a4 4 , a5 5
归纳得a n
1 n
练习、
1、观察下列式子,归纳结论:
与圆心距离相等的两弦相等;与圆 与球心距离相等的两截面圆面
心距离不等的两弦不等,距圆心较 积相等;与球心距离不等的两
近的弦较长.
截面圆面积不等,距球心较近
的截面圆面积较大.
以点P(x0,y0)为圆心,r为半径的圆 的方程为(x-x0)2+(y-y0)2=r2.
以点P(x0,y0,z0)为球心,r为半径 的球的方程为 (x-x0)2+(y-y0)2+(z-z0)2=r2.
类比推理的结论不一定成立
1)找出两事物的相似性和一致性。2)用一 类事物的性质去推测另一类事物的性质得出 明确的命题
归纳推理
由部分到整体、特殊到一般的推理; 以观察分析为基础,推测新的结论; 具有发现的功能; 结论不一定成立.
类比推理
由特殊到特殊的推理; 以旧的知识为基础,推测新的结果; 具有发现的功能; 结论不一定成立.
试根据等式的性质猜想不等式的性质. 等式的性质:
(1) a b a c b c ; (2) a b ac bc ; (3) a b a2 b2;等等.
类比推理的结论不一定成立.
类比推理 类比推理 注意
一般步骤
由特殊到特殊的推理
以旧的知识为基础,推测新 的结果,具有发现的功能