专题24解三角形中的最值、范围问题(解析版)
解三角形中的最值、范围问题
Җ㊀山东㊀冯海侠㊀㊀在新高考形势下, 解三角形 应该会出现在第17题或第18题的位置,一般都属于中等或中等偏下难度的题目,是学生必拿分的题.高考对正弦定理和余弦定理的考查较为灵活,题型多变㊁综合性强,有利于培养学生的创新意识.这类问题简单,但部分学生却拿不到满分,尤其是求最值或范围的问题.下面笔者以两道高考题为例来归纳这类问题的解答方法及技巧,希望能帮助读者突破瓶颈,提高学习效率.例1㊀(2019年全国卷Ⅲ理18)әA B C 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a s i nA +C2=b s i n A .(1)求B ;(2)若әA B C 为锐角三角形,且c =1,求әA B C 面积的取值范围.(1)由a s i n A +C2=b s i n A ,可得s i n A s i n π-B 2=s i n B s i n A ,即s i n A c o s B2=s i n B s i n A ,因为s i n A ʂ0,所以c o s B 2=s i n B =2s i n B 2c o s B2.又因为B ɪ(0,π),所以B 2ɪ(0,π2),则c o s B 2ʂ0,所以s i n B 2=12,则B 2=π6,即B =π3.(2)由c =1,a s i n A =c s i n C,可得a =c s i n A s i n C =s i n A s i n C.所以S әA B C =12a c s i n B =12ˑ32a =34a =34s i n A s i n C =34s i n (B +C )s i n C=34ˑ32c o s C +12s i n Cs i n C =38+38ˑ1t a n C.又因为әA B C 是锐角三角形,故0<C <π2且0<2π3-C <π2,所以π6<C <π2,则t a n C >33,即0<1t a n C <3,所以S әA B C ɪ(38,32).例2㊀(2013年全国卷Ⅱ理17)әA B C 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a =b c o s C +c s i n B .(1)求B ;(2)若b =2,求әA B C 面积的最大值.(1)由已知条件及正弦定理得s i n A =s i n B c o s C +s i n C s i n B .①又因为A =π-(B +C ),故s i n A =s i n (B +C )=s i n B c o s C +c o s B s i n C .②由①②得s i n B =c o s B ,又B ɪ(0,π),所以B =π4.(2)әA B C 的面积S =12a c s i n B =24a c ,由已知条件及余弦定理得4=a 2+c 2-2a c c o sπ4ȡ2a c -2a c ,故a c ɤ42-2=2(2+2),当且仅当a =c 时,等号成立.因此,S =12a c s i n B =24a c ɤ24ˑ2(2+2)=2+1,即әA B C 面积的最大值为2+1.解三角形中的最值及范围问题主要有两种方法,其一是利用基本不等式求最大值或最小值,这类问题多与余弦定理相结合,常见形式如下.(1)a 2=b 2+c 2-2b c c o s A ȡ2b c -2b c c o s A ,从而求出b c 的最大值;(2)a 2=b 2+c 2-2b c c o s A =(b +c )2-(2-2c o s A )b c ȡ(b +c )2-(2-2c o s A )(b +c 2)2.在使用基本不等式时一定不要忘了等号的验证,同时,要将所求式子转化为含有一个未知数的函数,大多情况下是转化成关于某个角的函数,利用三角函数性质及角的条件求解,有时也转化为某个边的函数,再结合边的范围求解.解三角形中的最值和范围问题是重点也是难点,综合性较强,所以学生不仅要有扎实的基本功,还要灵活应变,掌握做题技巧,这样在高考中才能取得满意的成绩.(作者单位:山东省菏泽市巨野县第一中学)3。
高中数学复习提升专题03 解三角形中的最值、范围问题(解析版)
专题03 解三角形中的最值、范围问题高考对正弦定理和余弦定理的考查较为灵活,题型多变,选择题、填空题的形式往往独立考查正弦定理或余弦定理,解答题往往综合考查定理在确定三角形边角中的应用,多与三角形周长、面积有关;有时也会与平面向量、三角恒等变换、不等式、导数等结合考查,试题难度控制在中等以下,主要考查灵活运用公式求解计算能力、推理论证能力、数学应用意识、数形结合思想等.本专题围绕解三角形中的最值、范围问题精选例题,并给出针对性练习,以期求得热点难点的突破.【热点难点突破】例1.【2018年江苏卷】在中,角所对的边分别为,,的平分线交于点D,且,则的最小值为________.【答案】9【解析】由题意可知,,由角平分线性质和三角形面积公式得,化简得,因此当且仅当时取等号,则的最小值为.例2.【2018年文北京卷】若的面积为,且∠C为钝角,则∠B=_________;的取值范围是_________.【答案】【解析】分析:根据题干结合三角形面积公式及余弦定理可得,可求得;再利用,将问题转化为求函数的取值范围问题.详解:,,即,,则,为钝角,,,故.例3.锐角的内角,,的对边分别为,,,已知的外接圆半径为,且满足.(1)求角的大小; (2)若,求周长的最大值.【答案】(1);(2)当为正三角形时,周长的最大值为6.【解析】(1)由正弦定理,得,再结合,得,解得,由为锐角三角形,得.(2)由、及余弦定理,得,即,结合,得,解得(当且仅当时取等号),所以(当且仅当时取等号),故当为正三角形时,周长的最大值为6.例4. 在ABC ∆中,角A ,B ,C 所对的边分别是a ,b ,c ,且2a =,242cos sin 25B C A ++=. (1)若满足条件的ABC ∆有且只有一个,求b 的取值范围; (2)当ABC ∆的周长取最大值时,求b 的值. 【答案】(1)10(0,2]{}3;(210【解析】 (1)2442cossin 1cos()sin 255B C A B C A ++=⇒+++=,即1sin cos 5A A -=-, 又∵0A π<<,且22sin cos 1A A +=,有3sin 54cos 5A A ⎧=⎪⎪⎨⎪=⎪⎩,若满足条件的ABC ∆有且只有一个,则有sin a b A =或a b ≥,则b 的取值范围为10(0,2]{}3;(2)设ABC ∆的周长为l ,由正弦定理得 10(sin sin )2[sin sin()]sin 3a l abc a B C B A B A =++=++=+++102(sin sin cos cos sin )22(3sin cos )2210)3B A B A B B B B θ=+++=++=++, 其中θ为锐角,且10sin 10310cos θθ⎧=⎪⎪⎨⎪=⎪⎩,max 2210l =+10cos B =,310sin B = 此时sin 10sin ab B A==例5. 【2016年北京卷】在∆ABC 中,2222+=a c b ac . (1)求B ∠ 的大小;(22cos cos A C + 的最大值. 【答案】(1)4π;(2)1. 【解析】(1)由余弦定理及题设得22222cos 222a cb ac B ac ac +-===,又∵0B π<∠<,∴4B π∠=;(2)由(1)知34A C π∠+∠=, 32cos 2cos()4A C A A π+=+-22222A A A =-+ 22cos()4A A A π==-,因为304A π<∠<,所以当4A π∠=2cos A C +取得最大值1.例6. 如图,有一码头P 和三个岛屿,,A B C , 303,90mi ,30PC mile PB n le AB n mile ===,0120PCB ∠=, 090ABC ∠=.(1)求,B C 两个岛屿间的距离;(2)某游船拟载游客从码头P 前往这三个岛屿游玩,然后返回码头P .问该游船应按何路线航行,才能使得总航程最短?求出最短航程.【答案】(1)3mile (2)(30603307n mile +【解析】(1)在PBC ∆中, 090,3,120PB PC PCB ==∠=,由正弦定理得,sin sin PB PCPCB PBC=∠∠,即0903sin120sin PBC =∠, 解得1sin 2PBC ∠=, 又因为在PBC ∆中, 00060PBC <∠<,所以030PBC ∠=, 所以030BPC ∠=,从而303BC PC == 即,B C 两个岛屿间的距离为3mile ;(2)因为090,30ABC PBC ∠=∠=,所以000903060PBA ABC PBC ∠=∠-∠=-=, 在PAB ∆中, 90,30PB AB ==,由余弦定理得,2202212?cos609030290303072PA PB AB PB AB =+-=+-⨯⨯⨯= 根据“两点之间线段最短”可知,最短航线是“P A B C P →→→→”或“P C B A P →→→→”,其航程为3073030330330603307S PA AB BC CP =+++=+=+所以应按航线“P A B C P →→→→”或“P C B A P →→→→”航行, 其航程为(30603307n mile +. 【方法总结】1.已知两角一边可求第三角,解这样的三角形只需直接用正弦定理代入求解即可.2.已知两边和一边对角,解三角形时,利用正弦定理求另一边的对角时要注意讨论该角,这是解题的难点,应引起注意.3.已知两边和其中一边的对角,解三角形时,注意解的情况.如已知a ,b ,A ,则A 为锐角 A 为钝角或直角图形关系式a <b sin Aa =b sin Ab sin A <a <ba ≥ba >ba ≤b解的个数无解一解两解一解一解无解4.在△ABC 中有如下结论sin A >sin B ⇔a >b .5.已知三边(a b c 如、、),由余弦定理求A B 、,再由180A B C ++=求角C ,在有解时只有一解. 已知两边和夹角(a b C 如、、),余弦定理求出对对边.5.当b 2+c 2-a 2>0时,角A 为锐角,若可判定其他两角也为锐角,则三角形为锐角三角形; 当b 2+c 2-a 2=0时,角A 为直角,三角形为直角三角形; 当b 2+c 2-a 2<0时,角A 为钝角,三角形为钝角三角形.【精选精练】1. ABC ∆各角的对应边分别为c b a ,,,满足1≥+++ba cc a b ,则角A 的范围是( ) A .(0,]3πB .(0,]6πC .[,)3ππD .[,)6ππ 【答案】A 【解析】由1≥+++ba cc a b ,得()()()()b a c a c a c b a b ++≥+++,整理得bc a c b ≥-+222,由余弦定理得2122cos 222≥≥-+=bc bc bc a c b A ,⎥⎦⎤⎝⎛∈∴3,0πA . 2.为了竖一块广告牌,要制造三角形支架,如图,要求60ACB ∠=︒, BC 的长度大于1米,且AC 比AB 长0.5米,为了稳固广告牌,要求AC 越短越好,则AC 最短为( )A. 312⎛⎫+⎪ ⎪⎝⎭米 B. 2米 C. (13米 D. (23+米 【答案】D【解析】由题意设(1)BC x x =>米, (0)AC t t =>米,依题设0.50.5AB AC t =-=-米,在ABC 中,由余弦定理得: 22202cos60AB AC BC ACBC =+-,即()2220.5t t x tx -=+-,化简并整理得:20.25(1)1x t x x -=>-,即0.75121t x x =-++-,因1x >,故0.7512231t x x =-++≥+-312x =+时取等号),此时t 取最小值23,应选答案D 3.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c 满足222b c a bc +-=,0AB BC >,3a = 则b+c 的取值范围是( ) A. 31,2⎛⎫ ⎪⎝⎭B.3322⎛⎫ ⎪ ⎪⎝⎭C.13,22⎛⎫ ⎪⎝⎭D.13,22⎛⎤⎥⎝⎦ 【答案】B【解析】由222b c a bc +-=得:2221cos 22b c a A bc +-==,则A=3π,由0AB BC >可知:B 为钝角, 21sin aR A==,则sin ,sin b B c C ==,sin sin sin b c B C B +=+=+2sin(3π)B -33=sin cos 3sin()226B B B π+=+,由于223B ππ<<,25366B πππ<+<,所以13sin()23B π<+<332b c <+<,选B 4.在ABC ∆中,三内角A ,B ,C 的对边分别为a ,b ,c 且222a b c bc =++,3a S 为ABC ∆的面积,则3cos S B C 的最大值为( )(A )1 (B 31+ (C 3 (D )3 【答案】C【解析】∵222a b c bc =++,∴2221cos 22b c a A bc +-==-,∴23A π=,设ABC ∆外接圆的半径为R ,则3222sin sin 3a R A π===,∴1R =, ∴133cos sin 3cos 3cos 2S B C bc A B C B C ==+ 3sin 3cos 3)B C B C B C =+=-,故3cos S B C 3C .5.已知,,a b c 分别为内角,,A B C 的对边,其面积满足214ABC S a ∆=,则cb的最大值为( ) A.21 B. 2 C. 21 D. 22+【答案】C【解析】根据题意,有211sin 42ABC S a bc A ∆==,应用余弦定理,可得222cos 2sin b c bc A bc A +-=,于是212cos 2sin t t A t A +-=,其中c t b =.于是22sin 2cos 1t A t A t +=+,所以122sin 4A t t π⎛⎫+=+ ⎪⎝⎭,从而122t t+≤,解得t 21.选C.6.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,且2cos 2c B a b =+,若ABC ∆的面积为32S =,则ab 的最小值为__________. 【答案】12【解析】由正弦定理可得()2sin cos 2sin sin 2sin sin C B A B B C B =+=++,即2sin cos 2sin cos 2sin cos sin C B B C C B B =++,∴2sin cos sin 0B C B +=,∴1cos 2C =-, 23C π=,由133sin 2S ab C =⋅==,∴12c ab =,再由余弦定理可得2222cos c a b ab C =+-⋅,整理可得2222134a b a b ab ab =++≥,当且仅当a b =时,取等号,∴12ab ≥故答案为12. 7.在平面四边形ABCD 中,∠A =∠B =∠C =75°,BC =2,则AB 的取值范围是 . 【答案】626+2)【解析】如图所示,延长BA ,CD 交于E ,平移AD ,当A 与D 重合与E 点时,AB 最长,在△BCE 中,∠B =∠C =75°,∠E =30°,BC =2,由正弦定理可得sin sin BC BE E C =∠∠,即o o2sin 30sin 75BE=,解得BE =6+2,平移AD ,当D 与C 重合时,AB 最短,此时与AB 交于F ,在△BCF 中,∠B =∠BFC =75°,∠FCB =30°,由正弦定理知,sin sin BF BC FCB BFC =∠∠,即o o2sin 30sin 75BF =,解得BF =62-,所以AB 的取值范围为(62-,6+2).8. 在中,内角的对边分别为,且满足,为锐角,则的取值范围为__________. 【答案】【解析】分 由结合正弦定理可得:,且,为锐角,则:,即,据此有:,,,,即,,据此可得:,则的取值范围为.9.在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,已知向量()B A m cos ,cos =,()b c a n -=2,,且n m //.(1)求角A 的大小;(2)若4=a ,求ABC ∆面积的最大值. 【答案】(1)3π;(2)34. 【解析】 n m //,所以()0cos 2cos =--A b c B a ,由正弦定理得-B A cos sin ()0cos sin sin 2=-A B C ,A C AB B A cos sin 2cos sin cos sin =+∴()A C B A cos sin 2sin =+∴,由π=++C B A ,A C C cos sin 2sin =∴由于π<<C 0,因此0sin >C ,所以21cos =A ,由于π<<A 0,3π=∴A (2)由余弦定理得A bc c b a cos 2222-+=bc bc bc bc c b =-≥-+=∴21622,因此16≤bc ,当且仅当4==c b 时,等号成立;因此ABC ∆面积34sin 21≤=A bc S ,因此ABC ∆面积的最大值34. 10. 已知3x π=是函数()sin2cos2f x m x x =-的图象的一条对称轴.(1)求函数()f x 的单调递增区间;(2)设ABC ∆中角,,A B C 所对的边分别为,,a b c ,若()2f B =,且3b =2ca -的取值范围. 【答案】(1)(),63k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦(2)33⎛ ⎝ 【解析】试题分析: (1)3x π=是函数()f x 的一条对称轴213f m π⎛⎫⇒=+⎪⎝⎭21m -+3m ⇒=()2sin 26f x x π⎛⎫⇒=- ⎪⎝⎭,根据三角函数的性质,即可求出单调性;(2)()2f B = 可得3B π=,又3b =由正弦定理得: 2sin sin(+=3sin 236c a A A A ππ⎛⎫-=-- ⎪⎝⎭,由230,3sin 3362A A ππ⎛⎛⎫⎛⎫∈⇒-∈- ⎪ ⎪ ⎝⎭⎝⎭⎝,即可求出结果. 试题解析: (1)3x π=是函数()sin2cos2f x m x x =-的一条对称轴213f m π⎛⎫⇒=+ ⎪⎝⎭21m -+3m ⇒=()2sin 26f x x π⎛⎫⇒=- ⎪⎝⎭⇒增区间: (),63k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦(2)()2f B = sin 2163B B ππ⎛⎫⇒-=⇒= ⎪⎝⎭ 又3b =2sin ,2sin 2sin 3a A c C A π⎛⎫===+ ⎪⎝⎭2sin sin(+=3sin 236c a A A A ππ⎛⎫⇒-=-- ⎪⎝⎭ 210,,sin ,1366262A A A πππππ⎛⎫⎛⎫⎛⎫⎛⎫∈⇒-∈-⇒-∈- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭33sin 36A π⎛⎛⎫⇒-∈ ⎪ ⎝⎭⎝,即332c a ⎛⇒-∈ ⎝ 11. 在锐角ABC ∆中,内角,,A B C 的对边分别是,,a b c ,满足cos2cos22cos cos 066A B B B ππ⎛⎫⎛⎫-+-+= ⎪ ⎪⎝⎭⎝⎭.(1)求角A 的值; (2)若3b =b a ≤,求a 的取值范围.【答案】(1) 3A π=;(2) )3,3a ∈.【解析】试题分析:(1)根据余弦的二倍角公式以及两角和与差的余弦公式化简cos2cos22cos cos 066A B B B ππ⎛⎫⎛⎫-+-+= ⎪ ⎪⎝⎭⎝⎭,可得sin A 的值,从而求得A 的值;(2)3b a =≤,∴c a ≥,∴32C ππ≤<,63B ππ<≤,再由正弦定理可得结果.试题解析:(1)由已知cos2cos22cos cos 066A B B B ππ⎛⎫⎛⎫-+-+=⎪ ⎪⎝⎭⎝⎭得2222312sin 2sin 2cos sin 044B A B B ⎛⎫-+-=⎪⎝⎭化简得3sin 2A =,又三角形ABC 为锐角三角形,故原创精品资源学科网独家享有版权,侵权必究! 11 3A π=. (2)∵3b a =≤,∴c a ≥,∴32C ππ≤<, 63B ππ<≤由正弦定理得: sin sin a b A B =即: 3sin 32a B =,即32sin a B =由13sin ,22B ⎛⎤∈ ⎥ ⎝⎦知)3,3a ⎡∈⎣. 12. 如图,是两个小区所在地,到一条公路的垂直距离分别为,两端之间的距离为.(1)某移动公司将在之间找一点,在处建造一个信号塔,使得对的张角与对的张角相等,试确定点的位置;(2)环保部门将在之间找一点,在处建造一个垃圾处理厂,使得对所张角最大,试确定点的位置.【答案】(1)4;(2). 【解析】试题分析:(1)利用张角相等的相似性即可确定点P 的位置;(2)由题意得到三角函数,换元之后结合对勾函数的性质可得当时满足题意. 试题解析:(1)张角相等,∴,∴ (2)设,∴, ∴,, ,设,,,, ∴,,当且仅当时,等号成立,此时,即。
数学(理)知识清单-专题24 解答题解题方法与技巧(原卷+解析版)
=OC,PA⊥PD.
求证:(1)PA∥平面 BDE; (2)平面 BDE⊥平面 PCD. 3.如图,在平面直角坐标系 xOy 中,已知椭圆ax22+by22=1(a>b>0)的离心率为23,C 为椭圆上位于第一象限内的 一点
(1)若点
C
的坐标为
2,5 3
,求
a,b
的值;
(2)设 A 为椭圆的左顶点,B 为椭圆上一点,且―A→B =1―O→C ,求直线 AB 的斜率. 2
一点 B,使得 OA⊥OB,其中 e 是自然对数的底数,O 为坐标原点.求 m 的取值范围. 17.已知椭圆 M:ax22+by22=1(a>b>0)的右焦点 F 的坐标为(1,0),P,Q 为椭圆上位于 y 轴右侧的两个动点,使 PF⊥QF,C 为 PQ 的中点,线段 PQ 的垂直平分线交 x 轴,y 轴于点 A,B(线段 PQ 不垂直 x 轴),当 Q 运动 到椭圆的右顶点时,|PF|= 22. (1)求椭圆 M 的标准方程;
(1)求椭圆 E 的标准方程; (2)若△CF1F2 为等腰三角形,求点 B 的坐标; (3)若 F1C⊥AB,求 k 的值. 10.数列{an}的前 n 项和为 Sn,且满足 Sn=4-an. (1)求证:数列{an}为等比数列,并求通项公式 an; (2)是否存在自然数 c 和 k,使得 ak+1 >1 成立?若存在,请求出 c 和 k 的值; 若不存在,请说明理由.
AE,CD 的中点.
1
求证:(1)MN∥平面 EBC; (2)EA⊥平面 EBC.
7.△ABC 中,―A→B ·―AC→=27S△ABC(S△ABC 表示△ABC 的面积). (1)若 BC=2,求△ABC 外接圆的半径; (2)若 B-C=π,求 sin B 的值.
三角函数与解三角形中的最值(范围)问题
sin
2
2
(sin+cos)
sin
=
π
4
)
sin
2
1
(1+
),
2
tan
π
π
因为 B ∈[ , ),所以tan
6
4
因为函数 y =
sin(+
B ∈[
3
,1),
3
2
1
3
(1+ )在[ ,1)上单调递减,
2
3
所以 的取值范围为(
2,
6+ 2
].
2
=
高中总复习·数学
2. (2024·湖北三校联考)记△ ABC 的内角 A , B , C 的对边分别为
π
≤ )的图象离原点最近的对称轴为 x = x 0,若满足| x 0|≤
2
π
,则称 f ( x )为“近轴函数”.若函数 y =2
6
“近轴函数”,则φ的取值范围是(
)
sin (2 x -φ)是
高中总复习·数学
解析: y =2 sin
π
(2 x -φ),令2 x -φ= + k π, k ∈Z,∴图象
6
6
π
[0, ]上的值域为[-1,2].故选D.
2
高中总复习·数学
2.
4
3
sin+5
函数 y =
的最大值是
2−sin
6 ,最小值是
解析:法一
2−5
sin x =
,而-1≤
+1
原函数可化为
.
sin x ≤1,所以
2−5
4
-1≤
≤1,所以 ≤ y ≤6,因此原函数的最大值是6,最小值
高考数学一轮复习三角函数与解三角形中的最值(范围)问题
,∵函数f(x)=cos(2x+φ)(0<φ<π)在区间
π π
− ,
6 6
上单调递
π
− ≥ 0,
π
π
π
2π
减,∴ − + , + ⊆[0,π],即ቐ 3π
解得 ≤φ≤ .令f(x)=cos
3
3
3
3
+ ≤ π,
3
π
π π
(2x+φ)=0,则2x+φ= +kπ(k∈Z),即x= - + (k∈Z),又函数f
4
解:(2)f(x)=-
1 2 5
sin−
+ +a.
2
4
17
, 5
4 ⇒൝4
()max ≤
由题意得ቐ
()min ≥ 1
17
,
4 ⇒2≤a≤3,
+ ≤
−1 ≥ 1
即实数a的取值范围是[2,3].
三角形中的最值(范围)问题
考向1 利用三角函数的性质求最值(范围)
【例4】 △ABC中,sin2A-sin2B-sin2C=sin Bsin C.
重难专攻(四)
三角函数与解
三角形中的最值(范围)问题
三角函数与解三角形中的最值(范围)问题是高考的热点,主要涉及:
(1)三角函数式的最值(范围)问题;(2)利用三角函数性质求某些量的最
值(范围);(3)三角形中的最值(范围)(周长、面积等),其求解方法多
样,一般常用方法有:(1)利用三角函数的单调性(正、余弦函数的有界性)
3
3
答案
3
3
-
3
3
2
1+ 2
,
|解题技法|
sin+
解三角形中的最值或范围问题
解法探究2023年12月上半月㊀㊀㊀解三角形中的最值或范围问题◉哈尔滨师范大学教师教育学院㊀李鸿媛㊀㊀摘要:解三角形的最值或范围问题是高考考查的热点内容之一,并且对解三角形的命题设计,不只局限于解三角形,而是通常利用正余弦定理㊁三角形面积公式等求解三角形的边㊁角㊁周长和面积的最值等问题.这类问题的解法主要是将边角互化转化为三角函数的最值问题,或利用基本不等式求最值.本文中对这类问题加以归类解析,以提升学生的解题能力.关键词:解三角形;最值;范围1与边有关的最值或范围问题例1㊀在әA B C 中,角A ,B ,C 的对边分别是a ,b ,c ,角B =π3,若a +c =4,则b 的取值范围为.解析:由a +c =4,B =π3,由余弦定理得b 2=a 2+c 2-2a c c o s B ,则b 2=(a +c )2-2a c -2a c c o s π3,即b 2=16-3a c .由a +c ȡ2a c ,得4ȡ2a c ,即0<a c ɤ4,于是4ɤb 2<16,所以2ɤb <4.评析:本题利用已知条件结合余弦定理,借助基本不等式求三角形边的取值范围[1],渗透了逻辑推理㊁数学运算等数学核心素养.例2㊀在әA B C 中,角A ,32B ,C 成等差数列,且әA B C 的面积为1+2,则A C 边长的最小值是.解析:由A ,32B ,C 成等差数列,得A +C =3B .又A +B +C =π,所以B =π4.设角A ,B ,C 所对的边分别为a ,b ,c ,则由S әA B C =12a c s i n B =1+2,可得a c =22+4.由余弦定理得b 2=a 2+c 2-2a c c o s B ,则b 2=a 2+c 2-2a c .又a 2+c 2ȡ2a c ,则b 2ȡ(2-2)a c ,即b 2ȡ(2-2)(22+4),所以b ȡ2(当且仅当a =c 时,等号成立).故A C 边长的最小值为2.评析:本题考查了学生对等差数列的概念㊁三角形内角和定理㊁三角形面积公式㊁余弦定理等的掌握情况.解题的关键是将余弦定理与不等式相结合,进而求出三角形一边的最值.2与角有关的最值或范围问题例3㊀在әA B C 中,角A ,B ,C 的对边分别是a ,b ,c ,若A ʂπ2,s i n C +s i n (B -A )=2s i n2A ,则角A 的取值范围为.解法一:在әA B C 中,C =π-(A +B ),则s i n C =s i n (A +B ),所以s i n (A +B )+s i n (B -A )=2s i n 2A ,即2s i n B c o s A =22s i n A c o s A .又A ʂπ2,则c o s A ʂ0,所以s i n B =2s i n A .由正弦定理,得b =2a ,则A 为锐角.又s i n B =2s i n A ɪ(0,1],于是可得s i n A ɪ(0,22],故A ɪ(0,π4].评析:解法一利用三角形内角和定理㊁两角和与差的正弦公式㊁正弦定理与三角函数的性质等知识,对学生的推理能力㊁运算能力和直观想象能力进行了考查.解法二:在әA B C 中,C =π-(A +B ),则s i n C =s i n (A +B ),所以s i n (A +B )+s i n (B -A )=2s i n 2A ,即2s i n B c o s A =22s i n A c o s A .又A ʂπ2,则c o s A ʂ0,所以s i n B =2s i n A .由正弦定理,可得b =2a .结合余弦定理,可以得到c o s A =b 2+c 2-a 22b c =12b 2+c 22b c ȡ212b 2 c 22b c =22,当且仅当c =22b 时,等号成立,故A ɪ(0,π4].评析:解法二考查了三角形内角和定理㊁两角和与差的正弦公式㊁正弦定理㊁余弦定理㊁基本不等式等知识.这种解题方法需要学生灵活运用两个正数的和与积的关系,充分体现学生的数学运算能力和数据分析能力.3与周长有关的最值或范围问题例4㊀әA B C 为锐角三角形,角A ,B ,C 所对的472023年12月上半月㊀解法探究㊀㊀㊀㊀边分别为a ,b ,c ,已知33b s i n C +c c o s B =a ,且c =2,求әA B C 周长的最大值.解析:由33b s i n C +c c o s B =a ,根据正弦定理,得33s i n B s i n C +s i n C c o s B =s i n A .由A =π-(B +C ),得s i n A =s i n (B +C ).所以33s i n B s i n C +s i n C c o s B =s i n (B +C ),即33s i n B s i n C =s i n B c o s C .由s i n B ʂ0,得33s i n C =c o s C .又c o s C ʂ0,所以t a n C =3.而0<C <π,则C =π3.根据正弦定理,得a =433s i n A ,b =433s i n B ,则a +b +c =433s i n A +433s i n B +2=433s i n A +433s i n (2π3-A )+2=433(32s i n A +32c o s A )+2=4s i n (A +π6)+2.由әA B C 为锐角三角形,可知0<A <π2,0<2π3-A <π2,ìîíïïïï解得π6<A <π2.所以π3<A +π6<2π3.因此32<s i n (A +π6)ɤ1.故23+2<4s i n (A +π6)+2ɤ6.因此әA B C 周长的最大值为6.评析:这道题解题的关键是利用正弦定理将边化为角,转化为求三角函数的最值问题[2],考查了逻辑推理和数学运算等核心素养.4与面积有关的最值或范围问题例5㊀әA B C 的内角A ,B ,C 所对的边分别是a ,b ,c ,已知2(c -a c o s B )=3b .(1)求角A ;(2)若a =2,求әA B C 面积的取值范围.解法一:(1)略.(2)由(1)知A =π6,又a =2,根据正弦定理,可得b =4s i n B ,c =4s i n C .由C =π-A -B =5π6-B ,得s i n C =s i n (5π6-B ).所以,S әA B C =12b c s i n A =14b c =4s i n B s i n C =4s i n B s i n(5π6-B )=4s i n B (12c o s B +32s i n B )=2s i n B c o s B +23s i n 2B =s i n2B -3c o s 2B +3=2s i n (2B -π3)+3.由0<B <5π6,得-π3<2B -π3<4π3,所以可知-32<s i n (2B -π3)ɤ1,故0<S әA B C ɤ2+3,即әA B C 面积的取值范围为(0,2+3].解法二:(1)略.(2)由(1)知A =π6,a =2,则S әA B C =14b c .由c o s A =b 2+c 2-a 22b c =b 2+c 2-42b c =32,可得b 2+c 2-4=3b c .又b 2+c 2ȡ2b c ,则0<b c ɤ42-3=4(2+3),所以0<S әA B C ɤ2+3.故әA B C 面积的取值范围为(0,2+3].评析:本题求解三角形面积的取值范围,解法一通过正弦定理将边转化为角,再利用三角函数的性质,求解三角形面积的取值范围.解法二先利用余弦定理,结合不等式b 2+c 2ȡ2b c ,求解b c 的取值范围,接着利用三角形面积S әA B C =12b c s i n A 求出面积的取值范围[3].这两种解法都考查了数学运算㊁逻辑推理等数学核心素养.数学这门学科需要学生具备较强的逻辑推理能力㊁运算能力㊁直观想象能力等.针对解三角形最值或范围问题,学生需要熟练掌握三角形的面积公式㊁同角三角函数的基本关系㊁正弦定理㊁余弦定理㊁基本不等式等知识,并能够进行综合运用.参考文献:[1]刘海涛.谈解三角形中有关求范围或最值的解题策略[J ].数理化学习(高中版),2022(7):3G7.[2]张露梅.解三角形中的范围或最值问题[J ].中学生数理化(高二数学),2021(11):35G36.[3]玉素贞.解三角形最值问题的两种转化策略分析[J ].考试周刊,2021(49):85G86.Z57。
华师大九年级上期末专题《第24章解直角三角形》单元试卷含解析
华师大版九年级数学上册期末专题:第24章解直角三角形单元检测试卷一、单选题(共10题;共30分)1.在△ABC中,∠C=90°,BC=3,AC=4,则sinA的值是()A. B. C. D.2.一个三角形的两边长分别是3和7,且第三边长为整数,这样的三角形周长最大的值为()A. 15B. 16C. 18D. 193.为测量某河的宽度,小军在河对岸选定一个目标点A,再在他所在的这一侧选点B,C,D,使得AB⊥BC,CD⊥BC,然后找出AD与BC的交点E.如图所示,若测得BE=90m,EC=45m,CD=60m,则这条河的宽AB等于()A. 120mB. 67.5mC. 40mD. 30m4.等腰三角形的周长为20cm,腰长为x cm,底边长为y cm,则底边长与腰长之间的函数关系式为()A. y=20﹣x(0<x<10)B. y=20﹣x(10<x<20)C. y=20﹣2x(10<x<20)D. y=20﹣2x(5<x<10)5.一段拦水坝横断面如图所示,迎水坡AB的坡度为i=1:,坝高BC=6m,则坡面AB的长度()A. 12mB. 18mC. 6D. 126.汶川地震后,抢险队派一架直升飞机去A、B两个村庄抢险,飞机在距地面450米上空的P点,测得A村的俯角为30°,B村的俯角为60°(如图)则A,B两个村庄间的距离是()米.A. 300B. 900C. 300D. 3007.如图,小明晚上由路灯A下的点B处走到点C处时,测得自身影子CD的长为1米,他继续往前走3米到达点E处(即CE=3米),测得自己影子EF的长为2米,已知小明的身高是1.5米,那么路灯A的高度AB是()A. 4.5米B. 6米C. 7.2米D. 8米8.一个三角形的两边长为2和6,第三边为偶数,则这个三角形的周长为()A. 10B. 12C. 14D. 169.如图,斜面AC的坡度(CD与AD的比)为1:2,AC=3 米,坡顶有旗杆BC,旗杆顶端B点与A点有一条彩带相连.若AB=10米,则旗杆BC的高度为()A. 5米B. 6米C. 8米D. (3+ )米10.如图,在□ABCD中,AB∶AD=3∶2,∠ADB=60°,那么cosA的值等于()A. B. C. D.二、填空题(共10题;共33分)11.小凡沿着坡角为30°的坡面向下走了2米,那么他下降________米.12.已知一个等腰三角形的两边长分别为3和6,则该等腰三角形的周长是________.13.如图是一个中心对称图形,A为对称中心,若∠C=90°,∠B=30°,AC=1,则BB′的长为________.14.如图,在直角坐标系中,P是第二象限的点,其坐标是(x,8),且OP与x轴的负半轴的夹角α的正切值是 ,则x=________,cosα=________.15.在Rt△ABC中,∠C=90°,如果AC=4,sinB=,那么AB=________16.高4 m的旗杆在水平地面上的影子长6 m,此时测得附近一个建筑物的影长24 m,则该建筑物的高是________m.17.tan________ °=0.7667.18.如图:∠DAE=∠ADE=15°,DE∥AB,DF⊥AB,若AE=8,则DF等于________.19.如图,将两块直角三角形的一条直角边重合叠放,已知AC=BC= +1,∠D=60°,则两条斜边的交点E到直角边BC的距离是________.20.已知当x1=a,x2=b,x3=c时,二次函数y= x2+mx对应的函数值分别为y1,y2,y3,若正整数a,b,c恰好是一个三角形的三边长,且当a<b<c时,都有y1<y2<y3,则实数m的取值范围是________.三、解答题(共8题;共57分)21.如图,我国的一艘海监船在钓鱼岛A附近沿正东方向航行,船在B点时测得钓鱼岛A在船的北偏东60°方向,船以50海里/时的速度继续航行2小时后到达C点,此时钓鱼岛A在船的北偏东30°方向.请问船继续航行多少海里与钓鱼岛A的距离最近?22.小宇想测量位于池塘两端的A、B两点的距离.他沿着与直线AB平行的道路EF行走,当行走到点C处,测得∠ACF=45°,再向前行走100米到点D处,测得∠BDF=60°.若直线AB与EF之间的距离为60米,求A、B 两点的距离.23.如图,为了测量出楼房AC的高度,从距离楼底C处60 米的点D(点D与楼底C在同一水平上)出发,沿斜面坡度为i=l:的斜坡DB前进30米到达点B,在点B处测得楼顶A的仰角为53 °,求楼房AC的高度(参考数据:sin53 °= , cos53 °= , tan53 °= ,≈1.732,结果精确到0.1米)24.如图,平台AB高为12m,在B处测得楼房CD顶部点D的仰角为45°,底部点C的俯角为30°,求楼房CD 的高度(=1.7).25.“蘑菇石”是我国著名的自然保护区梵净山的标志,小明从山脚B点先乘坐缆车到达观景平台DE观景,然后再沿着坡脚为29°的斜坡由E点步行到达“蘑菇石”A点,“蘑菇石”A点到水平面BC的垂直距离为1890m.如图,DE∥BC,BD=1800m,∠DBC=80°,求斜坡AE的长度.(结果精确到0.1m,可参考数据sin29°≈0.4848,sin80°≈0.9848,cos29°≈0.8746,cos80°≈0.1736)26.在一次数学活动课上,老师带领同学们去测量一座古塔CD的高度.他们首先从A处安置测倾器,测得塔顶C的仰角∠CFE=21°,然后往塔的方向前进50米到达B处,此时测得仰角∠CGE=37°,已知测倾器高1.5米,请你根据以上数据计算出古塔CD的高度.(参考数据:sin37°≈ ,tan37°≈ ,sin21°≈ ,tan21°≈ )27.在一次课题学习中,老师让同学们合作编题.某学习小组受赵爽弦图的启发,编写了下面这道题,请你来解一解.如图,将矩形ABCD的四边BA、CB、DC、AD分别延长至E、F、G、H,使得AE=CG,BF=DH,连结EF、FG、GH、HE.(1)求证:四边形EFGH为平行四边形;(2)若矩形ABCD是边长为1的正方形,且∠FEB=45°,tan∠AEH=2,求AE的长.28.如图,在一次军事演习中,蓝方在一条东西走向的公路上的A处朝正南方向撤退,红方在公路上的B处沿南偏西60°方向前进实施拦截,红方行驶1000米到达C处后,因前方无法通行,红方决定调整方向,再朝南偏西45°方向前进了相同的距离,刚好在D处成功拦截蓝方,求拦截点D处到公路的距离(结果不取近似值).答案解析部分一、单选题1.【答案】B【考点】锐角三角函数的定义【解析】【解答】解:在△ABC中,∠C=90°,∵AC=4,BC=3,∴AB= =5.∴sinA= ,故答案为:B.【分析】先根据勾股定理算出AB,再根据正切定义得出结论。
解三角形中的范围与最值问题(解析版)1
解三角形中的范围与最值问题目录01方法技巧与总结02题型归纳与总结题型一:周长问题题型二:面积问题题型三:长度和差比问题题型四:转化为角范围问题题型五:倍角问题题型六:角平分线问题与斯库顿定理题型七:中线问题题型八:四心问题题型九:坐标法题型十:隐圆(阿波罗尼斯圆)问题题型十一:两边逼近思想题型十二:转化为正切有关的最值问题题型十三:最大角(米勒问题)问题题型十四:费马点、布洛卡点、拿破仑三角形问题题型十五:托勒密定理及旋转相似题型十六:三角形中的平方问题题型十七:等面积法、张角定理03过关测试1、在解三角形专题中,求其“范围与最值”的问题,一直都是这部分内容的重点、难点.解决这类问题,通常有下列五种解题技巧:(1)利用基本不等式求范围或最值;(2)利用三角函数求范围或最值;(3)利用三角形中的不等关系求范围或最值;(4)根据三角形解的个数求范围或最值;(5)利用二次函数求范围或最值.要建立所求量(式子)与已知角或边的关系,然后把角或边作为自变量,所求量(式子)的值作为函数值,转化为函数关系,将原问题转化为求函数的值域问题.这里要利用条件中的范围限制,以及三角形自身范围限制,要尽量把角或边的范围(也就是函数的定义域)找完善,避免结果的范围过大.2、解三角形中的范围与最值问题常见题型:(1)求角的最值;(2)求边和周长的最值及范围;(3)求面积的最值和范围.题型一:周长问题1(2024·全国·二模)在△ABC中,内角A,B,C所对的边分别为a,b,c,2a cos A=b cos C+c cos B,且a=4sin A,则△ABC周长的最大值为()A.42B.62C.43D.63【答案】D【解析】因为2a cos A=b cos C+c cos B,由正弦定理得2sin A cos A=sin B cos C+sin C cos B=sin B+C=sin A,因为sin A≠0,所以cos A=12,由于A∈0,π,故A=π3,则a=4sinπ3=23,由正弦定理得asin A=bsin B=csin C=4,故b +c =4sin B +4sin C =4sin B +4sin B +π3 =4sin B +2sin B +23cos B =43sin B +π6 ,又B ∈0,2π3 ,则B +π6∈π6,5π6,所以sin B +π6 ∈12,1 ,则b +c ∈23,43 ,故△ABC 周长a +b +c 的最大值为63.故选:D .2(2024·广西河池·模拟预测)已知△ABC 中角A ,B ,C 的对边分别为a ,b ,c ,且2c cos A =a cos B +b cos A .(1)求角A ;(2)若a =3,求△ABC 的周长的最大值,并求出此时角B ,角C 的大小.【解析】(1)由2c cos A =a cos B +b cos A ,则有2sin C cos A =sin A cos B +sin B cos A ,即2sin C cos A =sin A cos B +sin B cos A =sin A +B =sin C ,由C ∈0,π ,故sin C >0,则有2cos A =1,即cos A =12,即A =π3;(2)由余弦定理a 2=b 2+c 2-2bc cos A ,可得3=b 2+c 2-bc ,则3=b +c 2-3bc ,故b +c 2-3=3bc ≤3⋅b +c 2 2,当且仅当b =c 时,等号成立,即b +c 2≤12,即b +c ≤23,即△ABC 的周长的最大值为33,此时a =b =c =3,即B =C =π3.3(2024·江西南昌·三模)在锐角△ABC 中,a =23,(2b -c )cos A =a cos C ,(1)求角A ;(2)求△ABC 的周长l 的范围.【解析】(1)∵(2b -c )cos A =a cos C ,∴2b cos A =a cos C +c cos A ,所以2sin B cos A =sin A cos C +sin C cos A ,所以2sin B cos A =sin (A +C )=sin B ,因为sin B ≠0,所以cos A =12,∵A ∈0,π2 ,所以A =π3.(2)∵a sin A =2332=4,所以b sin B =c sin C =4,所以b =4sin B ,c =4sin C =4sin 2π3-B ,所以l=a+b+c=23+4sin B+4sin2π3-B=23+43sin B+π6,因为△ABC是锐角三角形,且A=π3,所以0<B<π20<2π3-B<π2,解得π6<B<π2,所以B+π6∈π3,2π3,所以sin B+π6∈32,1,所以l∈(6+23,63].4(2024·广东广州·一模)△ABC的内角A,B,C的对边分别为a,b,c且满足a=2,a cos B= 2c-bcos A.(1)求角A的大小;(2)求△ABC周长的范围.【解析】(1)由余弦定理,a⋅a2+c2-b22ac=(2c-b)⋅c2+b2-a22bc,化简得b2+c2-a2=bc,所以cos A=c2+b2-a22bc=12,因为0<A<π,所以A=π3.(2)由正弦定理:bsin B =csin C=asin A=232=433,则b=433sin B,c=433sin C,由(1)B+C=2π3,故a+b+c=2+433sin B+sin C=2+433sin B+sin2π3-B=2+433sin B+32cos B+12sin B=2+43332cos B+32sin B=2+4sin B+π6因为0<B<2π3⇒π6<B+π6<5π6,则12<sin B+π6≤1,所以4<a+b+c≤6,即周长范围是4,6.5(2024·贵州贵阳·模拟预测)记△ABC内角A,B,C的对边分别为a,b,c,且a2+b2-c2a cos B+b cos A=abc.(1)求C;(2)若△ABC为锐角三角形,c=2,求△ABC周长范围.【解析】(1)在△ABC中,由射影定理得a cos B+b cos A=c,则题述条件化简为a2+b2-c2=ab,由余弦定理得a2+b2-c2=2ab cos C.可得cos C=12,C∈0,π,所以C=π3.(2)在△ABC中,由正弦定理得asin A=bsin B=csin C=2sinπ3=433,则△ABC周长C△ABC=a+b+2=2+433(sin A+sin B)=2+433sin A+sin2π3-A,因为sin A+sin2π3-A=3sin A+π6,则C△ABC=2+4sin A+π6,因为△ABC为锐角三角形,A+B=2π3,则得A∈π6,π2,A+π6∈π3,2π3,故sin A+π6∈32,1,C△ABC∈(2+23,6].题型二:面积问题1(2024·四川德阳·模拟预测)在△ABC中,角A、B、C所对的边分别为a、b、c,且sin C=c3cos B2,b=3.(1)求B;(2)若△ABC为锐角三角形,求△ABC的面积范围.【解析】(1)因为sin C=c3cos B2,b=3,所以sin B sin C=sin C cos B 2,因为sin C≠0,所以sin B=cos B2,则2sinB2cos B2=cos B2,因为cos B2≠0,所以sin B2=12,又B2∈0,π2,则B2=π6,所以B=π3.公众号:慧博高中数学最新试题(2)设△ABC的外接圆半径为R,则2R=bsin B=23,所以S△ABC=12ac sin B=122R sin A2R sin C sin B=33sin A sin2π3-A,=33sin A 32cos A +12sin A,=92sin A cos A +332sin 2A =94sin2A +332⋅1-cos2A 2,=94sin2A -334cos2A +334,=332sin 2A -π6 +334,因为△ABC 为锐角三角形,所以0<A <π20<2π3-A <π2 ,解得π6<A <π2,则π6<2A -π6<5π6,则12<sin 2A -π6≤1,所以332<S △ABC ≤934,所以△ABC 的面积范围332,934.2(2024·全国·模拟预测)已知在锐角△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且m =2sin x ,3 ,n =cos x ,cos2x ,f x =m ⋅n,f B +C =0.(1)求角A 的值;(2)若b =1,求△ABC 面积的范围.【解析】(1)∵m =2sin x ,3 ,n =cos x ,cos2x ,f x =m ⋅n ,∴f x =2sin x cos x +3cos2x=sin2x +3cos2x =2sin 2x +π3 .又f B +C =0,∴sin 2B +C+π3=0.又△ABC 为锐角三角形,∴2B +C +π3=2π或π∴B +C =5π6或π3(舍去),∴A =π6.(2)由正弦定理知a sin A=b sin B =c sin C ,又∵b =1,A =π6,∴a =12sin B ,∴S =12ab sin C =sin π6+B 4sin B=38+18⋅cos B sin B =38+18⋅1tan B .B ∈0,π2 56π-B ∈0,π2故得到:π3<B <π2,∴38<S <36,∴△ABC 面积的范围为38,363(2024·四川攀枝花·三模)已知ΔABC的内角A、B、C的对边分别为a、b、c其面积为S,且(b+c2-a2=43S.(Ⅰ)求角A;(II)若a=3,b=m(m>0),当ΔABC有且只有一解时,求实数m的范围及S的最大值.【解析】分析:(Ⅰ)利用余弦定理和三角形的面积公式化简(b+c)2-a2=43S得到sin A - π6=12,再解这个三角方程即得A的值.(II)先根据ΔABC有且只有一解利用正弦定理和三角函数的图像得到m的取值范围m∈0,3∪2 ,再写出S的函数表达式求其最大值.(Ⅰ)由已知b2+c2-a2+2bc=23bc sin A由余弦定理得2bc cos A+2bc=23bc sin A,所以cos A+1=3sin A,即sin A-π6=12,∵A∈0,π,∴A-π6∈-π6,5π6,A-π6=π6,所以A=π3.(Ⅱ)由已知,当ΔABC有且只有一解时,m sinπ3=3或0<m≤3,所以m∈0,3∪2 ;(i)当m=2时,ΔABC为直角三角形,S=12•1•3=32(ii)当0<m≤3时,由正弦定理msin B=3sinπ3⇒m=2sin B,S=12•3sin B•sin C=3sin B•sin2π3-B=32sin B cos B+32sin2B=32sin B cos B+32sin2B+32•1-cos2B2=32sin2B-π6+34∵0<B≤π3,∴π6<2B-π6≤π2,所以,当B=π3时,S max=334>32综上所述,S max=33 4.4(2024·陕西安康·模拟预测)如图,在平面四边形ABCD中,AB=AC=BD=10,当四边形ABCD的面积最大时,BC2+CD2+DA2的最小值为.【答案】700-4002【解析】如图,设AC∩BD=O,∠AOD=θ,则四边形ABCD的面积为S=S△ABD+S△BCD=12BD×AO sinθ+12BD×CO sinθ=12BD×AC sinθ=50sinθ,因0<θ<π,故当且仅当sinθ=1,即θ=π2时,S max=50.当θ=π2时,设AO=x,OB=y,则CO=10-x,OD=10-y,于是BC2+CD2+DA2=y2+(10-x)2+(10-y)2+(10-x)2+x2+(10-y)2=3(x2+y2)-40(x+y)+ 400,因AO2+BO2=100,即x2+y2=100,由(x+y)2=x2+y2+2xy≤2(x2+y2)=200,则有x+y≤102,当且仅当x=y=52时取等号,即当x=y=52时,BC2+CD2+DA2的最小值为300-40×102+400=700-4002.故答案为:700-4002.5(2024·陕西西安·模拟预测)在△ABC中,内角A,B,C的对边分别为a,b,c,且a=6,6cos B=3c -b cos A ,则△ABC 面积的最大值为.【答案】322/322【解析】因为a =6,6cos B =3c -b cos A ,所以6cos B =a cos B =3c -b cos A ,由正弦定理可得sin A cos B =3sin C cos A -sin B cos A ,即sin A +B =3sin C cos A ,sin C =3sin C cos A ,因为C ∈0,π ,所以sin C ≠0,故cos A =13,由余弦定理a 2=b 2+c 2-2bc cos A 得6 2=b 2+c 2-23bc ,所以6=b 2+c 2-23bc ≥2bc -23bc ,即bc ≤92,当且仅当b =c =322时取等号,由cos A =13,A ∈0,π ,得sin A =223,所以S △ABC =12bc sin A =12×223bc ≤23×92=322.故答案为:322.题型三:长度和差比问题1(2024·广东深圳·模拟预测)已知△ABC 中内角A ,B ,C 的对边分别为a ,b ,c ,且满足3c +b sin A =3a cos B .(1)求角A 的大小;(2)若D 是边BC 上一点,且AD 是角A 的角平分线,求BC AD的最小值.【解析】(1)由题意知△ABC 中,3c +b sin A =3a cos B ,故3sin C +sin B sin A =3sin A cos B即3sin (A +B )+sin B sin A =3sin A cos B ,即3(sin A cos B +cos A sin B )+sin B sin A =3sin A cos B ,所以3cos A sin B +sin B sin A =0,而B ∈0,π ,故sin B ≠0,故3cos A +sin A =0,即tan A =-3,又A ∈0,π ,故A =2π3;(2)由余弦定理:BC =b 2+c 2-2bc cos A =b 2+c 2+bc ,又S △ABD +S △ACD =S △ABC ,公众号:慧博高中数学最新试题所以12c ⋅AD sin60°+12 b ⋅AD sin60°=12bc sin120°,所以AD =bc b +c,所以BC AD =b 2+c 2+bcbcb +c ≥2bc +bcbc b +c =3⋅b +c bc ≥3⋅2bc bc=23,当且仅当b=c时,取等号,则BCAD的最小值为23.2(2024·山西运城·模拟预测)△ABC的内角A,B,C的对边分别为a,b,c.(1)求证:sin(A-B)sin A+sin B =a-bc;(2)若△ABC是锐角三角形,A-B=π3,a-b=2,求c的范围.【解析】(1)由两角差的正弦公式,可得sin(A-B)sin A+sin B=sin A cos B-cos A sin Bsin A+sin B,又由正弦定理和余弦定理,可得sin A cos B-cos A sin B sin A+sin B =a⋅a2+c2-b22ac-b⋅b2+c2-a22bca+b=2a2-2b2 2c(a+b)=(a+b)(a-b)c(a+b)=a-bc,所以sin(A-B)sin A+sin B=a-bc(2)由(1)知c=(a-b)(sin A+sin B)sin(A-B)=43(sin A+sin B)=43sin B+π3+sin B=4332sin B+32cos B=432sin B+12cos B=4sin B+π6因为△ABC是锐角三角形,所以A=B+π3<π2,可得0<B<π6,又由A+B>π2,可得B+π3+B>π2,所以B>π12,所以π4<B+π6<π3,所以22<sin B+π6<32,可得22<c<23,符合c>a-b=2.所以实数c的取值范围是(22,23).3(2024·山东潍坊·一模)在①tan A tan C-3tan A=1+3tan C;②2c-3acos B= 3b cos A;③a-3csin A+c sin C=b sin B这三个条件中任选一个,补充在下面问题中并作答.问题:在△ABC中,角A,B,C所对的边分别为a,b,c,且.(1)求角B的大小;(2)已知c=b+1,且角A有两解,求b的范围.【解析】(1)若选①:整理得1-tan A tan C=-3tan A+tan C,因为A+B+C=π,所以tan B=-tan A+C=-tan A+tan C1-tan A tan C=33,因为B∈0,π,所以B=π6;若选②:因为2c-3acos B=3b cos A,由正弦定理得2sin C-3sin Acos B=3sin B cos A,所以2sin C cos B =3sin A +B =3sin C ,sin C >0,所以cos B =32,因为B ∈0,π ,所以B =π6;若选③:由正弦定理整理得a 2+c 2-b 2=3ac ,所以a 2+c 2-b 22ac =32,即cos B =32,因为B ∈0,π ,所以B =π6;(2)将c =b +1代入正弦定理b sin B =c sin C ,得b sin B =b +1sin C,所以sin C =b +12b ,因为B =π6,角A 的解有两个,所以角C 的解也有两个,所以12<sin C <1,即12<b +12b <1,又b >0,所以b <b +1<2b ,解得b >1.4在△ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,b =23,2c -a sin C =b 2+c 2-a 2sin Bb(1)求角B ﹔(2)求2a -c 的范围.【解析】(1)2c -a sin C =b 2+c 2-a 2sin Bb⇒2c -a c =b 2+c 2-a 2⇒c 2+a 2-b 2=ac ,又cos B =a 2+c 2-b 22ac ,所以cos B =12,因为B ∈0,π ,所以B =π3.(2)在△ABC 中,由(1)及b =23,得b sin B =a sin A=c sin C =2332=4,故a =4sin A ,c =4sin C ,2a -c =8sin A -4sin C =8sin A -4sin 2π3-A =8sin A -23cos A -2sin A=6sin A -23cos A =43sin A -π6,因为0<A <2π3,则-π6<A -π6<π2,-12<sin A -π6 <1,-23<43sin A -π6<43﹒所以2a -c 的范围为-23,43 .5(2024·重庆·模拟预测)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知b =2b cos 2π12-A 2 -a sin B 2cos B2.(1)求角A 的大小;(2)若BP =PC ,且b +c =2,求AP 的最小值.【解析】(1)在△ABC 中,由正弦定理a sin A=bsin B ,可得a sin B =b sin A 又由b =2b cos 2π12-A 2 -a sin B 2cos B 2知2a sin B 2cos B 2=b ⋅2cos 2π12-A 2-1 ,即a sin B =b cos π6-A,得b sin A =b cos π6-A ,得sin A =cos π6-A =32cos A +12sin A ,得12sin A =32cos A ,所以tan A =3;又因为A ∈0,π ,所以A =π3.(2)由BP =PC ,得AP =12AB +12AC ,所以AP 2=12AB +12AC 2=14AB 2+14AC 2+12AB ⋅AC=14c 2+14b 2+12bc cos A =14c 2+14b 2+14bc =14b +c 2-bc ≥14b +c 2-b +c 2 2 =316b +c 2=34,当且仅当b =c b +c =2,即b =c =1时等号成立,故AP 的最小值为32.6(2024·安徽亳州·高三统考期末)在锐角ΔABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知a sin C=c cos A -π6.(1)求角A 的大小;(2)设H 为ΔABC 的垂心,且AH =1,求BH +CH 的范围.【解析】(1)由a sin C =c cos A -π6,结合正弦定理得sin A =cos A -π6,整理得sin A -π3 =0,又A 为锐角,故A =π3.(2)由ΔABC 是锐角三角形,则垂心H 必在ΔABC 内部,不妨设∠BAH =α,则α∈0,π3.公众号:慧博高中数学最新试题由H 为ΔABC 的垂心,则∠ABH =∠ACH =π6.在ΔABH 中使用正弦定理得,AH sin ∠ABH =BHsin ∠BAH ,整理得:BH =2sin α.同理在ΔACH 中使用正弦定理得,CH =2sin π3-α .BH +CH =2sin α+2sin π3-α =2sin π3+α ,结合α∈0,π3可得BH +CH ∈3,2 .题型四:转化为角范围问题1在锐角ΔABC中,内角A,B,C的对边分别为a,b,c,且(a+b)(sin A-sin B)=(c-b)sin C.(1)求A;(2)求cos B-cos C的取值范围.【解析】(1)因为a+bsin A-sin B=c-bsin C,所以a+ba-b=c-bc,即a2=b2+c2-bc.因为a2=b2+c2-2b cos A,所以cos A=1 2.因为A∈0,π2,所以A=π3.(2)由(1)知cos B-cos C=cos B-cos2π3-B=cos B+12cos B-32sin B=32cos B-32sin B=3cos B+π6.因为0<2π3-B<π20<B<π2,所以π6<B<π2,因为π3<B+π6<2π3,所以cos B+π6∈-12,12,所以cos B-cos C∈-32,32,即cos B-cos C的取值范围是-32,32.2已知△ABC的内角A、B、C的对边分别为a、b、c,且a-b=c cos B-cos A.(1)判断△ABC的形状并给出证明;(2)若a≠b,求sin A+sin B+sin C的取值范围.【解析】(1)△ABC为等腰三角形或直角三角形,证明如下:由a-b=c cos B-cos A及正弦定理得,sin A-sin B=sin C cos B-cos A,即sin B+C-sin A+C=sin C cos B-cos A,即sin B cos C+cos B sin C-sin A cos C-cos A sin C=sin C cos B-sin C cos A,整理得sin B cos C-sin A cos C=0,所以cos C sin B-sin A=0,故sin A=sin B或cos C=0,公众号:慧博高中数学最新试题又A、B、C为△ABC的内角,所以a=b或C=π2,因此△ABC为等腰三角形或直角三角形.(2)由(1)及a≠b知△ABC为直角三角形且不是等腰三角形,且A+B=π2,C=π2故B=π2-A,且A≠π4,所以sin A+sin B+sin C=sin A+sin B+1=sin A+cos A+1=2sin A+π4+1,因为A ∈0,π4 ∪π4,π2 ,故A +π4∈π4,π2 ∪π2,3π4,得sin A +π4 ∈22,1,所以2sin A +π4 +1∈2,2+1 ,因此sin A +sin B +sin C 的取值范围为2,2+1 .3(2024·山西·模拟预测)钝角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a cos B =c sin A ,则sin A +2sin B 的最大值是.【答案】54【解析】因为a cos B =c sin A ,由正弦定理得sin A cos B =sin C sin A ,又因为A ∈(0,π),可得sin A ≠0,所以sin C =cos B ,则C =π2-B 或C =π2+B .当C =π2-B 时,可得A =π2,与△ABC 是钝角三角形矛盾,所以C =π2+B ,由0<A <π20<B <π2A +B +C =π,则A =π2-2B >0,可得0<B <π4,所以sin A +2sin B =sin B +C +2sin B =cos2B +2sin B =-2sin 2B +2sin B +1=-2sin B -242+54,所以当sin B =24时,sin A +2sin B 的最大值为54.故答案为:54.4在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c .已知a =1,b =2.(1)若∠B =π4,求角A 的大小;(2)求cos A cos A +π6的取值范围.【解析】(1)由正弦定理得:sin A =a sin B b=12,∵0<A <π,∴A =π6或5π6,当A =5π6时,此时A +B >π,所以A =5π6舍去,所以A =π6.(2)cos A cos A +π6 =cos A 32cos A -12sin A =341+cos2A -14sin2A =34+1232cos2A -12sin2A=-12sin 2A -π3 +34(或者用积化和差公式一步得到12cos 2A +π6 +34)∵a <b ,∴A <B ,所以A 为锐角,又sin A =a sin B b≤22,所以A ∈0,π4 ,所以2A -π3∈-π3,π6,所以sin 2A -π3 ∈-32,12,所以cos A cos A +π6 ∈3-14,32.题型五:倍角问题1(多选题)在锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且c =b +2b cos A ,则下列结论正确的有()A.A =2BB.B 的取值范围为π6,π3C.ab的取值范围为(2,3)D.1tan B -1tan A+2sin A 的取值范围为533,3 【答案】ACD【解析】因为c =b +2b cos A ,所以由正弦定理得sin C =sin B +2sin B cos A ,又因为sin C =sin (A +B ),所以sin A +B =sin B +2sin B cos A ,即sin A cos B +sin B cos A =sin B +2sin B cos A ,整理得sin A cos B -sin B cos A =sin B ,即sin (A -B )=sin B对于A 项,因为A 、B 、C 均为锐角,所以A -B =B ,即A =2B ,故A 项正确;对于B 项,因为A =2B ,A +B +C =π,所以C =π-3B ,因为A 、B 、C 均为锐角,所以0<A <π20<B <π20<C <π2 ,即0<2B <π20<B <π20<π-3B <π2,解得π6<B <π4,所以B 的取值范围为π6,π4,故B 项错误.对于C 项,由正弦定理得a b=sin A sin B =sin2B sin B =2cos B ,B ∈π6,π4 ,所以cos B ∈22,32,所以ab=2cos B ∈(2,3).故C 项正确.对于D 项,由A 项知,A =2B ,由B 项知,π6<B <π4,所以π3<A <π2,所以1tan B -1tan A +2sin A =tan A -tan B tan B tan A +2sin A =sin A cos B -sin B cos Asin B sin A+2sin A =sin A -B sin B sin A +2sin A =sin B sin B sin A +2sin A =1sin A +2sin A ,A ∈π3,π2 ,令t =sin A ,则t ∈32,1,所以1tan B -1tan A+2sin A =1t +2t ,t ∈32,1 ,令h (t )=1t +2t ,t ∈32,1 ,则h(t )=-1t 2+2=2t 2-1t 2>0,所以h (t )在32,1 上单调递增,又h 32=533,h (1)=3,所以h (t )∈533,3 ,即1tan B -1tan A +2sin A 范围为533,3 ,故D 项正确.故选:ACD .2(多选题)(2024·河北·三模)已知△ABC 内角A 、B 、C 的对边分别是a 、b 、c ,A =2B ,则()A.a 2=c b +cB.b c +a 2b 2的最小值为3C.若△ABC 为锐角三角形,则cb∈1,2 D.若a =26,b =3,则c =5【答案】BCD【解析】由A =2B ,得sin A =sin2B =2sin B cos B ,由正弦定理得a =2b cos B ,由余弦定理得a =2b ⋅a 2+c 2-b 22ac,则c -b a 2-b 2-bc =0,当b ≠c 时,a 2-b 2-bc =0,即a 2=b b +c ,当b =c 时,B =C ,又A =2B ,所以A =90°,B =C =45°,所以a =2b ,所以a 2-b 2-bc =2b 2-b 2-b ⋅b =0,所以a 2=b b +c ,故选项A 错误;由a 2=b b +c ,则b c +a 2b 2=b c +b 2+bc b2=b c +c b +1≥3,当且仅当b =c 时,故选项B 正确;在△ABC 中,sin B ≠0,由正弦定理,c b =sin C sin B =sin 2B +B sin B =sin2B cos B +cos2B sin B sin B =2sin B cos 2B +2cos 2B -1 sin Bsin B =4cos 2B -1,若△ABC 为锐角三角形,又A =2B ,则B ∈0,π4 ,C =π-3B <π2,故B >π6,所以B ∈π6,π4,所以cos B ∈22,32,则cos 2B ∈12,34 ,所以4cos 2B -1∈1,2 ,故选项C 正确;公众号:慧博高中数学最新试题在△ABC 中,由正弦定理a sin A=b sin B =csin C ,又A =2B ,a =26,b =3,得3sin B =26sin2B =262sin B cos B,则cos B =63由余弦定理,b 2=a 2+c 2-2ac cos B ,得9=24+c 2-2×26×63c ,整理得c2-8c+15=0,解得c=5,或c=3,当c=3时,有C=B,又A=2B,所以B=C=45°,A=90°,因为b2+c2≠a2,则c=3不成立,故选项D正确.故选:BCD .3(2024·江西九江·一模)锐角三角形ABC中,若∠C=2∠B,则ABAC的范围是()A.(0,2)B.(2,2)C.(2,3)D.(3,2)【答案】C【解析】由正弦定理得ABAC=cb=sin Csin B=sin2Bsin B=2sin B cos Bsin B=2cos B,由于三角形ABC为锐角三角形,故0<B<π20<C=2B<π2π2<B+C=3B<π,所以π6<B<π4,所以2cos B∈2,3.故选C.4在锐角△ABC中,内角A,B,C所对的边分别为a,b,c,若a2=b2+bc,则cb+2cos2B的最小值为.【答案】42-1/-1+42【解析】由余弦定理得a2=b2+c2-2bc cos A,又a2=b2+bc,所以b2+bc=b2+c2-2bc cos A,即bc=c2-2bc cos A,所以b=c-2b cos A,由正弦定理得sin B=sin C-2sin B cos A,即sin B=sin A+B-2sin B cos A=sin A cos B-cos A sin B=sin A-B,因为A,B∈0,π,所以A-B∈-π,π,所以B=A-B或B+A-B=π(舍去),所以A=2B,c b +2cos2B=sin Csin B+2cos2B=sin A+Bsin B+2cos2B=sin3Bsin B +2cos2B=sin B cos2B+cos B sin2Bsin B+2cos2B=cos2B-sin2B+2cos2B sin Bsin B +2 cos2B=4cos2B+2cos2B -1≥24cos2B⋅2cos2B-1=42-1,当且仅当4cos2B=2cos2B,即cos2B=22时取等号,所以c b +2cos 2B的最小值为42-1.故答案为:42-1.题型六:角平分线问题与斯库顿定理1△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知4a sin A =b sin C cos A +c sin A cos B .(1)求sin Asin C的值;(2)若BD 是∠ABC 的角平分线.(i )证明:BD 2=BA ·BC -DA ·DC ;(ii )若a =1,求BD ⋅AC 的最大值.【解析】(1)因为△ABC 中,4a sin A =b sin C cos A +c sin A cos B ,故4sin 2A =sin B sin C cos A +sin C sin A cos B =sin C (sin B cos A +sin A cos B )=sin C sin A +B =sin 2C ,因为A ,C ∈(0,π),∴sin A ,sin C >0,故sin A sin C =12;(2)(i )证明:△ABD 中,由正弦定理得AD sin ∠ABD =ABsin ∠ADB ①,又AB 2=AD 2+BD 2-2AD ⋅BD ⋅cos ∠ADB ②,同理在△BCD 中,CD sin ∠CBD =BCsin ∠CDB ③,BC 2=CD 2+BD 2-2CD ⋅BD ⋅cos ∠CDB ④,BD 是∠ABC 的角平分线,则∠ABD =∠CBD ,则sin ∠ABD =sin ∠CBD ,公众号:慧博高中数学最新试题又∠ADB +∠CDB =π,故sin ∠ADB =sin ∠CDB ,cos ∠ADB +cos ∠CDB =0,故①÷③得AD CD =AB BC ⑤,即AD AC =AB AB +BC ,∴CD AC =BC AB +BC,由CD ×②+AD ×④得,CD ⋅AB 2+AD ⋅BC 2=CD ⋅AD AD +CD +CD +AD ⋅BD 2=CD ⋅AD ⋅AC +AC ⋅BD 2,则BD 2=CD ⋅AB 2+AD ⋅BC 2AC-CD ⋅AD=BC ⋅AB 2+AB ⋅BC 2AB +BC -CD ⋅AD =BA ⋅BC -DA ⋅DC ,即BD 2=BA ·BC -DA ·DC ;(ii)因为sin Asin C =12,故c=2a,则由⑤得ADCD=ABBC=2,则AD=23AC,DC=13AC,由a=1以及(i)知BD2=2-29AC2,即BD2+29AC2=2,则BD2+29AC2≥223BD⋅AC,当且仅当BD2=29AC2,结合BD2+29AC2=2,即BD=1,AC=322时等号成立,故BD⋅AC≤322,即BD⋅AC的最大值为322.2在△ABC中,内角A,B,C的对边分别是a,b,c,a=23,6cos C-a sin C=3b.(1)求角A的大小;(2)设∠ABC的平分线与AC交于点D,当△ABC的面积最大时,求BD的长.【解析】(1)6cos C-a sin C=3b,a=23,所以3a cos C-a sin C=3b,由正弦定理得3sin A cos C-sin A sin C=3sin B=3sin(A+C),即3sin A cos C-sin A sin C=3sin A cos C+3sin C cos A,得-sin A sin C=3sin C cos A,又sin C>0,所以-sin A=3cos A,即tan A=-3,又0<A<π,所以A=2π3;公众号:慧博高中数学最新试题(2)由余弦定理得a2=b2+c2-2bc cos A 即b2+c2+bc=12,而b≥0,c≥0,∴12=b2+c2+bc≥3bc,即bc≤4,∴S△ABC=12bc sin A=34bc≤ 3.当且仅当b=c=2取等号此时∠ABC=∠C=π6,则∠ABD=π12,∠ADB=π4,在△ABD中,由正弦定理得ABsin∠ADB=BDsin A,即2sinπ4=BDsin2π3,解得BD=6.3(2024·山西吕梁·一模)设△ABC的内角A,B,C的对边分别为a,b,c,已知b cos C+2a cos A=-c cos B.(1)求A;(2)设A的角平分线交BC于点M,AM=1,求b+4c的最小值.【解析】(1)∵b cos C+2a cos A=-c cos B.由正弦定理,得sin B cos C+sin C cos B=-2sin A cos A∴sin(B+C)=-2sin A cos A,即sin A=-2sin A cos A∵A∈0,π∴sin A>0∴cos A=-12,即A=2π3(2)由题意可得,S△ABM+S△AMC=S△ABC∴1 2c⋅AM⋅sin60°+12b⋅AM⋅sin60°=12bc sin120°∴b+c=bc即1b+1c=1∴b+4c=(b+4c)1b +1 c=5+b c+4c b≥5+2b c⋅4c b=9当且仅当bc=4cb,即b=3,c=32时,等号成立,所以b+4c的最小值为9.4(2024·广东佛山·模拟预测)记锐角△ABC的内角A、B、C的对边分别为a、b、c,已知sin2C+ sin2B-sin2A=sin B sin C.(1)求A;(2)已知A的角平分线交BC于点D,求BDCD的取值范围.【解析】(1)因为sin2C+sin2B-sin2A=sin B sin C,由正弦定理可得c2+b2-a2=bc,所以cos A=c2+b2-a22bc=12,又A∈0,π,所以A=π3.(2)因为BDCD =S△ABDS△ACD=12AB⋅AD sin∠BAD12AC⋅AD sin∠CAD=ABAC=cb=sin C sin B =sin2π3-Bsin B=sin2π3cos B-cos2π3sin Bsin B=32tan B+12,因为△ABC为锐角三角形,所以0<B<π20<2π3-B<π2,解得π6<B<π2,所以tan B>33,所以12<32tan B+12<2,即BDCD的取值范围为12,2.题型七:中线问题1在△ABC 中,∠B =π3,D 在边AC 上,∠A ,∠B .∠C 对应的边为a ,b ,c .(1)当BD 为∠B 的角平分线且BD =3时,求1a +1c的值;(2)当D 为AC 的中点且BD =23时,求2c +a 的取值范围.【解析】(1)由题意知,BD 为角平分线且长度已知,则利用面积相等可得12ac sin π3=12BD ⋅c ⋅sin π6+12BD ⋅a ⋅sin π6,整理可得32ac =32a +c ,所以1a +1c =c +aac=1.(2)以a ,c 为边做平行四边形,另一个端点设为M ,连接BM ,易知BM 交AC 于点D .设∠DBC =θ,则由正弦定理知:c sin θ=43sin 2π3=a sin π3-θ 化简可得c =8sin θ,a =8sin π3-θ ,.则2c +a =16sin θ+8sin π3-θ ,合并化简可2c +a =83sin θ+π6,易知θ∈0,π3 ,则θ+π6∈π6,π2,∴2c +a =83sin θ+π6∈43,83 .∴2c +a 的取值范围为43,83 .2(2024·高三·黑龙江大庆·期末)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且sin C =c 3cos B2,b =3.(1)求B ;(2)求△ABC 的AC 边中线BD 的最大值.【解析】(1)由题意sinB 2>0,结合已知有2sin B 2sinC =c 3×2⋅sin B 2cos B 2=c3sin B ,所以2c ⋅sin B 2=c3⋅b ,而b =3,所以sinB 2=12,而B 2∈0,π2 ,所以B 2=π6,解得B =π3.(2)由题意BD =12BA +BC ,所以BD =12BA +BC =12BA +BC 2=12BA 2+2BA ⋅BC +BC 2=12c 2+ac +a 2,而由余弦定理有9=b 2=a 2+c 2-2ac cos π3=a 2+c 2-ac ,所以BD =129+2ac ,由基本不等式可得9=a 2+c 2-ac ≥2ac -ac =ac ,当且仅当a =c =3时,等号成立,即ac max =9,所以BD max =129+2ac max =332,即△ABC 的AC 边中线BD 的最大值为332.3(2024·河北·模拟预测)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且sin A -3sin B a =c -b sin C +sin B .(1)求角C 的大小;(2)若边c =2,边AB 的中点为D ,求中线CD 长的最大值.【解析】(1)因为sin A -3sin B a =c -b sin C +sin B ,由正弦定理可得:a -3b a =c -b c +b ,则a 2-3ab =c 2-b 2,即a 2+b 2-c 2=3ab ,由余弦定理可得:cos C =a 2+b 2-c 22ab =3ab 2ab=32,因为C ∈0,π ,所以C =π6.(2)因为D 为AB 的中点,所以CD =12CA +CB,则CD 2=14CA +CB 2=14CA 2+12CA ⋅CB +14CB 2=14a 2+3ab +b 2 ,又由余弦定理得,c 2=a 2+b 2-2ab cos B ,即4=a2+b2-3ab,所以CD2=144+23ab=1+32ab.由4=a2+b2-3ab得,4+3ab=a2+b2≥2ab,则ab≤42+3,当且仅当a=b=22+3取等号,即CD2≤1+32×42+3=1+232+3=7+43=3+22,所以CD≤3+2,即中线CD长的最大值为3+2.4(2024·高三·河北张家口·期末)在△ABC中,内角A,B,C的对边分别为a,b,c,a cos C-2b cos B+c cos A=0.(1)若a=3,b=7c,求△ABC的面积;(2)已知AD为边BC的中线,且AD=3,求a+c的最大值.【解析】(1)由正弦定理,得sin A cos C-2sin B cos B+sin C cos A=0,所以sin A+C=2sin B cos B.又A+B+C=π,所以sin B=2sin B cos B,又sin B≠0,所以cos B=12,又B∈0,π,故B=π3.由余弦定理,得b2=a2+c2-2ac cos B⇒7c2=9+c2-3c,由c>0,解得c=1,所以△ABC的面积S=12ac sin B=12×3×1×32=334.(2)设∠BDA=θ,则∠BAD=2π3-θ.由B=π3及正弦定理可得,csin∠BDA=a2sin∠BAD=ADsin B=2,所以c=2sinθ,a=4sin2π3-θ ,故a+c=4sin2π3-θ+2sinθ=4sinθ+23cosθ=2727sinθ+37cosθ=27sinθ+φ,其中tanφ=32,φ∈0,π4,当sinθ+φ=1时,a+c的最大值为27.5(2024·浙江·模拟预测)在△ABC中,角A,B,C的对边分别为a,b,c且b cos C+c sin B=a, a+2bsin A+2sin B=62,(1)求b;(2)求AC边上中线长的取值范围.【解析】(1)因为b cos C+c sin B=a,由正弦定理可得sin B cos C +sin C sin B =sin A =sin B +C =sin B cos C +cos B sin C ,整理得sin C sin B =cos B sin C ,且C ∈0,π ,则sin C ≠0,可得sin B =cos B ,即tan B =1,且B ∈0,π ,则B =π4,由正弦定理a sin A =bsin B =2R ,其中R 为△ABC 的外接圆半径,可得a =2R sin A ,b =2R sin B ,又因为a +2b sin A +2sin B =2R sin A +4R sin B sin A +2sin B=2R =62,所以b =2R sin B =62×22=6.(2)在△ABC 中,由余弦定理b 2=a 2+c 2-2ac cos B ,即36=a 2+c 2-2ac ,则a 2+c 2=36+2ac ≥2ac ,当且仅当a =c 时,等号成立,可得ac ≤362-2=182+2 ,即ac ∈0,182+2设AC 边上的中点为D ,因为BD =12BA +12BC ,则BD 2=12BA +12BC 2=14BA 2+12BA ⋅BC +14BC2=14a 2+c 2 +12ac cos B =1436+2ac +24ac =9+22ac ∈9,27+182 ,即BD ∈3,3+32 ,所以AC 边上中线长的取值范围为3,3+32 .题型八:四心问题1(2024·全国·模拟预测)已知锐角三角形ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且c -b sin C =a cos C -b sin B +a cos B sin C .(1)求角A ;(2)若H 为△ABC 的垂心,a =2,求△HBC 面积的最大值.【解析】(1)由题可得,c -b sin C =a cos C sin B -b sin B +a cos B sin C =a sin B +C -b sin B =a sin A -b sin B结合正弦定理可得c -b c =a 2-b 2,即bc =b 2+c 2-a 2,∴cos A =b 2+c 2-a 22bc=12,又A ∈0,π2 ,∴A =π3.(2)设边AC ,AB 上的高分别为BE ,CF 则H 为BE 与CF 的交点,则在四边形AFHE 中,∠FAE +∠FHE +π2+π2=2π,∵∠FAE =π3,∴∠FHE =2π3,故∠BHC =2π3,在△BHC 中,S △BHC =12BH ⋅HC sin 2π3=34BH ⋅HC ,BH 2+HC 2-2BH ⋅HC ⋅cos 2π3=4,则4=BH 2+HC 2+BH ⋅HC ≥2BH ⋅HC +BH ⋅HC ,即BH ⋅HC ≤43,当且仅当BH =HC 时取等号.∴S △BHC ≤33,故△HBC 面积的最大值为33.2在锐角△ABC 中,cos A =22,点O 为△ABC 的外心.(1)若AO =xAB +yAC,求x +y 的最大值;(2)若BC =2.①求证:OA +sin2B ⋅OB -cos2B ⋅OC =0;②求3OA +2OB +OC的取值范围.【解析】(1)取AB 的中点D ,连接OD ,则OD ⊥AB ,不妨设|AB |=m ,|AC |=n ,因AO ⋅AB =(AD +DO )⋅AB =AD ⋅AB =12m 2,同理可得AO ⋅AC =12n 2,则由AO =xAB +yAC 可得AO ⋅AB =x |AB |2+yAB ⋅AC=xm 2+ymn cos A =xm 2+22ymn =12m 2,即得:2mx +2ny =m ①又由AO =xAB +yAC 可得AO ⋅AC =xAB ⋅AC +y |AC |2=xmn cos A +yn 2=22xmn +yn 2=12n 2,即得:2mx +2ny =n ②联立①,②,解得:x =1-2n2m y =1-2m 2n,则x +y =1-2n 2m +1-2m 2n =2-22n m +m n,因n m +mn≥2,当且仅当m =n 时等号成立.即当m =n 时,x +y 取得最大值2-2.(2)①由cos A =22,0<A <π2,则A =π4,由图知∠BOC =2∠A =π2,则OB ⋅OC =0,设△ABC 的外接圆半径为R ,公众号:慧博高中数学最新试题则|sin2B ⋅OB -cos2B ⋅OC |2=sin 22B ⋅|OB |2+cos 22B ⋅|OC|2=R 2,即|sin2B ⋅OB -cos2B ⋅OC |=R ,又OA ⋅(sin2B ⋅OB -cos2B ⋅OC)=R 2(sin2B cos ∠AOB -cos2B cos ∠AOC ),而∠AOB =2π-∠BOC -∠AOC =3π2-∠AOC ,则cos ∠AOB =-sin ∠AOC =-sin2B ,而cos ∠AOC =cos2B ,故OA ⋅(sin2B ⋅OB -cos2B ⋅OC)=-R 2(sin 22B +cos 22B )=-R 2,不妨设OA 与sin2B ⋅OB -cos2B ⋅OC的夹角为θ,则cos θ=OA ⋅(sin2B ⋅OB -cos2B ⋅OC )|OA |⋅|sin2B ⋅OB -cos2B ⋅OC |=-R 2R 2=-1,因θ∈[0,π],故θ=π,即OA =-sin2B ⋅OB +cos2B ⋅OC,故OA +sin2B ⋅OB -cos2B ⋅OC =0 ,得证.②因|BC |=2,∠BOC =π2,则|BC |=2R =2,即R =1,3OA +2OB +OC 2=9OA 2+4OB 2+OC 2+12OA ⋅OB +6OA ⋅OC +4OB ⋅OC =14+12cos2C +6cos2B +4cos2A =14+12cos2C -6sin2C =14+65cos (2C +θ),其中,tan θ=12,且θ为锐角,故0<θ<π4,因0<C <π20<B =3π4<π2, 可得C ∈π4,π2 ,则2C ∈π2,π ,2C +θ∈π2+θ,π+θ .又由tan θ=sin θcos θ=12sin 2θ+cos 2θ=10<θ<π4 ,解得:sin θ=55cos θ=255, 因π2<π2+θ<3π4,而函数y =cos x 在π2+θ,π 上单调递减,在(π,π+θ)上单调递增,又由cos π2+θ=-sin θ=-55,cos (π+θ)=-cos θ=-255,故-1≤cos (2C +θ)<-55,则14-65≤14+65cos (2C +θ)<8,于是3-5=14-65≤3OA +2OB +OC<8,即3OA +2OB +OC的范围为[3-5,22).3已知△ABC 的角A ,B ,C 所对的边分别为a ,b ,c ,点O 是△ABC 所在平面内的一点.(1)若点O 是△ABC 的重心,且OA ⋅OB=0,求cos C 的最小值;(2)若点O 是△ABC 的外心,BO =λBA +μBC (λ,μ∈R ),且a =4,c =6,mλ+μ-12sin 2B (m ∈R )有最小值,求m 的取值范围.【解析】(1)延长AO ,BO ,CO 分别交边BC ,AC ,AB 于点D ,E ,F ,依题意有FO =12AB =12c ,CF =32c .在△CAF和△CAB中,由余弦定理有cos∠CAF=cos∠CAB,即b2+c22-3c2 22b⋅c2=b2+c2-a22bc,化简有a2+b2=5c2,cos C=a2+b2-c22ab=a2+b2-a2+b252ab=45⋅a2+b2 2ab ≥45⋅2ab2ab=45.当且仅当a=b时,等号成立,所以cos C的最小值为4 5.(2)由题意可知:BO⋅BA=18=36λ+24μcos B BO⋅BC=8=24λcos B+16μ,解得λ=3-2cos B6sin2Bμ=2-3cos B4sin2B,则mλ+μ-1 2sin2B=m(3-2cos B)6+2-3cos B4-sin2B2=6cos2B-(4m+9)cos B+6m12.今t=cos B,t∈(-1,1),原式=6t2-(4m+9)t+6m有最小值,所以t-4m+912∈(-1,1).解得m∈-214,34.4从①(a+b+c)⋅(sin A+sin B-sin C)=a sin B+2b sin A;②2a sin A cos B+b sin2A= 23a cos C这两个条件中任选一个,补充在下面的问题中,并解答.在△ABC中,角A,B,C所对的边分别为a,b,c,且满足:.(1)求角C的大小;(2)若c=3,△ABC的内心为I,求△ABI周长的取值范围.注:如果选择多个条件分别作答,按第一个解答计分.【解析】(1)选择条件①,(a+b+c)(sin A+sin B-sin C)=a sin B+2b sin A,在△ABC中,由正弦定理得(a+b+c)(a+b-c)=ab+2ba,整理得a2+b2-c2=ab,则由余弦定理,cos C=a2+b2-c22ab=12,又C∈(0,π),所以C=π3.选择条件②,2a sin A cos B+b sin2A=23a cos C,于是a sin A cos B+b sin A cos A=3a cos C,在△ABC中,由正弦定理得,sin2A cos B+sin A sin B cos A=3sin A cos C,。
专题24解三角形中的最值、范围问题(解析版)
专题24 解三角形中的最值、范围问题解三角形问题是高考高频考点,命题大多放在解答题的第一题,主要利用三角形的内角和定理,正、余弦定理、三角形面积公式等知识解题,解题时要灵活利用三角形的边角关系进行“边转角” “角转边”,另外要注意a c,ac,a2 c 2三者的关系 . 高考中经常将三角变换与解三角形知识综合起来命题,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理实现边角互化;以上特征都不明显时,则要考虑两个定理都有可能用到.而三角变换中主要是“变角、变函数名和变运算形式” ,其中的核心是“变角” ,即注意角之间的结构差异,弥补这种结构差异的依据就是三角公式 .a b c1、正弦定理:2R,其中R为ABC 外接圆的半径sin A sinB sinC正弦定理的主要作用是方程和分式中的边角互化 . 其原则为关于边,或是角的正弦值是否具备齐次的特征 . 如果齐次则可直接进行边化角或是角化边,否则不可行学/科-+ 网2 2 2 2 2 2例如:(1) sin A sin B sin AsinB sin C a b ab c(2)bcosC ccosB a sin B cosC sinC cosB sin A (恒等式)bc sin B sinC(3)a 2sin2Aa sin A2、余弦定理:a2 b2 c2 2bc cos A22变式:a2b c 2bc 1 cosA 此公式在已知a, A的情况下,配合均值不等式可得到 b c和bc 的最值4、三角形中的不等关系(1)任意两边之和大于第三边:在判定是否构成三角形时,只需验证较小的两边之和是否比第三边大即可 . 由于不存在等号成立的条件,在求最值时使用较少(2)在三角形中,边角以及角的三角函数值存在等价关系:a b A B sinA sinB cosA cosB其中由A B cosA cosB 利用的是余弦函数单调性,而A B sinA sinB 仅在一个三角形内有效.5 、解三角形中处理不等关系的几种方法(1)转变为一个变量的函数:通过边角互化和代入消元,将多变量表达式转变为函数,从而将问题转化为求函数的值域(最值)(2)利用均值不等式求得最值经典例题】例 4. 【衡水金卷信息卷三】已知 的三边分别为 , , ,所对的角分别为 , , ,且满足例 1. 【2018 届百校联盟 TOP20高三四月联考全国一卷】已知四边形 中, 设 与 面积分别为 ,则 的最大值为 _______________ . 【答案】【解析】 分析:利用余弦定理推 ,求出 的表达式, 利用二次函数以及余弦函数的值 的范围,求 的最大值即可.点睛:求解三角函数的最值 (或值域 )时一定要注意自变量的取值范围,由于三角函数的周期性,正弦函数、 余弦函数的最大值和最小值可能不在自变量区间的端点处取得.例 2. 【2018 届普通高等学校招生全国统一考试高三下学期第二次调研】得 ,所以 ,则由余弦定理得 ,解得 ,又 , 所以 的范围是 .例 3. 【2018届浙江省杭州市高三第二次检测】在 △ABC 中,角 A ,B ,C 所对的边分别为 a ,b ,c .若对任为 ,则实数 a 的取值范围是【解析】 由 ,. 【答案】 .在 中,角 A,B,C 所对的边分别意 λ∈ R ,不等式恒成立,则 的最大值为 __.【答案】 2(2)因为由此可求当 取最大值时,求 边的长 ..【答案】解析】由 的三边分别为 , , 可得:可知:,,例 5. 【2018届湖南省株洲市高三检测(二) 】已知 中,角 所对的边分别是 , 且 (1) 求角 的大小; (2) 设向量 ,边长 ,当 取最大值时,求 边的长 . 【答案】 (1) (2) .【解析】分析: ( 1)由题意,根据正弦定理可得 ,再由余弦定理可得 ,由此可求角 的大小;,且 的外接圆的面积为 ,则 的最大值的取值范围为(2)因为所以当 时, 取最大值,此时, 由正弦定理得,例 6. 【2018 届四川省攀枝花市高三第三次( 4 月)统考】已知 的内角 的对边分别为 其 面积为 , 且. 学/ 科 /* 网(Ⅰ)求角 ;(II )若 ,当 有且只有一解时 , 求实数 的范围及 的最大值 .【答案】 (Ⅰ ) .( Ⅱ) .【解析】分析: (Ⅰ)利用余弦定理和三角形的面积公式化简 得到 , 再解这个三角方程即得 A 的值 . (II )先根据 有且只有一解利用正弦定理和三角函数的图像得到 m 的取值范围 ,再写出 S 的函数表达式求其最大值 . 详解: ( Ⅰ )由己知(Ⅱ) 由己知,当 有且只有一解时, 或 ,所以 ;当 时, 为直角三角形,,所以,当 时, 综上所述, 例 7. 【2018 届四川省资阳市高三 4 月(三诊)】在 ABC 中,角 A ,B ,C 的对边分别为 a ,b ,c ,且当 时,由正弦定理a b sinA sinB c sinC sinB .1)求 A .(2)若 a 4,求 b 2 c 2的取值范围.【答案】(1) A ;( 2) 16,32 .b 2c 2 16 bc 16 ,进而可得结果 .试题解析:( 1)根据正弦定理得 a b a b c c b ,即b2 c 2 a 21 1 则b 2c bc a 21,即 cosA 21,由于 0 A π,方法点睛】本题主要考查正弦定理及余弦定理的应用,属于中档题中同时出现 ab 及 b 2 、 a 2时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答1)求函数 f x 的单调增区间;2)设 ABC 的内角 A , B , C 所对的边分别为 a , b , c ,且 a , b , c 成等比数列,求 fB的取值范围.a2 b 2 c 2bc ,. 在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据 . 除了直接利用两定理求边和角以外, 恒等变形过程中,一般来说 , 当条件例 8.【2018 届甘肃省张掖市高三三诊】已知n sin x 4,cos 4x ,设函数 答案】 (1) 4k,4k33, k Z . (2) 1, 3 12 解析】试题分析: xx sin ,cos44 sin x2 6 2 1 1 ,根x,cos x , 441)由题 f x m nxx ,co s 4x当且仅当 a c 时取等号),例 9. 【2018届吉林省吉林市高三第三次调研】锐角 A BC 中, A,B,C 对边为 a,b,c ,b 2 a 2c 2sin B C 3accos A C(1)求 A 的大小; (2)求代数式 b c的取值范围 . 【答案】( 1) (2) 3 b c2a 3 a【解析】试题分析: ( 1)由 b 2a 2c 2sin B C 3accos A C 及余弦定理的变形可得2cosBsinA 3cosB , 因为 cosB 0,故得 sinA 3,从而可得锐角 ABC 中 A .(2)利用正23 2sinB sin B 弦定理将所求变形为 b c 32sin B ,然后根据 B 的取值范围求出代数 a sinA 6 6bc 式 b c的取值范围即可.试题解析:a(1)∵b 2 a 2 c 2 2accosB , b 2 a 2 c 2sin B C 3accos A C , ∴ 2accosBsin B C 3accos A C , ∴ 2cosBsin A 3cos B ,∴ 2cosBsinA 3cosB ,正弦函数的性质 2k 2k 可求其单调增区间;2 2 6 22)由题 b 22 2 2 2 2a cb ac ac 2ac ac 1 ac 可知cosB2ac 2ac 2ac 2f B 的取值范围.所以 0 B ,3B ,6263f B 的取值范围为 1, 3212当且仅当 a c 时取等号),所以 0 B , B,由此可求3 6 2 6 31 f B ,综上,b c sinB sinCsinA2sinB sin B3sinA3sinB 3cosB 2 22sinsin3B6,∵ ABC 为锐角三角形,且0B20C2即{0B2 2 B32, 解得6 B 2 ,2∴B3 6 3sin B1.∴3 6bc a2 .故代数式 b c的取值范围 3, 2 . a 点睛:bc(1)求 b c的取值范围时,可根据正弦定理将问题转化为形如a题解决,这是在解三角形问题中常用的一种方法,但在解题中y Asin x 的函数的取值范围的问 x 的范围. 2)解答本题时要注意 “ 锐角三角形 ”这一条件的运用,根据此条件可的求得 B 的范围,然后结合函数的图象可得 sin B 的范围,以达到求解的目的.例 10. 【 2018届衡水金卷信息卷(一) 】已知 ABC 的内角 A,B,C 的对边分别为 a,b, c ,若m b 2c,cosB ,n a,cosA ,且 m//n .231)求角 A 的值;(2)已知 ABC 的外接圆半径为 2 3,求 ABC 周长的取值范答案】 (1) A (2) 4,63解析】 试题分析:(1)由 m/ /n ,得(6 2 c ) cosA acosB 0 ,利用正弦定理统一到角上易得22)根据题意,得 a 2RsinA 2 ,由余弦定理, 得 a 2 b c 23bc ,结合均值不等式1 cosA ; 22所以 b c 的最大值为 4,又 b c a 2 ,从而得到 ABC 周长的取值范围 .所以 ABC 的周长的取值范围为 4,6 .精选精练】2.【2018 届湖南省衡阳市高三二模】 在 中,已知 为 的面积 ),若 , 则的取值范围是 ( )A. B. C. D. 【答案】 C解析】,又1得cosA . 又 A 0, ,所以 A232)根据题意,得a 2RsinA 4 3 32.由余弦定理, 得 a 32b 2c 2 2bccosA b c 2 3bc , 即 3bc b c 4 3bc2,整理得2b c 216 ,当且仅b c 2时,取等号,所以 b c 的最大值为 4. 又b c a 2, 所以 2 b c 4 ,所以 4 a b c 6.1. 【2018 届东莞市高三第二次考试】在 中,若 ,则 的取值范围为 ( ) B. C.【解析】因为 ,,A.D. 答案】 D所以,即3.【 2018届四川省绵阳市高三三诊】四边形 ABCD 中, AB 2, BC CD DA 1,设 ABD 、22BCD 的面积分别为 S 1、 S 2,则当 S 12 S 22取最大值时,, 考查同角三角函数关系 , 考查利用余弦定理解三角形 , 考 查二次函数最值的求法 . 首先根据题目所求 , 利用三角形面积公式 , 写出面积的表达式 , 利用同角三角函数关 系转化为余弦值 ,利用余弦定理化简 ,再利用配方法求得面积的最值 ,并求得取得最值时 BD 的值.4.【2018 届广东省肇庆市高三第三次模拟】 已知 的角 对边分别为 ,若5.【 2018 届辽宁省辽南协作校高三下学期一模】设 的内角 所对的边分别为 且.【答案】点睛:在解三角形问题中,一般需要利用余弦定理结合均值不等式,来求两边和的取值范围或者是三角形 的面积的最值,只需运用余弦定理,并变形为两边和与两边积的等式,在利用均值不等式转化为关于两边 和或两边积的不等式,解不等式即可求出范围 ., ,故选 C.BD.【答案】 102点睛】本小题主要考查三角形的面积公式的应用 ,且的面积为 ,则 的最小值为. 【答案】+, 则 的范围是【解析】由 + 得 , 所以 ,即,再由余弦定理得 ,又 ,所以 的范围是,即 ,解得6.【 2018届四川省攀枝花市高三第三次( 4月)统考】已知锐角ABC的内角A、B、C 的对边分别为a、b、c , 且2acosC c 2b,a 2, 则ABC的最大值为_____ .【答案】3即bc 4,所以ABC的最大值为S max1 bcsinA 1 4 3 3 .2 2 2 点睛:本题主要考查了利用正弦定理和三角函数的恒等变换求解三角形问题,对于解三角形问题,通常利用正弦定理进行“边转角”寻求角的关系,利用“角转边”寻求边的关系,利用余弦定理借助三边关系求角,利用两角和差公式及二倍角公式求三角函数值 . 利用正、余弦定理解三角形问题是高考高频考点,经常利用三角形内角和定理,三角形面积公式,结合正、余弦定理解题 .7.【 2018届宁夏石嘴山市高三 4 月适应性测试(一模)】已知a,b,c分别为ABC内角A,B,C 的对边,且bsinA 3acosB .(1)求角B ;( 2)若b 2 3,求ABC面积的最大值 . 【答案】( 1)B ;(2)3 3.3【解析】试题分析:(1)由正弦定理边化角得到tanB 3 ,从而得解;(2)由余弦定理得b2 a2 c2 2accosB ,12 a2 c2 ac 结合a2 c2 2ac 即可得最值 . 试题解析:(1)∵bsinA 3acosB ,∴由正弦定理可得sinBsinA 3sin AcosB ,8.【 2018届四川省攀枝花市高三第三次( 4 月)统考】已知 的内角 的对边分别为 其面 积为 , 且 .即 ABC 面积的最大值为 3 3 .Ⅰ )求角 ;(II ) 若 , 当 有且只有一解时 , 求实数 的范围及 的最大值 . 答案】 (Ⅰ ) .( Ⅱ)解析】分析: ( Ⅰ)利用余弦定理和三角形的面积公式化简 得到,再解这个三角方程即得 A 的值 . (II )先根据 有且只有一解利用正弦定理和三角函数 的图像得到 m 的取值范围 ,再写出 S 的函数表达式求其最大值 .由余弦定理得 , 所以 ,即 ,,所以 .由正弦定理】在 ABC 中,内角 A,B,C 所对的边分别为 a,b,c ,已知 asinC3ccosA .1)求角 A 的大小;(2)若 b 2,且 B ,求边 c 的取值范围 .43答案】 (1) A ;(2) 2, 3 1 .∵ B ,∴1 tanB3 ,∴2 c 3 1 , 4310.【 2018 届辽宁省沈阳市东北育才学校高三三模】已知ABC 三个内角 A,B,C 的对边分别为 a,b,c ,1)求角 C 的值;( 2)求 cos2A cos A B 的取值范围. 【答案】( 1) 2;(2) 0, 3 3在 ABC 中,由正弦定理, bc sinB sinC ∴c22sin B2sinC 3 3cosBsin B sinB sinB tan BABC 的面积 S 满足b 22c .点睛:本题在转化 析,不能死记硬背时, 综上所述, .有且只有一解时 , 容易漏掉 m=2这一种情况 . 此时要通过正弦定理和正弦函数的图像分 ,所以,当9.【衡水金卷信息卷(二)即 c 的取值范围为442tanC 3 ,又 0 C , C 30 A 3, 3 2A 3 3sin 2A 3 0,, 311.【2018 届江苏省姜堰、溧阳、前黄中学高三 4月联考】在 ABC 中,内角 A,B,C 的对边分别为 a,b,c ,已知 a 2c 22b ,且 sinAcosC 3cosAsinC .1)求 b 的值;(2)若 B , S 为 ABC 的面积,求 S 8 2cosAcosC 的取值范围 .4答案】 (1) b 4 (2) 8,8 2b 2解析】试题分析:(1)利用正余弦定理, sinAcosC 3cosAsinC 可转化为a 2 c 2b ,又 a 2c 22b ,2从而得到 b 的值; S 1 bcsinA 8 2sinAsinC ,故 S 8 2cosAcosC 8 2cos 2A 324S 8 2cosAcosC 8 2cos A C 8 2cos 2A 32) cos2A cos A B =cos2A cos 2A323cos2A 3sin2A = 3sin 2A232)由正弦定理限制角 A 的范围, 求出S 8 2cosAcosC 的取值范围 . (2)由正弦定理 bsinB sinC c 1 1 4得 S bcsinA 4 sinAsinC 8 2sinAsinC 22sin2 30A4在 ABC 中,由{ 0 A 2 得A 38 ,22A 34 0,4 ,ACS 8 2cosAcosC 8,8 2 .2sin 2Asin 22∴b c 2r sinB sinC 2 sinB sin 23 B 2 3sin B 612.【衡水金卷信息卷 五)】在锐角 ABC 中,内角 A , B , C 的对边分别为a ,b ,c ,且cos 2A 422,11)求角 A ;( 2)若 3,求 ABC 周长的取值范围 . 答案】 (1) A (2)33 3,3 33 3,3 3 .2B C试题解析:( 1)∵sin 2A sin 225 ,∴cos2A 1 cos B C 542∴2cos A 11 cosA 5, 4 整理,得 21 18cos 2A 2cosA 1 0 ,∴cosA 或 cosA ,421∵0 A , ∴cosA22,即2)设 ABC 的外接圆半径为 r ,则 2ra 32 ,∴r 1.sinA 3∴ ABC 周长的取值范围是3 3,3 3 .单纯的课本内容,并不能满足学生的需要,通过补充,达到内容的完善教育之通病是教用脑的人不用手,不教用手的人用脑,所以一无所能。
高中数学专题-三角形取值范围问题-题型总结(解析版)2
三角形取值范围问题--归纳总结关于解三角形问题和取值范围有很多题型,总结起来大致可以分为两类。
第一种处理方法使用基本不等式求最值(往往结合余弦定理),第二种处理方法转化为三角函数求值域(题目强调锐角三角形时用此法)。
需要注意的是基本不等式注意取等条件,三角函数法需要注意角的精确范围(尤其是锐角三角形时角的范围)。
题型1.三角函数和差类型方法:转换成三角函数求值域问题,注意角的范围。
【例1-1】(2022·新高考Ⅰ卷)记△ABC的内角A,B,C的对边分别为a,b,c,已知cos A1+sin A=sin2B1+cos2B.(1)若C=2π3,求B;(2)求a2+b2c2的最小值.【解析】(1)由cosA1+sinA=sin2B1+cos2B,得cosA1+sinA=2sinBcosB2cos2B=sinBcosB,即cosAcosB=sinB+sinBsinA,即cos(A+B)=-cosC=sinB,∵C=2π3,所以sinB=12得,B=A=π6.(2)由cos(A+B)=-cosC=sinB,得C=π2+B,A+2B=π2,由正弦定理得a2+b2 c2=sin2A+sin2Bsin2C=(2cos2B-1)2+1-cos2Bcos2B=4cos4B-5cos2B+2cos2B=4cos2B+2cos2B-5≥42-5,当且仅当cosB=(12)14时的符号成立,故最小值为42-5.【例1-2】(2022·广州一模)△ABC的内角A,B,C的对边分别为a,b,c,已知c=3,且满足ab sin Ca sin A+b sin B−c sin C= 3.(1)求角C的大小;(2)求b+2a的最大值.【解析】(1)由题意得abca2+b2-c2=3,余弦定理得:a2+b2-c2=2ab∙cosC,所以cosC=a2+b2-c22ab=12,又C为△ABC内角,所以C=π3;(2)由题得asinA =bsinB=csinC=2,所以a=2sinA,b=2sinB,所以b=2sinB=2sin(A+π3),所以b+2a=2sin(A+π3)+4sinA=sinA+3cosA+4sinA=5sinA+3cosA=27sin(A+φ),且tanφ=35,又因为A∈(0,2π3),所以sin(A+φ)max=1,所以b+2a≤27,即b+2a的最大值为27.【训练1】(2020·浙江卷)在锐角△ABC中,角A,B,C所对的边分别为a,b,c.(1)求角B的大小;(2)求cos A+cos B+cos C的取值范围.【解析】(1)∵2bsinA=3a,2sinBsinA=3sinA,∵sinA≠0,∴sinB=32,∵△ABC为锐角三角形,∴B=π3,(2)∵△ABC为锐角三角形,B=π3,∴C=2π3-A,∴cosA+cosB+cosC= cosA+cos(2π3-A)+cosπ3=12cosA+32sinA+12=sin(A+π6)+12,△ABC为锐角三角形,0<A<π2,0<C<π2,解得π6<A<π2,∴π3<A+π6<2π3,∴32<sin(A+π6)≤1,∴32+12<sin(A+π6)+12≤32,∴cosA+cosB+cosC 的取值范围为(3+12,32].题型2.三角形面积最值方法一:余弦定理+基本不等式(锐角三角形不建议用).方法二:转化为三角函数求值域(任意三角形都可用).策略一:对边对角型【例2-1】(2021·衡水调研)已知a,b,c分别为△ABC的三个内角A,B,C的对边,且a cos C+3a sin C−b−c=0.(1)求A的大小;(2)若a=3,求△ABC面积的取值范围.【解析】(1)由acosC+3a sinC-b-c=0,由正弦定理得:sinAcosC+3sinAsinC=sinB+sinC,即sinAcosC+3sinAsinC=sin(A+C)+sinC,可得:3sinAsinC=cosAsinC+sinC,由于C为三角形内角,sinC≠0,所以化简得3sinA-cosA=1,所以sin(A-π6)=12因为A∈(0,π2),所以A-π6∈(-π6,π3),所以A-π6=π6,即A=π3.(2)由2R=asomA=332=2,则bc=2RsinB∙2RsinC=4sinBsin(B+π3)=2(2B-π6)+1,sin因为△ABC是锐角三角形,所以B∈(π6,π2),所以(2B-π6sin)∈(12,1],可得bc∈(2,3],所以S△ABC=12bcsinA=34bc∈(32 ,334],所以△ABC的面积的取值范围是(32,334].【训练2】在△ABC中,A,B,C的对边分别为a,b,c,且sin Aa=3cos C c.(1)求角C的大小;(2)如果c=2,求△ABC的面积的最大值.【解析】(1)因为sinAa=3cosCc=sinCc,所以sinC=3cosC,即tanC=3,由C为三角形内角得,C=π3;(2)由余弦定理得4=a2+b2-ab≥2ab-ab=ab,当且仅当a=b时取等号,所以ab≤4,△ABC的面积S=12absinC=34ab≤3,即面积的最大值为 3.策略二:对边异角型【例2-2】(2021·瑶海月考)若a,b,c为锐角△ABC的三个内角A,B,C的对边,且sin2B+sin2C−sin2(B+C)=sin B sin C.(1)求角A;(2)若b=2,求△ABC的面积的取值范围.【解析】(1)因为sin2B+sin2C-sin2(B+C)=sinBsinC,所以sin2B+sin2C-sin2A=sinBsinC.由正弦定理得b2+c2-a2=bc,由余弦定理得cosA=b2+c2-a22bc=12,因为A为三角形内角,所以A=π3;(2)由题得bsinB=csinC,所以2sinB=csin(2π3-B),c=2sin(2π3-B)sinB=3cosB+sinBsinB=1+3tanB,因为锐角△ABC中,0<B<π20<2π3-B<π2,所以π6<B<π2,故tanB>33,0<1tanB<3,S△ABC=12bcsinA=34×2×(1+3 tanB)=32+32tanB∈(32,23).【训练3】(2019·全国Ⅲ卷)△ABC的内角A,B,C的对边分别为a,b,c.已知a sin A+C2=b sin A.(1)求B;(2)若△ABC为锐角三角形,且c=1,求△ABC面积的取值范围.【解析】(1)asin A+C2=bsinA,即为asinπ-B2=acosB2=bsinA,可得sinAcos B2=sinBsinA=2sin B2cos B2sinA,∵sinA>0,∴cos B2=2sin B2cos B2 ,若cos B2=0,可得B=(2k+1)π,k∈Z不成立,∴sin B2=12,由0<B<π,可得B=π3;(2)若△ABC为锐角三角形,且c=1,由余弦定理可得b=a2+1-2a∙1∙cosπ3 =a2-a+1,由三角形ABC为锐角三角形,可得a2+a2-a+1>1且1+a2-a +1>a2,且1+a2>a2-a+1,解得12<a<2,可得△ABC面积S=12a∙sinπ3 =34a∈(38,32)策略三:夹边夹角型方法一:向量平方凑关系,结合基本不等式求最值.方法二:延长中线找对边,结合对边对角模型求值.【例2-3】在△ABC中,角A,B,C的对边分别为a,b,c,且b cos A+12a=c.(1)求角B的大小;(2)若AC边上的中线BM的长为3,求△ABC面积的最大值.【解析】(1)因为bcosA+12a=c,由正弦定理可得sinBcosA+12sinA=sinC,又sinC=sin(A+B)=sinAcosB+sinBcosA,所以12sinA=sinAcosB,又A为三角形内角,sinA>0,所以cosB=12,因为B∈(0,π),所以B=π3.(2)如图,延长线段BM至D,满足BM=MD,连接AD,在△ABC中,BD=2AM =23,AD=a,AB=c,∠BAD=π-B=2π3,由余弦定理,有232=a2+c2+ac≥2ac+ac=3ac,解得ac≤4,当且仅当a=c=2时取等号,所以S△ABC=12acsinB≤12×4×32=3,当且仅当a=c=2时等号成立,即面积的最大值为 3.AB C DE M【训练4】在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知m=cos A 2,3sin A 2 ,n =−2sin A 2,2sin A2 ,且m ·n =0.(1)求角A 的大小;(2)点M 是BC 的中点,且AM =1,求△ABC 面积的最大值.【解析】(1)m ∙n =0,∴-2sin A 2cos A 2+23sin 2A 2=0,即-sinA +23×1-cosA2=-sinA -3cosA +3=0,即sinA +3cosA =3,即2sin (A +π3)=3,得sin (A +π3)=32,即A +π3=2π3,得A =π3.(2)∵点M 是BC 的中点,且AM=1,∴AM =12(AB +AC ),平方得AM 2=14(AB 2+AC 2+2AB ∙ AC ),即4=c 2+b 2+2bc ×12=c 2+b 2+bc ≥2bc +bc =3bc ,即bc ≤43,当且仅当b =c 时取等号,则△ABC 面积S =12bcsin π3=12×32bc ≤34×43=33,即三角形面积的最大值为33.题型3.三角形周长取值范围方法一:余弦定理+基本不等式(锐角三角形不建议用).方法二:转化为三角函数求值域(任意三角形都可用)策略一:对边对角型【例3-1】(2020·全国Ⅱ卷)在△ABC中,sin2A−sin2B−sin2C=sin B sin C.(1)求A;(2)若BC=3,求△ABC周长的最大值.=-12,【解析】(1)因为BC2-AC2-AB2=AC∙AB,所以cosA=AC2+AB2-BC22AC∙AB因为A∈(0,π),所以A=2π3.(2)由余弦定理BC2=AC2+AB2-2AC∙ABcosA=AC2+AB2+AC∙AB=9,)2(当且仅当AC=AB时取等即(AC+AB)2-AC∙AB=9,AC∙AB≤(AC+AB2)2=34(AC+AB)2,解号),9=(AC+AB)2-AC∙AB≥(AC+AB)2-(AC+AB2得AC+AB≤23(当且仅当AC=AB时取等号),所以△ABC周长L=AC+ AB+BC≤3+23,周长的最大值为3+2 3.【训练5】(2021·江西模拟)△ABC的内角A,B,C的对边分别为a,b,c.已知a cos B=(2c−b)cos A.(1)求A;(2)若△ABC为锐角三角形,且a=1,求△ABC周长的取值范围.【解析】(1)法一:由题意得a cosB+b cosA=2c cosA;由正弦定理得sinAcosB +sinBcosA=2sinCcosA,即sin(A+B)=2sinCcosA;又sin(A+B)=sinC,所以sinC=2sinC cosA.又sinC≠0,所以cosA=12;又0<A<π,所以A=π3.解法二:结合余弦定理a×a2+c2-b22ac =(2c-b)×b2+c2-a22bc,化简得b2+c2-a2=bc,所以cosA=b2+c2-a22bc=12;又0<A<π,所以A=π3.(2)由正弦定理得asinA =bsinB=csinC,且a=1,A=π3,所以b=233sinB,c=233sinC;所以a+b+c=1+233(sinB+sinC)=1+233[sinB+sin(2π3-B)]=1+2sin(B+π6).因为△ABC为锐角三角形,所以得0<B<π20<2π3-B<π2 ,解得π6<B<π2.所以1+2sin(B+π6)∈(1+3,3];即△ABC周长的取值范围是(1+3,3].策略二:对边异角型【例3-2】(2021·衡水模拟)在锐角△ABC中,角A,B,C所对的边分别为a,b,c,已知b=3,sin A+a sin B=2 3.(1)求角A的大小;(2)求△ABC周长的取值范围【解析】(1)因为asinA =bsinB=csinC,所以asinB=bsinA,所以sinA+asinB=sinA+bsinA=4sinA=23,所以sinA=32,△ABC为锐角三角形,所以A=π3.(2)由题可得:asinA =bsinB=csinC,a=332sinB,c=3sinCsinB,a+c+3=332+3sinCsinB+3=332+3sin(2π3-B)sinB+3,所以周长=332+3(32cosB+12sinB)sinB+3=332∙1+cosBsinB+9 2=332∙1+2cos2B2-12sin B2cos B2+92=332∙1tan B2+92.又因为△ABC为锐角三角形,所以B 2∈(π12,π4)所以tan B2∈(2-3,1),所以1tan B2∈(1,2+3),所以(9+332,9+33).【训练6】(2021·江苏模拟)在△ABC中,a,b,c分别是内角A,B,C的对边,2b sin A sin(A+C)=3a sin B.(1)求角B;(2)若△ABC为锐角三角形,且c=2,求△ABC面积的取值范围.【解析】(1)∵2bsinAsin(A+C)=3asin2B,∴由正弦定理得:2sinBsinAsin(A +C)=23sinAsinBcosB,∵A+C=π-B,且sinA≠0,sinB≠0,∴sinB= 3cosB,∴tanB=3,∵B∈(0,π),∴B=π3.(2)由题意B=π3,c=2,可得S△ABC =12acsinB=3a2,由正弦定理得:a=csinAsinC=2sin(120°-C)sinC =3tanC+1,又△ABC为锐角三角形,可得0<A<90°,0<C<90°,故30°<C<90°,所以1<a<4,从而32<S△ABC<23,即△ABC面积的取值范围是(32,23).策略三:夹边夹角型方法一:向量平方凑关系,结合基本不等式求最值.方法二:延长中线找对边,结合对边对角模型求值.【例3-3】在△ABC中,a、b、c分别是角A、B、C的对边,若c cos B+b cos C= 2a cos A,M为BC的中点,且AM=1,则b+c的最大值是.【解析】在△ABC中,a、b、c分别是角A、B、C的对边,若c cosB+b cosC= 2acosA,利用正弦定理:sinCcosB+sinBcosC=2sinAcosA,所以:sin(B+C) =sinA=2sinAcosA,由于:sinA≠0,所以cosA=12,0<A<π,故A=π3,因为M为BC的中点,且AM=1,所以可设BC=2x,则(2x)2=b2+c2-2bccosA,故2x2=b2+c2-bc2,利用余弦定理得c2=12+x2-2xcos∠BMA①,同理:b2=12+x2-2x∠CMAcos②由①②得:b2+c2=2+2x2,所以:b2+c2=c2+b2-bc2+2,故:(b+c)2=4+bc,整理得:(b+c)2≤4+(b+c2)2,解得0<b+c≤433,故答案为433.【训练7】(2022·石家庄模拟)在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,若c cos B +b cos C =2a cos A ,AM =23AB +13AC,且AM =1,则b +2c 的最大值是.【解析】由ccosB +bcosC =2acosA ,得sinCcosB +sinBcosC =sin (B +C )=sinA =2sinAcosA ,可得cosA =12,A =π3,因为AM 2=(23AB +13AC )2=49c 2+19b 2+49bccosA =3,所以b 2+4c 2+2bc =27⇒(b +2c )2-2bc =27⇒(b +2c )2=27+2bc ≤27+(b +2c 2)2,当且仅当b =2c 取等号,得34(b +2c )2≤27⇒b +2c ≤6.b +2c 的最大值为6. 故答案为:6.【训练8】(2022·江苏模拟)△ABC 中,角A 、B 、C 的对边分别为a ,b ,c 且满足2a =3b =4c ,若sin2A ≤λ(sin B +sin C )恒成立,则λ的最小值为()A .−1114B .127C .−1124D .−712【解析】设2a =3b =4c =12t (t >0),则a =6t ,b =4t ,c =3t ,sin 2A ≤λ(sinB +sinC )恒成立,即λ≥sin 2A sinB +sinC 恒成立,sin 2A sinB +sinC =2sinAcosA sinB +sinC =2a b +c ∙b 2+c 2-a 22bc =6t7t ∙16t 2+9t 2-36t 212t 2=-1114,以λ≥-1114,所以λ的最小值为-1114.故选:A.【训练9】(2022·甲卷)已知△ABC中,点D在边BC上,∠ADB=120°,AD=2,CD=2BD.当ACAB取得最小值时,BD=.【解析】设BD=x,CD=2x,在三角形ACD中,b2=4x2+4-2∙2x∙2∙cos60°,可得:b2=4x2-4x+4,在三角形ABD中,c2=x2+4-2∙x∙2∙cos120°,可得:c2=x2+2x+4,要使得AC AB 最小,即b2c2最小,b2c2=4x2-4x+4x2+2x+4=4(x2+2x+4)-4x-12x2+2x+4=4-12(x+1)(x+1)2+3=4-12(x+1)(x+1)2+3=4-12x+1+3x+1≥4-1223,当且仅当x+1=3x+1,即x=3-1时,取等号,故答案为:3-1.【训练10】(2022·深圳模拟)在△ABC中,已知角A,B,C所对的边分别为a,b,c,若9b2+6bc cos A=11c2,则角B的最大值为()A.π6B.π4C.π3D.3π4【解析】由余弦定理cosA=b2+c2-a22bc,代入9b2+6bc cosA=11c2,得9b2+3(b2+ c2-a2)=11c2,整理得b2=112(3a2+8c2),cosB=a2+c2-b22bc =a2+c2-112(3a2+8c2)2ac=34a2+13c22ac≥234×13ac2ac=12,当且仅当9a2=4c2时取“=”,又因为B∈(0,π),所以B≤π3,故选:C.【训练11】(2015·全国Ⅰ卷)在平面四边形ABCD中,∠A=∠B=∠C=75°.BC =2,则AB的取值范围是.【解析】方法一:如图所示,延长BA,CD交于点E,则在△ADE中,∠DAE=105°,∠ADE=45°,∠E=30°,∴设AD=12x,AE=22x,DE=6+24x,CD=m,∵BC=2,∴(6+24x+m)sin15°=1,∴6+24x+m=6+2,∴0<x<4,而AB=6+24x+m-22x=6+2-22x,∴AB的取值范围是(6-2,6 +2).故答案为:(6-2,6+2).方法二:如下图,做出底边BC=2的等腰三角形EBC ,B =C =75°,倾斜角为150°的直线在平面内移动,分别交EB 、EC 与A 、D ,则四边形ABCD 即为满足题意的四边形;当直线移动时,运用极限思想,①直线接近点C 时,AB 趋近最小,为6-2;②直线接近点E 时,AB 趋近最大值,为6+2;故答案为:(6-2,6+2).m12x 6+24x 22x。
专题03 解三角形之最值、范围问题(解析版)
解三角形之最值、范围问题一、单选题1.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,a =c sin B ,则tan A 的最大值为( ) A .1 B .54C .43D .32【答案】C2.在ABC ∆中,角,,A B C 的对边分别是,,,a b c 且,,A B C 成等差数列,2b =,则a c +的取值范围是( )A .(]2,3B .(]2,4C .(]0,4 D .(2,【答案】B3.锐角ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若2225a b c +=,则cos C 的取值范围是( ) A .(123,) B .(112,)C .[45D .[45,1) 【答案】C4.在ABC 内角A ,B ,C 的对边分别是a ,b ,c ,若()()3cos sin sin 1cos A B A B -=+,6a c +=,则ABC 的面积的最大值为( )A .BCD .【答案】D5.已知ABC 三内角,,A B C 的对边分别为,,a b c cos sin 0A a C +=,若角A 的平分线交BC 于D 点,且1AD =,则b c +的最小值为( )A .2B .C .4D .【答案】C6.已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,3b =,且()()()3sin sin sin c B C a A c -+=-⋅,则ABC 周长的最大值为( )A .8B .9C .12D .15【答案】B二、解答题7.已知函数()2cos 3cos 1f x x x x =-+.(1)求函数()f x 的单调递减区间;(2)在锐角ABC 中,角,,A B C 所对的边分别,,a b c .若()1,f C c ==D 为AB 的中点,求CD 的最大值. 【答案】(1)递减区间511[,]1212k k k Z ππππ++∈;(2)32. 8.现有三个条件①sin()sin ()sin c A B b B c a A +=+-,②tan 2sin b aB A=,③(1cos )sin a B A +,请任选一个,填在下面的横线上,并完成解答. 已知ABC 的内角,,A B C 所对的边分别是a ,b ,c ,若______.(1)求角B ;(2)若a c +=,求ABC 周长的最小值,并求周长取最小值时ABC 的面积.【答案】(1)3π;(2)4.9.如图,在四边形ABCD 中,CD =BC =cos 14CBD ∠=-.(1)求BDC ∠; (2)若3A π∠=,求ABD △周长的最大值. 【答案】(1)6π;(2)12 10.已知ABC 的内角、、A B C 所对的边分别是,,,a b c 在以下三个条件中任先一个:①22(sin sin )sin sin sin B C A B C -=-;②sin4A =;③sin sin 2B C b a B +=; 并解答以下问题:(1)若选___________(填序号),求A ∠的值;(2)在(1)的条件下,若(0)a b m m ==>,当ABC 有且只有一解时,求实数m 的范围及ABC 面积S 的最大值.【答案】(1)条件选择见解析;60A =;(2)({}2m ∈⋃,max S =. 11.已知函数()21sin cos cos 62f x x x x π⎛⎫=-+- ⎪⎝⎭. (1)当[],0x π∈-时,求出函数()f x 的最大值,并写出对应的x 的值; (2)ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若()12f A =,4b c +=,求a 的最小值. 【答案】(1)当56x =-π时,函数()f x 取最大值34;(2)最小值为2.12.ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知1cos 2a c Bb =+. (1)若1c =,求ABC 面积的最大值;(2)若D 为BC 边上一点,4DB =,5AB =,且12AB BD ⋅=-,求AC .【答案】(1(2.13.在ABC 中,设,,A B C 所对的边分别为,,a b c ,4A π=,1cos 3B =,a b += (1)求,a b 的值;(2)已知,D E 分别在边,BA BC 上,且AD CE +=,求BDE 面积的最大值.【答案】(1)a =b =(214.在ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知1cos 2b a Cc =+. (1)求角A ;(2)若1AB AC ⋅=,求a 的最小值.【答案】(1)3π;(2。
解三角形中的最值(范围)问题
解三角形中的最值(范围)问题1. 锐角三角形ABC 满足2B=A+C ,设最大边与最小边之比为m ,求m 的取值范围. 分析:不妨令则因为所以所以2. 锐角三角形ABC 的面积为S ,角C 既不是最大角,也不是最小角.若,求的取值范围.分析:又所以所以又在锐角三角形ABC 中,角C 既不是最大角,也不是最小角所以所以,即k 的取值范围.60B ︒=090A B C ︒<≤≤<sin sin()1sin sin 2tan 2c C A B ma A A A +====+3060A ︒︒<≤tan 3A <≤12m ≤<22()4c a b S k --=k 222222cos (1cos )442c a b ab ab ab C ab C S k k k --+--===1sin 2S ab C =1cos sin CC k -=1cos tan sin 2C C k C -==42C ππ<<1tan 12C <<3. 三角形ABC 满足B 是锐角,且,则的取值范围是_______. 分析:由正弦定理得 所以又所以又B 是锐角所以4. 锐角三角形ABC 满足,求的取值范围.分析:由正弦定理得所以所以又所以又所以所以28sin sin sin A C B =a cb +28ac b=a c b +===2222cos 8b a c ac B ac =+-=22cos 484a c B ac ++=()22a c b+∈)(sin sin )(sin sin )c b c C B a A B =+-=-22a b +()()()b c c b a a b +-=-222a b c ab +-=1cos 2C =0C π<<3C π=4sin sin sin a b c A B C ===4sin ,4sin a A b B ==22222241cos(2)21cos 2316(sin sin )16[sin sin ()]16[]168cos(2)3223A A a b A B A A A πππ---+=+=+-=+=-+又所以 所以所以5. 三角形ABC 满足BC 边上的高为,则的最大值是_____. 分析:又所以所以所以 又所以 的最大值是46. 三角形ABC 满足点D 在边BC 上,且,若,则的取值范围是______.分析: 62A ππ<<242333A πππ+∈(,)12)[1,)32A π+∈--cos(22(20,24]a b +∈6a c b b c+21122S BC h a =⋅==22c b b c b c bc ++=21sin 212S bc A a ==222sin 2cos a A b c bc A ==+-222cos 4sin()6b c A A A bcπ+=+=+0A π<<c b b c +2DC BD =::3::1AB AD AC k =k。
备战2021高考理数热点题型和提分秘籍 专题24 正弦定理和余弦定理的应用(解析版)
专题二十四正弦定理和余弦定理的应用【高频考点解读】能够运用正弦定理、余弦定理等学问和方法解决一些与测量和几何计算有关的实际问题.【热点题型】题型一考查测量距离例1、如图所示,有两座建筑物AB和CD都在河的对岸(不知道它们的高度,且不能到达对岸),某人想测量两座建筑物尖顶A、C之间的距离,但只有卷尺和测量仪两种工具.若此人在地面上选一条基线EF,用卷尺测得EF的长度为a,并用测角仪测量了一些角度:∠AEF=α,∠AFE=β,∠CEF=θ,∠CFE=φ,∠AEC =γ.请你用文字和公式写出计算A、C之间距离的步骤和结果.【提分秘籍】求距离问题时要留意(1)选定或确定要创建的三角形,要首先确定所求量所在的三角形,若其他量已知则直接解;若有未知量,则把未知量放在另一确定三角形中求解;(2)确定用正弦定理还是余弦定理,假如都可用,就选择更便于计算的定理.【举一反三】隔河看两目标A与B,但不能到达,在岸边选取相距 3 km的C,D两点,同时,测得∠ACB=75°,∠BCD =45°,∠ADC=30°,∠ADB=45°(A,B,C,D在同一平面内),求两目标A,B之间的距离.【热点题型】题型二考查高度问题例2、如图,在湖面上高为10 m处测得天空中一朵云的仰角为30°,测得湖中之影的俯角为45°,则云距湖面的高度为(精确到0.1 m)()A.2.7 m B.17.3 mC.37.3 m D.373 m【解析】在△ACE中,tan 30°=CEAE=CM-10AE.∴AE=CM-10tan 30°.在△AED中,tan 45°=DEAE=CM+10AE,∴AE =CM +10tan 45°,∴CM -10tan 30°=CM +10tan 45°, ∴CM =103+13-1=10(2+3)≈37.3(m).【答案】C【提分秘籍】求解高度问题首先应分清(1)在测量高度时,要理解仰角、俯角的概念,仰角和俯角都是在同一铅垂面内视线与水平线的夹角; (2)精确 理解题意,分清已知条件与所求,画出示意图;(3)运用正、余弦定理,有序地解相关的三角形,逐步求解问题的答案,留意方程思想的运用. 【举一反三】如图,为测得河对岸塔AB 的高,先在河岸上选一点C ,使C 在塔底B 的正东方向上,测得点A 的仰角为60°,再由点C 沿北偏东15°方向走10米到位置D ,测得∠BDC =45°,则塔AB 的高是________米.【热点题型】题型三 考查方位角例3、如图,我国的海监船在D 岛海疆例行维权巡航,某时刻航行至A 处,此时测得其东北方向与它相距16海里的B 处里一外国船只,且D 岛位于海监船正东142海里处.(1)求此时该外国船只与D 岛的距离;(2)观测中发觉,此外国船只正以每小时4海里的速度沿正南方向航行.为了将该船拦截在离D 岛12海里处,不让其进入D 岛12海里内的海疆,试确定海监船的航向,并求其速度的最小值.(参考数据:sin 36°52′≈0.6,sin 53°08′≈0.8)【提分秘籍】解决方位角问题其关键是弄清方位角概念.结合图形恰当选择正、余弦定理解三角形,同时留意平面图形的几何性质的应用.【举一反三】如图,一船在海上自西向东航行,在A处测得某岛M的方位角为北偏东α角,前进m km后在B处测量该岛的方位角为北偏东β角,已知该岛四周n km范围内(包括边界)有暗礁,现该船连续东行,当α与β满足条件________时,该船没有触礁危急.【热点题型】题型四考查函数思想在解三角形中的应用例4、如图所示,一辆汽车从O点动身沿一条直线大路以50公里/小时的速度匀速行驶(图中的箭头方向为汽车行驶方向),汽车开动的同时,在距汽车动身点O点的距离为5公里、距离大路线的垂直距离为3公里的M点的地方有一个人骑摩托车动身想把一件东西送给汽车司机.问骑摩托车的人至少以多大的速度匀速行驶才能实现他的愿望,此时他驾驶摩托车行驶了多少公里?∴当t=18时,v取得最小值为30,∴其行驶距离为vt=308=154公里.故骑摩托车的人至少以30公里/小时的速度行驶才能实现他的愿望,此时他驾驶摩托车行驶了154公里.【提分秘籍】函数思想在解三角形中常与余弦定理应用及函数最值求法相综合,此类问题综合性较强,力量要求较高,要求考生要有肯定的分析问题解决问题的力量.解答本题利用了函数思想,求解时把速度表示为时间的函数,利用函数最值求法完成解答,留意函数中以1t为整体构造二次函数,求最值.【举一反三】如图所示,已知树顶A离地面212米,树上另一点B离地面112米,某人在离地面32米的C处看此树,则该人离此树________米时,看A,B的视角最大.【高考风向标】1.(2022·天津卷)在△ABC中,内角A,B,C所对的边分别是a,b,c.已知b-c=14a,2sin B=3sin C,则cos A的值为________.【答案】-14【解析】∵2sin B=3sin C,∴2b=3c.又∵b -c =a 4,∴a =2c ,b =32c ,∴cos A =b 2+c 2-a 22bc=94c 2+c 2-4c 22×32c ×c =-14.2.(2022·新课标全国卷Ⅱ)设点M (x 0,1),若在圆O :x 2+y 2=1上存在点N ,使得∠OMN =45°,则x 0的取值范围是________.3.(2022·广东卷)在△ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c .已知b cos C +c cos B =2b ,则a b=________.4.(2022·安徽卷)设△ABC 的内角A ,B ,C 所对边的长分别是a ,b ,c ,且b =3,c =1,A =2B .(1)求a 的值; (2)求sin ⎝⎛⎭⎫A +π4的值.5.(2022·北京卷)如图1-2,在△ABC 中,∠B =π3,AB =8,点D 在BC 边上,且CD =2,cos ∠ADC =17.(1)求sin ∠BAD ; (2)求BD ,AC 的长.图1-26.(2022·福建卷)在△ABC 中,A =60°,AC =4,BC =23,则△ABC 的面积等于________.7.(2022·湖南卷)如图1-5所示,在平面四边形ABCD 中,AD =1,CD =2,AC =7.图1-5(1)求cos ∠CAD 的值;(2)若cos ∠BAD =-714,sin ∠CBA =216,求BC 的长.8.(2022·江西卷)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .若c 2=(a -b )2+6,C =π3,则△ABC的面积是( )A .3 B.9 32 C.3 32D .3 3【答案】C 【解析】由余弦定理得,cos C =a 2+b 2-c 22ab =2ab -62ab =12,所以ab =6,所以S △ABC =12ab sin C=3 32.9.(2022·辽宁卷)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且a >c .已知BA →·BC →=2,cos B =13,b =3.求:(1)a 和c 的值; (2)cos(B -C )的值.10. (2022·全国卷)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知3a cos C =2c cos A ,tan A =13,求B .=-tan(A +C ) =tan A +tan Ctan A tan C -1=-1, 所以B =135°.11.(2022·新课标全国卷Ⅰ)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a =2,且(2+b )·(sin A -sin B )=(c -b )sin C ,则△ABC 面积的最大值为________.12.(2022·新课标全国卷Ⅱ)钝角三角形ABC 的面积是12,AB =1,BC =2,则AC =( )A .5 B. 5 C .2 D .113.(2022·山东卷)在△ABC 中,已知AB →·AC →=tan A ,当A =π6时,△ABC 的面积为______.14.(2022·陕西卷)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .(1)若a ,b ,c 成等差数列,证明:sin A +sin C =2sin(A +C ); (2)若a ,b ,c 成等比数列,求cos B 的最小值.(2)∵a ,b ,c 成等比数列,∴b 2=ac . 由余弦定理得cos B =a 2+c 2-b 22ac =a 2+c 2-ac 2ac ≥2ac -ac 2ac =12,当且仅当a =c 时等号成立, ∴cos B 的最小值为12.15.(2022·四川卷)如图1-3所示,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为67°,30°,此时气球的高度是46 m ,则河流的宽度BC 约等于________m .(用四舍五入法将结果精确到个位.参考数据:sin 67°≈0.92,cos 67°≈0.39,sin 37°≈0.60,cos 37°≈0.80,3≈1.73)图1-316.(2022·浙江卷)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a ≠b ,c =3,cos 2A -cos 2B=3sin A cos A -3sin B cos B .(1)求角C 的大小;(2)若sin A =45,求△ABC 的面积.17.(2022·重庆卷)已知△ABC 的内角A ,B ,C 满足sin 2A +sin(A -B +C )=sin(C -A -B )+12,面积S 满足1≤S ≤2,记a ,b ,c 分别为A ,B ,C 所对的边,则下列不等式肯定成立的是( )A .bc (b +c )>8B .ab (a +b )>16 2C .6≤abc ≤12D .12≤abc ≤2418.(2021·新课标全国卷Ⅰ)如图1-4所示,在△ABC 中,∠ABC =90°,AB =3,BC =1,P 为△ABC 内一点,∠BPC =90°.(1)若PB =12,求PA ;(2)若∠APB =150°,求tan ∠PBA.图1-419.(2021·福建卷)如图1-4所示,在△ABC 中,已知点D 在BC 边上,AD ⊥AC ,sin ∠BAC =2 23,AB =32,AD =3,则BD 的长为__________.图1-420.(2021·湖北卷)在△ABC 中,角A ,B ,C 对应的边分别是a ,b ,c.已知cos 2A -3cos(B +C)=1.(1)求角A 的大小;(2)若△ABC 的面积S =5 3,b =5,求sin Bsin C 的值.21.(2021·湖南卷)在锐角△ABC 中,角A ,B 所对的边长分别为a ,b ,若2asin B =3b ,则角A 等于( )A.π12B.π6C.π4D.π322.(2021·江西卷)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知cos C +(cos A -3sin A)cos B =0.(1)求角B 的大小;(2)若a +c =1,求b 的取值范围.又0<a<1,于是有14≤b 2<1,即有12≤b<1.23.(2021·北京卷)在△ABC 中,a =3,b =2 6,∠B =2∠A. (1)求cos A 的值; (2)求c 的值.24.(2021·辽宁卷)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c.若asin Bcos C +csin Bcos A =12b ,且a>b ,则∠B =( )A.π6B.π3C.2π3D.5π625.(2021·全国卷)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,(a +b +c)(a -b +c)=ac.(1)求B ;(2)若sin Asin C =3-14,求C. 【解析】(1)由于(a +b +c)(a -b +c)=ac ,所以a 2+c 2-b 2=-ac. 由余弦定理得cos B =a 2+c 2-b 22ac =-12,因此B =120°.26.(2021·山东卷)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且a +c =6,b =2,cos B =79.(1)求a ,c 的值; (2)求sin(A -B)的值.27.(2021·陕西卷)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若bcos C +ccos B =asin A ,则△ABC 的外形为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定【答案】B 【解析】结合已知bcos C +ccos B =asin A ,所以由正弦定理代入可得sin Bcos C +sin Ccos B =sin Asin Asin(B +C)=sin 2Asin A =sin 2Asin A =1,故A =90°,故三角形为直角三角形.28.(2021·四川卷) 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2cos 2 A -B2cos B -sin (A -B)sin B +cos(A +C)=-35.(1)求cos A 的值;(2)若a =4 2,b =5,求向量BA →在BC →方向上的投影.29.(2021·四川卷)设P 1,P 2,…,P n 为平面α内的n 个点,在平面α内的全部点中,若点P 到P 1,P 2,…,P n 点的距离之和最小,则称点P 为P 1,P 2,…, P n 点的一个“中位点”.例如,线段AB 上的任意点都是端点A ,B 的中位点.则有下列命题:①若A ,B ,C 三个点共线,C 在线段AB 上,则C 是A ,B ,C 的中位点; ②直角三角形斜边的中点是该直角三角形三个顶点的中位点; ③若四个点A ,B ,C ,D 共线,则它们的中位点存在且唯一; ④梯形对角线的交点是该梯形四个顶点的唯一中位点. 其中的真命题是________.(写出全部真命题的序号)【答案】①④ 【解析】对于①,假如中位点不在直线AB 上,由三角形两边之和大于第三边可知与题意冲突.而当中位点在直线AB 上时,假如不与C 重合,则|PA|+|PB|+|PC|>|PA|+|PB|也不符合题意,故C 为唯一的中位点,①正确;30.(2021·天津卷)在△ABC 中,∠ABC =π4,AB =2,BC =3,则sin ∠BAC =( )A.1010 B.105C.31010D.5531.(2021·新课标全国卷Ⅱ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a =bcos C +csin B.(1)求B ;(2)若b =2,求△ABC 面积的最大值.(2)△ABC 的面积S =12acsin B =24ac.由已知及余弦定理得4=a 2+c 2-2accos π4.又a 2+c 2≥2ac ,故ac≤42-2,当且仅当a =c 时,等号成立. 因此△ABC 面积的最大值为2+1.32.(2021·重庆卷)在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,且a 2+b 2+2ab =c 2. (1)求C ;(2)设cos Acos B =3 25,cos (α+A )cos (α+B )cos 2α=25,求tan α的值.【随堂巩固】1.有一长为10 m 的斜坡,倾斜角为75°,在不转变坡高和坡顶的前提下,通过加长坡面的方法将它的倾斜角改为30°,则坡底要延长( )A .5 mB .10 mC .10 2 mD .10 3 m2.一船自西向东匀速航行,上午10时到达一座灯塔P 的南偏西75°,距灯塔68海里的M 处,下午2时到达这座灯塔的东南方向N 处,则该船航行的速度为( )A.1722海里/小时 B .346海里/小时C.1762海里/小时 D .342海里/小时3.甲船在岛A 的正南B 处,以每小时4千米的速度向正北航行,AB =10千米,同时乙船自岛A 动身以每小时6千米的速度向北偏东60°的方向驶去,当甲、乙两船相距最近时,它们所航行的时间为( )A.1507分钟B.157小时 C .21.5分钟D .2.15小时答案:A4.如图,设A ,B 两点在河的两岸,一测量者在A 的同侧所在的河岸边选定一点C ,测出AC 的距离为50 m ,∠ACB =45°,∠CAB =105°后,就可以计算出A ,B 两点间的距离为( )A .50 2 mB .50 3 mC .25 2 mD.2522m5.地上画了一个角∠BDA =60°,某人从角的顶点D 动身,沿角的一边DA 行走10米后,拐弯往另一边的方向行走14米正好到达∠BDA 的另一边BD 上的一点,我们将该点记为点N ,则N 与D 之间的距离为( )A .14米B .15米C .16米D .17米 解析:如图,设DN =x m ,则142=102+x 2-2×10×x cos 60°,∴x 2-10x -96=0.∴(x-16)(x+6)=0.∴x=16或x=-6(舍).∴N与D之间的距离为16米.答案:C6.已知等腰三角形的面积为32,顶角的正弦值是底角的正弦值的3倍,则该三角形的一腰长为()A. 2B. 3 C.2 D. 67.如图,在某灾区的搜救现场,一条搜救犬从A点动身沿正北方向行进x m到达B处发觉生命迹象,然后向右转105°,行进10 m到达C处发觉另一生命迹象,这时它向右转135°回到动身点,那么x=________.8.一船以每小时15 km的速度向东航行,船在A处看到一个灯塔M在北偏东60°方向,行驶4 h后,船到B 处,看到这个灯塔在北偏东15°方向,这时船与灯塔的距离为________km.解析:如图所示,依题意有AB=15×4=60,∠MAB=30°,∠AMB=45°,在△AMB中,由正弦定理得60sin 45°=BMsin 30°,解得BM=302(km).答案:30 29.一个大型喷水池的中心有一个强力喷水柱,为了测量喷水柱喷出的水柱的高度,某人在喷水柱正西方向的点A测得水柱顶端的仰角为45°,沿点A向北偏东30°前进100 m到达点B,在B点测得水柱顶端的仰角为30°,则水柱的高度是________ m.10.如图,在某平原地区一条河的彼岸有一建筑物,现在需要测量其高度AB.由于雨季河宽水急不能涉水,只能在此岸测量.现有的测量器材只有测角仪和皮尺.现在选定了一条水平基线HG,使得H,G,B三点在同一条直线上.请你设计一种测量方法测出建筑物的高度,并说明理由.(测角仪的高为h)解析:如图,测出∠ACE的度数,测出∠ADE的度数,测量出HG的长度,即可计算出建筑物的高度AB.理由如下:设∠ACE =α,∠ADE =β,HG =s .11.如图,当甲船位于A 处时获悉,在其正东方向相距20海里的B 处有一艘渔船遇险等待营救.甲船马上前往救援,同时把消息告知在甲船的南偏西30°,相距10海里的C 处的乙船.(1)求处于C 处的乙船和遇险渔船间的距离;(2)设乙船沿直线CB 方向前往B 处救援,其方向向CA →成θ角,求f (x )=sin 2θsin x +34cos 2θcos x (x ∈R)的值域.∴f (x )的值域为⎣⎡⎦⎤-237,237.12.A ,B ,C 是一条直线上的三个点,AB =BC =1 km ,从这三点分别遥望一座电视塔P ,A 处看塔,塔在东北方向,B 处看塔,塔在正东方向,C 处看塔,塔在南偏东60°方向.求塔到直线AC 的距离.解析:如图,过A 点作东西方向的一条直线l ,过C ,B ,P 分别作CM ⊥l ,BN ⊥l ,PQ ⊥l ,垂足分别为M ,N ,Q .过P 作PD ⊥AC ,垂足为D ,则线段PD 的长即为塔到直线AC 的距离. 在△P AC 中,由12AC ·PD =12P A ·PC sin 75°, 得PD =53+713,∴塔到直线AC 的距离为53+713km.13.某单位设计一个展览沙盘,现欲在沙盘平面内,设计一个对角线在l 上的四边形电气线路,如图所示.为充分利用现有材料,边BC ,CD 用一根长为5米的材料弯折而成,边BA ,AD 用一根长为9米的材料弯折而成,要求∠A 和∠C 互补,且AB =BC .(1)设AB =x 米,cos A =f (x ),求f (x )的解析式,并指出x 的取值范围; (2)求四边形ABCD 面积的最大值.∴g (x )的最大值为g (4)=12×9=108,∴四边形ABCD 的面积S 的最大值为108=63,∴所求四边形ABCD 面积的最大值为63平方米.。
与三角形有关的范围最值问题(解析版)
与三角形有关的范围最值问题模型1 已知三角形的一角及其对边如图,已知ABC ∆的三个内角为A ,B ,C ,及其对应边分别为,,a b c ,且60,2A a ==(即已知三角形的一角及其对边),则根据三角形的边角关系就可得到以下三个隐含的解题条件: ①23B C A ππ+=-=②正弦定理:2432sinB sinC sin sin 60b c a R A ︒=====R 为ABC ∆外接圆的半径)(实现了边角的相互转化)③余弦定理:2222cos a b c bc A =+-,即224b c bc =+-(可看作,b c 的方程) 变形:24()3b c bc =+-以上三个隐含的解题条件深刻揭示了解三角形中“已知一角及其对边”的本质:角的关系(内角和定理)、边角的关系(正余弦定理).掌握这个本质就可解决多种不同类型的问题,进而得到解决此类问题的系统方法. 例如,在上述条件下可求: (1)B C +;(2)ABC ∆外接圆的半径;(3)sin sin B C +的取值范围(拓展到求1212sin sin (0)t B t C t t +≠的最值); 类似还有:sin sin ,cos cos ,cos cos B C B C B C +(4)b c +的取值范围(拓展到求(0)b c λμλμ+≠的最值); (5)bc 的取值范围(6)ABC ∆周长的最大值(即求a b c ++的最大值); (7)ABC ∆面积的最大值 (8)22b c +已知三角形的一角及对边,求三角形面积、周长等的最值①已知条件为三角形的一边和对角,可以借助正弦定理,转化为角,求三角函数最值 (口诀:正弦定理化角,三角函数求最值) 基本步骤:(1)利用正弦定理化边为角,并将式子中的角都化为唯一角 (2)将所求式子化简为)sin(ϕω+=x A y 的形式或二次函数型(3)确定此唯一角的取值范围(利用三个内角都在0到π之间)注:如果ABC ∆是锐角三角形,则需要满足 20π<<A ,20π<<B ,20π<<C(4)根据角的范围求最值(范围)②问题涉及三角形的一边和对角,可以借助余弦定理,转化为边,利用基本不等式求值。
解三角形中的最值与范围问题(解析版)
专题5解三角形中的最值与范围问题一、三角形中的最值范围问题处理方法1、利用基本不等式或常用不等式求最值:化角为边余弦定理公式里有“平方和”和“积”这样的整体,一般可先由余弦定理得到等式,再由基本不等式求最值或范围,但是要注意“一正二定三相等”,尤其是取得最值的条件。
2、转为三角函数求最值:化边为角如果所求整体结构不对称,或者角度有更细致的要求,用余弦定理和基本不等式难以解决,这时候可以转化为角的关系,消元后使得式子里只有一个角,变为三角函数最值问题进行解决。
要注意三角形隐含角的范围、三角形两边之和大于第三边。
二、边化角与角化边的变换原则在解三角形的问题中,若已知条件同时含有边和角,但不能直接使用正弦定理或余弦定理得到答案,要选择“边化角”或“角化边”,变换原则如下:(1)若式子中含有正弦的齐次式,优先考虑正弦定理“角化边”; (2)若式子中含有a 、b 、c 的齐次式,优先考虑正弦定理“边化角”; (3)若式子中含有余弦的齐次式,优先考虑余弦定理“角化边”; (4)代数式变形或者三角恒等变换前置;(5)含有面积公式的问题,要考虑结合余弦定理求解;(6)同时出现两个自由角(或三三个自由角)时,要用到三角形的内角和定理.【分析】设220CDBD m ==>,利用余弦定理表示出22AC AB 后,结合基本不等式即可得解. 【详解】[方法一]:余弦定理 设220CDBD m ==>, 则在ABD △中,2222cos 42AB BD AD BD AD ADB m m =+⋅∠=++,在ACD 中,22222cos 444AC CD AD CD AD ADC m m =+−⋅∠=+−, 所以()()()2222224421214441243424211m m m AC m m AB m m m mm m ++−++−===−+++++++44≥=−当且仅当311m m +=+即1m =−时,等号成立,所以当ACAB取最小值时,1m =−.1.[方法二]:建系法令 BD=t ,以D 为原点,OC 为x 轴,建立平面直角坐标系. 则C (2t,0),A (1,B (-t,0)()()()2222222134441244324131111t AC t t AB t t t t t t BD −+−+∴===−≥−++++++++==当且仅当即时等号成立。
高考数学复习考点题型专题讲解3 三角中的最值、范围问题
高考数学复习考点题型专题讲解专题3 三角中的最值、范围问题高考定位 以三角函数、三角形为背景的最值及范围问题是高考的热点,常用的方法主要有:函数的性质(如有界性、单调性)、基本不等式、数形结合等.1.(2018·全国Ⅱ卷)若f (x )=cos x -sin x 在[-a ,a ]上是减函数,则a 的最大值是( )A.π4B.π2C.3π4D.π 答案 A解析法一f (x )=cos x -sin x =2cos ⎝ ⎛⎭⎪⎫x +π4,且函数y =cos x 在区间[0,π]上单调递减,则由0≤x +π4≤π, 得-π4≤x ≤3π4.因为f (x )在[-a ,a ]上是减函数, 所以⎩⎪⎨⎪⎧-a ≥-π4,a ≤3π4,解得a ≤π4,所以0<a ≤π4,所以a 的最大值是π4,故选A. 法二 因为f (x )=cos x -sin x , 所以f ′(x )=-sin x -cos x ,则由题意,知f ′(x )=-sin x -cos x ≤0在[-a ,a ]上恒成立, 即sin x +cos x ≥0,即2sin ⎝⎛⎭⎪⎫x +π4≥0在[-a ,a ]上恒成立,结合函数y =2sin ⎝ ⎛⎭⎪⎫x +π4的图象可知有⎩⎪⎨⎪⎧-a +π4≥0,a +π4≤π,解得a ≤π4, 所以0<a ≤π4,所以a 的最大值是π4,故选A. 2.(2022·全国甲卷)设函数f (x )=sin ⎝⎛⎭⎪⎫ωx +π3在区间(0,π)上恰有三个极值点、两个零点,则ω的取值范围是( ) A.⎣⎢⎡⎭⎪⎫53,136 B.⎣⎢⎡⎭⎪⎫53,196 C.⎝ ⎛⎦⎥⎤136,83 D.⎝ ⎛⎦⎥⎤136,196答案 C解析 由题意可得ω>0,故由x ∈(0,π),得ωx +π3∈⎝⎛⎭⎪⎫π3,πω+π3.根据函数f (x )在区间(0,π)上恰有三个极值点,知5π2<πω+π3≤7π2,得136<ω≤196. 根据函数f (x )在区间(0,π)上恰有两个零点,知2π<πω+π3≤3π,得53<ω≤83.综上,ω的取值范围为⎝ ⎛⎦⎥⎤136,83.3.(2018·北京卷)若△ABC 的面积为34(a 2+c 2-b 2),且∠C 为钝角,则∠B =________;ca的取值范围是________. 答案 60° (2,+∞)解析 △ABC 的面积S =12ac sin B =34(a 2+c 2-b 2)=34×2ac cos B ,所以tan B =3,因为0°<∠B <90°, 所以∠B =60°.因为∠C 为钝角,所以0°<∠A <30°, 所以0<tan A <33,所以c a =sin C sin A =sin (120°-A )sin A=sin 120°cos A -cos 120°sin Asin A=32tan A +12>2, 故ca的取值范围为(2,+∞).4.(2022·新高考Ⅰ卷)记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos A1+sin A =sin 2B1+cos 2B.(1)若C =2π3,求B ;(2)求a 2+b 2c2的最小值.解 (1)因为cos A 1+sin A =sin 2B1+cos 2B ,所以cos A 1+sin A =2sin B cos B1+2cos 2B -1,所以cos A 1+sin A =sin Bcos B,所以cos A cos B =sin B +sin A sin B , 所以cos(A +B )=sin B , 所以sin B =-cos C =-cos2π3=12. 因为B ∈⎝ ⎛⎭⎪⎫0,π3,所以B =π6.(2)由(1)得cos(A +B )=sin B , 所以sin ⎣⎢⎡⎦⎥⎤π2-(A +B )=sin B ,且0<A +B <π2,所以0<B <π2,0<π2-(A +B )<π2,所以π2-(A +B )=B ,解得A =π2-2B ,由正弦定理得a 2+b 2c 2=sin 2A +sin 2Bsin 2C=sin 2A +sin 2B 1-cos 2C =sin 2⎝ ⎛⎭⎪⎫π2-2B +sin 2B 1-sin 2B=cos 22B +sin 2B cos 2B =(2cos 2B -1)2+1-cos 2B cos 2B=4cos 4B -5cos 2B +2cos 2B =4cos 2B +2cos 2B -5≥24cos 2B ·2cos 2B -5=42-5,当且仅当cos 2B =22时取等号, 所以a 2+b 2c2的最小值为42-5.热点一 三角函数式的最值或范围求三角函数式的最值或范围问题,首先把函数式化为一个角的同名三角函数形式,接着利用三角函数的有界性或单调性求解.例1(2022·宁波调研)已知函数f (x )=2sin x cos x -23cos 2x + 3. (1)求f ⎝ ⎛⎭⎪⎫π4的值;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上的最大值和最小值.解 (1)因为f (x )=2sin x cos x -23cos 2x +3=sin 2x -3cos 2x =2sin ⎝ ⎛⎭⎪⎫2x -π3,所以f ⎝ ⎛⎭⎪⎫π4=2sin ⎝ ⎛⎭⎪⎫π2-π3=2sin π6=1.(2)因为x ∈⎣⎢⎡⎦⎥⎤0,π2,所以2x -π3∈⎣⎢⎡⎦⎥⎤-π3,2π3,所以sin ⎝ ⎛⎭⎪⎫2x -π3∈⎣⎢⎡⎦⎥⎤-32,1,所以,当2x -π3=π2,即x =5π12时,f (x )取到最大值2; 当2x -π3=-π3,即x =0时,f (x )取到最小值- 3.易错提醒 求三角函数式的最值范围问题要注意: (1)把三角函数式正确地化简成单一函数形式;(2)根据所给自变量的范围正确地确定ωx +φ的范围,从而根据三角函数的单调性求范围.训练1(2022·潍坊质检)在①函数y =f (x )的图象关于直线x =π3对称,②函数y =f (x ) 的图象关于点P ⎝ ⎛⎭⎪⎫π6,0对称,③函数y =f (x )的图象经过点Q ⎝ ⎛⎭⎪⎫2π3,-1,这三个条件中任选一个,补充在下面问题中并解答.问题:已知函数f (x )=sin ωx cos φ+cos ωx sin φ⎝ ⎛⎭⎪⎫ω>0,|φ|<π2的最小正周期为π,且________,判断函数f (x )在区间⎝ ⎛⎭⎪⎫π6,π2上是否存在最大值?若存在,求出最大值及此时的x 值;若不存在,说明理由.解f (x )=sin ωx cos φ+cos ωx sin φ=sin(ωx +φ), 由已知函数f (x )的周期T =2πω=π,得ω=2,所以f (x )=sin(2x +φ). 若选①,则有2×π3+φ=k π+π2(k ∈Z ), 解得φ=k π-π6(k ∈Z ).又因为|φ|<π2,所以φ=-π6, 所以f (x )=sin ⎝⎛⎭⎪⎫2x -π6.当x ∈⎝ ⎛⎭⎪⎫π6,π2时,则2x -π6∈⎝ ⎛⎭⎪⎫π6,5π6,所以当2x -π6=π2,即x =π3时,函数f (x )取得最大值,最大值为1.若选②,则有2×π6+φ=k π(k ∈Z ), 解得φ=k π-π3(k ∈Z ). 又因为|φ|<π2,所以φ=-π3, 所以f (x )=sin ⎝⎛⎭⎪⎫2x -π3.当x ∈⎝⎛⎭⎪⎫π6,π2时,则2x -π3∈⎝ ⎛⎭⎪⎫0,2π3, 所以当2x -π3=π2,即x =5π12时,函数f (x )取得最大值,最大值为1.若选③,则有2×2π3+φ=2k π-π2(k ∈Z ),解得φ=2k π-11π6(k ∈Z ).又因为|φ|<π2, 所以φ=π6,所以f (x )=sin ⎝ ⎛⎭⎪⎫2x +π6.当x ∈⎝ ⎛⎭⎪⎫π6,π2时,则2x +π6∈⎝ ⎛⎭⎪⎫π2,7π6,显然,函数f (x )在该区间上没有最大值. 热点二 与三角函数性质有关的参数范围与三角函数性质有关的参数问题,主要分为三类,其共同的解法是将y =A sin(ωx +φ)中的ωx +φ看作一个整体,结合正弦函数的图象与性质进行求解. 考向1 由最值(或值域)求参数的范围例2 若函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx -π4(ω>0)在⎣⎢⎡⎦⎥⎤0,π2上的值域是⎣⎢⎡⎦⎥⎤-22,1,则ω的取值范围是( ) A.⎝ ⎛⎦⎥⎤0,32B.⎣⎢⎡⎦⎥⎤32,3C.⎣⎢⎡⎦⎥⎤3,72D.⎣⎢⎡⎦⎥⎤52,72答案 B解析 因为ω>0,所以当x ∈⎣⎢⎡⎦⎥⎤0,π2时,ωx -π4∈⎣⎢⎡⎦⎥⎤-π4,ωπ2-π4.又因为函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx -π4(ω>0)在x ∈⎣⎢⎡⎦⎥⎤0,π2上的值域是⎣⎢⎡⎦⎥⎤-22,1,所以π2≤ωπ2-π4≤5π4,解得32≤ω≤3.故选B.考向2 由单调性求参数的范围例3 已知f (x )=sin(2x -φ)⎝ ⎛⎭⎪⎫0<φ<π2在⎣⎢⎡⎦⎥⎤0,π3上是增函数,且f (x )在⎝ ⎛⎭⎪⎫0,7π8上有最小值,那么φ的取值范围是( ) A.⎣⎢⎡⎭⎪⎫π6,π2 B.⎣⎢⎡⎭⎪⎫π6,π4C.⎣⎢⎡⎭⎪⎫π3,π2D.⎣⎢⎡⎭⎪⎫π4,π3答案 B解析 由x ∈⎣⎢⎡⎦⎥⎤0,π3,得2x -φ∈⎣⎢⎡⎦⎥⎤-φ,2π3-φ, 又由0<φ<π2,且f (x )在⎣⎢⎡⎦⎥⎤0,π3上是增函数,可得2π3-φ≤π2,所以π6≤φ<π2. 当x ∈⎝ ⎛⎭⎪⎫0,7π8时,2x -φ∈⎝ ⎛⎭⎪⎫-φ,7π4-φ, 由f (x )在⎝⎛⎭⎪⎫0,7π8上有最小值,可得7π4-φ>3π2,则φ<π4.综上,π6≤φ<π4.故选B.考向3 由函数的零点求参数的范围例4 已知a =⎝⎛⎭⎪⎫sin ω2x ,sin ωx ,b =⎝ ⎛⎭⎪⎫sin ω2x ,12,其中ω>0,若函数f (x )=a·b -12在区间(π,2π)上没有零点,则ω的取值范围是( ) A.⎝⎛⎦⎥⎤0,18B.⎝ ⎛⎦⎥⎤0,58C.⎝ ⎛⎦⎥⎤0,18∪⎣⎢⎡⎦⎥⎤58,1D.⎝ ⎛⎦⎥⎤0,18∪⎣⎢⎡⎦⎥⎤14,58答案 D 解析f (x )=sin 2ω2x +12sin ωx -12=1-cos ωx 2+12sin ωx -12=12(sin ωx -cos ωx )=22sin ⎝⎛⎭⎪⎫ωx -π4.由函数f (x )在区间(π,2π)上没有零点,知其最小正周期T ≥2π, 即2πω≥2π,所以ω≤1. 当x ∈(π,2π)时,ωx -π4∈⎝⎛⎭⎪⎫ωπ-π4,2ωπ-π4,所以⎩⎪⎨⎪⎧ωπ-π4≥k π,2ωπ-π4≤(k +1)π(k ∈Z ),解得k +14≤ω≤k 2+58(k ∈Z ).因为0<ω≤1, 当k =0时,14≤ω≤58,当k =-1时,0<ω≤18,所以ω∈⎝ ⎛⎦⎥⎤0,18∪⎣⎢⎡⎦⎥⎤14,58.故选D.规律方法 由三角函数的性质求解参数,首先将解析式化简,利用对称性、奇偶性或单调性得到含有参数的表达式,进而求出参数的值或范围.训练2 (1)(2022·广州调研)若函数f (x )=12cos ωx -32sin ωx (ω>0)在[0,π]内的值域为⎣⎢⎡⎦⎥⎤-1,12,则ω的取值范围为( ) A.⎣⎢⎡⎦⎥⎤23,43B.⎝ ⎛⎦⎥⎤0,43C.⎝⎛⎦⎥⎤0,23D.(0,1](2)(2022·金华质检)将函数f (x )=sin 4x +cos 4x 的图象向左平移π8个单位长度后,得到g (x )的图象,若函数y =g (ωx )在⎣⎢⎡⎦⎥⎤-π12,π4上单调递减,则正数ω的最大值为( )A.12B.1 C.32D.23答案 (1)A (2)A解析 (1)f (x )=12cos ωx -32sin ωx =cos ⎝ ⎛⎭⎪⎫ωx +π3(ω>0),当x ∈[0,π]时,π3≤ωx +π3≤ωπ+π3. 又f (x )∈⎣⎢⎡⎦⎥⎤-1,12,所以π≤ωπ+π3≤5π3,解得23≤ω≤43, 故ω的取值范围为⎣⎢⎡⎦⎥⎤23,43.(2)依题意,f (x )=⎝ ⎛⎭⎪⎫1-cos 2x 22+⎝ ⎛⎭⎪⎫1+cos 2x 22=1+cos 22x 2=3+cos 4x4, 其图象向左平移π8个单位长度得到g (x )=34+14cos ⎣⎢⎡⎦⎥⎤4⎝ ⎛⎭⎪⎫x +π8=34+14cos ⎝ ⎛⎭⎪⎫4x +π2 =34-14sin 4x 的图象, 故g (ωx )=34-14sin(4ωx ).令-π2+2k π≤4ωx ≤π2+2k π,k ∈Z ,由于ω>0,得-π8+k π2ω≤x ≤π8+k π2ω,k ∈Z .由于函数g (ωx )在⎣⎢⎡⎦⎥⎤-π12,π4上单调递减,故⎩⎪⎨⎪⎧-π8+k π2ω≤-π12,π8+k π2ω≥π4,解得⎩⎪⎨⎪⎧ω≤32-6k ,ω≤12+2k ,k ∈Z ,所以当k =0时,ω=12为正数ω的最大值.热点三 三角形中有关量的最值或范围三角形中的最值、范围问题的解题策略(1)定基本量:根据题意画出图形,找出三角形中的边、角,利用正弦、余弦定理求出相关的边、角,并选择边、角作为基本量,确定基本量的范围.(2)构建函数:根据正弦、余弦定理或三角恒等变换,将所求范围的变量表示成函数形式.(3)求最值:利用基本不等式或函数的单调性等求函数的最值.例5(2022·滨州二模)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知6cos 2⎝ ⎛⎭⎪⎫π2+A +cos A =5. (1)求A 的大小;(2)若a =2,求b 2+c 2的取值范围. 解 (1)由已知得6sin 2A +cos A =5,整理得6cos 2A -cos A -1=0, 解得cos A =12或cos A =-13.又A ∈⎝⎛⎭⎪⎫0,π2,所以cos A =12,即A =π3.(2)由余弦定理a 2=b 2+c 2-2bc cos A 及a =2,A =π3得4=b 2+c 2-bc , 即b 2+c 2=4+bc ,由正弦定理得a sin A =b sin B =c sin C =232=433,即b =433sin B ,c =433sin C ,又C =2π3-B ,所以bc =163sin B sin C =163sin B sin ⎝⎛⎭⎪⎫2π3-B =833sin B ·cos B +83sin 2B=433sin 2B -43cos 2B +43=83sin⎝ ⎛⎭⎪⎫2B -π6+43, 又由⎩⎪⎨⎪⎧0<B <π2,0<23π-B <π2,解得π6<B <π2,所以π6<2B -π6<56π,所以sin ⎝ ⎛⎭⎪⎫2B -π6∈⎝ ⎛⎦⎥⎤12,1,所以bc ∈⎝ ⎛⎦⎥⎤83,4,所以b 2+c 2=4+bc ∈⎝ ⎛⎦⎥⎤203,8.易错提醒 求解三角形中的最值、范围问题的注意点(1)涉及求范围的问题,一定要搞清楚变量的范围,若已知边的范围,求角的范围可以利用余弦定理进行转化.(2)注意题目中的隐含条件,如A +B +C =π,0<A <π,|b -c |<a <b +c ,三角形中大边对大角等.训练3 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知S =34(b 2+c 2-a 2),a =4.(1)求角A 的大小.(2)求△ABC 周长的取值范围. 解 (1)由S =34(b 2+c 2-a 2), 得12bc sin A =34(b 2+c 2-a 2)=34×2bc cos A , 整理得tan A =3,因为A ∈(0,π), 所以A =π3.(2)设△ABC 的周长为L , 因为a =4,A =π3, 由余弦定理得:42=b 2+c 2-2bc cos π3,即42=b 2+c 2-bc =(b +c )2-3bc ≥(b +c )2-3⎝⎛⎭⎪⎫b +c 22=14(b +c )2, 所以b +c ≤8, 又b +c >a =4,所以L =a +b +c ∈(8,12].一、基本技能练1.已知函数f (x )=2sin(ωx +φ)(ω>0)的图象关于直线x =π3对称,且f ⎝ ⎛⎭⎪⎫π12=0,则ω的最小值为( ) A.2 B.4 C.6 D.8 答案 A解析 函数f (x )的周期T ≤4⎝ ⎛⎭⎪⎫π3-π12=π,则2πω≤π,解得ω≥2,故ω的最小值为2.2.将函数y =cos(2x +φ)的图象向右平移π3个单位长度,得到的函数为奇函数,则|φ|的最小值为( ) A.π12B.π6C.π3D.5π6 答案 B解析 将函数y =cos(2x +φ)的图象向右平移π3个单位长度,得到图象的函数解析式为y =cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π3+φ=cos ⎝ ⎛⎭⎪⎫2x -2π3+φ,此函数为奇函数,所以-2π3+φ=π2+k π(k ∈Z ),解得φ=7π6+k π(k ∈Z ), 则当k =-1时,|φ|取得最小值π6.3.(2022·海南模拟)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若a sin A +2c sinC =2b sin C cos A ,则角A 的最大值为( ) A.π6B.π4 C.π3D.2π3答案 A解析 因为a sin A +2c sin C =2b sin C cos A , 由正弦定理可得,a 2+2c 2=2bc cos A ,① 由余弦定理得,a 2=b 2+c 2-2bc cos A ,② ①+②得2a 2=b 2-c 2,所以cos A =b 2+c 2-a 22bc=b 2+c 2-12(b 2-c 2)2bc=b 2+3c 24bc ≥23bc 4bc =32(当且仅当b =3c 时取等号),所以角A 的最大值为π6.4.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若2a -cb=cos Ccos B,b =4,则△ABC 的面积的最大值为( ) A.43B.2 3 C.2 D. 3 答案 A解析 ∵在△ABC 中,2a -cb=cos C cos B, ∴(2a -c )cos B =b cos C ,由正弦定理,得(2sin A -sin C )cos B =sin B cos C , 整理得sin(B +C )=2sin A cos B , ∵A ∈(0,π),∴sin A ≠0. ∴cos B =12,即B =π3,由余弦定理可得16=a 2+c 2-2ac cos B =a 2+c 2-ac ≥2ac -ac =ac , ∴ac ≤16,当且仅当a =c 时取等号, ∴△ABC 的面积S =12ac sin B =34ac ≤4 3.即△ABC 的面积的最大值为4 3.5.(2022·苏北四市模拟)若函数f (x )=cos 2x +sin ⎝ ⎛⎭⎪⎫2x +π6在(0,α)上恰有2个零点,则α的取值范围为( ) A.⎣⎢⎡⎭⎪⎫5π6,4π3 B.⎝⎛⎦⎥⎤5π6,4π3C.⎣⎢⎡⎭⎪⎫5π3,8π3 D.⎝ ⎛⎦⎥⎤5π3,8π3 答案 B解析 由题意,函数f (x )=cos 2x +sin ⎝ ⎛⎭⎪⎫2x +π6=3sin ⎝ ⎛⎭⎪⎫2x +π3,因为0<x <α,所以π3<2x +π3<2α+π3, 又由f (x )在(0,α)上恰有2个零点, 所以2π<2α+π3≤3π,解得5π6<α≤4π3, 所以α的取值范围为⎝⎛⎦⎥⎤5π6,4π3.故选B. 6.已知函数f (x )=cos(ωx +φ)(ω>0)的最小正周期为π,且对x ∈R ,f (x )≥f ⎝ ⎛⎭⎪⎫π3恒成立,若函数y =f (x )在[0,a ]上单调递减,则a 的最大值是( ) A.π6B.π3 C.2π3D.5π6答案 B解析 因为函数f (x )=cos(ωx +φ)的最小正周期为π, 所以ω=2ππ=2, 又对x ∈R ,都有f (x )≥f ⎝ ⎛⎭⎪⎫π3,所以函数f (x )在x =π3时取得最小值,则2π3+φ=π+2k π,k ∈Z , 即φ=π3+2k π,k ∈Z ,所以f (x )=cos ⎝ ⎛⎭⎪⎫2x +π3,令2k π≤2x +π3≤π+2k π,k ∈Z , 解得-π6+k π≤x ≤π3+k π,k ∈Z ,则函数y =f (x )在⎣⎢⎡⎦⎥⎤0,π3上单调递减,故a 的最大值是π3,故选B.7.已知函数f (x )=2sin ωx (ω>0)在区间⎣⎢⎡⎦⎥⎤-π3,π4上的最小值为-2,则ω的取值范围是________. 答案⎣⎢⎡⎭⎪⎫32,+∞解析 x ∈⎣⎢⎡⎦⎥⎤-π3,π4,因为ω>0,-π3ω≤ωx ≤π4ω, 由题意知-π3ω≤-π2,即ω≥32,故ω取值范围是⎣⎢⎡⎭⎪⎫32,+∞.8.已知函数f (x )=cos ωx +sin ⎝ ⎛⎭⎪⎫ωx +π6(ω>0)在[0,π]上恰有一个最大值点和两个零点,则ω的取值范围是________. 答案⎣⎢⎡⎭⎪⎫53,136解析函数f (x )=cos ωx +sin ⎝⎛⎭⎪⎫ωx +π6=3sin ⎝ ⎛⎭⎪⎫ωx +π3(ω>0), 由x ∈[0,π],得ωx +π3∈⎣⎢⎡⎦⎥⎤π3,ωπ+π3.又f (x )在[0,π]上恰有一个最大值点和两个零点, 则2π≤ωπ+π3<52π, 解得53≤ω<136.9.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,∠ABC =120°,∠ABC 的角平分线交AC 于点D ,且BD =1,则4a +c 的最小值为________. 答案 9解析 因为∠ABC =120°,∠ABC 的平分线交AC 于点D , 所以∠ABD =∠CBD =60°,由三角形的面积公式可得12ac sin 120°=12a ×1·sin 60°+12c ·1·sin 60°,化简得ac =a +c ,又a >0,c >0,所以1a +1c=1,则4a +c =(4a +c )⎝ ⎛⎭⎪⎫1a +1c =5+c a +4a c ≥5+2c a ·4ac=9, 当且仅当c =2a 时取等号,故4a+c的最小值为9.10.已知△ABC的内角A,B,C所对的边分别为a,b,c,且A≠π2,c+b cos A-a cos B=2a cos A,则ba=________;内角B的取值范围是________.答案22⎝⎛⎦⎥⎤0,π4解析由c+b cos A-a cos B=2a cos A结合正弦定理得sin C+sin B cos A-sin A cos B=2sin A cos A,即sin(A+B)+sin B cos A-sin A cos B=2sin A cos A,化简得2sin B cos A=2sin A cos A.因为A≠π2,所以cos A≠0,则2sin B=2sin A,所以ba=sin Bsin A=22,则由余弦定理得cos B=a2+c2-b22ac=2b2+c2-b222bc=b2+c222bc≥2bc22bc=22,当且仅当b=c时等号成立,解得0<B≤π4.11.设△ABC的内角A,B,C的对边分别为a,b,c,a=b tan A,且B为钝角.(1)证明:B-A=π2;(2)求sin A+sin C的取值范围. (1)证明由a=b tan A及正弦定理,得sin A cos A =a b =sin A sin B , 所以sin B =cos A , 即sin B =sin ⎝ ⎛⎭⎪⎫π2+A .又B 为钝角,因此π2+A ∈⎝ ⎛⎭⎪⎫π2,π,故B =π2+A ,即B -A =π2.(2)解 由(1)知,C =π-(A +B ) =π-⎝⎛⎭⎪⎫2A +π2=π2-2A >0, 所以A ∈⎝⎛⎭⎪⎫0,π4,于是sin A +sin C =sin A +sin ⎝ ⎛⎭⎪⎫π2-2A =sin A +cos 2A =-2sin 2A +sin A +1=-2⎝ ⎛⎭⎪⎫sin A -142+98.因为0<A <π4,所以0<sin A <22,因此22<-2⎝⎛⎭⎪⎫sin A -142+98≤98.由此可知sin A +sin C 的取值范围是⎝ ⎛⎦⎥⎤22,98.12.已知向量a =⎝ ⎛⎭⎪⎫cos ⎝ ⎛⎭⎪⎫π2+x ,sin ⎝ ⎛⎭⎪⎫π2+x ,b =(-sin x ,3sin x ),f (x )=a ·b .(1)求函数f (x )的最小正周期及f (x )的最大值;(2)在锐角△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若f ⎝ ⎛⎭⎪⎫A 2=1,a =23,求△ABC面积的最大值并说明此时△ABC 的形状. 解 (1)由已知得a =(-sin x ,cos x ), 又b =(-sin x ,3sin x ), 则f (x )=a ·b =sin 2x +3sin x cos x=12(1-cos 2x )+32sin 2x =sin ⎝⎛⎭⎪⎫2x -π6+12, 所以f (x )的最小正周期T =2π2=π, 当2x -π6=π2+2k π(k ∈Z ),即x =π3+k π(k ∈Z )时,f (x )取得最大值32. (2)在锐角△ABC 中,因为f ⎝ ⎛⎭⎪⎫A 2=sin ⎝ ⎛⎭⎪⎫A -π6+12=1,所以sin ⎝ ⎛⎭⎪⎫A -π6=12,所以A =π3.因为a 2=b 2+c 2-2bc cos A , 所以12=b 2+c 2-bc , 所以b 2+c 2=bc +12≥2bc ,所以bc ≤12(当且仅当b =c =23时等号成立),此时△ABC 为等边三角形, S △ABC =12bc sin A =34bc ≤3 3.所以当△ABC 为等边三角形时面积取最大值3 3. 二、创新拓展练13.设锐角△ABC 的三个内角A ,B ,C 所对边分别为a ,b ,c ,且a =1,B =2A ,则b 的取值范围为( ) A.(2,3) B.(1,3) C.(2,2) D.(0,2) 答案 A解析 ∵B =2A ,∴sin B =sin 2A =2sin A cos A . ∵a =1,∴b =2a cos A =2cos A .又△ABC 为锐角三角形,∴⎩⎪⎨⎪⎧0<2A <π2,0<A <π2,0<π-3A <π2,∴π6<A <π4, ∴22<cos A <32, 即2<2cos A <3,故选A.14.(多选)(2022·台州质检)设函数f (x )=cos ⎝ ⎛⎭⎪⎫ωx +π3(ω>0),已知f (x )在[0,2π]上有且仅有3个极小值点,则( )A.f (x )在(0,2π)上有且仅有5个零点B.f (x )在(0,2π)上有且仅有2个极大值点C.f (x )在⎝ ⎛⎭⎪⎫0,π6上单调递减D.ω的取值范围是⎣⎢⎡⎭⎪⎫73,103答案 CD解析 因为x ∈[0,2π], 所以ωx +π3∈⎣⎢⎡⎦⎥⎤π3,2πω+π3. 设t =ωx +π3∈⎣⎢⎡⎦⎥⎤π3,2πω+π3,画出y =cos t 的图象如图所示.由图象可知,若f (x )在[0,2π]上有且仅有3个极小值点, 则5π≤ 2πω+π3<7π, 解得73≤ω<103, 故D 正确;故f (x )在(0,2π)上可能有5,6或7个零点,故A 错误;f (x )在(0,2π)上可能有2或3个极大值点,故B 错误; 当x ∈⎝ ⎛⎭⎪⎫0,π6时,ωx +π3∈⎝ ⎛⎭⎪⎫π3,π6ω+π3.因为73≤ω<103,所以13π18≤π6ω+π3<8π9,故f (x )在⎝⎛⎭⎪⎫0,π6上单调递减,故C 正确.15.(多选)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且c =6,记S 为△ABC 的面积,则下列说法正确的是( ) A.若C =π3,则S 有最大值9 3 B.若A =π6,a =23,则S 有最小值3 3C.若a =2b ,则cos C 有最小值0D.若a +b =10,则sin C 有最大值2425答案 ABD解析 对于选项A ,对角C 由余弦定理得36=c 2=a 2+b 2-ab ≥2ab -ab =ab , 因此,S =12ab sin C =34ab ≤93,当且仅当a =b =6时取等号,故A 正确; 对于选项B ,对角A 用余弦定理得 12=a 2=c 2+b 2-3bc =36+b 2-63b , 解得b =23或b =43, 因此,S =12bc sin A =32b ≥33,当且仅当b =23时取等号,故B 正确. 对于选项C ,若a =2b ,由三边关系可得a -b =b <c =6<a +b =3b ⇒2<b <6,此时,由余弦定理,得cos C =a 2+b 2-c 22ab =5b 2-364b 2=54-9b 2∈(-1,1),故C 错误.对于选项D ,若a +b =10,则cos C =a 2+b 2-c 22ab =(a +b )2-c 2-2ab 2ab =32ab -1,又ab ≤(a +b )24=25,当且仅当a =b =5时取等号,∴cos C =32ab -1≥725⇒sin C =1-cos 2C ≤2425,故D 正确,故选ABD.16.(2022·南京师大附中模拟)法国的拿破仑提出过一个几何定理:“以任意三角形的三条边为边向外构造三个等边三角形,则这三个等边三角形的外接圆圆心恰好是一个等边三角形的三个顶点”.在△ABC 中,A =60°,以AB ,BC ,AC 为边向外作三个等边三角形,其外接圆圆心依次为O 1,O 2,O 3,则∠O 1AO 3=________;若△O 1O 2O 3的面积为3,则三角形中AB +AC 的最大值为________.答案 120° 4解析 由于O 1,O 3是正△ABC ′,△AB ′C 的外接圆圆心,故也是它们的中心, 所以在△O 1AB 中,∠O 1AB =30°,同理∠O 3AC =30°, 又∠BAC =60°,所以∠O 1AO 3=120°; 由题意知△O 1O 2O 3为等边三角形,设边长为m , 则S △O 1O 2O 3=12m 2sin 60°=34m 2=3,解得O 1O 3=m =2.设BC =a ,AC =b ,AB =c ,在等腰△BO 1A 中,∠O 1AB =∠O 1BA =30°,∠AO 1B =120°, 则AB sin 120°=O 1Asin 30°,解得O 1A =c 3,同理得O 3A =b 3,在△O 1AO 3中,由余弦定理得O 1O 23=O 1A 2+O 3A 2-2O 1A ·O 3A ·cos 120°,即4=c 23+b 23-2·bc 3·⎝ ⎛⎭⎪⎫-12,即b 2+c 2+bc =12,即(b +c )2-bc =12, 故(b +c )2-12=bc ≤⎝⎛⎭⎪⎫b +c 22, 解得b +c ≤4,当且仅当b =c =2时取等号,故三角形中AB +AC 的最大值为4. 17.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且b 2c =a (b 2+c 2-a 2). (1)若A =π3,求B 的大小;(2)若a ≠c ,求c -3ba 的最小值.解 (1)因为b 2c =a (b 2+c 2-a 2),所以由余弦定理得cos A =b 2+c 2-a 22bc =b2a .因为A =π3,所以b 2a =12,即a =b , 所以B =A =π3.(2)由(1)及正弦定理得cos A =sin B2sin A,即sin B =2sin A cos A =sin 2A , 所以B =2A 或B +2A =π.当B +2A =π时,A =C ,与a ≠c 矛盾,故舍去, 所以B =2A .c -3b a =sin C -3sin B sin A =sin (A +B )-3sin Bsin A =sin A cos B +cos A sin B -3sin Bsin A=cos B +(cos A -3)sin 2Asin A=cos 2A +2(cos A -3)·cos A =4cos 2A -6cos A -1 =4⎝⎛⎭⎪⎫cos A -342-134.因为C =π-A -B =π-3A >0, 即A <π3,所以cos A >12,所以当cos A =34时,c -3b a 有最小值-134.。
2022届高考数学解三角形综合满分突破专题四 三角形中的最值(范围)问题(解析版)
专题四 三角形中的最值(范围)问题三角形中最值(范围)问题的解题思路任何最值(范围)问题,其本质都是函数问题,三角形中的范围(最值)问题也不例外.三角形中的范围(最值)问题的解法主要有两种:一是用函数求解,二是利用基本不等式求解.一般求最值用基本不等式,求范围用函数.由于三角形中的最值(范围)问题一般是以角为自变量的三角函数问题,所以,除遵循函数问题的基本要求外,还有自己独特的解法.要建立所求量(式子)与已知角或边的关系,然后把角或边作为自变量,所求量(式子)的值作为函数值,转化为函数关系,将原问题转化为求函数的值域问题.这里要利用条件中的范围限制,以及三角形自身范围限制,要尽量把角或边的范围(也就是函数的定义域)找完善,避免结果的范围过大.考点一 三角形中与角或角的函数有关的最值(范围)【例题选讲】[例1](1)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且a >b >c ,a 2<b 2+c 2,则角A 的取值范围是( )A .⎝⎛⎭⎫π2,πB .⎝⎛⎭⎫π4,π2C .⎝⎛⎭⎫π3,π2D .⎝⎛⎭⎫0,π2 答案 C 解析 因为a 2<b 2+c 2,所以cos A =b 2+c 2-a 22bc>0,所以A 为锐角.又因为a >b >c ,所以A 为最大角,所以角A 的取值范围是⎝⎛⎭⎫π3,π2.(2)在△ABC 中,若AB =1,BC =2,则角C 的取值范围是( )A .⎝⎛⎦⎤0,π6B .⎝⎛⎭⎫0,π2C .⎝⎛⎭⎫π6,π2D .⎝⎛⎦⎤π6,π2 答案 A 解析 因为c =AB =1,a =BC =2,b =AC .根据两边之和大于第三边,两边之差小于第三边可知1<b <3,根据余弦定理cos C =12ab (a 2+b 2-c 2)=14b (4+b 2-1)=14b (3+b 2)=34b +b 4=14⎝ ⎛⎭⎪⎫3b -b 2+32≥32.所以0<C ≤π6.故选A . (3)在△ABC 中,内角A ,B ,C 对应的边分别为a ,b ,c ,A ≠π2,sin C +sin(B -A )=2sin2A ,则角A 的取值范围为( )A .⎝⎛⎦⎤0,π6B .⎝⎛⎦⎤0,π4C .⎣⎡⎦⎤π6,π4D .⎣⎡⎦⎤π6,π3 答案 B 解析 法一:在△ABC 中,C =π-(A +B ),所以sin(A +B )+sin(B -A )=2sin2A ,即2sin B cos A=22sin A cos A ,因为A ≠π2,所以cos A ≠0,所以sin B =2sin A ,由正弦定理得,b =2a ,所以A 为锐角,又sin B =2sin A ∈(0,1],所以sin A ∈⎝⎛⎦⎤0,22,所以A ∈⎝⎛⎦⎤0,π4. 法二:在△ABC 中,C =π-(A +B ),所以sin(A +B )+sin(B -A )=2sin2A ,即2sin B cos A =22sin A cos A ,因为A ≠π2,所以cos A ≠0,所以sin B =2sin A ,由正弦定理,得b =2a ,由余弦定理得cos A =b 2+c 2-a 22bc=12b 2+c 22bc ≥2 12b 2·c 22bc =22,当且仅当c =22b 时等号成立,所以A ∈⎝⎛⎦⎤0,π4. (4)(2014·江苏)若△ABC 的内角满足sin A +2sin B =2sin C ,则cos C 的最小值是________.答案 6-24解析 由sin A +2sin B =2sin C ,结合正弦定理得a +2b =2c .由余弦定理得cos C =a 2+b 2-c 22ab =a 2+b 2-(a +2b )242ab =34a 2+12b 2-2ab 22ab≥2 ⎝⎛⎭⎫34a 2⎝⎛⎭⎫12b 2-2ab 22ab =6-24,故6-24≤cos C <1,故cos C 的最小值为6-24. (5)设△ABC 的三边a ,b ,c 所对的角分别为A ,B ,C ,已知a 2+2b 2=c 2,则tan C tan A =_____;tan B 的最大值为________.答案 -3 33 解析 由正弦定理可得tan C tan A =sin C sin A ·cos A cos C =c a ·cos A cos C ,再结合余弦定理可得tan C tan A =c a ·cos A cos C=c a ·b 2+c 2-a 22bc ·2ab a 2+b 2-c 2=b 2+c 2-a 2a 2+b 2-c 2.由a 2+2b 2=c 2,得tan C tan A =b 2+a 2+2b 2-a 2a 2+b 2-a 2-2b 2=-3.由已知条件及大边对大角可知0<A <π2<C <π,从而由A +B +C =π可知tan B =-tan(A +C )=-tan A +tan C 1-tan A tan C=-1+tan C tan A 1tan A -tan C =23-tan C+(-tan C ),因为π2<C <π,所以3-tan C +(-tan C )≥23-tan C×(-tan C )=23(当且仅当tan C =-3时取等号),从而tan B ≤223=33,即tan B 的最大值为33. (6)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若a =2b sin C ,则tan A +tan B +tan C 的最小值是( )A .4B .33C .8D .63解析:由a =2b sin C 得sin A =2sin B sin C ,∴sin(B +C )=sin B cos C +cos B sin C =2sin B sin C ,即tan B +tan C =2tan B tan C .又三角形中的三角恒等式tan A +tan B +tan C =tan A tan B tan C ,∴tan B tan C =tan A tan A -2,∴tan A tan B tan C =tan A ·tan A tan A -2,令tan A -2=t ,得tan A tan B tan C =(t +2)2t =t +4t +4≥8,当且仅当t =4t , 即t =2,tan A =4 时,取等号.【对点训练】1.在不等边三角形ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,其中a 为最大边,如果sin 2(B +C )<sin 2B +sin 2C ,则角A 的取值范围为( )A .⎝⎛⎭⎫0,π2B .⎝⎛⎭⎫π4,π2C .⎝⎛⎭⎫π6,π3D .⎝⎛⎭⎫π3,π2 2.已知△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2A =2a ,则角A 的取值范 围是( )A .⎝⎛⎦⎤π6,2π3B .⎣⎡⎦⎤π6,π4C .⎝⎛⎦⎤0,π6D .⎣⎡⎭⎫π6,π3 3.已知a ,b ,c 分别是△ABC 内角A ,B ,C 的对边,满足cos A sin B sin C +cos B sin A sin C =2cos C sin A sin B ,则C 的最大值为________.4.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,若b 2+c 2=2a 2,则cos A 的最小值为________.5.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且cos2A +cos2B =2cos2C ,则cos C 的最小值为( )A .32B .22C .12D .-126.在钝角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,B 为钝角,若a cos A =b sin A ,则sin A +sin C 的最大值为( ) A .2 B .98 C .1 D .787.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且a cos B -b cos A =12c ,当tan(A -B )取最大值时, 角B 的值为________.8.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A +b sin B =c sin C -2a sin B ,则sin2A tan 2B 的最大值是__________.9.在△ABC 中,若sin C =2cos A cos B ,则cos 2A +cos 2B 的最大值为________.10.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若3a cos C +b =0,则tan B 的最大值是________.11.(2016江苏)在锐角三角形ABC 中,若sin 2sin sin A B C =,则tan tan tan A B C 的最小值是________.12.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若△ABC 为锐角三角形,且满足b 2-a 2=ac ,则1tan A-1tan B的取值范围是________. 13.在锐角三角形ABC 中,已知2sin 2A +sin 2B =2sin 2C ,则1tan A +1tan B +1tan C的最小值为________. 考点二 三角形中与边或周长有关的最值(范围)【例题选讲】[例2](1)已知△ABC 中,角A ,32B ,C 成等差数列,且△ABC 的面积为1+2,则AC 边的长的最小值是________.答案 2 解析 ∵A ,32B ,C 成等差数列,∴A +C =3B ,又A +B +C =π,∴B =π4.设角A ,B ,C 所对的边分别为a ,b ,c ,由S △ABC =12ac sin B =1+2得ac =2(2+2),由余弦定理及a 2+c 2≥2ac ,得b 2≥(2-2)ac ,即b 2≥(2-2)×2(2+2),∴b ≥2(当且仅当a =c 时等号成立),∴AC 边的长的最小值为2.(2)(2015·全国Ⅰ)在平面四边形ABCD 中,∠A =∠B =∠C =75°,BC =2,则AB 的取值范围是________. 答案 (6-2,6+2) 解析 通法:依题意作出四边形ABCD ,连结BD .令BD =x ,AB =y ,∠CDB =α,∠CBD =β.在△BCD 中,由正弦定理得2sin α=x sin 75.由题意可知,∠ADC =135°,则∠ADB=135°-α.在△ABD 中,由正弦定理得x sin 75°=y sin(135°-α).所以y sin(135°-α)=2sin α,即y =2sin(135°-α)sin α=2sin[90°-(α-45°)]sin α=2cos(α-45°)sin α=2(cos α+sin α)sin α.因为0°<β<75°,α+β+75°=180°,所以30°<α<105°,当α=90°时,易得y =2;当α≠90°时,y =2(cos α+sin α)sin α=2⎝⎛⎭⎫1tan α+1.又tan 30°=33,tan 105°=tan(60°+45°)=tan 60°+tan 45°1-tan 60°tan 45°=-2-3,结合正切函数的性质知,1tan α∈(3-2,3),且1tan α≠0,所以y =2⎝⎛⎭⎫1tan α+1∈(6-2,2)∪(2,6+2).综上所述:y ∈(6-2,6+2).提速方法:画出四边形ABCD ,延长CD ,BA ,探求出AB 的取值范围.如图所示,延长BA 与CD 相交于点E ,过点C 作CF ∥AD 交AB 于点F ,则BF <AB <BE .在等腰三角形CFB 中,∠FCB =30°,CF =BC =2,∴BF =22+22-2×2×2cos 30°=6-2.在等腰三角形ECB 中,∠CEB =30°,∠ECB =75°,BE =CE ,BC =2,BE sin 75°=2sin 30°,∴BE =212×6+24=6+2.∴6-2<AB <6+2.(3)在△ABC 中,若C =2B ,则c b的取值范围为________. 答案 (1,2) 解析 因为A +B +C =π,C =2B ,所以A =π-3B >0,所以0<B <π3,所以12<cos B <1.因为c b =sin C sin B =sin 2B sin B =2cos B ,所以1<2cos B <2,故1<c b<2. (4) (2018·北京)若△ABC 的面积为34(a 2+c 2-b 2),且∠C 为钝角,则∠B =__________;c a 的取值范围是__________.答案 60° (2,+∞) 解析 由已知得34(a 2+c 2-b 2)=12ac sin B ,所以3(a 2+c 2-b 2)2ac=sin B ,由余弦定理得3cos B =sin B ,所以tan B =3,所以B =60°,又C >90°,B =60°,所以A <30°,且A +C =120°,所以c a =sin C sin A =sin (120°-A )sin A =12+32tan A .又A <30°,所以0<tan A <33,即1tan A >3,所以c a >12+32=2. (5)在△ABC 中,角, , A B C 所对的边分别为, , a b c ,且满足sin sin()sin sin cos A B C B C A -=,则2ab c 的最大值为__________.答案 32解析 由sin sin()sin sin cos A B C B C A -=,得sin (sin cos cos sin )sin sin cos A B C B C B C A -=,由正弦定理可得cos cos cos ab C ac B bc A -=,由余弦定理可得22222222a b c a c b ab ac bc ab ac +-+--=2222b c a bc+-,化简得2223a b c +=,又因为22232c a b ab =+≥,当且仅当a b =时等号成立,可得232ab c ≤,所以2ab c 的最大值为32. (6)在△ABC 中,若C =60°,c =2,则a +b 的取值范围为________.答案 (2,4] 解析 由题意,得c =2.由余弦定理可得c 2=a 2+b 2-2ab cos C ,即4=a 2+b 2-ab =(a +b )2-3ab ≥14(a +b )2,得a +b ≤4.又由三角形的性质可得a +b >2,综上可得2<a +b ≤4. (7)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足b 2+c 2-a 2=bc ,AB →·BC →>0,a =32,则b +c 的取值范围是( )A .⎝⎛⎭⎫1,32B .⎝⎛⎭⎫32,32C .⎝⎛⎭⎫12,32D .⎝⎛⎦⎤12,32 答案 B 解析 在△ABC 中,b 2+c 2-a 2=bc ,由余弦定理可得cos A =b 2+c 2-a 22bc =bc 2bc =12,因为A 是△ABC 的内角,所以A =60°.因为a =32,所以由正弦定理得a sin A =b sin B =c sin C =c sin (120°-B )=1,所以b +c =sin B +sin(120°-B )=32sin B +32cos B =3sin(B +30°).因为AB →·BC →=|AB →|·|BC →|·cos(π-B )>0,所以cos B <0,B 为钝角,所以90°<B <120°,120°<B +30°<150°,故sin(B +30°)∈⎝⎛⎭⎫12,32,所以b +c =3sin(B +30°)∈⎝⎛⎭⎫32,32. (8) (2018·江苏)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,∠ABC =120°,∠ABC 的平分线交AC 于点D ,且BD =1,则4a +c 的最小值为________.答案 9 解析 因为∠ABC =120°,∠ABC 的平分线交AC 于点D ,所以∠ABD =∠CBD =60°,由三角形的面积公式可得12ac sin 120°=12a ×1×sin 60°+12c ×1×sin 60°,化简得ac =a +c ,又a >0,c >0,所以1a +1c =1,则4a +c =(4a +c )·⎝⎛⎭⎫1a +1c =5+c a +4a c≥5+2c a ·4a c=9,当且仅当c =2a 时取等号,故4a +c 的最小值为9.(9)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足a sin B =3b cos A .若a =4,则△ABC 周长的最大值为________. 答案 12 解析 由正弦定理a sin A =b sin B ,可将a sin B =3b cos A 转化为sin A sin B =3sin B cos A .又在△ABC 中,sin B >0,∴sin A =3cos A ,即tan A =3.∵0<A <π,∴A =π3.由余弦定理得a 2=16=b 2+c 2-2bc cos A =(b +c )2-3bc ≥(b +c )2-3⎝⎛⎭⎫b +c 22,则(b +c )2≤64,即b +c ≤8(当且仅当b =c =4时等号成立),∴△ABC 周长=a +b +c =4+b +c ≤12,即最大值为12.(10)在△ABC 中,∠ACB =60°,BC >1,AC =AB +12,当△ABC 的周长最短时,BC 的长是________. 答案 1+22 解析 设AC =b ,AB =c ,BC =a ,△ABC 的周长为l ,由b =c +12,得l =a +b +c =a +2c +12.又cos 60°=a 2+b 2-c 22ab =12,即ab =a 2+b 2-c 2,得a ⎝⎛⎭⎫c +12=a 2+⎝⎛⎭⎫c +122-c 2,即c =a 2-12a +14a -1.l =a +2c +12=a +2a 2-a +12a -1+12=3⎣⎡⎦⎤(a -1)2+43()a -1+12a -1+12=3⎣⎡⎦⎤(a -1)+12(a -1)+43+12≥3⎣⎢⎡⎦⎥⎤2(a -1)×12(a -1)+43+12,当且仅当a -1=12(a -1)时,△ABC 的周长最短,此时a =1+22,即BC 的长是1+22. 【对点训练】1.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =b cos C +c sin B ,且△ABC 的面积为1+2,则b 的最小值为( )A .2B .3C .2D .32.已知△ABC 中,AB +2AC =6,BC =4,D 为BC 的中点,则当AD 最小时,△ABC 的面积为________.3.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且A =2B ,C 为钝角,则c b的取值范围是________. 4.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若A =3B ,则a b的取值范围是( ) A .(0,3) B .(1,3) C .(0,1] D .(1,2]5.已知a ,b ,c 分别为△ABC 的内角A ,B ,C 所对的边,其面积满足S △ABC =14a 2,则c b的最大值为( ) A .2-1 B .2 C .2+1 D .2+26.在△ABC 中,已知c =2,若sin 2A +sin 2B -sin A sin B =sin 2C ,则a +b 的取值范围为________.7.在外接圆半径为12的△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b +c )sin B +(2c +b )sin C ,则b +c 的最大值是( )A .1B .12C .3D .328.在△ABC 中,B =60°,AC =3,则2a +c 的最大值为________.9.在△ABC 中,AB =2,C =π6,则3a +b 的最大值为( ) A .7 B .27 C .37 D .4710.在△ABC 中,A ,B ,C 的对边分别是a ,b ,c .若A =120°,a =1,则2b +3c 的最大值为( )A .3B .2213C .32D .35211.在△ABC 中,a ,b ,c 分别为三个内角A ,B ,C 的对边,且BC 边上的高为36a ,则c b +b c取得最大值时,内角A 的值为( )A .π2B .π6C .2π3D .π312.在锐角△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且满足(a -b )(sin A +sin B )=(c -b )·sin C .若a =3,则b 2+c 2的取值范围是( )A .(5,6]B .(3,5)C .(3,6]D .[5,6]13.在△ABC 中,B =60°,AC =3,则△ABC 的周长的最大值为________.14.凸函数是一类重要的函数,其具有如下性质:若定义在(a ,b )上的函数f (x )是凸函数,则对任意的x i ∈(a ,b )(i =1,2,…,n ),必有f ⎝⎛⎭⎫x 1+x 2+…+x n n ≥f (x 1)+f (x 2)+…+f (x n )n 成立.已知y =sin x 是(0,π)上的凸函数,利用凸函数的性质,当△ABC 的外接圆半径为R 时,其周长的最大值为________.考点三 三角形中与面积有关的最值(范围)【例题选讲】[例3](1)已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,tan A =43,a =4,则△ABC 的面积的最大值为( )A .4B .6C .8D .12答案 C 解析 因为tan A =43,所以sin A cos A =43.又sin 2A +cos 2A =1,所以cos 2A =925,解得cos A =35或cos A =-35(舍去),故sin A =45.又16=b 2+c 2-2bc ×35≥2bc -65bc ,所以bc ≤20,当且仅当b =c =25时取等号,故△ABC 的面积的最大值为12×20×45=8. (2)在△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c ,若⎝⎛⎭⎫12b -sin C cos A =sin A cos C ,且a =23,则△ABC 面积的最大值为________.答案 33 解析 因为⎝⎛⎭⎫12b -sin C cos A =sin A cos C ,所以12b cos A -sin C cos A =sin A cos C ,所以12b cos A =sin(A +C ),所以12b cos A =sin B ,所以cos A 2=sin B b ,又sin B b =sin A a ,a =23,所以cos A 2=sin A 23,得tan A =3,又A ∈(0,π),则A =π3,由余弦定理得(23)2=b 2+c 2-2bc ·12=b 2+c 2-bc ≥2bc -bc =bc ,即bc ≤12,当且仅当b =c =23时取等号,从而△ABC 面积的最大值为12×12×32=33. (3)已知△ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c ,面积为S ,且满足4S =a 2-(b -c )2,b +c =8,则S 的最大值为________.答案 8 解析 由题意得,4×12bc sin A =a 2-b 2-c 2+2bc ,又a 2=b 2+c 2-2bc cos A ,代入上式得,2bc sin A =-2bc cos A +2bc ,即sin A +cos A =1,2sin ⎝⎛⎭⎫A +π4=1,又0<A <π,∴π4<A +π4<5π4,∴A +π4=3π4,∴A =π2,S =12bc sin A =12bc ,又b +c =8≥2bc ,当且仅当b =c 时取“=”,∴bc ≤16,∴S 的最大值为8.(4)若△ABC 的三边长分别为a ,b ,c ,面积为S ,且S =c 2-(a -b )2,a +b =2,则△ABC 面积的最大值为________.答案 417解析 S =c 2-(a -b )2=c 2-a 2-b 2+2ab =2ab -(a 2+b 2-c 2),由余弦定理得a 2+b 2-c 2=2ab cos C ,∴c 2-(a -b )2=2ab (1-cos C ),即S =2ab (1-cos C ).∵S =12ab sin C ,∴sin C =4(1-cos C ).又∵sin 2C +cos 2C =1,∴17cos 2C -32cos C +15=0,解得cos C =1517或cos C =1(舍去),∴sin C =817,∴S =12ab sin C =417a (2-a )=-417(a -1)2+417.∵a +b =2,∴0<a <2,∴当a =1,b =1时,S max =417. (5)已知△ABC 的外接圆半径为R ,且满足2R (sin 2A -sin 2C )=(2a -b )·sin B ,则△ABC 面积的最大值为________.答案 2+12R 2 解析 由正弦定理得a 2-c 2=(2a -b )b ,即a 2+b 2-c 2=2ab .由余弦定理得cos C =a 2+b 2-c 22ab =2ab 2ab =22,∵C ∈(0,π),∴C =π4.∴S =12ab sin C =12×2R sin A ·2R sin B ·22=2R 2sin A sin B =2R 2sin A sin ⎝⎛⎭⎫3π4-A =2R 2sin A ⎝⎛⎭⎫22cos A +22sin A =R 2(sin A cos A +sin 2A )=R 2⎝⎛⎭⎫12sin 2A +1-cos 2A 2=R 2⎣⎡⎦⎤22sin ⎝⎛⎭⎫2A -π4+12,∵A ∈⎝⎛⎭⎫0,3π4,∴2A -π4∈⎝⎛⎭⎫-π4,5π4,∴sin ⎝⎛⎭⎫2A -π4∈⎝⎛⎦⎤-22,1,∴S ∈⎝ ⎛⎦⎥⎤0,2+12R 2,∴面积S 的最大值为2+12R 2. (6)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且满足b =c ,b a =1-cos B cos A.若点O 是△ABC 外一点,∠AOB =θ(0<θ<π),OA =2,OB =1,如图所示,则四边形OACB 面积的最大值是( )A .4+534B .8+534C .3D .4+52答案 B 解析 由b a =1-cos B cos A及正弦定理得sin B cos A =sin A -sin A cos B ,所以sin(A +B )=sin A ,所以sin C =sin A ,因为A ,C ∈(0,π),所以C =A ,又b =c ,所以A =B =C ,△ABC 为等边三角形.设△ABC的边长为k ,则k 2=12+22-2×1×2×cos θ=5-4cos θ,则S 四边形OACB =12×1×2sin θ+34k 2=sin θ+34(5-4cos θ)=2sin ⎝⎛⎭⎫θ-π3+534≤2+534=8+534,所以当θ-π3=π2,即θ=5π6时,四边形OACB 的面积取得最大值,且最大值为8+534. 【对点训练】1.(2014·全国Ⅰ)已知a ,b ,c 分别为△ABC 的三个内角A ,B ,C 的对边,a =2,且(2+b )(sin A -sin B )=(c -b )sin C ,则△ABC 面积的最大值为________.2.在△ABC 中,若AB =2,AC 2+BC 2=8,则△ABC 面积的最大值为( )A .2B .2C .3D .33.在△ABC 中,AC →·AB →=|AC →-AB →|=3,则△ABC 的面积的最大值为( )A .21B .3214C .212D .321 4.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若△ABC 的面积S =a 2-(b -c )2,且b +c =8,则 S 的最大值为________.5.若AB =2,AC =2BC ,则S △ABC 的最大值为( )A .22B .32C .23D .32 6.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知sin A -sin B =13sin C ,3b =2a ,2≤a 2+ac ≤18, 设△ABC 的面积为S ,p =2a -S ,则p 的最大值是( )A .529B .729C . 2D .9287.在△ABC 中,设角A ,B ,C 对应的边分别为a ,b ,c ,记△ABC 的面积为S ,且4a 2=b 2+2c 2,则S a2的 最大值为________.专题四 三角形中的最值(范围)问题三角形中最值(范围)问题的解题思路任何最值(范围)问题,其本质都是函数问题,三角形中的范围(最值)问题也不例外.三角形中的范围(最值)问题的解法主要有两种:一是用函数求解,二是利用基本不等式求解.一般求最值用基本不等式,求范围用函数.由于三角形中的最值(范围)问题一般是以角为自变量的三角函数问题,所以,除遵循函数问题的基本要求外,还有自己独特的解法.要建立所求量(式子)与已知角或边的关系,然后把角或边作为自变量,所求量(式子)的值作为函数值,转化为函数关系,将原问题转化为求函数的值域问题.这里要利用条件中的范围限制,以及三角形自身范围限制,要尽量把角或边的范围(也就是函数的定义域)找完善,避免结果的范围过大.考点一 三角形中与角或角的函数有关的最值(范围)【例题选讲】[例1](1)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且a >b >c ,a 2<b 2+c 2,则角A 的取值范围是( )A .⎝⎛⎭⎫π2,πB .⎝⎛⎭⎫π4,π2C .⎝⎛⎭⎫π3,π2D .⎝⎛⎭⎫0,π2 答案 C 解析 因为a 2<b 2+c 2,所以cos A =b 2+c 2-a 22bc>0,所以A 为锐角.又因为a >b >c ,所以A 为最大角,所以角A 的取值范围是⎝⎛⎭⎫π3,π2.(2)在△ABC 中,若AB =1,BC =2,则角C 的取值范围是( )A .⎝⎛⎦⎤0,π6B .⎝⎛⎭⎫0,π2C .⎝⎛⎭⎫π6,π2D .⎝⎛⎦⎤π6,π2 答案 A 解析 因为c =AB =1,a =BC =2,b =AC .根据两边之和大于第三边,两边之差小于第三边可知1<b <3,根据余弦定理cos C =12ab (a 2+b 2-c 2)=14b (4+b 2-1)=14b (3+b 2)=34b +b 4=14⎝ ⎛⎭⎪⎫3b -b 2+32≥32.所以0<C ≤π6.故选A . (3)在△ABC 中,内角A ,B ,C 对应的边分别为a ,b ,c ,A ≠π2,sin C +sin(B -A )=2sin2A ,则角A 的取值范围为( )A .⎝⎛⎦⎤0,π6B .⎝⎛⎦⎤0,π4C .⎣⎡⎦⎤π6,π4D .⎣⎡⎦⎤π6,π3 答案 B 解析 法一:在△ABC 中,C =π-(A +B ),所以sin(A +B )+sin(B -A )=2sin2A ,即2sin B cos A=22sin A cos A ,因为A ≠π2,所以cos A ≠0,所以sin B =2sin A ,由正弦定理得,b =2a ,所以A 为锐角,又sin B =2sin A ∈(0,1],所以sin A ∈⎝⎛⎦⎤0,22,所以A ∈⎝⎛⎦⎤0,π4. 法二:在△ABC 中,C =π-(A +B ),所以sin(A +B )+sin(B -A )=2sin2A ,即2sin B cos A =22sin A cos A ,因为A ≠π2,所以cos A ≠0,所以sin B =2sin A ,由正弦定理,得b =2a ,由余弦定理得cos A =b 2+c 2-a 22bc=12b 2+c 22bc ≥2 12b 2·c 22bc =22,当且仅当c =22b 时等号成立,所以A ∈⎝⎛⎦⎤0,π4. (4)(2014·江苏)若△ABC 的内角满足sin A +2sin B =2sin C ,则cos C 的最小值是________. 答案6-24 解析 由sin A +2sin B =2sin C ,结合正弦定理得a +2b =2c .由余弦定理得cos C =a 2+b 2-c 22ab=a 2+b 2-(a +2b )242ab =34a 2+12b 2-2ab22ab≥2⎝⎛⎭⎫34a 2⎝⎛⎭⎫12b 2-2ab 22ab=6-24,故6-24≤cos C <1,故cos C 的最小值为6-24. (5)设△ABC 的三边a ,b ,c 所对的角分别为A ,B ,C ,已知a 2+2b 2=c 2,则tan Ctan A =_____;tan B 的最大值为________.答案 -333 解析 由正弦定理可得tan C tan A =sin C sin A ·cos A cos C =c a ·cos A cos C ,再结合余弦定理可得tan C tan A =c a ·cos A cos C=c a ·b 2+c 2-a 22bc ·2ab a 2+b 2-c 2=b 2+c 2-a 2a 2+b 2-c 2.由a 2+2b 2=c 2,得tan C tan A =b 2+a 2+2b 2-a 2a 2+b 2-a 2-2b 2=-3.由已知条件及大边对大角可知0<A <π2<C <π,从而由A +B +C =π可知tan B =-tan(A +C )=-tan A +tan C 1-tan A tan C =-1+tan Ctan A 1tan A -tan C =23-tan C +(-tan C ),因为π2<C <π,所以3-tan C +(-tan C )≥23-tan C×(-tan C )=23(当且仅当tan C =-3时取等号),从而tan B ≤223=33,即tan B 的最大值为33.(6)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若a =2b sin C ,则tan A +tan B +tan C 的最小值是( )A .4B .33C .8D .63解析:由a =2b sin C 得sin A =2sin B sin C ,∴sin(B +C )=sin B cos C +cos B sin C =2sin B sin C ,即tan B +tan C =2tan B tan C .又三角形中的三角恒等式tan A +tan B +tan C =tan A tan B tan C ,∴tan B tan C =tan Atan A -2,∴tan A tan B tan C =tan A ·tan A tan A -2,令tan A -2=t ,得tan A tan B tan C =(t +2)2t =t +4t +4≥8,当且仅当t =4t , 即t =2,tan A =4 时,取等号.【对点训练】1.在不等边三角形ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,其中a 为最大边,如果sin 2(B +C )<sin 2B +sin 2C ,则角A 的取值范围为( )A .⎝⎛⎭⎫0,π2B .⎝⎛⎭⎫π4,π2C .⎝⎛⎭⎫π6,π3D .⎝⎛⎭⎫π3,π2 1.答案 D 解析 由题意得sin 2A <sin 2B +sin 2C ,再由正弦定理得a 2<b 2+c 2,即b 2+c 2-a 2>0.则cos A =b 2+c 2-a 22bc >0,∵0<A <π,∴0<A <π2.又a 为最大边,∴A >π3.因此得角A 的取值范围是⎝⎛⎭⎫π3,π2.2.已知△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2A =2a ,则角A 的取值范 围是( )A .⎝⎛⎦⎤π6,2π3B .⎣⎡⎦⎤π6,π4C .⎝⎛⎦⎤0,π6D .⎣⎡⎭⎫π6,π3 2.答案 C 解析 在△ABC 中,由正弦定理化简已知的等式得sin A sin A sin B +sin B cos 2A =2sin A ,即 sin B (sin 2A +cos 2A )=2sin A ,所以sin B =2sin A ,由正弦定理得b =2a ,所以cos A =b 2+c 2-a 22bc =4a 2+c 2-a 24ac=3a 2+c 24ac ≥23ac 4ac =32(当且仅当c 2=3a 2,即c =3a 时取等号),因为A 为△ABC 的内角,且y =cos x在(0,π)上是减函数,所以0<A ≤π6,故角A 的取值范围是⎝⎛⎦⎤0,π6. 3.已知a ,b ,c 分别是△ABC 内角A ,B ,C 的对边,满足cos A sin B sin C +cos B sin A sin C =2cos C sin A sin B ,则C 的最大值为________.3.答案 π3 解析 由正弦定理,得bc cos A +ac cos B =2ab cos C ,由余弦定理,得bc ·b 2+c 2-a 22bc +ac ·c 2+a 2-b 22ac =2ab ·a 2+b 2-c 22ab ,∴a 2+b 2=2c 2,∴cos C =a 2+b 2-c 22ab =a2+b 2-12(a 2+b 2)2ab =a 2+b 24ab ≥2ab 4ab =12,当且仅当a =b 时,取等号.∵0<C <π,∴0<C ≤π3,∴C 的最大值为π3. 4.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,若b 2+c 2=2a 2,则cos A 的最小值为________. 4.答案 12 解析 因为b 2+c 2=2a 2,则由余弦定理可知a 2=2bc cos A ,所以cos A =a 22bc =12×b 2+c 22bc ≥12×2bc 2bc=12(当且仅当b =c 时等号成立),即cos A 的最小值为12. 5.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且cos2A +cos2B =2cos2C ,则cos C 的最小值为( )A .32 B .22 C .12 D .-125.答案 C 解析 因为cos2A +cos2B =2cos2C ,所以1-2sin 2A +1-2sin 2B =2-4sin 2C ,得a 2+b 2=2c 2,cos C =a 2+b 2-c 22ab ≥a 2+b 22a 2+b 2=12,当且仅当a =b 时等号成立,故选C .6.在钝角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,B 为钝角,若a cos A =b sin A ,则sin A +sin C 的最大值为( )A .2B .98C .1D .786.答案 B 解析 ∵a cos A =b sin A ,由正弦定理可得,sin A cos A =sin B sin A ,∵sin A ≠0,∴cos A =sin B ,又B 为钝角,∴B =A +π2,sin A +sin C =sin A +sin(A +B )=sin A +cos2A =sin A +1-2sin 2A =-2⎝⎛⎭⎫sin A -142+98,∴sin A +sin C 的最大值为98. 7.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且a cos B -b cos A =12c ,当tan(A -B )取最大值时,角B 的值为________.7.答案 π6 解析 由a cos B -b cos A =12c 及正弦定理,得sin A cos B -sin B cos A =12sin C =12sin(A +B )=12(sin A cos B +cos A sin B ),整理得sin A cos B =3cos A sin B ,即tan A =3tan B ,易得tan A >0,tan B >0.所以tan(A -B )=tan A -tan B 1+tan A tan B =2tan B 1+3tan 2B =21tan B +3tan B ≤223=33,当且仅当1tan B =3tan B ,即tan B =33时,tan(A -B )取得最大值,所以B =π6.8.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A +b sin B =c sin C -2a sin B ,则sin2A tan 2B 的最大值是__________.8.答案 3-22 解析 依题意得a 2+b 2-c 2=-2ab ,则2ab cos C =-2ab ,所以cos C =-22, 所以C =3π4,A =π4-B ,所以sin2A tan 2B =cos2B tan 2B =(1-tan 2B )tan 2B 1+tan 2B .令1+tan 2B =t ,其中t ∈(1,2),则有(1-tan 2B )tan 2B 1+tan 2B =(2-t )(t -1)t =-⎝⎛⎭⎫t +2t +3≤3-22,当且仅当t =2时取等号.故sin 2A tan 2B 的最大值是3-22.9.在△ABC 中,若sin C =2cos A cos B ,则cos 2A +cos 2B 的最大值为________. 9.答案2+12解析 解法1 因为sin C =2cos A cos B ,所以,sin(A +B )=2cos A cos B ,化简得tan A +tan B =2,cos 2A +cos 2B =cos 2A sin 2A +cos 2A +cos 2B sin 2B +cos 2B =1tan 2A +1+1tan 2B +1=tan 2A +tan 2B +2(tan A tan B )2+tan 2A +tan 2B +1=(tan A +tan B )2-2tan A tan B +2(tan A tan B )2+(tan A +tan B )2-2tan A tan B +1=6-2tan A tan B(tan A tan B )2-2tan A tan B +5.因为分母(tan A tan B )2-2tan A tan B +5>0,所以令6-2tan A tan B =t (t >0),则cos 2A +cos 2B =4t t 2-8t +32=4t +32t-8≤4232-8=2+12(当且仅当t =42时取等号). 解法2 由解法1得tan A +tan B =2,令tan A =1+t ,tan B =1-t ,则cos 2A +cos 2B =1tan 2A +1+1tan 2B +1=1t 2+2+2t +1t 2+2-2t =2(t 2+2)(t 2+2)2-4t 2,令d =t 2+2≥2,则cos 2A +cos 2B =2d d 2-4d +8=2d +8d-4≤228-4=2+12,当且仅当d =22时等号成立.解法3 因为sin C =2cos A cos B ,所以sin C =cos(A +B )+cos(A -B ),即cos(A -B )=sin C +cos C ,cos 2A +cos 2B =1+cos2A 2+1+cos2B 2=1+cos(A +B )cos(A -B )=1-cos C (sin C +cos C )=12-12(sin2C +cos2C )=12-22sin(2C +π4)≤12+22=2+12,当且仅当2C +π4=3π2,即C =5π8时取等号. 10.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若3a cos C +b =0,则tan B 的最大值是________.10.答案 34解析 在△ABC 中,因为3a cos C +b =0,所以C 为钝角,由正弦定理得3sin A cos C +sin(A+C )=0,3sin A cos C +sin A cos C +cos A sin C =0,所以4sin A cos C =-cos A ·sin C ,即tan C =-4tan A .因为tan A >0,所以tan B =-tan(A +C )=-tan A +tan C 1-tan A tan C =tan A +tan C tan A tan C -1=-3tan A-4tan 2A -1=34tan A +1tan A≤324=34,当且仅当tan A =12时取等号,故tan B 的最大值是34. 11.(2016江苏)在锐角三角形ABC 中,若sin 2sin sin A B C =,则tan tan tan A B C 的最小值是________. 11.答案 8 解析 因为sin A =sin(B +C )=2sin B sin C ,所以tan B +tan C =2tan B tan C ,因此tan A tan B tan C=tan A +tan B +tan C =tan A +2tan B tan C ≥2 2 tan A tan B tan C ,所以tan A tan B tan C ≥8.12.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若△ABC 为锐角三角形,且满足b 2-a 2=ac ,则1tan A-1tan B的取值范围是________. 12.答案 ⎝⎛⎭⎫1,233 解析 思路一,根据题意可知,本题可以从“解三角形和三角恒等变换”角度切入,又因已知锐角和边的关系,而所求为正切值,故把条件化为角的正弦和余弦来处理即可;思路二,本题所求为正切值,故可以构造直角三角形,用边的关系处理.解法1 原式可化为1tan A -1tan B =cos A sin A -cos B sin B =sin B cos A -cos B sin A sin A sin B =sin (B -A )sin A sin B .由b 2-a 2=ac 得,b 2=a 2+ac =a 2+c 2-2ac cos B ,即a =c -2a cos B ,也就是sin A =sin C -2sin A cos B ,即sin A =sin(A +B )-2sin A cos B =sin(B -A ),由于△ABC 为锐角三角形,所以有A =B -A ,即B =2A ,故1tan A -1tan B =1sin B ,在锐角三角形ABC 中易知,π3<B <π2,32<sin B <1,故1tan A -1tan B ∈⎝⎛⎭⎫1,233.解法2 根据题意,作CD ⊥AB ,垂足为点D ,画出示意图.因为b 2-a 2=AD 2-BD 2=(AD +BD )(AD -BD )=c (AD -BD )=ac ,所以AD -BD =a ,而AD +BD =c ,所以BD =c -a 2,则c >a ,即ca >1,在锐角三角形ABC 中有b 2+a 2>c 2,则a 2+a 2+ac >c 2,即⎝⎛⎭⎫c a 2-c a -2<0,解得-1<c a <2,因此,1<c a <2.而1tan A -1tan B =AD -BD CD=a a 2-⎝⎛⎭⎫c -a 22=11-14⎝⎛⎭⎫c a -12∈⎝⎛⎭⎫1,233.13.在锐角三角形ABC 中,已知2sin 2A +sin 2B =2sin 2C ,则1tan A +1tan B +1tan C 的最小值为________.13.答案132解析 解法1 因为2sin 2A +sin 2B =2sin 2C ,所以由正弦定理可得2a 2+b 2=2c 2,由余弦 定理及正弦定理可得cos C =a 2+b 2-c 22ab =b 24ab =b 4a =sin B4sin A ,又因为sin B =sin(A +C )=sin A cos C +cos A sin C ,所以cos C =sin A cos C +cos A sin C 4sin A =cos C 4+sin C4tan C,可得tan C =3tan A ,代入tan A +tan B +tan C=tan A tan B tan C 得tan B =4tan A 3tan 2A -1,所以1tan A +1tan B +1tan C =1tan A +3tan 2A -14tan A +13tan A =3tan A 4+1312tan A ,因为A ∈⎝⎛⎭⎫0,π2,所以tan A >0,所以3tan A 4+1312tan A ≥23tan A 4×1312tan A =132,当且仅当3tan A 4=1312tan A,即tan A =133时取“=”.所以1tan A +1tan B +1tan C 的最小值为132. 解法2 过点B 作BD ⊥AC 于D ,设AD =x ,DC =y ,BD =h ,则tan A =h x ,tan C =hy .同解法1可得tan C =3tan A ,tan B =4tan A 3tan 2A -1 则h y =3h x ,即x =3y ,tan B =4hx 3⎝⎛⎭⎫h x 2-1=4hx 3h 2-x 2,所以1tan A +1tan B +1tan C =x h +3h 2-x 24hx +y h =3y h +3h 2-9y 212hy +y h =13y 4h +h 4y ≥132.当且仅当13y 4h =h 4y ,即y =113h 时取“=”.所以1tan A +1tan B +1tan C 的最小值为132. 考点二 三角形中与边或周长有关的最值(范围) 【例题选讲】[例2](1)已知△ABC 中,角A ,32B ,C 成等差数列,且△ABC 的面积为1+2,则AC 边的长的最小值是________.答案 2 解析 ∵A ,32B ,C 成等差数列,∴A +C =3B ,又A +B +C =π,∴B =π4.设角A ,B ,C所对的边分别为a ,b ,c ,由S △ABC =12ac sin B =1+2得ac =2(2+2),由余弦定理及a 2+c 2≥2ac ,得b 2≥(2-2)ac ,即b 2≥(2-2)×2(2+2),∴b ≥2(当且仅当a =c 时等号成立),∴AC 边的长的最小值为2.(2)(2015·全国Ⅰ)在平面四边形ABCD 中,∠A =∠B =∠C =75°,BC =2,则AB 的取值范围是________. 答案 (6-2,6+2) 解析 通法:依题意作出四边形ABCD ,连结BD .令BD =x ,AB =y ,∠CDB =α,∠CBD =β.在△BCD 中,由正弦定理得2sin α=x sin 75.由题意可知,∠ADC =135°,则∠ADB=135°-α.在△ABD 中,由正弦定理得x sin 75°=y sin(135°-α).所以y sin(135°-α)=2sin α,即y =2sin(135°-α)sin α=2sin[90°-(α-45°)]sin α=2cos(α-45°)sin α=2(cos α+sin α)sin α.因为0°<β<75°,α+β+75°=180°,所以30°<α<105°,当α=90°时,易得y =2;当α≠90°时,y =2(cos α+sin α)sin α=2⎝⎛⎭⎫1tan α+1.又tan 30°=33,tan 105°=tan(60°+45°)=tan 60°+tan 45°1-tan 60°tan 45°=-2-3,结合正切函数的性质知,1tan α∈(3-2,3),且1tan α≠0,所以y =2⎝⎛⎭⎫1tan α+1∈(6-2,2)∪(2,6+2).综上所述:y ∈(6-2,6+2).提速方法:画出四边形ABCD ,延长CD ,BA ,探求出AB 的取值范围.如图所示,延长BA 与CD 相交于点E ,过点C 作CF ∥AD 交AB 于点F ,则BF <AB <BE .在等腰三角形CFB 中,∠FCB =30°,CF =BC =2,∴BF =22+22-2×2×2cos 30°=6-2.在等腰三角形ECB 中,∠CEB =30°,∠ECB =75°,BE =CE ,BC =2,BE sin 75°=2sin 30°,∴BE =212×6+24=6+2.∴6-2<AB <6+2.(3)在△ABC 中,若C =2B ,则cb的取值范围为________.答案 (1,2) 解析 因为A +B +C =π,C =2B ,所以A =π-3B >0,所以0<B <π3,所以12<cos B <1.因为c b =sin C sin B =sin 2B sin B =2cos B ,所以1<2cos B <2,故1<cb<2. (4) (2018·北京)若△ABC 的面积为34(a 2+c 2-b 2),且∠C 为钝角,则∠B =__________;ca的取值范围是__________.答案 60° (2,+∞) 解析 由已知得34(a 2+c 2-b 2)=12ac sin B ,所以3(a 2+c 2-b 2)2ac =sin B ,由余弦定理得3cos B =sin B ,所以tan B =3,所以B =60°,又C >90°,B =60°,所以A <30°,且A +C =120°,所以c a =sin C sin A =sin (120°-A )sin A =12+32tan A .又A <30°,所以0<tan A <33,即1tan A >3,所以c a >12+32=2.(5)在△ABC 中,角, , A B C 所对的边分别为, , a b c ,且满足sin sin()sin sin cos A B C B C A -=,则2abc 的最大值为__________. 答案32解析 由sin sin()sin sin cos A B C B C A -=,得sin (sin cos cos sin )sin sin cos A B C B C B C A -=,由正弦定理可得cos cos cos ab C ac B bc A -=,由余弦定理可得22222222a b c a c b ab ac bcab ac+-+--=2222b c a bc+-,化简得2223a b c +=,又因为22232c a b ab =+≥,当且仅当a b =时等号成立,可得232ab c ≤,所以2ab c的最大值为32.(6)在△ABC 中,若C =60°,c =2,则a +b 的取值范围为________.答案 (2,4] 解析 由题意,得c =2.由余弦定理可得c 2=a 2+b 2-2ab cos C ,即4=a 2+b 2-ab =(a +b )2-3ab ≥14(a +b )2,得a +b ≤4.又由三角形的性质可得a +b >2,综上可得2<a +b ≤4.(7)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足b 2+c 2-a 2=bc ,AB →·BC →>0,a =32,则b +c 的取值范围是( )A .⎝⎛⎭⎫1,32B .⎝⎛⎭⎫32,32 C .⎝⎛⎭⎫12,32 D .⎝⎛⎦⎤12,32 答案 B 解析 在△ABC中,b 2+c 2-a 2=bc ,由余弦定理可得cos A =b 2+c 2-a 22bc =bc 2bc =12,因为A是△ABC 的内角,所以A =60°.因为a =32,所以由正弦定理得a sin A =b sin B =c sin C =csin (120°-B )=1,所以b +c =sin B +sin(120°-B )=32sin B +32cos B =3sin(B +30°).因为AB →·BC →=|AB →|·|BC →|·cos(π-B )>0,所以cos B <0,B 为钝角,所以90°<B <120°,120°<B +30°<150°,故sin(B +30°)∈⎝⎛⎭⎫12,32,所以b +c=3sin(B +30°)∈⎝⎛⎭⎫32,32.(8) (2018·江苏)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,∠ABC =120°,∠ABC 的平分线交AC 于点D ,且BD =1,则4a +c 的最小值为________.答案 9 解析 因为∠ABC =120°,∠ABC 的平分线交AC 于点D ,所以∠ABD =∠CBD =60°,由三角形的面积公式可得12ac sin 120°=12a ×1×sin 60°+12c ×1×sin 60°,化简得ac =a +c ,又a >0,c >0,所以1a +1c =1,则4a +c =(4a +c )·⎝⎛⎭⎫1a +1c =5+c a +4ac ≥5+2c a ·4ac=9,当且仅当c =2a 时取等号,故4a +c 的最小值为9.(9)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足a sin B =3b cos A .若a =4,则△ABC 周长的最大值为________.答案 12 解析 由正弦定理a sin A =bsin B,可将a sin B =3b cos A 转化为sin A sin B =3sin B cos A .又在△ABC 中,sin B >0,∴sin A =3cos A ,即tan A =3.∵0<A <π,∴A =π3.由余弦定理得a 2=16=b 2+c 2-2bc cosA =(b +c )2-3bc ≥(b +c )2-3⎝⎛⎭⎫b +c 22,则(b +c )2≤64,即b +c ≤8(当且仅当b =c =4时等号成立),∴△ABC 周长=a +b +c =4+b +c ≤12,即最大值为12.(10)在△ABC 中,∠ACB =60°,BC >1,AC =AB +12,当△ABC 的周长最短时,BC 的长是________.答案 1+22 解析 设AC =b ,AB =c ,BC =a ,△ABC 的周长为l ,由b =c +12,得l =a +b +c =a +2c +12.又cos 60°=a 2+b 2-c 22ab=12,即ab =a 2+b 2-c 2,得a ⎝⎛⎭⎫c +12=a 2+⎝⎛⎭⎫c +122-c 2,即c =a 2-12a +14a -1.l =a +2c +12=a +2a 2-a +12a -1+12=3⎣⎡⎦⎤(a -1)2+43()a -1+12a -1+12=3⎣⎡⎦⎤(a -1)+12(a -1)+43+12。
高考数学解三角形中的最值专题
【详解】
(1)由 ,可得 ,
整理得 ,
所以 .
(2)由(1)得 , , ,,
, ,
由正弦定理得 ,
∴
,
∵ ,∴ , ,
,∴
∴ 的取值范围是 .
【点睛】
本题主要考查正弦定理和余弦定理的应用,属于中档题.
3.(1) ;(2) .
【详解】
(1)
原式
(2) ,
时等号成立.
周长的最大值为
【点睛】
本题考查了三角恒等变换,余弦定理,均值不等式,周长的最大值,意在考查学生解决问题的能力.
14.(1) ;(2) .
【解析】
试题分析:(1)根据题意,由正弦定理得到关于角的三角函数关系
利用: ,得到 ,再利用两角和的正弦定理,化简为: ,利用辅助角公式得到: ,进而求得: ;(2)根据余弦定理得到关于 的关系式: ,利用基本不等式得 ,所以三角形的周长的取值范围为 .
12.(1) ;(2)
【解析】
【分析】
(1)利用正弦定理,并结合 ,可将原式转化为 ,由 ,可求出 ,进而可求出 ;
(2)由 ,可求出 ,再结合余弦定理,可求得 的值,结合 ,可求出 的值,进而可求出 的周长.
【详解】
(1)由正弦定理可得, ,
由 ,则 ,
因为 ,所以 ,
又 ,所以 .
(2)由题意, ,解得 ,
(2)根据向量数量积的定义可得 ,再利用余弦定理以及基本不等式可得 ,由三角形的面积公式即可求解.
【详解】
解:(1)因为 ,所以 ,
由正弦定理, ,即
(2)若 ,则 ,
三角形中的范围(最值)问题专题
(2)由正弦定理得c=2RsinC= .
由余弦定理得c2=a2+b2-2abcosC,故a2+b2= +ab.
因为a>0,b>0,所以a2+b2> .又ab≤ ,故a2+b2≤ + ,得a2+b2≤ .因此, <a2+b2≤ .则a2+b2的取值范围为 .
7.答案:(1) ;(2) .
解析:(1)由sin(2A- )=1,得2A- =2kπ+ (k∈Z),即A=kπ+ (k∈Z),又A∈(0,π),所以A= .
(2)由正弦定理得
= =
=
=
=
2sin(B+ ),又△ABC是锐角三角形,所以
解得 <B< , <B+ < ,故有 <2sin(B+ )≤2,所以 < ≤2.即 的取值范围为 .
三角形中的范围
1.在△ABC中,角A,B,C的对边分别为a,b,c,且a,b,c成等比数列,则角B的取值范围是________.
2.在锐角△ABC中,BC=1,B=2A,则AC的取值范围是________.
3.若a1x≤sinx≤a2x对任意的x∈ 都成立,则a2-a1的最小值为________.
4.在△ABC中,角A,B,C的对边分别为a,b,c,已知sinB+sinC=msinA(m∈R),且a2-4bc=0,当A为锐角时,则m的取值范围是________.
4.答案: .
解析:由正弦定理及sinB+sinC=msinA得,b+c=ma,又cosA= = = =2m2-3,因为A为锐角,所以cosA=2m2-3∈(0,1),所以 <m2<2,又由b+c=ma得m>0,所以 <m< .
5.答案:(3,2 ].
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题24 解三角形中的最值、范围问题解三角形问题是高考高频考点,命题大多放在解答题的第一题,主要利用三角形的内角和定理,正、余弦定理、三角形面积公式等知识解题,解题时要灵活利用三角形的边角关系进行“边转角”“角转边”,另外要注意22,,a c ac a c ++三者的关系. 高考中经常将三角变换与解三角形知识综合起来命题,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理实现边角互化;以上特征都不明显时,则要考虑两个定理都有可能用到.而三角变换中主要是“变角、变函数名和变运算形式”,其中的核心是“变角”,即注意角之间的结构差异,弥补这种结构差异的依据就是三角公式. 1、正弦定理:2sin sin sin a b cR A B C===,其中为ABC 外接圆的半径 正弦定理的主要作用是方程和分式中的边角互化.其原则为关于边,或是角的正弦值是否具备齐次的特征.如果齐次则可直接进行边化角或是角化边,否则不可行 学/科-+网 例如:(1)222222sin sin sin sin sin A B A B C a b ab c +-=⇔+-= (2)cos cos sin cos sin cos sin b C c B a B C C B A +=⇒+=(恒等式) (3)22sin sin sin bc B Ca A=2、余弦定理:2222cos a b c bc A =+-变式:()()2221cos a b c bc A =+-+ 此公式在已知的情况下,配合均值不等式可得到和的最值4、三角形中的不等关系(1)任意两边之和大于第三边:在判定是否构成三角形时,只需验证较小的两边之和是否比第三边大即可.由于不存在等号成立的条件,在求最值时使用较少(2)在三角形中,边角以及角的三角函数值存在等价关系:sin sin cos cos a b A B A B A B >⇔>⇔>⇒<其中由cos cos A B A B >⇔<利用的是余弦函数单调性,而sin sin A B A B >⇔>仅在一个三角形内有效.5、解三角形中处理不等关系的几种方法(1)转变为一个变量的函数:通过边角互化和代入消元,将多变量表达式转变为函数,从而将问题转化为求函数的值域(最值) (2)利用均值不等式求得最值【经典例题】例1.【2018届百校联盟TOP20高三四月联考全国一卷】已知四边形中,,设与面积分别为,则的最大值为_____.【答案】【解析】分析:利用余弦定理推,求出的表达式,利用二次函数以及余弦函数的值的范围,求的最大值即可.点睛:求解三角函数的最值(或值域)时一定要注意自变量的取值范围,由于三角函数的周期性,正弦函数、余弦函数的最大值和最小值可能不在自变量区间的端点处取得.例2.【2018届普通高等学校招生全国统一考试高三下学期第二次调研】在中,角A,B,C 所对的边分别为,则实数a 的取值范围是____________.【答案】.【解析】 由,得,所以,则由余弦定理,得,解得,又, 所以的范围是.例3.【2018届浙江省杭州市高三第二次检测】在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若对任意λ∈R ,不等式恒成立,则的最大值为_____.【答案】2例4.【衡水金卷信息卷三】已知的三边分别为,,,所对的角分别为,,,且满足,且的外接圆的面积为,则的最大值的取值范围为__________.【答案】【解析】由的三边分别为,,可得:,可知:,,,例5.【2018届湖南省株洲市高三检测(二)】已知中,角所对的边分别是,且.(1)求角的大小;(2)设向量,边长,当取最大值时,求边的长.【答案】(1)(2).【解析】分析:(1)由题意,根据正弦定理可得,再由余弦定理可得,由此可求角的大小;(2)因为由此可求当取最大值时,求边的长.(2)因为所以当时,取最大值,此时,由正弦定理得,例6.【2018届四川省攀枝花市高三第三次(4月)统考】已知的内角的对边分别为其面积为,且.学/科/*网(Ⅰ)求角;(II)若,当有且只有一解时,求实数的范围及的最大值.【答案】(Ⅰ).(Ⅱ).【解析】分析:(Ⅰ)利用余弦定理和三角形的面积公式化简得到,再解这个三角方程即得A的值. (II)先根据有且只有一解利用正弦定理和三角函数的图像得到m的取值范围,再写出S的函数表达式求其最大值.详解:(Ⅰ)由己知(Ⅱ)由己知,当有且只有一解时,或,所以;当时,为直角三角形,当时,由正弦定理,,所以,当时,综上所述,.中,角A,B,C的对边分别为a,b,c,且例7.【2018届四川省资阳市高三4月(三诊)】在ABC()()sin sin a b A B +- ()sin sin c C B =-.(1)求A .(2)若,求22b c +的取值范围.【答案】(1)3A π=;(2)(]16,32.221616b c bc +=+>,进而可得结果.试题解析:(1)根据正弦定理得()()a b a b +- ()c c b =-,即222a b c bc -=-,则222122b c a bc +-=,即1cos 2A =,由于0πA <<,【方法点睛】本题主要考查正弦定理及余弦定理的应用,属于中档题.在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据. 除了直接利用两定理求边和角以外,恒等变形过程中,一般来说 ,当条件中同时出现 及 、 时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答. 例8.【2018届甘肃省张掖市高三三诊】已知3cos,cos 44x x m ⎛⎫= ⎪⎝⎭, sin ,cos 44x x n ⎛⎫= ⎪⎝⎭,设函数()f x m n =⋅.(1)求函数的单调增区间;(2)设ABC ∆的内角, , 所对的边分别为a , b , c ,且a , b , c 成等比数列,求()f B 的取值范围.【答案】(1) 424,433k k ππππ⎡⎤-+⎢⎥⎣⎦, k Z ∈.(2) 31⎛+ ⎝⎦. 【解析】试题分析:(1)由题()13cos ,cos sin ,cos sin 4444262x x x x x f x m n π⎛⎫⎛⎫⎛⎫=⋅=⋅=++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,根据正弦函数的性质222262x k k πππππ-≤+≤+可求其单调增区间;(2)由题2b ac =可知2222221cos 2222a cb ac ac ac ac B ac ac ac +-+--==≥=, (当且仅当时取等号),所以03B π<≤,6263B πππ<+≤,由此可求 ()f B 的取值范围. (当且仅当时取等号),所以03B π<≤, 6263B πππ<+≤, ()311f B +<≤,综上, ()f B 的取值范围为311,⎛⎤+ ⎥ ⎝⎦. 例9.【2018届吉林省吉林市高三第三次调研】锐角ABC ∆中, ,,A B C 对边为,,a b c ,()()()222sin 3cos ba c B C ac A C --+=+(1)求的大小; (2)求代数式b c a +的取值范围.【答案】(1)3π(2)32b ca+<≤ 【解析】试题分析:(1)由()()()222sin 3cos b a c B C ac A C --+=+及余弦定理的变形可得2cos sin 3cos B A B -=,因为cos 0B ≠,故得3sin 2A =,从而可得锐角ABC ∆中3A π=.(2)利用正弦定理将所求变形为2sin sin 32sin sin 6B B b c B a A ππ⎛⎫++ ⎪+⎛⎫⎝⎭==+ ⎪⎝⎭,然后根据6B π+的取值范围求出代数式b ca+的取值范围即可.试题解析: (1)∵2222cos b a c ac B --=-, ()()()222sin 3cos b a c B C ac A C --+=+, ∴()()2cos sin 3cos ac B B C ac A C -+=+ , ∴()()2cos sin 3cos ,B A B ππ--=- ∴2cos sin 3cos B A B -=,∴233sin sin sin cos sin sin 3222sin sin sin 6sin 3B B B Bb c B C B a A A πππ⎛⎫+++ ⎪++⎛⎫⎝⎭====+ ⎪⎝⎭,∵ABC ∆为锐角三角形,且3A π=∴02{02B C ππ<<<<,即02{ 2032B B πππ<<<-<, 解得62B ππ<<,∴2,363B πππ<+<∴3sin 16B π⎛⎫<+≤ ⎪⎝⎭.∴32b c a +<≤.故代数式b ca+的取值范围(3,2⎤⎦.点睛:(1)求b ca+的取值范围时,可根据正弦定理将问题转化为形如()sin y A x ωϕ=+的函数的取值范围的问题解决,这是在解三角形问题中常用的一种方法,但在解题中要注意确定角x ωϕ+的范围.(2)解答本题时要注意“锐角三角形”这一条件的运用,根据此条件可的求得6B π+的范围,然后结合函数的图象可得sin 6B π⎛⎫+⎪⎝⎭的范围,以达到求解的目的. 例10.【2018届衡水金卷信息卷(一)】已知ABC ∆的内角,,A B C 的对边分别为,,a b c ,若向量()()2,cos ,,cos m b c B n a A =-=-,且//m n .(1)求角的值;(2)已知ABC ∆的外接圆半径为233,求ABC ∆周长的取值范围. 【答案】(1) 3A π=(2)【解析】试题分析:(1)由//m n ,得62)0c cosA acosB -+=(,利用正弦定理统一到角上易得1cos 2A =;(2)根据题意,得2sin 2a R A ==,由余弦定理,得()223a b c bc =+-,结合均值不等式可得()216b c +≤,所以的最大值为4,又2b c a +>=,从而得到ABC ∆周长的取值范围.得1cos 2A =.又()0,A π∈,所以3A π=.(2)根据题意,得4332sin 2a R A ==⨯=.由余弦定理,得()22222cos 3a b c bc A b c bc =+-=+-, 即()223432b c bc b c +⎛⎫=+-≤ ⎪⎝⎭,整理得()216b c +≤,当且仅当2b c ==时,取等号, 所以的最大值为4.又2b c a +>=,所以24b c <+≤,所以46a b c <++≤. 所以ABC ∆的周长的取值范围为.【精选精练】1.【2018届东莞市高三第二次考试】在中,若,则的取值范围为( )A. B. C. D. 【答案】D 【解析】因为,所以,即,即,2.【2018届湖南省衡阳市高三二模】在中,已知为的面积),若,则的取值范围是( )A. B.C.D.【答案】C【解析】 ,,,,又,,,,故选C.3.【2018届四川省绵阳市高三三诊】四边形ABCD 中, 2AB = 1BC CD DA ===,设ABD ∆、BCD ∆的面积分别为、,则当2212S S +取最大值时, BD =__________.【答案】102【点睛】本小题主要考查三角形的面积公式的应用,考查同角三角函数关系,考查利用余弦定理解三角形,考查二次函数最值的求法.首先根据题目所求,利用三角形面积公式,写出面积的表达式,利用同角三角函数关系转化为余弦值,利用余弦定理化简,再利用配方法求得面积的最值,并求得取得最值时的值. 4.【2018届广东省肇庆市高三第三次模拟】已知的角对边分别为,若,且的面积为,则的最小值为________.【答案】5.【2018届辽宁省辽南协作校高三下学期一模】设的内角所对的边分别为且+,则的范围是__________.【答案】【解析】由+得,所以,即,再由余弦定理得 ,即,解得,又,所以的范围是.点睛:在解三角形问题中,一般需要利用余弦定理结合均值不等式,来求两边和的取值范围或者是三角形的面积的最值,只需运用余弦定理,并变形为两边和与两边积的等式,在利用均值不等式转化为关于两边和或两边积的不等式,解不等式即可求出范围.6.【2018届四川省攀枝花市高三第三次(4月)统考】已知锐角ABC ∆的内角A B C 、、的对边分别为a b c 、、,且2cos 2,2a C c b a +==,则ABC ∆的最大值为__________.【答案】即4bc ≤,所以ABC ∆的最大值为max 113sin 4322S bc A ==⨯⨯=. 点睛:本题主要考查了利用正弦定理和三角函数的恒等变换求解三角形问题,对于解三角形问题,通常利用正弦定理进行“边转角”寻求角的关系,利用“角转边”寻求边的关系,利用余弦定理借助三边关系求角,利用两角和差公式及二倍角公式求三角函数值. 利用正、余弦定理解三角形问题是高考高频考点,经常利用三角形内角和定理,三角形面积公式,结合正、余弦定理解题.7.【2018届宁夏石嘴山市高三4月适应性测试(一模)】已知,,a b c 分别为ABC ∆内角,,A B C 的对边,且sin 3cos b A a B =.(1)求角;(2)若23b =,求ABC ∆面积的最大值.【答案】(1)3B π=;(2).【解析】试题分析:(1)由正弦定理边化角得到tan 3B =,从而得解;(2)由余弦定理得2222cos b a c ac B =+-, 2212a c ac =+-结合222a c ac +≥即可得最值. 试题解析:(1)∵sin 3cos b A a B =,∴由正弦定理可得sin sin 3sin cos B A A B =,即ABC ∆面积的最大值为.8.【2018届四川省攀枝花市高三第三次(4月)统考】已知的内角的对边分别为其面积为,且.(Ⅰ)求角;(II )若,当有且只有一解时,求实数的范围及的最大值.【答案】(Ⅰ).(Ⅱ).【解析】分析:(Ⅰ)利用余弦定理和三角形的面积公式化简得到,再解这个三角方程即得A 的值. (II )先根据有且只有一解利用正弦定理和三角函数的图像得到m 的取值范围,再写出S 的函数表达式求其最大值.详解:(Ⅰ)由己知由余弦定理得,所以,即,,所以.由正弦定理 ,,所以,当时,综上所述,.点睛:本题在转化有且只有一解时,容易漏掉m=2这一种情况.此时要通过正弦定理和正弦函数的图像分析,不能死记硬背.先由正弦定理得再画正弦函数的图像得到或.9.【衡水金卷信息卷(二)】在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,已知sin 3cos a C c A =. (1)求角的大小;(2)若,且43B ππ≤≤,求边c 的取值范围.【答案】(1) 3A π=;(2) 31⎡⎤⎣⎦.在ABC ∆中,由正弦定理,得sin sin b c B C=,∴22sin 2sin 3cos 3311sin sin sin tan B C B c B B B B π⎛⎫- ⎪⎝⎭===+=+,∵43B ππ≤≤,∴1tan 3B ≤≤,∴231c ≤≤+,即c 的取值范围为2,31⎡⎤+⎣⎦.10.【2018届辽宁省沈阳市东北育才学校高三三模】已知ABC ∆三个内角 ,,A B C 的对边分别为,,a b c ,ABC ∆的面积满足2223S a b c -=+-. (1)求角的值;(2)求()cos2cos A A B +-的取值范围. 【答案】(1)23π;(2)()0,3tan 3C =-,又0C π<<, 23C π∴=.(2)()33cos2cos =cos2cos 2cos232A A B A A A A π⎛⎫+-+-= ⎪⎝⎭=3sin 23A π⎛⎫+ ⎪⎝⎭0,2333A A ππππ<<∴<+<(3sin 2033A π⎛⎫⎤+∈ ⎪⎦⎝⎭, 11.【2018届江苏省姜堰、溧阳、前黄中学高三4月联考】在ABC ∆中,内角,,A B C 的对边分别为,,a b c ,已知222a c b -=,且sin cos 3cos sin A C A C =.(1)求b 的值;(2)若4B π=, 为ABC ∆的面积,求82cos cos S A C +的取值范围.【答案】(1) (2) ()8,82【解析】试题分析:(1)利用正余弦定理, sin cos 3cos sin A C A C =可转化为2222b ac -=,又222a c b -=,从而得到b 的值; (2)由正弦定理1sin 82sin sin 2S bc A A C ==,故382cos 82cos 24S AcosC A π⎛⎫+=-⎪⎝⎭限制角A 的范围,求出82cos cos S A C +的取值范围.(2)由正弦定理sin sin b c B C =得114sin 4sin sin 82sin sin 22sin 4S bc A A C A C π==⋅⋅=()382cos 82cos 82cos 24S AcosC A C A π⎛⎫∴+=-=-⎪⎝⎭, 在ABC ∆中,由3040{ 202A A C A Cπππ<<<<<<> 得3,82A ππ⎛⎫∈ ⎪⎝⎭ 320,44A ππ⎛⎫∴-∈ ⎪⎝⎭, 32cos 242A π⎛⎫⎛⎫∴-∈ ⎪ ⎪ ⎪⎝⎭⎝⎭(82cos 8,82S AcosC ∴+∈.12.【衡水金卷信息卷 (五)】在锐角ABC ∆中,内角, , 的对边分别为a , b , c ,且25sin 2sin 224B C A π+⎛⎫+-=- ⎪⎝⎭.(1)求角;(2)若3a =ABC ∆周长的取值范围.【答案】(1) 3A π=(2) (33,33+(33,33⎤+⎦.试题解析:(1)∵252224B C sin A sin π+⎛⎫+-=- ⎪⎝⎭,∴()15224cos B C cos A -+-=-, ∴2152124cosA cos A +--=-,整理,得28210cos A cosA --=,∴14cosA =-或12cosA =, ∵02A π<<,∴12cosA =,即3A π=.(2)设ABC ∆的外接圆半径为r ,则32232ar sinA===,∴. ∴()2b c r sinB sinC +=+ 223sinB sin B π⎡⎤⎛⎫=+-⎪⎢⎥⎝⎭⎣⎦236sin B π⎛⎫=+ ⎪⎝⎭,∴ABC ∆周长的取值范围是(33,33⎤+⎦.。