讲义_直线与圆的位置关系

合集下载

第2章 2.3.3 直线与圆的位置关系-【新教材】人教B版(2019)高中数学选择性必修一讲义

第2章 2.3.3 直线与圆的位置关系-【新教材】人教B版(2019)高中数学选择性必修一讲义

2.3.3直线与圆的位置关系学习目标核心素养1.理解直线与圆的三种位置关系.(重点) 2.会用代数法和几何法判断直线与圆的位置关系.(重点)3.能解决直线与圆位置关系的综合问题.(难点)1.通过直线与圆的位置关系的学习,培养直观想象逻辑推理的数学核心素养.2.通过解决直线与圆位置关系的综合问题,培养数学运算的核心素养.早晨的日出非常美丽,如果我们把海平面看成一条直线,而把太阳抽象成一个运动着的圆,观察太阳缓缓升起的这样一个过程.你能想象到什么几何知识呢?没错,日出升起的过程可以体现直线与圆的三种特殊位置关系.你发现了吗?直线与圆的位置关系的判定(直线Ax+By+C=0,AB≠0,圆(x-a)2+(y-b)2=r2,r>0)位置关系相交相切相离公共点个数2个1个0个判定方法几何法:设圆心到直线的距离d=|Aa+Bb+C|A2+B2d<r d=r d>r判定方法代数法:由⎩⎨⎧Ax+By+C=0(x-a)2+(y-b)2=r2消元得到一元二次方程的判别式ΔΔ>0Δ=0Δ<0图形1.思考辨析(正确的打“√”,错误的打“×”)(1)如果直线与圆组成的方程组有解,则直线与圆相交或相切.( ) (2)若直线与圆只有一个公共点,则直线与圆一定相切. ( )[答案] (1)√ (2)√2.(教材P 110练习A ①改编)直线3x +4y -5=0与圆x 2+y 2=1的位置关系是( ) A .相交 B .相切 C .相离D .无法判断B [圆心(0,0)到直线3x +4y -5=0的距离d =|-5|32+42=1,又圆x 2+y 2=1的半径为1,∴d =r ,故直线与圆相切.]3.直线x +y =1与圆x 2+y 2-2ay =0(a >0)没有公共点,则a 的取值范围是 . 0<a <2-1 [由题意得圆心(0,a )到直线x +y -1=0的距离大于半径a ,即|a -1|2>a ,解得-2-1<a <2-1,又a >0,∴0<a <2-1.]4.直线3x +y -23=0,截圆x 2+y 2=4所得的弦长是 . 2 [圆心到直线3x +y -23=0的距离d =|-23|3+1=3.所以弦长l =2R 2-d 2=24-3=2.]直线与圆位置关系的判定【例1】 只有一个公共点?没有公共点?[思路探究] 可联立方程组,由方程组解的个数判断,也可通过圆心到直线的距离与半径的大小关系进行判断.[解] 法一:由⎩⎨⎧x 2+y 2=2 ①y =x +b ②得2x 2+2bx +b 2-2=0,③方程③的根的判别式Δ=(2b )2-4×2(b 2-2)=-4(b +2)(b -2). (1)当-2<b <2时,Δ>0,直线与圆有两个公共点. (2)当b =2或b =-2时,Δ=0,直线与圆只有一个公共点.(3)当b <-2或b >2时,Δ<0方程组没有实数解,直线与圆没有公共点.法二:圆的半径r =2,圆心O (0,0)到直线y =x +b 的距离为d =|b |2. 当d <r ,即-2<b <2时,圆与直线相交,有两个公共点.当d =r ,|b |=2,即b =2或b =-2时,圆与直线相切,直线与圆只有一个公共点. 当d >r ,|b |>2,即b <-2或b >2时,圆与直线相离,圆与直线无公共点.直线与圆的位置关系的判断方法(1)几何法:由圆心到直线的距离d 与圆的半径r 的大小关系判断. (2)代数法:根据直线方程与圆的方程组成的方程组解的个数来判断.(3)直线系法:若直线恒过定点,可通过判断点与圆的位置关系来判断直线与圆的位置关系,但有一定的局限性,必须是过定点的直线系.[跟进训练]1.已知圆的方程x 2+(y -1)2=2,直线y =x -b ,当b 为何值时,圆与直线有两个公共点,只有一个公共点,无公共点?[解] 法一:由⎩⎨⎧y =x -b ,x 2+(y -1)2=2得2x 2-2(1+b )x +b 2+2b -1=0,① 其判别式Δ=4(1+b )2-8(b 2+2b -1)=-4(b +3)(b -1),当-3<b <1时,Δ>0,方程①有两个不等实根,直线与圆有两个公共点; 当b =-3或1时,Δ=0,方程①有两个相等实根,直线与圆有一个公共点; 当b <-3或b >1时,Δ<0,方程①无实数根,直线与圆无公共点. 法二:圆心(0,1)到直线y =x -b 距离d =|1+b |2,圆半径r =2. 当d <r ,即-3<b <1时,直线与圆相交,有两个公共点; 当d =r ,即b =-3或1时,直线与圆相切,有一个公共点; 当d >r ,即b <-3或b >1时,直线与圆相离,无公共点.直线与圆相切的有关问题【例2】 [思路探究] 利用圆心到切线的距离等于圆的半径求出切线斜率,进而求出切线方程. [解] 因为(4-3)2+(-3-1)2=17>1, 所以点A 在圆外.(1)若所求切线的斜率存在,设切线斜率为k , 则切线方程为y +3=k (x -4).因为圆心C (3,1)到切线的距离等于半径,半径为1, 所以|3k -1-3-4k |k 2+1=1,即|k +4|=k 2+1,所以k 2+8k +16=k 2+1,解得k =-158. 所以切线方程为y +3=-158(x -4), 即15x +8y -36=0. (2)若直线斜率不存在,圆心C (3,1)到直线x =4的距离也为1,这时直线与圆也相切,所以另一条切线方程是x =4. 综上,所求切线方程为15x +8y -36=0或x =4.过一点的圆的切线方程的求法(1)点在圆上时求过圆上一点(x 0,y 0)的圆的切线方程:先求切点与圆心连线的斜率k ,再由垂直关系得切线的斜率为-1k ,由点斜式可得切线方程.如果斜率为零或不存在,则由图形可直接得切线方程x =x 0或y =y 0.(2)点在圆外时①几何法:设切线方程为y -y 0=k (x -x 0).由圆心到直线的距离等于半径,可求得k ,也就得切线方程.②代数法:设切线方程为y -y 0=k (x -x 0),与圆的方程联立,消去y 后得到关于x 的一元二次方程,由Δ=0求出k ,可得切线方程.提醒:切线的斜率不存在的情况,不要漏解.[跟进训练]2.过原点的直线与圆x 2+y 2+4x +3=0相切,若切点在第三象限,求该直线的方程. [解] 圆x 2+y 2+4x +3=0化为标准式(x +2)2+y 2=1,圆心C (-2,0),设过原点的直线方程为y =kx ,即kx -y =0.∵直线与圆相切,∴圆心到直线的距离等于半径. 即|-2k |k 2+1=1,∴3k 2=1, k 2=13,解得k =±33. ∵切点在第三象限,∴k >0, ∴所求直线方程为y =33x .直线截圆所得弦长问题[探究问题]1.已知直线l 与圆相交,如何利用通过求交点坐标的方法求弦长?[提示] 将直线方程与圆的方程联立解出交点坐标,再利用|AB |=(x 2-x 1)2+(y 2-y 1)2求弦长.2.若直线与圆相交、圆的半径为r 、圆心到直线的距离为d ,如何求弦长?[提示] 通过半弦长、弦心距、半径构成的直角三角形,如图所示,求得弦长l =2r 2-d 2.【例3】 直线l 经过点P (5,5)并且与圆C :x 2+y 2=25相交截得的弦长为45,求l 的方程.[思路探究] 设出点斜式方程,利用交点坐标法或利用r 、弦心距及弦长的一半构成直角三角形可求.[解] 据题意知直线l 的斜率存在,设直线l 的方程为y -5=k (x -5),与圆C 相交于A (x 1,y 1),B (x 2,y 2),法一:联立方程组⎩⎨⎧y -5=k (x -5),x 2+y 2=25.消去y ,得(k 2+1)x 2+10k (1-k )x +25k (k -2)=0. 由Δ=[10k (1-k )]2-4(k 2+1)·25k (k -2)>0, 解得k >0.又x 1+x 2=-10k (1-k )k 2+1,x 1x 2=25k (k -2)k 2+1,由斜率公式,得y 1-y 2=k (x 1-x 2).∴|AB |=(x 1-x 2)2+(y 1-y 2)2 =(1+k 2)(x 1-x 2)2 =(1+k 2)[(x 1+x 2)2-4x 1x 2] =(1+k 2)⎣⎢⎡⎦⎥⎤100k 2(1-k )2(k 2+1)2-4·25k (k -2)k 2+1 =45.两边平方,整理得2k 2-5k +2=0,解得k =12或k =2符合题意. 故直线l 的方程为x -2y +5=0或2x -y -5=0.法二:如图所示,|OH |是圆心到直线l 的距离,|OA |是圆的半径,|AH |是弦长|AB |的一半.在Rt △AHO 中,|OA |=5, |AH |=12|AB |=12×45=25, 则|OH |=|OA |2-|AH |2=5. ∴|5(1-k )|k 2+1=5, 解得k =12或k =2.∴直线l 的方程为x -2y +5=0或2x -y -5=0.(变条件)直线l 经过点P (2,-1)且被圆C :x 2+y 2-6x -2y -15=0所截得的弦长最短,求此时直线l 方程.[解] 圆的方程为(x -3)2+(y -1)2=25,圆心C (3,1).因为|CP |=(3-2)2+(1+1)2=5<5,所以点P 在圆内.当CP ⊥l 时,弦长最短.又k CP =1+13-2=2.所以k l =-12,所以直线l 的方程为y +1=-12(x -2),即x +2y =0.直线与圆相交时弦长的两种求法(1)几何法:如图1,直线l 与圆C 交于A ,B 两点,设弦心距为d ,圆的半径为r ,弦长为|AB |,则有⎝ ⎛⎭⎪⎫|AB |22+d 2=r 2,则|AB |=2r 2-d 2.图1 图2(2)代数法:如图2所示,将直线方程与圆的方程联立,设直线与圆的两交点分别是A (x 1,y 1),B (x 2,y 2),则|AB |=(x 1-x 2)2+(y 1-y 2)2=1+k 2|x 1-x 2|=1+1k 2|y 1-y 2|(直线l 的斜率k 存在且不为0).1.如何正确选择判断直线与圆的位置关系的方法(1)若两方程已知或圆心到直线的距离易表达,则用几何法;(2)若方程中含有参数,或圆心到直线的距离的表达式较繁琐,则用代数法. 提醒:能用几何法,尽量不用代数法.(3)已知直线与圆相交求有关参数值时,根据弦心距、半弦长、半径的关系或者这三条线段形成的三角形的性质求解,而弦心距可利用点到直线的距离公式列式,进而求解即可.2.利用代数法判断直线与圆的位置关系时的注意点(1)代入消元过程中消x 还是消y 取决于直线方程的特点,尽量减少分类讨论,如若直线方程为x -ay +1=0,则应将其化为x =ay -1,然后代入消x .(2)利用判别式判断方程是否有根时,应注意二次项系数是否为零,若二次项系数为零,则判别式无意义.1.直线y =x +1与圆x 2+y 2=1的位置关系是( ) A .相切 B .相交但直线不过圆心 C .直线过圆心 D .相离 B [圆心到直线的距离d =112+(-1)2=22<1. 又∵直线y =x +1不过圆心(0,0).∴直线与圆相交但不过圆心.]2.设直线l 过点P (-2,0),且与圆x 2+y 2=1相切,则l 的斜率是( ) A .±1 B .±12 C .±33 D .±3 C [设l :y =k (x +2), 即kx -y +2k =0. 又l 与圆相切,∴|2k |1+k2=1.∴k =±33.] 3.直线x +2y -5+5=0被圆x 2+y 2-2x -4y =0截得的弦长为 .4 [圆的标准方程(x -1)2+(y -2)2=5,圆心(1,2)到直线x +2y -5+5=0的距离d =|1+2×2-5+5|12+22=1,所以弦长为25-1=4.]4.若直线x +y -m =0与圆x 2+y 2=2相离,则m 的取值范围是 . m <-2或m >2 [因为直线x +y -m =0与圆x 2+y 2=2相离,所以|-m |12+12>2,解得m <-2或m >2.]5.过点(-1,-2)的直线l 被圆x 2+y 2-2x -2y +1=0截得的弦长为2,求直线l 的方程.[解] 由题意,直线与圆要相交,斜率必须存在,设为k .设直线l 的方程为y +2=k (x +1).又圆的方程为(x -1)2+(y -1)2=1,圆心为(1,1),半径为1,所以圆心到直线的距离 d =|2k -1-2|1+k 2=12-⎝ ⎛⎭⎪⎫222=22.解得k =1或k =177.所以直线l 的方程为y +2=x +1或y +2=177(x +1),即x -y -1=0或17x -7y +3=0.。

直线与圆的位置关系讲义

直线与圆的位置关系讲义

九年级数学时间: 学生:第讲直线与圆的位置关系【知识点】1直线和圆的位置关系有三种:, 。

2设r为O O的半径,d为圆心O到直线l的距离, d r, 则直线l与O O相交。

d r,则直线l与O O相切d r,则直线l与O O相离。

3圆的切线的性质:圆的切线垂直于_________________ 的半径。

4圆的切线的判定定理:经过直径的一端,并且____________ 这条直径的直线是圆的切线。

5圆的切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。

6.三角形的内切圆:(1)定义:与三角形三边都相切的圆称为三角形的内切圆。

(2)_________________________________ 内切圆的作法;______ .(3)_________________________ 内心的性质:内心是 _______ 的交点,内心到的距离相等,内心与三角形顶点的连线________ 这个内角。

【课前自测】1. (2011?成都)已知O O的面积为9n cm2,若点0到直线I的距离为n cm则直线l与。

O的位置关系是()A、相交B、相切 C 、相离D无法确定2.如图,从O O外一点A引圆的切线AB切点为B,连接AO并延长交圆于点C,连接BC若/ A= 26°,则/ ACB的度数为▲.3.已知O O的半径为5,圆心O到直线AB的距离为2,则O O上有且只有_______________ 到直线AB的距离为3.4.如图,已知AB是O O的一条直径,延长AB至C点,使得AC= 3BQ 个占I 八、、CD与O O相切,切点为D.若CD= d,则线段BC的长度等于5.如图23, PA与O O相切,切点为A, PO交O O于点C,点B是优弧CBA上一点,若 / ABC=32,则/ P的度数为【例题讲解】例1.如图,AB是O O的直径,点D在AB的延长线上,DC切O O于点C,若/ A=25°, 则/ D 等于A. 20°B.30°C.40°D.50°例2已知BD是O O的直径,OAL OB,M是劣弧AB上的一点,过M作O O的切线MP交OA的延长线于点P, MD交OA于点N。

3、直线和圆位置关系

3、直线和圆位置关系

1、直线与圆的三种位置关系:(1)当直线与圆没有公共点时,叫做直线与圆相离;(2)当直线与圆有唯一公共点时,叫做直线与圆相切。

这时直线叫做圆的切线,唯一公共点叫切点。

(3)当直线与圆有两个公共点(即交点)时,叫做直线与圆相交。

这时直线叫做圆的割线。

2、直线与圆位置关系的数量描述: 如果O 的半径为R ,圆心O 到直线L 的距离为d ,那么(1)直线L 与O 相交⇔0≤d<R (2)直线L 与O 相切⇔d=R (3)直线L 与O 相离⇔d>R3、切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线。

二、例题精讲:例1、如图,在Rt ABC ∆中,ACB=90A=30BC=4∠∠,, (1)以C 为圆心、3为半径的C 与直线AB 有怎样的位置关系? (2)以C为圆心、3.5为半径的C 与直线AB 有怎样的位置关系?(3)要使C 与直线AB 相切,C 的半径长应该是多少?(4)设C 的半径长为R ,如果C 与直线AB 有公共点,请写出R 的取值范围。

例2、如图,在ABC ∆中,C=90A=30∠∠,,O 是AB 上一点,BO=a ,O 的半径r 为12;问:当a 在什么范围内取值时,直线BC 与O 相离?相切?相交?CBAB例3、如图、已知折线ABCD ,作ABC ∠、DCB ∠的平分线相交于点I ,又作IE BC ⊥,E 是垂足。

以I为圆心、IE 为半径作I(1)请说明I 与BC 必相切。

(2)请问:I 与AB 、CD 都相切吗?为什么?例4、已知AB 是O 的直径,C 是AB 延长线上一点,且BC=OB(1)如图①,过点C 作射线CD ,使30ACD ∠=。

求证:CD 是O 的切线(2)如图②,作弦AP ,使30PAC ∠=,联结CP 。

问:CP 是不是O 的切线?并说明理由。

例5、如图,ABC ∆内接于O ,过点B 作射线BP ,使CBP=BAC ∠∠。

求证:BP 是O 的切线。

圆与圆有关的位置关系 讲义(教师版)

圆与圆有关的位置关系  讲义(教师版)

与圆有关的位置关系1.能根据点到圆心的距离和半径的大小关系确定点与圆的位置关系;2.能根据圆心到直线的距离和半径的大小关系确定直线与圆的位置关系;3.能根据两圆的圆心距与两圆的半径之间的数量关系判定两圆的位置关系.1.点与圆的位置关系的判定;2.直线与圆的位置关系的判定.点与圆的位置关系1.点与圆的位置关系:设⊙O的半径为r,点P到圆心的距离OP = d,则有:点P在圆内⇔d<r点P在圆上⇔d=r点P在圆外⇔d>r【注意】点与圆的位置关系是由点P到圆心的距离d和圆的半径r的数量关系决定的,在运用这一性质时应注意“形”与“数”之间的转化.2.确定圆的条件:不在同一条直线上的三点确定一个圆.【注意】可以让学生通过作图进行归纳总结“不在同一条直线上的三点确定一个圆”,熟练掌握其方法,经过一点或经过两点作圆,因为圆心不能唯一确定,半径也就不能确定.所以作出的圆都有无限多个.“不在同一直线上的三点确定一个圆”,这个“确定”的含义是“有且只有”.3.外接圆与外心:经过三角形的三个顶点可以做一个圆,这个圆叫做三角形的外接圆,外接圆的圆心是三角形三条边垂直平分线的交点,叫做这个三角形的外心,三角形的外心到三角形的三个顶点的距离相等.【注意】要注意的是,锐角三角形的外心在三角形的内部;直角三角形的外心是三角形斜边中点;钝角三角形的外心在三角形的外部,反之成立.例1.矩形ABCD中,AB=8,BC=35,点P在边AB上,且BP=3AP,如果圆P 是以点P为圆心,PD为半径的圆,那么下列判断正确的是()A.点B、C均在圆P外B.点B在圆P外、点C在圆P内C.点B在圆P内、点C在圆P外D.点B、C均在圆P内【答案】解:连接PD、PC,⊙AB=8,点P 在边AB 上,且BP=3AP ,⊙AP=2,BP=6 在Rt APD ∆中,7PD ====,⊙⊙P 的半径r=7, 在Rt BPC ∆中,9PC ===⊙PB=6<r ,PC=9>r⊙点B 在圆P 内、点C 在圆P 外.故选C .【解析】此题主要考查判断点与圆的位置关系.需要比较点到圆心的距离与半径的大小关系,根据BP=3AP 和AB=8求得AP 的长,然后利用勾股定理求得圆P 的半径PD 的长,根据点B 、C 到P 点的距离判断点P 与圆的位置关系即可.练习1.如图,在Rt⊙ABC 中⊙ACB=90°,AC=6,AB=10,CD 是斜边AB 上的中线,以AC 为直径作⊙O ,设线段CD 的中点为P ,则点P 与⊙O 的位置关系是( )A.点P 在⊙O 内B.点P 在⊙O 上C.点P 在⊙O 外D.无法确定 【答案】A【解析】解:⊙AC=6,AB=10,CD 是斜边AB 上的中线, ⊙AD=5,OP=2.5,OC=OA=3, ⊙OP <OA ,⊙点P 在⊙O 内,故选A .练习2.如图,在平面直角坐标系中,⊙O 的半径为1, 点A坐标为12⎛ ⎝⎭,则点A 与⊙O的位置关系是( )ABA.点A 在⊙O 外B.点A 在⊙O 上C.点A 在⊙O 内D.无法判断【答案】解:⊙点A 坐标为12⎛ ⎝⎭,⊙OA = ⊙点A 在⊙O 上,故选B .【解析】本题考查点与圆的三种位置关系:点在圆内,点在圆上,点在圆外.根据点与圆的位置关系比较点到圆心的距离与1的大小关系,然后再确定点在圆上、内、外. 练习3.点P 到⊙O 的圆心O 的距离为d ,⊙O 的半径为r ,d 与r 的值是一元二次方程的两个根,则点P 与⊙O 的位置关系为( )A.点P 在⊙O 内B.点P 在⊙O 外C.点P 在⊙O 上D.点P 不在⊙O 上 【答案】解:解方程2320x x -+=得:x=1或x=2, ⊙d≠r ,⊙点P 不在⊙O 上, 故选D .【解析】本题考查了点与圆的位置关系及用因式分解法解一元二次方程的知识,解题的关键是正确地解方程.解方程求得方程的两个根即可得到d 与r 的值,然后做出判断.点与圆心之间的距离d 和该圆的半径r 有三种不同的大小关系,则点与圆也有三种不同的位置关系,所以在判断点与圆的位置关系时,只需要判断点到圆心的距离与半径的大小即可.例2.如图所示,一圆弧过方格的格点A 、B 、C ,试在方格中建立平面直角坐标系,使点A 的坐标为(-2,4),则该圆弧所在圆的圆心坐标是( )0232=+-xxA.(-1,2)B.(1,-1)C.(-1,1)D.(2,1)【答案】C【解析】解:如图所示,⊙AW=1,WH=3,=⊙BQ=3,QH=1,=⊙AH=BH同理,AD=BD,所以GH为线段AB的垂直平分线,易得EF为线段AC的垂直平分线,H为圆的两条弦的垂直平分线的交点,则BH=AH=HC,H为圆心.则该圆弧所在圆的圆心坐标是(-1,1).故选C.练习1.如图,在5×5正方形网格中,一条圆弧经过A,B,C三点,那么这条圆弧所在圆的圆心是()A.点PB.点QC.点RD.点M【答案】B【解析】根据垂径定理的推论,则作弦AB和BC的垂直平分线,交点Q即为圆心.故选B.练习2.如图,小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图所示,为配到与原来大小一样的圆形玻璃,小明带到商店去的一块玻璃碎片应该是()A.第⊙块B.第⊙块C.第⊙块D.第⊙块【答案】B【解析】解:第⊙块出现一段完整的弧,可在这段弧上任做两条弦,作出这两条弦的垂直平分线,就交于圆心,进而可得到半径的长.故选B.三角形外接圆的圆心是三角形三条边垂直平分线的交点,圆上任意两弦的垂直平分线的交点即为该圆的圆心.例3.下列说法中,正确的有()①三点可以确定一个圆;⊙ 三角形的外心是三角形三边中线的交点;⊙ 锐角三角形的外心在三角形外;⊙ 三角形的外心到三角形各顶点的距离相等.A.1个B.2个C.3个D.4个【答案】A【解析】解:⊙不在同一直线上三点才可以作一个圆,⊙⊙错误;⊙三角形的外心是三角形三边垂直平分线的交点,⊙⊙错误;⊙锐角三角形的外心在三角形的内部,⊙⊙错误;⊙三角形的外心是三角形三边垂直平分线的交点,⊙根据垂直平分线性质得出三角形外心到三角形三个顶点的距离相等,⊙⊙正确;故选A.练习1.有如下结论:⊙一个圆只有一个内接三角形;⊙一个三角形只有一个外接圆;⊙直角三角形的外心是它斜边的中点;⊙等边三角形的外心是它角平分线的交点.A.1个B.2个C.3个D.4个【答案】C【解析】解:一个圆有无数个内接三角形,⊙⊙错误;三角形只有一个外接圆,⊙⊙正确;直角三角形斜边的中点到直角三角形三个顶点的距离相等,是直角三角形的外心,⊙⊙正确;等边三角形具有等腰三角形的三线合一的性质,等边三角形的外心是三边垂直平分线的交点,也是三条角平分线的交点,⊙⊙正确;故选C.练习2.正三角形的外接圆的半径和高的比为( )A.1⊙2B.2⊙3C.3⊙4D.1⊙3【答案】B【解析】连接OB,AO,延长AO交BC于D,⊙⊙O是等边三角形ABC的外接圆,⊙AD⊙BC,⊙OBC=12⊙ABC =12×60°=30°,⊙⊙ADB=90°,⊙OBC=30°,⊙12 OD OB⊙AD=OA+OD,⊙AD=OB+12OB =32OB,即OB:AD =2:3.故选B.练习3.已知:如图,⊙O是⊙ABC的外接圆,D为CB延长线上一点,⊙AOC=130°,则⊙ABD 的度数为()A.40°B.50°C.65°D.100°【答案】C【解析】解:在优弧AC上任意找一点E,连接AE、CE,根据圆周角定理得⊙E=65°;⊙四边形ABCE内接于⊙O,⊙⊙ABD=⊙E=65°.故选C不在同一直线上三点才可以作一个圆,在同一直线上三点不能作一个圆,三角形的外心是三角形三边垂直平分线的交点,锐角三角形的外心在三角形的内部.直线与圆的位置关系1.直线与圆的三种位置关系:【注意】判断直线与圆的位置关系时,既可以用直线与圆的公共点个数来判断,也可以用圆心到直线的距离d与r的大小关系来判定.要注意让学生根据不同的条件准确快速地判断直线与圆的位置关系.2.切线的判定方法(1)定义法:和圆有且只有一个公共点的直线是圆的切线.(2)数量法:圆心到直线的距离等于半径的直线是圆的切线(d=r).(3)判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.3.切线的性质定理:圆的切线垂直于过切点的半径.推论1:经过圆心且垂直于切线的直线必经过切点.推论2:经过切点且垂直于切线的直线必经过圆心.例1.已知⊙O 的半径为3cm ,点P 是直线l 上一点,OP 长为5cm ,则直线l 与⊙O 的位置关系为( ) A.相交 B.相切C.相离D.相交、相切、相离都有可能【答案】D【解析】本题知道⊙O 的半径为3cm ,并知道点P 是直线l 上一点,OP 长为5cm ,并没有告诉圆心到直线l 的距离,且根据已知条件无法确定圆心到直线l 的距离的大小,所以此时要根据直线圆的位置关系的三种情况分别探究是否都有可能.通过具体的数值分析,可知直线l 与圆的位置关系三种都有可能,所以选D.练习1.如图,⊙O 的半径OC=5cm ,直线l ⊥OC ,垂足为H ,且l 交⊙O 于点A 、B 两点,AB=8cm ,则l 沿OC 所在的直线向下平移____cm 时与⊙O 相切.【答案】2【解析】本题是一道判断直线与圆相切有关的问题,涉及到垂径定理、勾股定理以及平移等有关知识的应用.要判断直线l 沿OC 的方向平移多少cm 时与⊙O 相切,只要求到CH 的长度即可.因为CH=OC -OH ,所以只要求到OH 就可解决问题. 解:连接OA ,在Rt⊙AOH 中,因为0A=5cm ,AH=4cm , 所以OH=3452222=-=-AH OA cm.所以CH=OC -OH=2cm.即l 沿OC 所在的直线向下平移2cm 时与⊙O 相切.练习2.如图,直线AB 、CD 相交于点O ,⊙AOD=30°,半径为1cm 的⊙P 的圆心在射线OA 上,且与点O 的距离为6cm .如果⊙P 以1cm/s 的速度沿由A 向B 的方向移动,那么( )秒钟后⊙P 与直线CD 相切. A .4B .8C .4或6D .4或8【解析】本题是一道设计比较新颖的题目,要判断几秒种后⊙P与直线CD相切,则需要计算出当P与直线CD相切时,圆心P移动的距离,如图,在移动的过程中,P与直线CD相切有两种情况,如图,当圆心运动到P1、P2的位置时与直线CD相切,只要求到PP1,PP2长度即可.解:当圆心移动到P1、P2的位置时,设P1与直线CD切于E点,则P1E=1,因为⊙POD=30°,所以OP1=2,所以PP1=6-2=4,同样可求PP2=8cm,所以经过4秒或8秒钟后⊙P与直线CD 相切.故选D.练习3.如图,⊙ABC中,AB=6,AC=8,BC=10,D、E分别是AC、AB的中点,则以DE 为直径的圆与BC的位置关系()A.相交B.相切C.相离D.无法确定【答案】A【解析】解:过点A作AM⊙BC于点M,交DE于点N,⊙AM·BC=AC·AB,⊙AM=4.8⊙D、E分别是AC、AB的中点,⊙DE⊙BC,DE=12BC=5⊙AN=MN=12AM,⊙MN=2.4,⊙以DE为直径的圆半径为2.5⊙r=2.5>2.4,⊙以DE为直径的圆与BC的位置关系是:相交.故选A练习4.如图,在平面直角坐标系中,⊙O的半径为1,则直线y=x与⊙O的位置关系是()A.相离B.相切C.相交D.以上三种情况都有可能 【答案】B【解析】解:⊙令x=0,则y=令y=0,则, ⊙A(0,,,0),⊙⊙AOB 是等腰直角三角形, ⊙AB=2,过点O 作OD⊙AB ,则OD=BD=1 ⊙直线y=x与⊙O 相切.故选B判断直线与圆的位置关系时,既可以用直线与圆的公共点个数来判断,也可以用圆心到直线的距离d 与r 的大小关系来判定.例2.如图,在⊙O 中,AB 是直径,AD 是弦,⊙ADE = 60°,⊙C = 30°.判断直线CD是否为⊙O 的切线,并说明理由.【答案】解:连接OD ,如图,⊙⊙ADE=60°,⊙C=30°, ⊙⊙A=⊙ADE -⊙C=60°-30°=30°, 又⊙OD=OA ,⊙⊙ODA=⊙A=30°, ⊙⊙EDO=90°,⊙OD 为⊙O 的半径,⊙CD 是⊙O 的切线【解析】本题考查圆切线的判定方法:若直线与圆有唯一交点,则此直线是圆的切线;若圆心到直线的距离等于圆的半径,则此直线是圆的切线;经过半径的外端与半径垂直的直线是圆的切线.当已知直线过圆上一点,要证明它是圆的切线,则要连接圆心和该点,证明该连线与已知直线垂直即可;当没告诉直线过圆上一点,要证明它是圆的切线,则要过圆心作直线的垂线,证明垂线段等于圆的半径,由题可知直线CD 与圆有公共点,故直接连接OD 证明OD⊙CD 即可.练习1.已知:如图,O 为ABC ∆的外接圆,BC 为O 的直径,作射线BF ,使得BA 平分CBF ∠,过点A 作AD BF ⊥于点D .求证: 直线DA 为⊙O 的切线.【答案】解:连接OA ,⊙BC 为⊙O 的直径,BA 平分⊙CBF ,AD⊙BF ,⊙⊙ADB=⊙BAC=90°,⊙DBA=⊙CBA;⊙⊙OAC=⊙OCA,⊙⊙DAO=⊙DAB+⊙BAO=⊙BAO+⊙OAC=90°,⊙OA为⊙O半径,⊙DA为⊙O的切线.【解析】本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.练习2.已知:如图,AB为⊙O的弦,过点O作AB的平行线,交⊙O于点C,直线OC上一点D满足⊙D=⊙ACB.判断直线BD与⊙O的位置关系,并证明你的结论.【答案】直线BD与⊙O相切.证明:如图,连接OB.⊙⊙OCB=⊙CBD+⊙D,⊙1=⊙D,⊙⊙2=⊙CBD,⊙AB⊙OC,⊙⊙2=⊙A,⊙⊙A=⊙CBD.⊙OB=OC,⊙⊙BOC+2⊙3=180°.⊙⊙BOC=2⊙A,⊙⊙A+⊙3=90°.⊙⊙CBD+⊙3=90°.⊙⊙OBD=90°.⊙OB为⊙O半径,⊙直线BD与⊙O相切.【解析】本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.练习3.如图,D是⊙O的直径CA延长线上一点,点B在⊙O上,且AB=AD=AO,求证:BD是⊙O的切线.【答案】连接BO,⊙AB=AD,⊙⊙D=⊙ABD⊙AB=AO,⊙⊙ABO=⊙AOB又在⊙OBD中,⊙D+⊙DOB+⊙ABO+⊙ABD=180°,⊙⊙OBD=90°,即BD⊙BO⊙OB为⊙O半径,⊙BD是⊙O的切线.练习4.已知:如图,⊙O是⊙ABC的外接圆,AB是⊙O的直径,D是AB延长线上的一点,AE⊙DC,交DC的延长线于点E,且AC平分⊙EAB.(1)求证:DE是⊙O的切线.(2)若⊙ADC=30°,AC=6,求BC的长.【答案】(1)连接OC,则⊙CAO=⊙ACO.⊙AC平分⊙EAB,⊙⊙EAC=⊙CAO.⊙⊙EAC=⊙ACO .⊙AE⊙OC . ⊙⊙DCO=⊙E=90°,即DE⊙OC . ⊙OC 为半径,⊙DE 是⊙O 的切线. (2)⊙⊙ADC=30°,⊙⊙EAD=60°, ⊙⊙BAC=12⊙EAD=30°, ⊙AB 是⊙O 的直径,⊙⊙ACB=90°,⊙BC=【解析】本题考查了切线的判定与性质;证明某一直线是圆的切线时,一般情况下是连接切点与圆心,通过证明该半径垂直于这一直线来判定切线.(1)应用判定定理判定圆的切线时,必须先弄清“题设”中的两个条件:一是经过半径的外端,二是垂直于这条半径,这两者缺一不可;(2)切线的判定定理中,只有证明是切线后,这个交点才能称为切点;(3)证明切线常见题型:⊙已知交点:连半径、证垂直;⊙交点未知:作垂直、证半径.例3.等腰⊙ABC 中,以AC 为直径作⊙O 交BC 于点D ,交AB 于点G ,过点D 作⊙O 的切线交AB 于点E ,交AC 的延长线与点F .求证:EF⊙AB .【答案】解:连接OD ,⊙OC=OD ,⊙⊙ODC=⊙OCD ,又⊙AB=AC,⊙⊙OCD=⊙B,⊙⊙ODC=⊙B,⊙OD⊙AB,⊙ED是⊙O的切线,OD是⊙O的半径,⊙OD⊙EF,⊙AB⊙EF .练习1.如图,⊙O的直径AB=4,C为圆周上一点,AC=2,过点C作⊙O的切线l,过点B 作l的垂线BD,垂足为D,BD与⊙O交于点E.(1)求⊙AEC的度数;(2)求证:四边形OBEC是菱形.【答案】解:(1)在⊙AOC中,AC=2,⊙AO=OC=2,⊙⊙AOC是等边三角形,⊙⊙AOC=60°,⊙⊙AEC=30°;(2)⊙OC⊙l,BD⊙l.⊙OC⊙BD.⊙⊙ABD=⊙AOC=60°.⊙AB为⊙O的直径,⊙⊙AEB=90°,⊙⊙AEB为直角三角形,⊙EAB=30°.⊙⊙EAB=⊙AEC.⊙CE⊙OB,又⊙CO⊙EB,⊙四边形OBEC为平行四边形.又⊙OB=OC=2.⊙四边形OBEC是菱形.归纳切线的性质:(1)切线和圆有唯一公共点(切线的定义);(2)圆心到直线的距离等于圆的半径(判定方法(2)的逆命题);(3)切线垂直于过切点的半径(切线的性质定理);(4)经过圆心垂直于切线的直线必过切点(推论1);(5)经过切点垂直于切线的直线必过圆心(推论2).例4.如图,圆O与正方形ABCD的两边AB、AD相切,且DE与圆O相切于E点.若圆O的半径为5,且AB=11,则DE的长度为()A.5B.6C.√30D.112【答案】B【解析】解:连接OM、ON,⊙四边形ABCD是正方形,⊙AD=AB=11,⊙A=90°,⊙圆O与正方形ABCD的两边AB、AD相切,⊙⊙OMA=⊙ONA=90°=⊙A,⊙OM=ON,⊙四边形ANOM是正方形,⊙AM=OM=5,DE与圆O相切于E点,圆O的半径为5,⊙AM=5,DM=DE,⊙DE=11﹣5=6,故选B.练习1.如图,在Rt⊙AOB中,OA=OB=3,⊙O的半径为1,点P是AB边上的动点,过点P作⊙O的一条切线PQ(点Q为切点),则切线PQ的最小值为.【答案】2【解析】解:连接OP、OQ.⊙PQ 是⊙O 的切线,⊙OQ⊙PQ ; 根据勾股定理知PQ 2=OP 2﹣OQ 2, ⊙当PO⊙AB 时,线段PQ 最短, ⊙在Rt⊙AOB 中,OA=OB=3, ⊙AB=OA=6,⊙OP==3, ⊙PQ===2.故答案为:2.练习2.对于平面直角坐标系xOy 中的点P 和⊙C ,给出如下定义:若⊙C 上存在两个点A ,B ,使得⊙APB=60°,则称P 为⊙C 的关联点. 已知点D (21,),E (0,-2),F (32,0) (1)当⊙O 的半径为1时,⊙在点D ,E ,F 中,⊙O 的关联点是__________;⊙过点F 作直线交y 轴正半轴于点G ,使⊙GFO=30°,若直线上的点P (m ,n )是⊙O 的关联点,求m 的取值范围;(2)若线段EF 上的所有点都是某个圆的关联点,求这个圆的半径的取值范围.【答案】(1) ⊙;⊙;(2)21E D 、30≤≤m 1≥r【解析】(1) ⊙;⊙由题意可知,若点要刚好是圆的关联点;需要点到圆的两条切线和之间所夹的角度为; 由图可知,则,连接,则rBC CPBBCPC 22sin ==∠=; ⊙若点为圆C 的关联点;则需点P 到圆心的距离d 满足r d 20≤≤; 由上述证明可知,考虑临界位置的P 点,如图2;点P 到原点的距离212=⨯=OP ;过作轴的垂线,垂足为,; ⊙,⊙; ⊙,⊙; 易得点与点重合,过作轴于点; 易得,⊙;从而若点为圆的关联点,则点必在线段上,⊙;E D 、P C P C PA PB ︒601︒=∠60APB ︒=∠30CPB 图1CBAPBC PO x OH H 3232tan ===∠OG OF OGF ︒=∠60OGF 360sin =︒⋅=OG OH 23sin ==∠OP OH OPH ︒=∠60OPH 1P G 2P x M P ⊥2M ︒=∠302OM P 330cos 2=︒⋅=OP OM P O P 21P P 30≤≤m(2) 若线段上的所有点都是某个圆的关联点,欲使这个圆的半径最小, 则这个圆的圆心应在线段的中点; 考虑临界情况,如图3;即恰好点为圆的关联时,则; ⊙此时;故若线段上的所有点都是某个圆的关联点,这个圆的半径的取值范围为.利用直线与圆相切的性质可以处理一些较综合的问题,其中相切的性质可以为解题提供垂直的条件.圆与圆的位置关系1.圆和圆的位置关系有五种:外离、外切、相交、内切、内含2.设两圆圆心距为d ,两圆半径分别为R ,r (R>r )由圆和圆的位置关系及圆心距d 与R ,r (R>r )之间的关系得: 两圆外离d R r ⇔>+; 两圆外切d R r ⇔=+;EF EFF E 、K2212===EF KN KF 1=r EF r 1≥r两圆相交R r d R r ⇔-<<+;两圆内切d R r ⇔=-;两圆内含0d R r ⇔≤<-3.相交两圆性质定理: 两圆圆心的连线垂直并且平分这两个圆的公共弦.4.相切两圆的性质:如果两圆相切,那么切点一定在连心线上.例1.两圆的半径分别为3和5,圆心距为7,则两圆的位置关系是( )A.内切B.相交C.外切D.外离【答案】B【解析】解:根据题意得R+r=5+3=8,R -r=5-3=2,圆心距=7,⊙2<7<8,⊙两圆相交.故选B .练习1.已知⊙O 1与⊙O 2相交,它们的半径分别是4,7,则圆心距12O O 可能是( )A.2B.3C.6D.12【答案】C【解析】解:两圆半径之差为3,半径之和为11,两圆相交时,圆心距大于两圆半径差,且小于两圆半径和,所以,3<12O O <11.符合条件的数只有C .故选C .练习2.已知⊙O 1与⊙O 2的半径分别是方程2430x x -+=的两根,且两圆的圆心距等于4,则⊙O 1与⊙O 2的位置关系是( )A 、外离B 、外切C 、相交D 、内切【答案】B【解析】解:⊙2430x x -+=,⊙(x -3)(x -1)=0,解得:x=3或x=1,⊙⊙O 1与⊙O 2的半径12,r r 分别是方程2430x x -+=的两实根,⊙124r r +=,⊙⊙O 1与⊙O 2的圆心距d=4,⊙⊙O 1与⊙O 2的位置关系是外切.故选B .练习3.若两个圆相切于A 点,它们的半径分别为10cm 、4cm ,则这两个圆的圆心距为( )A .14cmB .6cmC .14cm 或6cmD .8cm【答案】C 【解析】解:⊙两圆半径分别为10cm 、4cm ,⊙若这两个圆外切,则圆心距为:10+4=14(cm ),若这两个圆内切,则圆心距为:10-4=6(cm ),⊙这两个圆的圆心距为14cm 或6cm .故选C .练习4.定圆O 的半径是4cm ,动圆P 的半径是2cm ,动圆在直线l 上移动,当两圆相切时,OP 的值是( )A.2cm 或6cmB.2cmC.4cmD.6cm【答案】A【解析】解:设定圆O 的半径为R=4cm ,动圆P 的半径为r=2cm ,分两种情况考虑: 当两圆外切时,圆心距OP=R+r=4+2=6cm ;当两圆内切时,圆心距OP=R -r=4-2=2cm ,综上,OP 的值为2cm 或6cm .故选A由圆和圆的位置关系及圆心距d 与R ,r (R>r )之间的关系得:两圆外离d R r ⇔>+; 两圆外切d R r ⇔=+;两圆相交R r d R r ⇔-<<+;两圆内切d R r ⇔=-;两圆内含0d R r ⇔≤<-.例2.已知:如图,⊙O 1与⊙O 2外切于A 点,直线l 与⊙O 1、⊙O 2分别切于B ,C 点,若⊙O 1的半径r 1=2cm ,⊙O 2的半径r 2=3cm .求BC 的长.【答案】解:连接O 1B ,O 2C ,O 1O 2,过点O 1作O 1D⊙O 2C 于D ,⊙直线l 与⊙O 1、⊙O 2分别切于B ,C 点,⊙O 1B⊙BC ,O 2C⊙BC ,⊙四边形O 1BCD 是矩形,⊙CD=O 1B=r 1=2cm ,BC=O 1D ,⊙O 2D=O 2C -CD=3-2=1(cm ),⊙⊙O 1与⊙O 2外切于A 点,在Rt⊙O 2DO 1中,O 2O 1=r 1+r 2=2+3=5(cm ),⊙O 1D=cm ,⊙BC=cm .【解析】此题考查两圆相切的性质、切线的性质、矩形的判定与性质.难度适中,解题的关键是准确作出辅助线,掌握相切两圆的性质.练习1.如图为某机械的截面图,相切的两圆⊙O 1,⊙O 2均与⊙O 的弧AB 相切,且O 1O 2⊙l 1(l 1为水平线),⊙O 1,⊙O 2的半径均为30mm ,弧AB 的最低点到l 1的距离为30mm ,公切线l 2与l 1间的距离为100mm .则⊙O 的半径为( )A.70mmB.80mmC.85mmD.100mm【答案】B【解析】解:如图,设⊙O 的半径为Rmm ,依题意,得CE=100-30=70(mm ),⊙l 2⊙O 1O 2,⊙CD=O 1D=30(mm ),DE=CE -CD=70-30=40(mm ),OD=OE -DE=R -40(mm ),在Rt⊙OO 1D 中,O 1O=R -30(mm ),O 1D=30mm ,由勾股定理,得O 1D 2+OD 2=O 1O 2,即302+(R -40)2 =(R -30)2,解得R=80mm .故选B 练习2.如图,⊙O 1,⊙O 2,⊙O 3两两相切,AB 为⊙O 1,⊙O 2的公切线,AB 为半圆,且分别与三圆各切于一点.若⊙O 1,⊙O 2的半径均为1,则⊙O 3的半径为( )A.1B.121 1 【答案】C 【解析】解:如图,分别作三个圆心到AB 的垂线,垂足分别点E 、D 、F ,⊙O 1与⊙O 2的半径相等且相切于S ,则O 3D 过点S ,且点D 是半圆AB 的圆心,延长DS 交圆D 于点W ,则WD 是半圆AB 的半径.EFO 2O 1是矩形,SDEO 1是正方形,DQ=DW=SD+O 3S+O 3W设圆O 3的半径为R ,由勾股定理得O 3DO 1-1.故选C .两圆相切有两种情况:内切和外切,注意在处理两圆相切问题时需要分类讨论.例3.已知:如图,⊙O 1与⊙O 2相交于A ,B 两点,过A 点的割线分别交两圆于C ,D ,弦CE⊙DB ,连接EB ,试判断EB 与⊙O 2的位置关系,并证明你的结论.【答案】解:过B 作⊙O 2的直径BH ,连接AH ,AB ,⊙BH 是⊙O 2的直径,⊙⊙BAH=90°,⊙CE⊙DB ,⊙⊙ACE=⊙D⊙⊙H=⊙D ,⊙ACE=⊙ABE ,⊙⊙H=⊙ABE⊙⊙H+⊙ABH=90°,⊙⊙ABH+⊙ABE=90°⊙⊙EBH=90°, 又⊙O 2B 为半径,⊙EB 是⊙O 2的切线.【解析】此题考查直线与圆的位置关系,解题的关键是根据题意作出辅助线,再根据在同圆中等弧所对的圆周角相等和三角形的内角和等于180°进行解答.练习1.已知:相交两圆的公共弦的长为6cm ,两圆的半径分别为cm 23,cm 5,求这两个圆的圆心距.【答案】解:当公共弦在圆心的同侧时如图,AB=6cm ,O 1A=5cm ,O 2A=⊙公共弦长为6cm ,⊙AC=3cm ,AC⊙O 1O 2,⊙O 1C=4cm ,O 2C=3cm ,⊙当公共弦在两个圆心之间时,圆心距=4+3=7cm ;当公共弦在圆心的同侧时,圆心距=4-3=1cm .则这两个圆的圆心距是7cm 或1cm .【解析】此题主要考查了相交两圆的性质以及勾股定理.注意此题应考虑两种情况是解题关键.先根据勾股定理,得圆心距的两部分分别是4cm,3cm,然后根据两圆的位置关系确定圆心距.练习2.已知⊙O1和⊙O2相交于A、B两点,过A点作⊙O1的切线交⊙O2于点E,连接EB并延长交⊙O1于点C,直线CA交⊙O2于点D.(1)如图,当点D与点A不重合时,试猜想线段EA=ED是否成立?证明你的结论;(2)当点D与点A重合时,直线AC与⊙O2有怎样的位置关系?此时若BC=2,CE=8,求⊙O1的直径.【答案】解:(1)EA=ED成立.证明:连接AB,在EA延长线上取点F;⊙AE是⊙O1的切线,切点为A,⊙⊙FAC=⊙ABC,⊙⊙FAC=⊙DAE(对顶角),⊙⊙ABC=⊙DAE,而⊙ABC是⊙O2内接四边形ABED的外角,⊙⊙ABC=⊙D,⊙⊙DAE=⊙D,⊙EA=ED;(2)当点D与点A重合时,直线CA与⊙O2只有一个公共点,所以,直线CA与⊙O2相切,直径为4.两圆相交的重点是对相交弦的处理.。

点和圆、直线和圆的位置关系

点和圆、直线和圆的位置关系

学习笔记-点和圆、直线和圆的位置关系主要内容:点和圆的位置关系、直线和圆的位置关系、切线的判定及性质、圆和圆的位置关系。

(1)点和圆的位置关系:数量关系和位置关系的对应(2)圆的确定1、过一点可做无数个圆;2、过二点可做无数个圆;3、不在同一条直线上的三点确定(有且只有)一个圆;过在一条直线的三点不能做圆;4、不在同一条直线上的四点有可能作一个圆,也有可能做不出一个圆;(3)三角形的外接圆1、三角形外接圆、圆的内接三角形、外心(外接圆圆心,三角形三条边的中垂线交点);2、“接”:三角形顶点与圆的关系,顶点在圆上;“外、内”:三角形和圆的位置关系;(4)反证法1、定义:假设命题的结论不成立,由此经过推理得出矛盾,有矛盾断定假设不正确,从而得出原命题成立;2、使用场景:用于解决不易直接证明或不能直接证明的命题,主要适用于:①结论是否定形式的命题②结论是无限形式的命题③结论是“至多”或“至少”形式的命题3、否定形式“大(小)于——不大(小)于”“或——且”“至多有n个——至少有n+1个”“都是——不都是”(5)“一箭穿心”模型(圆外一点到圆的最大距离和最小距离)先把圆心到点的距离d求出来,最大距离为d+r,最小距离为d-r(三角形三边关系可证明);(1)直线和圆的位置关系:数量关系和位置关系的对应(2)直线与圆相离,直线到圆的最大距离和最小距离先把圆心到直线的距离d求出来,最大距离为d+r,最小距离为d-r(垂线段最短可证明);(1)切线的定义➢与圆只有一个交点的直线➢圆心到直线的距离等于半径的直线(2)切线的判定➢定义法:与圆只有一个公共点➢数量关系:d=r(圆心到直线的距离等于半径)➢位置关系(切线判定定理):经过半径的外端并且垂直于这条半径的直线是圆的切线证明切线的常用辅助线:◆有交点,连半径,证垂直◆无交点,作垂直,证半径(3)切线的性质➢切线与圆有且只有一个公共点➢圆心到切线的距离等于圆的半径➢(切线的性质定理)圆的切线垂直于过切点的半径以下是两个推论:⏹经过圆心且垂直于切线的直线必经过切点⏹经过切点且垂直于切线的直线必经过圆心有切线后的常用辅助线:切点的位置确定:连接圆心和切点,得垂直,即连切点得垂直切点位置不确定:过圆心作切线的垂线,垂足就是切点,即作垂直得切点(4)切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角主要讲解下面这个图形:找出图中互相垂直的线段、直角三角形、等腰三角形、全等三角形注意:适当讲解弦切角定理(两角互余可证明),开阔学生做题的思路。

直线与圆、圆与圆的位置关系讲义

直线与圆、圆与圆的位置关系讲义

直线与圆、圆与圆的位置关系讲义一、知识梳理1.判断直线与圆的位置关系常用的两种方法(1)几何法:利用圆心到直线的距离d 和圆的半径r 的大小关系. d <r ⇔相交;d =r ⇔相切;d >r ⇔相离. (2)代数法:――――→判别式Δ=b 2-4ac⎩⎪⎨⎪⎧>0⇔相交;=0⇔相切;<0⇔相离.2.圆与圆的位置关系设圆O 1:(x -a 1)2+(y -b 1)2=r 21(r 1>0), 圆O 2:(x -a 2)2+(y -b 2)2=r 22(r 2>0).(1)过圆x 2+y 2=r 2上一点P (x 0,y 0)的圆的切线方程为x 0x +y 0y =r 2.(2)过圆(x -a )2+(y -b )2=r 2上一点P (x 0,y 0)的圆的切线方程为(x 0-a )(x -a )+(y 0-b )(y -b )=r 2. (3)过圆x 2+y 2=r 2外一点M (x 0,y 0)作圆的两条切线,则两切点所在直线方程为x 0x +y 0y =r 2. 2.圆与圆的位置关系的常用结论(1)两圆的位置关系与公切线的条数:①内含:0条;②内切:1条;③相交:2条;④外切:3条;⑤外离:4条.(2)当两圆相交时,两圆方程(x 2,y 2项系数相同)相减便可得公共弦所在直线的方程.二、基础检测题组一:思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)如果两个圆的方程组成的方程组只有一组实数解,则两圆外切.( ) (2)如果两圆的圆心距小于两圆的半径之和,则两圆相交.( )(3)从两圆的方程中消掉二次项后得到的二元一次方程是两圆的公共弦所在的直线方程.( ) (4)过圆O :x 2+y 2=r 2上一点P (x 0,y 0)的圆的切线方程是x 0x +y 0y =r 2.( )(5)过圆O:x2+y2=r2外一点P(x0,y0)作圆的两条切线,切点分别为A,B,则O,P,A,B四点共圆且直线AB的方程是x0x+y0y=r2.()(6)如果直线与圆组成的方程组有解,则直线与圆相交或相切.()题组二:教材改编2.若直线x-y+1=0与圆(x-a)2+y2=2有公共点,则实数a的取值范围是()A.[-3,-1]B.[-1,3]C.[-3,1]D.(-∞,-3]∪[1,+∞)3.x2+y2-4=0与圆x2+y2-4x+4y-12=0的公共弦长为________.题组三:易错自纠4.若直线l:x-y+m=0与圆C:x2+y2-4x-2y+1=0恒有公共点,则m的取值范围是() A.[-2,2] B.[-22,22]C.[-2-1,2-1] D.[-22-1,22-1]5.设圆C1,C2都和两坐标轴相切,且都过点(4,1),则两圆心的距离|C1C2|等于()A.4 B.42C.8 D.826.过点A(3,5)作圆O:x2+y2-2x-4y+1=0的切线,则切线的方程为__________.答案5x-12y+45=0或x-3=0三、典型例题题型一:直线与圆的位置关系1.已知点M(a,b)在圆O:x2+y2=1外,则直线ax+by=1与圆O的位置关系是()A.相切B.相交C.相离D.不确定2.圆x2+y2-2x+4y=0与直线2tx-y-2-2t=0(t∈R)的位置关系为()A.相离B.相切C.相交D.以上都有可能思维升华:判断直线与圆的位置关系的常见方法(1)几何法:利用d与r的关系.(2)代数法:联立方程之后利用Δ判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交.题型二:圆与圆的位置关系典例已知圆C1:(x-a)2+(y+2)2=4与圆C2:(x+b)2+(y+2)2=1外切,则ab的最大值为()A.62 B.32 C.94D.23引申探究:1.若将本典例中的“外切”变为“内切”,求ab的最大值.2.若将本典例条件“外切”变为“相交”,求公共弦所在的直线方程.思维升华:判断圆与圆的位置关系时,一般用几何法,其步骤是 (1)确定两圆的圆心坐标和半径长;(2)利用平面内两点间的距离公式求出圆心距d ,求r 1+r 2,|r 1-r 2|; (3)比较d ,r 1+r 2,|r 1-r 2|的大小,写出结论.跟踪训练:如果圆C :x 2+y 2-2ax -2ay +2a 2-4=0与圆O :x 2+y 2=4总相交,那么实数a 的取值范围是 题型三:直线与圆的综合问题 命题点1:求弦长问题典例已知直线l :mx +y +3m -3=0与圆x 2+y 2=12交于A ,B 两点,过A ,B 分别做l 的垂线与x 轴交于C ,D 两点,若|AB |=23,则|CD |=________. 命题点2:直线与圆相交求参数范围典例 已知过点A (0,1)且斜率为k 的直线l 与圆C :(x -2)2+(y -3)2=1交于M ,N 两点. (1)求k 的取值范围;(2)若OM →·ON →=12,其中O 为坐标原点,求|MN |. 命题点3:直线与圆相切的问题典例 已知圆C :(x -1)2+(y +2)2=10,求满足下列条件的圆的切线方程. (1)与直线l 1:x +y -4=0平行; (2)与直线l 2:x -2y +4=0垂直; (3)过切点A (4,-1).思维升华:直线与圆综合问题的常见类型及解题策略(1)处理直线与圆的弦长问题时多用几何法,即弦长的一半、弦心距、半径构成直角三角形. (2)圆的切线问题的处理要抓住圆心到直线的距离等于半径,从而建立关系解决问题. 跟踪训练 (1)过点(3,1)作圆(x -2)2+(y -2)2=4的弦,其中最短弦的长为________. (2)过点P (2,4)引圆(x -1)2+(y -1)2=1的切线,则切线方程为__________________. 注意:高考中与圆交汇问题的求解 一、与圆有关的最值问题典例1 (1)已知点A ,B ,C 在圆x 2+y 2=1上运动,且AB ⊥BC .若点P 的坐标为(2,0),则|P A →+PB →+PC →|的最大值为( ) A .6 B .7 C .8D .9(2)过点(2,0)引直线l 与曲线y =1-x 2相交于A ,B 两点,O 为坐标原点,当△AOB 的面积取最大值时,直线l 的斜率等于( ) A.33 B .-33C .±33D .-3二、直线与圆的综合问题典例2 (1)已知直线l :x +ay -1=0(a ∈R )是圆C :x 2+y 2-4x -2y +1=0的对称轴,过点A (-4,a )作圆C 的一条切线,切点为B ,则|AB |等于( ) A .2 B .42 C .6D .210(2)在平面直角坐标系中,A ,B 分别是x 轴和y 轴上的动点,若以AB 为直径的圆C 与直线2x +y -4=0相切,则圆C 面积的最小值为( ) A.45π B.34π C .(6-25)πD.54π 四、反馈练习1.已知圆x 2+y 2+2x -2y +a =0截直线x +y +2=0所得的弦的长度为4,则实数a 的值是( ) A .-2 B .-4 C .-6 D .-82.圆x 2+2x +y 2+4y -3=0上到直线x +y +1=0的距离为2的点共有( ) A .1个 B .2个 C .3个D .4个3.过点P (1,-2)作圆C :(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则AB 所在直线的方程为( ) A .y =-34 B .y =-12C .y =-32D .y =-144.若点A (1,0)和点B (4,0)到直线l 的距离依次为1和2,则这样的直线有( ) A .1条 B .2条 C .3条 D .4条5.已知点P (a ,b )(ab ≠0)是圆x 2+y 2=r 2内的一点,直线m 是以P 为中点的弦所在的直线,直线l 的方程为ax +by =r 2,那么( ) A .m ∥l ,且l 与圆相交 B .m ⊥l ,且l 与圆相切 C .m ∥l ,且l 与圆相离D .m ⊥l ,且l 与圆相离6.已知圆C 的方程为x 2+y 2=1,直线l 的方程为x +y =2,过圆C 上任意一点P 作与l 夹角为45°的直线交l 于点A ,则|P A |的最小值为( ) A.12 B .1 C.2-1D .2-27.已知直线l :x -3y +6=0与圆x 2+y 2=12交于A ,B 两点,过A ,B 分别作l 的垂线与x 轴交于C ,D 两点,则|CD |=________.8.点P 在圆C 1:x 2+y 2-8x -4y +11=0上,点Q 在圆C 2:x 2+y 2+4x +2y +1=0上,则|PQ |的最小值是________.9.过点P (1,3)作圆x 2+y 2=1的两条切线,切点分别为A ,B ,则P A →·PB →=________.10.在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-8x +15=0,若直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是________.11.已知圆C :x 2+y 2+2x -4y +1=0,O 为坐标原点,动点P 在圆C 外,过P 作圆C 的切线,设切点为M .(1)若点P 运动到(1,3)处,求此时切线l 的方程; (2)求满足条件|PM |=|PO |的点P 的轨迹方程.12.已知直线l :4x +3y +10=0,半径为2的圆C 与l 相切,圆心C 在x 轴上且在直线l 的右上方. (1)求圆C 的方程;(2)过点M (1,0)的直线与圆C 交于A ,B 两点(A 在x 轴上方),问在x 轴正半轴上是否存在定点N ,使得x 轴平分∠ANB ?若存在,请求出点N 的坐标;若不存在,请说明理由.13在平面直角坐标系xOy 中,点A (0,3),直线l :y =2x -4,设圆C 的半径为1,圆心在直线l 上.若圆C 上存在点M ,使|MA |=2|MO |,则圆心C 的横坐标a 的取值范围是14.若⊙O :x 2+y 2=5与⊙O 1:(x -m )2+y 2=20(m ∈R )相交于A ,B 两点,且两圆在点A 处的切线互相垂直,则线段AB 的长是________. π|AB |2≥16(2-1)π.故选C.。

直线和圆的位置关系

直线和圆的位置关系

直线和圆的位置关系 【基础知识】1、直线和圆的位置关系:(1)相交:直线与圆有两个公共点时,叫做直线和圆相交,这时,直线叫做圆的割线,这两个公共点叫做交点。

(2)相切:直线与圆有一个公共点时,叫做直线与圆想切这时直线叫做圆的切线,唯一的(1) 切线的性质:定理:圆的切线垂直于经过切点的半径。

(2) 推论1:经过圆心且垂直于切线的直径必过切点。

(3) 推论2:经过切点且垂直于切线的直线必过圆心。

3、切线的判定定理及判定方法(1)切线判定定理:经过半径外端并且垂直于这条半径的直线是圆的切线。

(2)切线的判定方法: ①与圆有唯一公共点的直线是圆的切线。

②到圆心的距离等于半径的直线是远的切线。

③经过半径外端并且垂直于这条半径的直线是圆的切线。

4、证明圆的切线的辅助线的方法:①连半径,证明垂直。

②做垂直,证半径。

例题1、如图,在三角形ABC 中,AD 是BC 边上的高,且AD=21BC ,E 、F 分别是AB 、AC 的中点,求证:以E 、F 为直径的的圆与BC 边相切。

【跟踪练习】1、已知:如图,以Rt△ABC的直角边AB为直径的半圆O,与斜边AC交于D,E是BC边上的中点,连接DE,求证:DE与半圆O相切.2、如图,已知CD是△ABC中AB边上的高,以CD为直径的⊙O交CA于点E,点G是AD的中点.求证:GE是⊙O的切线;5、三角形的内切圆(1)内切圆:和三角形三边都相切的圆叫做三角形的内切圆。

内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心,这个三角形叫做圆的外接三角形。

三角形的内心到三边的距离相等。

例题2.如图,在△ABC中,AB=AC,内切圆O与边BC,AC,AB分别切于D,E,F.(1)求证:BF=CE;(2)若∠C=30°,AC的长.例题3、如图,⊙I切△ABC的边分别为D,E,F,∠B=70°,∠C=60°,M是 DEF上的动点(与D,E不重合),∠DMF的大小一定吗?若一定,求出∠DMF的大小;若不一定,请说明理由.【跟踪练习】1.图1,⊙O内切于△ABC,切点为D,E,F.已知∠B=50°,∠C=60°,•连结OE,OF,DE,DF,那么∠EDF等于()A.40°B.55°C.65°D.70°图1 图2 图32.如图2,⊙O是△ABC的内切圆,D,E,F是切点,∠A=50°,∠C=60°,•则∠DOE=()A.70°B.110°C.120°D.130°3.如图3,△ABC中,∠A=45°,I是内心,则∠BIC=()A.112.5°B.112°C.125°D.55°6、切线长定理及切线长概念(1)切线长的概念:在经过员外一点的圆的切线上,这点和切点之间的线段的长,叫做这点倒圆的切线长。

高中 平面解析几何直线与圆、圆与圆的位置关系 知识点+例题

高中 平面解析几何直线与圆、圆与圆的位置关系 知识点+例题

辅导讲义――直线和圆、圆与圆的位置关系圆的切线方程设法:(1)过圆222r y x =+上一点),(00y x P 的圆的切线方程为200r y y x x =+.(2)过圆222)()(r b y a x =-+-上一点),(00y x P 的圆的切线方程为200))(())((r b y b y a x a x =--+--. (3)过圆222r y x =+外一点),(00y x P 作圆的两条切线,则两切点所在直线方程为200r y y x x =+.(4)过圆222)()(r b y a x =-+-外一点),(00y x P 作圆的两条切线,则两切点所在直线方程为200))(())((r b y b y a x a x =--+--.[例]经过点M (2,-1)作圆522=+y x 的切线,则切线方程为_________________. 2x-y-5=0[巩固] 过点P (3,1)作曲线C :0222=-+x y x 的两条切线,切点分别为A ,B ,则直线AB 的方程为____________. 2x+y-3=01.若两圆的半径分别为r 1,r 2,两圆的圆心距为d ,则两圆的位置关系的判断方法如下:位置 关系 外离外切相交内切内含图示d 与r 1,r 2 的关系d >r 1+r 2 d =r 1+r 2 |r 1-r 2|< d < r 1+r 2d =|r 1-r 2|d <|r 1-r 2|两圆的公共点个数0个 1个 2个 1个 0个2.两圆的共切线:(1)当两圆内含时,没有公切线; (2)当两圆内切时有一条公切线; (3)当两圆相交时,有两条外公切线;知识模块4圆与圆的位置关系 精典例题透析知识模块3切线及弦所在直线的方程设法∴切线方程为2x +y ±52=0; ③∵k AC =-2+11-4=13,∴过切点A (4,-1)的切线斜率为-3,∴过切点A (4,-1)的切线方程为y +1=-3(x -4), 即3x +y -11=0.[巩固] (2013·江苏)如图,在平面直角坐标系xOy 中,点A (0,3),直线l :y =2x -4.设圆C 的半径为1,圆心在l 上.(1)若圆心C 也在直线y =x -1上,过点A 作圆C 的切线,求切线的方程; (2)若圆C 上存在点M ,使|MA |=2|MO |,求圆心C 的横坐标a 的取值范围. (1)由题设,圆心C 是直线y =2x -4和y =x -1的交点,解得点C (3,2), 于是切线的斜率必存在.设过A (0,3)的圆C 的切线方程为y =kx +3, 由题意,得|3k +1|k 2+1=1,解得k =0或-34,故所求切线方程为y =3或3x +4y -12=0.(2)因为圆心在直线y =2x -4上,所以圆C 的方程为 (x -a )2+[y -2(a -2)]2=1.设点M (x ,y ),因为|MA |=2|MO |,所以x 2+(y -3)2=2 x 2+y 2,化简得x 2+y 2+2y -3=0,即x 2+(y +1)2=4,所以点M 在以D (0,-1)为圆心,2为半径的圆上.由题意,点M (x ,y )在圆C 上,所以圆C 与圆D 有公共点,则|2-1|≤|CD |≤2+1, 即1≤a 2+(2a -3)2≤3. 由5a 2-12a +8≥0,得a ∈R ; 由5a 2-12a ≤0,得0≤a ≤125. 所以点C 的横坐标a 的取值范围为⎣⎢⎡⎦⎥⎤0,125.题型三:直线与圆相交的问题[例]已知直线kx -y +6=0被圆x 2+y 2=25所截得的弦长为8,求k 的值.设直线kx -y +6=0被圆x 2+y 2=25所截得的弦长为AB ,其中点为C ,则△OCB 为直角三角形.因为圆的半径为|OB |=5,半弦长为|AB |2=|BC |=4,所以圆心到直线kx -y +6=0的距离为3,由点到直线的距离公式得6k 2+1=3,解之得k =±3.[巩固] 求直线x -3y +23=0被圆x 2+y 2=4截得的弦长.如图,设直线x -3y +23=0与圆x 2+y 2=4交于A ,B 两点,弦AB 的中点为M ,则OM ⊥AB (O 为坐标原点),所以OM =|0-0+23|12+(-3)2=3,所以AB =2AM =2OA 2-OM 2=222-(3)2=2.圆x 2+(y -3)2=4的圆心为点(0,3),又因为直线l 与直线x +y +1=0垂直,所以直线l 的斜率k =1.由点斜式得直线l :y -3=x -0,化简得x -y +3=0.3.若圆C 1:x 2+y 2-2ax +a 2-9=0(a ∈R )与圆C 2:x 2+y 2+2by +b 2-1=0 (b ∈R )内切,则ab 的最大值为___________. 圆C 1:x 2+y 2-2ax +a 2-9=0 (a ∈R ).化为:(x -a )2+y 2=9,圆心坐标为(a,0),半径为3.圆C 2:x 2+y 2+2by +b 2-1=0 (b ∈R ),化为x 2+(y +b )2=1,圆心坐标为(0,-b ),半径为1,∵圆C 1:x 2+y 2-2ax +a 2-9=0 (a ∈R )与圆C 2:x 2+y 2+2by +b 2-1=0 (b ∈R )内切,∴a 2+b 2=3-1,即a 2+b 2=4,ab ≤12(a 2+b 2)=2. ∴ab 的最大值为2.4.(2013·山东)过点P (3,1)作圆C :(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为____________.解析 如图所示:由题意知:AB ⊥PC ,k PC =12,∴k AB =-2, ∴直线AB 的方程为y -1=-2(x -1),即2x +y -3=0.5.已知直线y =kx +b 与圆O :x 2+y 2=1相交于A ,B 两点,当b =1+k 2时,OA →·OB →等于___________.设A (x 1,y 1),B (x 2,y 2),将y =kx +b 代入x 2+y 2=1得(1+k 2)x 2+2kbx +b 2-1=0,故x 1+x 2=-2kb 1+k 2,x 1x 2=b 2-11+k 2, 从而·=x 1x 2+y 1y 2=(1+k 2)x 1x 2+kb (x 1+x 2)+b 2=b 2-1-2k 2b 21+k 2+b 2=2b 21+k 2-1=1. 6.若直线y =x +b 与曲线y =3-4x -x 2有公共点,则b 的取值范围是______________.由y =3-4x -x 2,得(x -2)2+(y -3)2=4(1≤y ≤3).∴曲线y =3-4x -x 2是半圆,如图中实线所示.当直线y =x +b 与圆相切时,|2-3+b |2=2.∴b =1±2 2. 由图可知b =1-2 2.∴b 的取值范围是[]1-22,3.7.(2014·上海)已知曲线C :x =-4-y 2,直线l :x =6,若对于点A (m,0),存在C 上的点P 和l 上的Q 使得AP →+AO→=0,则m 的取值范围为________.曲线C :x =-4-y 2,是以原点为圆心,2为半径的圆,并且x P ∈[-2,0],对于点A (m,0),存在C 上的点P 和l 上的Q 使得+=0,(1)求矩形ABCD 的外接圆的方程;(2)已知直线l :(1-2k )x +(1+k )y -5+4k =0(k ∈R ),求证:直线l 与矩形ABCD 的外接圆恒相交,并求出相交的弦长最短时的直线l 的方程.(1)∵l AB :x -3y -6=0且AD ⊥AB ,点(-1,1)在边AD 所在的直线上,∴AD 所在直线的方程是y -1=-3(x +1),即3x +y +2=0.由⎩⎪⎨⎪⎧x -3y -6=0,3x +y +2=0,得A (0,-2). ∴|AP |=4+4=22, ∴矩形ABCD 的外接圆的方程是(x -2)2+y 2=8.(2)直线l 的方程可化为k (-2x +y +4)+x +y -5=0,l 可看作是过直线-2x +y +4=0和x +y -5=0的交点(3,2)的直线系,即l 恒过定点Q (3,2),由(3-2)2+22=5<8知点Q 在圆P 内,∴l 与圆P 恒相交.设l 与圆P 的交点为M ,N ,则|MN |=28-d 2(d 为P 到l 的距离),设PQ 与l 的夹角为θ,则d =|PQ |·sin θ=5sin θ,当θ=90°时,d 最大,|MN |最短.此时l 的斜率为PQ 的斜率的负倒数,即-12, 故l 的方程为y -2=-12(x -3),即x +2y -7=0.11.若直线l :y =kx +1 (k <0)与圆C :x 2+4x +y 2-2y +3=0相切,则直线l 与圆D :(x -2)2+y 2=3的位置关系是_________. 因为圆C 的标准方程为(x +2)2+(y -1)2=2,所以其圆心坐标为(-2,1),半径为2,因为直线l 与圆C 相切.所以|-2k -1+1|k 2+1=2,解得k =±1,因为k <0,所以k =-1,所以直线l 的方程为x +y -1=0.圆心D (2,0)到直线l 的距离d =|2+0-1|2=22<3,所以直线l 与圆D 相交. 12.设曲线C 的方程为(x -2)2+(y +1)2=9,直线l 的方程为x -3y +2=0,则曲线上的点到直线l 的距离为71010的点的个数为____________.B解析 由(x -2)2+(y +1)2=9,得圆心坐标为(2,-1),半径r =3,圆心到直线l 的距离d =|2+3+2|1+(-3)2=710=71010. 能力提升训练要使曲线上的点到直线l 的距离为71010, 此时对应的点在直径上,故有两个点.13.(2013·江西)过点(2,0)引直线l 与曲线y =1-x 2相交于A 、B 两点,O 为坐标原点,当△AOB 的面积取最大值时,直线l 的斜率等于____________.∵S △AOB =12|OA ||OB |sin ∠AOB =12sin ∠AOB ≤12. 当∠AOB =π2时, △AOB 面积最大.此时O 到AB 的距离d =22. 设AB 方程为y =k (x -2)(k <0),即kx -y -2k =0.由d =|2k |k 2+1=22得k =-33. (也可k =-tan ∠OPH =-33). 14.在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-8x +15=0,若直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是________.圆C 的标准方程为(x -4)2+y 2=1,圆心为(4,0).由题意知(4,0)到kx -y -2=0的距离应不大于2,即|4k -2|k 2+1≤2.整理,得3k 2-4k ≤0.解得0≤k ≤43. 故k 的最大值是43. 15.(2014·重庆)已知直线ax +y -2=0与圆心为C 的圆(x -1)2+(y -a )2=4相交于A ,B 两点,且△ABC 为等边三角形,则实数a =________.圆心C (1,a )到直线ax +y -2=0的距离为|a +a -2|a 2+1.因为△ABC 为等边三角形,所以|AB |=|BC |=2,所以(|a +a -2|a 2+1)2+12=22,解得a =4±15.。

直线和圆的位置关系

直线和圆的位置关系

直线和圆的位置关系介绍直线和圆是几何中常见的元素,它们在空间中的相对位置关系对于多个学科领域都具有重要意义。

本文将介绍直线和圆的四种基本位置关系:相离、相切、相交和包含。

相离相离是指直线和圆没有任何交点,它们在空间中完全没有重叠部分。

如果一条直线与一个圆都是无限延伸的,直线与圆的位置关系就可以通过它们的公式来确定。

设直线方程为Ax + By + C = 0,圆心坐标为(h, k),半径为r,则直线与圆的位置关系可以通过以下公式判断:d = |Ah + Bk + C| / sqrt(A^2 + B^2)if d > r:相离else:其他位置关系其中,d为直线到圆心的距离。

相切相切是指直线与圆只有一个交点,这个交点同时位于直线上和圆上。

相切的情况可以进一步分为两种:外切和内切。

外切外切是指直线与圆相切,且直线在圆的外部。

对于直线方程Ax + By + C = 0和圆心坐标(h, k),半径r,判断直线与圆是否外切的公式如下:d = |Ah + Bk + C| / sqrt(A^2 + B^2)if d = r:外切else:其他位置关系内切内切是指直线与圆相切,且直线在圆的内部。

同样,可以通过直线方程和圆的参数来判断直线与圆是否内切:d = |Ah + Bk + C| / sqrt(A^2 + B^2)if d = -r:内切else:其他位置关系相交相交是指直线与圆有两个不重复的交点。

如果直线方程和圆的参数已知,可以通过以下公式来判断直线与圆是否相交:d = |Ah + Bk + C| / sqrt(A^2 + B^2)if d < r:相交else:其他位置关系包含包含是指直线经过圆的中心,这是一种特殊的位置关系。

如果直线方程和圆心坐标已知,可以通过以下公式判断直线是否包含圆:Ah + Bk + C = 0结论直线与圆的位置关系可以通过直线方程和圆的参数来判断。

相离、相切、相交和包含是直线和圆的四种基本位置关系。

直线和圆的位置关系知识点归纳整理

直线和圆的位置关系知识点归纳整理

直线和圆的位置关系知识点归纳整理直线和圆的位置知识点直线和圆有三种位置关系1.交点:当一条直线和一个圆有两个公共点时,称为直线和圆的交点。

此时直线称为圆的割线,公共点称为交点。

2.相切:当直线与圆有唯一的公共点时,称为直线与圆相切,然后直线称为圆相切。

3.分离:当一条直线和一个圆没有共同点时,称为直线和圆分离。

直线与圆的三种位置关系的判定与性质(1)数量法:通过比较圆心O到直线距离d与圆半径的大小关系来判定。

如果⊙O的半径为r,圆心O到直线l的距离为d,则有:直线l与⊙O相交d<r;直线l与⊙O相切d=r;直线l与⊙O相离d>r;(2)共点法:通过确定一条直线和一个圆的共点数来确定。

直线l与⊙O相交d<r2个公共点;直线l与⊙O相切d=r有唯一公共点;直线l与⊙O相离d>r无公共点。

切线知识点切线的定义:在平面中,与圆只有一个公共交点的直线称为圆的切线。

切线的判定定理:通过半径外端并垂直于该半径的直线为圆的切线。

切线的性质定理:圆的切线垂直于通过切点的半径。

切线长度:圆的切线上的点与切点之间的线段通过圆外一点的长度,称为该点到圆的切线长度。

切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.如图,PA,PB是⊙O的两条切线,B切点分别为A,B,则PA=PB,∠OPA=∠OPB.判断直线与圆位置关系的方法1、代数法:联立线性方程和圆方程,解方程,方程无解,直线与圆分离,方程有一组解,直线与圆相切,方程有两组解,直线与圆相交。

2、几何法:求出圆心到直线的距离d,半径为r。

d>r,则直线与圆相离,d=r,则直线与圆相切,d<r,则直线与圆相交。

如何判断直线和圆的位置关系平面内,直线Ax+By+C=0与圆x^2+y^2+Dx+Ey+F=0的位置关系判断一般方法是:1、由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成为一个关于x的方程如果b^2-4ac>0,则圆与直线有2交点,即圆与直线相交。

直线与圆的位置关系知识点总结

直线与圆的位置关系知识点总结

直线与圆的位置关系知识点总结在平面几何中,直线与圆的位置关系是一个重要且基础的知识点。

理解和掌握它们之间的关系,对于解决许多几何问题具有关键作用。

接下来,咱们就详细聊聊直线与圆的位置关系。

一、直线与圆的位置关系的定义直线与圆有三种位置关系:相交、相切、相离。

当直线与圆有两个公共点时,我们称直线与圆相交。

想象一下,就好像直线穿过了圆,与圆有两个交点。

当直线与圆只有一个公共点时,称直线与圆相切。

这时候,直线就像是轻轻触碰了一下圆,只有那一个瞬间的接触点。

当直线与圆没有公共点时,就是直线与圆相离。

直线和圆仿佛处在两个完全不同的世界,没有任何交集。

二、判断直线与圆位置关系的方法1、几何法通过比较圆心到直线的距离 d 与圆的半径 r 的大小来判断。

若 d < r,则直线与圆相交。

比如,圆的半径是 5,圆心到某条直线的距离是 3,因为 3 < 5,所以直线与圆相交。

若 d = r,则直线与圆相切。

比如半径为 6 的圆,圆心到某直线距离恰好为 6,那这条直线就与圆相切。

若 d > r,则直线与圆相离。

比如圆半径 4,圆心到某直线距离 7,因为 7 > 4,所以直线与圆相离。

2、代数法将直线方程与圆的方程联立,消去其中一个变量(比如 y),得到一个关于另一个变量(比如 x)的一元二次方程。

通过判断这个一元二次方程的根的判别式Δ 的值来确定位置关系。

若Δ > 0,则直线与圆相交,意味着有两个不同的交点。

若Δ = 0,则直线与圆相切,只有一个交点。

若Δ < 0,则直线与圆相离,没有交点。

三、直线与圆相交1、弦长公式当直线与圆相交时,所形成的线段称为弦。

弦长的计算可以通过勾股定理来推导。

设直线方程为 Ax + By + C = 0,圆的方程为(x a)²+(y b)²= r²,直线与圆的交点为 P(x₁, y₁),Q(x₂, y₂)。

首先求出圆心(a, b) 到直线的距离 d =|Aa + Bb + C| /√(A²+ B²) 。

直线与圆的位置关系与性质知识点总结

直线与圆的位置关系与性质知识点总结

直线与圆的位置关系与性质知识点总结直线与圆是几何中常见的两种基本图形,它们的位置关系与性质对于解决几何问题非常重要。

在这篇文章中,我们将总结直线与圆的常见位置关系,并讨论它们的性质。

一、直线与圆的位置关系1. 直线与圆的相交关系当直线与圆有交点时,我们可以得出以下几种情况:- 直线与圆相交于两点:直线穿过圆的中心,此时直径是直线的特例。

- 直线与圆相交于一个点:直线与圆相切,切点称为切点。

- 直线位于圆的内部,没有交点。

- 直线位于圆的外部,也没有交点。

2. 直线与圆的位置关系特例- 切线:直线与圆相切的情况,称为切线。

与圆相切的直线垂直于半径,切点在直线上的法线与从切点到圆心的半径垂直。

- 弦:直线穿过圆,但不过圆心的情况,称为弦。

通过圆心的弦称为直径,且直径是弦中最长的一条线段。

二、直线与圆的性质1. 切线定理定理一:若一条直线与圆相切于切点A,则以切点A为顶点的两条锐角与此直线所夹的圆弧相等。

定理二:若从圆外一点作直线与圆相切于切点A,则此直线与以此点为端点的弦相交处的两个锐角是一对互补角。

2. 弦长定理定理三:若两条弦相交于切点A,则两条弦分割的圆周上的弧长乘积相等。

3. 直径定理定理四:直径是穿过圆心的弦,正好是弦分割的两条弧的半径之和。

4. 割线定理定理五:若两条割线相交于切点A,则此割线与此切点所在的直线上的弦分割的互补角是一对互补角。

三、直线与圆的应用1. 问题一:判断直线是否与圆相交或相切当我们需要解决直线与圆的位置关系问题时,可以利用以下方法:- 使用坐标系和方程:设定坐标系,写出直线和圆的方程并求解交点。

- 使用定理:利用判断圆内点的方法,或使用切线定理判断直线与圆是否相切。

2. 问题二:求解直线与圆的交点坐标当直线与圆相交于两点时,我们可以利用以下方法求解交点坐标:- 使用坐标系和方程:设定坐标系,写出直线和圆的方程,联立方程并求解交点坐标。

3. 问题三:判断两条直线是否为切线或相交于切点当我们需要判断两条直线是否为切线或相交于切点时,可以利用以下方法:- 使用切线定理:若两条直线与圆相切于同一切点,则可判断它们为切线或相交于切点。

中考数学思维方法讲义【第13讲】直线和圆的位置关系(含答案)

中考数学思维方法讲义【第13讲】直线和圆的位置关系(含答案)

状元廊学校数学思维方法讲义之十三年级:九年级第13讲直线和圆的位置关系圆的知识在平面几何中乃至整个初中教学中都占有重要的地位,而直线和圆的位置关系的应用又比较广泛,它是初中几何知识的综合运用,又是在学习了点和圆的位置关系的基础上进行的,在几何证明与计算中,将起到重要的作用,是中考必考查点。

【知识纵横】§Ⅰ直线和圆的位置关系:设圆的半径为r,圆心到直线的距离为d.⑴直线与圆相交⇔d__ ____ r;⑵直线与圆相切⇔d__ ____ r;⑶直线与圆相离⇔d__ ____r。

§Ⅱ圆的切线:1.一个定义:与圆只有一个公共点的直线叫做圆的__ ___;这个公共点叫做__ ___;2.两种判定:⑴若圆心到直线的距离等于半径,则该直线是圆的切线;⑵经过直径的一端,并且垂直于这条直径的直线是圆的切线;3.判定直线和圆的位置,一般考虑如下“三步曲”:一“看”:看看题目中有没有告诉我们直线和圆有几个公共点;二“算”:算算圆心到直线的距离d和圆的半径为r之间的大小关系,然后根据上述关系作出判断;三“证明”:证明直线是否经过直径的一端,并且与该直径的位置关系是否垂直。

4.四条性质:切线有许多重要性质⑴圆心到切线的距离等于圆的_ ____;⑵过切点的半径垂直于_ ____;⑶经过圆心,与切线垂直的直线必经过___ __;⑷经过切点,与切线垂直的直线必经过____ _。

5.弦切角定义:顶点在圆上,一边和圆相交,另一边和圆相切的角叫做弦切角;定理:弦切角等于它所夹的弧所对的圆周角.推论:a)两个弦切角所夹的弧相等,这两个弦切角也相等;b)弦切角的度数等于它所夹弧度数的一半。

【典例精析】考点1: 直线和圆的位置关系【例1】1、如图,已知⊙O是以数轴的原点O为圆心,半径为1的圆,∠=︒,点P在数轴上运动,若过点P且与OA平行的直线与⊙O AOB45=,则x的取值范围是__________.有公共点, 设OP x2、射线QN与等边△ABC的两边AB,BC分别交于点M,N,且AC∥QN,AM=MB=2cm,QM=4cm.动点P从点Q出发,沿射线QN以每秒1cm的速度向右移动,经过t秒,以点P为圆心,3为半径的圆与△ABC的边相切(切点在边上),请写出t可取的一切值(单位:秒).变式一:1、如图,在Rt △ABC 中,∠C =90°,∠A =30°,AB =43D在线段AC 上(不与点A 、C 重合),过点D 作DE ⊥AC 交AB 边于点E . (1)当点D 运动到线段AC 中点时,DE = ;(2)点A 关于点D 的对称点为点F ,以FC 为半径作⊙C ,当DE = 时,⊙C 与直线AB 相切.2、如图,在直角梯形ABCD 中,已知AD ∥BC ,∠C =90°,且AB >AD+ BC ,AB 是⊙O 直径,则直线CD 与⊙O 的位置关系为_____ _.考点2: 圆的切线的性质基本运用【例2】已知直线PD 垂直平分⊙O 的半径OA 于点B ,PD 交⊙O 于点C 、D ,PE 是⊙O 的切线,E 为切点,连结AE ,交CD 于点F . (1)若⊙O 的半径为8,求CD 的长; (2)证明:PE =PF ;(3)若PF =13,sinA =513,求EF 的长.变式二: 如图,⊙O 是△ABC 的外接圆,FH 是⊙O 的切线,切点为F ,FH ∥BC ,连结AF 交BC 于E ,∠ABC 的平分线BD 交AF 于D ,连结BF .(1)证明:AF 平分∠BAC ;(2)证明:BF=FD ;(3)若EF =4,DE =3,求AD 的长.O AD B ED O A B C考点3:切线的判定定理运用【例4】如图,在△ABC中,AB=AC,以AB为直径作半圆⊙O,交BC于点D,连接AD,过点D作DE⊥AC,垂足为点E,交AB的延长线于点F.(1)求证:EF是⊙O的切线;(2)如果⊙O的半径为5,sin∠ADE=45,求BF的长.【例5】如图,在⊙O中,直径AB⊥CD,垂足为E,点M在OC上,AM的延长线交⊙O于点G,交过C的直线于F,∠1=∠2,连结CB与DG交于点N.(1)求证:CF是⊙O的切线;(2)求证:△ACM∽△DCN;(3)若点M是CO的中点,⊙O的半径为4,cos∠BOC=14,求BN的长.12NGEOB M变式三:如图,Rt ABC △中,90ABC ∠=°,以AB 为直径作O ⊙交AC 边于点D ,E 是边BC 的中点,连接DE .(1)求证:直线DE 是O ⊙的切线;(2)连接OC 交DE 于点F ,若OF CF =,求tan ACO ∠的值.【思维拓展】【例6】如图,P A 为⊙O 的切线,A 为切点,直线PO 交⊙O 与点E ,F ,过点A 作PO 的垂线AB 垂足为D ,交⊙O 与点B ,延长BO 与⊙O 交与点C ,连接AC ,BF . (1)求证:PB 与⊙O 相切;(2)试探究线段EF ,OD ,OP 之间的数量关系,并加以证明; (3)若AC =12,tan ∠F =12,求cos ∠ACB 的值.C EBA OF D【例7】已知AB是⊙O的直径,AB=4,点C在线段AB的延长线上运动,点D在⊙O上运动(不与点B重合),连接CD,且CD=OA.(1)当OC=22,求证:CD是⊙O的切线;(2)当OC>22CD所在直线于⊙O相交,设另一交点为E,连接AE.①当D为CE中点时,求△ACE的周长;②连接OD,是否存在四边形AODE为梯形?若存在,请说明梯形个数并求此时AE•ED的值;若不存在,请说明理由.变式四:如图,在边长为2的正方形ABCD中,以点D为圆心、DC为半径作AC,点E在AB上,且与A、B两点均不重合,点M在AD上,且ME=MD,过点E作EF⊥ME,交BC于点F,连接DE、MF.(1)求证:EF是AC所在⊙D的切线;(2)当MA=34时,求MF的长;(3)试探究:△MFE能否是等腰直角三角形?若是,请直接写出MF的长度;若不是,请说明理由.AM【课后测控】1、如图1,60ACB ∠=°,半径为1cm 的O ⊙切BC 于点C ,若将O ⊙在CB 上向右滚动,则当滚动到O ⊙与CA 也相切时,圆心O 移动的水平距离是__________cm .2、如图2,DB 为半圆的直径,A 为BD 延长线上一点,AC 切半圆于点E ,BC ⊥AC 于点C ,交半圆于点F .已知BD =2,设AD =x ,CF =y ,则y 关于x 的函数解析式是 .图1 图2 图33、如图,在Rt △AOB 中,OA =OB =3,⊙O 的半径为1,点P 是AB 边上的动点,过点P 作⊙O 的一条切线PQ (点Q 为切点),则切线PQ 的最小值为 .4、如图,AB 为半圆的直径,C 是半圆弧上一点,正方形DEFG 的一边DG 在直径AB 上,另一边DE 过ΔABC 的内切圆圆心O ,且点E 在半圆弧上。

直线与圆的位置关系 - 中档 - 讲义

直线与圆的位置关系 - 中档 - 讲义

直线与圆的位置关系知识讲解一、直线与圆的位置关系位置关系有三种:相交、相切、相离 判断直线与圆的位置关系:1)代数法:将直线方程与圆的方程联立成方程组,利用消元法消去一个元后,得到关于另一个元的一元二次方程,求出其∆的值,然后比较判别式∆与0的大小关系, 若0∆<,则直线与圆相离 若0∆=,则直线与圆相切 若0∆>,则直线与圆相交2)几何法:利用圆心到直线的距离d 和圆的半径r 的大小关系:d r <⇔相交,d r =⇔相切,d r >⇔相离.二、计算直线被圆截得的弦长的常用方法1)几何方法:运用弦心距、弦长的一半及半径构成的直角三角形计算.2)代数方法:运用韦达定理及弦长公式2221(1)[()4]A B A B A B AB k x x k x x x x =+-=++-说明:圆的弦长、弦心距的计算常用几何方法.三、圆与圆的位置关系的判定判定:设2222221111122222:()()(0),:()()(0)C x a y b r r C x a y b r r -+-=>-+-=>e e ,则有:12121C C r r C >+⇔e 与2C e 外离 12121C C r r C =+⇔e 与2C e 外切 1212121r r C C r r C -<<+⇔e 与2C e 相交 1212121()C C r r r r C =-≠⇔e 与2C e 内切 12121C C r r C <-⇔e 与2C e 内含四、圆的切线方程问题1.求圆切线的方法a)过圆222x y r +=上一点00(,)x y 的切线方程为200x x y y r +=已知圆的方程是222x y r +=,求经过圆上一点00(,)M x y 的切线方程.解:当点M 不在坐标轴上时,设切线的斜率为k ,半径OM 的斜率为1k , ∵圆的切线垂直于过切点的半径,∴11k k =-,又∵010y k x =,∴00x k y =-,∴经过点M 的切线方程是0000()x y y x x y -=--, 整理得:220000x x y y x y +=+,又∵点00(,)M x y 在圆上,∴22200x y r +=, ∴所求的切线方程是200x x y y r +=.注:当点M 在坐标轴上时,可以验证上面的方程同样适用. b)求过圆外一点00(,)x y 的圆的切线方程:几何方法: 设切线方程为00(),y y k x x -=-即000.kx y kx y --+=由圆心到直线的距离等于半径,可求得k ,切线方程即可求出.代数方法:设切线方程为00(),y y k x x -=-即000.kx y kx y --+=代入圆的方程,得到一个关于x 的一元二次方程,由0=V 求得k ,切线方程即可求出.2.圆的切线方程常见结论a)已知22222222123:,:()(),:0,O x y r O x a y b r O x y Dx Ey F +=-+-=++++=e e e 则以00(,)M x y 为切点的1O e 的切线方程200;xx yy r +=2O e 的切线方程200()()()(),x a x a y b y b r --+--=3O e 切线方程0000()()022D x xE y y xx yyF ++++++=b)已知圆的222x y r +=的切线斜率为k ,则圆的切线方程为y kx =±c)已知切线过圆外一点11(,)P x y ,可设切线方程为11(),y y k x x -=-利用相切条件确定斜率k ,此时必有两条切线,不能漏掉斜率不存在的那一条切线.d)切线段长公式:从圆外一点00(,)P x y 引圆222()()x a y b r -+-=的切线,则P 到切点的切线段长为d ;从圆外一点00(,)P x y 引圆22x y Dx Ey F ++++=的切线,则P 到切点的切线段长为d =五、圆系方程概念:具有某种共同性质的圆的集合,称为圆系.1)同心圆系2220000()(),,x x y y r x y -+-=为常数,r 为参数.2)圆心共线且半径相等圆系22200()(),x x y y r -+-=r 为常数,圆心00(,)x y 在直线0ax by c ++=上移动.3)过两已知圆22(,)0(1,2)i i i i f x y x y D x E y F i =++++==的交点的圆系方程为2222111222()0x y D x E y F x y D x E y F λ+++++++++=即12(,)(,)0(1)f x y f x y λλ+=≠-. 当1λ=-时,方程变为121212()()0,D D x E E y F F -+-+-=表示过两圆的交点的直线(当两圆是同心圆时,此直线不存在),当两圆相交时,此直线为公共弦所在直线;当两圆相切时,此直线为两圆的公切线;当两圆相离时,此直线为与两圆连心垂直的直线. 4)过直线与圆交点的圆系方程设直线:0l Ax By C ++=与圆22:0C x y Dx Ey F ++++=相交,则方程22()0x y Dx Ey F Ax By C λ+++++++=表示过直线l 与圆C 的两个交点的圆系方程.典型例题一.选择题(共8小题)1.(2016•新课标Ⅱ)圆x2+y2﹣2x﹣8y+13=0的圆心到直线ax+y﹣1=0的距离为1,则a=()A.﹣B.﹣C.D.2【解答】解:圆x2+y2﹣2x﹣8y+13=0的圆心坐标为:(1,4),故圆心到直线ax+y﹣1=0的距离d==1,解得:a=,故选:A.2.(2006•安徽)直线x+y=1与圆x2+y2﹣2ay=0(a>0)没有公共点,则a的取值范围是()A.(0,)B.(,)C.(,)D.(0,)【解答】解:把圆x2+y2﹣2ay=0(a>0)化为标准方程为x2+(y﹣a)2=a2,所以圆心(0,a),半径r=a,由直线与圆没有公共点得到:圆心(0,a)到直线x+y=1的距离d=>r=a,当a﹣1>0即a>1时,化简为a﹣1>a,即a(1﹣)>1,因为a>0,无解;当a﹣1<0即0<a<1时,化简为﹣a+1>a,即(+1)a<1,a<=﹣1,所以a的范围是(0,﹣1)故选:A.3.(2016•山东)已知圆M:x2+y2﹣2ay=0(a>0)截直线x+y=0所得线段的长度是2,则圆M与圆N:(x﹣1)2+(y﹣1)2=1的位置关系是()A.内切B.相交C.外切D.相离【解答】解:圆的标准方程为M:x2+(y﹣a)2=a2 (a>0),则圆心为(0,a),半径R=a,圆心到直线x+y=0的距离d=,∵圆M:x2+y2﹣2ay=0(a>0)截直线x+y=0所得线段的长度是2,∴2=2=2=2,即=,即a2=4,a=2,则圆心为M(0,2),半径R=2,圆N:(x﹣1)2+(y﹣1)2=1的圆心为N(1,1),半径r=1,则MN==,∵R+r=3,R﹣r=1,∴R﹣r<MN<R+r,即两个圆相交.故选:B.4.(2014•北京)已知圆C:(x﹣3)2+(y﹣4)2=1和两点A(﹣m,0),B(m,0)(m>0),若圆C上存在点P,使得∠APB=90°,则m的最大值为()A.7 B.6 C.5 D.4【解答】解:圆C:(x﹣3)2+(y﹣4)2=1的圆心C(3,4),半径为1,∵圆心C到O(0,0)的距离为5,∴圆C上的点到点O的距离的最大值为6.再由∠APB=90°可得,以AB为直径的圆和圆C有交点,可得PO=AB=m,故有m≤6,故选:B.5.(2013•重庆)已知圆C1:(x﹣2)2+(y﹣3)2=1,圆C2:(x﹣3)2+(y﹣4)2=9,M,N分别是圆C1,C2上的动点,P为x轴上的动点,则|PM|+|PN|的最小值为()A.﹣1 B.5﹣4 C.6﹣2D.【解答】解:如图圆C1关于x轴的对称圆的圆心坐标A(2,﹣3),半径为1,圆C2的圆心坐标(3,4),半径为3,由图象可知当P,M,N,三点共线时,|PM|+|PN|取得最小值,|PM|+|PN|的最小值为圆C3与圆C2的圆心距减去两个圆的半径和,即:|AC2|﹣3﹣1=﹣4=﹣4=5﹣4.故选:B.6.(2012•天津)设m,n∈R,若直线(m+1)x+(n+1)y﹣2=0与圆(x﹣1)2+(y﹣1)2=1相切,则m+n的取值范围是()A.[1﹣,1+]B.(﹣∞,1﹣]∪[1+,+∞)C.[2﹣2,2+2]D.(﹣∞,2﹣2]∪[2+2,+∞)【解答】解:由圆的方程(x﹣1)2+(y﹣1)2=1,得到圆心坐标为(1,1),半径r=1,∵直线(m+1)x+(n+1)y﹣2=0与圆相切,∴圆心到直线的距离d==1,整理得:m+n+1=mn≤,设m+n=x,则有x+1≤,即x2﹣4x﹣4≥0,∵x2﹣4x﹣4=0的解为:x1=2+2,x2=2﹣2,∴不等式变形得:(x﹣2﹣2)(x﹣2+2)≥0,解得:x≥2+2或x≤2﹣2,则m+n的取值范围为(﹣∞,2﹣2]∪[2+2,+∞).故选:D.7.(2015•商丘一模)若圆C:x2+y2+2x﹣4y+3=0关于直线2ax+by+6=0对称,则由点(a,b)向圆C所作切线长的最小值是()A.2 B.3 C.4 D.6【解答】解:圆C:x2+y2+2x﹣4y+3=0化为(x+1)2+(y﹣2)2=2,圆的圆心坐标为(﹣1,2)半径为.圆C:x2+y2+2x﹣4y+3=0关于直线2ax+by+6=0对称,所以(﹣1,2)在直线上,可得﹣2a+2b+6=0,即a=b+3.点(a,b)与圆心的距离,,所以点(a,b)向圆C所作切线长:==≥4,当且仅当b=﹣1时弦长最小,为4.故选:C.8.(2006•湖南)若圆x2+y2﹣4x﹣4y﹣10=0上至少有三个不同的点到直线l:ax+by=0的距离为,则直线l的倾斜角的取值范围是()A.B.C.D.【解答】解:圆x2+y2﹣4x﹣4y﹣10=0整理为,∴圆心坐标为(2,2),半径为3,要求圆上至少有三个不同的点到直线l:ax+by=0的距离为,则圆心到直线的距离应小于等于,∴,∴,∴,,∴,直线l的倾斜角的取值范围是,故选:B.二.填空题(共4小题)9.(2015•重庆)若点P(1,2)在以坐标原点为圆心的圆上,则该圆在点P处的切线方程为x+2y﹣5=0.【解答】解:由题意可得OP和切线垂直,故切线的斜率为﹣==﹣,故切线的方程为y﹣2=﹣(x﹣1),即x+2y﹣5=0,故答案为:x+2y﹣5=0.10.(2014•江苏)在平面直角坐标系xOy中,直线x+2y﹣3=0被圆(x﹣2)2+(y+1)2=4截得的弦长为.【解答】解:圆(x﹣2)2+(y+1)2=4的圆心为C(2,﹣1),半径r=2,∵点C到直线直线x+2y﹣3=0的距离d==,∴根据垂径定理,得直线x+2y﹣3=0被圆(x﹣2)2+(y+1)2=4截得的弦长为2=2=故答案为:.11.(2016•新课标Ⅲ)已知直线l:mx+y+3m﹣=0与圆x2+y2=12交于A,B两点,过A,B分别作l的垂线与x轴交于C,D两点,若|AB|=2,则|CD|=4.【解答】解:由题意,|AB|=2,∴圆心到直线的距离d=3,∴=3,∴m=﹣∴直线l的倾斜角为30°,∵过A,B分别作l的垂线与x轴交于C,D两点,∴|CD|==4.故答案为:4.12.(2016•新课标Ⅲ)已知直线l:x﹣y+6=0与圆x2+y2=12交于A,B两点,过A,B分别作l的垂线与x轴交于C,D两点.则|CD|=4.【解答】解:由题意,圆心到直线的距离d==3,∴|AB|=2=2,∵直线l:x﹣y+6=0∴直线l的倾斜角为30°,∵过A,B分别作l的垂线与x轴交于C,D两点,∴|CD|==4.故答案为:4.三.解答题(共3小题)13.(2015春•赣州期末)已知定点M(0,2),N(﹣2,0),直线l:kx﹣y﹣2k+2=0(k为常数).(Ⅰ)若点M,N到直线l的距离相等,求实数k的值;(Ⅱ)以M,N为直径的圆与直线l相交所得的弦长为2,求实数k的值.【解答】解:(Ⅰ)直线l与MN平行时,k=1…(3分)直线l经过M,N的中点时,…(5分)(Ⅱ)以M,N为直径的圆,圆心C(﹣1,1),半径…(7分)因此圆心到直线的距离等于1,即…(8分)解得…(10分)14.(2015春•张家界期末)已知直线l1:ax﹣y﹣2=0经过圆C:(x﹣1)2+y2=1的圆心.(1)求a的值;(2)求经过圆心C且与直线l:x﹣4y+1=0平行的直线l2的方程.【解答】解:(1)将圆心(1,0)代入得直线l1,得a﹣2=0,…(4分)则a=2;…(5分)(2)设所求直线方程x﹣4y+λ=0,…(8分)∵C(1,0)点在直线x﹣4y+λ=0上,∴λ=﹣1,…(11分)故所求直线方程为:x﹣4y﹣1=0.…(12分)15.(2014秋•增城市期末)求过点A(2,﹣1),圆心在直线y=﹣2x上,且与直线x+y﹣1=0相切的圆的方程.【解答】解:设圆心为(a,﹣2a),圆的方程为(x﹣a)2+(y+2a)2=r2(2分)则(6分)解得a=1,(10分)因此,所求得圆的方程为(x﹣1)2+(y+2)2=2(12分)。

直线与圆的位置关系—知识讲解

直线与圆的位置关系—知识讲解

直线与圆的位置关系—知识讲解【学习目标】1.理解并掌握直线与圆的三种位置关系;2.理解切线的判定定理和性质定理.【要点梳理】要点一、直线与圆的位置关系1.切线的定义:直线与圆有唯一的公共点时,这条直线叫做圆的切线,这个唯一的公共点叫做切点.此时直线与圆的位置关系称为相切.2.直线和圆的三种位置关系:(1) 相交:当直线与圆有两个公共点时,叫做直线与圆相交.(2) 相切:当直线与圆有唯一公共点时,叫做直线与圆相切.这条直线叫做圆的切线,公共点叫做切点.(3) 相离:当直线与圆没有公共点时,叫做直线与圆相离.3.直线与圆的位置关系的判定和性质.直线与圆的位置关系能否像点与圆的位置关系一样通过一些条件来进行分析判断呢?由于圆心确定圆的位置,半径确定圆的大小,因此研究直线和圆的位置关系,就可以转化为直线和点(圆心)的位置关系.下面图(1)中直线与圆心的距离小于半径;图(2)中直线与圆心的距离等于半径;图(3)中直线与圆心的距离大于半径.一般地,直线与圆的位置关系有以下定理:如果⊙O的半径为r,圆心O到直线l的距离为d,那么,(1)d<r直线l与⊙O相交;(2)d=r直线l与⊙O相切;(3)d>r直线l与⊙O相离.要点诠释:这三个命题从左边到右边反映了直线与圆的位置关系所具有的性质;从右边到左边则是直线与圆的位置关系的判定.要点二、切线的性质定理和判定定理1.切线的性质定理:圆的切线垂直于过切点的半径.要点诠释:切线的性质定理中要注意:圆的切线是与过切点的半径垂直,不是与任意半径都垂直.2.切线的判定定理:过半径外端且垂直于半径的直线是圆的切线.要点诠释:切线的判定定理中强调两点:一是直线与圆有一个交点,二是直线与过交点的半径垂直,缺一不可. 要点三、三角形的内切圆1.三角形的内切圆:与三角形各边都相切的圆叫做三角形的内切圆.2.三角形的内心:三角形内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心. 三角形的内心到三边的距离都相等.要点诠释:(1) 任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形;(2) 解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积的一半,即(S为三角形的面积,P为三角形的周长,r为内切圆的半径).【典型例题】类型一、直线与圆的位置关系1.在Rt△ABC中,∠C=90°,AC=3厘米,BC=4厘米,以C为圆心,r为半径的圆与AB有怎样的位置关系?为什么?(1)r=2厘米; (2)r=2.4厘米; (3)r=3厘米【答案与解析】解:过点C作CD⊥AB于D,在Rt△ABC中,∠C=90°, AC=3,BC=4,得AB=5,,∴AB·CD=AC·BC,∴AC BC34CD===2.4AB5∙⨯(cm),(1)当r=2cm时,CD>r,∴圆C与AB相离;(2)当r=2.4cm时,CD=r,∴圆C与AB相切;(3)当r=3cm时,CD<r,∴圆C与AB相交.【总结升华】欲判定⊙C与直线AB的关系,只需先求出圆心C到直线AB的距离CD的长,然后再与r比较即可.举一反三:【变式】已知⊙O的半径为10cm,如果一条直线和圆心O的距离为10cm,那么这条直线和这个圆的位置关系为()A. 相离B. 相切C. 相交D. 相交或相离【答案】B.类型二、切线的判定与性质2.如图所示,在Rt△ABC中,∠B=90°,∠A的平分线交BC于D,以D为圆心,DB长为半径作⊙D.求证:AC是⊙D的切线.【思路点拨】作垂直,证半径.【答案与解析】证明:过D作DF⊥AC于F.∵∠B=90°,∴DB⊥AB.又AD平分∠BAC,∴ DF=BD=半径.∴ AC与⊙D相切.【总结升华】如果已知条件中不知道直线与圆有公共点,其证法是过圆心作直线的垂线段,再证明垂线段的长等于半径的长即可.3.(2015•黄石)如图,⊙O的直径AB=4,∠ABC=30°,BC交⊙O于D,D是BC的中点.(1)求BC的长;(2)过点D作DE⊥AC,垂足为E,求证:直线DE是⊙O的切线.【思路点拨】(1)根据圆周角定理求得∠ADB=90°,然后解直角三角形即可求得BD,进而求得BC即可;(2)要证明直线DE是⊙O的切线只要证明∠EDO=90°即可.【答案与解析】证明:(1)解:连接AD,∵AB是⊙O的直径,∴∠ADB=90°,又∵∠ABC=30°,AB=4,∴BD=2,∵D是BC的中点,∴BC=2BD=4;(2)证明:连接OD.∵D是BC的中点,O是AB的中点,∴DO是△ABC的中位线,∴OD∥AC,则∠EDO=∠CED又∵DE⊥AC,∴∠CED=90°,∠EDO=∠CED=90°∴DE是⊙O的切线.【总结升华】此题主要考查了切线的判定以及含30°角的直角三角形的性质.解题时要注意连接过切点的半径是圆中的常见辅助线.4.如图,AB为⊙O的直径,AC为⊙O的弦,AD平分∠BAC,交⊙O于点D,DE⊥AC,交AC的延长线于点E.(1)判断直线DE与⊙O的位置关系,并说明理由;(2)若AE=8,⊙O的半径为5,求DE的长.【思路点拨】(1)连接OD,证明OD∥AD即可;(2)作DF⊥AB于F,证明△EAD≌△FAD,将DE转化成DF来求.【答案与解析】解:(1)直线DE与⊙O相切.理由如下:连接OD.∵AD平分∠BAC,∴∠EAD=∠OAD.∵OA=OD,∴∠ODA=∠OAD.∴∠ODA=EAD.∴EA∥OD.∵DE⊥EA,∴DE⊥OD.又∵点D在⊙O上,∴直线DE与⊙O相切.(2)如上图,作DF⊥AB,垂足为F.∴∠DFA=∠DEA=90°.∵∠EAD=∠FAD,AD=AD,∴△EAD≌△FAD.∴AF=AE=8,DF=DE.∵OA=OD=5,∴OF=3.在Rt△DOF中,DF4.∴DE=DF=4.【总结升华】本题综合考察了平行线的判定,全等三角形的判定和勾股定理的应用,是一道很不错的中档题.举一反三:【变式1】(2015•盐城)如图,在△ABC中,∠CAB=90°,∠CBA=50°,以AB为直径作⊙O交BC于点D,点E在边AC上,且满足ED=EA.(1)求∠DOA的度数;(2)求证:直线ED与⊙O相切.【答案与解析】(1)解;∵∠DBA=50°,∴∠DOA=2∠DBA=100°,(2)证明:连接OE.在△EAO与△EDO中,,∴△EAO≌△EDO,∴∠EDO=∠EAO,∵∠BAC=90°,∴∠EDO=90°,∴DE与⊙O相切.C B举一反三:【变式2】如图所示,在△ABC 中,AB =BC =2,以AB 为直径的⊙O 与BC 相切于点B,则AC 等于( )AC..【答案】因为以AB 为直径的⊙O 与BC 相切于点B ,所以∠ABC =90°,在Rt△ABC中,AC==C .类型三、三角形的内切圆5.如图,已知O 是△ABC 的内心,∠A=50°,求∠BOC 的度数.【思路点拨】O 是△ABC 的内心,∠A=50°,根据内切圆的性质可求∠OBC+∠OCB=11(180)=(18050)=6522A ︒-︒-︒︒∠ ,在△BOC 中,根据三角形内角和求出∠BOC 的度数. 【答案与解析】解:∵O 是△ABC 的内心,∠A=50°,∴∠OBC+∠OCB=11(180)=(18050)=6522A ︒-︒-︒︒∠, ∴∠BOC=180°-65°=115°.【变式】如图,△ABC中,∠C=90°,BC=4,AC=3,⊙O内切与△ABC,则△ABC去除⊙O剩余阴影部分的面积为()A.12-πB. 12-2πC. 14-4πD. 6-π【答案】D.C B。

圆和直线的位置关系知识点

圆和直线的位置关系知识点

圆和直线的位置关系知识点圆和直线的位置关系是数学中非常重要的知识点,它们广泛应用于各种领域,如图形设计、建筑、物理和工程学等。

本文将探讨圆和直线之间的位置关系,包括相交、相切和不相交等情况。

一、圆和直线的相交从几何的角度来看,如果一条直线与圆相交,则该直线经过圆的两个点。

这两个点被称为圆与直线的交点。

如图1所示,直线AB与圆O相交于点C和点D。

图1 圆与直线相交我们可以得出如下结论:1. 如果直线的斜率等于圆心到直线的垂线的斜率,则圆与直线相切。

2. 如果直线的斜率大于或小于圆心到直线的垂线的斜率,则圆与直线相交。

二、圆和直线的相切当直线与圆只有一个公共点时,我们称圆和直线相切。

在图2中,直线和圆相切于点E。

图2 圆与直线相切这里我们介绍一个重要的结论:相切的直线是圆的切线。

圆的切线定义为与圆相切的直线。

如图3所示,圆O的切线为直线PO。

图3 圆的切线三、圆和直线不相交如果直线经过圆的中心,但不与圆相交,那么该直线被称为圆的直径。

圆的直径是圆的最长距离,它被定义为通过圆心且两端点在圆上的直线。

如图4所示,直线MN为圆O的直径。

图4 圆的直径另外,如果一条直线不经过圆的中心,并且距离圆心的距离等于圆的半径,则该直线被称为圆的割线。

如图5所示,直线EF是圆O的割线。

图5 圆的割线四、结论在本文中,我们介绍了圆和直线之间的三种位置关系:相交、相切和不相交。

我们还提到了相切的直线是圆的切线,圆的直径是圆的最长距离,圆的割线距离圆心的距离等于圆的半径。

这些知识点在数学中非常重要,对于理解圆形和直线在几何学、物理学和工程学中的应用有着重要的作用。

高考数学考点归纳之 直线与圆、圆与圆的位置关系

高考数学考点归纳之  直线与圆、圆与圆的位置关系

高考数学考点归纳之 直线与圆、圆与圆的位置关系一、基础知识1.直线与圆的位置关系(半径为r ,圆心到直线的距离为d )Δ<0 Δ=0 Δ>0 2.圆与圆的位置关系(两圆半径为r 1,r 2,d =|O 1O 2|)|r -r |<d <二、常用结论(1)圆的切线方程常用结论①过圆x 2+y 2=r 2上一点P (x 0,y 0)的圆的切线方程为x 0x +y 0y =r 2.②过圆(x -a )2+(y -b )2=r 2上一点P (x 0,y 0)的圆的切线方程为(x 0-a )(x -a )+(y 0-b )(y -b )=r 2.③过圆x 2+y 2=r 2外一点M (x 0,y 0)作圆的两条切线,则两切点所在直线方程为x 0x +y 0y =r 2.(2)直线被圆截得的弦长弦心距d 、弦长l 的一半12l 及圆的半径r 构成一直角三角形,且有r 2=d 2+⎝⎛⎭⎫12l 2. 考点一 直线与圆的位置关系考法(一) 直线与圆的位置关系的判断[典例] 直线l :mx -y +1-m =0与圆C :x 2+(y -1)2=5的位置关系是( ) A .相交B .相切C .相离D .不确定[解析] 法一:由⎩⎪⎨⎪⎧mx -y +1-m =0,x 2+(y -1)2=5, 消去y ,整理得(1+m 2)x 2-2m 2x +m 2-5=0, 因为Δ=16m 2+20>0, 所以直线l 与圆相交.法二:由题意知,圆心(0,1)到直线l 的距离d =|m |m 2+1<1<5,故直线l 与圆相交. 法三:直线l :mx -y +1-m =0过定点(1,1),因为点(1,1)在圆x 2+(y -1)2=5的内部,所以直线l 与圆相交.[答案] A[解题技法] 判断直线与圆的位置关系的常见方法 (1)几何法:利用d 与r 的关系.(2)代数法:联立方程组,消元得一元二次方程之后利用Δ判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交. [提醒] 上述方法中最常用的是几何法. 考法(二) 直线与圆相切的问题[典例] (1)过点P (2,4)作圆(x -1)2+(y -1)2=1的切线,则切线方程为( ) A .3x +4y -4=0 B .4x -3y +4=0 C .x =2或4x -3y +4=0 D .y =4或3x +4y -4=0(2)(2019·成都摸底)已知圆C :x 2+y 2-2x -4y +1=0上存在两点关于直线l :x +my +1=0对称,经过点M (m ,m )作圆C 的切线,切点为P ,则|MP |=________.[解析] (1)当斜率不存在时,x =2与圆相切;当斜率存在时,设切线方程为y -4=k (x -2),即kx -y +4-2k =0,则|k -1+4-2k |k 2+1=1,解得k =43,则切线方程为4x -3y +4=0,故切线方程为x =2或4x -3y +4=0.(2)圆C :x 2+y 2-2x -4y +1=0的圆心为C (1,2),半径为2.因为圆上存在两点关于直线l :x +my +1=0对称,所以直线l :x +my +1=0过点(1,2),所以1+2m +1=0,解得m =-1,所以|MC |2=13,|MP |=13-4=3.[答案] (1)C (2)3 考法(三) 弦长问题[典例] (1)若a 2+b 2=2c 2(c ≠0),则直线ax +by +c =0被圆x 2+y 2=1所截得的弦长为( )A.12 B .1 C.22D.2(2)(2019·海口一中模拟)设直线y =x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若|AB |=23,则圆C 的面积为( )A .4πB .2πC .9πD .22π[解析] (1)因为圆心(0,0)到直线ax +by +c =0的距离d =|c |a 2+b 2=|c |2|c |=22,因此根据直角三角形的关系,弦长的一半就等于1-⎝⎛⎭⎫222=22,所以弦长为 2. (2)易知圆C :x 2+y 2-2ay -2=0的圆心为(0,a ),半径为a 2+2.圆心(0,a )到直线y =x +2a 的距离d =|a |2,由直线y =x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,|AB |=23,可得a 22+3=a 2+2,解得a 2=2,故圆C 的半径为2,所以圆C 的面积为4π,故选A.[答案] (1)D (2)A[题组训练]1.已知圆的方程是x 2+y 2=1,则经过圆上一点M ⎝⎛⎭⎫22,22的切线方程是________. 解析:因为M ⎝⎛⎭⎫22,22是圆x 2+y 2=1上的点,所以圆的切线的斜率为-1,则设切线方程为x +y +a =0,所以22+22+a =0,得a =-2,故切线方程为x +y -2=0. 答案:x +y -2=02.若直线kx -y +2=0与圆x 2+y 2-2x -3=0没有公共点,则实数k 的取值范围是________.解析:由题知,圆x 2+y 2-2x -3=0可写成(x -1)2+y 2=4,圆心(1,0)到直线kx -y +2=0的距离d >2,即|k +2|k 2+1>2,解得0<k <43.答案:⎝⎛⎭⎫0,43 3.设直线y =kx +1与圆x 2+y 2+2x -my =0相交于A ,B 两点,若点A ,B 关于直线l :x +y =0对称,则|AB |=________.解析:因为点A ,B 关于直线l :x +y =0对称,所以直线y =kx +1的斜率k =1,即y =x +1.又圆心⎝⎛⎭⎫-1,m2在直线l :x +y =0上,所以m =2,则圆心的坐标为(-1,1),半径r =2,所以圆心到直线y =x +1的距离d =22,所以|AB |=2r 2-d 2= 6. 答案:6考点二 圆与圆的位置关系[典例] (2016·山东高考)已知圆M :x 2+y 2-2ay =0(a >0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y -1)2=1的位置关系是( )A .内切B .相交C .外切D .相离[解析] 法一:由⎩⎪⎨⎪⎧x 2+y 2-2ay =0,x +y =0,得两交点为(0,0),(-a ,a ). ∵圆M 截直线所得线段长度为22, ∴a 2+(-a )2=2 2.又a >0,∴a =2.∴圆M 的方程为x 2+y 2-4y =0, 即x 2+(y -2)2=4,圆心M (0,2),半径r 1=2.又圆N :(x -1)2+(y -1)2=1,圆心N (1,1),半径r 2=1, ∴|MN |=(0-1)2+(2-1)2= 2. ∵r 1-r 2=1,r 1+r 2=3,1<|MN |<3, ∴两圆相交.法二:由题知圆M :x 2+(y -a )2=a 2(a >0),圆心(0,a )到直线x +y =0的距离d =a2,所以2a 2-a 22=22,解得a =2.圆M ,圆N 的圆心距|MN |=2,两圆半径之差为1,两圆半径之和为3,故两圆相交.[答案] B [变透练清]1.(2019·太原模拟)若圆C 1:x 2+y 2=1与圆C 2:x 2+y 2-6x -8y +m =0外切,则m =( )A .21B .19C .9D .-11解析:选C 圆C 1的圆心为C 1(0,0),半径r 1=1,因为圆C 2的方程可化为(x -3)2+(y -4)2=25-m ,所以圆C 2的圆心为C 2(3,4),半径r 2=25-m (m <25).从而|C 1C 2|=32+42=5.由两圆外切得|C 1C 2|=r 1+r 2,即1+25-m =5,解得m =9,故选C.2.(变结论)若本例两圆的方程不变,则两圆的公共弦长为________.解析:联立两圆方程⎩⎪⎨⎪⎧x 2+y 2-4y =0,(x -1)2+(y -1)2=1,两式相减得,2x -2y -1=0,因为N (1,1),r =1,则点N 到直线2x -2y -1=0的距离d =|-1|22=24,故公共弦长为21-⎝⎛⎭⎫242=142.答案:142[解题技法]几何法判断圆与圆的位置关系的3步骤(1)确定两圆的圆心坐标和半径长;(2)利用平面内两点间的距离公式求出圆心距d ,求r 1+r 2,|r 1-r 2|; (3)比较d ,r 1+r 2,|r 1-r 2|的大小,写出结论.[课时跟踪检测]A 级1.若直线2x +y +a =0与圆x 2+y 2+2x -4y =0相切,则a 的值为( ) A .±5 B .±5 C .3D .±3解析:选B 圆的方程可化为(x +1)2+(y -2)2=5,因为直线与圆相切,所以有|a |5=5,即a =±5.故选B.2.与圆C 1:x 2+y 2-6x +4y +12=0,C 2:x 2+y 2-14x -2y +14=0都相切的直线有( )A .1条B .2条C .3条D .4条解析:选A 两圆分别化为标准形式为C 1:(x -3)2+(y +2)2=1,C 2:(x -7)2+(y -1)2=36,则两圆圆心距|C 1C 2|=(7-3)2+[1-(-2)]2=5,等于两圆半径差,故两圆内切.所以它们只有一条公切线.故选A.3.(2019·南宁、梧州联考)直线y =kx +3被圆(x -2)2+(y -3)2=4截得的弦长为23,则直线的倾斜角为( )A.π6或5π6 B .-π3或π3C .-π6或π6D.π6解析:选A 由题知,圆心(2,3),半径为2,所以圆心到直线的距离为d =22-(3)2=1.即d =|2k |1+k 2=1,所以k =±33,由k =tan α,得α=π6或5π6.故选A.4.过点(3,1)作圆(x -1)2+y 2=r 2的切线有且只有一条,则该切线的方程为( ) A .2x +y -5=0 B .2x +y -7=0 C .x -2y -5=0D .x -2y -7=0解析:选B 由题意知点(3,1)在圆上,代入圆的方程可得r 2=5,圆的方程为(x -1)2+y 2=5,则过点(3,1)的切线方程为(x -1)·(3-1)+y (1-0)=5,即2x +y -7=0.故选B.5.(2019·重庆一中模拟)若圆x 2+y 2+2x -6y +6=0上有且仅有三个点到直线x +ay +1=0的距离为1,则实数a 的值为( )A .±1B .±24 C .± 2D .±32解析:选B 由题知圆的圆心坐标为(-1,3),半径为2,由于圆上有且仅有三个点到直线的距离为1,故圆心(-1,3)到直线x +ay +1=0的距离为1,即|-1+3a +1|1+a 2=1,解得a =±24. 6.(2018·嘉定二模)过点P (1,-2)作圆C :(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则AB 所在直线的方程为( )A .y =-34B .y =-12C .y =-32D .y =-14解析:选B 圆(x -1)2+y 2=1的圆心为C (1,0),半径为1,以|PC |=(1-1)2+(-2-0)2=2为直径的圆的方程为(x -1)2+(y +1)2=1,将两圆的方程相减得AB 所在直线的方程为2y +1=0,即y =-12.故选B.7.在平面直角坐标系xOy 中,直线x +2y -3=0被圆(x -2)2+(y +1)2=4截得的弦长为________.解析:易知圆心(2,-1),半径r =2,故圆心到直线的距离d =|2+2×(-1)-3|12+22=355,弦长为2r 2-d 2=2555. 答案:25558.若P (2,1)为圆(x -1)2+y 2=25的弦AB 的中点,则直线AB 的方程为________. 解析:因为圆(x -1)2+y 2=25的圆心为(1,0),所以直线AB 的斜率等于-11-02-1=-1,由点斜式得直线AB 的方程为y -1=-(x -2),即x +y -3=0.答案:x +y -3=09.过点P (-3,1),Q (a,0)的光线经x 轴反射后与圆x 2+y 2=1相切,则a 的值为________. 解析:因为P (-3,1)关于x 轴的对称点的坐标为P ′(-3,-1), 所以直线P ′Q 的方程为y =-1-3-a (x -a ),即x -(3+a )y -a =0, 圆心(0,0)到直线的距离d =|-a |1+(3+a )2=1,所以a =-53.答案:-5310.点P 在圆C 1:x 2+y 2-8x -4y +11=0上,点Q 在圆C 2:x 2+y 2+4x +2y +1=0上,则|P Q |的最小值是________.解析:把圆C 1、圆C 2的方程都化成标准形式,得(x -4)2+(y -2)2=9,(x +2)2+(y +1)2=4.圆C 1的圆心坐标是(4,2),半径长是3; 圆C 2的圆心坐标是(-2,-1),半径是2.圆心距d =(4+2)2+(2+1)2=35>5.故圆C 1与圆C 2相离, 所以|P Q |的最小值是35-5.答案:35-511.已知圆C 1:x 2+y 2-2x -6y -1=0和圆C 2:x 2+y 2-10x -12y +45=0. (1)求证:圆C 1和圆C 2相交;(2)求圆C 1和圆C 2的公共弦所在直线的方程和公共弦长. 解:(1)证明:圆C 1的圆心C 1(1,3),半径r 1=11, 圆C 2的圆心C 2(5,6),半径r 2=4,两圆圆心距d =|C 1C 2|=5,r 1+r 2=11+4, |r 1-r 2|=4-11,∴|r 1-r 2|<d <r 1+r 2,∴圆C 1和圆C 2相交. (2)圆C 1和圆C 2的方程相减,得4x +3y -23=0, ∴两圆的公共弦所在直线的方程为4x +3y -23=0.圆心C 2(5,6)到直线4x +3y -23=0的距离d =|20+18-23|16+9=3,故公共弦长为216-9=27.12.已知圆C 经过点A (2,-1),和直线x +y =1相切,且圆心在直线y =-2x 上. (1)求圆C 的方程;(2)已知直线l 经过原点,并且被圆C 截得的弦长为2,求直线l 的方程. 解:(1)设圆心的坐标为C (a ,-2a ), 则(a -2)2+(-2a +1)2=|a -2a -1|2.化简,得a 2-2a +1=0,解得a =1.∴C (1,-2),半径r =|AC |=(1-2)2+(-2+1)2= 2. ∴圆C 的方程为(x -1)2+(y +2)2=2.(2)①当直线l 的斜率不存在时,直线l 的方程为x =0,此时直线l 被圆C 截得的弦长为2,满足条件.②当直线l 的斜率存在时,设直线l 的方程为y =kx , 由题意得|k +2|1+k 2=1,解得k =-34,∴直线l 的方程为y =-34x ,即3x +4y =0.综上所述,直线l 的方程为x =0或3x +4y =0.B 级1.过圆x 2+y 2=1上一点作圆的切线,与x 轴、y 轴的正半轴相交于A ,B 两点,则|AB |的最小值为( )A. 2B.3 C .2D .3解析:选C 设圆上的点为(x 0,y 0),其中x 0>0,y 0>0,则有x 20+y 20=1,且切线方程为x 0x +y 0y =1.分别令y =0,x =0得A ⎝⎛⎭⎫1x 0,0,B ⎝⎛⎭⎫0,1y 0,则|AB |=⎝⎛⎭⎫1x 02+⎝⎛⎭⎫1y 02=1x 0y 0≥1x 20+y 202=2,当且仅当x 0=y 0时,等号成立.2.(2018·江苏高考)在平面直角坐标系xOy 中,A 为直线l :y =2x 上在第一象限内的点,B (5,0),以AB 为直径的圆C 与直线l 交于另一点D .若AB ―→·CD ―→=0,则点A 的横坐标为________.解析:因为AB ―→·CD ―→=0,所以AB ⊥CD ,又点C 为AB 的中点,所以∠BAD =π4,设直线l 的倾斜角为θ,直线AB 的斜率为k ,则tan θ=2,k =tan ⎝⎛⎭⎫θ+π4=-3.又B (5,0),所以 直线AB 的方程为y =-3(x -5),又A 为直线l :y =2x 上在第一象限内的点,联立直线AB 与直线l 的方程,得⎩⎪⎨⎪⎧ y =-3(x -5),y =2x ,解得⎩⎪⎨⎪⎧x =3,y =6,所以点A 的横坐标为3. 答案:33.(2018·安顺摸底)已知圆C :x 2+(y -a )2=4,点A (1,0). (1)当过点A 的圆C 的切线存在时,求实数a 的取值范围; (2)设AM ,AN 为圆C 的两条切线,M ,N 为切点,当|MN |=455时,求MN 所在直线的方程.解:(1)过点A 的切线存在,即点A 在圆外或圆上, ∴1+a 2≥4,∴a ≥3或a ≤- 3.(2)设MN 与AC 交于点D ,O 为坐标原点. ∵|MN |=455,∴|DM |=255.又|MC |=2,∴|CD |=4-2025=45, ∴cos ∠MCA =452=25,|AC |=|MC |cos ∠MCA =225=5,∴|OC|=2,|AM|=1,∴MN是以点A为圆心,1为半径的圆A与圆C的公共弦,圆A的方程为(x-1)2+y2=1,圆C的方程为x2+(y-2)2=4或x2+(y+2)2=4,∴MN所在直线的方程为(x-1)2+y2-1-x2-(y-2)2+4=0,即x-2y=0或(x-1)2+y2-1-x2-(y+2)2+4=0,即x+2y=0,因此MN所在直线的方程为x-2y=0或x+2y=0.。

直线与圆的位置关系知识点总结

直线与圆的位置关系知识点总结

直线与圆的位置关系知识点总结直线与圆的位置关系是几何学中一个重要的概念,涉及到直线和圆的交点、相切等不同情况。

本文将对直线与圆的位置关系进行总结,包括直线与圆的相交、相切以及不相交三种情况。

一、直线与圆的相交关系1. 直线与圆相交于两个交点:当直线与圆的位置关系是相交时,直线将穿过圆的两个交点。

这种情况通常出现在直线与圆的直径、弦或切线相交的情况下。

2. 直线与圆相交于一个交点:当直线与圆的位置关系是相切时,直线与圆仅有一个交点。

这种情况通常出现在直线是圆的切线的情况下。

二、直线与圆的相切关系1. 切线:当直线与圆的位置关系是相切时,直线与圆仅有一个交点,并且直线与圆的切点处的切线垂直于半径。

切线是圆上某一点的切线,它与半径的长度相等。

2. 外切线:当一条直线与圆的位置关系为外切时,直线与圆仅有一个交点,并且切点处的切线垂直于半径。

外切线的一个特点是切点处的切线与直线的延长线垂直。

3. 内切线:当一条直线与圆的位置关系为内切时,直线与圆仅有一个交点,并且切点处的切线垂直于半径。

内切线的一个特点是切点处的切线与直线的延长线垂直。

三、直线与圆的不相交关系当直线与圆的位置关系不相交时,即直线与圆没有交点。

总结:直线与圆的位置关系可以分为相交、相切以及不相交三种情况。

在相交的情况下,直线与圆相交于两个交点或一个交点。

在相切的情况下,直线与圆仅有一个交点,并且切点处的切线垂直于半径。

而不相交的情况下,直线与圆没有交点。

以上是对直线与圆的位置关系知识点的总结。

了解并掌握这些知识点对于解决相关几何问题非常重要。

希望本文能够帮助您更好地理解和应用直线与圆的位置关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、直线和圆的位置关系的定义、性质及判定1、设O ⊙的半径为r ,圆心O 到直线l 的距离为d ,则直线和圆的位置关系如下表:从另一个角度,直线和圆的位置关系还可以如下表示:二、切线的性质及判定1. 切线的性质:定理:圆的切线垂直于过切点的半径.推论1:经过圆心且垂直于切线的直线必经过切点. 推论2:经过切点且垂直于切线的直线必经过圆心. 2. 切线的判定:定义法:和圆只有一个公共点的直线是圆的切线;距离法:到圆心距离等于半径的直线是圆的切线;定理:经过半径的外端并且垂直于这条半径的直线是圆的切线. 3. 切线长和切线长定理:⑴ 切线长:在经过圆外一点的圆的切线上,这点和切点之间的线段的长,叫做这点到圆的切线长.⑵ 切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角. ①切线的判定定理设OA 为⊙O 的半径,过半径外端A 作l ⊥OA ,则O 到l 的距离d=r ,∴l 与⊙O 相切.因此,我们得到:切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.注:定理的题设①“经过半径外端”,②“垂直于半径”,两个条件缺一不可.结论是“直线是圆的切线”.举例说明:只满足题设的一个条件不是⊙O 的切线._ A_l _ l _A_l上②切线的性质定理及其推论切线的性质定理:圆的切线垂直于过切点的半径.三、三角形内切圆1. 定义:和三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.2. 多边形内切圆:和多边形的各边都相切的圆叫做多边形的内切圆,这个多边形叫做圆的外切多边形. 3.直角三角形的内切圆半径与三边关系(1) (2)图(1)中,设a b c ,,分别为ABC ∆中A B C ∠∠∠,,的对边,面积为S 则内切圆半径(1)s r p =,其中()12p a b c =++; 图(2)中,90C ∠=︒,则()12r a b c =+-四、典例分析:切线的性质及判定_ O_F _E_ D _ C _ B_ A_ C_ B _ A _ C_ B_ A_c_ b _a_c_ b_a_T _A【例1】 如图,AB 是O 的直径,点D 在AB 的延长线上,过点D 作O 的切线,切点为C ,若25A =︒∠,则D =∠______.例1例2巩固【例2】 如图,直线AB 与O ⊙相切于点A ,O ⊙的半径为2,若30OBA ∠=︒,则OB 的长为()A .B .4C .D .2【巩固】如图,AB 与O ⊙相切于点B ,线段OA 与弦BC 垂直于点D ,60AOB ∠=︒,4cm BC =,则切线AB = cm .【例3】 如图,若O 的直径AB 与弦AC 的夹角为30︒,切线CD 与AB 的延长线交于点D ,且O 的半径为2,则CD 的长为( ) A .B .C .2D .4巩固【巩固】如图,EB 为半圆O 的直径,点A 在EB ,BC AD ⊥于点C ,2AB =,半圆O 的半径为2,则BC 的长为_______________.【例4】 如图,已知以直角梯形ABCD 的腰CD 为直径的半圆O 与梯形上底AD 、下底BC 以及腰AB 均相切,切点分别是D C E ,,.求证:以AB 为直径的圆与CD 相切.例4 巩固【巩固】如图,已知以直角梯形ABCD 中,以AB 为直径的圆与CD 相切,求证:以CD 为直径的圆与ABAD_ A _ O_ C _B_MC相切.【例5】 已知:如图,在ABC ∆中,AB AC =,以BC 为直径的半圆O 与边AB 相交于点D ,切线DE AC ⊥,垂足为点E . 求证:(1)ABC ∆是等边三角形;(2)13AE CE =.【巩固】如图,MP 切O ⊙于点M ,直线OP 交O ⊙于点A B 、,弦AC MP ∥,求证:MO BC ∥.【例6】 如图,ABC ∆中,AB AC =,O 是BC 的中点,以O 为圆心的圆与AB 相切于点求证:AC 是O 的切线。

【例7】 如图,已知AB 是O 的直径,BC 为O 的切线,切点为B ,OC 平行于弦AD , OA r =。

(1)求证:CD 是O 的切线;(2)求AD OC ⋅的值;(3)若92AD OC r +=,求CD 的长。

【巩固】 如图,已知AB 是O 的直径,BC 是和O 相切于点B 的切线,过O 上A 点的直线AD OC ∥,若2OA =且6AD OC +=,则CD = 。

CB AODCBA【巩固】 如图,AB 是半圆(圆心为O )的直径,OD 是半径,BM 切半圆于B ,OC 与弦AD 平行且交BM于C 。

(1)求证:CD 是半圆的切线;(2)若AB 长为4,点D 在半圆上运动,设AD 长为x ,点A 到直线CD 的距离为y ,试求出y 与x 之间的函数关系式,并写出自变量x 的取值范围。

【例8】 如图,AC 为O 的直径,B 是O 外一点,AB 交O 于E 点,过E 点作O 的切线,交BC 于D 点,DE DC =,作EF AC ⊥于F 点,交AD 于M 点。

(1)求证:BC 是O 的切线;(2)EM FM =。

【例9】 如图,割线ABC 与O 相交于B 、C 两点,D 为O 上一点,E 为BC 的中点,OE 交BC 于F ,DE 交AC 于G ,ADG AGD ∠=∠。

(1)求证:AD 是O 的切线;(2)如果242AB AD EG ===,,,求O 的半径。

【例10】 如图,已知点E 在ABC ∆的边AB 上,以AE 为直径的O ⊙与BC 相切于点D ,且AD 平分BAC ∠.求证:AC BC ⊥.【巩固】AB 是圆的直径,BC 是它的弦,过C 作圆的切线CD ,过B 作BEABC EBC ∠=∠.【例11】 如图,已知Rt ABC ∆中,90ABC ∠=︒,以AB 为直径作O ⊙交AC 于D ,过D 作O ⊙的切线DED CBAE_ A_ O_ B_ C _ D _E交BC 于E .求证:BE CE =.【巩固】如图,已知O ⊙的弦AB 垂直于直径CD ,垂足为F ,点E 在AB 上,且EA EC =,延长EC 到点P ,连结PB ,若PB PE =,试判断PB 与O ⊙【例12】 如图,点P 在O 的直径BA 的延长线上,2AB PA =,PC 切O 于点C,连结BC .(1)求P ∠的正弦值;(2)若O 的半径2cm r =,求BC 的长度.【巩固】在Rt ABC△中,90ACB ︒∠=,D 是AB 边上一点,以BD 为直径的O ⊙与边AC 相切于点E ,连结DE 并延长,与BC 的延长线交于点F . (1)求证:BD BF =;(2)若64BC AD ==,,求O ⊙的面积.【例13】 如图所示,AB 是O ⊙直径,OD ⊥弦BC 于点F ,且交O ⊙于点E ,若AEC ODB ∠=∠.(1)判断直线BD 和O ⊙的位置关系,并给出证明; (2)当108AB BC ==,时,求BD 的长.【巩固】已知:如图,⊙O 的直径AB =8cm ,P 是AB 延长线上的一点,过点P 作⊙O 的切线,切点为C ,连接AC ._PB(1)若120ACP∠=︒,求阴影部分的面积;(2)若点P在AB的延长线上运动,CPA∠的平分线交AC于点4tan60PC=⋅︒=,∠83OPCS S Sπ∆=-=阴影扇形BOC的大小是否发生变化?若变化,请说明理由;若不变,求出∠12的度数.【例14】在平行四边形ABCD中,1060AB AD m D==∠=︒,,,以AB为直径作O⊙,(1)求圆心O到CD的距离(用含m的代数式来表示);(2)当m取何值时,CD与O⊙相切.【例15】已知:如图,O⊙的直径AB与弦CD相交于E,BC BD=,O⊙的切线BF与弦AD的延长线相交于点F.(1)求证:CD BF∥.(2)连结BC,若O⊙的半径为4,3cos4BCD∠=,求线段AD CD、的长.【巩固】如图,在ABC∆中,90C∠=︒,34AC BC==,.O为BC边上一点,以O为圆心,OB为半径作半圆与BC边和AB边分别交于点D E,,连结DE.(1)当3BD=时,求线段DE的长;(2)过点E作半圆O的切线,当切线与AC边相交时,设交点为F形.A_C典例分析:切线长定理及切线性质的应用【例16】在Rt ABC∆中,90A∠=︒,点O在BC上,以O为圆心的O分别与AB、AC若AB a=,ACb=,则O的半径为()AB、a bab+C、aba b+D、2a b+【例17】如图,AB BC⊥,DC BC⊥,BC与以AD为直径的O相切于点E,9AB=,4CD=,则四边形ABCD的面积为。

【例18】如图,过O外一点P作O的两条切线PA、PB,切点分别为A、B,连结AB,在AB、PB、PA上分别取一点D、E、F,使AD BE=,BD AF=,连结DE、DF、EF,则EDF∠=()A、90P︒∠-B、1902P︒-∠C、180P︒-∠D、1452P︒∠-【例19】如图,已知ABC∆中,AC BC=,CABα∠=(定值),O的圆心O在AB上,并分别与AC、BC相切于点P、Q。

(1)求POQ∠;(2)设D是CA延长线上的一个动点,DE与O相切于点M,点E在CB的延长线上,试判断DOE∠的大小是否保持不变,并说明理由。

【例20】如图,O为Rt ABC∆的内切圆,点D、E、F为切点,若6AD=,4BD=,则ABC∆的面积为。

CFBACEBNQPODCBAC EFBFCBA。

相关文档
最新文档