大卡车液压助力转向系统设计

合集下载

液压助力转向系统的设计2

液压助力转向系统的设计2

液压助力转向系统的设计2
液压助力转向系统的设计2
液压助力转向系统是指将发动机的活塞液压油输送到方向机的活塞,
使方向机的活塞产生前进力,从而轻松产生转向力,从而减轻转向系统的
负荷。

这种转向系统具有转向力矩可调性、反应力灵敏度高、转向反应快、转弯半径小等特点。

当驾驶员在转向轮上施加力,活塞压力会增加,这将
产生液压力上升,助力器的活塞就会推动转向装置产生前进力,从而产生
快速而均匀的转向力矩,使转弯半径得到大大缩小。

液压助力转向系统的基本组成部件有:助力器、液压泵、液压马达、
阀门以及液压油箱。

助力器的功能是将液压油从驾驶室的转向轮上进行调节,从而送入液压泵,液压泵将液压油进行压缩,即将液压油泵向液压马达。

液压马达产生张紧的力矩,将液压油输送到液压油箱,从而推动转向
装置的活塞产生前进力,从而产生快速而均匀的转向力矩,从而使转弯半
径得到大大缩小。

阀门的作用是控制液压助力活塞的运动,从而实现转向
力矩的调节。

重型货车液压助力转向系统结构设计说明书.doc

重型货车液压助力转向系统结构设计说明书.doc

目录前言 (1)1 汽车主要参数的选择 (2)1.1 汽车主要尺寸的确定 (2)1.1.1 轴距L (2)1.1.2 前轮距B1和后轮距B2 (3)1.1.3 外廓尺寸 (4)1.1.4 前悬LF和后悬LR (4)1.2 汽车质量参数的确定 (5)1.2.1 整车整备质量m0 (5)1.2.2 汽车的载客量和装载质量 (6)1.2.3 质量系数 (6)1.2.4 汽车总质量 (7)1.2.5 轴荷分配 (7)2 转向系的概述及主要性能参数 (9)2.1 转向系的概述 (9)2.1.1 转向操纵机构 (9)2.1.2 转向传动机构 (10)2.1.3 转向器 (10)2.1.4 转角及最小转弯半径 (11)2.1.5 对转向系的要求 (13)2.2 转向系主要性能参数 (13)2.2.1 转向系的效率 (13)2.2.2 转向器的正效率η+ (14)2.2.3 转向器的逆效率η- (15)2.2.4 角传动比 (15)2.2.5 力传动比 (16)2.2.6 转向器传动副的传动间隙△t (17)2.2.7 转向盘的总转动圈数 (17)3 转向器机械部分的设计与计算 (19)3.1 转向器的结构形式选择 (19)3.2 转向系计算载荷的确定 (20)3.3循环球式转向器设计与计算 (20)3.4 循环球式转向器零件强度计算 (22)4 动力转向系的设计计算 (23)4.1 对动力转向机构的要求 (23)4.2 动力转向机构布置方案的选择 (23)4.2.1 动力转向形式与结构方案 (23)4.2.2 传能介质的选择 (24)4.2.3 液压转向加力装置的选择 (25)4.2.4 液压转向加力装置转向控制阀的选择 (26)4.3 动力缸的设计计算 (27)4.3.1 刚径尺寸Dc的计算 (27)4.3.2 活塞行程s的计算 (29)4.3.3 动力缸缸筒壁厚t的计算 (30)4.4 分配阀的参数选择与设计计算 (30)4.4.1 预开隙e (30)14.4.2 滑阀总移动量e (31)4.4.3 局部压力降p∆ (31)4.4.4 油液流速的允许值[v] (32)4.4.5 滑阀直径d (32)4.4.6 滑阀在中间位置时的油液流速v (32)4.4.7 分配阀的泄漏量Q∆ (33)4.5 回位弹簧的预紧力和反作用阀直径的确定 (33)4.6 油泵排量与油罐容积的确定 (34)4.7 液压动力转向的工作特性 (35)5 转向传动机构设计 (37)5.1转向传送机构的臂、杆与球销 (38)5.2 转向操纵机构的防伤安全措施 (39)6 经济技术路线分析 (42)7 结论 (43)致谢 (44)参考文献 (45)前言100多年前,汽车刚刚诞生后不久,其转向操作是模仿马车和自行车的转向方式,用一个操纵杆或手柄来使前轮偏转实现转向的。

液压转向系统设计

液压转向系统设计

液压转向系统设计液压转向系统的设计原理主要基于液压原理和转向装置原理。

液压转向系统通过液压流体来产生转向力,并将这个力传递到每一个转向轮上,从而改变车辆的行驶方向。

液压流体是由液压泵提供的,液压泵将机械能转换为液压能,并将液压能转移到液压油缸中,最终产生转向力。

液压转向系统的工作原理是由液压泵提供压力油,压力油通过阀门系统进入液压缸中,从而产生一个转向力。

液压油缸中有一个活塞,当车辆需要转向时,活塞会随着转向角度的变化而移动。

同时,液压泵也会受到转向力的反馈,从而调节液压泵的输出压力。

液压转向系统还通过流体传动来将转向力传递给每个转向轮,从而实现转向。

液压转向系统的结构主要包括液压泵、液压油箱、液压油管、液压油缸、阀门系统和转向装置等组成。

液压泵负责泵送液压油,液压油箱用于储存液压油,液压油管将液压油从液压泵传递到液压缸中,液压油缸用于产生转向力,阀门系统用于控制液压油的流动方向和流量,转向装置将转向力传递给转向轮。

液压转向系统常见的故障有液压泵失效、液压油泄漏、阀门系统故障、转向装置损坏等。

当液压泵失效时,液压转向系统无法产生足够的转向力,驾驶员感受到转向困难;当液压油泄漏时,液压转向系统无法保持压力,造成转向不稳定;当阀门系统故障时,液压转向系统无法控制液压油的流动,造成转向失控;当转向装置损坏时,液压转向系统无法将转向力传递给转向轮,造成转向无效。

对于液压转向系统的维修方法,首先需要检查液压泵的工作状态,如果发现液压泵出现故障,需要及时更换;其次需要检查液压油管和液压油缸是否有泄漏现象,如果有泄漏需要修复或更换相应的零部件;还需要检查阀门系统的工作状态,如果发现阀门故障,需要修复或更换阀门;最后需要检查转向装置的损坏情况,如果有损坏需要进行修复或更换。

总之,液压转向系统的设计原理、工作原理、结构组成以及常见故障和维修方法对于理解和应用液压转向系统有很重要的作用。

了解液压转向系统的设计原理和工作原理可以更好地使用和维修液压转向系统,从而提高驾驶员的操控性能和驾驶安全性。

重型货车液压助力转向系统结构设计开题报告

重型货车液压助力转向系统结构设计开题报告

重型货车液压助力转向系统结构设计开题报告大学本科毕业设计开题报告题目重型货车液压助力转向系统结构设计指导教师院(系、部) 机械学院专业班级学号姓名日期教务处印制一、选题的目的、意义和研究现状1.选题的目的转向系是用来保持或者改变汽车行驶方向的机构,在汽车转向行驶时,保证各转向轮之间有协调的转角关系。

汽车液压动力转向装置具有操作轻便、转向灵活、随动精度高、能吸收路面冲击波等优点,并且能提供大的转向操纵助力,在液压系统发生故障时能够依靠机械转向器实现应急转向。

由于本次设计对象为重型载货汽车,所以将采用液压助力方式对其转向系统进行结构设计。

2.选题的意义作为汽车的一个重要组成部分,汽车转向系统是决定汽车主动安全性的关键总成,它对汽车的操纵稳定性、平顺性和驾驶员的安全驾驶都有着直接的影响。

如何设计汽车的转向特性,使汽车具有良好的操纵性能,始终是各汽车生产厂家和科研机构的重要研究课题。

特别是在车辆高速化、驾驶人员非职业化、车流密集化的今天,针对更多不同水平的驾驶人群,汽车的操纵设计显得尤为重要。

3.研究现状汽车转向系统经历了纯机械式转向系统、液压助力转向系统、电动助力转向系统3个基本发展阶段。

纯机械式转向系统结构简单、工作可靠、造价低廉,目前在一部分转向操纵力不大、对操控性能要求不高的微型轿车、农用车上仍有使用;液压助力转向系统技术成熟、能提供大的转向操纵助力,在重型车辆上广泛应用;EPS 以其特有的优越性而得到青睐,它代表着未来动力转向技术的发展方向,EPS将作为标准配置装备到汽车上,未来一段时间在动力转向领域占据主导地位;而更新一代的线控转向系统由于有利于提高汽车被动安全性、有利于汽车设计制造、有利于提高汽车乘坐舒适性和汽车操控稳定性等原因,将成为动力转向系统的发展方向。

助力转向系统经过几十年的发展,技术日趋完善。

今后,电动助力转向系统将进一步成熟,线控转向系统将成为我们研究的努力方向。

1二、研究方案及预期结果1. 主要研究内容本设计针对重型载货汽车,采用液压助力进行转向系统的设计,机械转向器部分采用循环球式转向器进行设计,分配阀采用滑阀式分配阀,并对动力缸及转向机构的臂、杆进行设计及转向梯形的优化。

汽车液压助力转向系统设计

汽车液压助力转向系统设计
液压助力转向系统是汽车转向系的一种重要类型,由多个关键部分组成,包括转向器、动力转向机构、分配阀以及液压系统等。这些部分协同工作,通过液压原理实现转向助力功能。转向器作为系统的核心,其方案选择和结构形式对系统性能至关重要。动力转向机构布活性和稳定性。分配阀则负责合理调控液压油的流向和压力,保障转向过程中的平稳性和响应速度。液压系统作为动力源,其工作原理基于液体的不可压缩性和流动性,通过油泵产生压力,驱动液压油在管路中循环,从而为转向器提供助力。整个液压助力转向系统的设计旨在提高驾驶的舒适性和安全性,降低驾驶员的操纵力度,使转向更为轻便、灵活。

液压助力转向系统原理

液压助力转向系统原理

液压助力转向系统原理
液压助力转向系统是一种常用于汽车和其他车辆的转向辅助系统。

其主要原理是利用液压力来帮助驾驶员转动方向盘,以降低驾驶的力度,提高转向的灵活性和舒适性。

系统的核心部件是液压助力装置,由液压泵、液压缸和控制阀等组成。

当驾驶员转动方向盘时,液压泵会向液压缸供给高压液压油。

在正常行驶情况下,系统中的感应阀会根据方向盘的转动程度和车速来调节液压油的流量和压力。

当方向盘转动时,液压油通过控制阀进入液压缸。

液压缸内的活塞会随之移动,将液压力转化为机械力,作用在转向机构上。

这种机械力可以减轻驾驶员转动方向盘时所需的力量,使驾驶更加轻松。

液压助力转向系统还可以根据驾驶条件的变化进行自动调节,以使转向更加稳定和灵敏。

例如,在低速行驶时,系统会提供更大的助力,使转向更加轻便;而在高速行驶时,系统会减小助力,以保持转向的稳定性。

总之,液压助力转向系统通过利用液压力来辅助驾驶员转动方向盘,提供轻松、灵活的转向操作。

无论是在城市道路还是高速公路上,这种系统都可以提供舒适且安全的转向体验。

汽车转向器液压助力系统设计--开题报告

汽车转向器液压助力系统设计--开题报告

汽车转向器液压助力系统设计--开题报告【开题报告】汽车转向器液压助力系统设计一、选题背景及意义转向器是汽车转向系统中的关键部件,用于实现转向的操作。

而液压助力系统则是为了提高车辆操控性和驾驶舒适度而设计的,在汽车领域中具有广泛应用。

汽车转向器液压助力系统的设计,旨在提高汽车转向的力度和灵活性,进而提升驾驶者的驾驶体验。

目前,市场上常见的汽车转向器液压助力系统存在一些问题,如转向力度不均匀、转向过度敏感等。

因此,设计一种更加科学合理的汽车转向器液压助力系统,具有一定的研究意义和应用价值。

二、研究目标本研究旨在设计一种高效可靠的汽车转向器液压助力系统,以解决现有系统存在的问题,并提升汽车的转向操控性和驾驶舒适度。

具体研究目标如下:1.优化液压助力系统的结构,提高转向力的均匀性和精确度;2.设计合适的控制算法,使转向器对驾驶者的操控更加灵活、精确;3.提高系统的可靠性和安全性,减少故障的发生率。

三、研究内容与方法1.研究内容:(1)分析和研究目前市场上常见的汽车转向器液压助力系统存在的问题;(2)优化液压助力系统的结构设计,提高转向力的均匀性和精确度;(3)设计合适的控制算法,提升转向器对驾驶者操控的灵活性和精确度;(4)提高系统的可靠性和安全性,减少故障的发生率。

2.研究方法:(1)理论研究:查阅相关文献和资料,对汽车转向器液压助力系统的原理和参数进行研究;(2)仿真分析:利用仿真软件建立液压助力系统的模型,并进行参数调整和优化,模拟不同工况下的转向情况;(3)实验测试:设计合适的实验方案,对优化后的液压助力系统进行实际测试,并对转向力度和灵活性进行评估。

四、预期结果与创新点1.预期结果:(1)优化后的液压助力系统能够提高转向力的均匀性和精确度;(2)设计的控制算法能够使转向器对驾驶者的操控更加灵活、精确;(3)改进后的系统能够提高可靠性和安全性,减少故障的发生率。

2.创新点:(1)通过优化结构设计、改进控制算法等方式提高液压助力系统的转向性能;(2)提出一种新的转向力度传感器和控制策略,使转向操控更加符合驾驶者的感知。

毕业论文-重型货车液压助力转向系统结构设计35831

毕业论文-重型货车液压助力转向系统结构设计35831

毕业论文-重型货车液压助力转向系统结构设计35831 辽宁工程技术大学毕业设计(论文)目录前言 ................................................. 1 1 汽车主要参数的选择 .................................. 2 1.1 汽车主要尺寸的确定................................. 2 1.1.1 轴距L .......................................... 2 1.1.2 前轮距B1和后轮距B2 ............................. 3 1.1.3 外廓尺寸 ........................................ 4 1.1.4 前悬LF和后悬LR ................................. 4 1.2 汽车质量参数的确定 (5)m01.2.1 整车整备质量 .................................. 5 1.2.2 汽车的载客量和装载质量 ........................... 6 1.2.3 质量系数 ........................................ 6 1.2.4 汽车总质量 ...................................... 7 1.2.5 轴荷分配 ........................................ 7 2 转向系的概述及主要性能参数 ........................... 9 2.1 转向系的概述 ...................................... 9 2.1.1 转向操纵机构 .................................... 9 2.1.2 转向传动机构 ................................... 10 2.1.3 转向器 ......................................... 10 2.1.4 转角及最小转弯半径 .............................. 11 2.1.5 对转向系的要求 (13)1杨露露: 重型货车液压助力转向系统结构设计2.2 转向系主要性能参数................................ 13 2.2.1 转向系的效率 .. (13),,2.2.2 转向器的正效率 (14),,2.2.3 转向器的逆效率................................ 15 2.2.4 角传动比 ....................................... 15 2.2.5 力传动比 ....................................... 16 2.2.6 转向器传动副的传动间隙?t ....................... 17 2.2.7 转向盘的总转动圈数 .............................. 17 3 转向器机械部分的设计与计算 .......................... 19 3.1 转向器的结构形式选择 .............................. 19 3.2 转向系计算载荷的确定 .............................. 20 3.3循环球式转向器设计与计算 .......................... 20 3.4 循环球式转向器零件强度计算 ........................ 22 4 动力转向系的设计计算................................ 23 4.1 对动力转向机构的要求 .............................. 23 4.2 动力转向机构布置方案的选择 ........................ 23 4.2.1 动力转向形式与结构方案 .......................... 23 4.2.2 传能介质的选择 ................................. 24 4.2.3 液压转向加力装置的选择 .......................... 25 4.2.4 液压转向加力装置转向控制阀的选择................. 26 4.3 动力缸的设计计算 ................................. 27 4.3.1 刚径尺寸Dc的计算. (27)2辽宁工程技术大学毕业设计(论文)4.3.2 活塞行程s的计算................................ 29 4.3.3 动力缸缸筒壁厚t的计算 .......................... 30 4.4 分配阀的参数选择与设计计算 ........................ 30 4.4.1 预开隙 ....................................... 30 e14.4.2 滑阀总移动量 .................................. 31 e4.4.3 局部压力降 ................................... 31 ,p4.4.4 油液流速的允许值[v] ............................. 32 4.4.5 滑阀直径d...................................... 32 4.4.6 滑阀在中间位置时的油液流速v ..................... 32 4.4.7 分配阀的泄漏量 ............................... 33 ,Q4.5 回位弹簧的预紧力和反作用阀直径的确定 (33)4.6 油泵排量与油罐容积的确定 .......................... 34 4.7 液压动力转向的工作特性 ............................ 35 5 转向传动机构设计 ................................... 37 5.1转向传送机构的臂、杆与球销......................... 38 5.2 转向操纵机构的防伤安全措施 (39)6 经济技术路线分析 (42)7 结论 .............................................. 43 致谢 ................................................ 44 参考文献 (45)3杨露露: 重型货车液压助力转向系统结构设计前言100多年前,汽车刚刚诞生后不久,其转向操作是模仿马车和自行车的转向方式,用一个操纵杆或手柄来使前轮偏转实现转向的。

液压助力转向系统建模与仿真

液压助力转向系统建模与仿真

液压助力转向系统建模与仿真分析 ---------机械工程10401006 李 为摘要:考虑汽车液压转向器中的机械子系统与液压子系统,建立了相应的数学模型并利用Matlab/simulink 控制系统仿真软件建立了汽车液压助力转向系统的仿真模型。

仿真分析了活塞有效面积、扭杆刚度和系统供油流量的变化对系统响应的影响情况,结果表明:增加系统供油流量,减小扭杆刚度都会转向器的助力油压增大,此时齿条的位移将增大从而使稳定时间延长,活塞有效面积的大小几乎不影响助力油压的大小,齿条助力将随活塞有效面积成正比例变化。

一、模型建立1.1液压助力转向系统机械模型整个液压助力转向系统由机械部分和液压部分组成,机械部分主要包括方向盘、转向轴、齿轮和齿条、转向传动机构和转向车轮;液压部分主要包括转向控制阀、转向油泵、液压动力缸及液压管路等,如下图示。

图I 液压助力转向系统示意图1.2方向盘到转向齿轮的数学模型忽略方向盘与传动轴传动间隙,转向轴与轴套之间的摩擦,还忽略转向轴、扭杆、主动小齿轮以及与扭杆销联的阀芯、阀套的转动惯量,不考虑阀芯与阀套之间的摩擦力以及阀中液动力对阀芯、扭杆的影响,可以得到: { r x M k c d αθθθθθcos )(11==-++Ip d A p p r rx k kx x D x m )(cos )cos (21-+-=++ααθ 式中:I 是方向盘的转动惯量,c 是转向器的等效阻尼系数,d k 为转身轴中扭杆的刚度,θ是方向盘转角,1θ是小齿轮转角,x 是齿条的位移,m 是齿条等效质量,D 是液压缸阻尼系数,k 是等效外界刚度,r 是小齿轮的基圆半径,α是齿条的螺旋齿形角,1p 、2p 是动力缸的进出腔的油液压力,p A 是活塞的有效面积。

1.3转向阀数学模型转向阀是对称的结构,其工作原理及等效模型如下图所示:由图可得到如下关系:)]([)]([22122422122314121θθθθρ--==-+==∆=-=+=L W A A L W A A p A C Q Q Q Q Q Q Q i d i L S (i=1,2,3,4)式中:S Q 为流入转阀口的流量,i Q 为第i 阀口的流量,R 为阀芯与阀套的配合半径,2W 为阀口的预开间隙的轴向长度,2L 为预开间隙的宽度。

液压助力转向课程设计

液压助力转向课程设计

电控液压助力转向系统的设计【摘要】现代工程车辆技术追求高效节能、高舒适性和高安全性等目标。

前一项目标与环境保护密切相关,是当代全球性热门话题,后两项目标是车辆朝着高性能化方向发展必须研究和解决的重要课题。

转向系统的高性能化是指其能够根据车辆的运行状况和驾驶员的要求实行多目标控制,以获得良好的转向轻便性、较好的路感和较快的响应性。

汽车转向系统是影响汽车操纵稳定性、行驶安全性和驾驶舒适性的关键部分。

在追求高效节能、高舒适性和高安全性的今天,电控液压助力转向系统作为一种新的汽车动力转向系统,以其节能、环保、更佳的操纵特性和转向路感,成为动力转向技术研究的焦点。

本文通过对电液动力转向系统的组成结构进行了分析,解释了其工作原理。

在分析了全液压转向系统的工作原理和液压转向器的结构后,建立了液压转向器的流体动力模型、数学模型。

接着利用所建的数学模型对电控液压助力转向系统组成各元件进行特性分析,了解了影响系统性能的一些参数。

并通过系统仿真,分析其性能是否满足实际工作中的要求。

为了实现系统的转向性能,进行了系统的软硬件设计。

最后根据电液动力转向系统结构原理图,搭建了相应的试验装置,同时通过检测系统,完成了性能的检测。

本文的研究为电液动力转向系统的设计和性能改善提供了一定的依据。

关键词:电控液压助力转向转向器扭距传感器车速传感器电子控制单元Abstract: Modern engineering vehicle technology pursue high efficiency and energy saving, high comfort and high safety goals. Former a target and environmental protection, is closely related to the contemporary global hot topic, after two objectives are vehicles performance-based direction toward a high development must study and solve important issue. Steering system of high performance is to show its can according to the operation status of vehicles and drivers for the control of multi-objective to obtain good steering portability, better lk feeling and quicker response sex. Automotive steering system is to influence the vehicle steering stability, driving safety and driving comfort key part. In the pursuit of high efficiency and energy saving, high comfort and high security today, electronically controlled hydraulic steering system as a new car power steering system, with its energy-saving, environmental protection, better handling characteristics and steering lk feeling, become the focus of power steering technology research. This article through to electrohydraulic power steering system composition structureare analyzed, explains its working principle. On the analysis of the hydraulic steering system of hydraulic steering the working principle and the structure of the established hydraulic steering gear, the hydrodynamic model, the mathematical model. Then use the model of electronically controlled hydraulic steering system composition for each element analysis, understand the characteristics of some parameters affect system performance. And through the system simulation, analyzes its performance meets the requirements of the actual work. In order to realize the system to performance, the system hardware and software design. Finally, according to the electrohydraulic power steering system structure diagram, built the corresponding test device, and at the same time through testing system, completed the performance testing. This research for electrohydraulic power steering system design and performance improvement provides certain basis.Key words: Electric hydraulic steering redirectorAnd long distance sensor Speed sensor ECU目录电控液压助力转向系统的设计 (1)1助力转向系统 (4)1.1助力转向系统简介 (4)1.2液压回路设计工作原理 (4)2 动力转向器的机构 (6)2.1动力转向器的机构简介 (6)2.2转向器的材料 (6)2.3转向器的组成及工作原理 (6)3 传感器 (8)3.1扭距传感器 (8)3.1.1 电位计式扭距传感器 (8)3.1.2金属电阻应变片的扭矩传感器 (8)3.1.3非接触式扭矩传感器 (8)3.2车速传感器 (9)3.2.1 接触式 (10)3.2.2 非接触式 (10)4 电子控制单元 (11)4.1电子控制单元简介 (11)4.2基本结构 (11)4.3主要功能 (11)4.4ECU的工作环境 (12)4.5ECU在实际工作环境中的检测 (12)4.6设计原则 (12)5电控液压助力转向系统的工作原理 (13)结束语 (15)谢辞 (15)文献 (16)1助力转向系统1.1助力转向系统简介助力转向系统,也就是动力转向,目前已成为绝大多数轿车的一项标准配置,顾名思义,助力转向就是协助驾驶员做汽车方向调整,为驾驶员减轻打方向盘强度的装置。

重型载货汽车转向器设计

重型载货汽车转向器设计

重型载货汽车转向器设计摘要汽车转向系统分为机械式转向系统和动力力式式转向系。

其中动力式的是在机械转向器基础上发展的。

动力转向系统是一套兼用驾驶员体力和发动机动力为转向能源的转向系统。

在正常情况下,汽车转向所需的能量只有一小部分由驾驶员提供,而大部分能量由发动机通过转向加力装置提供。

但在转向加力装置失效时,一般还应当能由驾驶员独立承担汽车转向任务。

本文阐述了针对重型载货汽车转向器方案的确定,转向传动机构,转向操纵机构的选择,转向器的设计,转向器壳体设计,在给定前轴满载轴载质量、最高车速、轮胎规格、最小转弯半径等条件下,着重对整体循环球转向器的齿扇轴,转向螺杆,滑阀式常流液压助力转向助力系统的结构设计计算。

关键词:重型货车;整体转向器;传动机构;操纵机构;结构设计ABSTRACTAutomotive steering system is divided into the mechanical steering system and power steering system for automobile steering force. The dynamic type is based on the development of mechanical steering gear. Power steering system is a set of compatible driver physical and engine power steering system for energy. Under normal circumstances, the automobile steering required only a small fraction of the energy provided by the driver, and most of the energy from the engine through the steering device. But in the steering device failure, the general should also can by the driver steering task independently.This paper expounds the heavy truck steering determiner scheme, steering gear, steering mechanism selection, the design of steering device casing design, steering, front axle load in agiven quality of axial load, the maximum speed, tire specifications, minimum turning radius under the same conditions, the whole recirculating ball steering sector shaft, steering screw, valve type constant flow hydraulic power steering system structure design and calculation of powerKey words:Heavy goods vehicles; The steering gear; Transmission mechanism; Operating mechanism; Structural design第1章绪论1.1 概述汽车在行驶过程中,为了适应各种道路情况和行驶条件,经常需要改变行驶方向或修正行驶方向,如转向、超车和避让等。

全液压货车转向架翻转机液压系统设计

全液压货车转向架翻转机液压系统设计

摘要当今社会,机械工业是一个国家的支柱产业,机械工业的发展每分每秒都在影响着国家经济的发展,人类社会文明的进步与机械制造的发展密不可分。

在全球经济发展的大环境下,中国各个行业被其他国家的先进技术影响的同时,越来越多的外国企业和品牌传播到中国已经成为现实。

在新的市场需求的推动下,对全液压货车转向架翻转机液压系统进行改良和优化是当务之急。

有大型全液压货车转向架翻转机液压系统生产设备企业对设备的安全指标的有着一定生产的严格要求。

对于那些做设备生产的企业来说,设备肯定会有存在的问题,这是他们需要考虑的,从而减少噪声污染引起的振动或不当操作设备的现象等。

国内全液压货车转向架翻转机液压系统设备的研发及制造要与全球号召的高效经济、安全稳定主题保持一致。

全液压货车转向架翻转机液压系统的发展与人类社会的进步和科学技术的水平密切相关。

本次设计是关于全液压货车转向架翻转机液压系统结构的设计,通过对传统的全液压货车转向架翻转机液压系统结构进行了改进和优化,使得此种类型的全液压货车转向架翻转机液压系统结构的使用范围更广泛,更加灵活,而且对以后我们要设计的东西有很大的帮助。

关键词:全液压货车转向架翻转机液压系统;结构;范围;参考AbstractFor a lot of special places, like the risk is very big, or we are difficult to reach, such as disarm bombs, unknown corresponding domains such as detection, probing deep of more dangerous situation usually need to implement the robot. It’s a main part of robot for micro pedipulator, walking robots and more than six feet, compared to the Eight Legged Robot, because of strong bearing capacity, good stability, which the meritss is simple construction, So, a large number of researchers around the world, start generally attach importance. This paper mainly to the four bar mechanism as the main execution elements to design of micro walking the whole scheme of the four bar mechanism. Its principle is diagonal synchronization, leg activity by the structure of the crank rocker, front leg movements around the same, it detailed performance curve characteristics of the connecting rod, when the curve trajectory diagonal straight line segment, the robot is stationary, the motion trajectory when the diagonal curve is slanting line do the walking motion, robot. The miniature walking robot is mainly driven by DC servo motor, so as to drive the leg action driven synchronous belt wheel by a crank and rocker mechanism.so the design of a special press be imperative. Graduation project this time is a tube axial compressive loading machine. This paper introduces the theoretical calculation to design sleeve pressing machine structure, working principle and main parts of the strength check and the advantages of the sleeve, pressing machine is efficient.Key word:pneumatic manipulator;cylinder;pneumatic loop;Fout degrees of freedom.目录摘要 (I)Abstract (II)第一章绪论 (1)1.1 课题的来源与研究的目的和意义 (1)1.2 液压传动技术的发展概况 (2)1.3 本课题研究的内容 (3)第二章全液压货车转向架翻转机液压系统结构的设计 (4)2.1 全液压货车转向架翻转机液压系统的总体方案图 (7)2.2 全液压货车转向架翻转机液压系统的工作原理 (10)3.1全液压货车转向架翻转机液压系统液压缸的设计及计算 (11)3.1.1 液压缸的负载力分析和计算 (11)3.1.2 缸筒设计与计算 (12)3.2翻转液压缸的设计及计算 (14)3.2.1 液压缸的负载力分析和计算 (17)3.2.2缸筒设计与计算 (18)3.3起升液压缸的设计及计算 (20)3.3.1液压缸的负载力分析和计算 (22)第四章主要零部件的强度校核 ..................... 错误!未定义书签。

机械式液压助力转向系统设计与仿真

机械式液压助力转向系统设计与仿真

机械式液压助力转向系统设计与仿真机械式液压助力转向系统是一种常用于汽车、卡车等车辆上的转向控制系统,它能够提供更轻便的转向操纵力,提高驾驶的舒适性和安全性。

设计和仿真这个系统可以帮助我们更好地理解其工作原理和性能特点,下面将介绍机械式液压助力转向系统的设计和仿真过程。

首先,机械式液压助力转向系统通常由液压助力装置、方向盘、传感器和液压驱动装置等组成。

其中,液压助力装置是核心部件,它主要由液压缸、油泵和阀门等构成。

液压助力装置将转向转矩传递给液压缸,通过油泵的供油和阀门的控制,实现转向助力。

在设计机械式液压助力转向系统时,首先需要确定所需的助力转矩大小。

这个转矩大小取决于车辆的总质量、车速、转向半径等因素。

计算得到所需的助力转矩后,就可以确定液压助力装置的工作参数,例如液压缸的直径、活塞面积等。

根据液压助力装置的工作参数,可以建立相应的数学模型,并进行仿真分析。

利用仿真软件,可以模拟液压助力转向系统的工作过程。

通过对不同工况下系统的响应速度、转向助力大小等指标进行分析,可以优化系统的设计。

在仿真过程中,还需要注意系统的稳定性和可靠性。

稳定性是指系统在不同工况下的输出稳定性,即当外界扰动发生时,系统能够维持稳定的输出。

可靠性是指系统在长时间运行中的可靠性,包括液压助力装置的工作寿命和故障率等。

此外,在设计和仿真机械式液压助力转向系统时,还需要考虑能源消耗和制造成本等因素。

助力装置的能源消耗与油泵的流量、油压等参数有关,通过调整控制阀门和油泵的开启时间和工作状态,可以降低能源消耗。

制造成本则与系统的复杂程度、材料选择等因素有关,需要在满足使用要求的前提下尽可能降低制造成本。

总之,机械式液压助力转向系统的设计和仿真过程需要考虑多个因素,包括助力转矩大小、稳定性、可靠性、能源消耗和制造成本等。

通过合理设计和仿真分析,可以优化系统的性能和结构,提高车辆驾驶的舒适性和安全性。

第4章 液压转向系统的设计

第4章 液压转向系统的设计

第4章液压转向系统的设计第4章液压转向系统的设计4.1 转向系统的基本要求车辆机械在行驶和作业中,需要利用转向系统来改变其行驶方向或保持直线行驶,应能保持底盘直线行驶的稳定性并能根据要求灵活地改变行驶方向。

因此对液压转向系统的基本要求是:1.保证工作稳定可靠,确保行车安全。

转向机构传动链各环节的间隙、方向盘的自由行程应尽量减小,以保证直线行驶的稳定性和转向的稳定性和灵敏度,设计时必须考虑零件承受路面对其作用的交变冲击载荷,以保证机构和零件有足够的强度和寿命。

在发动机怠速时,应能正常转向,而且要考虑在发动机或油路发生故障时有应急转向措施。

2.矿用车辆运输机械在作业中要频繁转向,转向系操作要求轻便灵活,以减轻驾驶员的劳动强度,提高生产率。

3.液压转向系统的组合和元件的选择对能量的利用、系统成本以及机构的寿命影响很大,要求转向系统要使用经济耐久。

对于大型矿用自卸车,采用动力转向,对动力转向系统的要求是:1.要有随动作用,系统中执行机构的运动是跟随控制呀的运动而工作,即转向轮或前、后车架始终追随对转向控制阀的操纵并保持一定的比例关系。

2.操纵方向盘时,动力转向系统产生加力的作用要迅速、灵敏,与作用在方向盘上的手力相协调。

3.司机操纵方向盘时有“路感”,即能及时地将路面对转向阻力的影响反映到方向盘上,使作用在方向盘上的手力随转向阻力的增大而增大。

4.转向后应能自动回正,并应使车辆具有直线行驶稳定性。

4.2 转向方式及转向随动系统方框图4.2.1 轮式车辆转向方式轮式车辆的转向方式主要有偏转轮转向、铰接式转向和滑移式转向三种。

偏转车轮转向,是一种最常见的转向方式,通常用在整体式车架的车辆上,它是利用车轮的偏转来实现车辆转向的,根据偏转车轮的不同,有前轮转向,后轮转向和前后轮同时转向等不同形式。

车辆上采用较多的是偏转前轮转向,驾驶员对行驶方向的判断较准确,利于驾驶安全。

后轮转向一般用于前方装有工作装置的机械,驾驶员不能按前轮偏转方式来估计行驶方向,转向操纵比较困难。

转向系统设计规范

转向系统设计规范

中重型卡车设计规范(转向系统)编制:校对:审核:批准:技术中心年月日前言中、重型汽车转向阻力矩较大,因此往往在原有的机械转向系统上加装一套转向助力系统,从而减少驾驶员的转向力矩,达到转向灵活轻便的目的,重型汽车的转向助力系统往往借助汽车本身的装置提供动力,因此统称为动力转向系统。

重型汽车在加装转向助力系统之后,必须只起助力作用而不改变原转向机构的特性,同时对动力转向系统还有如下要求:1.确保转向安全可靠2.转向灵敏操纵轻便3.保持正常直线行驶和转向自动回正4.保持路感5.随动作用一、转向系主要参数及其选择转向系统涉及的参数有:1、原地转向阻力矩Mr ;2、转向器适用前轴负荷G1;3、系统最大压力P ;4、系统最大流量Q;5、管路外径D外;6、转向梯形设计1.1原地转向阻力矩Mr汽车在沥青或混凝土路面上的原地转向阻力矩Mr,推荐用半经验公式:Mr=μ3×G3/P (N·mm)[1]式中μ-轮胎和路面间的滑动摩擦系数,一般取0.7;G–实载前轴负荷,单位为N,该值由实载质量确定。

P-轮胎气压,单位为MPa。

1.2 转向器适用前轴负荷G1,单位为Kg,由整车匹配决定。

可在现有转向器资源上选用。

该参数可初步决定转向器品种,因而可知道转向器动力缸缸径D。

1.3 系统最大压力P:P=4MrπD2rwipη,式中 rw—齿扇啮合半径;Ip—转向机构力传动比,该值一般取1;η—转向器正效率1.4 系统最大流量Q:Q=π2D2dsnP14(1-Δ)ηv[2]式中 ds——初选转向器转向螺杆直径。

n——由人机工程学得知,方向盘的转动的频率为n=(0.5~1.2)S-1,对货车来说,可取较小值0.6;P1——转向器螺杆螺距;Δ——内泄漏系数,范围为0.05~0.10,可取0.1。

ηv——转向油泵容积效率,范围为0.75~0.85,可取0.8。

上式中,ds 、P1由转向器生产厂提供。

1.5 转向操纵力的校核:动力转向操纵力与转向器扭杆和分配阀都有关,目前尚无计算公式,一般由生产厂控制,对于操纵轻便的要求,转向操纵力不应超过(100~150)N。

液压助力转向器的设计

液压助力转向器的设计

摘要汽车转向器是汽车的重要组成部分,也是决定汽车主动安全性的关键总成,它的质量严重影响汽车的操纵稳定性。

随着汽车工业的发展,汽车转向器也在不断的得到改进,虽然电子转向器已开始应用,但机械式转向器仍然广泛地被世界各国汽车及汽车零部件生产厂商所采用。

本文选择齿轮齿条式转向器作为研究课题,其主要内容有:汽车转向器的组成分类;转向器性能方案分析及其数据确定和转向器的设计过程。

这种转向器的优点是,操纵轻便,成本低,转向灵敏度高,结构简单。

缺点是一旦转向器发生泄漏会对环境造成一定的污染,对使用环境有一定的要求。

但随着动力转向的应用,现在电控动力转向器(EPS)正在被广泛的应用。

关键词:转向器齿轮齿条操纵稳定性设计计算目录1绪论 (1)1.1汽车转向系统的概述 (1)1.1.1汽车转向系统的组成 (1)1.1.2汽车转向系统的分类 (1)1.1.3汽车对转向装置的基本要求 (3)1.2齿轮齿条转向器的介绍 (3)1.3汽车转向系统的发展趋势 (3)2液压助力转向器及其主要部件工作分析 (4)2.1液压助力转向器总体性能分析 (4)2.2转向控制阀工作分析 (4)2.3转向油泵工作工作分析 (5)3设计方案的说明 (5)3.1转向器设计输入信息 (5)3.2传动比的计算 (5)3.2.1方向盘的选择 (5)3.2.2转向阻力矩的计算 (6)3.2.3角传动比的计算 (6)4齿轮的计算 (7)4.1齿轮轴参数的选取 (7)4.2齿轮轴结构设计 (7)4.3齿轮齿条参数表 (7)5主要零件的理论计算 (8)5.1齿轮齿轮精度等级、材料及参数的选择 (8)5.2齿轮轴齿轮接触疲劳强度计算 (8)5.3齿轮轴齿轮弯曲疲劳强度计算 (9)5.4齿轮轴设计计算 (10)6其它零件的选择及润滑方式 (12)结论 (13)参考文献 (14)Abstract (15)致谢 (16)液压助力转向器的设计作者:老衲指导老师:陈老师(安徽XX大学 08车辆工程合肥 230036)1绪论改革开放以来,我国汽车行业迅猛发展,作为汽车关键部件之一的转向系统也得到了相应的发展,基本已形成了专业化、系列化生产的局面。

大卡车液压助力转向系统设计

大卡车液压助力转向系统设计
1.3.1
液压动力转向首先是在大型车辆上得到发展的,随着当时汽车装载质量和整备质量的增加,在转向过程中所需克服的前轮转向阻力矩也随之增加,从而要求加大作用在转向盘上的转向力,使驾驶员感到“转向沉重”。当前轴负荷增加到某一数值后,靠人力转动转向轮就很吃力。为使驾驶员操纵轻便和提高车辆的机动性,最有效的方法就是在汽车转向系中加装转向助力装置,借助于汽车发动机的动力驱动油泵、空气压缩机和发电机等,以液力、气力或电力增大驾驶员操纵前轮转向的力矩。使驾驶员可以轻便灵活地操纵汽车转向,减轻了劳动强度,提高了行驶安全性。液压动力转向系统除了传统的机械转向器以外,尚需增加控制阀、动力缸、油泵、油罐和管路等。轿车对动力转向的要求与重型车辆不完全相同。比如大型车辆对动力转向系统噪声的要求较低,轿车则对噪声要求很高,轿车还要求装用的转向器系统结构要更简单、尺寸更小、成本更低等。但是重型车辆动力转向技术的发展无疑为轿车动力转向技术奠定了基础。
转向盘在驾驶室安放的位置与各国交通法规规定车辆靠道路左侧还是右侧通行有关。包括我国在内的大多数国家规定车辆右侧通行,相应地应将转向盘安置在驾驶室左侧。这样,驾驶员的左方视野较广阔,有利于两车安全交会。相反,在一些规定车辆靠左侧通行的国家和地区使用的汽车上,转向盘则应安置在驾驶室右侧。
1.2.2
动力转向系是兼用驾驶员体力和发动机动力为转向能源的转向系。在正常情况下,汽车转向所需的能量,只有一小部分由驾驶员提供,而大部分是由发动机通过动力转向装置提供的。但在动力转向装置失效时,一般还应当能由驾驶员独立承担汽车转向任务。因此,动力转向系是在机械转向系的基础上加设一套动力转向装置而形成的。
综上所述,随着我国大型载货汽车的发展,新的问题及要求不断涌现,在车辆设计与开发领域尚存在很多的问题需要研究和解决,如何使基础研究与产品设计实践紧密结合,将研究成果最大限度地应用于产品开发过程,不断提高大型载货汽车的性能水平是摆在汽车产品研究与开发人员面前的重要课题。

液压缸在汽车转向系统中的应用与设计要点

液压缸在汽车转向系统中的应用与设计要点

液压缸在汽车转向系统中的应用与设计要点引言在汽车工业中,转向系统扮演着至关重要的角色,决定了汽车行驶中的操控性和安全性能。

液压缸作为转向系统的核心组件之一,负责转化驾驶员的操纵操作为车轮运动,扮演着至关重要的角色。

本文将讨论液压缸在汽车转向系统中的应用以及设计要点。

1. 液压缸在汽车转向系统中的应用1.1 转向系统概述汽车转向系统主要由转向盘、液压助力装置、传动装置和转向轴组成。

液压缸作为转向系统的执行元件之一,将转向盘的操纵操作转化为车轮的角度变化。

1.2 液压缸的工作原理液压缸是利用液体压力来推动活塞运动,将液压能转化为机械能。

通过液体的压力传递,液压缸可以推动转向系统的车轮进行转向操作。

1.3 液压缸在机械转向系统中的应用液压缸在机械转向系统中的应用主要体现在以下几个方面:- 转向助力:液压缸通过对液体施加压力,为驾驶员提供转向助力,使操纵更加轻松。

- 转向力矩传递:液压缸将转向盘上的操纵力矩传递到车轮上,实现转向操作。

- 转向系统的响应速度:液压缸的设计和控制对转向系统的响应速度有直接影响。

2. 液压缸设计要点2.1 力矩传递设计液压缸通过转化操纵力矩来推动车轮进行转向操作。

因此,液压缸的设计必须考虑到力矩的传递效果。

在设计中需要注意以下几个要点:- 减少传递损失:减少液体压力传递过程中的能量损失,确保较高的转向效率。

- 提高驾驶员操作感受:设计合适的力矩传递比例,使驾驶员能够准确感受到车辆的转向力度。

- 耐久性设计:液压缸的设计要满足长期使用条件下的力矩传递需求,确保其能够稳定可靠地工作。

2.2 转向助力设计转向助力是现代汽车转向系统的重要组成部分,可以提高驾驶员的操控性和舒适性。

在液压缸的设计中需要考虑以下几个要点:- 助力比例:设计适当的助力比例,使得驾驶员操作体验更加舒适而不过于僵硬。

- 助力控制:采用合适的控制策略,在不同行驶条件下提供恰当的转向助力。

- 紧急情况下的转向助力:设计应对紧急情况下的转向助力机制,确保驾驶员可以灵敏而安全地应对突发状况。

EQ9450T运输车的液压悬挂和转向设计

EQ9450T运输车的液压悬挂和转向设计

摘要本文详细叙述了重型多轴全挂车EQ9450T液压系统的设计过程。

其液压系统主要由液压悬架、三点支承、液压全轮助力转向、悬挂油管防爆破安全阀、动力机组等结构组成。

对满载时的液压悬挂进行受力分析和工作压力计算,并以此为依据对液压泵进行选型和确定柴油机输出给动力机组的功率。

关键词:液压悬架,三点支承,液压全轮助力转向,动力机组AbstractThis paper described in details the course of the design in hydraulic system of heavy multi-axis full trailer of EQ9450T. the hydraulic system composed from hydraulic suspension, three point supporting, hydraulic full-wheel power steering, hanging oil pipe prevent blasting safety valve,power set and so on. Analyzes the pressure distribution and calculates the pressure of hydraulic suspension system with full load, and on the basis of the above analysis, the model of hydraulic pump and the power given by diesel engine were chosen.Keywords: hydraulic suspension, three point supporting, hydraulic full-wheel power steering, power set目录摘要.................................................................................................................................. I Abstract ........................................................................................................................... II 1 概述. (1)1.1 课题的目的和意义 (1)1.2 国内外研究及发展概况 (1)1.3 课题研究内容 (2)2 EQ9450T转向和悬挂系统结构分析与选型 (3)2.1 由EQ9450T组成的汽车列车概述 (3)2.1.1 超重型牵引车 (3)2.1.2 EQ9450T全挂车 (3)2.2 EQ9450T牵引联接装置的选择 (3)2.2.1 EQ9450T牵引联接装置的功用 (3)2.2.2 挂车牵引联接装置的分类 (4)2.2.3 EQ9450T牵引连接装置的基本要求和选型 (4)2.3 EQ9450T转向装置结构 (4)2.3.1 EQ9450T转向装置结构的方案 (5)2.3.2 EQ9450T转向装置结构的方案对比 (7)2.3.3 EQ9450T转向装置的执行元件型式分析与选型 (8)2.4 EQ9450T液压悬挂分析与选型 (9)2.5 EQ9450T三点支承结构的分析 (10)2.6 EQ9450T全挂车概述 (12)3 EQ9450T全挂车液压系统设计 (14)3.1 EQ9450T全挂车液压系统 (14)3.1.1 重型多轴全挂车的结构 (14)3.1.2 EQ9450T全挂车液压系统的组成及工作原理 (15)3.2 液压传动概述 (16)3.2.1 液压系统的组成及作用 (16)3.2.2 液压传动的主要优点 (16)3.3 EQ9450T的液压控制需要实现的功能 (17)3.4.1 换向阀工作状态机能 (17)3.4.2 换向阀控制、定位和复位方式 (18)3.5 用液压控制实现载货台升降 (19)3.6 用液压控制实现转向功能 (20)3.6.1 用液压控制实现强制转向 (21)3.6.2 用液压控制实现自动转向 (22)3.7 用液压回路实现三点支承 (24)3.8 实现液压悬挂和转向的联合控制 (25)3.8.1 多路换向阀 (25)3.8.2 实现联合控制 (26)3.9 实现多个转向执行元件的同步控制 (28)3.9.1 分流集流阀 (28)3.9.2 转向执行机构运动的同步 (31)3.10 转向系统管路的过载保护和悬挂系统悬挂缸的卸载保护 (32)3.11 液压系统的维修性 (34)3.11 EQ9450T液压系统原理图 (35)4 EQ9450T的动力机组的计算 (36)4.1 EQ9450T液压动力机组概述 (36)4.2 液压系统工作压力计算 (37)4.2.1 液压悬挂结构特点 (37)4.2.2 液压悬挂受力分析 (38)4.2.3 确定液压悬挂工作压力 (39)4.2.4 液压泵的选用 (40)4.2.5 驱动液压泵的功率计算 (41)5 结论及展望 (42)总结 (43)致谢................................................................................................. 错误!未定义书签。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.3动力转向技术的发展
汽车转向一直存在着“轻”与“灵”的矛盾。尽管,人们采用了变速比转向器等手段,但始终不能从根本上解决这一矛盾。在20世纪50年代初出现了液压动力转向技术,比较好地缓解了“轻”与“灵”的矛盾,符合人们对转向轻便性更高的要求,在保证其他性能的条件下,能大大降低转向盘上的手力,特别是原地转向时转向盘上的手力。
由于汽车保有量的增加和社会生活汽车化而造成交通错综复杂,使转向盘的操作频率增大,这就要求减轻驾驶疲劳。在汽车向轻便灵活、容易驾驶的方向发展的同时,对动力转向系统的需求也提到日程上来。要求其成本低,性能方面能适应车速变化,实现变特性的动力转向器,并且可以与不同类型的大型汽车相适应、相匹配。
大型载货汽车和其它车辆相比具有一些显著的特点,为保障大型载货汽车良好的转向性能,必须对这些特点及由此引发的问题进行专门的研究。按照GB1589一2004“道路车辆外廓尺寸、轴荷及质量限值”的要求,每侧单轮胎的车轴轴荷限值为7吨,6x4载货车的设计轴荷之和可达30吨,车长可达12m,铰接式列车的车长可至16.sm。同时,GB7258一2004“机动车运行安全技术条件”要求车辆必须能够通过外径25m内径10.6m的通道。另外,载货汽车公路运输的高速化发展趋势也已是不争的事实,尤其国家于2004年5月开始的治理公路运输车辆超限超载专项工作的开展,使以提高行驶速度来带动运输效率的提高成为载货汽车设计的重要目标。高的运输速度对车辆的操纵性与稳定性提出了更高的要求。
为在法规允许的情况下尽可能提高车辆的运输能力,大型车的设计轴荷及外廓尺寸基本接近法规的限值。对于转向轴,7吨的轴荷使动力转向器成为必选的配置,如何合理匹配动力转向器,提高车辆的转向能力并保持操纵路感值得进行进一步的研究。国家标准对车辆转弯能力的要求,给转向系统的设计提出了新的课题。对于长轴距的汽车,必须通过增加转向轮转角才能提高其转弯能力。对于载货车惯常采用的转向系统结构,大的转角设计很容易造成转向轮与周边部件干涉及转向机构卡死、左右转向不对称等后果。因此,必须建立转向系统设计计算的辅助分析方法,提高转向系统设计的能力和水平。
毕 业 论 文(设 计)
题目:大卡车液压助力转向系统设计
1 绪论
1.1问题的提出
随着国民经济连续多年的高速发展,尤其是国家对基础设施建设投入的逐年加大,使得大型汽车的生产在近年来呈现了爆发式发展。而大型载货汽车由于具有运输效率高、运输成本低的特点,逐渐成为公路运输的首选。2007年大型卡车市场为2.85万辆,中型卡车市场为17.5万辆,大型卡车占整体市场的比例为60%,大型载货汽车的生产与开发成为国内载货汽车生产厂家竞争的焦点。汽车技术的进步和人民生活水平的进一步提高,使载货汽车用户对车辆的性能水平要求越来越高,而越来越大的竞争压力使整车厂家的产品开发周期不断缩短。如何使车辆开发各个环节的设计方案都得到充分的分析与筛选,使其性能得到有效控制,以保障在限定的周期内开发出性能优越的汽车产品,已成为大型载货汽车产品研发部门所关注的重要课题。
同时液压动力转向系统也有不足:
(1)选定参数完成设计之后,助力特性就确定了,不能再进行调节与控制。因此协调轻便性与路感的关系困难。低速转向力小时,高速行驶时转向力往往过轻、“路感”差,甚至感觉汽车发“飘”,从而影响操纵稳定性;而按高速性能要求设计转向系统时,低速时转向力往往过大。
(2)即使在不转向时,油泵也一直运转,增加了能量消耗。
开始阶段液压动力转向的控制阀采用滑阀式,即控制阀中的阀以轴向移动来控制油路。滑阀式控制阀结构简单,生产工艺性好,操纵方便,宜于布置,使用性能较好。但是滑阀灵敏度不够高,后来逐渐被转阀代替。
20世纪50年代末沙基诺发明了转阀式液压动力转向,即控制阀中的阀芯以旋转运动来控制油路。与滑阀相比,转阀的灵敏度高、密封件少、结构比较先进。虽然由于转阀利用扭杆弹簧来使阀回位,结构较复杂,特别是对扭杆的材质和热处理工艺要求较高。但是其性能相对于滑阀有很大改进,达到令人满意的程度,并且在齿轮齿条式转向器中布置转阀比较容易,目前在轿车及大部分重型汽车上的液压动力转向采用的均是转阀式控制阀。
图1-2动力转向系示意图
图1-2为一种液压动力转向系的组成和液压动力转向装置的管路布置示意图。其中属于动力转向装置的部件是:转向油罐、转向油泵、转向控制阀和转向动力缸。当驾驶员逆时针转动转向盘(左转向)时,转向摇臂带动转向直拉杆前移。直拉杆的拉力作用于转向节臂,并依次传到梯形臂和转向横拉杆,使之右移。与此同时,转向直拉杆还带动转向控制阀中的滑阀,使转向动力缸的右腔接通液面压力为零的转向油罐。转向油泵的高压油进入转向动力缸的左腔,于是转向动力缸的活塞上受到向右的液压作用力便经推杆施加在转向横拉杆上,也使之右移。这样,驾驶员施于转向盘上很小的转向力矩,便可克服地面作用于转向轮上的转向阻力矩。
图1-1机械转向系示意图
图1-1所示为机械转向系的组成和布置示意图。当汽车转向时,驾驶员对转向盘1施加一个转向力矩。该力矩通过转向轴2、转向万向节3和转向传动轴4输入转向器5。经转向器放大后的力矩和减速后的运动传到转向摇臂6,再经过转向直拉杆7传给固定于左转向节9上的转向节臂8,使左转向节和它所支承的左转向轮偏转。为使右转向节13及其支承的右转向轮随之偏转相应角度,还设置7转向梯形。转向梯形由固定在左、右转向节上的梯形臂10、12和两端与梯形臂作球铰链连接的转向横拉杆n组成。
综上所述,随着我国大型载货汽车的发展,新的问题及要求不断涌现,在车辆设计与开发领域尚存在很多的问题需要研究和解决,如何使基础研究与产品设计实践紧密结合,将研究成果最大限度地应用于产品开发过程,不断提高大型载货汽车的性能水平是摆在汽车产品研究与开发人员面前的重要课题。
1.2汽车转向系的类型和组成
汽车在行驶过程中,需按驾驶员的意志经常改变其行驶方向,即所谓汽车转向。就轮式汽车而言,实现汽车转向的方法是,驾驶员通过一套专设的机构,使汽车转向桥(一般是前桥)上的车轮(转向轮)相对于汽车纵轴线偏转一定角度。在汽车直线行驶时,往往转向轮也会受到路面例向干扰力的作用,自动偏转而改变行驶方向。此时,驾驶员也可以利用这套机构使转向轮向相反的方向偏转,从而使汽车恢复原来的行驶方向。这一套用来改变或恢复汽车行驶方向的专设机构,即称为汽车转向系。因此,汽车转向系的功用是,保证汽车能按驾驶员的意志而进行转向行驶。
1.2.1机械转向系
机械转向系以驾驶员的体力作为转向能源,其中所有传力件都是机械的。机械转向系由转向操纵机构、转向器和转向传动机构三大转向器;
6-转向摇臂;7一转向直拉杆;8一转向节臂;9一左转向节;
10、12一梯形臂;11一转向横拉杆;13一右转向节
在大型汽车上装备液压动力转向系统有如下优点:
(1)减小驾驶员的疲劳强度。动力转向可以减小作用在转向盘上的力,提高转向轻便性。
(2)提高转向灵敏度。可以比较自由地根据操纵稳定性要求选择转向器传动比,不会受到转向力的制约。允许转向车轮承受更大的负荷,不会引起转向沉重问题。
(3)衰减道路冲击,提高行驶安全性。液压系统的阻尼作用可以衰减道路不平度对转向盘的冲击;另一方面,当汽车高速行驶时,如果发生爆胎,将导致汽车转向盘难以把握,应用动力转向可以使驾驶员较容易把握转向盘。
转向系统性能和整车及其它总成、系统的性能息息相关,在系统设计的每一个环节都需要考虑整车及其它总成的性能。首先,转向系统必须能够实现整车所要求的车轮转角,这为转向机构的设计及动力转向器匹配提出了基本要求。其次,转向机构和悬架系统必须有协调的运动学关系,这就对转向机构设计提出了附加的要求。这两项要求基本可以在系统设计层面进行分析解决,而和转向系统相关的行驶稳定性及行驶路感则必须在整车层面进行计算分析。
汽车转向系可按转向能源的不同分为机械转向系和动力转向系两大类。机械式转向器由转向器、转向操纵机构和转向传动机构三大部分组成。按照转向器的不同形式可分为循环球式、齿轮齿条式、蜗杆曲柄指销式等转向器。不同的转向器有着不同的特点应用于不同的汽车上。其中小轿车上常用的是齿轮齿条式的转向器。在本文的后面分析中,就是以这种转向器来做分析的。动力式按照加力装置的不同可以分为液压助力式、气压助力式和电动助力式三种。气压助力式主要应用于一部分其前轴最大轴载质量为3一7t并采用气压制动系的货车和客车上。由于气压系统的工作压力较低(一般不高于0.7MPa),使得其部件的尺寸比较庞大;同时压缩空气工作时的噪声和滞后性使得这种助力方式的转向器只配置在极少一部分车辆上。相比之下,液压助力式的转向器成了当今汽车助力转向器的主流。
转向盘在驾驶室安放的位置与各国交通法规规定车辆靠道路左侧还是右侧通行有关。包括我国在内的大多数国家规定车辆右侧通行,相应地应将转向盘安置在驾驶室左侧。这样,驾驶员的左方视野较广阔,有利于两车安全交会。相反,在一些规定车辆靠左侧通行的国家和地区使用的汽车上,转向盘则应安置在驾驶室右侧。
1.2.2动力转向系
1.3.1液压动力转向
液压动力转向首先是在大型车辆上得到发展的,随着当时汽车装载质量和整备质量的增加,在转向过程中所需克服的前轮转向阻力矩也随之增加,从而要求加大作用在转向盘上的转向力,使驾驶员感到“转向沉重”。当前轴负荷增加到某一数值后,靠人力转动转向轮就很吃力。为使驾驶员操纵轻便和提高车辆的机动性,最有效的方法就是在汽车转向系中加装转向助力装置,借助于汽车发动机的动力驱动油泵、空气压缩机和发电机等,以液力、气力或电力增大驾驶员操纵前轮转向的力矩。使驾驶员可以轻便灵活地操纵汽车转向,减轻了劳动强度,提高了行驶安全性。液压动力转向系统除了传统的机械转向器以外,尚需增加控制阀、动力缸、油泵、油罐和管路等。轿车对动力转向的要求与重型车辆不完全相同。比如大型车辆对动力转向系统噪声的要求较低,轿车则对噪声要求很高,轿车还要求装用的转向器系统结构要更简单、尺寸更小、成本更低等。但是重型车辆动力转向技术的发展无疑为轿车动力转向技术奠定了基础。
动力转向系是兼用驾驶员体力和发动机动力为转向能源的转向系。在正常情况下,汽车转向所需的能量,只有一小部分由驾驶员提供,而大部分是由发动机通过动力转向装置提供的。但在动力转向装置失效时,一般还应当能由驾驶员独立承担汽车转向任务。因此,动力转向系是在机械转向系的基础上加设一套动力转向装置而形成的。
相关文档
最新文档