2014年重庆市重庆一中八年级下学期期末考试数学试题

合集下载

【解析版】重庆市第一中学八年级下期末数学试卷

【解析版】重庆市第一中学八年级下期末数学试卷

2014-2015学年重庆市第一中学八年级(下)期末数学试卷一.细心选一选:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D 的四个答案,其中只有一个是正确的,请将正确答案的代号填在表格中.1.在分式中,x的取值范围是()A.x≠1 B.x≠0 C.x>1 D.x<12.在以下回收、绿色食品、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.3.已知α、β是一元二次方程x2﹣2x﹣3=0的两个根,则α+β的值是()A.2 B.﹣2 C.3 D.﹣34.如图,反比例函数y=的图象过点A,过点A分别向x轴和y轴作垂线,垂足为B和C.若矩形ABOC的面积为2,则k的值为()A.4 B.2 C.1 D.5.如图所示,▱ABCD中,对角线AC,BD交于点O,E是CD中点,连接OE,若OE=3cm,则AD的长为()A.3cm B.6cm C.9cm D.12cm6.方程x2+6x﹣5=0的左边配成完全平方后所得方程为()A.(x+3)2=14 B.(x﹣3)2=14 C.D.(x+3)2=47.一个多边形的每个内角都是108°,那么这个多边形是()A.五边形B.六边形C.七边形D.八边形8.分式方程的解是()A.x=﹣5 B.x=5 C.x=﹣3 D.x=39.如图,菱形ABCD中,已知∠D=110°,则∠BAC的度数为()A.30°B.35°C.40°D.45°10.若关于x的一元二次方程kx2﹣6x+9=0有两个不相等的实数根,则k的取值范围()A.k<1且k≠0 B.k≠0 C.k<1 D.k>111.下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有9个,第(2)个图形中面积为1的正方形有14个,…,按此规律.则第(10)个图形中面积为1的正方形的个数为()A.72 B.64 C.54 D.5012.已知四边形OABC是矩形,边OA在x轴上,边OC在y轴上,双曲线与边BC交于点D、与对角线OB交于点中点E,若△OBD的面积为10,则k的值是()A.10 B.5 C.D.二、耐心填一填(本大题共6个小题,每小题4分,共24分)请将每小题的正确答案填入下面的表格中.13.分解因式:2m2﹣2=.14.若分式的值为零,则x=.15.如图,在矩形ABCD中,对角线AC,BD相交于点O,AB=4,∠AOD=120°,则对角线AC的长度为.16.已知x=2是方程x2+mx+2=0的一个根,则m的值是.17.由于天气炎热,某校根据《学校卫生工作条例》,为预防“蚊虫叮咬”,对教室进行“薰药消毒”.已知药物在燃烧机释放过程中,室内空气中每立方米含药量y(毫克)与燃烧时间x(分钟)之间的关系如图所示(即图中线段OA 和双曲线在A点及其右侧的部分),当空气中每立方米的含药量低于2毫克时,对人体无毒害作用,那么从消毒开始,至少在分钟内,师生不能呆在教室.18.如图,在正方形ABCD中,AB=2,将∠BAD绕着点A顺时针旋转α°(0<α<45),得到∠B′AD′,其中过点B作与对角线BD垂直的直线交射线AB′于点E,射线AD′与对角线BD交于点F,连接CF,并延长交AD于点M,当满足S四边形AEBF=S△CDM时,线段BE的长度为.三.解答题(本大题共4个小题,19题10分,20题8分,21题8分,22题8分,共34分)解答时每小题必须给出必要的演算过程或推理步骤.19.解方程:(1)x2﹣6x﹣2=0(2)=+1.20.如图,在▱ABCD中,∠ABD的平分线BE交AD于点E,∠CDB的平分线DF交BC于点F,连接BD.(1)求证:△ABE≌△CDF;(2)若AB=DB,求证:四边形DFBE是矩形.21.如图,一次函数y=kx+b(k≠0)的图象过点P(﹣,0),且与反比例函数y=(m≠0)的图象相交于点A(﹣2,1)和点B.(1)求一次函数和反比例函数的解析式;(2)求点B的坐标,并根据图象回答:当x在什么范围内取值时,一次函数的函数值小于反比例函数的函数值?22.童装店在服装销售中发现:进货价每件60元,销售价每件100元的某童装平均每天可售出20件.为了迎接“六一”,童装店决定采取适当的降价措施,扩大销售量,增加盈利.经调查发现:如果每件童装降价1元,那么平均每天就可多售出2件,(1)降价前,童装店每天的利润是多少元?(2)如果童装店每要每天销售这种童装盈利1200元,同时又要使顾客得到更多的实惠,那么每件童装应降价多少元?四、解答题(本大题共2个小题,每小题10分,共20分)解答时每小题必须给出必要的演算过程或推理步骤.23.先化简,再求值:(﹣)÷(﹣1),其中a是方程a2﹣4a+2=0的解.24.在平面直角坐标系xOy中,对于任意两点P1(x1,y1)与P2(x2,y2)的“非常距离”,给出如下定义:若|x1﹣x2|≥|y1﹣y2|,则点P1与点P2的“非常距离”为|x1﹣x2|;若|x1﹣x2|<|y1﹣y2|,则点P1与点P2的“非常距离”为|y1﹣y2|.例如:点P1(1,2),点P1(3,5),因为|1﹣3|<|2﹣5|,所以点P1与点P2的“非常距离”为|2﹣5|=3,也就是图1中线段P1Q与线段P2Q长度的较大值(点Q为垂直于y轴的直线P1Q与垂直于x轴的直线P2Q的交点).(1)已知点A(﹣),B为y轴上的一个动点,①若点A与点B的“非常距离”为2,写出满足条件的点B的坐标;②直接写出点A与点B的“非常距离”的最小值;(2)如图2,已知C是直线上的一个动点,点D的坐标是(0,1),求点C与点D的“非常距离”最小时,相应的点C的坐标.五.解答题(本大题共2个小题,25题12分,26题12分,共24分)解答时每小题必须给出必要的演算过程或推理步骤.25.如图,在菱形ABCD中,∠ABC=60°,E是对角线AC上任意一点,F是线段BC延长线上一点,且CF=AE,连接BE、EF.(1)如图1,当E是线段AC的中点,且AB=2时,求△ABC的面积;(2)如图2,当点E不是线段AC的中点时,求证:BE=EF;(3)如图3,当点E是线段AC延长线上的任意一点时,(2)中的结论是否成立?若成立,请给予证明;若不成立,请说明理由.26.如图,已知点A是直线y=2x+1与反比例函数y=(x>0)图象的交点,且点A的横坐标为1.(1)求k的值;(2)如图1,双曲线y=(x>0)上一点M,若S△AOM=4,求点M的坐标;(3)如图2所示,若已知反比例函数y=(x>0)图象上一点B(3,1),点P是直线y=x上一动点,点Q是反比例函数y=(x>0)图象上另一点,是否存在以P、A、B、Q为顶点的平行四边形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.2014-2015学年重庆市第一中学八年级(下)期末数学试卷参考答案与试题解析一.细心选一选:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D 的四个答案,其中只有一个是正确的,请将正确答案的代号填在表格中.1.在分式中,x的取值范围是()A.x≠1 B.x≠0 C.x>1 D.x<1考点:分式有意义的条件.分析:根据分式有意义,分母不等于0列式计算即可得解.解答:解:由题意得,x﹣1≠0,解得x≠1.故选A.点评:本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.2.在以下回收、绿色食品、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.考点:轴对称图形.分析:根据轴对称图形的概念对各选项分析判断利用排除法求解.解答:解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选;B.点评:本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.已知α、β是一元二次方程x2﹣2x﹣3=0的两个根,则α+β的值是()A.2 B.﹣2 C.3 D.﹣3考点:根与系数的关系.分析:根据根与系数的关系得到α+β=﹣=2,即可得出答案.解答:解:∵α、β是一元二次方程x2﹣2x﹣3=0的两个根,∴α+β=﹣=2;故选A.点评:本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.4.如图,反比例函数y=的图象过点A,过点A分别向x轴和y轴作垂线,垂足为B和C.若矩形ABOC的面积为2,则k的值为()A.4 B.2 C.1 D.考点:反比例函数系数k的几何意义.分析:设点A的坐标为(x,y),用x、y表示OB、AB的长,根据矩形ABOC的面积为2,列出算式求出k的值.解答:解:设点A的坐标为(x,y),则OB=x,AB=y,∵矩形ABOC的面积为2,∴k=xy=2,故选:B.点评:本题考查反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.5.如图所示,▱ABCD中,对角线AC,BD交于点O,E是CD中点,连接OE,若OE=3cm,则AD的长为()A.3cm B.6cm C.9cm D.12cm考点:三角形中位线定理;平行四边形的性质.分析:由平行四边形的性质,易证OE是中位线,根据中位线定理求解.解答:解:根据平行四边形基本性质:平行四边形的对角线互相平分.可知点O是BD中点,所以OE是△BCD 的中位线.根据中位线定理可知AD=2OE=2×3=6(cm).故选B.点评:主要考查了平行四边形的基本性质和中位线性质,并利用性质解题.平行四边形基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.6.方程x2+6x﹣5=0的左边配成完全平方后所得方程为()A.(x+3)2=14 B.(x﹣3)2=14 C.D.(x+3)2=4考点:解一元二次方程-配方法.专题:配方法.分析:配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.解答:解:由原方程移项,得x2+6x=5,等式两边同时加上一次项系数一半的平方,即32,得x2+6x+9=5+9,∴(x+3)2=14.故选A.点评:此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.7.一个多边形的每个内角都是108°,那么这个多边形是()A.五边形B.六边形C.七边形D.八边形考点:多边形内角与外角.分析:利用多边形的内角和=180(n﹣2)可得.解答:解:108=180(n﹣2)÷n解得n=5.故选A.点评:本题主要考查了多边形的内角和定理.8.分式方程的解是()A.x=﹣5 B.x=5 C.x=﹣3 D.x=3考点:解分式方程.专题:计算题.分析:观察可得最简公分母是(x+1)(x﹣1),方程两边乘以最简公分母,可以把分式方程化为整式方程,再求解.解答:解:方程两边同乘以(x+1)(x﹣1),得3(x+1)=2(x﹣1),解得x=﹣5.经检验:x=﹣5是原方程的解.故选A.点评:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.9.如图,菱形ABCD中,已知∠D=110°,则∠BAC的度数为()A.30°B.35°C.40°D.45°考点:菱形的性质.专题:计算题.分析:先根据菱形的对边平行和直线平行的性质得到∠BAD=70°,然后根据菱形的每一条对角线平分一组对角求解.解答:解:∵四边形ABCD为菱形,∴AD∥AB,∴∠BAD=180°﹣∠D=180°﹣110°=70°,∵四边形ABCD为菱形,∴AC平分∠BAD,∴∠BAC=∠BAD=35°.故选B.点评:本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;菱形是轴对称图形,它有2条对称轴,分别是两条对角线所在直线.10.若关于x的一元二次方程kx2﹣6x+9=0有两个不相等的实数根,则k的取值范围()A.k<1且k≠0 B.k≠0 C.k<1 D.k>1考点:根的判别式;一元二次方程的定义.专题:计算题.分析:根据根的判别式和一元二次方程的定义,令△>0且二次项系数不为0即可.解答:解:∵关于x的一元二次方程kx2﹣6x+9=0有两个不相等的实数根,∴△>0,即(﹣6)2﹣4×9k>0,解得,k<1,∵为一元二次方程,∴k≠0,∴k<1且k≠0.故选A.点评:本题考查了根的判别式和一元二次方程的定义,要知道:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.11.下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有9个,第(2)个图形中面积为1的正方形有14个,…,按此规律.则第(10)个图形中面积为1的正方形的个数为()A.72 B.64 C.54 D.50考点:规律型:图形的变化类.分析:由第1个图形有9个边长为1的小正方形,第2个图形有9+5=14个边长为1的小正方形,第3个图形有9+5×2=19个边长为1的小正方形,…由此得出第n个图形有9+5×(n﹣1)=5n+4个边长为1的小正方形,由此求得答案即可.解答:解:第1个图形边长为1的小正方形有9个,第2个图形边长为1的小正方形有9+5=14个,第3个图形边长为1的小正方形有9+5×2=19个,…第n个图形边长为1的小正方形有9+5×(n﹣1)=5n+4个,所以第10个图形中边长为1的小正方形的个数为5×10+4=54个.故选:C.点评:此题考查图形的变化规律,找出图形与数字之间的运算规律,利用规律解决问题.12.已知四边形OABC是矩形,边OA在x轴上,边OC在y轴上,双曲线与边BC交于点D、与对角线OB交于点中点E,若△OBD的面积为10,则k的值是()A.10 B.5 C.D.考点:反比例函数系数k的几何意义.分析:设双曲线的解析式为:y=,E点的坐标是(x,y),根据E是OB的中点,得到B点的坐标,求出点E的坐标,根据三角形的面积公式求出k.解答:解:设双曲线的解析式为:y=,E点的坐标是(x,y),∵E是OB的中点,∴B点的坐标是(2x,2y),则D点的坐标是(,2y),∵△OBD的面积为10,∴×(2x﹣)×2y=10,解得,k=,故选:D.点评:本题考查反比例系数k的几何意义,过双曲线上的任意一点分别向两条坐标作垂线,与坐标轴围成的矩形面积就等于|k|.二、耐心填一填(本大题共6个小题,每小题4分,共24分)请将每小题的正确答案填入下面的表格中.13.分解因式:2m2﹣2=2(m+1)(m﹣1).考点:提公因式法与公式法的综合运用.专题:压轴题.分析:先提取公因式2,再对剩余的多项式利用平方差公式继续分解因式.解答:解:2m2﹣2,=2(m2﹣1),=2(m+1)(m﹣1).故答案为:2(m+1)(m﹣1).点评:本题考查了提公因式法,公式法分解因式,关键在于提取公因式后继续利用平方差公式进行二次因式分解.14.若分式的值为零,则x=﹣3.考点:分式的值为零的条件.专题:计算题.分析:分式的值为零,分子等于0,分母不为0.解答:解:根据题意,得|x|﹣3=0且x﹣3≠0,解得,x=﹣3.故答案是:﹣3.点评:本题考查了分式的值为0的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.15.如图,在矩形ABCD中,对角线AC,BD相交于点O,AB=4,∠AOD=120°,则对角线AC的长度为8.考点:矩形的性质;含30度角的直角三角形.分析:由矩形的性质得出OA=OB,再证明△AOB是等边三角形,得出OA=OB=AB=4,得出AC=2OA即可.解答:解:∵四边形ABCD是矩形,∴OA=AC,OB=BD,AC=BD,∴OA=OB,∵∠AOD=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴OA=OB=AB=4,∴AC=2OA=8;故答案为:8.点评:本题考查了矩形的性质、等边三角形的判定与性质;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.16.已知x=2是方程x2+mx+2=0的一个根,则m的值是﹣3.考点:一元二次方程的解.分析:将x=2代入方程即可得到一个关于m的方程,解方程即可求出m值.解答:解:把x=2代入方程可得:4+2m+2=0,解得m=﹣3.故答案为﹣3.点评:本题主要考查了方程的解的定义,把求未知系数的问题转化为方程求解的问题.17.由于天气炎热,某校根据《学校卫生工作条例》,为预防“蚊虫叮咬”,对教室进行“薰药消毒”.已知药物在燃烧机释放过程中,室内空气中每立方米含药量y(毫克)与燃烧时间x(分钟)之间的关系如图所示(即图中线段OA 和双曲线在A点及其右侧的部分),当空气中每立方米的含药量低于2毫克时,对人体无毒害作用,那么从消毒开始,至少在75分钟内,师生不能呆在教室.考点:反比例函数的应用.分析:首先根据题意,药物释放过程中,室内每立方米空气中的含药量y(毫克)与时间x(分钟)成正比例;药物释放完毕后,y与x成反比例,将数据代入用待定系数法可得反比例函数的关系式;进一步求解可得答案.解答:解:设反比例函数解析式为y=(k≠0),将(25,6)代入解析式得,k=25×6=150,则函数解析式为y=(x≥15),当y=2时,=2,解得x=75.答:从消毒开始,师生至少在75分钟内不能进入教室.点评:本题考查了反比例函数的应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.18.如图,在正方形ABCD中,AB=2,将∠BAD绕着点A顺时针旋转α°(0<α<45),得到∠B′AD′,其中过点B作与对角线BD垂直的直线交射线AB′于点E,射线AD′与对角线BD交于点F,连接CF,并延长交AD于点M,当满足S四边形AEBF=S△CDM时,线段BE的长度为2﹣2.考点:旋转的性质;正方形的性质.分析:先根据旋转的性质得∠EAB=∠FAD=α,再根据正方形的性质得AB=AD,∠ADB=∠ABD=45°,则利用BE⊥BD 得∠EBA=∠FDA=45°,于是可根据“ASA”判定△ABE≌△ADF,得到S△ABE=S△ADF,所以S四边形AEBF=S△ABD=4,则S△CDM=2,利用三角形面积公式可计算出DM=2,延长AB到M′使BM′=DM=2,如图,接着根据勾股定理计算出CM=2,再通过证明△BCM≌△DCM得到CM′=CM=2,∠BCM′=∠DCM,然后证∠M′NC=∠M′CN得到M′N=M′C=2,则BN=M′C﹣BM′=2﹣2.解答:解:∵∠BAD绕着点A顺时针旋转α°(0<α<45°),得到∠B′AD′,∴∠EAB=∠FAD=α,∵四边形ABCD为正方形,∴AB=AD,∠ADB=∠ABD=45°,∵BE⊥BD,∴∠EBD=90°,∴∠EBA=45°,∴∠EBA=∠FDA,在△ABE和△ADF中,,∴△ABE≌△ADF(ASA),∴S△ABE=S△ADF,∴S四边形AEBF=S△ABE+S△ABF=S△ADF+S△ABF=S△ABD=×2×2=4,∵S四边形AEBF=S△CDM,∴S△CDM==2,∴DM•2=2,解得DM=2,延长AB到M′使BM′=DM=2,如图,在Rt△CDM中,CM==2,在△BCM′和△DCM中,∴△BCM≌△DCM(SAS),∴CM′=CM=2,∠BCM′=∠DCM,∵AB∥CD,∴∠M′NC=∠DCN=∠DCM+∠NCM=∠BCM′+∠NCM,而NC平分∠BCM,∴∠NCM=∠BCN,∴∠M′NC=∠BCM′+∠BCN=∠M′CN,∴M′N=M′C=2,∴BN=M′C﹣BM′=2﹣2.故答案为:2﹣2.点评:本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了正方形的性质和全等三角形的判定与性质.三.解答题(本大题共4个小题,19题10分,20题8分,21题8分,22题8分,共34分)解答时每小题必须给出必要的演算过程或推理步骤.19.解方程:(1)x2﹣6x﹣2=0(2)=+1.考点:解一元二次方程-配方法;解分式方程.分析:(1)移项,配方,再开方,即可得出两个一元一次方程,求出方程的解即可;(2)先把分式方程转化成整式方程,求出方程的解,再进行检验即可.解答:解:(1)x2﹣6x﹣2=0,x2﹣6x=2,x2﹣6x+9=2+9,(x﹣3)2=11,x﹣3=,x1=3+,x2=3﹣;(2)方程两边都乘以x﹣2得:1﹣x=﹣1+x﹣2,解这个方程得:x=2,检验:当x=2时,x﹣2=0,所以x=2不是原方程的解,所以原方程无解.点评:本题考查了解一元二次方程,解分式方程的应用,解(1)小题的关键是能把一元二次方程转化成一元一次方程,解分式方程的关键是能把分式方程转化成整式方程.20.如图,在▱ABCD中,∠ABD的平分线BE交AD于点E,∠CDB的平分线DF交BC于点F,连接BD.(1)求证:△ABE≌△CDF;(2)若AB=DB,求证:四边形DFBE是矩形.考点:矩形的判定;全等三角形的判定与性质;平行四边形的性质.专题:证明题.分析:(1)根据平行四边形性质得出AB=CD,∠A=∠C.求出∠ABD=∠CDB.推出∠ABE=∠CDF,根据ASA 推出全等即可;(2)根据全等得出AE=CF,根据平行四边形性质得出AD∥BC,AD=BC,推出DE∥BF,DE=BF,得出四边形DFBE 是平行四边形,根据等腰三角形性质得出∠DEB=90°,根据矩形的判定推出即可.解答:证明:(1)在□ABCD中,AB=CD,∠A=∠C.∵AB∥CD,∴∠ABD=∠CDB.∵BE平分∠ABD,DF平分∠CDB,∴∠ABE=∠ABD,∠CDF=∠CDB.∴∠ABE=∠CDF.∵在△ABE和△CDF中,∴△ABE≌△CDF(ASA).(2)∵△ABE≌△CDF,∴AE=CF,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴DE∥BF,DE=BF,∴四边形DFBE是平行四边形,∵AB=DB,BE平分∠ABD,∴BE⊥AD,即∠DEB=90°.∴平行四边形DFBE是矩形.点评:本题考查了平行线的性质,平行四边形的性质和判定,矩形的判定,全等三角形的性质和判定,角平分线定义等知识点的应用,主要考查学生综合运用性质进行推理的能力.21.如图,一次函数y=kx+b(k≠0)的图象过点P(﹣,0),且与反比例函数y=(m≠0)的图象相交于点A(﹣2,1)和点B.(1)求一次函数和反比例函数的解析式;(2)求点B的坐标,并根据图象回答:当x在什么范围内取值时,一次函数的函数值小于反比例函数的函数值?考点:反比例函数与一次函数的交点问题.专题:数形结合;待定系数法.分析:(1)根据待定系数法,可得函数解析式;(2)根据二元一次方程组,可得函数图象的交点,根据一次函数图象位于反比例函数图象的下方,可得答案.解答:解:(1)一次函数y=kx+b(k≠0)的图象过点P(﹣,0)和A(﹣2,1),∴,解得,∴一次函数的解析式为y=﹣2x﹣3,反比例函数y=(m≠0)的图象过点A(﹣2,1),∴,解得m=﹣2,∴反比例函数的解析式为y=﹣;(2),解得,或,∴B(,﹣4)由图象可知,当﹣2<x<0或x>时,一次函数的函数值小于反比例函数的函数值.点评:本题考查了反比例函数与一次函数的交点问题,待定系数法是求函数解析式的关键.22.童装店在服装销售中发现:进货价每件60元,销售价每件100元的某童装平均每天可售出20件.为了迎接“六一”,童装店决定采取适当的降价措施,扩大销售量,增加盈利.经调查发现:如果每件童装降价1元,那么平均每天就可多售出2件,(1)降价前,童装店每天的利润是多少元?(2)如果童装店每要每天销售这种童装盈利1200元,同时又要使顾客得到更多的实惠,那么每件童装应降价多少元?考点:一元二次方程的应用.专题:销售问题.分析:(1)用降价前每件利润×销售量列式计算即可;(2)设每件童装降价x元,利用童装平均每天售出的件数×每件盈利=每天销售这种童装利润列出方程解答即可.解答:解:(1)童装店降价前每天销售该童装可盈利:(100﹣60)×20=800(元);(2)设每件童装降价x元,根据题意,得(100﹣60﹣x)(20+2x)=1200,解得:x1=10,x2=20.∵要使顾客得到更多的实惠,∴取x=20.答:童装店应该降价20元.点评:此题主要考查了一元二次方程的实际应用和二次函数实际中的应用,此题找到关键描述语,找到等量关系准确的列出方程或函数关系式是解决问题的关键.最后要注意判断所求的解是否符合题意,舍去不合题意的解.四、解答题(本大题共2个小题,每小题10分,共20分)解答时每小题必须给出必要的演算过程或推理步骤.23.先化简,再求值:(﹣)÷(﹣1),其中a是方程a2﹣4a+2=0的解.考点:分式的化简求值;一元二次方程的解.专题:计算题.分析:原式括号中两项通分并利用同分母分式的加减法则计算,同时利用除法法则变形,约分得到最简结果,把已知等式变形后代入计算即可求出值.解答:解:原式=[﹣]÷=•=,由a2﹣4a+2=0,得a2﹣4a=﹣2,则原式=.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.24.在平面直角坐标系xOy中,对于任意两点P1(x1,y1)与P2(x2,y2)的“非常距离”,给出如下定义:若|x1﹣x2|≥|y1﹣y2|,则点P1与点P2的“非常距离”为|x1﹣x2|;若|x1﹣x2|<|y1﹣y2|,则点P1与点P2的“非常距离”为|y1﹣y2|.例如:点P1(1,2),点P1(3,5),因为|1﹣3|<|2﹣5|,所以点P1与点P2的“非常距离”为|2﹣5|=3,也就是图1中线段P1Q与线段P2Q长度的较大值(点Q为垂直于y轴的直线P1Q与垂直于x轴的直线P2Q的交点).(1)已知点A(﹣),B为y轴上的一个动点,①若点A与点B的“非常距离”为2,写出满足条件的点B的坐标;②直接写出点A与点B的“非常距离”的最小值;(2)如图2,已知C是直线上的一个动点,点D的坐标是(0,1),求点C与点D的“非常距离”最小时,相应的点C的坐标.考点:一次函数综合题.分析:(1)①根据点B位于y轴上,可以设点B的坐标为(0,y).由“非常距离”的定义可以确定|0﹣y|=2,据此可以求得y的值;②设点B的坐标为(0,y),根据|﹣﹣0|≥|0﹣y|,得出点A与点B的“非常距离”最小值为|﹣﹣0|,即可得出答案;(2)设点C的坐标为(x0,x0+3).根据材料“若|x1﹣x2|≥|y1﹣y2|,则点P1与点P2的“非常距离”为|x1﹣x2|”知,C、D两点的“非常距离”的最小值为﹣x0=x0+2,据此可以求得点C的坐标;解答:解:(1)①∵B为y轴上的一个动点,∴设点B的坐标为(0,y).∵|﹣﹣0|=≠2,∴|0﹣y|=2,解得,y=2或y=﹣2;∴点B的坐标是(0,2)或(0,﹣2);②设点B的坐标为(0,y).∵|﹣﹣0|≥|0﹣y|,∴点A与点B的“非常距离”最小值为|﹣﹣0|=;(2)如图2,取点C与点D的“非常距离”的最小值时,需要根据运算定义“若|x1﹣x2|≥|y1﹣y2|,则点P1与点P2的“非常距离”为|x1﹣x2|”解答,此时|x1﹣x2|=|y1﹣y2|.即AC=AD,∵C是直线y=x+3上的一个动点,点D的坐标是(0,1),∴设点C的坐标为(x0,x0+3),∴﹣x0=x0+2,此时,x0=﹣,∴点C与点D的“非常距离”的最小值为:|x0|=,此时C(﹣,).点评:本题考查了一次函数综合题.对于信息给予题,一定要弄清楚题干中的已知条件.本题中的“非常距离”的定义是正确解题的关键.五.解答题(本大题共2个小题,25题12分,26题12分,共24分)解答时每小题必须给出必要的演算过程或推理步骤.25.如图,在菱形ABCD中,∠ABC=60°,E是对角线AC上任意一点,F是线段BC延长线上一点,且CF=AE,连接BE、EF.(1)如图1,当E是线段AC的中点,且AB=2时,求△ABC的面积;(2)如图2,当点E不是线段AC的中点时,求证:BE=EF;(3)如图3,当点E是线段AC延长线上的任意一点时,(2)中的结论是否成立?若成立,请给予证明;若不成立,请说明理由.考点:四边形综合题.分析:(1)根据菱形的性质证明△ABC是等边三角形和AB=2,求出△ABC的面积;(2)作EG∥BC交AB于G,证明△BGE≌△ECF,得到BE=EF;(3)作EH∥BC交AB的延长线于H,证明△BHE≌△ECF,得到BE=EF.解答:解:(1)∵四边形ABCD是菱形,∠ABC=60°,∴△ABC是等边三角形,又E是线段AC的中点,∴BE⊥AC,AE=AB=1,∴BE=,∴△ABC的面积=×AC×BE=;(2)如图2,作EG∥BC交AB于G,∵△ABC是等边三角形,∴△AGE是等边三角形,∴BG=CE,∵EG∥BC,∠ABC=60°,∴∠BGE=120°,∵∠ACB=60°,∴∠ECF=120°,∴∠BGE=∠ECF,在△BGE和△ECF中,,∴△BGE≌△ECF,∴EB=EF;(3)成立,如图3,作EH∥BC交AB的延长线于H,∵△ABC是等边三角形,∴△AHE是等边三角形,∴BH=CE,在△BHE和△ECF中,,∴△BHE≌△ECF,∴EB=EF.点评:本题考查的是菱形的性质、等边三角形的性质、全等三角形的判定和性质,正确作出辅助线、灵活运用相关的判定定理和性质定理是解题的关键.26.如图,已知点A是直线y=2x+1与反比例函数y=(x>0)图象的交点,且点A的横坐标为1.(1)求k的值;(2)如图1,双曲线y=(x>0)上一点M,若S△AOM=4,求点M的坐标;(3)如图2所示,若已知反比例函数y=(x>0)图象上一点B(3,1),点P是直线y=x上一动点,点Q是反比例函数y=(x>0)图象上另一点,是否存在以P、A、B、Q为顶点的平行四边形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.考点:反比例函数综合题.分析:(1)点A是直线y=2x+1的点,点A的横坐标为1,代入y=2×1+1=3,求得点A即可得到结果;(2)如图1,设点M(m,),过A作AE⊥x轴于E,过M作MF⊥x轴于F,根据题意得:S△AOM=S梯形AEFM=(3+)(m﹣1)=4,解方程即可得到结果;(3)首先求得反比例函数的解析式,然后设P(m,m),分若PQ为平行四边形的边和若PQ为平行四边形的对角线两种情况分类讨论即可确定点Q的坐标.解答:解:(1)∵点A是直线y=2x+1的点,点A的横坐标为1,∴y=2×1+1=3,∴A(1,3),∵点A是反比例函数y=(x>0)图象上的点,∴k=3;(2)如图1,设点M(m,),过A作AE⊥x轴于E,过M作MF⊥x轴于F,根据题意得:S△AOM=S梯形AEFM=(3+)(m﹣1)=4,解得:m=3(负值舍去),∴M(3,1);(3)∵反比例函数y=(x>0)图象经过点A(1,3),∴k=1×3=3,∴反比例函数的解析式为y=,∵点P在直线y=x上,。

重庆一中八年级(下)期末数学试卷

重庆一中八年级(下)期末数学试卷

的值为( )
A. 20
B. 12
C. −12
D. −20
9. 下列图形是由同样大小的棋子按照一定规律排列而成的,其中,图①中有 5 个棋子, 图②中有 10 个棋子,图③中有 16 个棋子,……,则图⑥中有( )个棋子.
A. 31
B. 35
C. 40
10. 下列命题正确的是( )
A. 任意两个矩形一定相似 B. 相似图形就是位似图形
B. 4������2������3 = 4������2 ⋅ ������3
D.
������−1
1
= ������(1−������)
3. 下列各分式中,最简分式是( )
A.
������ ������2−3������
B. ������2 + ������2 ������2������ + ������������2
������ + 4 ≤ 2(������−������)
A. −12
B. −8
C. −7
二、填空题(本大题共 6 小题,共 24.0 分)
D. −2
13.
若������
������
=
11,则������−2������=______.
4
������
14. 已知关于 x 的一元二次方程(k-5)x2-2x+2=0 有实根,则 k 的取值范围为______.
八年级(下)期末数学试卷
题号 得分




总分
一、选择题(本大题共 12 小题,共 48.0 分)
1. 下列图形是物理学中的力学、电学等器件的平面示意图,从左至右分别代表小车、 音叉、凹透镜和砝码,其中是中心对称图形的是( )

2014年重庆市重庆一中八年级下学期期末考试数学试题-初二数学试卷与试题

2014年重庆市重庆一中八年级下学期期末考试数学试题-初二数学试卷与试题

A3 B5 C8 D4
[4分]-----正确答案(D)
11. 如图,以下各图都是由同样大小的图形①按一定规律组成,其中第①个图形中共有1个完整菱形,第②个图形中共 有5个完整菱形,第③个图形中共有13个完整菱形,……,则第⑦个图形中完整菱形的个数为( )
[4分]-----正确答案(C)
A 83
24. 在正方形ABCD 中,点F是BC延长线上一点,过点B作BE⊥DF于点E,交CD于点G,连接CE. (1)若正方形ABCD边长为3,DF=4,求CG的长;
(2)求证:EF+EG= CE.
参考答案:
[10分]
五、解答题(本大题1个小题,每小题12分)解答每小题都必须写出必要的演算过程或推理步骤,请将解答过 程书写在答题卷中对应的位置上.
22.
先化简,再求值: 参考答案:
,其中满足
.[10分]
23. 某蔬菜店第一次用400元购进某种蔬菜,由于销售状况良好,该店又用700元第二次购进该品种蔬菜,所购数量是 第一次购进数量的2倍,但进货价每千克少了0.5元. (1)第一次所购该蔬菜的进货价是每千克多少元? (2)蔬菜店在销售中,如果两次售价均相同,第一次购进的蔬菜有2% 的损耗,第二次购进的蔬菜有3% 的损耗, 若该蔬菜店售完这些蔬菜获利不低于944元,则该蔬菜每千克售价至少为多少元?[10分] 参考答案:
7. 某种商品原价是120元,经两次降价后的价格是100元,求平均每次降价的百分率. 设平均每次降价的百分率为
,可列方程为( )
A B C D
8. 如图,在平行四边形ABCD中,E是AB的中点,CE和BD交于点O,若
[4分]-----正确答案(A) ,则是( )
A4 B6 C8 D9

重庆一中八年级(下)期末数学试卷

重庆一中八年级(下)期末数学试卷

八年级(下)期末数学试卷 题号一二三四总分得分一、选择题(本大题共12小题,共48.0分)1.下列各式的因式分解结果中,正确的是( )A. B. 6x 2−8x =x(6x−8)a 2+4b 2−4ab =(a−2b )2C. D. 8xyz−6x 2y 2=2xyz(4−3xy)4a 2−b 2=(4a−b)(4a +b)2.下列图案中,既是轴对称图形又是中心对称图形的是( )A. B.C. D.3.如果两个相似三角形的面积比为1:4,那么它们的相似比为( )A. 1:16B. 1:8C. 1:4D. 1:24.用配方法解方程x 2-2x -1=0时,配方后得的方程为( )A. B. C. D. (x +1)2=0(x−1)2=0(x +1)2=2(x−1)2=25.下列函数中,y 是x 的反比例函数的为( )A. B. C. D. y =2x +1y =2x 2y =3x y =2x 6.若分式的值为0,则x 的值为( )x 2−1x−1A. 1B. C. 0 D. −1±17.如图,正方形OABC 绕着点O 逆时针旋转40°得到正方形ODEF ,连接AF ,则∠OFA 的度数是( )A. 15∘B. 20∘C. 25∘D. 30∘8.在同一坐标系中(水平方向是x 轴),函数y =和y =kx +3的图象大致是( )k xA. B. C. D.9.重庆一中初二年级要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排21场比赛,应该邀请的球队个数为( )A. 6B. 7C. 8D. 910.下列矩形都是由大小不等的正方形按照一定规律组成,其中,第①个矩形的周长为6,第②个矩形的周长为10,第③个矩形的周长为16,…则第⑥个矩形的周长为( )A. 42B. 46C. 68D. 7211.若关于x 的方程4x 2﹣(2k 2+k ﹣6)x +4k ﹣1=0的两根互为相反数,则k 的值为()A. B. C. 或 D. 2或32−2−2323212.如图,反比例函数y =经过Rt △ABO 斜边AO 的中点C ,且k x 与另一直角边AB 交于点D ,连接OD 、CD ,△ACD 的面积为,则k 的值为( )92A. 4B. 5C. 6D. 7二、填空题(本大题共6小题,共24.0分)13.方程x 2=5x 的根是______.14.如图,已知菱形ABCD 的一个内角∠BAD =80°,对角线AC 、BD 相交于点O ,点E 在AB 上,且BE =BO ,则∠EOA =______ 度.15.关于x 的方程kx 2-4x -=0有实数根,则k 的取值范围是______.2316.若点(-1、y 1),(2、y 2),(5、y 3)都在反比例函数y =(k <0)的图象上,则k x y 1,y 2,y 3的大小关系为______ (用“<”连接).17.已知关于x 的方程=-1的根大于0,则a 的取值范围是______ .x +a x−218.如图,已知正方形纸片ABCD ,E 为CB 延长线上一点,F 为边CD 上一点,将纸片沿EF 翻折,点C 恰好落在AD 边上的点H ,连接BD ,CH ,CG .CH 交BD 于点N ,EF 、CG 、BD 恰好交于一点M .若DH =2,BG =3,则线段MN 的长度为______ .三、计算题(本大题共1小题,共8.0分)19.解方程(1)x 2+4x -9=0(2)+1=.1x−112−2x 四、解答题(本大题共7小题,共70.0分)20.如图,E 、F 是平行四边形ABCD 对角线AC 上两点,BE ∥DF ,求证:AF =CE .21.先化简,再求值:(a -)÷-a 2,其中a 是方程x 2-x -3=0的解.2a a +1a 2−2a +1a 2−122.如图,已知反比例函数y =(k <0)的图象经过点A k x (-2,m ),过点A 作AB ⊥x 轴于点B ,且△AOB 的面积为2.(1)求k 和m 的值;(2)若一次函数y =ax +1的图象经过点A ,并且与x轴的交点为点C ,试求出△ABC 的面积.23.某商场准备从厂家购进A 、B 两种商品定价后直接销售,已知A 商品的进价比B 商品的进价多15元,已知同样花600元购进的A 商品件数是B 商品的一半.(1)求A 商品的进价.(2)根据市场调查,当A 商品售价为40元/件时,每月将售出A 商品600件,若售价每涨2元,每月就会少售出15件A 商品,该公司要每月在A 商品的销售中获得10500元利润的同时,尽可能的减少A 商品的库存,则每件A 商品售价应定为多少元?24.对于任意一个多位数,如果他的各位数字之和除以一个正整数n 所得的余数与他自身除以这个正整数n 所得余数相同,我们就称这个多位数是n 的“同余数”,例如:对于多位数1345,1345÷3=448…1,且(1+3+4+5)÷3=4…1,则1345是3的“同余数”.(1)判断四位数2476是否是7的“同余数”,并说明理由.(2)小明同学在研究“同余数”时发现,对于任意一个四位数如果是5的“同余数”,则一定满足千位、百位、十位这三位上数字之和是5的倍数.若有一个四位数,其千位上的数字是十位上的数字的两倍,百位上的数字比十位上的数字大1,并且该四位数是5的“同余数”,且余数是3,求这个四位数.25.如图,等腰直角三角形ABC ,过点A 在AB 左侧作AE ⊥AB ,并构造正方形AEDB ,点F 是AC 上一点,且AB =AF ,过点A 作AG 平分∠BAC ,AH ⊥EF ,分别交EF 于点G ,H ,连接DG .(1)若AF =2,求CF 的长.2(2)求证:DG +AG =EG .2(3)如图,在等腰直角三角形ABC 中,若过点A 在AB 右侧作AN ⊥AB ,AM ⊥CN ,连接BM ,直接写出的值.BM CM +AM26.如图,在平面直角坐标系中,直线l AB :y =-x +与x 轴交于点B ,且与过原点的直34152线l OA 互相垂直且交于点A (,m ),正方形CDEF 的其中一个顶点C 与原点重185合,另一顶点E 在反比例函数y =-上,正方形CDEF 从现在位置出发,在射线OB 16x 上以每秒1个单位长度的速度向右平移,运动时间为t .(1)当D 落在线段AO 上时t = ______ ,当D 落在线段AB 上时t = ______ .(2)记△ABO 与正方形CDEF 重叠面积为S ,当0≤t ≤7时,请直接写出S 与t 的函数关系式以及t 的取值范围.(3)在正方形CDEF 从图1位置开始向右移动的同时,另一动点P 在线段AB 上以每秒1个单位长度的速度从B 点运动到A 点,当0≤t ≤8时,请求出使得△CAP 是以AC 为腰的等腰三角形的t 的值.答案和解析1.【答案】B【解析】解:6x2-8x=2x(3x-4),故选项A错误;a2+4b2-4ab=(a-2b)2,故选项B正确;8xyz-6x2y2=2xy(4z-3xy),故选项C错误;4a2-b2=(2a+b)(2a-b),故选项D错误;故选B.把各个选项中的式子因式分解然后对照,即可得到哪个选项是正确的.本题考查提公因式法与公式法的综合运用,解题的关键是明确因式分解的方法.2.【答案】B【解析】解:A、此图形是轴对称图形,不是中心对称图形,故此选项错误;B、此图形是中心对称图形,也是轴对称图形,故此选项正确;C、此图形是中心对称图形,不是轴对称图形,故此选项错误;D、此图形是中心对称图形,不是轴对称图形,故此选项错误.故选:B.根据中心对称图形的定义:旋转180°后能够与原图形完全重合即是中心对称图形;轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,即可判断出答案.本题考查了中心对称图形与轴对称图形,掌握中心对称图形与轴对称图形的概念即可,属于基础题.3.【答案】D【解析】解:∵两个相似三角形面积的比为1:4,∴它们的相似比==.故选D.根据相似三角形的面积的比等于相似比的平方得到它们的相似比=,然后化简即可.本题主要考查了相似三角形的性质,利用相似三角形的面积的比等于相似比的平方是解答此题的关键.解:把方程x2-2x-1=0的常数项移到等号的右边,得到x2-2x=1,方程两边同时加上一次项系数一半的平方,得到x2-2x+1=1+1配方得(x-1)2=2.故选:D.在本题中,把常数项-1移项后,应该在左右两边同时加上一次项系数-2的一半的平方.考查了解一元二次方程-配方法,配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.5.【答案】C【解析】解:A、y=2x+1是一次函数,故本选项错误;B、自变量x的指数是2,不是反比例函数,故本选项错误;C、y是x的反比例函数,故本选项正确;D、y=2x是正比例函数,故本选项错误.故选C.根据反比例函数的定义和一次函数的定义对各选项分析判断即可得解.本题考查了反比例函数的定义,熟记一般式y=(k≠0)是解题的关键.6.【答案】B【解析】解:∵=0,∴=0,∵x-1≠0,∴x+1=0,∴x=-1;故选B.根据分式的值为0的条件是:(1)分子=0;(2)分母≠0.两个条件需同时具备,缺一不可,据此可以解答本题即可.此题考查了分式的值为0的条件,由于该类型的题易忽略分母不为0这个条件,所以常以这个知识点来命题.解:∵正方形OABC绕着点O逆时针旋转40°得到正方形ODEF,∴∠AOF=90°+40°=130°,OA=OF,∴∠OFA=(180°-130°)÷2=25°.故选:C.先根据正方形的性质和旋转的性质得到∠AOF的度数,OA=OF,再根据等腰三角形的性质即可求得∠OFA的度数.考查了旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等.同时考查了正方形的性质和等腰三角形的性质.8.【答案】A【解析】解:A、由函数y=的图象可知k>0与y=kx+3的图象k>0一致,故A选项正确;B、因为y=kx+3的图象交y轴于正半轴,故B选项错误;C、因为y=kx+3的图象交y轴于正半轴,故C选项错误;D、由函数y=的图象可知k>0与y=kx+3的图象k<0矛盾,故D选项错误.故选:A.根据一次函数及反比例函数的图象与系数的关系作答.本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.9.【答案】B【解析】解:设有x个队,每个队都要赛(x-1)场,但两队之间只有一场比赛,x(x-1)÷2=21,解得x=7或-6(舍去).故应邀请7个球队参加比赛.故选B赛制为单循环形式(每两队之间都赛一场),x个球队比赛总场数=.即可列方程求解.此题考查方程的应用问题,解决本题的关键是读懂题意,得到总场数的等量关系.10.【答案】C【解析】解:观察图形得:第①个矩形的周长为:2×(1+2)=2×3=6;第②个矩形的周长为:2×(2+3)=2×5=10;第③个矩形的周长为:2×(3+5)=2×8=16;第④个矩形的周长为:2×(5+8)=2×13=26;第⑤个矩形的周长为:2×(8+13)=2×21=42;第⑥个矩形的周长为:2×(13+21)=2×34=68;故选:C.观察图形发现规律,用穷举法写出结果即可.本题考查了图形的变化类问题,解答此类题目可以采用穷举法和通项公式法.11.【答案】B【解析】解:根据题意得2k2+k-6=0,解得k=-2或,当k=时,原方程变形为4x2+5=0,△=0-4×4×5<0,此方程没有实数解,所以k的值为-2.故选B.根据根与系数的关系得到2k2+k-6=0,解得k的值,然后根据根的判别式确定满足条件的k的值.本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=-,x1x2=.12.【答案】C【解析】解:设点A的坐标为(m,n),则点C(m,n),点B(m,0),∵反比例函数y=经过点C,∴k=m×n=mn,∵点D在反比例函数y=的图象上,∴点D(m,n),∴∴又∵△ACD的面积为,∴,∴k=mn=6.故选C.设点A的坐标为(m,n),则点C(m,n),点B(m,0),由点C在反比例函数图象上即可得出k=mn,由此即可找出点D的坐标,再结合△ACD的面积为,可求出S△AOB=mn=12,将mn当成整体即可求出k值.本题考查了反比例函数图象上点的坐标特征以及三角形的面积公式,解题的关键是找出mn的值.本题属于中档题,解决该题时,设出点A的坐标,用点A的坐标去表示其它点的坐标,再利用反比例函数图象上点的坐标特征表示出k是关键.13.【答案】x1=0,x2=5【解析】解:x2-5x=0,∴x(x-5)=0,∴x=0或x-5=0,∴x1=0,x2=5.故答案为x1=0,x2=5.先把方程变形为x2-5x=0,把方程左边因式分解得x(x-5)=0,则有x=0或x-5=0,然后解一元一次方程即可.本题考查了利用因式分解法解一元二次方程:先把方程变形为一元二次方程的一般形式,然后把方程左边因式分解,这样就把方程转化为两个一元一次方程,再解一元一次方程即可.14.【答案】25【解析】解:∵∠BAD=80°,菱形邻角和为180°∴∠ABC=100°,∵菱形对角线即角平分线∴∠ABO=50°,∵BE=BO∴∠BEO=∠BOE==65°,∵菱形对角线互相垂直∴∠AOB=90°,∴∠AOE=90°-65°=25°,故答案为25.根据∠BAD和菱形邻角和为180°的性质可以求∠ABC的值,根据菱形对角线即角平分线的性质可以求得∠ABO的值,又由BE=BO可得∠BEO=∠BOE,根据∠BOE和菱形对角线互相垂直的性质可以求得∠EOA的大小.本题考查了菱形对角线互相垂直平分且平分一组对角的性质,考查了等腰三角形底角相等的性质,本题中正确的计算∠BEO=∠BOE=65°是解题的关键.15.【答案】k≥-6【解析】解:当k=0时,-4x-=0,解得x=-,当k≠0时,方程kx2-4x-=0是一元二次方程,根据题意可得:△=16-4k×(-)≥0,解得k≥-6,k≠0,综上k≥-6,故答案为k≥-6.由于k的取值不确定,故应分k=0(此时方程化简为一元一次方程)和k≠0(此时方程为二元一次方程)两种情况进行解答.本题考查的是根的判别式,注意掌握一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.同时解答此题时要注意分k=0和k≠0两种情况进行讨论.16.【答案】y2<y3<y1【解析】解:∵点(-1、y1),(2、y2),(5、y3)都在反比例函数y=(k<0)的图象上,∴y1=-k,y2=,y3=,∵k<0,∴<<0<-k,即y2<y3<y1.故答案为:y2<y3<y1.根据点在反比例函数图象上可用含k的代数式表示出y1、y2、y3的值,再根据k<0,即可得出结论.本题考查了反比例函数图象上点的坐标特征,解题的关键是用含k的代数式表示出y1、y2、y3的值.本题属于基础题,难度不大,解决该题型题目时,根据点在反比例函数图象上,找出点的横纵坐标之间的关系是关键.17.【答案】a<2且a≠-2【解析】解:分式方程去分母得:x+a=-x+2,解得:x=,根据题意得:>0且≠2,解得:a<2,a≠-2.故答案为:a<2,a≠-2.分式方程去分母转化为整式方程,求出整式方程的解,令其解大于0列出关于a的不等式,求出不等式的解集即可得到a的范围.此题考查了分式方程的解,弄清题意是解本题的关键.18.【答案】522【解析】解:作CP⊥HG于P,∵四边形ABCD是正方形,∴CD=BC,AD∥BC,∠CDA=90°,∴∠DHC=∠HCE,由翻折性质可知,∠ECH=∠EHC,∴∠DHC=∠CHE,∵CD⊥HD,CP⊥HE,∴CP=CD=BC,∴△CHD≌△CHP,△CGP≌△CGB,∴DH=HP=2,PG=GB=3,∴HG=2+3=5,设正方形边长为a,在Rt△AHG中,∵HG2=AH2+AG2,∴52=(a-2)2+(a-3)2,∴a=6或-1(舍弃),∴CD=BC=6,BD=6,∵BG ∥CD ,∴===, ∴BM=2,∵DH ∥CB ,∴==,∴DN=,∴MN=BD-DN-BM=. 故答案为.作CP ⊥HG 于P ,首先证明DH=HP ,GP=BG ,推出GH=5,设正方形边长为a ,在Rt △AHG 中利用勾股定理求出a ,再由BG ∥CD ,得===,由DH ∥CB ,得==,分别求出BM 、DN 即可解决问题.本题考查翻折变换、正方形的性质、全等三角形的判定和性质、角平分线的性质、勾股定理、平行线分线段成比例定理等知识,解题的关键是学会添加辅助线,构造全等三角形解决问题,属于中考常考题型.19.【答案】解:(1)方程移项得:x 2+4x =9,配方得:x 2+4x +4=13,即(x +2)2=13,开方得:x +2=±,13解得:x 1=-2+,x 2=-2-;1313(2)去分母得:2+2x -2=-1,解得:x =-,12经检验x =-是分式方程的解.12【解析】(1)方程移项配方后,开方即可求出解;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.20.【答案】证明:平行四边形ABCD 中,AD ∥BC ,AD =BC ,∴∠ACB =∠CAD .又BE ∥DF ,∴∠BEC =∠DFA ,∴△BEC ≌△DFA ,∴CE =AF .【解析】先证∠ACB=∠CAD ,再证出△BEC ≌△DFA ,从而得出CE=AF .本题利用了平行四边形的性质,全等三角形的判定和性质.21.【答案】解:(a -)÷-a 22a a +1a 2−2a +1a 2−1=a(a +1)−2a a +1×(a +1)(a−1)(a−1)2−a 2=-a 2a 2+a−2a a−1=-a 2a(a−1)a−1=a -a 2,∵x 2-x -3=0,∴x 2-x =3,∵a 是此方程的解,∴a 2-a =3,∴原式=-(a 2-a )=-3.【解析】先对原式化简,再根据a 是方程x 2-x-3=0的解,可以求得a 2-a 的值,代入化简后的式子即可解答本题.本题考查分式的化简求值,解题的关键是明确分式的化简求值的方法.22.【答案】解:(1)∵△AOB 的面积为2,k <0,∴k =-4,则m ==2;−4−2(2)由(1)得:A (-2,2),故2=-2a +1,解得:a =-,12则y =-x +1,12当y =0,解得:x =2,故BC =2+2=4,则△ABC 的面积为:×2×4=4.12【解析】(1)根据题意,利用点A 的横坐标和△AOB 的面积,可得出k 的值以及得出m 的值;(2)将A 点的坐标代入直线方程中,可得出a 的值,即得直线方程,令y=0,可得出C 的坐标,即可得出BC 的长,又△ABC 的底边BC 对应的高为点A 的纵坐标,利用三角形的面积公式即可得出△ABC 的面积.本题主要考查了反比例函数解析式的确定以及和一次函数的综合应用,正确得出A 点坐标是解题关键.23.【答案】解:(1)设A 商品的进价为x 元/件,则B 商品的进价为(x -15)元/件,依题意得:=•,600x 12600x−15解得:x =30,经检验x =30是原方程的解.答:A 商品的进价为30元/件.(2)设每件A 商品售价为m (m >40,且m 为偶数)元,则每月的销售量为(600-×15)件,m−402依题意得:(m -30)×(600-×15)=10500,m−402解得:m =50或m =100,∵尽可能的减少A 商品的库存,∴每件A 商品售价应定为50元.【解析】(1)设A 商品的进价为x 元/件,则B 商品的进价为(x-15)元/件,由同样花600元购进的A 商品件数是B 商品的一半可列出关于x 的分式方程,解方程即可得出结论;(2)设每件A 商品售价为m (m >40,且m 为偶数)元,则每月的销售量为(600-×15)件,由总利润=单件利润×销售数量即可列出关于m 的一元二次方程,解方程求出m 的值,取其中较小的数,此题得解.本题考查了分式方程的应用以及一元二次方程的应用,解题的关键是:(1)根据数量关系列出分式方程;(2)根据数量关系列出一元二次方程.本题属于中档题,难度不大,解决该题型题目时,根据数量关系列出方程是关键.24.【答案】解:(1)2476是7的“同余数”,理由如下:∵2476÷7=353…5,(2+4+7+6)÷7=2…5,∴2476是7的“同余数”.(2)设该四位数为(a 、b 、c 、d 均为非0的一位正整数),abcd 根据题意得:或,{a =2c b =c +1a +b +c =5n d =3{a =2c b =c +1a +b +c =5n d =8解得:或,{a =2b =2c =1d =3{a =2b =2c =1d =8∴该四位数为2213或2218.【解析】(1)用2476除以7找出其余数,再将2476各数字相加除以7找出其余数,比较后即可得出结论;(2)设该四位数为(a 、b 、c 、d 均为非0的一位正整数),根据各位数字之间的关系可列出关于a 、b 、c 、d 的四元一次方程组,解之即可得出结论. 本题考查了因式分解的应用,读懂题意弄明白“同余数”的概念是解题的关键.25.【答案】(1)解:∵等腰直角三角形ABC 中,AB =AF =2,2∴AC ==4,AB 2+BC 2∴CF =AC -AF =4-2;2(2)证明:如图1,过点D 作DM ⊥EF 于点M ,则∠EDM +∠DEM =90°,∵∠DEM +∠AEH =90°,∴∠EDM =∠AEH ,∵AH ⊥EF ,∴∠AHE =∠DME =90°,∠FAH =∠EAF =×(90°+45°)1212=67.5°,在△DEM 和△EAH 中,,{∠EDM =∠AEH ∠DME =∠EHA DE =EA∴△DEM ≌△EAH (AAS ),∴DM =EH ,EM =AH ,∵AG 平分∠BAC ,∴∠FAG =∠BAC =22.5°,12∴∠HAG =∠FAH -∠FAG =45°,∴△AHG 是等腰直角三角形,∴AH =HG ,AG =AH =EM ,22∴EM =HG ,∴EH =GM ,∴DM =MG ,即△DMG 是等腰直角三角形,∴DG =MG ,2∴DG +AG =GM +EM =(GM +EM )=EG ;2222(3)解:如图2,以AC 为直径作圆,延长MN 到Q ,使得MQ =AM ,连接AQ .∵AM ⊥CN ,△ABC 为等腰直角三角形,∴∠AMC =∠AMN =90°,∠ABC =90°,∴点B 、M 在圆上,∴∠AMB =∠ACB =45°.∵∠AMN =90°,AM =MQ ,∴△AMQ 为等腰直角三角形,∴∠AQM =45°=∠AMB .又∵∠BAM =∠BAC +∠CAM =45°+∠CAM ,∠CAQ =∠CAM +∠MAQ =∠CAM +45°,∴∠BAM =∠CAQ ,∴△BAM ∽△CAQ ,∴=.BM CQ =BA CA 22∵CQ =CM +MQ =CM +AM ,∴=.BM CM +AM 22【解析】(1)根据勾股定理得出AC 的长度,再根据边与边之间的关系即可得出结论; (2)过点D 作DM ⊥EF 于点M ,利用相等的边角关系证出△DEM ≌△EAH (AAS ),由此即可得出DM=EH ,EM=AH ,再通过角的计算找出△AHG 、△DMG 均为等腰直角三角形,根据等腰直角三角形的斜边与直角边的关系即可证出DG+AG=EG ;(3)以AC 为直径作圆,延长MN 到Q ,使得MQ=AM ,连接AQ ,根据∠AMC=∠ABC=90°,可得出点B 、M 在圆上,根据圆周角定理即可得出∠AMB=∠ACB=45°,由∠AMN=90°,AM=MQ 可得出△AMQ 为等腰直角三角形,进而得出∠AQM=45°=∠AMB ,再通过角的计算得出∠BAM=∠CAQ ,由此即可得出△BAM ∽△CAQ ,根据相似三角形的性质即可得出=. 本题考查了勾股定理、等腰直角三角形的性质、圆周角定理以及相似三角形的判定与性质,解题的关键是:(1)根据勾股定理算出AC 的长度;(2)根据等腰直角三角形的性质找出DG+AG=GM+EM=(GM+EM )=EG ;(3)根据相似三角形的性质找出比例关系式.本题属于难题,考到较多的知识点,解决该题型题目时,构建等腰直角三角形以及圆,利用等腰直角三角形的性质找出边与边的关系以及利用圆周角定理找出相等的角是关键.26.【答案】3;143【解析】解:(1)当x=时,y=-×+=,∴A (,), 设l OA 的解析式为:y=kx ,把A(,)代入得:=k,k=,∴l OA的解析式为:y=x,由正方形CDEF的一点E在反比例函数y=-上,则正方形边长为4,设D(t,4),当D落在线段AO上时,4=t,t=3,当D落在线段AB上时,4=-t+,t=,故答案为:3,;(2)①当0≤t≤3时,如图2,∵OC=t,则CG=t,∴S=CG•OC=×t×=t,②当3<t≤时,如图3,过G作GM⊥x轴于M,则tan∠GOM=,OF=t-4,∴tan∠GOM=,∴FH=(t-4),∴EH=4-(t-4),∵EG=FM=3-(t-4)=7-t,∴S=16-S△EGH=16-×EH×EG=16-[4-(t-4)](7-t)=-t2+t-;③当<t≤7,如图4,当y=0,-x+=0,x=10,∵HM=-3=,DM=OC-OQ=t-,过M作MQ⊥x轴于Q,则MQ=4,OQ=,BQ=10-=,∴tan∠MBQ===,∵ED∥FC,∴∠DMN=∠MBQ,∴tan∠DMN=,∴=,∴ND=(t-),∴S=16-S△EGH-S△DMN,=-t2+t--(t-),=-+t-;(3)如图5,过P作PQ⊥x轴于Q,由(2)得:tan∠PBQ=,∵BP=t,∴PQ=,BQ=,∴OQ=OB-BQ=10-,∴P(10-,),如图6,当|AC|=|AP|时,过A作AG⊥x轴,过P作PH⊥x轴,作PQ⊥x轴,垂足分别为G、H、Q,在Rt△ACG和Rt△AHP中,得=,解得:t=,如图7,当|AC|=|PC|时,同理构建Rt△ACG和Rt△PCQ,得:=,解得:t1=8(舍)或t2=,综上所述:使得△CAP是以AC为腰的等腰三角形的t的值为或.(1)先求点A的坐标,并求直线l OA的解析式;根据正方形CDEF的一点E在反比例函数y=-上,则边长为4,平移得,点D的纵坐标总是4,横坐标为其速度t,因此点D在哪条直线上,就代入哪个解析式即可;(2)分三种情况讨论:①当0≤t≤3时,如图2,重叠面积为△OCG的面积,利用面积公式求得;②当3<t≤时,如图3,过G作GM⊥x轴于M,重叠面积为正方形CDEF面积减去△EGH的面积;③当<t≤7,如图4,重叠面积S=16-S△EGH-S△DMN;(3)如图5,先求点P的坐标,分两种情况:如图6,当|AC|=|AP|时,根据图形构建两个直角三角形,利用勾股定理列方程解出t的值;如图7,当|AC|=|PC|时,同理可得t的值.本题是反比例函数的综合题,考查了利用待定系数法求反比例函数和一次函数的解析式;对于求两图形重叠部分的面积,要先确定其特殊位置时t的值,弄清运动过程中形成的重叠部分图形的形状分几类,从而确定分几种情况进行讨论;再求t的值时,与方程相结合,利用勾股定理列方程.。

人教版八年级数学下册重庆市第一中学期末考试试题

人教版八年级数学下册重庆市第一中学期末考试试题

初中数学试卷重庆一中初2016级14—15学年度下期期末考试数学试卷2015.07(时间:120分钟满分:150分)一.细心选一选:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填在表格中.题号 1 2 3 4 5 6 7 8 9 10 11 12答案1.在分式12-x中,x的取值范围是().A.1≠x B.0≠x C.1>x D.1<x2.在以下回收、绿色食品、节能、节水四个标志中,是中心对称图形的是().A.B.C.D.3.已知βα、是一元二次方程x2-2x-3=0的两个根,则βα+的值().A.2B.2-C.3D.3-4.如图,反比例函数xky=的图象过点A,过点A分别向x轴和y轴作垂线,垂足为B和C,若矩形ABOC的面积为2,则k的值为().A.4 B.2 C.1 D.215.如图所示,在□ABCD中,对角线AC,BD交于点O,OE∥BC交CD于E,若OE=3cm,则AD的长为().A.3cm B.6cm C.9cm D.12cm4题图y xEDCBAO12题图6.方程2650x x +-=的左边配成完全平方后所得方程为( ).A .2(3)4x += B. 2(3)14x -= C. 2(3)14x += D .2(6)41x +=7.果一个多边形的每一个内角都是108°,那么这个多边形是( ). A .四边形 B .五边形 C .六边形 D .七边形8.分式方程3211x x =-+的解是( ). A .5x =- B .5x = C .3x =- D .3x =9.如图,菱形ABCD 中,已知∠D =110°,则∠BAC 的度数为( ).A .30°B .35°C .40°D .45°10.若关于x 的一元二次方程0962=+-x kx 有两个不相等的实 数根,则k 的取值范围( ).A. k <1 B . 1≤k C . k <1且k ≠0 D . 1≤k 且0≠k11.下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有9个,第(2)个图形中面积为1的正方形有14个,…,按此规律.则第 (10)个图形中面积为1的正方形的个数为( ).A .72B .64C .54D .50 12.已知四边形OABC 是矩形,边OA 在x 轴上,边OC 在y 轴上, 双曲线与边BC 交于点D 、与对角线OB 交于点中点E, 若△OBD 的面积为10,则k 的值是( ).A .10B . 5C . 310D . 320二、耐心填一填(本大题共6个小题,每小题4分,共24分)请将每小题的正确答案填入下面的表格中.题号1314151617 18ADBC9题图11题图15题图13.分解因式222-m= ▲ .14.若分式33xx--的值为零,则x=▲ .15.如图,在矩形ABCD中,对角线AC,BD相交于点O,AB=4,∠AOD=120°,则对角线AC的长度为▲ .16.已知2=x是一元二次方程022=++mxx的一个解,则m的值是▲ .17.由于天气炎热,某校根据《学校卫生工作条例》,为预防“蚊虫叮咬”,对教室进行“薰药消毒”.已知药物在燃烧机释放过程中,室内空气中每立方米含药量y(毫克)与燃烧时间x(分钟)之间的关系如图所示(即图中线段OA和双曲线在A点及其右侧的部分),当空气中每立方米的含药量低于2毫克时,对人体无毒害作用,那么从消毒开始,至少在▲分钟内,师生不能呆在教室.18.如图,在正方形ABCD中,22=AB,将BAD∠绕着点A顺时针旋转 α(450<<α),得到''ADB∠,其中过点B作与对角线BD垂直的直线交射线'AB于点E,射线'AD与对角线BD交于点F,连接CF,并延长交AD于点M,当满足CDMAEBFSS∆=2四边形时,线段BE的长度为▲ .三.解答题(本大题共4个小题,19题10分,20题8分,21题8分,22题8分,共34分)解答时每小题必须给出必要的演算过程或推理步骤.19.解方程:答案17题图MD′B′FEDCBA18题图(1) 0262=--x x (2)11122x x x-=+--20. 如图,在□ABCD 中,∠ABD 的平分线BE 交AD 于点E ,∠CDB 的平分线DF 交BC 于点F . (1)求证:△ABE ≌△CDF ;(2)若AB =DB ,求证:四边形DFBE 是矩形.21. 如图,一次函数y=kx+b(k ≠0)的图象过点P(-32,0),且与反比例函数y=mx(m ≠0)的图象相交于点A(-2,1)和点B .(1)求一次函数和反比例函数的解析式;(2)求点B 的坐标,并根据图象回答:当x 在什么范围内取值时,一次函数的函数值小于反比例函数的函数值.22. 童装店在服装销售中发现:进货价每件60元,销售价每件100元的某童装平均每天可售出20件.为了迎接“六一”, 童装店决定采取适当的降价措施,扩大销售量,增加盈利.经调查发现:如果每件童装降价1元,那么平均每天就可多售出2件, (1)降价前,童装店每天的利润是多少元?(2)如果童装店每要每天销售这种童装盈利1200元,同时又要使顾客得到更多的实惠,那么每件童装应降价多少元?四、解答题(本大题共2个小题,每小题10分,共20分)解答时每小题必须给出必要的演算过程或推理步骤.23. 先化简,再求值:)14()22441(22-÷-+-+--aa a a a a a ,其中a 是方程2420a a -+=的解. ABCDEF24.阅读理解: 在平面直角坐标系xoy 中,对于任意两点P 1(x 1,y 1)与P 2(x 2,y 2)的“非常距离”,给出如下定义:若∣x 1-x 2∣≥∣y 1-y 2∣,则点P 1与点P 2的“非常距离”为∣x 1-x 2∣; 若∣x 1-x 2∣<∣y 1-y 2∣,则点P 1与点P 2的“非常距离”为∣y 1-y 2∣.例如:点P 1(1,2),点P 2(3,5),因为∣1-3∣<∣2-5∣,所以点P 1与点P 2的“非常距离”为∣2-5∣=3,也就是图1中线段P 1Q 与线段P 2Q 长度的较大值(点Q 为垂直于y 轴的直线P 1Q 与垂直于x 轴的直线P 2Q 的交点)。

(精品)重庆一中初级-年八年级下学期期末数学试题

(精品)重庆一中初级-年八年级下学期期末数学试题

重庆一中初2012级2010-2011年八年级下学期期末数学试题(全卷共五个大题,满分150分,考试时间120分钟) 注意事项:1. 试题的答案用钢笔或圆珠笔书写在答题卷上,不得在试卷上直接作答.2. 答题前将答题卷上密封线内的各项内容写清楚.3. 考试结束,由监考人员将答题卷收回,试题卷不收回.一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案的代号填入答题卷中对应的表格内.1.不等式21>+x 的解集是A.1>xB.1<xC.1≥xD.1≤x 2.多项式22y x -分解因式的结果是 A.2)(y x + B.2)(y x - C.))((y x y x -+ D.))((x y x y -+3.函数23-=x y 的自变量的取值范围是 A.2>x B.2≠x C.2≥x D.2-≠x4.如图,点C 是线段AB 的黄金分割点)(BC AC >,下列结论错误的是 A.ACBC AB AC =B.BC AB BC ⋅=2C.215-=ABAC D.618.0≈ACBC5.若ABC ∆∽DEF ∆,若050=∠A ,060=∠B ,则F ∠的度数是 A.050 B.060 C.070 D.080 6.下列调查中,适宜采用普查方式的是A.调查中国第一艘航母各零件的使用情况B.调查重庆市中学生对利比亚局势的看法C.调查一箱牛奶是否含有三聚氰胺D.调查重庆一中所有学生每天跳绳的时间7.若0=+-c b a ,则关于x 的一元二次方程)0(02≠=++a c bx ax 有一根是 A.1=x B.1-=x C.0=x D.无法判断 8. 已知反比例函数xy 1-=图像上有三个点的坐标分别为),(11y x A 、),(22y x B 、),(33y x C ,若4题图当3210x x x <<<时,则1y 、2y 、3y 的大小关系是A.321y y y <<B.123y y y <<C.213y y y <<D.312y y y << 9. 如图1,已知AC AB =,D 为BAC ∠的角平分线上面一点,连接BD ,CD ;如图2,已知AC AB =,D 、E 为BAC ∠的角平分线上面两点,连接BD ,CD ,BE ,CE ;如图3,已知AC AB =,D 、E 、F 为BAC ∠的角平分线上面三点,连接BD ,CD ,BE ,CE ,BF ,CF ;……,依次规律,第n 个图形中有全等三角形的对数是A.n B.12-n C.2D.)1(3+n 10.如图,正方形ABCD 中,E 为AD 的中点,CE DF ⊥于M ,交AC 于N ,交AB 于F ,连接EN 、BM .有如下结论: ①DCE ADF ∆≅∆;②FN MN =;③AN CN 2=;④5:2:=∆CNFB ADN S S 四边形;⑤BMF ADF ∠=∠.其中正确结论的个数是 A.2个 B.3个 C.4个 D.5个 二、填空题:(本大题6个小题,每小题4分,共24对应的横线上.11.分解因式:=+-2422x x .12.如图,DE 是ABC ∆的中位线,则ADE ∆与ABC ∆的面积比为.13.重庆一中初2012级举行了丰富多彩的综合实践活动,在刚刚结束的跳绳比赛中, 初2012级某6个班跳绳个数分别是:570,600,552,482,481,486. 则这组数据的中位数是. 14. 若一元二次方程022=++k x x 有两个实数根,则k 的取值范围是. 15.如图,在平面直角坐标系xOy 中,P 是反比例函数图象上一点,过点P 作x PA ⊥轴于点A ,1=∆AOP S ,则这个反比例函数的解析式是.16.一个水池装一个进水管和三个同样的出水管,先打开进水管,等水池存一些水后 再打开出水管(进水管不关闭).若同时打开2个出水管,那么8如果同时打开3个出水管,则5分钟后水池空.那么出水管比进水管晚开分钟. 三、解答题:(本大题4个小题,每小题6分,共24分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卷中对应的位置上. C17.解不等式212-<-x x ,并把解集在数轴上表示出来. 解分式方程32121---=-xxx . 18.19.解一元二次方程03622=-+x x .20.如图,在ABC ∆中,BC DE //,DE 交AC 于E 点,DE 交AB 于D 点,若5=AE ,2=CE ,3=DE .求BC 的长.四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卷中对应的位置上.21.先化简,再求值:aa a a a a 4)4822(222-÷-+-+,其中a 满足方程0142=++a a . 22.如图,已知一次函数b x k y +=1的图象分别与x 轴、y 轴的正半 轴交于A 、B 两点,且与反比例函数xk y 2=交于C 、E 两 点,点C 在第二象限,过点C 作CD ⊥x 轴于点D , 1==OB OA ,2=CD .(1)求反比例函数与一次函数的解析式; (2)求BOC ∆的面积.23.重庆一中初2012级上周刚刚举行了初二下期体育期末考试,现随机抽取了部分学生的成绩为样本,按A (优秀)、B (良好)、C (及格)、D (不及格)四个等级进行统计,并将统计结果制成如下统计图.如图,请你结合图表所给信息解答下列问题:(1) 本次调查共随机抽取了名学生; (2) 将条形统计图在图中补充完整;(3) 扇形统计图中“A ”部分所对应的圆心角的度数是; (4) 若随机抽取一名学生的成绩在等级C 的概率是;初2012级目前举行了四次体育期末考试,分别是初一上期体育期末考试、初一下期体育期末考试、初二上期体育期末考试、初二下期体育期末考试.学生小欣初一下期体育期末考试成绩为25分,初二下期体育期末考试成绩为36分,若每次体育期末考试小欣体育成绩的增长率相同,求出这个增长率. 24.如图,梯形上一点,F 是(1) 当=CE (2) 求证:20题图M NC AQAC N五、解答题:(本大题2个小题,第25小题10分,第26小题12分,共22分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卷中对应的位置上.25.某商店今年61-月份经营A 、B 两种电子产品,已知A 产品每个月的销售数量y (件)与月份x (61≤≤x 且x 为整数)之间的关系如下表: 月份x 1 2 3 4 5 6 销量y 600 300 200 150 120 100A 产品每个月的售价z (元)与月份x 之间的函数关系式为:x z 10=; 已知B 产品每个月的销售数量m (件)与月份x 之间的关系为:622+-=x m ,B 产品每个月的售价n (元)与月份x 之间存在如图所示的变化趋势:(1) 请观察题中表格,用所学过的一次函数或反比例函数的有关知识,直接写出y 与x 的函数关系式;(2) 请观察如图所示的变化趋势,求出n 与x 的函数关系式;(3) 求出此商店61-月份经营A 、B 两种电子产品的销售总额w 与月份x 之间的函数关系式;今年7月份,商店调整了A 、B 两种电子产品的价格,A 产品价格在6月份基础上增加%a ,B 产品价格在6月份基础上减少%a ,结果7月份A 产品的的销售数量比6月份减少%2a ,B 产品的销售数量比6月份增加%2a .若调整价格后7月份的销售总额比6月份的销售总额少2000元,请根据以下参考数据估算a 的值.(参考数据:69.393.62=,91.404.62=,25.425.62=,56.436.62=)26.如图(1)AOB Rt ∆中,090=∠A ,060=∠AOB ,32=OB ,AOB ∠的平分线OC 交AB于C ,过O 点作与OB 垂直的直线ON .动点P 从点B 出发沿折线CO BC -以每秒1个单位长度的速度向终点O 运动,运动时间为t 秒,同时动点Q 从点C 出发沿折线ON CO -以相同的速度运动,当点P 到达点O 时P 、Q 同时停止运动. (1)求OC 、BC 的长;(2)设CPQ ∆的面积为S ,直接写出S 与t 的函数关系式;(3)当P 在OC 上、Q 在ON 上运动时,如图(2),设PQ 与OA 交于点M ,当t 为何值时,OPM ∆为等腰三角形?求出所有满足条件的t 值.参考答案(本卷共五个大题 满分:150分 考试时间:120分钟)注意事项:24题图n (1.试卷各题的答案用钢笔或圆珠笔书写在答题卷上,不得在试卷上直接作答。

2014-2015学年重庆市沙坪坝区八年级(下)期末数学试卷

2014-2015学年重庆市沙坪坝区八年级(下)期末数学试卷

2014-2015学年重庆市沙坪坝区八年级(下)期末数学试卷一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上对应题目的正确答案标号涂黑.1.(4分)在平面直角坐标系中,点P(﹣3,0)在()A.x轴上B.y轴上C.第三象限D.第四象限2.(4分)七名学生的鞋号分别是:20,21,21,22,22,22,23.则这组数据的众数是()A.20 B.21 C.22 D.233.(4分)在▱ABCD中,∠A=2∠B,则∠B的度数是()A.30°B.60°C.90°D.120°4.(4分)用配方法解方程x2﹣8x+9=0时,原方程可变形为()A.(x﹣4)2=9 B.(x﹣4)2=7 C.(x﹣4)2=﹣9 D.(x﹣4)2=﹣75.(4分)平行四边形、矩形、菱形、正方形都具有的是()A.对角线互相平分 B.对角线互相垂直C.对角线相等D.对角线互相垂直且相等6.(4分)某种签字笔的单价为2元,购买这种签字笔x支的总价为y元.则y 与x之间的函数关系式为()A.y=﹣x B.y=x C.y=﹣2x D.y=2x7.(4分)菱形ABCD的周长是20,对角线AC=8,则菱形ABCD的面积是()A.12 B.24 C.40 D.488.(4分)已知反比例函数(m为常数),当x>0时,y随x的增大而增大,则m的取值范围是()A.m>0 B.m>2 C.m<0 D.m<29.(4分)一辆小轿车匀速从甲地开往乙地,但行至途中汽车出了故障,只好停下修车,修好后,为了按时到达乙地,司机适当加快了匀速行驶的速度.下面能反映小轿车行驶路程S(千米)与时间t(小时)的函数关系的大致图象是()A.B.C.D.10.(4分)如图,▱ABCD中,AB=4,BC=6,AC的垂直平分线交AD于点E,则△CDE的周长是()A.6 B.8 C.10 D.1211.(4分)已知关于x的方程kx2+(1﹣k)x﹣1=0,下列说法正确的是()A.当k=0时,方程无解B.当k=1时,方程有一个实数解C.当k=﹣1时,方程有两个相等的实数解D.当k≠0时,方程总有两个不相等的实数解12.(4分)如图,在△ABC中,点E,D,F分别在边AB、BC、CA上,且DE∥CA,DF∥BA.下列四个判断中,不正确的是()A.四边形AEDF是平行四边形B.如果∠BAC=90°,那么四边形AEDF是矩形C.如果AD平分∠BAC,那么四边形AEDF是菱形D.如果AD⊥BC且AB=AC,那么四边形AEDF是正方形二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.(4分)一元二次方程x(x﹣2)=0的两个实数根中较大的根是.14.(4分)某班5名同学进行定点投篮测试,每人投篮10次,投中的次数统计如下:2,6,8,2,10.则这组数据的中位数是.15.(4分)如图,点E是矩形ABCD内任一点,若AB=3,BC=4.则图中阴影部分的面积为.16.(4分)已知m、n是方程x2﹣x﹣3=0的两个根,则代数式m+n ﹣1的值为.17.(4分)如图,正方形ABCD中,AB=2,AC,BD交于点O.若E,F分别是边AB,BC上的动点,且OE⊥OF,则△OEF周长的最小值是.18.(4分)如图,函数y=﹣x与函数y=﹣的图象交于A,B两点,过A,B两点分别作y轴的垂线,垂足分别为点C,点D.则四边形ACBD的面积为.三、解答题:(本大题2个小题,每小题7分,共14分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.19.(7分)解方程:x2+x﹣1=0.20.(7分)如图,在▱ABCD中,E,F是对角线AC上的两点,且AE=CF.求证:BE=DF .四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.21.(10分)小青在八年级上学期各次数学考试的成绩如表:(1)求小青该学期平时测验的平均成绩;(2)如果学期的总评成绩是根据图所示的权重计算,请计算出小青该学期的总评成绩.22.(10分)如图,一次函数y=x +2的图象交x 轴于点A ,且过点B (1,m ).点B 在反比例函数y=(k ≠0)的图象上.(1)求该反比例函数的解析式;(2)连结OB ,求△AOB 的面积;并结合图形直接写出当函数值y <m 时,该反比例函数的自变量x 的取值范围.23.(10分)某商场一种商品的进价为每件30元,售价为每件40元.每天可以销售48件,为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;(2)经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得512元的利润,每件应降价多少元?24.(10分)阅读下面的例题与解答过程:例.解方程:x2﹣|x|﹣2=0.解:原方程可化为|x|2﹣|x|﹣2=0.设|x|=y,则y2﹣y﹣2=0.解得y1=2,y2=﹣1.当y=2时,|x|=2,∴x=±2;当y=﹣1时,|x|=﹣1,∴无实数解.∴原方程的解是:x1=2,x2=﹣2.在上面的解答过程中,我们把|x|看成一个整体,用字母y代替(即换元),使得问题简单化、明朗化,解答过程更清晰.这是解决数学问题中的一种重要方法﹣﹣换元法.请你仿照上述例题的解答过程,利用换元法解下列方程:(1)x2﹣2|x|=0;(2)x2﹣2x﹣4|x﹣1|+5=0.五、解答题:(本大题2个小题,每小题12分,共24分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.25.(12分)如图1,在菱形ABCD中,∠A=60°.点E,F分别是边AB,AD上的点,且满足∠BCE=∠DCF,连结EF.(1)若AF=1,求EF的长;(2)取CE的中点M,连结BM,FM,BF.求证:BM⊥FM;(3)如图2,若点E,F分别是边AB,AD延长线上的点,其它条件不变,结论BM⊥FM是否仍然成立(不需证明).26.(12分)如图1,在平面直角坐标系中,点A的坐标为(﹣4,4),点B的坐标为(0,2).(1)求直线AB的解析式;(2)以点A为直角顶点作∠CAD=90°,射线AC交x轴的负半轴于点C,射线AD 交y轴的负半轴于点D.当∠CAD绕着点A旋转时,OC﹣OD的值是否发生变化?若不变,求出它的值;若变化,求出它的变化范围;(3)如图2,点M(﹣4,0)和N(2,0)是x轴上的两个点,点P是直线AB 上一点.当△PMN是直角三角形时,请求出满足条件的所有点P的坐标.2014-2015学年重庆市沙坪坝区八年级(下)期末数学试卷参考答案与试题解析一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上对应题目的正确答案标号涂黑.1.(4分)在平面直角坐标系中,点P(﹣3,0)在()A.x轴上B.y轴上C.第三象限D.第四象限【解答】解:∵点P的纵坐标为0,∴点P在x轴上,故选:A.2.(4分)七名学生的鞋号分别是:20,21,21,22,22,22,23.则这组数据的众数是()A.20 B.21 C.22 D.23【解答】解:在这一组数据中22是出现次数最多的,故众数是22.故选:C.3.(4分)在▱ABCD中,∠A=2∠B,则∠B的度数是()A.30°B.60°C.90°D.120°【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠A+∠B=180°,∵∠A=2∠B,∴2∠B+∠B=180°,解得:∠B=60°;故选:B.4.(4分)用配方法解方程x2﹣8x+9=0时,原方程可变形为()A.(x﹣4)2=9 B.(x﹣4)2=7 C.(x﹣4)2=﹣9 D.(x﹣4)2=﹣7【解答】解:方程x2﹣8x+9=0,变形得:x2﹣8x=﹣9,配方得:x2﹣8x+16=7,即(x﹣4)2=7,故选:B.5.(4分)平行四边形、矩形、菱形、正方形都具有的是()A.对角线互相平分 B.对角线互相垂直C.对角线相等D.对角线互相垂直且相等【解答】解:A、对角线相等是平行四边形、矩形、菱形、正方形都具有的性质;B、对角线互相垂直是菱形、正方形具有的性质;C、对角线相等是矩形和正方形具有的性质;D、对角线互相垂直且相等是正方形具有的性质.故选:A.6.(4分)某种签字笔的单价为2元,购买这种签字笔x支的总价为y元.则y 与x之间的函数关系式为()A.y=﹣x B.y=x C.y=﹣2x D.y=2x【解答】解:依题意有:y=2x,故选:D.7.(4分)菱形ABCD的周长是20,对角线AC=8,则菱形ABCD的面积是()A.12 B.24 C.40 D.48【解答】解:∵菱形ABCD的周长是20,∴AB=20÷4=5,AC⊥BD,OA=AC=4,∴OB==3,∴BD=2OB=6,∴菱形ABCD的面积是:AC•BD=×8×6=24.故选:B.8.(4分)已知反比例函数(m为常数),当x>0时,y随x的增大而增大,则m的取值范围是()A.m>0 B.m>2 C.m<0 D.m<2【解答】解:∵反比例函数,当x>0时y随x的增大而增大,∴m﹣2<0,∴m<2.故选:D.9.(4分)一辆小轿车匀速从甲地开往乙地,但行至途中汽车出了故障,只好停下修车,修好后,为了按时到达乙地,司机适当加快了匀速行驶的速度.下面能反映小轿车行驶路程S(千米)与时间t(小时)的函数关系的大致图象是()A.B.C.D.【解答】解:通过分析题意可知,行走规律是:匀速走﹣﹣停﹣﹣匀速走,速度是前慢后快.所以图象是.故选:C.10.(4分)如图,▱ABCD中,AB=4,BC=6,AC的垂直平分线交AD于点E,则△CDE的周长是()A.6 B.8 C.10 D.12【解答】解:∵四边形ABCD是平行四边形,∴DC=AB=4,AD=BC=6,∵AC的垂直平分线交AD于点E,∴AE=CE,∴△CDE的周长=DE+CE+DC=DE+AE+DC=AD+DC=6+4=10;故选:C.11.(4分)已知关于x的方程kx2+(1﹣k)x﹣1=0,下列说法正确的是()A.当k=0时,方程无解B.当k=1时,方程有一个实数解C.当k=﹣1时,方程有两个相等的实数解D.当k≠0时,方程总有两个不相等的实数解【解答】解:关于x的方程kx2+(1﹣k)x﹣1=0,A、当k=0时,x﹣1=0,则x=1,故此选项错误;B、当k=1时,x2﹣1=0方程有两个实数解,故此选项错误;C、当k=﹣1时,﹣x2+2x﹣1=0,则(x﹣1)2=0,此时方程有两个相等的实数解,故此选项正确;D、由C得此选项错误.故选:C.12.(4分)如图,在△ABC中,点E,D,F分别在边AB、BC、CA上,且DE∥CA,DF∥BA.下列四个判断中,不正确的是()A.四边形AEDF是平行四边形B.如果∠BAC=90°,那么四边形AEDF是矩形C.如果AD平分∠BAC,那么四边形AEDF是菱形D.如果AD⊥BC且AB=AC,那么四边形AEDF是正方形【解答】解:A、因为DE∥CA,DF∥BA所以四边形AEDF是平行四边形.故A 选项正确.B、∠BAC=90°,四边形AEDF是平行四边形,所以四边形AEDF是矩形.故B选项正确.C、因为AD平分∠BAC,所以AE=DE,又因为四边形AEDF是平行四边形,所以是菱形.故C选项正确.D、如果AD⊥BC且AB=BC不能判定四边形AEDF是正方形,故D选项错误.故选:D.二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.(4分)一元二次方程x(x﹣2)=0的两个实数根中较大的根是x=2.【解答】解:解方程x(x﹣2)=0得,x=2或x=0,所以一元二次方程x(x﹣2)=0的两个实数根中较大的根是x=2,故答案为:x=2.14.(4分)某班5名同学进行定点投篮测试,每人投篮10次,投中的次数统计如下:2,6,8,2,10.则这组数据的中位数是 6 .【解答】解:这组数据按照从小到大的顺序排列为:2,2,6,8,10, 则中位数为:6.故答案为:6.15.(4分)如图,点E 是矩形ABCD 内任一点,若AB=3,BC=4.则图中阴影部分的面积为 6 .【解答】解:∵四边形ABCD 是矩形,∴AD=BC=4,设两个阴影部分三角形的底为AD ,BC ,高分别为h 1,h 2,则h 1+h 2=AB , ∴S △EAB +S △ECD =AD•h 1+BC•h 2=AD (h 1+h 2)=AD•AB=矩形ABCD 的面积=×3×4=6;故答案为:6.16.(4分)已知m 、n 是方程x 2﹣x ﹣3=0的两个根,则代数式m +n﹣1的值为 ﹣ .【解答】解:∵m 、n 是方程x 2﹣x ﹣3=0的两个根,∴m 2﹣m=3,n 2﹣n=3, ∴m +n ﹣1=(m 2﹣m )﹣(n 2﹣n )﹣1=﹣3﹣1=﹣.故答案为:﹣.17.(4分)如图,正方形ABCD中,AB=2,AC,BD交于点O.若E,F分别是边AB,BC上的动点,且OE⊥OF,则△OEF周长的最小值是2+.【解答】解:在正方形ABCD中,AO=BO,∠AOB=90°,∠OAE=∠OBF=45°,∵点E、F的速度相等,∴AE=BF,在△AOE和△BOF中,,∴△AOE≌△BOF(SAS),∴∠AOE=∠BOF,∴∠AOE+∠BOE=90°,∴∠BOF+∠BOE=90°,∴∠EOF=90°,在Rt△BEF中,设AE=x,则BF=x,BE=2﹣x,EF===.∴当x=1时,EF有最小值为.∴OE=OF=1.∴△OEF周长的最小值=2+.故答案为:2.18.(4分)如图,函数y=﹣x与函数y=﹣的图象交于A,B两点,过A,B两点分别作y轴的垂线,垂足分别为点C,点D.则四边形ACBD的面积为8.【解答】解:设A的坐标是(m,n),则B的坐标是(﹣m,﹣n),﹣mn=4则AC=﹣m,CD=2n.则S四边形ABCD=AC•CD=﹣2mn=8.故答案是:8.三、解答题:(本大题2个小题,每小题7分,共14分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.19.(7分)解方程:x2+x﹣1=0.【解答】解:a=1,b=1,c=﹣1,b2﹣4ac=1+4=5>0,x=;∴x1=,x2=.20.(7分)如图,在▱ABCD中,E,F是对角线AC上的两点,且AE=CF.求证:BE=DF.【解答】证明:证法一:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∴∠BAE=∠DCF.在△ABE和△CDF中,∴△ABE≌△CDF.∴BE=DF.证法二:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.∴∠DAF=∠BCE.∵AE=CF,∴AF=AE+EF=CF+EF=CE.在△ADF和△CBE中,∴△ADF≌△CBE.∴BE=DF.四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.21.(10分)小青在八年级上学期各次数学考试的成绩如表:(1)求小青该学期平时测验的平均成绩;(2)如果学期的总评成绩是根据图所示的权重计算,请计算出小青该学期的总评成绩.【解答】解:(1)平时测验总成绩为:132+105+146+129=512,平时测验平均成绩为:=128(分);答:小青该学期平时测验的平均成绩是12(8分).…(5分)(2)总评成绩为:128×10%+134×30%+130×60%=131(分),答:小青该学期的总评成绩是131分.22.(10分)如图,一次函数y=x+2的图象交x轴于点A,且过点B(1,m).点B在反比例函数y=(k≠0)的图象上.(1)求该反比例函数的解析式;(2)连结OB,求△AOB的面积;并结合图形直接写出当函数值y<m时,该反比例函数的自变量x的取值范围.【解答】解:(1)∵一次函数y=x+2的图象过点B(1,m),∴m=1+2=3.∴点B的坐标为(1,3).∵点B在反比例函数y=(k≠0)的图象上,∴3=,即k=3.∴该反比例函数的解析式为y=.(2)在y=x+2中,令y=0,则0=x+2,得x=﹣2,∴点A的坐标为(﹣2,0),∴OA=2.又∵点B的坐标为(1,3),∴△AOB中OA边上的高为3.∴S=×2×3=3,△AOB当函数值y<m时,即y<3,由函数图象可知自变量x的取值范围是:x>1或x <0.23.(10分)某商场一种商品的进价为每件30元,售价为每件40元.每天可以销售48件,为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;(2)经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得512元的利润,每件应降价多少元?【解答】解:(1)设每次降价的百分率为x,由题意,得40×(1﹣x)2=32.4,x=10%或190%(190%不符合题意,舍去).答:该商品连续两次下调相同的百分率后售价降至每件32.4元,两次下降的百分率啊10%;(2)设每天要想获得510元的利润,且更有利于减少库存,则每件商品应降价510元,由题意,得(40﹣30﹣y)(×4+48)=512,解得:y1=y2=2.答:要使商场每天要想获得512元的利润,每件应降价2元.24.(10分)阅读下面的例题与解答过程:例.解方程:x2﹣|x|﹣2=0.解:原方程可化为|x|2﹣|x|﹣2=0.设|x|=y,则y2﹣y﹣2=0.解得y1=2,y2=﹣1.当y=2时,|x|=2,∴x=±2;当y=﹣1时,|x|=﹣1,∴无实数解.∴原方程的解是:x1=2,x2=﹣2.在上面的解答过程中,我们把|x|看成一个整体,用字母y代替(即换元),使得问题简单化、明朗化,解答过程更清晰.这是解决数学问题中的一种重要方法﹣﹣换元法.请你仿照上述例题的解答过程,利用换元法解下列方程:(1)x2﹣2|x|=0;(2)x2﹣2x﹣4|x﹣1|+5=0.【解答】解:(1)原方程可化为|x|2﹣2|x|=0,设|x|=y,则y2﹣2y=0.解得y1=0,y2=2.当y=0时,|x|=0,∴x=0;当y=2时,∴x=±2;∴原方程的解是:x1=0,x2=﹣2,x3=2.(2)原方程可化为|x﹣1|2﹣4|x﹣1|+4=0.设|x﹣1|=y,则y2﹣4y+4=0,解得y1=y2=2.即|x﹣1|=2,∴x=﹣1或x=3.∴原方程的解是:x1=﹣1,x2=3.五、解答题:(本大题2个小题,每小题12分,共24分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.25.(12分)如图1,在菱形ABCD中,∠A=60°.点E,F分别是边AB,AD上的点,且满足∠BCE=∠DCF,连结EF.(1)若AF=1,求EF的长;(2)取CE的中点M,连结BM,FM,BF.求证:BM⊥FM;(3)如图2,若点E,F分别是边AB,AD延长线上的点,其它条件不变,结论BM⊥FM是否仍然成立(不需证明).【解答】(1)解:∵四边形ABCD是菱形,∴AB=AD=BC=DC,∠D=∠CBE,又∵∠BCE=∠DCF,∴△CBE≌△CDF,∴BE=DF.又∵AB=AD,∴AB﹣BE=AD﹣DF,即AE=AF,又∵∠A=60°,∴△AEF是等边三角形,∴EF=AF,∵AF=1,∴EF=1.(2)证明:如图1,延长BM交DC于点N,连结FN,∵四边形ABCD是菱形,∴DC∥AB,∴∠NCM=∠BEM,∠CNM=∠EBM∵点M是CE的中点,∴CM=EM.∴△CMN≌△EMB,∴NM=MB,CN=BE.又∵AB=DC.∴DC﹣CN=AB﹣BE,即DN=AE.∵△AEF是等边三角形,∴∠AEF=60°,EF=AE.∴∠BEF=120°,EF=DN.∵DC∥AB,∴∠A+∠D=180°,又∵∠A=60°,∴∠D=120°,∴∠D=∠BEF.又∵DN=EF,BE=DF.∴△FDN≌△BEF,∴FN=FB,又∵NM=MB,∴BM⊥MF;(3)结论BM⊥MF仍然成立.证明:如图2,延长BM交DC的延长线于点N,连结FN,∵四边形ABCD是菱形,∴DC∥AB,∴∠NCM=∠BEM,∠CNM=∠EBM∵点M是CE的中点,∴CM=EM.∴△CMN≌△EMB,∴NM=MB,CN=BE.又∵AB=DC.∴DC﹣CN=AB﹣BE,即DN=AE.∵△AEF是等边三角形,∴∠AEF=60°,EF=AE.∴∠BEF=120°,EF=DN.∵DC∥AB,∴∠A+∠FDC=180°,又∵∠A=60°,∴∠FDC=120°,∴∠FDC=∠BEF.又∵DN=EF,BE=DF.∴△FDN≌△BEF,∴FN=FB,又∵NM=MB,∴BM⊥MF.26.(12分)如图1,在平面直角坐标系中,点A的坐标为(﹣4,4),点B的坐标为(0,2).(1)求直线AB的解析式;(2)以点A为直角顶点作∠CAD=90°,射线AC交x轴的负半轴于点C,射线AD 交y轴的负半轴于点D.当∠CAD绕着点A旋转时,OC﹣OD的值是否发生变化?若不变,求出它的值;若变化,求出它的变化范围;(3)如图2,点M(﹣4,0)和N(2,0)是x轴上的两个点,点P是直线AB 上一点.当△PMN是直角三角形时,请求出满足条件的所有点P的坐标.【解答】解:(1)设直线AB的解析式为:y=kx+b(k≠0),∵点A(﹣4,4),点B(0,2)在直线AB上,∴,解得:.∴直线AB的解析式为:y=﹣x+2;(2)不变.理由如下:过点A分别作x轴,y轴的垂线,垂足分别为E,F(如答图),可得∠AEC=∠AFD=90°,又∵∠BOC=90°,∴∠EAF=90°,即∠DAE+∠DAF=90°,∵∠CAD=90°,即∠DAE+∠CAE=90°,∴∠CAE=∠DAF,∵A(﹣4,4),∴OE=AF=AE=OF=4,在△AEC和△AFD中,,∴△AEC≌△AFD(ASA),∴EC=FD,∴OC﹣OD=(OE+EC)﹣(FD﹣OF)=OE+OF=8,则OC﹣OD的值不发生变化,值为8;(3)①当M为直角顶点时,点P的横坐标为﹣4,∵点P在直线AB上,将x=﹣4代入y=﹣x+2得,y=4,∴点P的坐标为P(﹣4,4);②当N为直角顶点时,点P的横坐标为2,∵点P在直线AB上,将x=2代入y=﹣x+2得,y=1,∴点P的坐标为P(2,1);③当P为直角顶点时,∵点P在直线AB上,可设点P的坐标为(x,﹣x+2),则MP2=(x+4)2+(﹣x+2)2,NP2=(x﹣2)2+(﹣x+2)2,在Rt△PMN中,MP2+NP2=MN2,MN=6,∴(x+4)2+(﹣x+2)2+(x﹣2)2+(﹣x+2)2=62,解得:x1=﹣,x2=,∴P(﹣,+2)或(,﹣+2),综上所述,满足条件的所有点P的坐标为(﹣4,4)或(2,1)或(﹣,+2)或(,﹣+2).。

重庆一中初2014级12-13学年(下)期末试题——数学

重庆一中初2014级12-13学年(下)期末试题——数学

重庆一中初2014级12—13学年度下期期末考试数学试题(全卷共五个大题,满分150分,考试时间120分钟)一.选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填在下列方框内.题号 1 2 3 4 5 6 7 8 9 10 11 12 答案1.下列分解因式正确的是( )A. B.C. D.2.如图,矩形的面积为3,反比例函数的图象过点,则=()A. B. C. D.3.方程的解是()A.B.C.或D.4.为了了解我市参加中考的370000名学生的视力情况,抽查了1000名学生的视力进行统计分析.下面四个判断正确的是()A.370000名学生是总体 B.1000名学生的视力是总体的一个样本C.每名学生是总体的一个个体 D.上述调查是普查5.下列命题是假命题的是()A.平行四边形的对边相等B.四条边都相等的四边形是菱形C.矩形的两条对角线互相垂直D.等腰梯形的两条对角线相等6.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与相似的是()7.某班抽取6名同学参加体能测试,成绩如下:80,90,75,75,80,80.下列表述错误..的是()A.众数是80 B.中位数是75 C.平均数是80 D.极差是15 8.在反比例函数的图象上有两点,当时,有,则m的取值范围是()A. B. C. D.9. 已知是关于的方程的根,则常数的值为()A.0 B.1 C.0或1 D.0或-110.在同一直角坐标系中,函数()与()的图象可以是()11.设是方程的两个实数根,则的值为()A.2010 B.2011 C.2012 D.201312.如图,一次函数y=ax+b的图象与x轴、y轴交于A、B两点,与反比例函数的图象相交于C、D两点,分别过C、D两点作y轴、x轴的垂线,垂足为E、F,连接CF、DE,则下列结论正确的有( )个① k>0;②ab>0;③;④△CDE≌△CDF;⑤AC=BD二.填空题(本大题共6个小题,每小题4分,共24分)请将每小题的答案直接填在题后..的横线上....13.因式分解: = .14.关于x的方程的解是负数,则m的取值范围是.15.关于的一元二次方程有两个不相等的实数根,那么的取值范围是.16.双曲线、=在第一象限的图象如图,过上的任意一点,作轴的平行线交于,交轴于,若,则k的值为_____________.17.已知:-1= 0 ,则= _____________.18.已知:如图,点P的坐标为(m,0),在x轴上存在点Q(不与P点重合),以PQ为边作正方形PQMN,使点M落在反比例函数y = 的图像上.如果点P的坐标为(6,0),则点M的坐标为____________________________________.三.解答题(本大题2个小题,第19题8分,20题6分,共14分)解答时每小题必须给出必要的演算过程或推理步骤.19.(1)解方程:. (2) 解方程:20.图中的小方格都是边长为1的正方形,△ABC的顶点和O点都在正方形的顶点上.(1)以点O为位似中心,在方格图中将△ABC的边放大为原来的2倍,得到△A′B′C′;(2)△A′B′C′绕点B′顺时针旋转,画出旋转后得到的△A″B′C″。

重庆市沙坪坝区2-13-2014八年级下期末试题(含答案)

重庆市沙坪坝区2-13-2014八年级下期末试题(含答案)

沙坪坝区2015-2016学年度八年级数学第二学期期末调研测试一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上对应题目的正确答案标号涂黑. 1.要使分式1xx +的值为零,x 的值应为 A .1x =- B .0x = C .1x = D .2x = 2.在平面直角坐标系中,点P (-1,2)所在的象限是 A .第一象限B .第二象限C .第三象限D .第四象限3.矩形ABCD 中,对角线AC =4,则BD 的长为A .2B .3C .4D .8 4A .(2,3)B .(3,2)C .(2,-3)D .(3,-2)5.已知甲、乙、丙三个旅行团的游客人数都相等,且每个团的游客的平均年龄都是29岁,这三个团的游客年龄的方差分别是2=1.5S 甲,2=18.7S 乙,2=25S 丙.导游小芳喜欢带游客年龄相近的团队,若要在这三个团中选择一个,则她应选A .甲B .乙C .丙D .哪一个都可以 6.如图,菱形ABCD 中,AC 与BD 交于点O ,若AC =8,BD =6, 则AB 的长为A .10B .8C .6D .5 7.若反比例函数3k y x+=的图象在其所在的每一象限内,函数值y 随自变量x 的增大而增大,则k 的取值范围是 A .3<-kB .0k <C .3>-kD .0k >8.如图,□ABCD 的对角线相交于点O ,且AB = 3,△OCD 的 周长为9,则□ABCD 的两条对角线长度的和是 A .6 B .10 C .12 D .18ABCD6题图O8题图ABCDO9.运动会上初二(1)班啦啦队买了两种价格的雪糕,其中甲种雪糕共花费40元;乙种雪糕共花费30元,甲种雪糕比乙种雪糕多20根,每根乙种雪糕的价格是甲种雪糕价格的1.5倍,若设甲种雪糕的价格为x 元/根,根据题意可列方程为A .401.5x -30x =20 B .40x -301.5x=20C .30x -401.5x =20D .301.5x-40x =2010. 下列说法中,正确的是 A .对角线相等的四边形是矩形 B .对角线互相垂直的四边形是菱形 C .有一组邻边相等的矩形是正方形D .一组对边平行且另一组对边相等的四边形是平行四边形11.2013年“中国好声音”全国巡演重庆站在奥体中心举行.童童从家出发前往观看,先匀速步行至轻轨车站,等了一会儿,童童搭乘轻轨至奥体中心观看演出,演出结束后,童童搭乘邻居刘叔叔的车顺利到家.其中x 表示童童从家出发后所用时间,y 表示童童离家的距离.下图能反映y 与x 间的函数关系式的大致图象是12.如图,菱形ABCD 中,∠D =60°.点E 、F 分别在边BC、 CD 上,且BE =CF .若EF =2,则△AEF 的面积为A .B .C . D二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.某种近似于球体的病毒半径约为0.000 000 0049米,将0.000 000 0049用科学记数法表示为 .ABDC12题图FE14.在2014年的体考中,某校六名学生的分数分别是47,48,49,48,46,48.则这组数据的众数是 .15.如图,□ABCD 中,∠A =110º,CE 平分∠BCD ,则∠DEC 的度数是 . 16.分式方程xx 211=-的解是 . 17.如图,矩形ABCD 中,AB =2,BC =4,AC分线交AD 于点E ,则AE 的长为 .18.如图,直线553y x =-- 与x 轴、y 轴分别交于点,以AB 为边在第三象限作正方形ABCD ,点D 线(0ky k x=≠)上,将正方形ABCD 沿x 单位长度后,点C 恰好在此双曲线上,则a三、解答题:(本大题2个小题,每小题7分,共14分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上. 19.计算:1222014013(3)3(1)(3)2π--⎛⎫⨯---+-+-÷- ⎪⎝⎭.20.如图,□ABCD 中,E 、F 分别是BC 、AD 上的点, 且BE =DF .求证:AE =CF .A BDC 20题图FE15题图AB DE四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上. 21.先化简,再求值:aaa a a -÷+--+1)1211(12,其中a =-2.22.某市制定了居民分段用水交费方案,规定每月每户用水未超过4吨和用水4吨以上两种收费标准,某用户每月应交水费y (元)与用水量x (吨)之间的函数关系如图所示. (1)分别求出图中OA 、AB 所在直线对应的函数关系式, 并写出相应的自变量x 的取值范围;(2)若该用户某月共交水费12.8元,求该用户用了多少 吨水?23.“安全教育,警钟长鸣”,某校于3月31日(全国安全教育日)举行了满分为10分的安全知识竞赛.该校甲、乙两班选派了相同人数参加竞赛,竞赛结束后,发现学生成绩均为7分、8分、9分、10分.依据统计数据绘制了如下不完整的统计图表: 甲班成绩统计表乙班成绩条形统计图 乙班成绩扇形统计图7分10分8分 72°9分) A 22题图请你根据以上提供的信息解答下列问题: (1)请你将统计表和条形统计图补充完整;(2)请计算甲、乙两班成绩的平均分、中位数;并分别从平均分和中位数的角度比较哪个班的成绩较好.24.如图,正方形ABCD 中,F 是CD 边的中点, E 是BC 边上一点,且AF 平分∠DAE . (1)若AD =4,BE =3,求EF 的长; (2)求证:AE =EC +CD .五、解答题:(本大题2个小题,每小题12分,共24分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上. 25.如图,直线322y x =--分别交x 轴、y 轴于A ,B 两点,与双曲线my x=(m ≠0)在第二象限内的交点为C ,CD y ⊥轴于点D ,且4CD =.(1)求双曲线的解析式;(2)设点Q 是双曲线上的一点,且QOB ∆的面积是AOB ∆的面积的2倍,求点Q 的坐标;(3)在y 轴上存在点P ,使PA PC +最短,请直接写出点P 的坐标.ABC D24题图FE25题图OBAC Dxy26.如图(1),矩形ABCD 中, AB =6,BC =3,点M 为CD 边中点,连结MA ,MB .在Rt △EFG 中,∠F =90°,EF =GF =2,点F 、G 、A 、B 在同一直线上,且点G 与点A 重合.将△EFG 以每秒一个单位的速度沿射线AB 匀速向右平移,直至点F 与点B 重合时停止平移,设平移时间为t 秒.(1)当t = 秒时,点E 落在线段AM 上;(2)在整个平移过程中,设△EFG 与△AMB 重叠部分所构成的图形的周长为C ,请直接写出C 与t 的函数关系式和相应自变量t 的取值范围;(3)如图(2),在(2)中,当△EFG 停止平移后,将△EFG 绕点B 按逆时针方向旋转α°﹙0<α<360﹚,在旋转过程中,设直线EG 与直线AM 交于点P 、与直线BM 交于点Q ,是否存在这样的α,使△MPQ 为等腰三角形?若存在,请直接写出α的度数;若不存在,请说明理由.(G ) FEDCBA26题图(1)MA26题图(2)GEDCB (F )M沙坪坝区2015-2016学年度第二学期期末调研测试八年级数学试题参考答案及评分意见一、选择题:二、填空题:13.94.910-⨯; 14.48; 15.55°; 16.x =2; 17.25; 18.2. 三、解答题:19.解:原式=1931219⨯-+-÷…………………………………………………………(6分)=3-.…………………………………………………………………………(7分)20.证明:∵四边形ABCD 是平行四边形,∴AD BC AD BC =∥,.……………………………………………………(2分)又∵BE DF =,∴AF CE =,…………………………………………………………………(4分) ∴四边形AECF 是平行四边形,……………………………………………(6分) ∴AE CF =.…………………………………………………………………(7分)四、解答题: 21.解:原式=aa a a a a -⋅-+-+1)1)(1(121…………………………………………………(3分) =)1(121a a a a +-+………………………………………………………………(5分) =)1(3a a a+……………………………………………………………………(7分)=a+13.………………………………………………………………………(8分)当a =-2时,原式=3213-=-.…………………………………………………(10分) 22.解:(1)当04x ≤≤时,………………………………………………………… (1分)∵函数图象过原点,∴可设y 与x 之间的函数关系式为y =kx (k ≠0). ∵图象过点A (4,4.8),∴4.8=4k ,∴k =1.2,∴图中OA 所在直线对应的函数关系式为: 1.2y x =.……………(3分)当4x >时,…………………………………………………………… (4分)设y 与x 之间的函数关系式为y =ax +b (k ≠0). ∵图象过点A (4,4.8)和B (6,8),∴⎩⎨⎧+=+=.68,48.4b a b a解得:⎩⎨⎧-==.6.1,6.1b a∴图中AB 所在直线对应的函数关系式为: 1.6 1.6y x =-.……………(6分) (2)∵12.8 4.8>,…………………………………………………………(8分) ∴当12.8y =时,1.6 1.612.8x -=. 解得:9x =.答:若该用户某月共交水费12.8元,该用户用了9吨水.……………(10分) 23.解:(1)补表或图如下:………………………………………………………………………………………(4分) (2)甲班成绩平均分为:(7×11+8×0+9×1+10×8)÷20=8.3(分).………(5分) 甲班成绩中位数为:7分. ………………………………………………………(6分) 乙班成绩平均分为:(7×8+8×3+9×4+10×5)÷20=8.3(分).…………(7分) 乙班成绩中位数为:8分. ………………………………………………………(8分)从平均数的角度比较,两班成绩一样.……………………………………………(9分) 从中位数的角度比较,乙班比甲班好.…………………………………………(10分) 24.(1)解:∵四边形ABCD 是正方形, ∴∠C =90°,BC = CD =DA =4.又∵BE =3,∴ CE =BC -BE =1. ………………………………………………(1分)∵ F 是CD 边的中点,∴ CF =DF =12CD =2,…………………………………(2分) ∴ 在Rt △EFC中,EF = ………………(4分) (2)证明:延长AF ,与BC 的延长线交于点G . …………………………………(5分)∵四边形ABCD 是正方形, ∴ AD ∥BC , ∴∠DAF =∠G .又∵∠AFD =∠GFC ,DF =CF ,∴△ADF ≌△GCF , ……………………………………………………………(6分) ∴AD =GC . ……………………………………………………………………(7分)∵AF 平分∠DAE , ∴∠DAF =∠EAF , 又∵∠DAF =∠G ,∴∠EAF =∠G , …………………………………………………………………(8分) ∴AE =EG .…………………………………………………………………………(9分) ∵EG =EC +GC ,CG =AD =CD , ∴EG = EC +AD .∴AE = EC +AD .…………………………………………………………………(10分)五、解答题:25.解:(1)∵CD y ⊥轴,且CD = 4,C 在第二象限,∴点C 的横坐标为4-.……………………………………………………(1分)∵点C 在直线322y x =--上, ∴当4x =-时,322y x =--=4,∴C (4-,4)………………………………………………………………(2分)∵点C (4-,4)在双曲线my x=(m ≠0)上, ∴44m=-,∴16m =-, ∴双曲线的解析式为16y x=-.……………………………………………(4分) A BCD 24题答图FE G(2)在322y x =--中,令y =0,则0223=--x ,∴34=x .∴A (43-,0),34=OA .………………………………………………(5分)∵2QOB AOB S S ∆∆=,∴OA OB h OB OB ⋅⋅⨯=⋅⋅21221, ∴382==OA h OB∴Q 的横坐标为±83.…………………………………………………………(7分)∵点Q 在双曲线16y x=-上, ∴当83x =时,6y =-,当83x =-时,6y =. ∴Q (83,6-)或Q (83-,6).………………………………………(9分) (3)P (0,1) .……………………………………………………………………(12分)26.解:(1)当t = 4 秒时,点E 落在线段AM 上;…………………………………(2分)(2)当0≤t <2时,C =t )21(+;当2≤t <4时,C =22+t ; 当4≤t <6时,C =224+;当6≤t ≤8时,C =2816)22(++--t .……………………………(8分) (3)α=45°或135°或α=225°或α=315°.…………………………………………。

重庆市渝北区2013-2014学年八年级下学期期末质量监测(数学)

重庆市渝北区2013-2014学年八年级下学期期末质量监测(数学)

渝北区2013—2014学年度下学期期末质量监测八年级数学试卷(本卷共4页,满分150分,考试时间120分钟)一、选择题:本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列根式中,是最简二次根式的是( ) A .12B .3C .8D .12 2.下列计算正确的是( ) A .523=+B.623=⨯C.3312=- D .428=÷3.下列各点在函数x y 2=的图象上的是( )A .(2,-1)B .(-1,2)C .(1,2)D .(2,1) 4.下列各数组中,能作为直角三角形三边长的是( )A .1,1,2B .2,3,4C .2,3,5D .3,4,55.在一次射击比赛中,甲、乙两名运动员10次射击的平均成绩都是7环,其中甲成绩的方差为1.21,乙成绩的方差为3.98,由此可知( )A .甲比乙的成绩稳定B .乙比甲的成绩稳定C .甲、乙两人的成绩一样稳定D .无法确定谁的成绩更稳定 6.如图,矩形ABCD 中,0120=∠AOD ,3AB =,则BD 的长是( ) A .33 B .6 C .4 D .327.若1(4, )y -,2(2, )y 两点都在直线42--=x y 上,则1y 与2y 的大小关系是( ) A .12y y >B .12y y =C .12y y <D .无法确定8.如图,平行四边形ABCD 中,对角线AC 与BD 交于点O,已知∠OAB=90,BD=10cm ,AC=6cm ,则AB 的长为( )A .4cm B.5cm C.6cm D.8cm9.如图,菱形ABCD 的周长为48cm ,对角线AC 、BD 相交于O 点,E 是AD 的中点,连接OE ,则线段OE 的长等于( )A .4 cmB . 5cmC .6 cmD . 8cmBCA DEO(9题图)10.为了解某班学生每天使用零花钱的情况,小红随机调查了该班15名同学,结果如下表:则这15名同学每天使用零花钱的中位数和众数分别是( )A .3,2B .4,2C .2 ,3D .5,411.李华从家骑自行车上学,匀速行驶了一段距离,休息了一段时间,发现自己忘了带数学复习资料,立刻原路原速返回,在途中遇到给他送数学复习资料的妈妈,拿到数学复习资料后,张华立刻掉头沿原方向用比原速大的速度匀速行驶到学校.在下列图形中,能反映张华离家的距离s 与时间的函数关系的大致图象是( )12.如图,在平面直角坐标系中,直线x l ⊥1轴于点(1,0),直线x l ⊥2轴于点(2,0),直线x l ⊥3 轴于点(3,0)⋅⋅⋅直线x l n ⊥轴于点(n,0).函数y=x 的图象与直线n l l l l ,...,,321分别交于点n A A A A ....,,321,.函数y=2x 的图象与直线n l l l l ,...,,321分别交于点n B B B B ....,,321.11B OA ∆的面积记为1S ,四边形1221B B A A 的面积记为2S ,四边形2332B B A A 的面积记为3S ,四边形11--n n n n B B A A 的面积记为n S ,则2014S =( )2013.5A.2012B.2013C.2013.5D.2014 二、填空题:本大题共6个小题,每小题4分,共24分. 13.若根式3-x 有意义,则x 的取值范围是__________. 14. 计算:()827232+--= .15.在平面直角坐标系中,点O 为原点,直线4y kx =+交x 轴于点A,交y 轴于点B,若△AOB 的面积为8,则k 的值为 .16.如图,平行四边形ABCD 的对角线相交于点O ,且AB≠AD,过O 作OE ⊥BD 交BC 于点E .若△CDE 的周长为8,则平行四边形ABCD 的周长为 .每天使用零花钱(单位:元)12356人 数25431tots o ts ot soA . s17.如图,直线 (0)y kx b k=+<交x轴于A(4,0),则关于x的不等式0kx b+>的解集为_______.18.如图,正方形ABCD中,对角线AC与BD相交于点O, DE平分∠CDB交BC 于E,交AC 于F,则BC:OF= .三、解答题:本大题共2个小题,每小题7分,共14分.19.计算:()3201481239123---+--÷.20.如图,ABC∆中,o90C∠=,2AC=,D是BC的中点,且o45ADC∠=,求△ABC的周长.(结果保留根号)四、解答题:本大题共4个小题,每小题10分,共40分.21.平行四边形ABCD中,E F,是对角线AC上两点,且∠ADF= ∠CBE,连接DE,BF.(1)求证:AFD CEB△≌△;(2)求证:四边形BFDE是平行四边形.22.某中学八年级在半期测试中数学取得了较好成绩,年级主任随机抽取了部分学生的成绩作为一个样本按A(满分)、B(优秀)、C(良好)、D(及格)四个等级进行统计,并将统计结果制成如下2幅不完整统计图,请你结合图表所给信息解答下列问题:(1)此次调查共随机抽取了__________名学生,其中学生成绩的中位数落在________等级;在图②中D所在扇形的圆心角的度数是;B CAD(20题图)(2)将拆线统计图和扇形统计图在图中补充完整.23.如图,直线 (0)y ax b a=+≠与1y x=+交于y轴上的点C,与x轴交于点 (2, 0)B.(1)求a,b的值;(2)设直线1y x=+与x轴的交点为A,求ABC∆的面积.24.如图,P为正方形ABCD边BC上任一点,BG⊥AP于点G,在AP的延长线上取点E,使AG=GE,连接BE,CE.(1)求证:BE=BC;(2)∠CBE的平分线交AE于N点,连接DN,求证:BN+DN=2AN .ax b=+1y x=+O xyA BC(23题图)五、解答题:本大题共2个小题,每小题12分,共24分.25.某渔场计划今年养殖无公害标准化生态白鲢和花鲢,由于受养殖水面的制约,这两个品种的苗种的总投放量只有50吨.根据经验测算,这两个品种的种苗每投放一吨的先期投资、养殖期间的投资以及产值如下表:(单位:万元/吨)品种先期投资养殖期间投资产值白鲢0.9 0.3 3花鲢0.4 1 2渔场受经济条件的影响,先期投资不能超过36万元,养殖期间的投资不超过29万元.设白鲢种苗的投放量为x吨.(1)求x的取值范围;(2)设这两个品种产出后的总产值为y(万元),试写出y与x之间的函数关系式,并求出当x等于多少时,y有最大值?最大值是多少?26.如图,矩形OACB的顶点O是坐标原点,顶点A,B分别在y轴,x轴的正半轴上,OA=8,OB=6,等腰直角三角形EFD按图①摆放(点D与点O重合)FD=10,连接AB,△EFD从图①位置出发,以每秒1个单位的速度沿OB方向匀速移动,同时,点M从A出发,以每秒2个单位沿AB-BC匀速移动,AO与△EFD 的直角边相交于点N。

重庆一中八年级下期末数学试卷北师大版

重庆一中八年级下期末数学试卷北师大版

数学试卷一、选择题:(每小题4分,共40分)在每小题给出的四个选项中,只有一项符合题目要求,请将1.方程{ EMBED Equation.3 |24x x 的解是 ( )或2.下列调查,适合普查的调查方式是 ( )A .某工厂质检员检测某批灯泡的使用寿命B .了解某班学生某次数学测验成绩C .检测某城市的空气质量D .了解夏季冷饮市场上一种饮料的质量情况 3.“站得离,看得远”指的是一种什么现象 ( )A .盲区减小,视野范围增大B .盲区增大,视野范围减小C .盲区增大,视野范围增大D .盲区减小,视野范围减小4.下面四幅图是同一标杆不同时刻在太阳光下的影子.按照时间先后顺序正确的是 ( )A.(1)(2)(3)(4)B.(2)(3)(1)(4)C.(1)(4)(2)(3)D.(4)(1)(3)(2) 5.已知:如图,中,则与的面积比为 ( )A. 2:3B. 2:5C. 4:9D. 4 :25 6.若函数的图象经过点(3,-4),则它的图象一定还经过点 ( )7.一个家庭有两个孩子,两个孩子均为女孩的概率为 ( ) A. 1 8.一元二次方程配方后正确的是 ( )9.甲、乙两人各打靶5次,甲所中的环数是8,7,9,7,9;乙所中环数的平均数为,方差为.比较甲、乙的成绩,则 ( )A .甲的成绩较稳定B .乙的成绩较稳定C .甲、乙的成绩一样稳定D .甲、乙的成绩无法比较 10.如图,梯形ABCD 中,,,判断关于的一元二次方程的根的情况是 ( )A .有两个相等的实数根B .有两个不相等的实数根C .有两个实数根D .没有实数根11.若 .12.一组数据3,-2,2,0,-2,-4的中位数是 .13.在函数的图象上有三个点的坐标分别为函数值的大小关系是 .14.若等腰三角形的底和腰的长是方程的两根,则这个三角形的周长为 .15.已知:如图,矩形DEFG内接于于H,若AH=4cm,BC=12cm, ED:EF=1:2,则 .16.如图,直线与反比例函数的图象相交于点A,点C是反比例函数图象上位于点A右侧的点,交轴子点E(2,0),交轴于点B,且点C的纵坐标为1. 则四边形AOEC的面积为 .三、解答题(17~20小题每小题6分,21~25小题每小题10分,26小题12分,共86分)17.(6分)解下列方程:(1)(2)18.(6分)左面是一几何体,右面是三视图,请补全右面不完整韵图形,并在括号内填上它属于哪种视图.19.(6分)在学校开展的综合实践活动中,某班进行了小制作评比,作品上交时间为周一至周四,评委会把同学们上交作品的件数按一天一组分组统计,绘制了扇形统计图和频数分布直方图(如图).根据图中信息填空.(1)本次活动该班共收到件产品.(2)图中a = ,b = .20.(6分)已知:如图,若AB=3,AC=4.(1)求BD、CD的长.(2)过B作于E,求BE的长.21.(10分)制作一种产品,需先将材料加热达到60(℃),再进行操作.设该材料温度为(℃),从加热开始计算的时间为(min).据了解,该材料加热时,温度与时间成一次函数关系,停止加热进行操作时,温度与时间成反比例函数关系(如图).已知该材料在操作加工前的温度为15℃,加热 5min 后温度达到60℃.(1)分别求出将材料加热和停止加热进行操作时,与的函数关系式.(2)根据工艺要求,当材料的温度低于15℃时,须停止操作. 那么从开始加热到停止操作,共经历了多少时间?22.(10分)如图是两个可以自由转动的转盘,甲转盘被等分成4份,分别标有0,-1,-2,-3四个数字,乙转盘被等分成3份,分别标有1,2,3三个数字.自由转动两个转盘,转盘停止后,计算两个转盘指针所指区域内的数字之和.如果指针恰好指在分界线上,那么重转一次,直到指针指向一个数字为止.(1)请你用画树状图或列表的方法,求出这两数之和为0的概率.(2)小明和小亮想用以上两个转盘做游戏,若两数之和为+1,则小明赢;若两数之和为-1,则小亮赢.你认为游戏公平吗?请说明理由.23.(10分)如图,马路MN上有一路灯,小明沿着马路MN散步,当他在距路灯灯柱6米远的B处时,他在地面上的影长是3米,问当他在距路灯灯柱10米远的D处时,他的影长DF是多少米?24.(10分)已知:如图,一次函数的图象与反比例函数的图象相交于点A、B,过A作轴于C,且,连结BC.求:(1)点A和点B的坐标.(2)根据图象写出使反比例函数的值大于一次函数的值的的取值范围.(3)求的面积.25.(10分)随着人们生活水平的提高,对水果的需求量越来越大.某农户决定栽植果树,2005年该农户承包荒山若干亩,投资1万元种果树2000棵,其成活率为90%. 在2008年夏季全部结果时,随意摘下10棵果树的水果,称得重量如下(单位:千克):8、 9、 12、 13、 8、 9、 10、 11、 12、 8.(1)根据样本平均数估计该农户2008年水果的总产量是多少千克?(2)若此水果运到市场出售每千克10元,在果园直接出售每千克8元. 该农户用农用车将水果拉到市场出售,到售完为止,需付出各种费用2万元,若两种出售方式都在相同的时间内售完全部水果,选择哪种出售方式划算?为什么?除去投资成本,2008年该农户纯收入最多可以是多少元?(3)该农户加强果园管理,力争2008年、2009年、2010年三年合计纯收入达546000元,则2009年、2010年平均每年的增长率是多少?26. (12分)如图,已知点A(2,4)在反比例函数的图象S1上,将双曲线S1沿轴翻折后得到的是反比例函数的图象S2,直线AB交轴于点B(0,3),交轴于点C,P为线段BC上的一个动点(点P与B、C不重合),过P作轴的垂线与双曲线S2在第二象限相交于点E.(1)求双曲线S2和直线AB的解析式.(2)设点P的横坐标为m,线段PE的长为h,求h与m之间的函数关系,并写出自变量m的取值范围.(3)在线段BC上是否存在点P,使得P、E、A为顶点的三角形与相似?若存在,请求出点P的坐标;若不存在,请说明理由.参考答案(满分150分,时间120分钟)一、选择题:(每小题4分,共40分)住每小题给出的四个选项中,只有一项符合题目要求,三、解答题(l7~20小题每小题6分,21~25小题每小题10分,26小题12分,共86分)17.解下列方程:(1)解:这里a=1, b=-1, c=-1…………………………1分…………………………2分…………………………3分(2)解:…………………………1分…………………………2分…………………………3分18.补全下列图形,并在括号内填上它属于哪种视图.。

初2015级2013-2014学年八年级下册期末数学试卷——巴蜀中学(pic)

初2015级2013-2014学年八年级下册期末数学试卷——巴蜀中学(pic)

重庆市巴蜀中学2013—2014学年度第二学期期末考试初2015级(二下)数学试题卷一、选择题:(每小题4分,共48分) 1. 下列方程中,一元二次方程是( )A .30x y -+=B .1x x=C .221x x =-D .221x y += 2. 如图,四边形ABCD 是平行四边形,要使它成为矩形,那么需要添加的条件是( )A .AB CD = B .AD BC = C .AB BC =D .AC BD =3. 如图,C 在线段AB 上,若:3:2AC BC =,则:AB BC =( ) A .3:2 B .5:3 C .5:2 D .2:54. 用配方法解一元二次方程2230x x --=,配方后方程可以是( )A .2(1)4x -=B .2(1)4x +=C .2(1)16x -=D .2(1)16x +=5. 菱形具有而矩形不一定具有的性质是( ) A .对角线互相垂直 B .对角线相等 C .对角线互相平分 D .对角互补6. 若分式211x x ---的值为0,则x 的值为( )A .1B .1-C .1±D .07. 如图,在Rt ABC △中,90ACB ∠=︒,过C 作AB 边上的垂线段CD ,垂足为D .在这个图形中,相似的三角形有( ) A .1对 B .2对 C .3对 D .4对8. 已知关于x 的一元二次方程220x x a +-=有两个相等的实数根,则a 的值是( )A .1B .1-C .14D .14-9. 如图,在ABC △中,90C ∠=︒,D 是AC 上一点,DE AB ⊥于点E ,若8AC =,6BC =,3DE =,则AD 的长为( ) A .3 B .4 C .5 D .6D COBAAABCD10.党的“十八大”再次提出要全面建设小康社会,加快推进社会主义现代化建设,力争国民生产总值到2020年比2000年翻两番.在21世纪的头二十年(2001—2020年)要实现这一目标,以十年为单位计算,设每十年国民生产总值的增长率都是x ,那么x 满足的方程为( )A .2(1)4x -=B .2(1)4x +=C .124x +=D .(1)2(1)4x x +++=11.如图,将矩形ABCD 的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH ,若9c m EH =,12cm EF =,则边AD 的长是( ) A .12cm B .15cm C .20cm D .21cm12.如图,在平行四边形ABCD 中,点E 为AB 的中点,点F 为AD 上一点,EF 交AC 于点G ,4cm AF =,8cm DF =,5cm AG =,则AC 的长为( ) A .7.5cm B .15cm C .12.5cm D .25cm二、填空题:(每小题4分,共32分)13.方程240x -=的解为 . 14.如图,在Rt ABC △中,90ACB ∠=︒,直线l 经过C 点,AE l ⊥交直线l 于E 点,BF l ⊥交直线l 于点F ,若49ACE CBF S S =△△,则ACBC= .15.已知一个菱形的周长是20cm ,两条对角线的比是4:3,则这个菱形的面积是2cm . 16.枇杷是我们市合川区的特产,一商贩以每千克40元的进价进购了一批枇杷,并按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该商贩销售这种枇杷要想每天获利1760元,那么每千克枇杷应降价..元. ABCDE G HFE A BCD F G ABCD ElEA BCF17.若关于x 分式方程111x m xx x x +=--+有增根1x =,则m 的值为 .18.m ,n 是方程2210x x --=的两根,且22(714)(367)8m m a n n -+--=,则a 的值等于.19.如图,在平面直角坐标系xOy 中,点A ,B 的坐标分别为(30),,(23)-,,OA B ''△是OAB △关于点O 的位似图形,且A '的坐标为(40),,则点B '的坐标为 .20.如图,在正方形ABCD 中,P 为AB 的中点,作BE PD ⊥的延长线于点E ,连接AE ,作F A A E⊥交OP 于点F ,连接BF ,FC ,若2AE =,则FC = .三、解答题:(本大题共6小题,共70分) 21.化简下列分式(每小题6分,共12分) ⑴23111x x x x x+-+--⑵21122aa a a a a -⎛⎫-÷⎪++⎝⎭22.解下列方程(每小题6分,共18分) ⑴2410x x -+=⑵2(51)15062x x---=⑶25361x x x x x+--=-- 23.(8分)先化简,再求值:222132x y x y x y x xy x y ⎛⎫+÷-- ⎪+--⎝⎭,其中1x =,2y = 24.(10分)如图,正方形ABCD 中,E 是AD 的中点,F 是AB 边上的一点,连接FE 并延长与CD 的延长线相交于点G ,作EH FG ⊥交BC 的延长线于点H . ⑴若8BC =,5BF =,求线段FG 的长; ⑵求证:2EH EG =.EFABCD P25.(10分)随着人民生活水平的不断提高,我市轿车的拥有量逐年增加.据统计,鲁能星城11街区2011年底拥有家庭轿车144辆,2013年底家庭轿车的拥有量达到324辆.⑴若该小区2011年底到2013年底家庭轿车拥有量的年平均增长率都相同,求该小区到2014年底家庭轿车将达到多少辆?⑵为了缓解停车矛盾,11街区决定投资25万元再建造若干个停车位.据测算,建造费用分别为室内车位6000元/个,露天车位2000元/个,考虑到实际因素,计划露天车位的数量不少于室内车位的3倍,但不超过室内车位的3.5倍,请根据以上信息,求该小区可建两种车位各多少个? 26.(12分)如图一,Rt EFG △中,90F ∠=︒,30EGF ∠=︒,2EG =,菱形ABCD 中,AC 、BD 交于O 点,6AB =,60BAD ∠=︒,G 、A 、E 、B 点在同一条直线上,E 点和A 点重合,将EFG △ 沿AC 方向以每秒2个单位的速度平移,运动时间记为t ,当G 点到达BD 边上时停止运动, ⑴填空:t = 时,E 点刚好与点O 重合;t = 时,G 点刚好落在BD 边上;⑵将EFG △与AOD △的重叠部分面积记为S ,请直接写出....点E 从A 出发到与点O 重合的过程中S 与t 的关系式,并写出t 取值范围.⑶如图二,当EFG △停止移动时,将EFG △绕点E 顺时针方向旋转α︒(0180)α<<,直线FG 与直线BC 、直线AC 分别交于M 点、N 点,当CMN △为直角三角形.....时,直接写出线段......MN 的长度.HGFEA B CDG备用图图二图一FGABCDF GOOG N M F E DCBADF OCBA (E )。

重庆市巴蜀中学八年级(下)2014-2015学年八年级(下)期末数学试卷(解析版)

重庆市巴蜀中学八年级(下)2014-2015学年八年级(下)期末数学试卷(解析版)

重庆市巴蜀中学2014-2015学年八年级(下)期末数学试卷(解析版)一、选择题:每小题4分,共48分.1.下列选项中是一元二次方程的为()A.x+2=0 B.x﹣2y=1 C.x2﹣2x﹣3=0 D. +3=12.有一个样本有100个数据,落在某一组内的频率是0.3,那么落在这一组内的频数是()A.50 B.30 C.15 D.33.如果△ABC∽△DEF,且对应边的AB与DE的长分别为2、3,则△ABC与△DEF的面积之比为()A.4:9 B.2:3 C.3:2 D.9:44.若x=1是关于x的方程ax2﹣x+2=0的解,则a的值为()A.﹣1 B.1 C.2 D.﹣25.若△ABC的周长为20cm,点D,E,F分别是△ABC三边的中点,则△DEF的周长为()A.5cm B.10cm C.15cm D.cm6.四边形ABCD中,AC、BD相交于点O,能判别这个四边形是正方形的条件是()A.OA=OB=OC=OD,AC⊥BD B.AB∥CD,AC=BDC.AD∥BC,∠A=∠C D.OA=OC,OB=OD,AB=BC7.如图,在平行四边形ABCD中,点E是CD延长线上一点,BE与AD交于点F,若CD=2DE,且△DEF的面积为3,则三角形ABF的面积为()A.6 B.8 C.9 D.128.如图,在正方形ABCD的外侧,作等边三角形ADE,连结BE交AD于点F,则∠DFE 的度数为()A.45°B.55°C.60°D.75°9.如图,矩形ABCD的面积为20,对角线交于点O,以AB、AO为邻边作平行四边形AOC1B,对角线交于O1,以AB、AO1为邻边作平行四边形AO1C2B;…;依此类推,则平行四边形AO4C5B的面积为()A.B.C.D.10.如图,P是正方形ABCD边BC上一点,且BP=3PC,Q是DC的中点,则AQ:QP=()A.2:1 B.3:1 C.3:2 D.5:211.有四个一模一样的小球,其中三个小球上面分别标有数字2、3、4,小明和小亮各摸一个,前一个人随机摸一个球记下数字后放回,混合均匀,后一个人再随机摸一个小球,如果两人摸得小球的数字之和为8的概率为,则第四个小球上的数字是()A.8 B.5 C.5或6 D.612.如图,在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点(且点P不与点B、C重合),PE⊥AB于E,PF⊥AC于F.则EF的最小值为()A.4 B.4.8 C.5.2 D.6二、填空题:每小题4分,共32分.13.已知菱形的两条对角线的长分别是6和8,那么它的边长是______.14.如图,测量小玻璃管口径的量具ABC中,AB的长是10毫米,AC被分成6等份,如果小管口DE正好对着量具上3份处(DE∥AB),那么小管口径DE的长是______毫米.15.校生物小组有一块长32m,宽20m的矩形实验田,为了管理方便,准备沿平行于两边的方向纵、横个开辟一条等宽的小道,要使种植面积为540m2,小道的宽应是______米.16.矩形的两条对角线的夹角是60°,一条对角线与矩形短边的和为15,那么矩形对角线的长为______,短边长为______.17.若m、n为一元二次方程x2+3x﹣4=0的两个根,则m+n的值为______.18.如图,在矩形ABCD中,E是BC边上的点,连接AE、DE,将△DEC沿线段DE翻折,点C恰好落在线段AE上的点F处.若AB=3,BE:EC=4:1,则线段DE的长为______.19.有四个一模一样的小球,上面分别标有﹣2,0,2,3四个数字.从中任意模一个小球,将上面的数字记为a(不放回),再摸一个小球,将上面的数字记为b,这样的数字a,b能使关于x的一元二次方程(a﹣1)x2+bx+1=0有实数根的概率为______.20.已知如图,正方形ABCD的对角线AC、BD交于O,点E、F分别是AD、AB边的中点,连接DF、CE交于点G,连接AG、OG.若AD=2,则OG=______.三、解答题:共70分.21.(20分)(2015春•重庆校级期末)解一元二次方程:(1)x2﹣x=0(2)4x2﹣4x+1=0(3)x2﹣3x﹣4=0(4)2x2+4x﹣=0.22.如图,E,F是菱形ABCD对角线上的两点,且AE=CF.(1)求证:四边形BEDF是菱形;(2)若∠DAB=60°,AD=6,AE=DE,求菱形BEDF的周长.23.(10分)(2015•重庆校级模拟)如图(1),点E是正方形ABCD的对角线CA延长线上一点,以AE为边在正方形的外部作△AEF,使∠AFE=90°,AF=FE,点O是线段CE 的中点,连OB,OF,(1)若EF=1,AB=3,求线段EO的长度;(2)求证:OB⊥OF;(3)将图(1)中的正方形变为菱形,其中∠ABC=60°,将等腰△AEF的顶角变为120°,其余条件都不变,则(2)中的结论是否成立?若成立,请证明;若不成立,请说明理由.24.(12分)(2015春•重庆校级期末)如图1,等腰Rt△ABC,AC=BC=4,D为BC中点,矩形BFEG,EF=4,BF=8,且F、B、C共线.△ABD沿BF运动,速度为每秒1个单位长,运动中记为△A1B1D1.当A1与E重合时,运动停止运动过程中△A1B1D1与△BEF 重叠部分面积记为S.(1)当线段A1D1过线段EB中点时,求运动时间t;(2)求S与t的关系式;(3)取线段BF中点为H,连接EH,如图2,当B1与F重合时,将∠A1B1D1绕点F旋转,射线B1A1与直线EH交于M,射线B1D1与直线EH交于N,若EM:MN=3:5,求线段EM的长.2014-2015学年重庆市巴蜀中学八年级(下)期末数学试卷参考答案与试题解析一、选择题:每小题4分,共48分.1.下列选项中是一元二次方程的为()A.x+2=0 B.x﹣2y=1 C.x2﹣2x﹣3=0 D. +3=1【考点】一元二次方程的定义.【分析】本题根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【解答】解:A、方程未知数的最高次数是2,故错误;B、含有两个个未知数.故错误;C、符合一元二次方程的定义,故正确.D、不是整式方程,故错误;故选C.【点评】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.2.有一个样本有100个数据,落在某一组内的频率是0.3,那么落在这一组内的频数是()A.50 B.30 C.15 D.3【考点】频数与频率.【分析】根据频率、频数的关系:频率=频数÷数据总和,可得频数=频率×数据总和.【解答】解:频数:100×0.3=30,故选:B.【点评】本题考查频率、频数、总数的关系:频数=频率×数据总和.3.如果△ABC∽△DEF,且对应边的AB与DE的长分别为2、3,则△ABC与△DEF的面积之比为()A.4:9 B.2:3 C.3:2 D.9:4【考点】相似三角形的性质.【分析】根据相似三角形的面积的比等于相似比的平方进行计算.【解答】解:∵△ABC∽△DEF,∴△ABC与△DEF的面积之比等于()2=()2=.故选A.【点评】本题考查了相似三角形的性质:相似三角形的对应角相等,对应边的比相等;相似三角形的对应线段(对应中线、对应角平分线、对应边上的高)的比等于相似比;相似三角形的面积的比等于相似比的平方.4.若x=1是关于x的方程ax2﹣x+2=0的解,则a的值为()A.﹣1 B.1 C.2 D.﹣2【考点】一元二次方程的解.【分析】把x=1代入已知方程,列出关于a的新方程,通过解新方程来求a的值.【解答】解:把x=1代入,得a﹣1+2=0,解得a=﹣1.故选:A.【点评】本题考查了一元二次方程的解的定义.能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.5.若△ABC的周长为20cm,点D,E,F分别是△ABC三边的中点,则△DEF的周长为()A.5cm B.10cm C.15cm D.cm【考点】三角形中位线定理.【分析】利用三角形的中位线性质得到所求三角形的三边与原三角形的周长之间的关系,进而求解.【解答】解:∵点D,E,F分别是△ABC三边的中点,∴DE、EF、DF分别等于△ABC三边的一半,∴DE+EF+DF=△ABC的周长=10 cm.故选B.【点评】本题考查了三角形的中位线定理,三角形的三条中位线把原三角形分成可重合的4个小三角形,因而每个小三角形的周长为原三角形周长的一半.6.四边形ABCD中,AC、BD相交于点O,能判别这个四边形是正方形的条件是()A.OA=OB=OC=OD,AC⊥BD B.AB∥CD,AC=BDC.AD∥BC,∠A=∠C D.OA=OC,OB=OD,AB=BC【考点】正方形的判定.【分析】先想一下平行四边形、菱形、矩形、正方形的判定定理,再根据选项中的条件进行推理,看看能否推出四边形是正方形即可.【解答】解:A、∵OA=OB=OC=OD,∴AC=BD,∵AC⊥BD,∴四边形ABCD是正方形,故本选项正确;B、根据AB∥CD和AC=BD不能推出四边形ABCD是正方形,故本选项错误;C、∵AD∥BC,∴∠DAB+∠ABC=180°,∠ADC+∠DCB=180°,∵∠DAB=∠DCB,∴∠ABC=∠ADC,∴只能推出四边形ABCD是平行四边形,故本选项错误;D、∵OA=OC,OB=OD,∴四边形ABCD是平行四边形,∵AB=BC,∴只能推出四边形ABCD是菱形,故本选项错误;故选A.【点评】本题考查了平行四边形、菱形、矩形、正方形的判定的应用,主要考查学生的推理能力,题目是一道比较好的题目,难度适中.7.如图,在平行四边形ABCD中,点E是CD延长线上一点,BE与AD交于点F,若CD=2DE,且△DEF的面积为3,则三角形ABF的面积为()A.6 B.8 C.9 D.12【考点】相似三角形的判定与性质;平行四边形的性质.【分析】根据平行四边形的性质推出AB=CD,AB∥CD,根据相似三角形的判定得出△ABF ∽△DEF,根据相似三角形的性质得出=()2,代入求出即可.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴△ABF∽△DEF,∴=()2,∵CD=2DE,△DEF的面积为3,∴三角形ABF的面积为12,故选D.【点评】本题考查了平行四边形的性质,相似三角形的性质和判定的应用,能求出=()2是解此题的关键,注意:相似三角形的面积之比等于相似比的平方.8.如图,在正方形ABCD的外侧,作等边三角形ADE,连结BE交AD于点F,则∠DFE 的度数为()A.45°B.55°C.60°D.75°【考点】正方形的性质;等边三角形的性质.【分析】根据正方形的性质得出AB=AD,∠BAS=90°,根据等边三角形的性质得出∠AED=∠EAD=60°,AE=AD,求出∠BAE=150°,AB=AE,∠ABE=∠AEB=15°,求出∠AFB即可.【解答】解:∵四边形ABCD是正方形,∴AB=AD,∠BAS=90°,∵△AED是等边三角形,∴∠AED=∠EAD=60°,AE=AD,∴∠BAE=150°,AB=AE,∴∠ABE=∠AEB=(180°﹣150°=15°,∴∠DFE=∠AFB=90°﹣15°=75°,故选D.【点评】本题考查了正方形的性质,等边三角形的性质,三角形的内角和定理,等腰三角形的性质和判定的应用,解此题的关键是求出∠ABE的度数,难度适中.9.如图,矩形ABCD的面积为20,对角线交于点O,以AB、AO为邻边作平行四边形AOC1B,对角线交于O1,以AB、AO1为邻边作平行四边形AO1C2B;…;依此类推,则平行四边形AO4C5B的面积为()A.B.C.D.【考点】矩形的性质;平行四边形的性质.【分析】根据矩形的性质求出△AOB的面积等于矩形ABCD的面积的,求出△AOB的面积,再分别求出△ABO1、△ABO2、△ABO3、△ABO4的面积,即可得出答案.【解答】解:∵四边形ABCD是矩形,∴AO=CO,BO=DO,DC∥AB,DC=AB,=×20=10,∴S△ADC=S△ABC=S矩形ABCD∴S△AOB=S△BCO=S△ABC=×10=5,∴S=S△AOB=×5=,∴S=S=,S=S=,S=S=,∴S=2S=2×=,故选B.【点评】本题考查了矩形的性质,平行四边形的性质,三角形的面积的应用,解此题的关键是能根据求出的结果得出规律,注意:等底等高的三角形的面积相等.10.如图,P是正方形ABCD边BC上一点,且BP=3PC,Q是DC的中点,则AQ:QP=()A.2:1 B.3:1 C.3:2 D.5:2【考点】相似三角形的判定与性质;正方形的性质.【分析】根据BP=3PC和Q是CD的中点,可以求得=,即可求证△ADQ∽△QCP,所以根据该相似三角形的对应边成比例得到===2.【解答】解:在正方形ABCD中,AD=CD=BC=AB.∵BP=3PC,Q是CD的中点,∴==.又∵∠ADQ=∠QCP=90°,∴△ADQ∽△QCP,∴===2,即AQ:QP=2:1.故选A.【点评】本题考查了相似三角形对应角相等的性质,考查了相似三角形的判定,本题中求证△ADQ∽△QCP是解题的关键.11.有四个一模一样的小球,其中三个小球上面分别标有数字2、3、4,小明和小亮各摸一个,前一个人随机摸一个球记下数字后放回,混合均匀,后一个人再随机摸一个小球,如果两人摸得小球的数字之和为8的概率为,则第四个小球上的数字是()A.8 B.5 C.5或6 D.6【考点】列表法与树状图法.【分析】设第四个小球上的数字为x,先画树状图展示所有16种等可能的结果数,根据概率公式可得两人摸得小球的数字之和为8的结果数为3,其中4+4=8占1种,而当x=5时,3+x=8,x+3=8;当x=6时,2+x=8,x+2=8,于是可判断第四个小球上的数字为5或6.【解答】解:设第四个小球上的数字为x,画树状图为:共有16种等可能的结果数,而两人摸得小球的数字之和为8的概率为,则两人摸得小球的数字之和为8的结果数为3,其中4+4=8,当x=5时,3+x=8,x+3=8;当x=6时,2+x=8,x+2=8,所以第四个小球上的数字为5或6.故选C.【点评】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.12.如图,在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点(且点P不与点B、C重合),PE⊥AB于E,PF⊥AC于F.则EF的最小值为()A.4 B.4.8 C.5.2 D.6【考点】矩形的判定与性质;垂线段最短;勾股定理的逆定理.【分析】先由矩形的判定定理推知四边形PEAF是矩形;连接PA,则PA=EF,所以要使EF,即PA最短,只需PA⊥CB即可;然后根据三角形的等积转换即可求得PA的值.【解答】解:如图,连接PA.∵在△ABC中,AB=6,AC=8,BC=10,∴BC2=AB2+AC2,∴∠A=90°.又∵PE⊥AB于点E,PF⊥AC于点F.∴∠AEP=∠AFP=90°,∴四边形PEAF是矩形.∴AP=EF.∴当PA最小时,EF也最小,即当AP⊥CB时,PA最小,∵AB•AC=BC•AP,即AP===4.8,∴线段EF长的最小值为4.8;故选:B.【点评】本题考查了勾股定理、矩形的判定与性质、垂线段最短.利用“两点之间垂线段最短”找出PA⊥BC时,PA取最小值是解答此题的关键.二、填空题:每小题4分,共32分.13.已知菱形的两条对角线的长分别是6和8,那么它的边长是5.【考点】菱形的性质;勾股定理.【分析】作出图形,根据菱形的对角线互相垂直平分求出OA、OB并得到AC⊥BD,然后根据勾股定理列式计算即可求出AB的长.【解答】解:如图,在菱形ABCD中,OA=×8=4,OB=×6=3,AC⊥BD,在Rt△AOB中,AB===5,所以,菱形的边长是5.故答案为:5.【点评】本题考查了菱形的性质,主要利用了菱形的对角线互相垂直平分的性质,勾股定理的应用,熟记性质是解题的关键,作出图形更形象直观.14.如图,测量小玻璃管口径的量具ABC中,AB的长是10毫米,AC被分成6等份,如果小管口DE正好对着量具上3份处(DE∥AB),那么小管口径DE的长是5毫米.【考点】相似三角形的应用.【分析】利用DE∥AB得到△CDE∽△CAB,然后利用相似比可计算出DE的长.【解答】解:∵DE∥AB,∴△CDE∽△CAB,∴=,即=,∴DE=5(毫米).故答案为5.【点评】本题考查了相似三角形的应用:借助标杆或直尺测量物体的高度.利用杆或直尺测量物体的高度就是利用杆或直尺的高(长)作为三角形的边,利用视点和盲区的知识构建相似三角形,用相似三角形对应边的比相等的性质求物体的高度.15.校生物小组有一块长32m,宽20m的矩形实验田,为了管理方便,准备沿平行于两边的方向纵、横个开辟一条等宽的小道,要使种植面积为540m2,小道的宽应是2米.【考点】一元二次方程的应用.【分析】设道路的宽为xm,将4块草地平移为一个长方形,长为(32﹣x)m,宽为(20﹣x)m.根据长方形面积公式即可求出道路的宽.【解答】解:设道路的宽为xm,依题意有(32﹣x)(20﹣x)=540,整理,得x2﹣52x+100=0,∴(x﹣50)(x﹣2)=0,∴x1=2,x2=50(不合题意,舍去),答:小道的宽应是2m.故答案为:2.【点评】本题考查了一元二次方程的应用,应熟记长方形的面积公式.另外求出4块试验田平移为一个长方形的长和宽是解决本题的关键.16.矩形的两条对角线的夹角是60°,一条对角线与矩形短边的和为15,那么矩形对角线的长为10,短边长为5.【考点】矩形的性质;等边三角形的判定与性质.【分析】根据矩形ABCD,得到OA=OC,OB=OD,AC=BD,推出OA=OB,根据等边三角形的判定得出△OAB是等边三角形,即可求出AB和对角线长.【解答】解:∵矩形ABCD,∴OA=OC,OB=OD,AC=BD,∴OA=OB,∵∠AOB=60°,∴△OAB是等边三角形,∴AB=OB=OA=×15=5,AC=BD=2×5=10.故答案为:10,5.【点评】本题主要考查对矩形的性质,等边三角形的性质和判定等知识点的理解和掌握,能根据性质得到等边三角形OAB是解此题的关键,题型较好,难度适中.17.若m、n为一元二次方程x2+3x﹣4=0的两个根,则m+n的值为﹣3.【考点】根与系数的关系.【分析】直接根据根与系数的关系求解.【解答】解:m+n=﹣3.故答案为﹣3.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.18.如图,在矩形ABCD中,E是BC边上的点,连接AE、DE,将△DEC沿线段DE翻折,点C恰好落在线段AE上的点F处.若AB=3,BE:EC=4:1,则线段DE的长为.【考点】翻折变换(折叠问题).【分析】由翻折易得△DFE≌△DCE,则DF=DC,∠DFE=∠C=90°,再由AD∥BC得∠DAF=∠AEB,根据AAS证出△ABE≌△DFA;则AE=AD,设CE=x,从而表示出BE,AE,再由勾股定理,求得DE.【解答】证明:由矩形ABCD,得∠B=∠C=90°,CD=AB,AD=BC,AD∥BC.由△DEC沿线段DE翻折,点C恰好落在线段AE上的点F处,得△DFE≌△DCE,∴DF=DC,∠DFE=∠C=90°,∴DF=AB,∠AFD=90°,∴∠AFD=∠B,由AD∥BC得∠DAF=∠AEB,∴在△ABE与△DFA中,,∴△ABE≌△DFA(AAS).∵由EC:BE=1:4,∴设CE=x,BE=4x,则AD=BC=5x,由△ABE≌△DFA,得AF=BE=4x,在Rt△ADF中,由勾股定理可得DF=3x,又∵DF=CD=AB=3∴x=1在Rt△DCE中,DE===.故答案是:.【点评】本题考查了三角形的全等和勾股定理的应用,一定要熟练掌握全等三角形的判定方法和勾股定理的内容.19.有四个一模一样的小球,上面分别标有﹣2,0,2,3四个数字.从中任意模一个小球,将上面的数字记为a(不放回),再摸一个小球,将上面的数字记为b,这样的数字a,b能使关于x的一元二次方程(a﹣1)x2+bx+1=0有实数根的概率为.【考点】列表法与树状图法;根的判别式.【分析】根据根的判别式的意义得到a﹣1≠0且△=b2﹣4(a﹣1)≥0,则4a﹣b2≤4,再画树状图展示所有12种等可能的结果数,然后找出满足4a﹣b2≤4的结果数,再根据概率公式求解.【解答】解:∵关于x的一元二次方程(a﹣1)x2+bx+1=0有实数根,∴a﹣1≠0且△=b2﹣4(a﹣1)≥0,则4a﹣b2≤4,画树状图为:共有12种等可能的结果数,其中满足4a﹣b2≤4的结果数为8,所以能使关于x的一元二次方程(a﹣1)x2+bx+1=0有实数根的概率==.故答案为.【点评】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.也考查了根的判别式.20.已知如图,正方形ABCD的对角线AC、BD交于O,点E、F分别是AD、AB边的中点,连接DF、CE交于点G,连接AG、OG.若AD=2,则OG=.【考点】正方形的性质.【分析】作AM⊥DF垂足为M,连接BM,作MH⊥AB于H.首先利用△ADF≌△DCE 推出∠EGD=90°,由AM∥EG,AE=ED推出MG=GD,因为OB=OD,所以OG=BM,只要求出HM,HB即可解决问题.【解答】解:作AM⊥DF垂足为M,连接BM,作MH⊥AB于H.∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠DAB=∠ADC=90°,OB=OD,∵AF=FB,AE=ED,∴AF=FB=AE=ED,在△ADF和△DCE中,,∴△ADF≌△DCE,∴∠ADF=∠ECD,∵∠ECD+∠DEC=90°,∴∠DEC+∠EDF=90°,∴∠EGD=90°,∵∠AMD=∠EGD=90°,∴AM∥EG,∵AE=ED,∴MG=GD∵BO=OD,∴OG=BM.在RT△ADF中,∵∠DAF=90°,AD=2,AF=1,∴DF=,AM==,在RT△AMF中,∵∠AMF=90°,AF=1,AM=,∴FM==,MH==,∴AH==,HF=,BH=,∴BM===,∴OG=BM=.故答案为.【点评】本题考查正方形的性质、全等三角形的判定和性质、三角形中位线定理勾股定理等知识,解题的关键是添加辅助线,利用三角形中位线解决问题,所以中考常考题型.三、解答题:共70分.21.(20分)(2015春•重庆校级期末)解一元二次方程:(1)x2﹣x=0(2)4x2﹣4x+1=0(3)x2﹣3x﹣4=0(4)2x2+4x﹣=0.【考点】解一元二次方程-因式分解法;解一元二次方程-配方法.【分析】(1)利用因式分解法解方程;(2)利用因式分解法解方程;(3)利用因式分解法解方程;(4)利用配方法得到(x+1)2=,然后利用直接开平方法解方程.【解答】解:(1)x(x﹣1)=0,x=0或x﹣1=0,所以x1=0,x2=1;(2)(2x﹣1)2=0,2x﹣1=0,所以x1=x2=;(3)(x﹣4)(x+1)=0,x﹣4=0或x+1=0,所以x1=4,x2=﹣1;(4)x2+2x=,x2+2x+1=+1,(x+1)2=,x+1=±,所以x1=﹣1+,x2=﹣1﹣.【点评】本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).也考查了配方法解一元二次方程.22.如图,E,F是菱形ABCD对角线上的两点,且AE=CF.(1)求证:四边形BEDF是菱形;(2)若∠DAB=60°,AD=6,AE=DE,求菱形BEDF的周长.【考点】菱形的判定与性质;全等三角形的判定与性质.【分析】(1)连接BD,由菱形ABCD的性质得出OA=OC,OB=OD,AC⊥BD,得出OE=OF,证出四边形BEDF是平行四边形,再由EF⊥BD,即可证出四边形BEDF是菱形;(2)求出∠DAE=30°,得出OD=AD=3,再证出∠ADE=∠EDO=30°,在Rt△DEO中,由三角函数求出DE==2,即可得出菱形BEDF的周长.【解答】(1)证明:连接BD,交AC于O,如图所示:∵四边形ABCD是菱形,∴OA=OC,OB=OD,AC⊥BD,∵AE=CF,∴OE=OF,∴四边形BEDF是平行四边形,∵EF⊥BD,∴四边形BEDF是菱形;(2)解:∵∠DAB=60°,∴∠DAE=30°,∠ADB=60°,∵AD=6,∴OD=AD=3,∵AE=DE,∴∠DAE=∠ADE,∠ADE=∠EDO=30°,在Rt△DEO中,DE==2,∴菱形BEDF的周长=4DE=8.【点评】本题考查了菱形的性质与判定、平行四边形的判定、等腰三角形的性质以及三角函数的运用;熟练掌握菱形的性质,并能进行推理论证与计算是解决问题的关键.23.(10分)(2015•重庆校级模拟)如图(1),点E是正方形ABCD的对角线CA延长线上一点,以AE为边在正方形的外部作△AEF,使∠AFE=90°,AF=FE,点O是线段CE 的中点,连OB,OF,(1)若EF=1,AB=3,求线段EO的长度;(2)求证:OB⊥OF;(3)将图(1)中的正方形变为菱形,其中∠ABC=60°,将等腰△AEF的顶角变为120°,其余条件都不变,则(2)中的结论是否成立?若成立,请证明;若不成立,请说明理由.【考点】四边形综合题.【分析】(1)利用勾股定理求得AE和AC的长,则EC即可求得,进而求得EO的长;(2)作FM⊥EC于点M,BN⊥EC于点N,设直角△AEF的直角边长是a,设正方形ABCD 的边长是b,利用三角函数求得OM、ON、FN和BN的长,证明△OMF≌△△BNO,则∠FOM=∠OBN,∠OFM=∠BON,然后根据直角三角形两锐角互余即可证得∠FOM+∠OFM=90°,即可证明结论;(3)与(2)的证明方法相同.【解答】解:(1)∵在直角△AEF中,AE==,直角△ABC中,AC==3,∴EC=AE+AC=+3=4,又∵O是线段EC的中点,∴EO=EC=2;(2)作FM⊥EC于点M,BN⊥EC于点N.∵设直角△AEF的直角边长是a,则FM=EM=AM=a,设正方形ABCD的边长是b,则AN=BN=NC=b,则OE=OC=(AE+AC)=(a+b),OM=OE﹣EM=(a+b)﹣a=b,ON=AN﹣OA=AN﹣(OM﹣AM)=b﹣(b﹣a)=a.∴在直角△OMF和直角△BNO中,∴△OMF≌△△BNO,∴∠FOM=∠OBN,∠OFM=∠BON又∵直角△OMF中,∠FOM+∠OFM=90°,∴∠BOF=90°,∴OB⊥OF;(3)OB⊥OF仍成立.理由是:作FM⊥EC于点M,BN⊥EC于点N.∵设BF=a,则FM=EF•sin∠E=a,EM=AM=EF•cosE=a,设AB=b,则BN=AB•sin∠BAC=b,AN=CN=b.∴EC=AE+AC=a+b.∴EO=OC=(a+b),∴OM=EO﹣EM=(a+b)﹣a=b,ON=ON=AN﹣OA=AN﹣(OM﹣AM)=a.∴=,又∵∠FMA=∠BNO,∴△OMF∽△△BNO,∴∠FOM=∠OBN,∠OFM=∠BON又∵直角△OMF中,∠FOM+∠OFM=90°,∴∠BOF=90°,∴OB⊥OF.【点评】本题考查了全等三角形的判定与性质,正确证明△OMF≌△△BNO是关键.24.(12分)(2015春•重庆校级期末)如图1,等腰Rt△ABC,AC=BC=4,D为BC中点,矩形BFEG,EF=4,BF=8,且F、B、C共线.△ABD沿BF运动,速度为每秒1个单位长,运动中记为△A1B1D1.当A1与E重合时,运动停止运动过程中△A1B1D1与△BEF 重叠部分面积记为S.(1)当线段A1D1过线段EB中点时,求运动时间t;(2)求S与t的关系式;(3)取线段BF中点为H,连接EH,如图2,当B1与F重合时,将∠A1B1D1绕点F旋转,射线B1A1与直线EH交于M,射线B1D1与直线EH交于N,若EM:MN=3:5,求线段EM的长.【考点】几何变换综合题.【分析】(1)过O作MN⊥EG于M,交BF于N,分别计算出BN、B1D1、D1N的长,则可求出BB1的长,即t的值;(2)分五种情况进行讨论:①当0≤t≤2时,如图2,重叠部分是△BCB1,作高CD,根据同角的三角函数列式表示出高CD的长,利用面积公式求出S与t的关系式;②当2<t≤8时,如图3,重叠部分是四边形CB1D1M,重叠部分面积是两三角形面积的差;③当8<t≤10时,如图4,重叠部分是五边形CQFD1M,重叠部分面积S=﹣﹣,代入计算即可;④当10<t<12时,如图5,重叠部分是四边形CPQM,S=﹣﹣+,代入计算即可;⑤当t=12时,如图6,S=0;(3)∠A1B1D1绕点F旋转,发现在旋转过程中,交点N与H重合,所以有两种情况:①如图7,当交点M在线段EH上时,求出EH的长,再按已知的比得出结论:EM=EH=×=;②如图8,当交点M在直线EH上时,同理得EM=6.【解答】解:(1)如图1,线段A1D1过线段EB中点O,过O作MN⊥EG于M,交BF于N,∵四边形EFBG是矩形,∴EG∥FB,∴MN⊥BF,∵△ABC是等腰直角三角形,D为BC中点,∴BD=DC,∵AC=BC=4,∴BD=DC=2,由勾股定理得:AD===2,∵EG∥FB,∴∠GEB=∠EBF,∵EO=OB,∠EOA1=∠BOD1,∴△EOA1≌△BOD1,∴A1O=D1O=A1D1=AD=×2=,同理:OM=ON=MN=EF=2,由勾股定理得:A1M===1,同理D1N=1,∵EO=OB,ON∥EF,∴FN=BN=BF=4,∴BB1=B1D1+D1N+BN=2+1+4=7,∴t=7,则当线段A1D1过线段EB中点时,运动时间t为7秒;(2)分五种情况讨论:①当0≤t≤2时,如图2,重叠部分是△BCB1,过C作CD⊥BF于D,∵∠A1B1D1=45°,∴CD=B1D,tan∠EBF===,∴CD=BD=(BB1﹣CD,CD=t,CD=t,∴S==BB1•CD=•=;②当2<t≤8时,如图3,重叠部分是四边形CB1D1M,分别过C、M向BF作垂线CP和MN,垂足分别为P、N,由平移得如图1:∠A1D1B=∠ADC,tan∠A1D1B====2,∴D1N=MN,∵DD1=t,BD=2,∴D1B=DD1﹣BD=t﹣2,tan∠EBF==,2MN=t﹣2﹣MN,MN=(t﹣2),由①得:CP=t,∴S=﹣,=BB1•CP﹣BD1•MN,=t•﹣(t﹣2)•(t﹣2),=﹣+t﹣;③当8<t≤10时,如图4,重叠部分是五边形CQFD1M,则B1F=t﹣8,∵∠A1B1F=45°,∴△FB1Q是等腰直角三角形,∴FQ=B1F=t﹣8,∴S=﹣﹣,=﹣+t﹣﹣B1F•FQ,=﹣+t﹣﹣(t﹣8)(t﹣8),=﹣t2+﹣;④当10<t<12时,如图5,重叠部分是四边形CPQM,∵BB1=t,B1D1=2,BF=8,∴FD1=t﹣2﹣8=t﹣10,B1F=t﹣8,∴PF=B1F=t﹣8,=2,∴FQ=2FD1=2(t﹣10),∴S=﹣﹣+,=﹣t2+﹣+(t﹣10)•2(t﹣10),=﹣t+;⑤当t=12时,如图6,S=0;综上所述:S=(3)有两种情况:①如图7,当交点M在线段EH上时,∵H是BF的中点,∴FH=4,由勾股定理得:EH==4,∵EM:MN=3:5,EM+MN=EH,∴EM=EH=×=,②如图8,当交点M在直线EH上时,∵EM:MN=3:5,EM+EH=MN,∴EM=×3=6,综上所述:线段EM的长为或6.【点评】本题是几何变换的综合题,考查了矩形、等腰直角三角形、全等三角形的性质和判定及旋转的性质,熟练掌握这些性质是做好本题的关键;同时,知道旋转前面的对应角相等;本题还利用了同角的三角函数列比例式表示线段的长,利用面积公式代入计算,求出对应的关系式;在计算重叠部分面积时,图形比较复杂,分情况讨论,此处容易丢解,因此要细心画图,准确找出重叠图形的各种类型.31 / 31。

重庆2014年重庆一中中考数学第二次模拟试题(教师版)范文

重庆2014年重庆一中中考数学第二次模拟试题(教师版)范文

重庆一中2014年第二次模拟试题数 学 试 题 2014.3(本试题共五个大题,26个小题,满分150分,时间120分钟)参考公式:抛物线)0(2≠++=a c bx ax y 的顶点坐标为)44,2(2a b ac a b --一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案的代号在答题卷中对应的方框涂黑.1. 在2,0,31,5.2-这四个数中,是正整数的是( )A. -2.5 B .31c .0 D.22. 如图所示的几何体是由一些小立方块搭成的,则这个几何体的俯视图是( )3. 计算23)3(a -的结果正确的是( ) A.56a - B. 69a - C. 59a D.69a4. 如图,已知AB ∥CD ,直线EF 分别交AB 、CD 于点E 、F ,EG 平分∠BEF ,若∠1=50°,则∠2的度数是( )A .70°B .65° C.60° D .50°(第4题图) (第7题图) (第9题图)F1 A E BC GD 2 B A OC B C A CB A25.函数23-=x y 的自变量x 的取值范围是( )A .2>xB .2≠xC .2≥xD .2≠x 且0≠x6. 下列说法正确的是( )A .两名同学5次平均分相同,则方差较大的同学成绩更稳定B .一组数据3,4,4,6,8,5的众数为4C .必然事件的概率是100%,随机事件的概率是50%D .为防止H7N9流感,对确诊患者的密切接触者采用抽样调查的方法7. 如图,AC 是电杆AB 的一根拉线,现测得BC=6米,∠ABC=90°,∠ACB=52°,则拉线AC 的长为( )米.A.︒52sin 6B.︒52tan 6C.︒52cos 6D.︒⋅52cos 68. 若一个代数式222--a a 的值为3,则a a 632-的值为( )A .9B .3C .15D .59. 如图,在以O 为圆心的两个同心圆中,大圆的弦AB 与小圆相切 于C 点,AB=12cm ,AO=8cm ,则OC 长为( )cm A .5 B .4 C .52 D . 7210. 2013年4月20日08时02分在四川雅安芦山县发生7.0级地震,人民生命财受重大损失.某部队接到上级命令,乘车前往灾区救援,前进一段路程后,由于道路受阻,车辆无法通行,通过短暂休整后决定步行前往.则能反映部队与灾区的距离s (千米)与时间t (小时)之间函数关系的大致图象是( )11.用同样大小的黑色五角星按图所示的方式摆图案,按照这样的规律摆下去,第13个图案需要的黑色五角星的个数是( )A .18B .19C .21D .2212.如图,在直角坐标系中,有菱形OABC ,A 点的坐标为(10,0), 双曲线x ky =(0>x )经过C 点,且OB ·AC =160,则k 的值A .B .C .D .……图案① 图案④ 图案③ 图案② 图案⑤OO O S (千米) t (小时) O S (千米) S (千米) S (千米) t (小时) t (小时) t (小时)(AOy xB C3为( )A .40B .48C .64D .80二、填空题 (本大题6个小题,每小题4分,共24分)在每小题中,请将答案填在答题卷相应位置的横线上.13. 五一小长假期间,重庆阴雨天气对市民出游热情虽有一定影响,但全市旅游市场秩序井然有序,旅游接待稳中有升. 全市旅行社共组接团6369个,共组接团人. 则数据用科学记数法表示为( ) .14. △ABC 与△DEF 是位似比为1:3的位似图形,若4=∆ABC S ,则△DEF 的面积为 ( ) .15. 第十二届全国人大代表选举的基本原则是:城乡同比选举,实现人人平等、地区平等、民族平等. 据新华网2月28日公布,全国5个少数民族自治区的人大代表如下:这五个地区代表人数的中位数是___________.16. 将Rt △ABC 绕顶点B 旋转至如图位置,其中∠C=90°,AB=4,BC=2,点C 、B 、A '在同一条直线上,则阴影部分的面积是 .(左) (右)17. 如图,每个小方格都是边长为1个单位长度的小正方形,将左边8⨯1的矩形随机沿方格竖线剪成三个小矩形(含正方形),三个面积相等的算作同一种剪法(如:面积为1、3、4和面积为3、4、1算同一种剪法),且长宽均为正整数,能恰好拼在右图虚线部分使其成为一个4⨯4的正方形的概率为 ( ) .18. 一换硬币游戏这样规定:有三部自动换币机,其中第一部总是将一枚硬币换成两枚硬币,第二部总是将一枚硬币换成四枚硬币,而第三部总是将一枚硬币换成十枚硬币. 若某人进行了13次换币后,将1枚硬币换成84枚,则他在第三部自动换币机上换了( ) 次.选区 广西 西藏 新疆 宁夏 内蒙 人数(人) 90 20 60 21 58 A'C'C B A (第12题图)(第16题图) (第17题图)三、解答题(本大题2个小题,每小题7分,共14分)解答时每小题必须给出必要的演算过程或推理步骤.19. 计算:︒+--+-⨯-+--60tan)31(64)2()1(4232013π20. 如图,在10⨯10正方形网格中作图:(1)作出△ABC关于直线l的轴对称图形△A1B1C1;(2)作出△ABC绕点O顺时针旋转90°的图形△A2B2C2.四、解答题(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤.21. 先化简,再求值:22816121(2)224x xxx x x x-+÷---+++,其中x为不等式组20512(1)xx x-<⎧⎨+-⎩>的整数解.OlACBA45第22题图 22. 为调动学生学习积极性,某中学初一(1)班对学生的学习表现实行每学月评分制,现对初一上期1—5学月的评分情况进行了统计,其中学生小明5次得分情况如下表所示:时间 第1学月 第2学月 第3学月 第4学月 第5学月 得分 8分 9分 9分 9分 10分学生小刚的得分情况制成了如下不完整的折线统计图:(1)若小刚和小明这5次得分的平均成绩相等,求出小刚第3学月的得分.(2)在图中直接补全折线统计图;(3)据统计,小明和小刚这5学月的总成绩都排在了班级的前4名,现准备从该班的前四名中任选两名同学参加学校的表彰大会,请用列表或画树状图的方法,求选取的两名同学恰好是小明和小刚两人的概率.23.商场经营的某品牌童装,4月的销售额为20000元,为扩大销量,5月份商场对这种童装打9折销售,结果销售量增加了50件,销售额增加了7000元. (1)求该童装4月份的销售单价;(2)若4月份销售这种童装获利8000元,6月全月商场进行“六一儿童节”促销活动,童装在4售价的基础上一律打8折销售,若该童装的成本不变,则销量至少为多少件,才能保证6月的利润比4月的利润至少增长25%?9 10 68 4 1 2 2 3 4 5 (分)(学月)624. 已知:如图,正方形ABCD 中,点E 是BA 延长线上一点,连接DE ,点F 在DE 上且DF=DC ,DG ⊥CF 于G. DH 平分∠ADE 交CF 于点H ,连接BH.(1)若DG=2,求DH 的长; (2)求证:BH+DH=2CH.五、解答题:(本大题2个小题,每小题各12分,共24分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.25.如图,抛物线y=x2+bx+c 与y 轴交于点C (0,﹣4),与x 轴交于点A ,B ,且B 点的坐标为(2,0)(1)求该抛物线的解析式.(2)若点P 是AB 上的一动点,过点P 作PE ∥AC ,交BC 于E ,连接CP ,求△PCE 面积的最大值.(3)若点D 为OA 的中点,点M 是线段AC 上一点,且△OMD 为等腰三角形,求M 点的坐标.(第24题图) (第25题图)GH FAC BD E726. 如图,在Rt △ABC 中,∠ACB=90°,AC=6,BC=12,D 、E 分别为边AB 、AC 的中点,连结DE ,点P 从点A 出发,沿折线AE-ED-DB 运动,到点B 停止.点P 在折线AE-ED 上以每秒1个单位的速度运动,在DB 上以每秒5个单位的速度运动. 过点P 作PQ ⊥BC 于点Q , 以PQ 为边在PQ 右侧作正方形PQMN , 使点M 落在线段BC 上.设点P 的运动时间为t 秒(0t ). (1)在整个运动过程中,求正方形PQMN 的顶点N 落在AB 边上时对应的t 的值;(2)连结BE ,设正方形PQMN 与△BED 重叠部分图形的面积为S ,请直接写出S 与t 之间的函数关系式和相应的自变量t 的取值范围;(3)当正方形PQMN 顶点P 运动到与点E 重合时,将正方形PQMN 绕点Q 逆时针旋转60°得正方形 P1 Q M1 N1,问在直线DE 与直线AC 上是否存在点G 和点H ,使△GHP1是等腰直角三角形? 若 存在,请求出EG 的值;若不存在,请说明理由.(第26题图)AM (Q )C BD EP N ACBD EACBDE备用图备用图8重庆一中2014年第二次模拟试题答案一、选择题(每小题4分,共48分) DADB BBCC DACB二、填空题(每小题4分,共24分)13. 51091.1⨯ 14.36 15. 58 16.32316-π17.53 18.819. 解:原式=39414+-+- …… 6分 20. =32+- ……………… 7分21. 解:原式=41216)2()4(22+-+-÷+-x x x x x x ………(3分) =41)4)(4(2)2()4(2+--++⋅+-x x x x x x x …(4分)=41)4(4+-+-x x x x ……………………(5分)=)4(4+-x x .………………………(6分)由20512(1)x x x -<⎧⎨+-⎩>解得21<<-x .…(8分)∵x 是不等式组的整数解,∴x=1. x=0(舍)…………(9分) 当x=1时,原式=54-.……………………(10分)22. 解:10)10928()10839(=++⨯-++⨯∴小刚第3学月的得分为10分;………………………………………………(2分) 补全折线图如图所示 ………………………………………………(4分)(3)设小明和小刚分别为A 、B ,该班的前四名另两名同学为 C ,D ,画表格如下:A B C DA (A ,B ) (A ,C ) (A ,D ) B (B ,A ) (B ,C ) (B ,D ) C (C ,A ) (C ,B ) (C ,D ) D (D ,A ) (D ,B ) (D ,C ) lCB A OA1A2B2 B1C2C1 9 106 84 1 2 2 3 45 (分(学月)9共有12种等可能情况,其中恰好是小明和小刚两人有2种,所以选取的两名同学恰好是小明和小刚两人的概率P=61122=. …………………………………………(10分)23. (1)设销售单价为x 则200000.950200007000x x ⎛⎫+=+ ⎪⎝⎭解得x=200总件数20000÷200=100(件),一件利润8000÷100=80元 成本为200-80=120(元),0.8×200-120=40设销售最起码为y 件则40y ≥8000(1+25%)得到y ≥25024. (1)∵DG ⊥CF 且DF =CD∴∠FDG=21∠FDC.................1分∵DH 平分∠ADE∴∠FDH=21∠ADF.................2分∴∠HDG=∠FDG-∠FDH=21∠FDC-21∠ADF =21(∠FDC-∠ADF )=21∠ADC=45°....3分∴△DGH 为等腰直角三角形 ∵DG=2,∴DH =22 .................5分(2)过点C 作CM ⊥CH, 交HD 延长线于点M ∵∠1+∠DCH=∠2+∠DCH=900 ∴∠1=∠2又△DGH 为等腰直角三角形 ∴△MCH 为等腰直角三角形 ∴MC=HC又∵四边形ABCD 为正方形 ∴CD =CB∴△MCD ≌△HCB .................8分 ∴DM =BH又∵△MCH 为等腰直角三角形 ∴DM+DH=2CH∴BH+DH=2CH .................10分GH FACB DEM1 225. 解:(1)把点C(0,﹣4),B(2,0)分别代入y=x2+bx+c中,得,解得∴该抛物线的解析式为y=x2+x﹣4.(2)令y=0,即x2+x﹣4=0,解得x1=﹣4,x2=2,∴A(﹣4,0),S△ABC=AB•OC=12.设P点坐标为(x,0),则PB=2﹣x.∵PE∥AC,∴∠BPE=∠BAC,∠BEP=∠BCA,∴△PBE∽△ABC,∴,即,化简得:S△PBE=(2﹣x)2.S△PCE=S△PCB﹣S△PBE=PB•OC﹣S△PBE=×(2﹣x)×4﹣(2﹣x)2=x2﹣x+=(x+1)2+3∴当x=﹣1时,S△PCE的最大值为3.(3)△OMD为等腰三角形,可能有三种情形:(I)当DM=DO时,如答图①所示.DO=DM=DA=2,∴∠OAC=∠AMD=45°,∴∠ADM=90°,∴M点的坐标为(﹣2,﹣2);(II)当MD=MO时,如答图②所示.过点M作MN⊥OD于点N,则点N为OD的中点,∴DN=ON=1,AN=AD+DN=3,又△AMN为等腰直角三角形,∴MN=AN=3,∴M点的坐标为(﹣1,﹣3);(III)当OD=OM时,∵△OAC为等腰直角三角形,1011∴点O 到AC 的距离为×4=,即AC 上的点与点O 之间的最小距离为.∵>2,∴OD=OM 的情况不存在.综上所述,点M 的坐标为(﹣2,﹣2)或(﹣1,﹣3).26.(1)当点P 在AE 上时, 由△APN ∽△ACB 得BC PNAC AP = ∴1266tt -= ∴t=2s ......2分 当点P 在ED 上时,PN=3 ,∴AE+EP=3+6-3=6 ∴t=6s ......3分(2)⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≤<+-≤<-+-≤<-≤<+-=)129(54983)96(88141541)63(8943)30(292381222t t t t t t t t t t t S .................8分(3)在直线DE 与直线AC 上存在点G 和点H ,使△GHP1是等腰直角三角形. 理由如下: 过P1作P1S ⊥AC 于S, P1R ⊥DE 于R,12∵∠P1QS=60°,P1Q=3,∴P1S=RE=323, QS 23∴P1R=SE=23.当∠P1GH=90°时,可证△P1RG ≌△GEH ,则EG= P1R=23.......9分当∠P1HG=90°时, (如图3、4) 可证△P1SH ≌△HEG ,∴EH=P1S=323,EG=SH, ∴EG=EH+SE=323+23;或EG=EH-SE=323-23; ..........11分③当∠GP1H=90°时,∵P1S ≠ P1R , ∴△P1SH 与△P1RG 不可能全等 ∴P1H ≠ P1G ,∴不成立. .......12分综上,EG=23,323+23,323-23.R S GP1HE Q H G P1SR E Q R P 1S E H GQE P 1G SHR Q图1图2图3图4。

重庆一中初中数学八年级下期末经典练习题(含答案)

重庆一中初中数学八年级下期末经典练习题(含答案)

一、选择题1.(0分)[ID :10219]均匀地向如图的容器中注满水,能反映在注水过程中水面高度h 随时间t 变化的函数图象是( )A .B .C .D . 2.(0分)[ID :10198]如图,E 、F 分别是正方形ABCD 的边CD 、AD 上的点,且CE=DF ,AE 、BF 相交于点O ,下列结论:(1)AE=BF ;(2)AE ⊥BF ;(3)AO=OE ;(4)AOB DEOF S S 四边形∆=中正确的有 A .4个 B .3个 C .2个 D .1个3.(0分)[ID :10147]正比例函数(0)y kx k =≠的函数值y 随x 的增大而增大,则一次函数y x k =-的图象大致是( )A .B .C .D.4.(0分)[ID:10139]已知y=(k-3)x|k|-2+2是一次函数,那么k的值为()A.3±B.3C.3-D.无法确定5.(0分)[ID:10193]如图,以 Rt△ABC的斜边 BC为一边在△ABC的同侧作正方形 BCEF,设正方形的中心为 O,连接 AO,如果 AB=4,AO=62,那么 AC 的长等于()A.12B.16C.43D.826.(0分)[ID:10192]如图2,四边形ABCD的对角线AC、BD互相垂直,则下列条件能判定四边形ABCD为菱形的是()A.BA=BC B.AC、BD互相平分C.AC=BD D.AB∥CD7.(0分)[ID:10188]如图,O是矩形ABCD对角线AC的中点,M是AD的中点,若BC =8,OB=5,则OM的长为()A.1B.2C.3D.48.(0分)[ID:10168]无论m为任何实数,关于x的一次函数y=x+2m与y=-x+4的图象的交点一定不在()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.(0分)[ID:10167]如图,在▱ABCD中,AB=6,BC=8,∠BCD的平分线交AD于点E,交BA的延长线于点F,则AE+AF的值等于()A .2B .3C .4D .610.(0分)[ID :10161]如图,一棵大树在一次强台风中距地面5m 处折断,倒下后树顶端着地点A 距树底端B 的距离为12m ,这棵大树在折断前的高度为( )A .10mB .15mC .18mD .20m11.(0分)[ID :10159]将根24cm 的筷子,置于底面直径为15cm ,高8cm 的圆柱形水杯中,设筷子露在杯子外面的长度hcm ,则h 的取值范围是( )A .h 17cm ≤B .h 8cm ≥C .7cm h 16cm ≤≤D .15cm h 16cm ≤≤ 12.(0分)[ID :10158]下列运算正确的是( ) A .235+= B .32﹣2=3 C .236⨯=D .632÷= 13.(0分)[ID :10154]在平面直角坐标系中,将函数3y x =的图象向上平移6个单位长度,则平移后的图象与x 轴的交点坐标为( )A .(2,0)B .(-2,0)C .(6,0)D .(-6,0)14.(0分)[ID :10150]如图,已知点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )A .48B .60C .76D .8015.(0分)[ID :10149]如图,函数y =ax +b 和y =kx 的图像交于点P ,关于x ,y 的方程组0y ax b kx y -=⎧⎨-=⎩的解是( )A .23x y =-⎧⎨=-⎩B .32x y =-⎧⎨=⎩C .32x y =⎧⎨=-⎩D .32x y =-⎧⎨=-⎩二、填空题16.(0分)[ID :10329]如图,在正方形ABCD 的外侧,作等边△ADE ,则∠AEB=_________°.17.(0分)[ID :10313]函数1y=x 的定义域____.18.(0分)[ID :10310]如果二次根式4x -有意义,那么x 的取值范围是__________.19.(0分)[ID :10309]若ab <0,则代数式2a b 可化简为_____.20.(0分)[ID :10305]若3的整数部分是a ,小数部分是b ,则3a b -=______.21.(0分)[ID :10301]如图所示,将四根木条组成的矩形木框变成▱ABCD 的形状,并使其面积变为原来的一半,则这个平行四边形的一个最小的内角的度数是_____.22.(0分)[ID :10298]函数11y x =-的自变量x 的取值范围是 . 23.(0分)[ID :10277]如图所示,已知ABCD 中,下列条件:①AC =BD ;②AB =AD ;③∠1=∠2;④AB ⊥BC 中,能说明ABCD 是矩形的有______________(填写序号)24.(0分)[ID :10244]将一组数据中的每一个数都加上1得到一组新的数据,那么在众数、中位数、平均数、方差这四个统计量中,值保持不变的是_____.25.(0分)[ID:10239]若m=√n−2+√2−n+5,则m n=___.三、解答题26.(0分)[ID:10418]如图,在平行四边形ABCD中,点E为AD的中点,延长CE交BA的延长线于点F.(1)求证:AB=AF;(2)若BC=2AB,∠BCD=100°,求∠ABE的度数.27.(0分)[ID:10393]为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现,甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球,乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.()1求每套队服和每个足球的价格是多少?()2若城区四校联合购买100套队服和a(a10)>个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用;()3在()2的条件下,若a60=,假如你是本次购买任务的负责人,你认为到甲、乙哪家商场购买比较合算?28.(0分)[ID:10387]已知:如图,在平行四边形ABCD中,E、F是对角线AC上的两点,且AE=CF.求证:∠EBF=∠EDF.29.(0分)[ID:10344]已知:一次函数y=(1﹣m)x+m﹣3(1)若一次函数的图象过原点,求实数m的值.(2)当一次函数的图象经过第二、三、四象限时,求实数m的取值范围.30.(0分)[ID:10337]将函数y=x+b(b为常数)的图象位于x轴下方的部分沿x轴翻折至其上方后,所得的折线是函数y=|x+b|(b为常数)的图象(1)当b=0时,在同一直角坐标系中分别画出函数112y x=+与y=|x+b|的图象,并利用这两个图象回答:x取什么值时,112x+比|x|大?(2)若函数y=|x+b|(b为常数)的图象在直线y=1下方的点的横坐标x满足0<x<3,直接写出b的取值范围【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.A2.B3.B4.C5.B6.B7.C8.C9.C10.C11.C12.C14.C15.D二、填空题16.15°【解析】【分析】【详解】解:由题意可知:是等腰三角形故答案为17.【解析】【分析】由根式的被开方数大于等于0分式的分母不等于0联立不等式组求解x的取值即可【详解】根据题意得解得故答案为:【点睛】本题考查了函数的定义域及其求法函数的定义域就是使函数解析式有意义的自变18.x≥4【解析】分析:根据二次根式有意义的条件列出不等式解不等式即可详解:由题意得x−4⩾0解得x⩾4故答案为x⩾4点睛:此题考查二次根式有意义的条件二次根式有意义的条件是被开方部分大于或等于零二次根19.【解析】【分析】二次根式有意义就隐含条件b>0由ab<0先判断出ab的符号再进行化简即可【详解】若ab<0且代数式有意义;故有b>0a<0;则代数式=|a|=-a故答案为:-a【点睛】本题主要考查二20.【解析】【详解】若的整数部分为a小数部分为b∴a=1b=∴a-b==1故答案为121.30°【解析】【分析】过A作AE⊥BC于点E由四根木条组成的矩形木框变成▱ABCD的形状面积变为原来的一半可得AE=AB由此即可求得∠ABE=30°即平行四边形中最小的内角为30°【详解】解:过A作22.x>1【解析】【分析】【详解】解:依题意可得解得所以函数的自变量的取值范围是23.①④【解析】矩形的判定方法由:①有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线相等的平行四边形是矩形由此可得能使平行四边形ABCD是矩形的条件是①和④24.方差【解析】【分析】设原数据的众数为a中位数为b平均数为方差为S2数据个数为n根据数据中的每一个数都加上1利用众数中位数的定义平均数方差的公式分别求出新数据的众数中位数平均数方差与原数据比较即可得答25.【解析】【分析】直接利用二次根式有意义的条件得出mn的值进而得出答案【详解】∵m=n-2+2-n+5∴n=2则m=5故mn=25故答案为:25【点睛】此题主要考查了二次根式有意义的条件正确得出mn的三、解答题26.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.A解析:A【解析】试题分析:最下面的容器较粗,第二个容器最粗,那么第二个阶段的函数图象水面高度h 随时间t的增大而增长缓慢,用时较长,最上面容器最小,那么用时最短.故选A.考点:函数的图象.2.B解析:B【解析】【分析】根据正方形的性质得AB=AD=DC,∠BAD=∠D=90°,则由CE=DF易得AF=DE,根据“SAS”可判断△ABF≌△DAE,所以AE=BF;根据全等的性质得∠ABF=∠EAD,利用∠EAD+∠EAB=90°得到∠ABF+∠EAB=90°,则AE⊥BF;连结BE,BE>BC,BA≠BE,而BO⊥AE,根据垂直平分线的性质得到OA≠OE;最后根据△ABF≌△DAE得S△ABF=S△DAE,则S△ABF-S△AOF=S△DAE-S△AOF,即S△AOB=S四边形DEOF.【详解】解:∵四边形ABCD为正方形,∴AB=AD=DC,∠BAD=∠D=90°,而CE=DF,∴AF=DE ,在△ABF 和△DAE 中AB DA BAD ADE AF DE =⎧⎪∠=∠⎨⎪=⎩∴△ABF ≌△DAE ,∴AE=BF ,所以(1)正确;∴∠ABF=∠EAD ,而∠EAD+∠EAB=90°,∴∠ABF+∠EAB=90°,∴∠AOB=90°,∴AE ⊥BF ,所以(2)正确;连结BE ,∵BE >BC ,∴BA≠BE ,而BO ⊥AE ,∴OA≠OE ,所以(3)错误;∵△ABF ≌△DAE ,∴S △ABF =S △DAE ,∴S △ABF -S △AOF =S △DAE -S △AOF ,∴S △AOB =S 四边形DEOF ,所以(4)正确.故选B .【点睛】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等.也考查了正方形的性质.3.B解析:B【解析】【分析】先根据正比例函数y kx =的函数值y 随x 的增大而增大判断出k 的符号,再根据一次函数的性质进行解答即可.【详解】解:正比例函数y kx =的函数值y 随x 的增大而增大,00k k ∴->,<,∴一次函数y x k =-的图象经过一、三、四象限.故选B .【点睛】本题考查的知识点是一次函数的图象与正比例函数的性质,解题关键是先根据正比例函数的性质判断出k 的取值范围.4.C解析:C【解析】【分析】根据一次函数的定义可得k-3≠0,|k|-2=1,解答即可.【详解】一次函数y=kx+b 的定义条件是:k 、b 为常数,k≠0,自变量次数为1.所以|k|-2=1,解得:k=±3, 因为k-3≠0,所以k≠3,即k=-3.故选:C .【点睛】本题主要考查一次函数的定义,一次函数y=kx+b 的定义条件是:k 、b 为常数,k≠0,自变量次数为1.5.B解析:B【解析】【分析】首选在AC 上截取4CG AB ==,连接OG ,利用SAS 可证△ABO ≌△GCO ,根据全等三角形的性质可以得到:OA OG ==AOB COG ∠=∠,则可证△AOG 是等腰直角三角形,利用勾股定理求出12AG =,从而可得AC 的长度.【详解】解:如下图所示,在AC 上截取4CG AB ==,连接OG ,∵四边形BCEF 是正方形,90BAC ∠=︒,∴OB OC =,90BAC BOC ∠=∠=︒,∴点B 、A 、O 、C 四点共圆,∴ABO ACO ∠=∠,在△ABO 和△GCO 中,{BA CGABO ACO OB OC=∠=∠=,∴△ABO ≌△GCO , ∴62OA OG ==,AOB COG ∠=∠,∵90BOC COG BOG ∠=∠+∠=︒,∴90AOG AOB BOG ∠=∠+∠=︒,∴△AOG 是等腰直角三角形,∴()()22626212AG =+=,∴12416AC =+=.故选:B .【点睛】本题考查正方形的性质;全等三角形的判定与性质;勾股定理;直角三角形的性质.6.B解析:B【解析】【分析】【详解】解:对角线互相垂直平分的四边形为菱形.已知对角线AC 、BD 互相垂直, 则需添加条件:AC 、BD 互相平分故选:B7.C解析:C【解析】【分析】由O 是矩形ABCD 对角线AC 的中点,可求得AC 的长,然后运用勾股定理求得AB 、CD 的长,又由M 是AD 的中点,可得OM 是△ACD 的中位线,即可解答.【详解】解:∵O 是矩形ABCD 对角线AC 的中点,OB =5,∴AC =2OB =10,∴CD =AB =22AC BC -=22108-=6,∵M 是AD 的中点,∴OM =12CD =3. 故答案为C .【点睛】本题考查了矩形的性质、直角三角形的性质以及三角形中位线的性质,掌握直角三角形斜边上的中线等于斜边的一半是解题的关键.8.C解析:C【解析】由于直线y=-x+4的图象不经过第三象限.因此无论m 取何值,直线y=x+2m 与y=-x+4的交点不可能在第三象限.故选C .9.C解析:C【解析】【分析】【详解】解:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AD=BC=8,CD=AB=6,∴∠F=∠DCF ,∵∠C 平分线为CF ,∴∠FCB=∠DCF ,∴∠F=∠FCB ,∴BF=BC=8,同理:DE=CD=6,∴AF=BF−AB=2,AE=AD−DE=2∴AE+AF=4故选C10.C解析:C【解析】∵树的折断部分与未断部分、地面恰好构成直角三角形,且BC=5m ,AB=12m , ∴22AB BC +22125+=13m ,∴这棵树原来的高度=BC+AC=5+13=18m.故选C.11.C解析:C【解析】【分析】观察图形,找出图中的直角三角形,利用勾股定理解答即可.【详解】首先根据圆柱的高,知筷子在杯内的最小长度是8cm,则在杯外的最大长度是24-8=16cm;再根据勾股定理求得筷子在杯内的最大长度是(如图)AC=2222+=+=17,则在杯外的最小长度是24-17=7cm,AB BC158所以h的取值范围是7cm≤h≤16cm,故选C.【点睛】本题考查了勾股定理的应用,注意此题要求的是筷子露在杯外的取值范围.主要是根据勾股定理求出筷子在杯内的最大长度.12.C解析:C【解析】【分析】根据二次根式得加减法法则及乘除法法则逐一计算即可得答案.【详解】23B.3222,故该选项计算错误,⨯6,故该选项计算正确,2323÷2,故该选项计算错误.6363故选:C.【点睛】本题考查二次根式得运算,熟练掌握运算法则是解题关键.13.B解析:B【解析】先求出平移后的解析式,继而令y=0,可得关于x 的方程,解方程即可求得答案.【详解】根据函数图象平移规律,可知3y x =向上平移6个单位后得函数解析式应为36y x =+, 此时与x 轴相交,则0y =,∴360x +=,即2x =-,∴点坐标为(-2,0),故选B.【点睛】本题考查了一次函数图象的平移,一次函数图象与坐标轴的交点坐标,先出平移后的解析式是解题的关键.14.C解析:C【解析】试题解析:∵∠AEB=90°,AE=6,BE=8,∴10==∴S 阴影部分=S 正方形ABCD -S Rt △ABE =102-1682⨯⨯ =100-24=76.故选C.考点:勾股定理.15.D解析:D【解析】【分析】根据两图象的交点坐标满足方程组,方程组的解就是交点坐标.【详解】由图可知,交点坐标为(﹣3,﹣2),所以方程组的解是32x y =-⎧⎨=-⎩. 故选D .【点睛】本题考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.二、填空题16.15°【解析】【分析】【详解】解:由题意可知:是等腰三角形故答案为【解析】【分析】【详解】解:由题意可知:90,60.BAD DAE ∠=∠= .AB AD AE ==150.BAE ∴∠=ABE △是等腰三角形15.AEB ∴∠=故答案为15.17.【解析】【分析】由根式的被开方数大于等于0分式的分母不等于0联立不等式组求解x 的取值即可【详解】根据题意得解得故答案为:【点睛】本题考查了函数的定义域及其求法函数的定义域就是使函数解析式有意义的自变 解析:0x >.【解析】【分析】由根式的被开方数大于等于0,分式的分母不等于0联立不等式组求解x 的取值即可.【详解】根据题意得,00x x ≥⎧⎨≠⎩ 解得,0x >故答案为:0x >.【点睛】本题考查了函数的定义域及其求法,函数的定义域,就是使函数解析式有意义的自变量的取值范围,是基础题. 18.x≥4【解析】分析:根据二次根式有意义的条件列出不等式解不等式即可详解:由题意得x −4⩾0解得x ⩾4故答案为x ⩾4点睛:此题考查二次根式有意义的条件二次根式有意义的条件是被开方部分大于或等于零二次根解析:x≥4【解析】分析:根据二次根式有意义的条件列出不等式,解不等式即可.详解:由题意得,x−4⩾0,解得,x ⩾4,故答案为x ⩾4.点睛:此题考查二次根式有意义的条件,二次根式有意义的条件是被开方部分大于或等于零,二次根式无意义的条件是被开方部分小于0.19.【解析】【分析】二次根式有意义就隐含条件b>0由ab <0先判断出ab 的符号再进行化简即可【详解】若ab <0且代数式有意义;故有b >0a <0;则代数式=|a|=-a故答案为:-a【点睛】本题主要考查二解析:-【解析】【分析】二次根式有意义,就隐含条件b>0,由ab<0,先判断出a、b的符号,再进行化简即可.【详解】若ab<0故有b>0,a<0;.故答案为:.【点睛】本题主要考查二次根式的化简方法与运用:当a>0;当a<0;当a=0.20.【解析】【详解】若的整数部分为a小数部分为b∴a=1b=∴a-b==1故答案为1解析:【解析】【详解】a,小数部分为b,∴a=1,b1,-b1)=1.故答案为1.21.30°【解析】【分析】过A作AE⊥BC于点E由四根木条组成的矩形木框变成▱ABCD的形状面积变为原来的一半可得AE=AB由此即可求得∠ABE=30°即平行四边形中最小的内角为30°【详解】解:过A作解析:30°【解析】【分析】过A作AE⊥BC于点E,由四根木条组成的矩形木框变成▱ABCD的形状,面积变为原来的一半,可得AE=12AB,由此即可求得∠ABE=30°,即平行四边形中最小的内角为30°.【详解】解:过A作AE⊥BC于点E,如图所示:由四根木条组成的矩形木框变成▱ABCD 的形状,面积变为原来的一半,得到AE =12AB ,又△ABE 为直角三角形, ∴∠ABE =30°,则平行四边形中最小的内角为30°.故答案为:30°【点睛】 本题考查了平行四边形的面积公式及性质,根据题意求得AE =12AB 是解决问题的关键. 22.x >1【解析】【分析】【详解】解:依题意可得解得所以函数的自变量的取值范围是解析:x >1【解析】【分析】【详解】解:依题意可得10x ->,解得1x >,所以函数的自变量x 的取值范围是1x >23.①④【解析】矩形的判定方法由:①有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线相等的平行四边形是矩形由此可得能使平行四边形ABCD 是矩形的条件是①和④解析:①④【解析】矩形的判定方法由:①有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线相等的平行四边形是矩形,由此可得能使平行四边形ABCD 是矩形的条件是①和④.24.方差【解析】【分析】设原数据的众数为a 中位数为b 平均数为方差为S2数据个数为n 根据数据中的每一个数都加上1利用众数中位数的定义平均数方差的公式分别求出新数据的众数中位数平均数方差与原数据比较即可得答 解析:方差【解析】【分析】设原数据的众数为a 、中位数为b 、平均数为x 、方差为S 2,数据个数为n ,根据数据中的每一个数都加上1,利用众数、中位数的定义,平均数、方差的公式分别求出新数据的众数、中位数、平均数、方差,与原数据比较即可得答案.【详解】设原数据的众数为a、中位数为b、平均数为x、方差为S2,数据个数为n,∵将一组数据中的每一个数都加上1,∴新的数据的众数为a+1,中位数为b+1,平均数为1n(x1+x2+…+x n+n)=x+1,方差=1n[(x1+1-x-1)2+(x2+1-x-1)2+…+(x n+1-x-1)2]=S2,∴值保持不变的是方差,故答案为:方差【点睛】本题考查的知识点众数、中位数、平均数、方差,熟练掌握方差和平均数的计算公式是解答本题的关键.25.【解析】【分析】直接利用二次根式有意义的条件得出mn的值进而得出答案【详解】∵m=n-2+2-n+5∴n=2则m=5故mn=25故答案为:25【点睛】此题主要考查了二次根式有意义的条件正确得出mn的解析:【解析】【分析】直接利用二次根式有意义的条件得出m,n的值进而得出答案.【详解】∵m=√n−2+√2−n+5,∴n=2,则m=5,故m n=25.故答案为:25.【点睛】此题主要考查了二次根式有意义的条件,正确得出m,n的值是解题关键.三、解答题26.(1)证明见解析;(2)∠ABE=40°.【解析】【分析】(1)由四边形ABCD是平行四边形,点E为AD的中点,易证得△DEC≌△AEF (AAS),继而可证得DC=AF,又由DC=AB,证得结论;(2)由(1)可知BF=2AB,EF=EC,然后由∠BCD=100°求得BE平分∠CBF,继而求得答案.【详解】证明:(1)∵四边形ABCD是平行四边形,∴CD=AB,CD∥AB,∴∠DCE =∠F ,∠FBC+∠BCD =180°,∵E 为AD 的中点,∴DE =AE .在△DEC 和△AEF 中,DCE F DEC AEF DE AE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△DEC ≌△AEF (AAS ).∴DC =AF .∴AB =AF ;(2)由(1)可知BF =2AB ,EF =EC ,∵∠BCD =100°,∴∠FBC =180°﹣100°=80°,∵BC =2AB ,∴BF =BC ,∴BE 平分∠CBF ,∴∠ABE =12∠FBC =12×80°=40° 【点睛】本题考查了平行四边形的性质、全等三角形的判定与性质以及等腰三角形的性质,证得△DEC ≌△AEF 和△BCF 是等腰三角形是关键. 27.(1) 每套队服150元,每个足球100元;(2) 购买的足球数等于50个时,则在两家商场购买一样合算;购买的足球数多于50个时,则到乙商场购买合算;购买的足球数少于50个时,则到甲商场购买合算.【解析】试题分析:(1)设每个足球的定价是x 元,则每套队服是(x+50)元,根据两套队服与三个足球的费用相等列出方程,解方程即可;(2)根据甲、乙两商场的优惠方案即可求解;(3)先求出到两家商场购买一样合算时足球的个数,再根据题意即可求解.解:(1)设每个足球的定价是x 元,则每套队服是(x+50)元,根据题意得2(x+50)=3x ,解得x=100,x+50=150.答:每套队服150元,每个足球100元;(2)到甲商场购买所花的费用为:150×100+100(a ﹣)=100a+14000(元), 到乙商场购买所花的费用为:150×100+0.8×100•a=80a+15000(元);(3)当在两家商场购买一样合算时,100a+14000=80a+15000,解得a=50.所以购买的足球数等于50个时,则在两家商场购买一样合算;购买的足球数多于50个时,则到乙商场购买合算;购买的足球数少于50个时,则到甲商场购买合算考点:一元一次方程的应用.28.证明见解析.【解析】【分析】先连接BD,交AC于O,由于AB=CD,AD=CB,根据两组对边相等的四边形是平行四边形,可知四边形ABBCD是平行四边形,于是OA=OC,OB=OD,而AF=CF,根据等式性质易得OE=OF,再根据对角线互相平分的四边形是平行四边形可证四边形DEBF是平行四边形,于是∠EBF=∠FDE.【详解】解:连结BD,交AC于点O.∵四边形ABCD是平行四边形,∴OB=OD,OA=OC.∵AE=CF,∴OE=OF,∴四边形BFDE是平行四边形,∴∠EBF=∠EDF.29.(1)m=3;(2)1<m<3.【解析】【分析】根据一次函数的相关性质进行作答.【详解】(1)∵一次函数图象过原点,∴1030mm-≠⎧⎨-=⎩,解得:m=3(2)∵一次函数的图象经过第二、三、四象限,∴1030mm-<⎧⎨-<⎩,∴1<m<3.【点睛】本题考查了一次函数的相关性质,熟练掌握一次函数的相关性质是本题解题关键. 30.(1)见解析,223x -<<;(2)21b -- 【解析】【分析】(1)画出函数图象,求出两个函数图象的交点坐标,利用图象法即可解决问题; (2)利用图象法即可解决问题.【详解】解:(1)当b =0时,y =|x +b|=|x|列表如下:x -1 01 112y x =+ 12 112 y =|x|1 0 1 描点并连线;∴如图所示:该函数图像为所求∵1y x 12||y x ⎧=+⎪⎨⎪⎩= ∴2x=-32=-y 3⎧⎪⎪⎨⎪⎪⎩或y=x=22⎧⎨⎩ ∴两个函数的交点坐标为A 2233⎛⎫- ⎪⎝⎭,,B(2,2),∴观察图象可知:223x -<<时,112x +比||x 大; (2)如图,观察图象可知满足条件的b 的值为21b --,【点睛】本题主要考查了一次函数的图象,一次函数的性质,一次函数图象与几何变换,掌握一次函数的图象,一次函数的性质,一次函数图象与几何变换是解题的关键.。

(3)重庆市巴蜀中学八年级(下)2014-2015学年八年级(下)期末数学试卷(含答案)

(3)重庆市巴蜀中学八年级(下)2014-2015学年八年级(下)期末数学试卷(含答案)

重庆市巴蜀中学2014-2015学年八年级(下)期末数学试卷(3)一、选择题:每小题4分,共48分.1.下列选项中是一元二次方程的为()A.x+2=0 B.x﹣2y=1 C.x2﹣2x﹣3=0 D. +3=12.有一个样本有100个数据,落在某一组内的频率是0.3,那么落在这一组内的频数是()A.50 B.30 C.15 D.33.如果△ABC∽△DEF,且对应边的AB与DE的长分别为2、3,则△ABC与△DEF的面积之比为()A.4:9 B.2:3 C.3:2 D.9:44.若x=1是关于x的方程ax2﹣x+2=0的解,则a的值为()A.﹣1 B.1 C.2 D.﹣25.若△ABC的周长为20cm,点D,E,F分别是△ABC三边的中点,则△DEF 的周长为()A.5cm B.10cm C.15cm D.cm6.四边形ABCD中,AC、BD相交于点O,能判别这个四边形是正方形的条件是()A.OA=OB=OC=OD,AC⊥BD B.AB∥CD,AC=BDC.AD∥BC,∠A=∠C D.OA=OC,OB=OD,AB=BC7.如图,在平行四边形ABCD中,点E是CD延长线上一点,BE与AD交于点F,若CD=2DE,且△DEF的面积为3,则三角形ABF的面积为()A.6 B.8 C.9 D.128.如图,在正方形ABCD的外侧,作等边三角形ADE,连结BE交AD于点F,则∠DFE的度数为()A.45°B.55°C.60°D.75°9.如图,矩形ABCD的面积为20,对角线交于点O,以AB、AO为邻边作平行四边形AOC1B,对角线交于O1,以AB、AO1为邻边作平行四边形AO1C2B;…;依此类推,则平行四边形AO4C5B的面积为()A.B.C.D.10.如图,P是正方形ABCD边BC上一点,且BP=3PC,Q是DC的中点,则AQ:QP=()A.2:1 B.3:1 C.3:2 D.5:211.有四个一模一样的小球,其中三个小球上面分别标有数字2、3、4,小明和小亮各摸一个,前一个人随机摸一个球记下数字后放回,混合均匀,后一个人再随机摸一个小球,如果两人摸得小球的数字之和为8的概率为,则第四个小球上的数字是()A.8 B.5 C.5或6 D.612.如图,在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点(且点P 不与点B、C重合),PE⊥AB于E,PF⊥AC于F.则EF的最小值为()A.4 B.4.8 C.5.2 D.6二、填空题:每小题4分,共32分.13.已知菱形的两条对角线的长分别是6和8,那么它的边长是______.14.如图,测量小玻璃管口径的量具ABC中,AB的长是10毫米,AC被分成6等份,如果小管口DE正好对着量具上3份处(DE∥AB),那么小管口径DE 的长是______毫米.15.校生物小组有一块长32m,宽20m的矩形实验田,为了管理方便,准备沿平行于两边的方向纵、横个开辟一条等宽的小道,要使种植面积为540m2,小道的宽应是______米.16.矩形的两条对角线的夹角是60°,一条对角线与矩形短边的和为15,那么矩形对角线的长为______,短边长为______.17.若m、n为一元二次方程x2+3x﹣4=0的两个根,则m+n的值为______.18.如图,在矩形ABCD中,E是BC边上的点,连接AE、DE,将△DEC沿线段DE翻折,点C恰好落在线段AE上的点F处.若AB=3,BE:EC=4:1,则线段DE的长为______.19.有四个一模一样的小球,上面分别标有﹣2,0,2,3四个数字.从中任意模一个小球,将上面的数字记为a(不放回),再摸一个小球,将上面的数字记为b,这样的数字a,b能使关于x的一元二次方程(a﹣1)x2+bx+1=0有实数根的概率为______.20.已知如图,正方形ABCD的对角线AC、BD交于O,点E、F分别是AD、AB边的中点,连接DF、CE交于点G,连接AG、OG.若AD=2,则OG=______.三、解答题:共70分.21.(20分)(2015春•重庆校级期末)解一元二次方程:(1)x2﹣x=0(2)4x2﹣4x+1=0(3)x2﹣3x﹣4=0(4)2x2+4x﹣=0.22.如图,E,F是菱形ABCD对角线上的两点,且AE=CF.(1)求证:四边形BEDF是菱形;(2)若∠DAB=60°,AD=6,AE=DE,求菱形BEDF的周长.23.(10分)(2015•重庆校级模拟)如图(1),点E是正方形ABCD的对角线CA延长线上一点,以AE为边在正方形的外部作△AEF,使∠AFE=90°,AF=FE,点O是线段CE的中点,连OB,OF,(1)若EF=1,AB=3,求线段EO的长度;(2)求证:OB⊥OF;(3)将图(1)中的正方形变为菱形,其中∠ABC=60°,将等腰△AEF的顶角变为120°,其余条件都不变,则(2)中的结论是否成立?若成立,请证明;若不成立,请说明理由.24.(12分)(2015春•重庆校级期末)如图1,等腰Rt△ABC,AC=BC=4,D 为BC中点,矩形BFEG,EF=4,BF=8,且F、B、C共线.△ABD沿BF运动,速度为每秒1个单位长,运动中记为△A1B1D1.当A1与E重合时,运动停止运动过程中△A1B1D1与△BEF重叠部分面积记为S.(1)当线段A1D1过线段EB中点时,求运动时间t;(2)求S与t的关系式;(3)取线段BF中点为H,连接EH,如图2,当B1与F重合时,将∠A1B1D1绕点F旋转,射线B1A1与直线EH交于M,射线B1D1与直线EH交于N,若EM:MN=3:5,求线段EM的长.2014-2015学年重庆市巴蜀中学八年级(下)期末数学试卷(3)一、选择题:每小题4分,共48分.1.【解答】解:A、方程未知数的最高次数是2,故错误;B、含有两个个未知数.故错误;C、符合一元二次方程的定义,故正确.D、不是整式方程,故错误;故选C.2.【解答】解:频数:100×0.3=30,故选:B.3.【解答】解:∵△ABC∽△DEF,∴△ABC与△DEF的面积之比等于()2=()2=.故选A.4.【解答】解:把x=1代入,得a﹣1+2=0,解得a=﹣1.故选:A.5.【解答】解:∵点D,E,F分别是△ABC三边的中点,∴DE、EF、DF分别等于△ABC三边的一半,∴DE+EF+DF=△ABC的周长=10 cm.故选B.6.【解答】解:A、∵OA=OB=OC=OD,∴AC=BD,∵AC⊥BD,∴四边形ABCD是正方形,故本选项正确;B、根据AB∥CD和AC=BD不能推出四边形ABCD是正方形,故本选项错误;C、∵AD∥BC,∴∠DAB+∠ABC=180°,∠ADC+∠DCB=180°,∵∠DAB=∠DCB,∴∠ABC=∠ADC,∴只能推出四边形ABCD是平行四边形,故本选项错误;D、∵OA=OC,OB=OD,∴四边形ABCD是平行四边形,∵AB=BC,∴只能推出四边形ABCD是菱形,故本选项错误;故选A.7.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴△ABF∽△DEF,∴=()2,∵CD=2DE,△DEF的面积为3,∴三角形ABF的面积为12,故选D.8.【解答】解:∵四边形ABCD是正方形,∴AB=AD,∠BAS=90°,∵△AED是等边三角形,∴∠AED=∠EAD=60°,AE=AD,∴∠BAE=150°,AB=AE,∴∠ABE=∠AEB=(180°﹣150°=15°,∴∠DFE=∠AFB=90°﹣15°=75°,故选D.9.【解答】解:∵四边形ABCD是矩形,∴AO=CO,BO=DO,DC∥AB,DC=AB,∴S△ADC=S△ABC=S矩形ABCD=×20=10,∴S△AOB=S△BCO=S△ABC=×10=5,∴S=S△AOB=×5=,∴S=S=,S=S=,S=S=,∴S=2S=2×=,故选B.10.【解答】解:在正方形ABCD中,AD=CD=BC=AB.∵BP=3PC,Q是CD的中点,∴==.又∵∠ADQ=∠QCP=90°,∴△ADQ∽△QCP,∴===2,即AQ:QP=2:1.故选A.11.【解答】解:设第四个小球上的数字为x,画树状图为:共有16种等可能的结果数,而两人摸得小球的数字之和为8的概率为,则两人摸得小球的数字之和为8的结果数为3,其中4+4=8,当x=5时,3+x=8,x+3=8;当x=6时,2+x=8,x+2=8,所以第四个小球上的数字为5或6.故选C.12.【解答】解:如图,连接PA.∵在△ABC中,AB=6,AC=8,BC=10,∴BC2=AB2+AC2,∴∠A=90°.又∵PE⊥AB于点E,PF⊥AC于点F.∴∠AEP=∠AFP=90°,∴四边形PEAF是矩形.∴AP=EF.∴当PA最小时,EF也最小,即当AP⊥CB时,PA最小,∵AB•AC=BC•AP,即AP===4.8,∴线段EF长的最小值为4.8;故选:B.二、填空题:每小题4分,共32分.13.【解答】解:如图,在菱形ABCD中,OA=×8=4,OB=×6=3,AC⊥BD,在Rt△AOB中,AB===5,所以,菱形的边长是5.故答案为:5.14.【解答】解:∵DE∥AB,∴△CDE∽△CAB,∴=,即=,∴DE=5(毫米).故答案为5.15.【解答】解:设道路的宽为xm,依题意有(32﹣x)(20﹣x)=540,整理,得x2﹣52x+100=0,∴(x﹣50)(x﹣2)=0,∴x1=2,x2=50(不合题意,舍去),答:小道的宽应是2m.故答案为:2.16.【解答】解:∵矩形ABCD,∴OA=OC,OB=OD,AC=BD,∴OA=OB,∵∠AOB=60°,∴△OAB是等边三角形,∴AB=OB=OA=×15=5,AC=BD=2×5=10.故答案为:10,5.17.【解答】解:m+n=﹣3.故答案为﹣3.18.【解答】证明:由矩形ABCD,得∠B=∠C=90°,CD=AB,AD=BC,AD ∥BC.由△DEC沿线段DE翻折,点C恰好落在线段AE上的点F处,得△DFE≌△DCE,∴DF=DC,∠DFE=∠C=90°,∴DF=AB,∠AFD=90°,∴∠AFD=∠B,由AD∥BC得∠DAF=∠AEB,∴在△ABE与△DFA中,,∴△ABE≌△DFA(AAS).∵由EC:BE=1:4,∴设CE=x,BE=4x,则AD=BC=5x,由△ABE≌△DFA,得AF=BE=4x,在Rt△ADF中,由勾股定理可得DF=3x,又∵DF=CD=AB=3∴x=1在Rt△DCE中,DE===.故答案是:.19.【解答】解:∵关于x的一元二次方程(a﹣1)x2+bx+1=0有实数根,∴a﹣1≠0且△=b2﹣4(a﹣1)≥0,则4a﹣b2≤4,画树状图为:共有12种等可能的结果数,其中满足4a﹣b2≤4的结果数为8,所以能使关于x的一元二次方程(a﹣1)x2+bx+1=0有实数根的概率==.故答案为.20.【解答】解:作AM⊥DF垂足为M,连接BM,作MH⊥AB于H.∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠DAB=∠ADC=90°,OB=OD,∵AF=FB,AE=ED,∴AF=FB=AE=ED,在△ADF和△DCE中,,∴△ADF≌△DCE,∴∠ADF=∠ECD,∵∠ECD+∠DEC=90°,∴∠DEC+∠EDF=90°,∴∠EGD=90°,∵∠AMD=∠EGD=90°,∴AM∥EG,∵AE=ED,∴MG=GD∵BO=OD,∴OG=BM.在RT△ADF中,∵∠DAF=90°,AD=2,AF=1,∴DF=,AM==,在RT△AMF中,∵∠AMF=90°,AF=1,AM=,∴FM==,MH==,∴AH==,HF=,BH=,∴BM===,∴OG=BM=.故答案为.三、解答题:共70分.21.【解答】解:(1)x(x﹣1)=0,x=0或x﹣1=0,所以x1=0,x2=1;(2)(2x﹣1)2=0,2x﹣1=0,所以x1=x2=;(3)(x﹣4)(x+1)=0,x﹣4=0或x+1=0,所以x1=4,x2=﹣1;(4)x2+2x=,x2+2x+1=+1,(x+1)2=,x+1=±,所以x1=﹣1+,x2=﹣1﹣.22.【解答】(1)证明:连接BD,交AC于O,如图所示:∵四边形ABCD是菱形,∴OA=OC,OB=OD,AC⊥BD,∵AE=CF,∴OE=OF,∴四边形BEDF是平行四边形,∵EF⊥BD,∴四边形BEDF是菱形;(2)解:∵∠DAB=60°,∴∠DAE=30°,∠ADB=60°,∵AD=6,∴OD=AD=3,∵AE=DE,∴∠DAE=∠ADE,∠ADE=∠EDO=30°,在Rt△DEO中,DE==2,∴菱形BEDF的周长=4DE=8.23.【解答】解:(1)∵在直角△AEF中,AE==,直角△ABC中,AC==3,∴EC=AE+AC=+3=4,又∵O是线段EC的中点,∴EO=EC=2;(2)作FM⊥EC于点M,BN⊥EC于点N.∵设直角△AEF的直角边长是a,则FM=EM=AM=a,设正方形ABCD的边长是b,则AN=BN=NC=b,则OE=OC=(AE+AC)=(a+b),OM=OE﹣EM=(a+b)﹣a=b,ON=AN﹣OA=AN﹣(OM﹣AM)=b﹣(b﹣a)=a.∴在直角△OMF和直角△BNO中,∴△OMF≌△△BNO,∴∠FOM=∠OBN,∠OFM=∠BON又∵直角△OMF中,∠FOM+∠OFM=90°,∴∠BOF=90°,∴OB⊥OF;(3)OB⊥OF仍成立.理由是:作FM⊥EC于点M,BN⊥EC于点N.∵设BF=a,则FM=EF•sin∠E=a,EM=AM=EF•cosE=a,设AB=b,则BN=AB•sin∠BAC=b,AN=CN=b.∴EC=AE+AC=a+b.∴EO=OC=(a+b),∴OM=EO﹣EM=(a+b)﹣a=b,ON=ON=AN﹣OA=AN﹣(OM﹣AM)=a.∴=,又∵∠FMA=∠BNO,∴△OMF∽△△BNO,∴∠FOM=∠OBN,∠OFM=∠BON又∵直角△OMF中,∠FOM+∠OFM=90°,∴∠BOF=90°,∴OB⊥OF.24.【解答】解:(1)如图1,线段A1D1过线段EB中点O,过O作MN⊥EG于M,交BF于N,∵四边形EFBG是矩形,∴EG∥FB,∴MN⊥BF,∵△ABC是等腰直角三角形,D为BC中点,∴BD=DC,∵AC=BC=4,∴BD=DC=2,由勾股定理得:AD===2,∵EG∥FB,∴∠GEB=∠EBF,∵EO=OB,∠EOA1=∠BOD1,∴△EOA1≌△BOD1,∴A1O=D1O=A1D1=AD=×2=,同理:OM=ON=MN=EF=2,由勾股定理得:A1M===1,同理D1N=1,∵EO=OB,ON∥EF,∴FN=BN=BF=4,∴BB1=B1D1+D1N+BN=2+1+4=7,∴t=7,则当线段A1D1过线段EB中点时,运动时间t为7秒;(2)分五种情况讨论:①当0≤t≤2时,如图2,重叠部分是△BCB1,过C作CD⊥BF于D,∵∠A1B1D1=45°,∴CD=B1D,tan∠EBF===,∴CD=BD=(BB1﹣CD,CD=t,CD=t,∴S==BB1•CD=•=;②当2<t≤8时,如图3,重叠部分是四边形CB1D1M,分别过C、M向BF作垂线CP和MN,垂足分别为P、N,由平移得如图1:∠A1D1B=∠ADC,tan∠A1D1B====2,∴D1N=MN,∵DD1=t,BD=2,∴D1B=DD1﹣BD=t﹣2,tan∠EBF==,2MN=t﹣2﹣MN,MN=(t﹣2),由①得:CP=t,∴S=﹣,=BB1•CP﹣BD1•MN,=t•﹣(t﹣2)•(t﹣2),=﹣+t﹣;③当8<t≤10时,如图4,重叠部分是五边形CQFD1M,则B1F=t﹣8,∵∠A1B1F=45°,∴△FB1Q是等腰直角三角形,∴FQ=B1F=t﹣8,∴S=﹣﹣,=﹣+t﹣﹣B1F•FQ,=﹣+t﹣﹣(t﹣8)(t﹣8),=﹣t2+﹣;④当10<t<12时,如图5,重叠部分是四边形CPQM,∵BB1=t,B1D1=2,BF=8,∴FD1=t﹣2﹣8=t﹣10,B1F=t﹣8,∴PF=B1F=t﹣8,=2,∴FQ=2FD1=2(t﹣10),∴S=﹣﹣+,=﹣t2+﹣+(t﹣10)•2(t﹣10),=﹣t+;⑤当t=12时,如图6,S=0;综上所述:S=(3)有两种情况:①如图7,当交点M在线段EH上时,∵H是BF的中点,∴FH=4,由勾股定理得:EH==4,∵EM:MN=3:5,EM+MN=EH,∴EM=EH=×=,②如图8,当交点M在直线EH上时,∵EM:MN=3:5,EM+EH=MN,∴EM=×3=6,综上所述:线段EM的长为或6.。

人教版八年级数学下册重庆市第一中学期末考试试题(有答案)

人教版八年级数学下册重庆市第一中学期末考试试题(有答案)

初中数学试卷重庆一中初2017级15_16学年度下期期末考试数学试题2016.7(全卷共五个大题,满分150分,考试时间120分钟)亲爱的同学:当你走进考场,你就是这里的主人.只要心境平静.细心、认真地阅读、思考,你就会感到成功离你并不远.一切都在你掌握之中,请相信自己!一、选择题:(本大题共l2个小题,每小题4分,共48分)在每十小题的下面,都给出了代号为A,B、C、D的四个答案.其中只有一个是正确的,请将各小题所选答案的代号填入题后的表格内.1.下列各式的因式分解结果中,正确的是2.下列图案中,既是轴对称图形又是中心对称图形的是3.如果两个相似三角形的面积之比为1:4,那么他们的相似比为A.1:16 B.1:8 C.1:4 D.1:24.用配方法解方程时,配方后得到的方程为5.下列函数中,属于反比例函数的是6.分式的值为0,则x的值为A.1B.-1C.0D.±17.如图,正方形OABC绕着O逆时针旋转40°得到正方形ODEF,连接AF,则∠OFA 的度数是8.在统一坐标系中,函数ky=x和y=kx+3的图像大致是9.重庆一中初二年级要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排21场比赛,应该要求球队个数为 A.6 B.7 C.8 D.910.下列矩形都是由大小不等的正方形按照一定规律组成,其中,第1个矩形的周长为6,第2个矩形的周长为10,第三个矩形的周长为16,….则第6个矩形的周长为A.42B.46C.68D.7211.若关于x 的方程224x -k k x+4k-1=0(2+-6)的两根互为相反数,则k 的值为A .32 B.-2 C.-2或32 D.2或3212.如图,反比例函数ky=x经过Rt ABO 斜边AO 的中点C ,且与另一直角边AB 交于点D ,连接OD 、CD ,ACD 的面积为92,则k 的值为A.4B.5C.6D.7二、填空题:(本大题共6个小题,每小题4分,共24分) 13.方程2x =5x 的根为14.如图,已知菱形ABCD 的一个内角BAD =80°,对角线AC 、BD 相交于点O ,点E 在AB 上,且BE=BO ,则EOA = 度.15.关于x 的方程有两个不相等的实数根,则k 的取值范围是16.若点(-1,、1y ),(2、2y ),(5,3y )都在反比例函数ky=x(k<0)的图像上,则1y ,2y ,3y 的大小关系为 (用“<”连接)17.已知关于x 的方程的根大于0,则a 的取值范围是18.如图,已知正方形纸片ABCD ,E 为CB 延长线上的一点,F 为边CD 上一点,将纸片沿EF 翻折,点C 恰好落在AD 边上的点H ,连接BD ,CH ,CG .CH 交BD 于点N ,EF 、CG 、BD 恰好交于一点M 。

2014-2015年重庆一中八年级(下)期中数学试卷(解析版)

2014-2015年重庆一中八年级(下)期中数学试卷(解析版)

2014-2015学年重庆一中八年级(下)期中数学试卷一.选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填在表格中.1.(4分)下列等式中,从左到右的变形是分解因式的是()A.(x+1)(x﹣2)=x2﹣x﹣2B.4a2b3=4a2•b3C.x2﹣2x+1=(x﹣1)2D.x2﹣3x+2=x(x﹣3)+22.(4分)计算﹣结果是()A.B.C.D.3.(4分)下列图形中,既是轴对称图形,又是中心对称图形的是()A.直角三角形B.等边三角形C.平行四边形D.矩形4.(4分)顺次连结四边形ABCD各边中点得到的四边形一定是()A.矩形B.正方形C.平行四边形D.菱形5.(4分)把分式中的a、b都扩大4倍,则分式的值()A.扩大8倍B.不变C.缩小4倍D.扩大4倍6.(4分)在菱形ABCD中,对角线AC与BD交于点O,如果∠ABC=60°,AC=4,那么该菱形的面积是()A.B.16C.D.87.(4分)三角形的三边a、b、c满足a(b﹣c)+2(b﹣c)=0,则这个三角形的形状是()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形8.(4分)如图,已知菱形ABCD中,对角线AC=12,BD=16,点E、F分别为边BC、CD的中点,点P对角线BD上一动点,则PE+PF的最小值为()A.10B.12C.14D.169.(4分)如图,在▱ABCD中,∠ABC=72°,AF⊥BC于F,AF交BD于点E,若DE=2AB,则∠AED的大小是()A.60°B.66°C.70°D.72°10.(4分)如图1,将正三角形每条边两等份,然后过这些分点作平行于其他两边的直线,则以图中线段为边的菱形的个数为3个;如图2,将正三角形每条边三等份,然后过这些分点作平行于其他两边的直线,则以图中线段为边的菱形的个数为9个;如图3,将正三角形每条边四等份,然后过这些分点作平行于其他两边的直线,则以图中线段为边的菱形的个数为()A.15B.18C.21D.2411.(4分)若关于x的分式方程﹣2m=无解,则m的值为()A.m=B.m=或m=2C.m=D.m=或m=12.(4分)如图,甲、乙两人分别从A、B两地同时向C地前进,甲经B地后再走4小时10分钟在C地追上乙,这时两人行程共走110千米,而C、A两地的距离等于乙走6小时的路程,则A、B两地间的距离为()千米.A.7B.8C.9D.10二.填空题:(本大题6个小题,每小题4分,共24分)请将正确答案填在表格中.13.(4分)若分式有意义,则a的取值范围是.14.(4分)因式分解:a2﹣4=.15.(4分)矩形ABCD的对角线AC、BD相交于点O,∠AOD=120°,AC=8,则△ABO的周长为.16.(4分)一个多边形的内角和等于它的外角和的6倍,那么此多边形的边数为.17.(4分)已知:,则A=;B=.18.(4分)如图,在▱ABCD中,点M,N分别是边CD、BC的中点,AM=2,AN=4,且∠MAN=60°,则AB的长是.三.解答题:(本大题2个小题,每小题7分,共14分)解答时每小题需给出必要的演算过程或推理步骤.19.(7分)分解因式:x2(x﹣y)﹣9(x﹣y)20.(7分)解方程:=1.四.解答题:(本大题4个小题,每小题10分,共40分)解答时每小题需给出必要的演算过程或推理步骤.21.(10分)A、B两地的距离是100千米,一辆公共汽车从A地驶出3小时后,一辆小汽车也从A地出发,它的速度是公共汽车的3倍,已知小汽车比公共汽车迟20分钟到达B地,求两车的速度.22.(10分)如图,在△ABC中,∠ABC=90°,点D为AC的中点,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.(1)证明:四边形BDFG是菱形;(2)若AC=10,CF=6,求线段AG的长度.23.(10分)先化简,再求值:(﹣)÷,其中x是不等式组的整数解.24.(10分)如图,已知矩形ABCD中,AB=8,BC=12,点E、F分别为线段BC、DE的中点,连接BF、AE交于点G.(1)求线段BF的长度;(2)求证:BG=GF.五.解答题:(本大题2个小题,25题12分,26题12分,共24分)解答时每小题需给出必要的演算过程或推理步骤.25.(12分)为了满足学生的物质需求,重庆市某重点中学到mama超市准备购进甲、乙两种绿色袋装食品.其中甲、乙两种绿色袋装食品的进价和售价如下表:已知:用2000元购进甲种袋装食品的数量与用1600元购进乙种袋装食品的数量相同.(1)求m的值;(2)要使购进的甲、乙两种绿色袋装食品共800袋的总利润(利润=售价﹣进价)不少于5200元,且不超5280元,问该mama超市有几种进货方案?(3)在(2)的条件下,该mama超市准备对甲种袋装食品进行优惠促销活动,决定对甲种袋装食品每袋优惠a(2<a<7)元出售,乙种袋装食品价格不变.那么该mama超市要获得最大利润应如何进货?26.(12分)已知▱ABCD中,∠A=30°,AB=10,BC=15,点E为边AD上一点,且AE=BE.(1)如图1,把△ABE沿直线BE翻折180°,得到△A1BE,求线段A1C的长度;(2)如图2,把△ABE绕点B旋转后得到△A1BE1,使点E1落在边BC上,若A1B与CD交于点N,求线段A1N的长度;(3)如图3,把△ABE绕点B旋转α°(0<α<360°)后得到△A1BE1,设直线A1B分别与直线DE、直线CD交于点M、N.是否存在这样的α,使△DMN 为等腰三角形?若存在,请求出线段DM的长度;若不存在,请说明理由.2014-2015学年重庆一中八年级(下)期中数学试卷参考答案与试题解析一.选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填在表格中.1.(4分)下列等式中,从左到右的变形是分解因式的是()A.(x+1)(x﹣2)=x2﹣x﹣2B.4a2b3=4a2•b3C.x2﹣2x+1=(x﹣1)2D.x2﹣3x+2=x(x﹣3)+2【解答】解:A、(x+1)(x﹣2)=x2﹣x﹣2是整式相乘,故A错误;B、4a2b3=4a2•b3,不是因式分解,故B错误;C、x2﹣2x+1=(x﹣1)2,故C正确;D、x2﹣3x+2=x(x﹣3)+2,等式右边有加号,故D错误;故选:C.2.(4分)计算﹣结果是()A.B.C.D.【解答】解:原式==.故选:B.3.(4分)下列图形中,既是轴对称图形,又是中心对称图形的是()A.直角三角形B.等边三角形C.平行四边形D.矩形【解答】解:A、不是轴对称图形.也不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,又是中心对称图形,故此选项正确.故选:D.4.(4分)顺次连结四边形ABCD各边中点得到的四边形一定是()A.矩形B.正方形C.平行四边形D.菱形【解答】解:如图,E、F、G、H分别是边AD、DC、BC、AB的中点,连接BD.∵E、F、G、H分别是边AD、DC、BC、AB的中点,∴EH∥BD,FG∥BD,EH=BD,FG=BD,∴EH=FG,EH∥FG,∴四边形EFGH是平行四边形,故选:C.5.(4分)把分式中的a、b都扩大4倍,则分式的值()A.扩大8倍B.不变C.缩小4倍D.扩大4倍【解答】解:=.故选:B.6.(4分)在菱形ABCD中,对角线AC与BD交于点O,如果∠ABC=60°,AC=4,那么该菱形的面积是()A.B.16C.D.8【解答】解:∵菱形ABCD中,∠ABC=60°,∴△ABC是等边三角形,∴AO=AC=×4=2,BO=×4=2,∴BD=2BO=4,∴菱形的面积=AC•BD=×4×4=8.故选:C.7.(4分)三角形的三边a、b、c满足a(b﹣c)+2(b﹣c)=0,则这个三角形的形状是()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形【解答】解:∵a(b﹣c)+2(b﹣c)=0,∴(a+2)(b﹣c)=0,∵a、b、c为三角形的三边,∴b﹣c=0,则b=c,∴这个三角形的形状是等腰三角形.故选:A.8.(4分)如图,已知菱形ABCD中,对角线AC=12,BD=16,点E、F分别为边BC、CD的中点,点P对角线BD上一动点,则PE+PF的最小值为()A.10B.12C.14D.16【解答】解:取AD的中点F′,连接EF′交BD于点P.∵四边形ABCD为菱形,∴AP⊥PB,P A=,PB=.在Rt△ABP中,AB===10.∵ABCD为菱形,E、F′分别是AD、CD的中点,∴PF=PF′.∴PE+PF=PE+PF′.两点之间线段最短可知:当E、P、F′在一条直线上时,PE+PF的最小值.∵EF=AB,∴PE+PF的最小值为10.故选:A.9.(4分)如图,在▱ABCD中,∠ABC=72°,AF⊥BC于F,AF交BD于点E,若DE=2AB,则∠AED的大小是()A.60°B.66°C.70°D.72°【解答】解:取DE的中点Q,连接AQ,∵平行四边形ABCD,∴AD∥BC,∵AF⊥BC,∴F A⊥AD,∴DE=2AQ=2DQ,∵DE=2AB,∴AQ=AB,∴∠AQB=∠ABD,∵AQ=DQ,∴∠QAD=∠ADQ,∴∠ABD=∠AQB=∠QAD+∠ADQ=2∠ADQ,∵AF⊥BC,∠ABC=∠ADC=72°,∴∠BAF=90°﹣72°=18°,∵∠ABD+∠ADB+∠BAD=180°,∴3∠ADB=180°﹣90°﹣18°=72°,∴∠ADB=24°,∵∠F AD=90°,∴∠AED=180°﹣∠F AD﹣∠ADE=66°,故选:B.10.(4分)如图1,将正三角形每条边两等份,然后过这些分点作平行于其他两边的直线,则以图中线段为边的菱形的个数为3个;如图2,将正三角形每条边三等份,然后过这些分点作平行于其他两边的直线,则以图中线段为边的菱形的个数为9个;如图3,将正三角形每条边四等份,然后过这些分点作平行于其他两边的直线,则以图中线段为边的菱形的个数为()A.15B.18C.21D.24【解答】解:图中只有边长为1或2的两种菱形,每个菱形恰有一条与其边长相等的对角线,原正三角形内部每条长为1的线段,恰是一个边长为1的菱形的对角线,这种线段有18条,对应着18个边长为1的菱形;原正三角形的每条中位线恰是一个边长为2的菱形的对角线,三条中位线对应着3个边长为2的菱形.共得21个菱形.故选:C.11.(4分)若关于x的分式方程﹣2m=无解,则m的值为()A.m=B.m=或m=2C.m=D.m=或m=【解答】解:去分母得:x﹣2m(x﹣2)=3m,由分式方程无解得到x﹣2=0,即x=2,把x=2代入整式方程得:m=.或m=时,整式方程无解,故选:D.12.(4分)如图,甲、乙两人分别从A、B两地同时向C地前进,甲经B地后再走4小时10分钟在C地追上乙,这时两人行程共走110千米,而C、A两地的距离等于乙走6小时的路程,则A、B两地间的距离为()千米.A.7B.8C.9D.10【解答】解:设BC=x千米,则AC=(110﹣x)千米,甲的速度为=千米/时,乙的速度为千米/时,根据题意得,=,解得:x1=50,x2=﹣550(不合题意舍去).经检验,x=50是原方程的解.则AB=AC﹣BC110﹣x﹣x=110﹣2x=10.答:A、B两地间的距离为10千米.故选:D.二.填空题:(本大题6个小题,每小题4分,共24分)请将正确答案填在表格中.13.(4分)若分式有意义,则a的取值范围是a≠﹣1.【解答】解:∵分式有意义,∴a+1≠0,解得a≠﹣1.故答案为:a≠﹣1.14.(4分)因式分解:a2﹣4=(a+2)(a﹣2).【解答】解:a2﹣4=(a+2)(a﹣2).故答案为:(a+2)(a﹣2).15.(4分)矩形ABCD的对角线AC、BD相交于点O,∠AOD=120°,AC=8,则△ABO的周长为12.【解答】解:∵四边形ABCD是矩形,∴OA=AC,OB=BD,AC=BD,∴OA=OB=4,∵∠AOD=120°,∴∠AOB=60°,∴△ABO是等边三角形,∴AB=OA=4,∴△ABO的周长为:OA+AB+OB=4+4+4=12;故答案为:12.16.(4分)一个多边形的内角和等于它的外角和的6倍,那么此多边形的边数为14.【解答】解:设多边形的边数为n.根据题意得:(n﹣2)×180°=360×6.解得;n=14.故答案为:14.17.(4分)已知:,则A=1;B=2.【解答】解:∵==,∵,∴3x﹣4=(A+B)x﹣(2A+B),∴,解得:.故答案为:1,2.18.(4分)如图,在▱ABCD中,点M,N分别是边CD、BC的中点,AM=2,AN=4,且∠MAN=60°,则AB的长是.【解答】解:延长DC和AN交于E,过点E作EH⊥AM于点H,∵四边形ABCD为平行四边形∴AB∥CE,∴∠BAN=∠E,∠B=∠ECN,∵N为BC的中点,∴BN=CN,在△ABN和△ECN中,,∴△ABN≌△ECN(AAS),∴AB=CD=CE,AN=EN=4,∵M为边DC的中点,∴ME=3MC=AB即AB=ME,∵AM=2,AE=2AN=8,且∠MAN=60°,∴∠AEH=30°,∴AH=AE=4,∴EH==4,∴MH=AH﹣AM=4﹣2=2,∴EM==2,∴AB=×2=,故答案为:.三.解答题:(本大题2个小题,每小题7分,共14分)解答时每小题需给出必要的演算过程或推理步骤.19.(7分)分解因式:x2(x﹣y)﹣9(x﹣y)【解答】解:原式=(x﹣y)(x2﹣9)=(x﹣y)(x+3)(x﹣3).20.(7分)解方程:=1.【解答】解:去分母得:x2+5x+12=x2﹣x,解得:x=﹣2,经检验x=﹣2是分式方程的解.四.解答题:(本大题4个小题,每小题10分,共40分)解答时每小题需给出必要的演算过程或推理步骤.21.(10分)A、B两地的距离是100千米,一辆公共汽车从A地驶出3小时后,一辆小汽车也从A地出发,它的速度是公共汽车的3倍,已知小汽车比公共汽车迟20分钟到达B地,求两车的速度.【解答】解:设公共汽车的速度为x千米/小时,小汽车的速度为3x千米/小时,由题意得,﹣=2,解得:x=25,经检验:x=25是原分式方程的解,且符合题意,则3x=75.答:公共汽车的速度为25千米/小时,小汽车的速度为75千米/小时.22.(10分)如图,在△ABC中,∠ABC=90°,点D为AC的中点,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.(1)证明:四边形BDFG是菱形;(2)若AC=10,CF=6,求线段AG的长度.【解答】(1)证明:∵AG∥BD,BD=FG,∴四边形BGFD是平行四边形,∵CE⊥BD∴CE⊥AG,又∵BD为AC的中线,∴BD=DF=AC,∴四边形BDFG是菱形;(2)解:∵四边形BDFG是菱形,∠ABC=90°,点D为AC的中点,∴GF=DF=AC=5,∵CF⊥AG,∴AF===8,∴AG=AF+GF=8+5=13.23.(10分)先化简,再求值:(﹣)÷,其中x是不等式组的整数解.【解答】解:原式=•=•=,由不等式组,解得:2≤x≤4,即整数解为2,3,4,当x=3时,原式=1.24.(10分)如图,已知矩形ABCD中,AB=8,BC=12,点E、F分别为线段BC、DE的中点,连接BF、AE交于点G.(1)求线段BF的长度;(2)求证:BG=GF.【解答】(1)解:如图1:过F作FM⊥BC于M,∵四边形ABCD是矩形,∴AB=DC=8,∠C=90°,∴∠FMB=∠C=90°,∴FM∥DC,∵F位DE的中点,∴M为EC的中点,∴FM=DC=4,∵E位BC中点,M为CE中点,∴BE=EC=BC==6,EM=EC=3,∴BM=6+3=9,在Rt△BMF中,由勾股定理得:BF==;(2)证明:如图2:∵四边形ABCD是矩形,∴AD=BC=12,AD∥BC,延长BF、AD交于Q,过F作FW∥AD交AB于W,交AE于R,∵F为DE中点,AD∥BC,∴W为AB中点,R为AE中点,F为BQ的中点,∴WR=BE==3,∵AD∥BC,∴△DFQ∽△EFB,∴=,∵DF=EF,∴BE=DQ=6,∴WF=AQ=(12+6)=9,∴RF=9﹣3=6=BE,∵FW∥AD∥BC,∴△FRG∽△BEG,∴=,∵BE=FR,∴BG=GF.五.解答题:(本大题2个小题,25题12分,26题12分,共24分)解答时每小题需给出必要的演算过程或推理步骤.25.(12分)为了满足学生的物质需求,重庆市某重点中学到mama超市准备购进甲、乙两种绿色袋装食品.其中甲、乙两种绿色袋装食品的进价和售价如下表:已知:用2000元购进甲种袋装食品的数量与用1600元购进乙种袋装食品的数量相同.(1)求m的值;(2)要使购进的甲、乙两种绿色袋装食品共800袋的总利润(利润=售价﹣进价)不少于5200元,且不超5280元,问该mama超市有几种进货方案?(3)在(2)的条件下,该mama超市准备对甲种袋装食品进行优惠促销活动,决定对甲种袋装食品每袋优惠a(2<a<7)元出售,乙种袋装食品价格不变.那么该mama超市要获得最大利润应如何进货?【解答】解:(1)依题意得:=,解得:m=10,经检验m=10是原分式方程的解;(2)设购进甲种绿色袋装食品x袋,表示出乙种绿色袋装食品(800﹣x)袋,根据题意得,,解得:240≤x≤256,∵x是正整数,256﹣240+1=17,∴共有17种方案;(3)设总利润为W,则W=(20﹣10﹣a)x+(13﹣8)(800﹣x)=(5﹣a)x+4000,①当2<a<5时,5﹣a>0,W随x的增大而增大,所以,当x=256时,W有最大值,即此时应购进甲种绿色袋装食品256袋,乙种绿色袋装食品544袋;②当a=5时,W=4000,(2)中所有方案获利都一样;③当5<a<7时,5﹣a<0,W随x的增大而减小,所以,当x=240时,W有最大值,即此时应购进甲种绿色袋装食品240袋,表示出乙种绿色袋装食品560袋.26.(12分)已知▱ABCD中,∠A=30°,AB=10,BC=15,点E为边AD上一点,且AE=BE.(1)如图1,把△ABE沿直线BE翻折180°,得到△A1BE,求线段A1C的长度;(2)如图2,把△ABE绕点B旋转后得到△A1BE1,使点E1落在边BC上,若A1B与CD交于点N,求线段A1N的长度;(3)如图3,把△ABE绕点B旋转α°(0<α<360°)后得到△A1BE1,设直线A1B分别与直线DE、直线CD交于点M、N.是否存在这样的α,使△DMN 为等腰三角形?若存在,请求出线段DM的长度;若不存在,请说明理由.【解答】解:如图1所示:连接A1C.∵四边形ABCD为平行四边形,∴∠ABC=180°﹣∠A=150°.∵AE=BE,∠A=30°,∴∠ABE=30°.∵由翻折的性质可知:∠ABE=∠A1BE=30°,AB=A1B=10,∴∠ABA1=60°.∴∠A1BC=90°.∴A1C===5.(2)如图2所示:过点E作EF⊥AB.∵AE=BE,EF⊥AB,∴AF=FB=5.∵∠A=30°,∠EF A=90°,∴AE=2EF.设EF=x,则AE=2x.在Rt△AEF中,勾股定理得:AF2+EF2=AE2,即x2+25=4x2,解得:x=,∴BE=AE=.∵由旋转的性质可知:BE1=,∠A1=∠A=30°,∴∠A1=∠C.又∵∠A1BE1=∠NBC,∴△BA1N1∽△BCN.∴,即,解得:BN=5.∴NA1=A1B﹣NB=10﹣5.(3)存在.理由:如图3所示:当DN=DM时.∵AB∥DC,∴∠NDM=∠A.又∵∠AMB=∠NMD,∴△AMB∽△DMN.∴.∴AM=AB=10.∴MD=AD﹣AM=15﹣10=5.如图4所示:DN=NM.由(2)可知:NB=5,NA1=10﹣5.∵AD∥BC,∴△DMN∽△CBN.∴,即,解得:DM=10﹣15.如图5所示:DM=DN.∵DM=DN,∴∠M=∠N.∵AD∥BC,∴∠M=∠CBN.∴∠CBN=∠N.∴BC=CN=15.∴DM=DN=DC+CN=10+15=25.如图6所示:MN=MD.∵AD∥BC,∴∠NDM=∠C=30°.∵MN=MD,∴∠MND=∠NDM=30°.∵∠A+∠ABM=∠MND+∠NDM,∴∠ABM=∠MND=30°.∴∠A=∠ABM.∴AM=MB.由(2)可知AM=.∴MD=AD﹣AM=15﹣.综上所述,MD的长为5或10﹣15或25或15﹣.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

重庆一中初2015级13—14学年度下期期末考试数 学 试 题2014.7(本试卷满分150分,考试时间120分钟)一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了 代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将各小题所选答案的标号填入对应的表格内.1.若分式011=+-x x ,则的值是( ) A . 1=x B .1-=x C .0=x D .1-≠x 2.下列分解因式正确的是( ) A .)1(23-=-x x x xB .)1)(1(12-+=-x x xC .2)1(22+-=+-x x x xD .22)1(12-=-+x x x3.下列图形中,是中心对称图形,但不是轴对称图形的是( )A .B .C .D . 4.方程x x 32=的解是( )A .3=xB .3-=xC .0=xD . 3=x 或0=x 5.根据下列表格的对应值:判断方程012=-+x x 一个解的取值范围是( )A .61.059.0<<xB .61.060.0<<xC .62.061.0<<xD .63.062.0<<x6.将点P (-3,2)向右平移2个单位后,向下平移3个单位得到点Q ,则点Q 的坐标为()A.(-5,5) B .(-1,-1) C .(-5,-1) D .(-1,5)7.某种商品原价是120元,经两次降价后的价格是100元,求平均每次降价的百分率. 设平均每次降价的百分率为,可列方程为( )A .100)1(1202=-xB .120)1(1002=-xC .120)1(1002=+xD .100)1(1202=+x8.如图,在平行四边形ABCD 中,E 是AB 的中点,CE 和BD 交于点O ,若2=∆BOE S ,则DOC S ∆是( ) A .4B .6C .8D .99.已知0=x 是关于的一元二次方程012)1(22=-++-k x x k的根,则常数的值为( ) A .0或1 B .1 C .-1 D .1或-1 10.如图,菱形ABCD 中,对角线AC 、BD 交于点O ,菱形 ABCD 周长为32,点P 是边CD 的中点,则线段OP 的长为( ) A .3 B .5 C .8 D .411.如图,以下各图都是由同样大小的图形①按一定规律组成,其中第①个图形中共有1个完整菱形,第②个图形中共有5个完整菱形,第③个图形中共有13个完整菱形,……,则第⑦个图形中完整菱形的个数为( )A .83B .84C .85D .86 12.如图,□ABCD 中,∠B =70°,点E 是BC 的中点,点F 在 AB 上,且BF=BE ,过点F 作FG ⊥CD 于点G ,则∠EGC 的度数 为( )A .35°B .45°C .30°D .55°13.已知23=y x ,则yy x + = . 14.已知点C 是线段AB 的黄金分割点,且AC >BC ,AB =2,则AC 的长为 .15.如图,已知函数b x y +=2与函数3-=kx y 的图象交于点CO PA BD第10题图第12题图第8题图①④ ③ ② F G A EB C D 3bOEDCB AP ,则不等式b x kx +>-23的解集是 .16. 已知一元二次方程01892=+-x x 的两个解恰好分别是等腰△ABC 的底边长和腰长,则△ABC 的周长为 .17. 关于的方程15=+x m的解是负数,则的取值范围是 . 18. 如图,矩形ABCD 中,AD=10,AB=8,点P 在边CD 上,且BP=BC ,点M 在线段BP 上,点N 在线段BC 的延长线上,且PM=CN ,连接MN 交BP 于点F ,过 点M 作ME ⊥CP 于E ,则EF= .三.解答题(本大题3个小题,19题12分,20,21题各6分,共24分)解答每小题都必须写出必要的演算过程或推理步骤,请将解答过程书写在答题卷中对应的位置上. 19.解方程: (1)121=--xx x (2) 01322=-+x x20. 解不等式组: ()⎪⎩⎪⎨⎧-≥-+<-42211513x x x xP B DN AMCF E 第18题图第15题图21. 如图,矩形ABCD 中,点E 在CD 边的延长线上,且∠EAD =∠CAD . 求证:AE=BD .四.解答题(本大题3个小题,每小题10分,共30分)解答每小题都必须写出必要的演算过程或推理步骤,请将解答过程书写在答题卷中对应的位置上.22.先化简,再求值:41)2122(216822+-+--÷++-x x x xx x x ,其中满足0342=-+x x .B C DEA 第21题图23.某蔬菜店第一次用400元购进某种蔬菜,由于销售状况良好,该店又用700元第二次购进该品种蔬菜,所购数量是第一次购进数量的2倍,但进货价每千克少了0.5元.(1)第一次所购该蔬菜的进货价是每千克多少元?(2)蔬菜店在销售中,如果两次售价均相同,第一次购进的蔬菜有2% 的损耗,第二次购进的蔬菜有3% 的损耗,若该蔬菜店售完这些蔬菜获利不低于944元,则该蔬菜每千克售价至少为多少元?24.在正方形ABCD 中,点F 是BC 延长线上一点,过点B 作BE ⊥DF 于点E ,交CD 于点G ,连接CE .(1)若正方形ABCD 边长为3,DF =4,求CG 的长; (2)求证:EF+EG =2CE .第24题图GEA BCDF五.解答题(本大题2个小题,每小题12分,共24分)解答每小题都必须写出必要的演算过程或推理步骤,请将解答过程书写在答题卷中对应的位置上.25. 为深化“携手节能低碳,共建碧水蓝天”活动,发展“低碳经济”,某单位进行技术革新,让可再生资源重新利用.今年1月份,再生资源处理量为40吨,从今年1月1日起,该单位每月再生资源处理量每一个月将提高10吨.月处理成本(元)与月份之间的关系可近似地表示为:=xp,每处理一吨再生资源得到的新产品的售价定为100元. 若该单位每月+x502+450100再生资源处理量为(吨),每月的利润为(元).(1)分别求出与,与的函数关系式;(2)在今年内....该单位哪个月获得利润达到5800元?(3)随着人们环保意识的增加,该单位需求的可再生资源数量受限.今年三月的再生资源处理量比二月份减少了%,该新产品的产量也随之减少,其售价比二月份的售价增加了6.0%.四月份,该单位得到国家科委的技术支持,使月处理成本比二月份的降低了20%.如m果该单位四月份在保持三月份的再生资源处理量和新产品售价的基础上,其利润比二月份的利润减少了60元,求的值.26. 如图1,菱形ABCD 中,AB =5,AE ⊥BC 于E ,AE =4.一个动点P 从点B 出发,以每秒个单位长度的速度沿线段BC 方向运动,过点P 作PQ ⊥BC ,交折线段BA-AD 于点Q ,以PQ 为边向右作正方形PQMN ,点N 在射线BC 上,当P 点到达C 点时,运动结束.设点P 的运动时间为秒(0t >).(1)求出线段BD 的长,并求出当正方形PQMN 的边PQ 恰好经过点A 时,运动时间的值; (2)在整个运动过程中,设正方形PQMN 与△BCD 的重合部分面积为S ,请直接写出S 与之间的函数关系式和相应的自变量的取值范围;(3)如图2,当点M 与点D 重合时,线段PQ 与对角线BD 交于点O ,将△BPO 绕点O 逆时针旋转︒α (1800<<α),记旋转中的△BPO 为△O P B '',在旋转过程中,设直线P B ''与直线BC 交于G ,与直线BD 交于点H ,是否存在这样的G 、H 两点,使△BGH 为等腰三角形?若存在,求出此时2OH 的值;若不存在,请说明理由.第26题图1第26题图2CABDOQ P'P ' E P NCBD MQA重庆一中初2015级13—14学年度下期期末考试数 学 答 案 2014.7一、选择题(每小题4分,共48分) ABCD CBAC CDCD二、填空题(每小题4分,共24分)13. 14.15- 15. 4<x 16.15 17.5<m 且0≠m 18. 52 19. (1)解:方程两边同乘以)1(-x x ,得)1()1(22-=--x x x x ……………… 3分∴02=+-x ……………… 4分 ∴2=x . ……………… 5分 经检验2=x 是原方程的解.∴原方程的解为2=x . ……………… 6分(2)解:∵2=a ,3=b ,1-=c∴17)1(24942=-⨯⨯-=-ac b ……………… 2分∴4173±-=x ……………… 5分 ∴41731+-=x ,41732--=x . ……………… 6分20. 解:解不等式①得: 2->x ……………… 2分 解不等式②得: 37≤x ……………… 4分 ∴原不等式组的解集为:372≤<-x……………… 6分21..证明:∵四边形ABCD 是矩形∴∠CDA =∠EDA =90°,AC=BD . ……………… 3分∵∠CAD=∠EAD ,AD=AD∴△ADC ≌△ADE . ……………… 5分∴AC =AE. 分∴BD=AE . ……………… 6分22. 解:原式=41216)2()4(22+-+-÷+-x x x x x x ············································································ 3分=41)4)(4(2)2()4(2+--++⋅+-x x x x x x x ···································································· 4分=41)4(4+-+-x x x x ····························································································· 5分=)4(4+-x x=xx 442+-. ·································································································· 6分∵0342=-+x x∴342=+x x . ······························································································· 8分 ∴原式=34-. ····································································································· 10分 23.解:(1)设第一次所购该蔬菜的进货价是每千克元,根据题意得5.07002400-=⋅x x …………………………3分 解得4=x .经检验4=x 是原方程的根, ∴第一次所购该蔬菜的进货价是每千克4元; ··················································· 5分 (2)由(1)知,第一次所购该蔬菜数量为400÷4=100第二次所购该蔬菜数量为100×2=200 设该蔬菜每千克售价为元,根据题意得[100(1-2%)+200(1-3%)]944700400≥--y . ············································· 8分 ∴7≥y . ·············································································································· 9分 ∴该蔬菜每千克售价至少为7元. ···································································· 10分24. (1)∵四边形ABCD 是正方形∴∠BCG =∠DCB=∠DCF=90°,BC=DC .∵BE ⊥DF∴∠CBG+∠F=∠CDF+∠F .∴∠CBG=∠CDF . ……………………………………2分 ∴△CBG ≌△CDF .∴BG=DF=4. ……………………………………3分∴在Rt △BCG 中,222BG BC CG =+∴CG =73422=-. …………………………4分(2)过点C 作CM ⊥CE 交BE 于点M∵∠BCG=∠MCE =∠DCF =90° ∴∠BCM=∠DCE ,∠MCG=∠ECF ∵BC=DC ,∠CBG=∠CDF∴△CBM ≌△CDE ……………………………………6分 ∴CM=CE∴△CME 是等腰直角三角形 ……………………………………7分∴ME=CE 2 ,即MG+EG=CE 2又∵△CBG ≌△CDF ∴CG=CF∴△CMG ≌△FCE ……………………………………9分 ∴MG=EF∴EF+EG =2CE ……………………………………10分25. (1)3010+=x y ……………………………………2分 p y w -=100255090050)45010050()3010(10022++-=++-+=x x x x x ……………………………………4分(2)由58002550900502=++-x x 得 ……………………………………6分065182=+-x x∴131=x ,52=x∵12≤x ∴5=x . ……………………………………8分 ∴在今年内....该单位第5个月获得利润达到5800元. (3)二月份再生资源处理量为:40+10=50(吨)二月份月处理成本为:85045021002502=+⨯+⨯=p (元)50(1-%)×100(1+m 6.0%)-850×(1-20%)=50×100-850-60………10分 设%=,则023*******=-+t t∴30131060067600200±-=±-=t∵0>t ,∴1.0=t∴%=0.1,即10=m . ……………………………………12分26.(1)过点D 作DK ⊥BC 延长线于K∴Rt △DKC 中,CK =3.∴Rt △DBK 中,BD=544)35(22=-+ ……………………2分 在Rt △ABE 中,AB =5,AE =4, . ∴BE =3,∴当点Q 与点A 重合时,3=t . …………3分(2)⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≤<+-≤<++-≤<-+-≤<=)54(1041)43(31031032)3715(35091402768)7150(9102222t t t t t t t t t t S …………8分(3)当点M 与点D 重合时,BP=QM=4,∠BPO=∠MQO ,∠BOP=∠MOQ∴△BPO ≌△MQO ∴PO=2,BO=52 若HB=HG 时,∠HBC=∠HGB=∠O B H ' ∴B O '∥BG ∴HO=B H '∴设HO=B H '=222)4(2x x -+=, ∴25=x ∴4252=OH . ……………………………………9分 若GB=GH 时, ∠GBH=∠GHB∴此时,点G 与点C 重合,点H 与点D 重合∴20)52(222===OD OH . ……………………………………10分 当BH=BG 时, ∠BGH=∠BHG∵∠HBG=∠B ', ∴∠B OH B HO '∠='∴B O B H '='=52,∴P H '=452-.∴51640)452(2222-=-+=OH .A P 'B B 'O CD HGA BC D OP ' B '(G) (H)ABC DOB 'P 'G H P 'BA DO或∠BGH=∠H∴∠OBG=∠H P B O ∠=''2 ∴∠H B HO ∠='∴B O B H '='=52, ∴P H '=452+.∴51640)452(2222+=++=OH . ……………………………………12分 综上所述,当4252=OH 、20、51640-、51640+时,△BGH 为等腰三角形.第| 一 |好 | 题 | 网。

相关文档
最新文档