高中数学人教A版【精品习题】(必修2)配套练习 第三章3.1.1
(精校版)人教版必修二数学第三章测试题及答案解析
13
三、解答题
16.解:设所求直线的方程为 y= 3 x+b,
4
令 x=0,得 y=b,所以直线与 y 轴的交点为(0,b);
令 y=0,得 x=- 4 b,所以直线与 x 轴的交点为 + 4 b+0 .
3
3
由已知,得|b|+ + 4 b + b2 + + 4 b2 =12,解得 b=±3.
3
3
(直打版)人教版必修二数学第三章测试题及答案解析(word 版可编辑修改)
18.解:(1)当 x,y 的系数不同时为零时,方程表示一条直线,
令 m2―2m―3=0,解得 m=-1,m=3;
令 2m2+m-1=0,解得 m=-1,m= 1 .
2
所以方程表示一条直线的条件是 m∈R,且 m≠-1.
(2)由(1)易知,当 m= 1 时,方程表示的直线的斜率不存在,
5.已知等边△ABC 的两个顶点 A(0,0),B(4,0),且第三个顶点在第四象限,则 BC 边所
在的直线方程是( ).
A.y=- 3 x
B.y=- 3 (x-4)
C.y= 3 (x-4)
D.y= 3 (x+4)
6.直线 l:mx-m2y-1=0 经过点 P(2,1),则倾斜角与直线 l 的倾斜角互为补角的一条直
(直打版)人教版必修二数学第三章测试题及答案解析(word 版可编辑修改)
(直打版)人教版必修二数学第三章测试题及答案解析(word 版可编辑修改) 编辑整理:
尊敬的读者朋友们: 这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对 文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((直打版)人教版必修二数学第 三章测试题及答案解析(word 版可编辑修改))的内容能够给您的工作和学习带来便利。同时也真 诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。 本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快 业绩进步,以 下为(直打版)人教版必修二数学第三章测试题及答案解析(word 版可编辑修改)的全部内容。
高中数学人教A版必修2习题第3章 直线与方程3.1.2 Word版含解析
第三章一、选择题.(·临沧高一检测)直线、的斜率是方程--=的两根,则与的位置关系是( ).平行.重合.相交但不垂直.垂直[答案][解析]设方程--=的两根为、,则=-.∴直线、的斜率=-,故与垂直..(·盐城高一检测)已知直线的倾斜角为°,直线∥,直线⊥,则直线与的倾斜角分别是( ).°,°.°,°.°,°.°,°[答案][解析]∵∥,∴直线与的倾斜角相等,∴直线的倾斜角为°,又∵⊥,∴直线的倾斜角为°..满足下列条件的直线与,其中∥的是( )①的斜率为,过点()、();②经过点()、(-),平行于轴,但不经过点;③经过点(-)、(-,-),经过点(-,)、()..①②.②③.①③.①②③[答案][解析]==,∴与平行或重合,故①不正确,排除、、,故选..已知直线和互相垂直且都过点(),若过原点(),则与轴交点的坐标为( ).() .().() .()[答案][解析]设与轴交点为(,),∵⊥,∴=-.∴=-.∴×=-,解得=,即与轴交点的坐标为()..已知直线经过两点(-,-),(-),直线经过两点()、(,),且⊥,则=( ) ..-..[答案][解析]∵⊥且不存在,∴=,∴=.故选..直线的斜率为,∥,直线过点(-)且与轴交于点,则点坐标为( ).() .(-).(,-) .()[答案][解析]设(,),∵∥,∴=,∴=,故选.二、填空题.经过点(-,-)和点(,)的直线与倾斜角是°的直线平行,则=[答案][解析]由题意,得°=,解得=..已知△的三个顶点分别是()、()、(),点()在边的高所在的直线上,则实数=[答案][解析]由题意得⊥,则有=-,所以有·=-,解得=.三、解答题.已知在▱中,()、()、()()求点的坐标;()试判定▱是否为菱形?[解析]()设(,),∵四边形为平行四边形,∴=,=,∴错误!,解得错误!.∴(-).()∵==,==-,∴·=-.∴⊥.∴▱为菱形..△的顶点(,-)、()、(,),若△为直角三角形,求的值[解析]()若∠=°,则⊥,·=-,==-,==-.。
高中数学(人教版必修2)配套练习 第三章章末检测
3
4
4
3
( )
A.k≤4或 k≥3 34
B.k≤-3或 k≥-4
4
3
C.4≤k≤3
D.-3≤k≤-4
9.已知直线 l1:ax+4y-2=0 与直线 l2:2x-5y+b=0 互相垂直,垂足为(1,c),则
a+b+c 的值为
( )
A.-4
B.20
C.0
D.24
10.过点 P(0,1)且和 A(3,3),B(5,-1)距离相等的直线的方程是
21.光线沿直线 l1:x-2y+5=0 射入,遇直线 l:3x-2y+7=0 后反射,求反射光线所在 的直线方程.
22.某房地产公司要在荒地 ABCDE(如图)上划出一块长方形地面(不改变方位)建一幢公寓, 问如何设计才能使公寓占地面积最大?并求出最大面积(精确到 1 m2).
答案
1.A 2.B 3.D 4.A 5.C 6.B 7.C 8.C 9.A 10.C 11.D 12.B
13.-2 或 4 或 6
14.60 km 2
15.-3 16.2 17.解 在 3x-y+3=0 中,令 y=0,得 x=- 3,即 M(- 3,0).∵直线 l 的斜率 k=
3,∴其倾斜角 θ=60°.若直线 l 绕点 M 逆时针方向旋转 30°,则直线 l′的倾斜角为 60°+30°=90°,此时斜率不存在,故其方程为 x=- 3.若直线 l 绕点 M 顺时针方向旋
( )
A.M∈l
B.M∉l
C.重合
D.不确定
7.直线 mx+ny-1=0 同时过第一、三、四象限的条件是
( )
A.mn>
D.m<0,n<0
8.若点 A(-2,-3),B(-3,-2),直线 l 过点 P(1,1)且与线段 AB 相交,则 l 的斜率 k 的
人教A版高中必修二试题3.3.1配套练习(含答案).doc
§3.3直线的交点坐标与距离公式3.3.1两条直线的交点坐标一、基础过关1.两直线2x-y+k=0和4x-2y+1=0的位置关系为() A.垂直B.平行C.重合D.平行或重合2.经过直线2x-y+4=0与x-y+5=0的交点,且垂直于直线x-2y=0的直线的方程是() A.2x+y-8=0 B.2x-y-8=0C.2x+y+8=0 D.2x-y+8=03.直线ax+2y+8=0,4x+3y=10和2x-y=10相交于一点,则a的值为() A.1 B.-1 C.2 D.-24.两条直线l1:2x+3y-m=0与l2:x-my+12=0的交点在y轴上,那么m的值为() A.-24 B.6 C.±6 D.以上答案均不对5.若集合{(x,y)|x+y-2=0且x-2y+4=0}{(x,y)|y=3x+b},则b=________. 6.已知直线l过直线l1:3x-5y-10=0和l2:x+y+1=0的交点,且平行于l3:x+2y-5=0,则直线l的方程是______________.7.判断下列各题中直线的位置关系,若相交,求出交点坐标.(1)l1:2x+y+3=0,l2:x-2y-1=0;(2)l1:x+y+2=0,l2:2x+2y+3=0;(3)l1:x-y+1=0,l2:2x-2y+2=0.8.求经过两直线2x+y-8=0与x-2y+1=0的交点,且在y轴上的截距为在x轴上截距的两倍的直线l的方程.二、能力提升9.若两条直线2x-my+4=0和2mx+3y-6=0的交点位于第二象限,则m的取值范围是()A.⎝⎛⎭⎫-32,2 B .(0,2) C.⎝⎛⎭⎫-32,0D.⎣⎡⎦⎤-32,2 10.直线l 与两直线y =1和x -y -7=0分别交于A ,B 两点,若线段AB 的中点为M (1,-1),则直线l 的斜率为( )A.32B.23C .-32D .-2311.当a 取不同实数时,直线(2+a )x +(a -1)y +3a =0恒过一个定点,这个定点的坐标为________.12.在△ABC 中,BC 边上的高所在直线的方程为x -2y +1=0,∠A 的角平分线所在直线的方程为y =0,若点B 的坐标为(1,2),求点A 和点C 的坐标.三、探究与拓展13.一束平行光线从原点O (0,0)出发,经过直线l :8x +6y =25反射后通过点P (-4,3),求反射光线与直线l 的交点坐标.答案1.D 2.A 3.B 4.C 5.26.8x +16y +21=07.解 (1)21≠1-2,所以方程组有唯一解,两直线相交,交点坐标为(-1,-1).(2)12=12≠23,所以方程组没有解,两直线平行. (3)12=-1-2=12,方程组有无数个解,两直线重合. 8.解 (1)2x +y -8=0在x 轴、y 轴上的截距分别是4和8,符合题意. (2)当l 的方程不是2x +y -8=0时, 设l :(x -2y +1)+λ(2x +y -8)=0, 即(1+2λ)x +(λ-2)y +(1-8λ)=0. 据题意,1+2λ≠0,λ-2≠0.令x =0,得y =-1-8λλ-2;令y =0,得x =-1-8λ1+2λ.∴-1-8λλ-2=2·⎝ ⎛⎭⎪⎫-1-8λ1+2λ 解之得λ=18,此时y =23x .即2x -3y =0.∴所求直线方程为2x +y -8=0或2x -3y =0. 9.A 10.D 11.(-1,-2)12.解 如图所示,由已知,A 应是BC 边上的高线所在直线与∠A的角平分线所在直线的交点.由⎩⎪⎨⎪⎧ x -2y +1=0y =0,得⎩⎪⎨⎪⎧y =0x =-1,故A (-1,0).又∠A 的角平分线为x 轴, 故k AC =-k AB =-1,∴AC 所在直线方程为y =-(x +1),又k BC =-2,∴BC 所在直线方程为y -2=-2(x -1), 由⎩⎪⎨⎪⎧ y =-(x +1)y -2=-2(x -1),得⎩⎪⎨⎪⎧x =5y =-6, 故C 点坐标为(5,-6).13.解 设原点关于l 的对称点A 的坐标为(a ,b ),由直线OA 与l 垂直和线段AO 的中点在l 上得 ⎩⎨⎧b a ·⎝⎛⎭⎫-43=-18×a 2+6×b2=25,解得⎩⎪⎨⎪⎧a =4b =3,∴A 的坐标为(4,3).∵反射光线的反向延长线过A (4,3),又由反射光线过P (-4,3),两点纵坐标相等,故反射光线所在直线方程为y =3.由方程组⎩⎪⎨⎪⎧y =38x +6y =25,解得⎩⎪⎨⎪⎧x =78y =3,∴反射光线与直线l 的交点坐标为⎝⎛⎭⎫78,3.。
高一数学人教a版必修二_习题_第三章_直线与方程_3.3.4_word版有答案
(本栏目内容,在学生用书中以独立形式分册装订!)一、选择题(每小题5分,共20分)1.(2015·西安高新一中月考)点(1,2)到直线y =2x +1的距离为( ) A.55 B.255C. 5D .2 5 解析: 直线y =2x +1即2x -y +1=0,由点到直线的距离公式得d =|2×1-2+1|22+(-1)2=55,选A. 答案: A2.已知点(3,m )到直线x +3y -4=0的距离等于1,则m 等于( )A. 3B .- 3C .-33 D.3或-33解析: |3+3m -4|2=1,解得m =3或-33,故选D. 答案: D3.两平行线y =kx +b 1与y =kx +b 2之间的距离是( )A .b 1-b 2B.|b 1-b 2|1+k 2 C .|b 1-b 2| D .b 2-b 1解析: 两直线方程可化为kx -y +b 1=0,kx -y +b 2=0,所以d =|b 1-b 2|1+k 2.故选B.答案: B4.过点(1,2)且与原点距离最大的直线方程是( )A .x +2y -5=0B .2x +y -4=0C .x +3y -7=0D .3x +y -5=0解析: 所求为过A (1,2),且垂直OA 的直线,所以k =-12,故所求直线为y -2=-12(x -1),即x +2y -5=0.故选A.答案: A二、填空题(每小题5分,共15分)5.(2015·珠海希望之星月考)直线5x +12y +3=0与直线10x +24y +5=0的距离是________.解析: 直线10x +24y +5=0可化为5x +12y +52=0,所以两平行直线间的距离d =⎪⎪⎪⎪3-5252+122=126. 答案: 126 6.一直线过点P (2,0),且点Q ⎝⎛⎭⎫-2,433到该直线的距离等于4,则该直线的倾斜角为________. 解析: 当过P 点的直线垂直于x 轴时,Q 点到直线的距离等于4,此时直线的倾斜角为90°, 当过P 点的直线不垂直于x 轴时,直线斜率存在,设过P 点的直线为y =k (x -2),即kx -y -2k =0,由d =⎪⎪⎪⎪-2k -433-2k k 2+1=4, 解得k =33. 所以直线的倾斜角为30°.答案: 90°或30° 7.过点A (2,1)的所有直线中,距离原点最远的直线方程为________.解析: 如右图,只有当直线l 与OA 垂直时,原点到l 的距离最大,此时k OA =12,则k l =-2, 所以方程为y -1=-2(x -2),即2x +y -5=0.答案: 2x +y -5=0三、解答题(每小题10分,共20分)8.已知A (4,-3),B (2,-1)和直线l :4x +3y -2=0,求一点P ,使|PA |=|PB |,且点P 到直线l 的距离等于2.解析: 设点P 的坐标为(a ,b ),∵A (4,-3),B (2,-1),∴线段AB 中点M 的坐标为(3,-2),而AB 的斜率为k AB =-1-(-3)2-4=-1. ∴线段AB 的垂直平分线方程为y -(-2)=x -3.即x -y -5=0.而点P (a ,b )在直线x -y -5=0上,故将(a ,b )代入方程,得a -b -5=0,①由P 到l 的距离为2,得|4a +3b -2|42+32=2.② 由①②得⎩⎪⎨⎪⎧ a =1,b =-4或⎩⎨⎧ a =277,b =-87.∴所求P 点为(1,-4)或⎝⎛⎭⎫277,-87. 9.已知直线l 经过点P (-2,5),且斜率为34. (1)求直线l 的方程;(2)若直线m 与l 平行,且点P 到直线m 的距离为3,求直线m 的方程.解析: (1)由直线方程的点斜式,得y -5=-34(x +2), 整理得所求直线方程为3x +4y -14=0.(2)由直线m 与直线l 平行,可设直线m 的方程为3x +4y +C =0, 由点到直线的距离公式得|3×(-2)+4×5+C |32+42=3, 即|14+C |5=3, 解得C =1或C =-29,故所求直线方程为3x +4y +1=0或3x +4y -29=0.10.两平行线分别经过点A (3,0),B (0,4),它们之间的距离d 满足的条件是( )A .0<d ≤3B .0<d ≤5C .0<d <4D .3≤d ≤5解析: 当两平行线与AB 垂直时,两平行线间的距离最大为|AB |=5,所以0<d ≤5,故选B.答案: B11.已知x +y -3=0,则(x -2)2+(y +1)2的最小值为____________.解析: 设P (x ,y )在直线x +y -3=0上,A (2,-1),则(x -2)2+(y +1)2=|PA |.|PA |的最小值为点A (2,-1)到直线x +y -3=0的距离d =|2+(-1)-3|12+12= 2. 答案: 2 12.直线l 过点A (2,4),且被两平行直线x -y +1=0与x -y -1=0所截得的线段的中点在直线x +y -3=0上,求直线l 的方程.解析: ∵线段的中点在直线x +y -3=0上,∴设中点坐标为P (a,3-a ). 又∵中点P 到两平行直线的距离相等,∴|2a -2|2=|2a -4|2,∴a =32.即P ⎝⎛⎭⎫32,32.又∵直线l 过点A (2,4),∴k l =4-322-32=5, 故所求直线l 的方程为5x -y -6=0.13.已知直线l 1:mx +8y +n =0与l 2:2x +my -1=0互相平行,且l 1,l 2之间的距离为5,求直线l 1的方程.解析: ∵l 1∥l 2,∴m 2=8m ≠n -1, ∴⎩⎪⎨⎪⎧ m =4,n ≠-2或⎩⎪⎨⎪⎧m =-4,n ≠2. (1)当m =4时,直线l 1的方程为4x +8y +n =0,把l 2的方程写成4x +8y -2=0. ∴|n +2|16+64=5,解得n =-22或n =18.所以,所求直线l 1的方程为2x +4y -11=0或2x +4y +9=0.(2)当m =-4时,直线l 1的方程为4x -8y -n =0,l 2的方程为2x -4y -1=0, ∴|-n +2|16+64=5,解得n =-18或n =22.所以,所求直线l 1的方程为2x -4y +9=0或2x -4y -11=0.。
最新人教版必修二高中数学同步习题第三章3.1.1和答案
第三章直线与方程§3.1直线的倾斜角与斜率3.1.1倾斜角与斜率一、基础过关1.下列说法中:①任何一条直线都有唯一的倾斜角;②任何一条直线都有唯一的斜率;③倾斜角为90°的直线不存在;④倾斜角为0°的直线只有一条.其中正确的个数是( ) A.0 B.1 C.2 D.32.斜率为2的直线经过点A(3,5)、B(a,7)、C(-1,b)三点,则a、b的值为( )A.a=4,b=0 B.a=-4,b=-3C.a=4,b=-3 D.a=-4,b=33.在平面直角坐标系中,正三角形ABC的边BC所在直线的斜率是0,则AC,AB 所在直线的斜率之和为( )A.-2 3 B.0 C. 3 D.2 34.直线l过原点(0,0),且不过第三象限,那么l的倾斜角α的取值范围是( )A.[0°,90°] B.[90°,180°)C.[90°,180°)或α=0° D.[90°,135°]5.若直线AB与y轴的夹角为60°,则直线AB的倾斜角为____________,斜率为__________.6.若经过点P(1-a,1+a)和Q(3,2a)的直线的倾斜角为钝角,则实数a的取值范围为_______.7. 如图所示,菱形ABCD中,∠BAD=60°,求菱形ABCD各边和两条对角线所在直线的倾斜角和斜率.8.一条光线从点A (-1,3)射向x 轴,经过x 轴上的点P 反射后通过点B (3,1),求P 点的 坐标. 二、能力提升9.设直线l 过坐标原点,它的倾斜角为α,如果将l 绕坐标原点按逆时针方向旋转45°,得到直线l 1,那么l 1的倾斜角为( )A .α+45°B .α-135°C .135°-αD .当0°≤α<135°时,倾斜角为α+45°;当135°≤α<180°时,倾斜角为α-135°10. 若图中直线l 1、l 2、l 3的斜率分别为k 1、k 2、k 3,则( )A .k 1<k 2<k 3B .k 3<k 1<k 2C .k 3<k 2<k 1D .k 1<k 3<k 211.已知直线l 的倾斜角为α-20°,则α的取值范围是________. 12.△ABC 为正三角形,顶点A 在x 轴上,A 在边BC 的右侧,∠BAC 的平分线在x轴上,求边AB 与AC 所在直线的斜率. 三、探究与拓展13.已知函数f (x )=log 2(x +1),a >b >c >0,试比较f a a ,f b b ,f cc的大小.答案1.B 2.C 3.B 4.C5.30°或150° 33或-336.(-2,1)7.解 直线AD ,BC 的倾斜角为60°,直线AB ,DC 的倾斜角为0°,直线AC 的倾斜角为30°,直线BD 的倾斜角为120°.k AD =k BC =3,k AB =k CD =0, k AC =33,k BD =- 3. 8.解 设P (x,0),则k PA =3-0-1-x =-3x +1,k PB =1-03-x =13-x,依题意, 由光的反射定律得k PA =-k PB , 即3x +1=13-x,解得x =2,即P (2,0). 9.D 10.D 11.20°≤α<200°12.解 如右图,由题意知∠BAO =∠OAC =30°,∴直线AB 的倾斜角为180°-30°=150°,直线AC 的倾斜角为30°,∴k AB =tan 150°=-33, k AC =tan 30°=33.13.解 画出函数的草图如图,f xx可视为过原点直线的斜率.由图象可知:f c c >f b b >f aa.。
高二数学人教A版(2019)选择性必修第一册第三章3.1.1椭圆及其标准方程 教学设计
椭圆及其标准方程(第一课时)教学设计一、教材分析:本节课是《普通高中教科书数学·选择性必修第一册》(人教A版)第三章第一节《椭圆及其标准方程》第一课时。
用一个平面去截一个对顶的圆锥,当平面与圆锥的轴夹角不同时,可以得到不同的截口曲线,它们分别是圆、椭圆、抛物线、双曲线,我们将这些曲线统称为圆锥曲线。
圆锥曲线的发现与研究始于古希腊,当时人们从纯粹几何学的观点研究了这种与圆密切相关的曲线,它们的几何性质是圆的几何性质的自然推广。
17世纪初期,笛卡尔发明了坐标系,人们开始在坐标系的基础上,用代数方法研究圆锥曲线。
在这一章中,我们将继续用坐标法探究圆锥曲线的几何特征,建立它们的方程,通过方程研究它们的简单性质,并用坐标法解决一些与圆锥曲线有关的简单几何问题和实际问题,进一步感受数形结合的基本思想。
解析几何是数学一个重要的分支,它沟通了数学中数与形、代数与几何等最基本对象之间的联系。
在第二章中学生已初步掌握了解析几何研究问题的主要方法,并在平面直角坐标系中研究了直线和圆这两个基本的几何图形,在本章,教材利用三种圆锥曲线进一步深化如何利用代数方法研究几何问题。
由于教材以椭圆为重点说明了求方程、利用方程讨论几何性质的一般方法,然后在双曲线、抛物线的教学中应用和巩固,因此“椭圆及其标准方程”起到了承上启下的重要作用。
本节内容蕴含了许多重要的数学思想方法,如:数形结合思想、化归思想等。
因此,教学时应重视体现数学的思想方法及价值。
二、教学目标:按照教学大纲的要求,根据教材分析和学情分析,确定如下教学目标:1.知识与技能目标:①理解椭圆的定义。
②掌握椭圆的标准方程,在化简椭圆方程的过程中提高学生的运算能力。
2.过程与方法目标:①经历椭圆概念的产生过程,学习从具体实例中提炼数学概念的方法,由形象到抽象,从具体到一般,掌握数学概念的数学本质,提高学生的归纳概括能力。
②巩固用坐标化的方法求动点轨迹方程。
③对学生进行数学思想方法的渗透,培养学生具有利用数学思想方法分析和解决问题的意识3.情感态度价值观目标:①充分发挥学生在学习中的主体地位,引导学生活动、观察、思考、合作、探究、归纳、交流、反思,促进形成研究氛围和合作意识②重视知识的形成过程教学,让学生知其然并知其所以然,通过学习新知识体会到前人探索的艰辛过程与创新的乐趣③通过对椭圆定义的严密化,培养学生形成扎实严谨的科学作风④通过经历椭圆方程的化简,增强学生战胜困难的意志品质并体会数学的简洁美、对称美⑤利用椭圆知识解决实际问题,使学生感受到数学的广泛应用性和知识的力量,增强学习数学的兴趣和信心三、教学重难点:重点:椭圆定义的形成过程、椭圆的标准方程、坐标化的基本思想难点:椭圆标准方程的推导与化简,坐标法的应用四、教法分析:新课程倡导学生自主学习,要求教师成为学生学习的引导者、组织者、合作者和促进者,使教学过程成为师生交流、积极互动、共同发展的过程。
人教A版高中必修二试题3.1.1配套练习(含答案).doc
第三章直线与方程§3.1直线的倾斜角与斜率3.1.1倾斜角与斜率一、基础过关1.下列说法中:①任何一条直线都有唯一的倾斜角;②任何一条直线都有唯一的斜率;③倾斜角为90°的直线不存在;④倾斜角为0°的直线只有一条.其中正确的个数是() A.0 B.1 C.2 D.32.斜率为2的直线经过点A(3,5)、B(a,7)、C(-1,b)三点,则a、b的值为() A.a=4,b=0 B.a=-4,b=-3C.a=4,b=-3 D.a=-4,b=33.在平面直角坐标系中,正三角形ABC的边BC所在直线的斜率是0,则AC,AB所在直线的斜率之和为() A.-2 3 B.0 C. 3 D.2 34.直线l过原点(0,0),且不过第三象限,那么l的倾斜角α的取值范围是() A.[0°,90°] B.[90°,180°)C.[90°,180°)或α=0°D.[90°,135°]5.若直线AB与y轴的夹角为60°,则直线AB的倾斜角为____________,斜率为__________.6.若经过点P(1-a,1+a)和Q(3,2a)的直线的倾斜角为钝角,则实数a的取值范围为_______.7. 如图所示,菱形ABCD中,∠BAD=60°,求菱形ABCD各边和两条对角线所在直线的倾斜角和斜率.8.一条光线从点A (-1,3)射向x 轴,经过x 轴上的点P 反射后通过点B (3,1),求P 点的 坐标. 二、能力提升9.设直线l 过坐标原点,它的倾斜角为α,如果将l 绕坐标原点按逆时针方向旋转45°,得到直线l 1,那么l 1的倾斜角为( )A .α+45°B .α-135°C .135°-αD .当0°≤α<135°时,倾斜角为α+45°;当135°≤α<180°时,倾斜角为α-135° 10. 若图中直线l 1、l 2、l 3的斜率分别为k 1、k 2、k 3,则( )A .k 1<k 2<k 3B .k 3<k 1<k 2C .k 3<k 2<k 1D .k 1<k 3<k 211.已知直线l 的倾斜角为α-20°,则α的取值范围是________.12.△ABC 为正三角形,顶点A 在x 轴上,A 在边BC 的右侧,∠BAC 的平分线在x 轴上,求边AB 与AC 所在直线的斜率. 三、探究与拓展13.已知函数f (x )=log 2(x +1),a >b >c >0,试比较f (a )a ,f (b )b ,f (c )c 的大小.答案1.B 2.C 3.B 4.C5.30°或150° 33或-336.(-2,1)7.解 直线AD ,BC 的倾斜角为60°,直线AB ,DC 的倾斜角为0°,直线AC 的倾斜角为30°,直线BD 的倾斜角为120°.k AD =k BC =3,k AB =k CD =0, k AC =33,k BD =- 3.8.解 设P (x,0),则k P A =3-0-1-x =-3x +1,k PB =1-03-x =13-x ,依题意,由光的反射定律得k P A =-k PB ,即3x +1=13-x ,解得x =2,即P (2,0). 9.D 10.D 11.20°≤α<200°12.解 如右图,由题意知∠BAO =∠OAC =30°,∴直线AB 的倾斜角为180°-30°=150°,直线AC 的倾斜角为30°,∴k AB =tan 150°=-33,k AC =tan 30°=33.13.解 画出函数的草图如图,f (x )x可视为过原点直线的斜率.由图象可知:f (c )c >f (b )b >f (a )a.。
人教A版高中数学选择性必修第一册3.1椭圆 经典例题及配套练习题
3.1 椭圆3.1.1 椭圆及其标准方程例1 已知椭圆的两个焦点坐标分别是(−2,0),(2,0),并且经过点(52,−32),求它的标准方程.解:由于椭圆的焦点在x轴上,所以设它的标准方程为x2a2+y2b2=1(a>b>0).由椭圆的定义知c=2,2a=√(52+2)2+(−32)2+√(52−2)2+(−32)2=2√10,所以a=√10,所以b2=a2−c2=10−4=6.所以,所求椭圆的标准方程为x2 10+y26=1.例2 如图3.1-5,在圆x2+y2=4上任取一点P,过点P作x轴的垂线段PD,D为垂足.当点P 在圆上运动时,线段PD的中点M的轨迹是什么?为什么?图3.1-5分析:点P在圆x2+y2=4上运动,点P的运动引起点M运动.我们可以由M为线段PD的中点得到点M与点P坐标之间的关系式,并由点P的坐标满足圆的方程得到点M的坐标所满足的方程.解:设点M的坐标为(x,y),点P的坐标为(x0,y0),则点D的坐标为(x0,0),由点M是线段PD的中点,得x=x0,y=y02.因为点P(x0,y0)在圆x2+y2=4上,所以x02+y02=4.①把x0=x,y0=2y代入方程①,得x2+4y2=4,即x24+y2=1.所以点M的轨迹是椭圆.例3如图3.1-6,设A,B两点的坐标分别为(−5,0),(5,0).直线AM,BM相交于点M,且它们的斜率之积是−49,求点M的轨迹方程.图3.1-6分析:设点M的坐标为(x,y),那么直线AM,BM的斜率就可用含x,y的关系式分别表示.由直线AM,BM的斜率之积是−49,可得出x,y之间的关系式,进而得到点M的轨迹方程.解:设点M的坐标为(x,y),因为点A的坐标是(−5,0),所以直线AM的斜率k AM=yx:5(x≠−5).同理,直线BM的斜率k BM=yx;5(x≠5).由已知,有y x:5×yx;5=−49(x≠±5),化简,得点M的轨迹方程为x2 25+y21009=1(x≠±5).点M的轨迹是除去(−5,0),(5,0)两点的椭圆.练习1.如果椭圆x2100+y236=1上一点P到焦点F1的距离等于6,则点P到另一个焦点F2的距离为____【答案】14【分析】根据椭圆的定义|PF1|+|PF2|=2a及椭圆x2100+y236=1上一点P到焦点F1的距离等于6,可得PF2的长.【详解】解:根据椭圆的定义|PF1|+|PF2|=2a,又椭圆x2100+y236=1上一点P到焦点F1的距离等于6,∴6+|PF2|=20,故|PF2|=14,2.求适合下列条件的椭圆的标准方程.(1)a=4,b=1,焦点在x轴上;(2)a=4,c=√15,焦点在y轴上;(3)a+b=10,c=2√5.【答案】(1)x216+y2=1;(2)y216+x2=1;(3)x236+y216=1或y236+x216=1.【分析】(1)根据已知直接得出方程;(2)根据已知求得b,即可得出方程;(3)由已知联立求得a,b即可得出方程.【详解】(1)a=4,b=1,焦点在x轴上的椭圆方程为x216+y2=1;(2)由a=4,c=√15可得b2=a2−c2=1,又焦点在y轴上,所以标准方程为y216+x2=1;(3)联立{a+b=10 c=2√5a2=b2+c2,解得a=6,b=4,所以标准方程为x236+y216=1或y236+x216=1.3.已知经过椭圆x225+y216=1的右焦点F2作垂直于x轴的直线AB,交椭圆于A,B两点,F1是椭圆的左焦点.(1)求ΔAF1B的周长;(2)如果AB不垂直于x轴,ΔAF1B的周长有变化吗?为什么?【答案】(1)20;(2)不变,理由见解析【分析】根据椭圆的定义ΔAF1B的周长为|AF1|+|AF2|+|BF1|+|BF2|=4a求解.【详解】(1)由椭圆的定义得:|AF1|+|AF2|=2a=10,|BF1|+|BF2|=2a=10,所以ΔAF1B的周长为|AF1|+|AF2|+|BF1|+|BF2|=4a=20.(2)不变,由椭圆的定义ΔAF1B的周长为|AF1|+|AF2|+|BF1|+|BF2|=4a.只受a的影响,不受AB与x轴的位置关系影响.4.已知A,B两点的坐标分别是(−1,0),(1,0),直线AM,BM相交于点M,且直线AM的斜率与直线BM的斜率的商是2,点M的轨迹是什么?为什么?【答案】点M的轨迹是直线x=−3,并去掉点(−3,0)【分析】设出点M的坐标,求出直线AM,BM斜率,由k AMk BM=2可求出.【详解】设点M的坐标为(x,y),则k AM=yx:1(x≠−1),k BM=yx;1(x≠1),当y≠0时,k AMk BM =x;1x:1=2,整理得x=−3(y≠0),所以点M的轨迹是直线x=−3,并去掉点(−3,0).3.1.2 椭圆的简单几何性质例4 求椭圆16x2+25y2=400的长轴和短轴的长、离心率、焦点和顶点的坐标.解:把原方程化成标准方程,得x2 52+y242=1,于是a=5,b=4,c=√25−16=3.因此,椭圆的长轴和短轴的长分别是2a=10和2b=8,离心率e=ca =35,两个焦点坐标分别是F1(−3,0)和F2(3,0),四个顶点坐标分别是A1(−5,0),A2(5,0),B1(0,−4)和B2(0,4).练习5.你能用圆规作出图中椭圆焦点的位置吗?你的依据是什么?【答案】能. 依据见解析.【分析】根据椭圆中a2=b2+c2的几何表示,即原点、焦点、短轴端点构成直角三角形,且体现a2=b2+c2求解.【详解】能.如图,以点B2(或B1)为圆心, |OA2|(或|OA1|)为半径画圆弧,与x轴交于点F1,F2,则点F1,F2就是椭圆的两个焦点.依据:因为在Rt△B2OF2中,|OB2|=b,|B2F2|=|OA2|=a,所以|OF2|=c,同理有|OF1|=c.6.求下列椭圆的焦点坐标:(1)x2100+y236=1;(2)2x2+y2=8.【答案】(1)(8,0)和(−8,0);(2)(0,2)和(0,−2)【分析】由椭圆方程得到a2,b2,根据c2=a2−b2求出c,即可得解;【详解】解:(1)因为椭圆方程为x2100+y236=1,焦点在x轴,所以a2=100,b2=36,因为c2=a2−b2,即c=√a2−b2=√100−36=8,所以椭圆的焦点坐标为(8,0)和(−8,0)(2)因为2x2+y2=8,所以y28+x24=1,焦点在y轴,所以a2=8,b2=4,因为c2=a2−b2,即c=√a2−b2=√8−4=2,所以椭圆的焦点坐标为(0,2)和(0,−2) 7.求适合下列条件的椭圆的标准方程:(1)焦点在x轴上,a=6,e=;(2)焦点在y轴上,c=3,e=.【答案】(1)x236+y232=1(2)y225+x216=1【详解】试题分析:(1)由离心率公式,求得c,再由a,b,c的关系,求得b,即可得到椭圆方程;(2)由离心率公式,求得a,再由a,b,c的关系,求得b,即可得到椭圆方程试题解析:(1)a=6,e=,即,解得c=2,b2=a2﹣c2=32,则椭圆的标准方程为:=1;(2)c=3,e=,即,解得,a=5,b2=a2﹣c2=25﹣9=16.则椭圆的标准方程为:=1.8.求适合下列条件的椭圆的标准方程:(1)经过P(−3,0),Q(0,−2)两点;(2)长轴长等于20,离心率等于35.【答案】(1)x 29+y 24=1 (2)x 2100+y 264=1或y 2100+x 264=1.【分析】(1)设出椭圆方程,根据椭圆经过点A (−3,0),B (0,−2),得出{a =3b =2 ,代入方程即可.(2)由条件可得{2a =20c a =35 ,则可得{a =10c =6b =8 ,根据焦点所在的轴代入对应的标准方程即可. 【详解】解:(1)设椭圆方程为:x 2a 2+y 2b 2=1,因为椭圆经过点A (−3,0),B (0,−2), A (−3,0),B (0,−2)分别为左顶点和下顶点, 所以得{a =3b =2,所以椭圆标准方程为x 29+y 24=1.(2)椭圆的长轴长等于20, 离心率等于35依题意: {2a =20c a =35 ,所以{a =10c =6,由b 2=a 2−c 2=64,即b =8所以椭圆标准方程为:x 2100+y 264=1或y 2100+x 264=1.9.比较下列每组中椭圆的形状,哪一个更接近于圆?为什么? (1)9x 2+y 2=36与x 216+y 212=1;(2)x 2+9y 2=36与x 26+y 210=1. 【答案】(1)x 216+y 212=1更接近于圆;(2)x 26+y 210=1更接近于圆.【分析】探究可得离心率e 越大,椭圆越扁;e 越小,椭圆越圆. 所以只需比较离心率的大小即可得出结果.【详解】因为椭圆的离心率e =ca =√1−(b a )2,所以e 越大,ba 越小,椭圆越扁;e 越小,ba 越大,椭圆越圆. (1)椭圆9x 2+y 2=36即x 24+y 236=1,其离心率e 1=√1−436=2√23,椭圆x 216+y 212=1的离心率e 2=√1−1216=12,因为e 2<e 1,所以椭圆x 216+y 212=1更接近于圆; (2)椭圆x 2+9y 2=36即x 236+y 24=1,其离心率e 3=√1−436=2√23,椭圆x 26+y 210=1的离心率e 4=√1−610=√105,因为e4<e3,所以椭圆x26+y210=1更接近于圆.例5 如图3.1-11,一种电影放映灯的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲面)的一部分.过对称轴的截口BAC是椭圆的一部分,灯丝位于椭圆的一个焦点F1上,片门位于另一个焦点F2上.由椭圆一个焦点F1发出的光线,经过旋转椭圆面反射后集中到另一个焦点F2.已知BC⊥F1F2,|F1B|=2.8cm,|F1F2|=4.5cm.试建立适当的平面直角坐标系,求截口BAC所在椭圆的方程(精确到0.1cm).图3.1-11解:建立如图3.1-11所示的平面直角坐标系,设所求椭圆方程为x2 a2+y2b2=1(a>b>0).在Rt△BF1F2中,|F2B|=√|F1B|2+|F1F2|2=√2.82+4.52.由椭圆的性质知,|F1B|+|F2B|=2a,所以a=12(|F1B|+|F2B|)=12(2.8+√2.82+4.52)≈4.1;b=√a2−c2=√4.12−2.252≈3.4.所以,所求的椭圆方程为x2 4.12+y23⋅42=1.例6 动点M(x,y)与定点F(4,0)的距离和M到定直线l:x=254的距离的比是常数45,求动点M的轨迹.解:如图3.1-12,设d是点M到直线l:x=254的距离,根据题意,动点M的轨迹就是集合。
高中数学(人教版必修2)配套练习 第三章3.3.3-3.3.4.doc
3.3.3 点到直线的距离3.3.4 两条平行直线间的距离一、基础过关1.已知点(a,1)到直线x -y +1=0的距离为1,则a 的值为( ) A .1 B .-1 C. 2 D .±2 2.点P (x ,y )在直线x +y -4=0上,O 是原点,则|OP |的最小值是 ( ) A.10B .22 C. 6D .2 3.到直线3x -4y -1=0的距离为2的直线方程为( )A .3x -4y -11=0B .3x -4y +9=0C .3x -4y -11=0或3x -4y +9=0D .3x -4y +11=0或3x -4y -9=04.P 、Q 分别为3x +4y -12=0与6x +8y +5=0上任一点,则|PQ |的最小值为( )A.95B.185C.2910D.295 5.已知直线3x +2y -3=0和6x +my +1=0互相平行,则它们之间的距离是________. 6.过点A (2,1)的所有直线中,距离原点最远的直线方程为______________. 7.△ABC 的三个顶点是A (-1,4),B (-2,-1),C (2,3). (1)求BC 边的高所在直线的方程; (2)求△ABC 的面积S .8.如图,已知直线l 1:x +y -1=0,现将直线l 1向上平移到直线l 2的位置,若l 2、l 1和坐标轴围成的梯形面积为4,求l 2的方程.二、能力提升9.两平行直线l 1,l 2分别过点P (-1,3),Q (2,-1),它们分别绕P 、Q 旋 转,但始终保持平行,则l 1,l 2之间的距离的取值范围是( )A .(0,+∞)B .[0,5]C .(0,5]D .[0,17]10.直线7x +3y -21=0上到两坐标轴距离相等的点的个数为( )A .3B .2C .1D .011.若直线m 被两平行线l 1:x -y +1=0与l 2:x -y +3=0所截得的线段的长为22,则m的倾斜角可以是________.(写出所有正确答案的序号) ①15° ②30° ③45° ④60° ⑤75°12.已知直线l 1与l 2的方程分别为7x +8y +9=0,7x +8y -3=0.直线l 平行于l 1,直线l 与l 1的距离为d 1,与l 2的距离为d 2,且d 1∶d 2=1∶2,求直线l 的方程. 三、探究与拓展13.等腰直角三角形ABC 的直角顶点C 和顶点B 都在直线2x +3y -6=0上,顶点A 的坐标是(1,-2).求边AB 、AC 所在直线方程.答案1.D 2.B 3.C 4.C 5.71326 6.2x +y -5=07.解 (1)设BC 边的高所在直线为l ,由题意知k BC =3-(-1)2-(-2)=1,则k l =-1k BC=-1,又点A (-1,4)在直线l 上,所以直线l 的方程为y -4=-1×(x +1), 即x +y -3=0. (2)BC 所在直线方程为y +1=1×(x +2),即x -y +1=0, 点A (-1,4)到BC 的距离d =|-1-4+1|12+(-1)2=22,又|BC |=(-2-2)2+(-1-3)2=42,则S △ABC =12·|BC |·d=12×42×22=8. 8.解 设l 2的方程为y =-x +b (b >1), 则图中A (1,0),D (0,1),B (b,0),C (0,b ). ∴|AD |=2,|BC |=2b .梯形的高h 就是A 点到直线l 2的距离,故h =|1+0-b |2=|b -1|2=b -12(b >1),由梯形面积公式得2+2b 2×b -12=4,∴b 2=9,b =±3.但b >1,∴b =3. 从而得到直线l 2的方程是x +y -3=0. 9.C 10.B 11.①⑤12.解 因为直线l 平行l 1,设直线l 的方程为7x +8y +C =0,则d 1=|C -9|72+82,d 2=|C -(-3)|72+82. 又2d 1=d 2,∴2|C -9|=|C +3|.解得C =21或C =5.故所求直线l 的方程为7x +8y +21=0或7x +8y +5=0.13.解 已知BC 的斜率为-23,因为BC ⊥AC ,所以直线AC 的斜率为32,从而方程y +2=32(x -1),即3x -2y -7=0,又点A (1,-2)到直线BC :2x +3y -6=0的距离为|AC |=1013,且|AC |=|BC |=1013.由于点B 在直线2x +3y -6=0上,可设B (a,2-23a ),且点B 到直线AC 的距离为|3a -2(2-23a )-7|32+(-2)2=1013,|133a -11|=10.所以133a -11=10或133a -11=-10,所以a =6313或313,所以B ⎝⎛⎭⎫6313,-1613或B ⎝⎛⎭⎫313,2413 所以直线AB 的方程为y +2=-1613+26313-1·(x -1)或y +2=2413+2313-1(x -1).即x -5y -11=0或5x +y -3=0,所以AC 所在的直线方程为3x -2y -7=0,AB 所在的直线方程为x -5y -11=0或5x +y -3=0.。
人教A版高中必修二试题 第三章.docx
高中数学学习材料马鸣风萧萧*整理制作必修2 第三章3.2直线的方程 测试题制卷:王小凤 学生姓名一.选择题(本题共10个小题,每小题5分,共50分)1.设直线0ax by c ++=的倾斜角为α,且sin cos 0αα+=,则,a b 满足( )A .1=+b aB .1=-b aC .0=+b aD .0=-b a2.直线1x =的倾斜角和斜率分别是( )A .045,1B .0135,1- C .090,不存在 D .0180,不存在3.过点(1,3)-且平行于直线032=+-y x 的直线方程为( ) A .072=+-y x B .012=-+y xC .250x y --=D .052=-+y x4.直线01=-+By Ax 在y 轴上的截距是-1,而且它的倾斜角是直线333=-y x 的倾斜角的2倍,则( ) A .A =3,B =1B .A =-3,B =-1C .A =3,B =-1D .A =-3,B =15.已知过点(2,)A m -和(,4)B m 的直线与直线012=-+y x 平行,则m 的值为( ) A . 0 B . 8- C . 2 D . 10 6.已知0,0ab bc <<,则直线ax by c +=通过( ) A .第一、二、三象限 B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限7.已知点(1,2),(3,1)A B ,则线段AB 的垂直平分线的方程是( )A .524=+y xB .524=-y xC .52=+y xD .52=-y x8.直线13kx y k -+=,当k 变动时,所有直线都通过定点( ) A .(0,0) B .(0,1)C .(3,1)D .(2,1)9.过两点)1,1(-和)9,3(的直线在x 轴上的截距为( )A .23-B .32-C .52D .2 10.如图,直线aax y 1-=的图象可能是( )A B C D二、填空题:(本题共4小题,每小题5分,共20分)11.过点(1,3)P -且垂直于直线032=+-y x 的直线方程为 12.若直线MN 的斜率2=k ,且过点)2,1(-O ,则直线MN 的点斜式方程是13.直线PQ 的倾斜角为︒120,在y 轴上的截距为3-,则直线PQ 的斜截式方程为14.过点(1,2)且在两坐标轴上的截距相等的直线的方程 (用一般式表示)三、解答题:(本题共2小题,每小题15分,共30分)15.已知三角形ABC 的顶点坐标为()1,5A -、()2,1B --、()4,3C ,M 是BC 边上的中点。
高中数学必修二第三章同步训练(含答案)
3.1.1 倾斜角与斜率练习一一、 选择题1、已知,A(–3, 1)、B(2, –4),则直线AB 上方向向量AB的坐标是A 、(–5, 5)B 、(–1, –3)C 、(5, –5)D 、(–3, –1) 2、过点P(2, 3)与Q(1, 5)的直线PQ 的倾斜角为 A 、arctan2 B 、arctan(–2) C 、–arctan2 D 、π–arctan23、直线l 1: ax+2y –1=0与直线l 2: x+(a –1)y+a 2=0平行,则a 的值是 A 、–1 B 、2 C 、–1或2 D 、0或1 4、过点A(–2, m), B(m, 4)的直线的倾斜角为+arccot2,则实数m 的值为A 、2B 、10C 、–8D 、05、已知点A(cos77 °,sin77°), B(cos17°, sin17°),则直线AB 的斜率为 A 、 tan47° B、cot47° C、–tan47° D、–cot47°6、下列命题正确的是A 、若直线的斜率存在,则必有倾斜角α与它对应B 、若直线的倾斜角存在,则必有斜率与它对应C 、直线的斜率为k ,则这条直线的倾斜角为arctan kD 、直线的倾斜角为α,则这条直线的斜率为tan α7、过点M (–2, a ), N (a , 4)的直线的斜率为–,则a 等于A 、–8B 、10C 、2D 、48、过点A (2, b )和点B (3, –2)的直线的倾斜角为,则b 的值是A 、–1B 、1C 、–5D 、59、如图,若图中直线l 1, l 2, l 3的斜率分别为k 1, k 2, k 3,则A 、k 1<k 2<k 3B 、k 3<k 1<k 2C 、k 3<k 2<k 1D 、k 1<k 3<k 210、已知点M (cos α, sin α), N (cos β, sin β),若直线MN 的倾斜角为θ,0<α<π<β<2π, 则θ等于A 、(π+α+β) B 、(α+β)2π2π2143π2121C 、(α+β–π) D 、(β–α)11、若直线l 的斜率为k =–a b(ab >0),则直线l 的倾斜角为A 、arctan a bB 、arctan(–a b)C 、π–arctana bD 、π+arctan a b二、填空题:12、若直线k 的斜率满足–<k<,则该直线的倾斜角α的范围是.13、若直线l 的倾斜角是连接P(3, –5), Q(0, –9)两点的直线的倾斜角的2倍,则直线l 的斜率为. 14、已知直线l 1和l 2关于直线y=x 对称,若直线l 1的斜率为,则直线l 2的斜率为;倾斜角为. 15、已知M(2, –3), N(–3,–2),直线l 过点P(1, 1),且与线段MN 相交,则直线l 的斜率k 的取值范围是. 答案: 一、 选择题1、C ;2、D ;3、B ;4、C ;5、B ;6、A ;7、B ;8、A ;9、B ;10、C ;11、C 二、 填空题 12、2[0,)(,)63πππ13、247-2121333314、,36π 15、344k k ≥≤-或3.1.1 倾斜角与斜率练习二一、 选择题1、过(0,5)和(1,2)两点的直线的倾斜角是 ()A 、π-arctan3B 、π+arctan3C 、arctan(-3)D 、2、若直线l 的倾斜角θ满足,则θ的取值范围是 ()A 、(k ∈Z ) B 、或C 、或D 、或3、已知直线的倾斜角为θ,且cot θ=α(α<0)则θ为 ()A 、arctan αB 、C 、D 、4、k 是直线l 的斜率,θ是直线l 的倾斜角,若30°≤θ<120°,则k 的取值范围是()A 、B 、C 、或D 、5、已知直线过点A (2,-1)和B (3,2),直线的倾斜角是直线倾斜角的2倍,则直线的斜率是()A 、-6B 、C 、D 、3arctan 2+π3tan <θ3+<<-ππθππk k 260πθ<≤πθπ<<230πθ<≤πθπ<<260πθ<≤πθπ<<32α1arctan-απ1arctan+απarctan -333≤≤-k 133≤≤k 3-<k 33≥k 33≥k 1l 2l 1l 2l53-4343-6、函数y=f(x)与其反函数的对称轴绕原点按逆时针旋转90°得直线,则直线到直线的斜率k 的变化范围是 ()A 、B 、[1,+∞)C 、(-∞,-1)D 、(-∞,-1)∪[1,+∞]7、已知直线l 1: y =x sin α和直线l 2: y =2x +c ,则直线l 1与l 2( ) A 、通过平移可以重合 B 、不可能垂直C 、可能与x 轴围成等腰直角三角形D 、通过绕l 1上某一点旋转可以重合8、已知直线l 的倾斜角为α,若cosα=–,则直线l 的斜率为A 、B 、C 、–D 、–二、填空题9、若直线l 的斜率k=sin θ,其倾斜角的取值范围是___________。
人教A版高中数学必修2教案第三章
_3.1直线的倾斜角与斜率3.1.1倾斜角与斜率[提出问题]在平面直角坐标系中,直线l经过点P.问题1:直线l的位置能够确定吗?提示:不能.问题2:过点P可以作与l相交的直线多少条?提示:无数条.问题3:上述问题中的所有直线有什么区别?提示:倾斜程度不同.[导入新知]1.倾斜角的定义:当直线l与x轴相交时,取x轴作为基准,x轴正方向与直线l向上方向之间所成的角叫做直线l的倾斜角.如图所示,直线l 的倾斜角是∠APx,直线l′的倾斜角是∠BPx.2.倾斜角的范围:直线的倾斜角α的取值范围是0°≤α<180°,并规定与x轴平行或重合的直线的倾斜角为0°.3.倾斜角与直线形状的关系[化解疑难]对直线的倾斜角的理解(1)倾斜角定义中含有三个条件:①x 轴正向;②直线向上的方向;③小于180°的非负角.(2)从运动变化的观点来看,直线的倾斜角是由x 轴按逆时针方向旋转到与直线重合时所成的角.(3)倾斜角是一个几何概念,它直观地描述且表现了直线对x 轴的倾斜程度.(4)平面直角坐标系中的每一条直线都有一个确定的倾斜角,且倾斜程度相同的直线,其倾斜角相等;倾斜程度不同的直线,其倾斜角不相等.[提出问题]日常生活中,常用坡度(坡度=升高量前进量)表示倾斜程度,例如,“进2升3”与“进2升2”比较,前者更陡一些,因为坡度32>22.问题1:对于直线可利用倾斜角描述倾斜程度,可否借助于坡度来描述直线的倾斜程度?提示:可以.问题2:由上图中坡度为升高量与水平前进量的比值,那么对于平面直角坐标系中直线的倾斜程度能否如此度量?提示:可以.问题3:通过坐标比,你会发现它与倾斜角有何关系? 提示:与倾斜角的正切值相等. [导入新知]1.斜率的定义:一条直线的倾斜角α的正切值叫做这条直线的斜率.常用小写字母k 表示,即k =tan_α.2.斜率公式:经过两点P 1(x 1,y 1),P 2(x 2,y 2)(x 1≠x 2)的直线的斜率公式为k =y 2-y 1x 2-x 1.当x 1=x 2时,直线P 1P 2没有斜率.3.斜率作用:用实数反映了平面直角坐标系内的直线的倾斜程度.[化解疑难]1.倾斜角α与斜率k 的关系(1)直线都有倾斜角,但并不是所有的直线都有斜率.当倾斜角是90°时,直线的斜率不存在,此时,直线垂直于x 轴(平行于y 轴或与y 轴重合).(2)直线的斜率也反映了直线相对于x 轴的正方向的倾斜程度.当0°≤α<90°时,斜率越大,直线的倾斜程度越大;当90°<α<180°时,斜率越大,直线的倾斜程度也越大.2.斜率公式(1)直线的斜率与两点的顺序无关,即两点的纵坐标和横坐标在公式中的次序可以同时调换,就是说, 如果分子是y 2-y 1,分母必须是x 2-x 1;反过来,如果分子是y 1-y 2,分母必须是x 1-x 2,即k =y 1-y 2x 1-x 2=y 2-y 1x 2-x 1.(2)用斜率公式时要一看,二用,三求值.一看,就是看所给两点的横坐标是否相等,若相等,则直线的斜率不存在,若不相等,则进行第二步;二用,就是将点的坐标代入斜率公式;三求值,就是计算斜率的值,尤其是点的坐标中含有参数时,应用斜率公式时要对参数进行讨论.[例1] (1)若直线l 的向上方向与y 轴的正方向成30°角,则直线l 的倾斜角为( ) A .30° B .60° C .30°或150°D .60°或120°(2)下列说法中,正确的是( )A .直线的倾斜角为α,则此直线的斜率为tan αB .直线的斜率为tan α,则此直线的倾斜角为αC .若直线的倾斜角为α,则sin α>0D .任意直线都有倾斜角α,且α≠90°时,斜率为tan α[解析] (1)如图,直线l 有两种情况,故l 的倾斜角为60°或120°.(2)对于A ,当α=90°时,直线的斜率不存在,故不正确;对于B ,虽然直线的斜率为tan α,但只有0°≤α<180°时,α才是此直线的倾斜角,故不正确;对于C ,当直线平行于x 轴时,α=0°,sin α=0,故C 不正确,故选D.[答案] (1)D (2)D [类题通法]求直线的倾斜角的方法及两点注意(1)方法:结合图形,利用特殊三角形(如直角三角形)求角.(2)两点注意:①当直线与x 轴平行或重合时,倾斜角为0°,当直线与x 轴垂直时,倾斜角为90°.②注意直线倾斜角的取值范围是0°≤α<180°. [活学活用]1.直线l 经过第二、四象限,则直线l 的倾斜角范围是( ) A .[0°,90°) B .[90°,180°) C .(90°,180°)D .(0°,180°)解析:选C 直线倾斜角的取值范围是[0°,180°),又直线l 经过第二、四象限,所以直线l 的倾斜角范围是(90°,180°).2.设直线l 过原点,其倾斜角为α,将直线l 绕坐标原点沿逆时针方向旋转45°,得到直线l 1,则直线l 1的倾斜角为( )A .α+45°B .α-135°C .135°-αD .当0°≤α<135°时为α+45°,当135°≤α<180°时为α-135°解析:选D 当0°≤α<135°时,l 1的倾斜角是α+45°.当135°≤α<180°时,结合图形和倾斜角的概念,即可得到l 1的倾斜角为α-135°,故应选D.[例2] (1)已知过两点A (4,y ),B (2,-3)的直线的倾斜角为135°,则y =________; (2)过点P (-2,m ),Q (m,4)的直线的斜率为1,则m 的值为________; (3)已知过A (3,1),B (m ,-2)的直线的斜率为1,则m 的值为________. [解析] (1)直线AB 的斜率k =tan 135°=-1, 又k =-3-y 2-4,由-3-y 2-4=-1,得y =-5.(2)由斜率公式k =4-mm +2=1,得m =1.(3)当m =3时,直线AB 平行于y 轴,斜率不存在. 当m ≠3时,k =-2-1m -3=-3m -3=1,解得m =0.[答案] (1)-5 (2)1 (3)0 [类题通法]利用斜率公式求直线的斜率应注意的事项(1)运用公式的前提条件是“x 1≠x 2”,即直线不与x 轴垂直,因为当直线与x 轴垂直时,斜率是不存在的;(2)斜率公式与两点P 1,P 2的先后顺序无关,也就是说公式中的x 1与x 2,y 1与y 2可以同时交换位置.[活学活用]3.(2012·河南平顶山高一调研)若直线过点 (1,2),(4,2+3),则此直线的倾斜角是( ) A .30° B .45° C .60° D .90°解析:选A 设直线的倾斜角为α, 直线斜率k =(2+3)-24-1=33,∴tan α=33. 又∵0°≤α<180°,∴α=30°.[例3] 已知实数x ,y 满足y =-2x +8,且2≤x ≤3,求yx 的最大值和最小值.[解] 如图所示,由于点(x ,y )满足关系式2x +y =8,且2≤x ≤3,可知点P (x ,y )在线段AB 上移动,并且A ,B 两点的坐标可分别求得为A (2,4),B (3,2).由于y x 的几何意义是直线OP 的斜率,且k OA =2,k OB =23,所以可求得yx 的最大值为2,最小值为23.[类题通法]根据题目中代数式的特征,看是否可以写成y 2-y 1x 2-x 1的形式,若能,则联想其几何意义(即直线的斜率),再利用图形的直观性来分析解决问题.[活学活用]4.点M (x ,y )在函数y =-2x +8的图象上,当x ∈[2,5]时,求y +1x +1的取值范围.解:y +1x +1=y -(-1)x -(-1)的几何意义是过M (x ,y ),N (-1,-1)两点的直线的斜率.∵点M 在函数y =-2x +8的图象上,且x ∈[2,5], ∴设该线段为AB 且A (2,4),B (5,-2). ∵k NA =53,k NB =-16,∴-16≤y +1x +1≤53.∴y +1x +1的取值范围为[-16,53].6.倾斜角与斜率的关系[典例] 已知两点A (-3,4),B (3,2),过点P (1,0)的直线l 与线段AB 有公共点,则l 的倾斜角的取值范围________;直线l 的斜率k 的取值范围________.[解析] 如图,由题意可知k P A =4-0-3-1=-1,k PB =2-03-1=1,则直线l 的倾斜角介于直线PB 与P A 的倾斜角之间,又PB 的倾斜角是45°,P A 的倾斜角是135°,∴直线l 的倾斜角α的取值范围是45°≤α≤135°;要使l 与线段AB 有公共点,则直线l 的斜率k 的取值范围是k ≤-1或k ≥1.[答案] 45°≤α≤135° k ≤-1或k ≥1 [易错防范]1.本题易错误地认为-1≤k ≤1,结合图形考虑,l 的倾斜角应介于直线PB 与直线P A 的倾斜角之间,要特别注意,当l 的倾斜角小于90°时,有k ≥k PB ;当l 的倾斜角大于90°时,则有k ≤k P A .2.如图,过点P 的直线l 与直线段AB 相交时,因为过点P 且与x 轴垂直的直线PC 的斜率不存在,而PC 所在的直线与线段AB 不相交,所以满足题意的斜率夹在中间,即k P A ≤k ≤k PB .解决这类问题时,可利用数形结合思想直观地判断直线是夹在中间还是在两边.[成功破障]已知直线l 过点P (3,4),且与以A (-1,0),B (2,1)为端点的线段AB 有公共点,求直线l 的斜率k 的取值范围.解:∵直线P A 的斜率k P A =4-03-(-1)=1,直线PB 的斜率k PB =4-13-2=3,∴要使直线l与线段AB 有公共点,k 的取值范围为[1,3].[随堂即时演练]1.关于直线的倾斜角和斜率,下列说法正确的是( ) A .任一直线都有倾斜角,都存在斜率 B .倾斜角为135°的直线的斜率为1C .若一条直线的倾斜角为α,则它的斜率为k =tan αD .直线斜率的取值范围是(-∞,+∞)解析:选D 任一直线都有倾斜角,但当倾斜角为90°时,斜率不存在.所以A 、C 错误;倾斜角为135°的直线的斜率为-1,所以B 错误;只有D 正确.2.已知经过两点(5,m )和(m,8)的直线的斜率等于1,则m 的值是( ) A .5 B .8 C.132D .7解析:选C 由斜率公式可得8-m m -5=1,解之得m =132.3.直线l 经过原点和(-1,1),则它的倾斜角为________. 解析:k l =1-0-1-0=-1,因此倾斜角为135°. 答案:135°4.已知三点A (a,2),B (3,7),C (-2,-9a )在同一条直线上,实数a 的值为________.解析:∵A 、B 、C 三点共线, ∴k AB =k BC ,即53-a=9a +75,∴a =2或29.答案:2或295.已知A (m ,-m +3),B (2,m -1),C (-1,4),直线AC 的斜率等于直线BC 的斜率的3倍,求m 的值.解:由题意直线AC 的斜率存在,即m ≠-1. ∴k AC =(-m +3)-4m +1,k BC =(m -1)-42-(-1).∴(-m +3)-4m +1=3·(m -1)-42-(-1).整理得:-m -1=(m -5)(m +1), 即(m +1)(m -4)=0, ∴m =4或m =-1(舍去). ∴m =4.[课时达标检测]一、选择题1.给出下列说法,正确的个数是( )①若两直线的倾斜角相等,则它们的斜率也一定相等; ②一条直线的倾斜角为-30°; ③倾斜角为0°的直线只有一条;④直线的倾斜角α的集合{α|0°≤α<180°}与直线集合建立了一一对应关系. A .0 B .1 C .2D .3解析:选A 若两直线的倾斜角为90°,则它们的斜率不存在,①错;直线倾斜角的取值范围是[0°,180°),②错;所有垂直于y 轴的直线倾斜角均为0°,③错;不同的直线可以有相同的倾斜角,④错.2.过两点A (4,y ),B (2,-3)的直线的倾斜角为45°,则y =( ) A .-32B.32C .-1D .1解析:选C tan 45°=k AB =y +34-2,即y +34-2=1,所以y =-1.3.如图,设直线l 1,l 2,l 3的斜率分别为k 1,k 2,k 3,则k 1,k 2,k 3的大小关系为( )A .k 1<k 2<k 3B .k 1<k 3<k 2C .k 2<k 1<k 3D .k 3<k 2<k 1解析:选A 根据“斜率越大,直线的倾斜程度越大”可知选项A 正确. 4.经过两点A (2,1),B (1,m 2)的直线l 的倾斜角为锐角,则m 的取值范围是( ) A .m <1 B .m >-1 C .-1<m <1D .m >1或m <-1解析:选C ∵直线l 的倾斜角为锐角, ∴斜率k =m 2-11-2>0,∴-1<m <1.5.(2012·广州高一检测)如果直线l 过点(1,2),且不通过第四象限,那么l 的斜率的取值范围是( )A .[0,1]B .[0,2] C.⎣⎡⎦⎤0,12 D .(0,3]解析:选B 过点(1,2)的斜率为非负且最大斜率为此点与原点的连线斜率时,图象不过第四象限.二、填空题6.已知a >0,若平面内三点A (1,-a ),B (2,a 2),C (3,a 3)共线,则a =________. 解析:若平面内三点共线,则k AB =k BC ,即a 2+a 2-1=a 3-a 23-2,整理得a 2-2a -1=0,解得a =1+2,或a =1-2(舍去).答案:1+ 27.如果直线l 1的倾斜角是150°,l 2⊥l 1,垂足为B .l 1,l 2与x 轴分别相交于点C ,A ,l 3平分∠BAC ,则l 3的倾斜角为________.解析:因为直线l 1的倾斜角为150°,所以∠BCA =30°,所以l 3的倾斜角为12×(90°-30°)=30°.答案:30°8.已知实数x ,y 满足方程x +2y =6,当1≤x ≤3时,y -1x -2的取值范围为________.解析:y -1x -2的几何意义是过M (x ,y ),N (2,1)两点的直线的斜率,因为点M 在函数x +2y=6的图象上,且1≤x ≤3,所以可设该线段为AB ,且A ⎝⎛⎭⎫1,52,B ⎝⎛⎭⎫3,32,由于k NA =-32,k NB =12,所以y -1x -2的取值范围是⎝⎛⎦⎤-∞,-32∪⎣⎡⎭⎫12,+∞. 答案:⎝⎛⎦⎤-∞,-32∪⎣⎡⎭⎫12,+∞三、解答题9.已知直线l 过点A (1,2),B (m,3),求直线l 的斜率和倾斜角的取值范围. 解:设l 的斜率为k ,倾斜角为α, 当m =1时,斜率k 不存在,α=90°, 当m ≠1时,k =3-2m -1=1m -1,当m >1时,k =1m -1>0,此时α为锐角,0°<α<90°,当m <1时,k =1m -1<0,此时α为钝角,90°<α<180°.所以α∈(0°,180°),k ∈(-∞,0)∪(0,+∞). 10.已知A (3,3),B (-4,2),C (0,-2), (1)求直线AB 和AC 的斜率.(2)若点D 在线段BC (包括端点)上移动时,求直线AD 的斜率的变化范围. 解:(1)由斜率公式可得直线AB 的斜率k AB =2-3-4-3=17.直线AC 的斜率k AC =-2-30-3=53.故直线AB 的斜率为17,直线AC 的斜率为53.(2)如图所示,当D 由B 运动到C 时,直线AD 的斜率由k AB 增大到k AC ,所以直线AD 的斜率的变化范围是⎣⎡⎦⎤17,53.3.1.2 两条直线平行与垂直的判定[提出问题]平面几何中,两条直线平行同位角相等.问题1:在平面直角坐标中,若l1∥l2,则它们的倾斜角α1与α2有什么关系?提示:相等.问题2:若l1∥l2,则l1,l2的斜率相等吗?提示:不一定,可能相等,也可能都不存在.问题3:若l1与l2的斜率相等,则l1与l2一定平行吗?提示:不一定.可能平行也可能重合.[导入新知]对于两条不重合的直线l1,l2,其斜率分别为k1,k2,有l1∥l2⇔k1=k2.[化解疑难]对两直线平行与斜率的关系要注意以下几点(1)l1∥l2⇔k1=k2成立的前提条件是:①两条直线的斜率都存在;②l1与l2不重合.(2)当两条直线不重合且斜率都不存在时,l1与l2的倾斜角都是90°,则l1∥l2.(3)两条不重合直线平行的判定的一般结论是:l1∥l2⇔k1=k2或l1,l2斜率都不存在.[提出问题]已知两条直线l1,l2,若l1的倾斜角为30°,l1⊥l2.问题1:上述问题中,l1,l2的斜率是多少?提示:k1=33,k2=- 3.问题2:上述问题中两直线l1、l2的斜率有何关系?提示:k1k2=-1.问题3:若两条直线垂直且都有斜率,它们的斜率之积一定为-1吗?提示:一定.[导入新知]如果两条直线都有斜率,且它们互相垂直,那么它们的斜率之积等于-1;反之,如果它们的斜率之积等于-1,那么它们互相垂直,即l 1⊥l 2⇔k 1·k 2=-1.[化解疑难]对两直线垂直与斜率的关系要注意以下几点(1)l 1⊥l 2⇔k 1·k 2=-1成立的前提条件是:①两条直线的斜率都存在;②k 1≠0且k 2≠0. (2)两条直线中,一条直线的斜率不存在,同时另一条直线的斜率等于零,则两条直线垂直.(3)判定两条直线垂直的一般结论为:l 1⊥l 2⇔k 1·k 2=-1或一条直线的斜率不存在,同时另一条直线的斜率等于零.[例1] 根据下列给定的条件,判断直线l 1与直线l 2是否平行. (1)l 1经过点A (2,1),B (-3,5),l 2经过点C (3,-3),D (8,-7); (2)l 1经过点E (0,1),F (-2,-1),l 2经过点G (3,4),H (2,3); (3)l 1的倾斜角为60°,l 2经过点M (1,3),N (-2,-23); (4)l 1平行于y 轴,l 2经过点P (0,-2),Q (0,5).[解] (1)由题意知,k 1=5-1-3-2=-45,k 2=-7+38-3=-45,所以直线l 1与直线l 2平行或重合,又k BC =5-(-3)-3-3=-43≠-45,故l 1∥l 2.(2)由题意知,k 1=-1-1-2-0=1,k 2=3-42-3=1,所以直线l 1与直线l 2平行或重合,k FG =4-(-1)3-(-2)=1,故直线l 1与直线l 2重合.(3)由题意知,k 1=tan 60°=3,k 2=-23-3-2-1=3,k 1=k 2,所以直线l 1与直线l 2平行或重合.(4)由题意知l 1的斜率不存在,且不是y 轴,l 2的斜率也不存在,恰好是y 轴,所以l 1∥l 2. [类题通法]判断两条不重合直线是否平行的步骤[活学活用]1.试确定m 的值,使过点A (m +1,0),B (-5,m )的直线与过点C (-4,3),D (0,5)的直线平行.解:由题意直线CD 的斜率存在,则与其平行的直线AB 的斜率也存在.k AB =m -0-5-(m +1)=m -6-m ,k CD =5-30-(-4)=12,由于AB ∥CD ,即k AB =k CD ,所以m -6-m =12,得m =-2.经验证m =-2时直线AB 的斜率存在,所以m =-2.[例2] 已知直线l 1经过点A (3,a ),B (a -2,-3),直线l 2经过点C (2,3),D (-1,a -2),如果l 1⊥l 2,求a 的值.[解] 设直线l 1,l 2的斜率分别为k 1,k 2.∵直线l 2经过点C (2,3),D (-1,a -2),且2≠-1, ∴l 2的斜率存在.当k 2=0时,a -2=3,则a =5,此时k 1不存在,符合题意.当k 2≠0时,即a ≠5,此时k 1≠0,由k 1·k 2=-1,得-3-a a -2-3·a -2-3-1-2=-1,解得a =-6.综上可知,a 的值为5或-6. [类题通法]使用斜率公式判定两直线垂直的步骤(1)一看,就是看所给两点的横坐标是否相等,若相等,则直线的斜率不存在,若不相等,则进行第一步.(2)二用:就是将点的坐标代入斜率公式.(3)求值:计算斜率的值,进行判断.尤其是点的坐标中含有参数时,应用斜率公式要对参数进行讨论.总之,l 1与l 2一个斜率为0,另一个斜率不存在时,l 1⊥l 2;l 1与l 2斜率都存在时,满足k 1·k 2=-1.[活学活用]2.已知定点A (-1,3),B (4,2),以A 、B 为直径作圆,与x 轴有交点C ,则交点C 的坐标是________.解析:以线段AB 为直径的圆与x 轴的交点为C ,则AC ⊥BC .设C (x,0),则k AC =-3x +1,k BC =-2x -4,所以-3x +1·-2x -4=-1,得x =1或2,所以C (1,0)或(2,0). 答案:(1,0)或(2,0)[例3] 已知A (-4,3),B (2,5),C (6,3),D (-3,0)四点,若顺次连接A ,B ,C ,D 四点,试判定图形ABCD 的形状.[解] 由题意知A ,B ,C ,D 四点在坐标平面内的位置,如图所示,由斜率公式可得k AB =5-32-(-4)=13,k CD =0-3-3-6=13,k AD =0-3-3-(-4)=-3,k BC =3-56-2=-12.所以k AB =k CD ,由图可知AB 与CD 不重合, 所以AB ∥CD .由k AD ≠k BC ,所以AD 与BC 不平行. 又因为k AB ·k AD =13×(-3)=-1,所以AB ⊥AD ,故四边形ABCD 为直角梯形. [类题通法]1.在顶点确定的情况下,确定多边形形状时,要先画出图形,由图形猜测其形状,为下面证明提供明确目标.2.证明两直线平行时,仅有k 1=k 2是不够的,注意排除两直线重合的情况. [活学活用]3.已知A (1,0),B (3,2),C (0,4),点D 满足AB ⊥CD ,且AD ∥BC ,试求点D 的坐标. 解:设D (x ,y ),则k AB =23-1=1,k BC =4-20-3=-23,k CD =y -4x ,k DA =yx -1.因为AB ⊥CD ,AD ∥BC ,所以,k AB ·k CD =-1,k DA =k BC,所以⎩⎨⎧1×y -4x=-1,y x -1=-23.解得⎩⎪⎨⎪⎧x =10,y =-6.即D (10,-6).8.利用平行或垂直确定参数值[典例] 已知直线l 1经过A (3,m ),B (m -1,2),直线l 2经过点C (1,2),D (-2,m +2). (1)若l 1∥l 2,求m 的值; (2)若l 1⊥l 2,求m 的值. [解题流程]欲求m 的值,需根据l 1∥l 2或l 1⊥l 2列出关于m 的关系式由直线l 1过A 、B 两点,直线l 2过C 、D 两点,求斜率[规范解答]由题知直线l 2的斜率存在且k 2=2-(m +2)1-(-2)=-m 3①.(2分)(1)若l 1∥l 2,则直线l 1的斜率也存在,由k 1=k 2,得2-m m -4=-m 3,解得m =1或m =6,(4分)经检验,当m =1或m =6时,l 1∥l ③2.(6分)(2)若l 1⊥l 2,当k 2=0②时,此时m =0,l 1斜率存在,不符合题意;(8分)当k 2≠0②时,直线l 2的斜率存在且不为0,则直线l 1的斜率也存在,且k 1·k 2=-1,即-m 3·2-m m -4=-1,解得m =3或m =-4,(10分) 所以m =3或m =-4时,l 1⊥l ③2.(12分)[名师批注]①处易漏掉而直接利用两直线平行或垂直所具备的条件来求m 值,解答过程不严谨 ②处讨论k 2=0和k 2≠0两种情况③此处易漏掉检验做解答题要注意解题的规范 [活学活用]已知A (-m -3,2),B (-2m -4,4),C (-m ,m ),D (3,3m +2),若直线AB ⊥CD ,求m 的值.解:因为A ,B 两点纵坐标不等,所以AB 与x 轴不平行.因为AB ⊥CD ,所以CD 与x 轴不垂直,故m ≠-3.当AB 与x 轴垂直时,-m -3=-2m -4,解得m =-1,而m =-1时,C ,D 纵坐标均为-1,所以CD ∥x 轴,此时AB ⊥CD ,满足题意.当AB 与x 轴不垂直时,由斜率公式得k AB =4-2-2m -4-(-m -3)=2-(m +1),k CD=3m +2-m 3-(-m )=2(m +1)m +3.因为AB ⊥CD ,所以k AB ·k CD =-1,解得m =1. 综上,m 的值为1或-1.[随堂即时演练]1.下列说法正确的有( )①若两条直线的斜率相等,则这两条直线平行; ②若l 1∥l 2,则k 1=k 2;③若两条直线中有一条直线的斜率不存在,另一条直线的斜率存在,则这两条直线垂直; ④若两条直线的斜率都不存在且两直线不重合,则这两条直线平行. A .1个 B .2个 C .3个D .4个解析:选A 若k 1=k 2,则这两条直线平行或重合,所以①错;当两条直线垂直于x 轴时,两条直线平行,但斜率不存在,所以②错;若两直线中有一条直线的斜率不存在,另一条直线的斜率为0时,才有这两条直线垂直,所以③错;④正确.2.直线l 1,l 2的斜率是方程x 2-3x -1=0的两根,则l 1与l 2的位置关系是( ) A .平行 B .重合 C .相交但不垂直D .垂直解析:选D 设l 1,l 2的斜率分别为k 1,k 2,则k 1·k 2=-1.3.已知△ABC 中,A (0,3)、B (2,-1),E 、F 分别为AC 、BC 的中点,则直线EF 的斜率为________.解析:∵E 、F 分别为AC 、BC 的中点, ∴EF ∥AB . ∴k EF =k AB =-1-32-0=-2. 答案:-24.经过点(m,3)和(2,m )的直线l 与斜率为-4的直线互相垂直,则m 的值是________. 解析:由题意可知k l =14,又因为k l =m -32-m ,所以m -32-m =14,解得m =145.答案:1455.判断下列各小题中的直线l 1与l 2的位置关系. (1)l 1的斜率为-10,l 2经过点A (10,2),B (20,3);(2)l 1过点A (3,4),B (3,100),l 2过点M (-10,40),N (10,40); (3)l 1过点A (0,1),B (1,0),l 2过点M (-1,3),N (2,0); (4)l 1过点A (-3,2),B (-3,10),l 2过点M (5,-2),N (5,5). 解:(1)k 1=-10,k 2=3-220-10=110.∵k 1k 2=-1,∴l 1⊥l 2.(2)l 1的倾斜角为90°,则l 1⊥x 轴.k 2=40-4010-(-10)=0,则l 2∥x 轴,∴l 1⊥l 2.(3)k 1=0-11-0=-1,k 2=0-32-(-1)=-1,∴k 1=k 2.又k AM =3-1-1-0=-2≠k 1,∴l 1∥l 2. (4)∵l 1与l 2都与x 轴垂直,∴l 1∥l 2.[课时达标检测]一、选择题1.已知过点P (3,2m )和点Q (m,2)的直线与过点M (2,-1)和点N (-3,4)的直线平行,则m 的值是( )A .1B .-1C .2D .-2解析:选B 因为MN ∥PQ ,所以k MN =k PQ ,即4-(-1)-3-2=2-2mm -3,解得m =-1.2.以A (-1,1),B (2,-1),C (1,4)为顶点的三角形是( ) A .锐角三角形 B .钝角三角形C .以A 点为直角顶点的直角三角形D .以B 点为直角顶点的直角三角形解析:选C 如右图所示,易知k AB =-1-12-(-1)=-23,k AC =4-11-(-1)=32,由k AB ·k AC =-1知三角形是以A 点为直角顶点的直角三角形.3.已知点A (-2,-5),B (6,6),点P 在y 轴上,且∠APB =90°,则点P 的坐标为( )A .(0,-6)B .(0,7)C .(0,-6)或(0,7)D .(-6,0)或(7,0)解析:选C 由题意可设点P 的坐标为(0,y ).因为∠APB =90°,所以AP ⊥BP ,且直线AP 与直线BP 的斜率都存在.又k AP =y +52,k BP =y -6-6,k AP ·k BP =-1, 即y +52·(-y -66)=-1,解得y =-6或y =7.所以点P 的坐标为(0,-6)或(0,7). 4.若A (-4,2),B (6,-4),C (12,6),D (2,12),则下面四个结论:①AB ∥CD ;②AB ⊥AD ;③AC ∥BD ;④AC ⊥BD 中正确的个数为( )A .1B .2C .3D .4解析:选C 由题意得k AB =-4-26-(-4)=-35,k CD =12-62-12=-35,k AD =12-22-(-4)=53,k AC=6-212-(-4)=14,k BD =12-(-4)2-6=-4,所以AB ∥CD ,AB ⊥AD ,AC ⊥BD .5.已知点A (2,3),B (-2,6),C (6,6),D (10,3),则以A ,B ,C ,D 为顶点的四边形是( ) A .梯形 B .平行四边形 C .菱形D .矩形解析:选B 如图所示,易知k AB =-34,k BC =0,k CD =-34,k AD =0,k BD =-14,k AC =34,所以k AB =k CD ,k BC =k AD ,k AB ·k AD =0,k AC ·k BD =-312, 故AD ∥BC ,AB ∥CD ,AB 与AD 不垂直,BD 与AC 不垂直. 所以四边形ABCD 为平行四边形. 二、填空题6.l 1过点A (m,1),B (-3,4),l 2过点C (0,2),D (1,1),且l 1∥l 2,则m =________. 解析:∵l 1∥l 2,且k 2=1-21-0=-1,∴k 1=4-1-3-m =-1,∴m =0.答案:07.已知直线l 1的倾斜角为45°,直线l 2∥l 1,且l 2过点A (-2,-1)和B (3,a ),则a 的值为________.解析:∵l 2∥l 1,且l 1的倾斜角为45°,∴kl 2=kl 1=tan 45°=1,即a -(-1)3-(-2)=1,所以a=4.答案:48.已知A (2,3),B (1,-1),C (-1,-2),点D 在x 轴上,则当点D 坐标为________时,AB ⊥CD .解析:设点D (x,0),因为k AB =-1-31-2=4≠0,所以直线CD 的斜率存在. 则由AB ⊥CD 知,k AB ·k CD =-1,所以4·-2-0-1-x =-1,解得x =-9.答案:(-9,0) 三、解答题9.当m 为何值时,过两点A (1,1),B (2m 2+1,m -2)的直线: (1)倾斜角为135°;(2)与过两点(3,2),(0,-7)的直线垂直; (3)与过两点(2,-3),(-4,9)的直线平行? 解:(1)由k AB =m -32m 2=tan 135°=-1,解得m =-32,或m =1. (2)由k AB =m -32m 2,且-7-20-3=3. 则m -32m 2=-13,解得m =32,或m =-3. (3)令m -32m 2=9+3-4-2=-2, 解得m =34,或m =-1.10.直线l 1经过点A (m,1),B (-3,4),直线l 2经过点C (1,m ),D (-1,m +1),当l 1∥l 2或l 1⊥l 2时,分别求实数m 的值.解:当l 1∥l 2时,由于直线l 2的斜率存在,则直线l 1的斜率也存在,则k AB =k CD ,即4-1-3-m =m +1-m-1-1,解得m =3;当l 1⊥l 2时,由于直线l 2的斜率存在且不为0,则直线l 1的斜率也存在,则k AB k CD =-1, 即4-1-3-m ·m +1-m -1-1=-1,解得m =-92.综上,当l 1∥l 2时,m 的值为3; 当l 1⊥l 2时,m 的值为-92.3.2直线的方程3.2.1 直线的点斜式方程[提出问题]斜拉桥又称斜张桥,桥身简约刚毅,力感十足.若以桥面所在直线为x 轴,桥塔所在直线为y 轴建立平面直角坐标系,那么斜拉索可看成过桥塔上同一点的直线.问题1:已知某一斜拉索过桥塔上一点B ,那么该斜拉索位置确定吗?提示:不确定.从一点可引出多条斜拉索.问题2:若某条斜拉索过点B (0,b ),斜率为k ,则该斜拉索所在直线上的点P (x ,y )满足什么条件?提示:满足y -bx -0=k .问题3:可以写出问题2中的直线方程吗? 提示:可以.方程为y -b =kx . [导入新知]1.直线的点斜式方程(1)定义:如图所示,直线l 过定点P (x 0,y 0),斜率为k ,则把方程y -y 0=k (x -x 0)叫做直线l 的点斜式方程,简称点斜式.(2)说明:如图所示,过定点P (x 0,y 0),倾斜角是90°的直线没有点斜式,其方程为x -x 0=0,或x =x 0.2.直线的斜截式方程(1)定义:如图所示,直线l 的斜率为k ,且与y 轴的交点为(0,b ),则方程y =kx +b 叫做直线l 的斜截式方程,简称斜截式.(2)说明:一条直线与y 轴的交点(0,b )的纵坐标b 叫做直线在y 轴上的截距.倾斜角是直角的直线没有斜截式方程.[化解疑难]1.关于点斜式的几点说明:(1)直线的点斜式方程的前提条件是:①已知一点P (x 0,y 0)和斜率k ;②斜率必须存在.只有这两个条件都具备,才可以写出点斜式方程.(2)方程y -y 0=k (x -x 0)与方程k =y -y 0x -x 0不是等价的,前者是整条直线,后者表示去掉点P (x 0,y 0)的一条直线.(3)当k 取任意实数时,方程y -y 0=k (x -x 0)表示恒过定点(x 0,y 0)的无数条直线. 2.斜截式与一次函数的解析式相同,都是y =kx +b 的形式,但有区别,当k ≠0时,y =kx +b 即为一次函数;当k =0时,y =b ,不是一次函数,一次函数y =kx +b (k ≠0)必是一条直线的斜截式方程.截距不是距离,可正、可负也可为零.[例1](1)经过点(-5,2)且平行于y轴的直线方程为________.(2)直线y=x+1绕着其上一点P(3,4)逆时针旋转90°后得直线l,则直线l的点斜式方程为________.(3)求过点P(1,2)且与直线y=2x+1平行的直线方程为________.[解析](1)∵直线平行于y轴,∴直线不存在斜率,∴方程为x=-5.(2)直线y=x+1的斜率k=1,所以倾斜角为45°.由题意知,直线l的倾斜角为135°,所以直线l的斜率k′=tan 135°=-1,又点P(3,4)在直线l上,由点斜式方程知,直线l的方程为y-4=-(x-3).(3)由题意知,所求直线的斜率为2,且过点P(1,2),∴直线方程为y-2=2(x-1),即2x -y=0.[答案](1)x=-5(2)y-4=-(x-3)(3)2x-y=0[类题通法]已知直线上一点的坐标以及直线斜率或已知直线上两点的坐标,均可用直线方程的点斜式表示,直线方程的点斜式,应在直线斜率存在的条件下使用.当直线的斜率不存在时,直线方程为x=x0.[活学活用]1.写出下列直线的点斜式方程:(1)经过点A(2,5),斜率是4;(2)经过点B(2,3),倾斜角是45°;(3)经过点C(-1,-1),与x轴平行.解:(1)由点斜式方程可知,所求直线的点斜式方程为y-5=4(x-2).(2)∵直线的倾斜角为45°,∴此直线的斜率k=tan45°=1.∴直线的点斜式方程为y-3=x-2.(3)∵直线与x轴平行,∴倾斜角为0°,斜率k=0.∴直线的点斜式方程为y+1=0×(x+1),即y=-1.[例2] (1)倾斜角为150°,在y 轴上的截距是-3的直线的斜截式方程为________. (2)已知直线l 1的方程为y =-2x +3,l 2的方程为y =4x -2,直线l 与l 1平行且与l 2在y 轴上的截距相同,求直线l 的方程.[解析] (1)∵倾斜角α=150°,∴斜率k =tan 150°=-33,由斜截式可得所求的直线方程为y =-33x -3. (2)由斜截式方程知直线l 1的斜率k 1=-2, 又∵l ∥l 1,∴l 的斜率k =k 1=-2.由题意知l 2在y 轴上的截距为-2,∴l 在y 轴上的截距b =-2,由斜截式可得直线l 的方程为y =-2x -2.[答案] (1)y =-33x -3 [类题通法]1.斜截式方程的应用前提是直线的斜率存在.当b =0时,y =kx 表示过原点的直线;当k =0时,y =b 表示与x 轴平行(或重合)的直线.2.截距不同于日常生活中的距离,截距是一个点的横(纵)坐标,是一个实数,可以是正数,也可以是负数或零,而距离是一个非负数.[活学活用]2.求倾斜角是直线y =-3x +1的倾斜角的14,且在y 轴上的截距是-5的直线方程.解:∵直线y =-3x +1的斜率k =-3,∴其倾斜角α=120°,由题意,得所求直线的倾斜角α1=14α=30°,故所求直线的斜率k 1=tan 30°=33.∵所求直线的斜率是33,在y 轴上的截距为-5, ∴所求直线的方程为y =33x -5.[例3] 当a 为何值时,(1)两直线y =ax -2与y =(a +2)x +1互相垂直? (2)两直线y =-x +4a 与y =(a 2-2)x +4互相平行? [解] (1)设两直线的斜率分别为k 1,k 2,则k 1=a ,k 2=a +2. ∵两直线互相垂直,∴k 1k 2=a (a +2)=-1, 解得a =-1.故当a =-1时,两条直线互相垂直. (2)设两直线的斜率分别为k 3,k 4, 则k 3=-1,k 4=a 2-2. ∵两条直线互相平行,∴⎩⎪⎨⎪⎧a 2-2=-1,4a ≠4,解得a =-1. 故当a =-1时,两条直线互相平行. [类题通法]判断两条直线位置关系的方法直线l 1:y =k 1x +b 1,直线l 2:y =k 2x +b 2. (1)若k 1≠k 2,则两直线相交. (2)若k 1=k 2,则两直线平行或重合, 当b 1≠b 2时,两直线平行; 当b 1=b 2时,两直线重合.(3)特别地,当k 1·k 2=-1时,两直线垂直. (4)对于斜率不存在的情况,应单独考虑. [活学活用]3.(1)若直线l 1:y =(2a -1)x +3与直线l 2:y =4x -3垂直,则a =________. (2)若直线l 1:y =-x +2a 与直线l 2:y =(a 2-2)x +2平行,则a =________. 解析:(1)由题意可知kl 1=2a -1,kl 2=4. ∵l 1⊥l 2,∴4(2a -1)=-1,解得a =38.(2)因为l 1∥l 2,所以a 2-2=-1,且2a ≠2,解得a =-1,所以a =-1时两直线平行. 答案:(1)38(2)-17.斜截式判断两条直线平行的误区[典例] 已知直线l 1:x +my +6=0,l 2:(m -2)x +3y +2m =0,当l 1∥l 2时,求m 的值.[解] 由题设l 2的方程可化为y =-m -23x -23m ,则其斜率k 2=-m -23,在y 轴上的截距b 2=-23m .∵l 1∥l 2,∴l 1的斜率一定存在,即m ≠0. ∴l 1的方程为y =-1m x -6m.由l 1∥l 2,得⎩⎨⎧-m -23=-1m,-23m ≠-6m,解得m =-1.∴m 的值为-1. [易错防范]1.两条直线平行时,斜率存在且相等,截距不相等.当两条直线的斜率相等时,也可能平行,也可能重合.2.解决此类问题要明确两直线平行的条件,尤其是在求参数时要考虑两直线是否重合. [成功破障]当a 为何值时,直线l 1:y =-2ax +2a 与直线l 2:y =(a 2-3)x +2平行? 解:∵l 1∥l 2,∴a 2-3=-2a 且2a ≠2, 解得a =-3.[随堂即时演练]1.直线y =2x -3的斜率和在y 轴上的截距分别等于( ) A .2,3 B .-3,-3 C .-3,2 D .2,-3答案:D2.直线l 经过点P (2,-3),且倾斜角α=45°,则直线的点斜式方程是( ) A .y +3=x -2 B .y -3=x +2 C .y +2=x -3D .y -2=x +3 解析:选A ∵直线l 的斜率k =tan 45°=1, ∴直线l 的方程为y +3=x -2.3.过点(-2,-4),倾斜角为60°的直线的点斜式方程是________. 解析:α=60°,k =tan 60°=3, 由点斜式方程,得y +4=3(x +2).答案:y +4=3(x +2)4.在y 轴上的截距为2,且与直线y =-3x -4平行的直线的斜截式方程为________. 解析:∵直线y =-3x -4的斜率为-3, 所求直线与此直线平行,∴斜率为-3,又截距为2,∴由斜截式方程可得y =-3x +2. 答案:y =-3x +25.(1)求经过点(1,1),且与直线y =2x +7平行的直线的方程; (2)求经过点(-2,-2),且与直线y =3x -5垂直的直线的方程. 解:(1)由y =2x +7得其斜率为2,由两直线平行知所求直线的斜率是2. ∴所求直线方程为y -1=2(x -1), 即2x -y -1=0.(2)由y =3x -5得其斜率为3,由两直线垂直知,所求直线的斜率是-13.∴所求直线方程为y +2=-13(x +2),即x +3y +8=0.[课时达标检测]一、选择题1.已知直线的方程是y +2=-x -1,则( ) A .直线经过点(-1,2),斜率为-1 B .直线经过点(2,-1),斜率为-1 C .直线经过点(-1,-2),斜率为-1 D .直线经过点(-2,-1),斜率为1解析:选C 直线的方程可化为y -(-2)=-[x -(-1)],故直线经过点(-1,-2),斜率为-1.2.直线y =ax -1a的图象可能是( )解析:选B 由y =ax -1a可知,斜率和截距必须异号,故B 正确.3.与直线y =2x +1垂直,且在y 轴上的截距为4的直线的斜截式方程是( ) A .y =12x +4B .y =2x +4C .y =-2x +4D .y =-12x +4。
最新人教版必修二高中数学同步习题第三章3.1.2和答案
3.1.2 两条直线平行与垂直的判定一、基础过关1.下列说法中正确的有( )①若两条直线斜率相等,则两直线平行;②若l1∥l2,则k1=k2;③若两直线中有一条直线的斜率不存在,另一条直线的斜率存在,则两直线相交;④若两条直线的斜率都不存在,则两直线平行A.1个B.2个 C.3个 D.4个2.已知过点A(-2,m)和B(m,4)的直线与斜率为-2的直线平行,则m的值为( )A.-8 B.0 C.2 D.103.已知l1⊥l2,直线l1的倾斜角为45°,则直线l2的倾斜角为( )A.45° B.135° C.-45° D.120°4.已知A(m,3),B(2m,m+4),C(m+1,2),D(1,0),且直线AB与直线CD平行,则m的值为( )A.1 B.0 C.0或2 D.0或15.经过点A(1,1)和点B(-3,2)的直线l1与过点C(4,5)和点D(a,-7)的直线l2平行,则a=________.6.直线l1,l2的斜率k1,k2是关于k的方程2k2-3k-b=0的两根,若l1⊥l2,则b=________;若l1∥l2,则b=________.7.(1)已知四点A(5,3),B(10,6),C(3,-4),D(-6,11),求证:AB⊥CD.(2)已知直线l1的斜率k1=34,直线l2经过点A(3a,-2),B(0,a2+1)且l1⊥l2,求实数a的值.8. 如图所示,在平面直角坐标系中,四边形OPQR的顶点坐标按逆时针顺序依次为O(0,0)、P(1,t)、Q(1-2t,2+t)、R(-2t,2),其中t>0.试判断四边形OPQR的形状.二、能力提升9.顺次连接A(-4,3),B(2,5),C(6,3),D(-3,0)所构成的图形是( )A.平行四边形B.直角梯形C.等腰梯形D.以上都不对10.已知直线l1的倾斜角为60°,直线l2经过点A(1,3),B(-2,-23),则直线l1,l2的位置关系是____________.11.已知△ABC的顶点B(2,1),C(-6,3),其垂心为H(-3,2),则其顶点A的坐标为________.12.已知△ABC三个顶点坐标分别为A(-2,-4),B(6,6),C(0,6),求此三角形三边的高所在直线的斜率.三、探究与拓展13.已知四边形ABCD的顶点A(m,n),B(5,-1),C(4,2),D(2,2),求m和n 的值,使四边形ABCD为直角梯形.答案1.A 2.A 3.B 4.D5.526.2 -9 87.(1)证明 由斜率公式得:k AB =6-310-5=35, k CD =11---6-3=-53,则k AB ·k CD =-1,∴AB ⊥CD . (2)解 ∵l 1⊥l 2,∴k 1·k 2=-1, 即34×a 2+1--0-3a=-1,解得a =1或a =3.8.解 由斜率公式得k OP =t -01-0=t ,k QR =2-+t -2t --2t=-t -1=t ,k OR =2-0-2t -0=-1t, k PQ =2+t -t 1-2t -1=2-2t =-1t.∴k OP =k QR ,k OR =k PQ ,从而OP ∥QR ,OR ∥PQ . ∴四边形OPQR 为平行四边形. 又k OP ·k OR =-1,∴OP ⊥OR , 故四边形OPQR 为矩形. 9.B10.平行或重合 11.(-19,-62)12.解 由斜率公式可得k AB =6--6--=54, k BC =6-66-0=0, k AC =6--0--=5.由k BC =0知直线BC ∥x 轴,∴BC 边上的高线与x 轴垂直,其斜率不存在.设AB 、AC 边上高线的斜率分别为k 1、k 2,由k 1·k AB =-1,k 2·k AC =-1,即k 1·54=-1,k 2·5=-1,解得k 1=-45,k 2=-15.∴BC 边上的高所在直线的斜率不存在;AB 边上的高所在直线的斜率为-45; AC 边上的高所在直线的斜率为-15.13.解 ∵四边形ABCD 是直角梯形,∴有2种情形: (1)AB ∥CD ,AB ⊥AD , 由图可知:A (2,-1). (2)AD ∥BC ,AD ⊥AB , ⎩⎨⎧k AD =k BC k AD ·k AB =-1⇒⎩⎪⎨⎪⎧n -2m -2=3-1n -2m -2·n +1m -5=-1∴⎩⎪⎨⎪⎧m =165n =-85.综上⎩⎨⎧m =2n =-1或⎩⎪⎨⎪⎧m =165n =-85.。
【精品习题】高中数学人教版必修2配套练习 第三章3.1.2
3.1.2 两条直线平行与垂直的判定一、基础过关1.下列说法中正确的有 ( ) ①若两条直线斜率相等,则两直线平行;②若l 1∥l 2,则k 1=k 2;③若两直线中有一条直线的斜率不存在,另一条直线的斜率存在,则两直线相交;④若两条直线的斜率都不存在,则两直线平行A .1个B .2个C .3个D .4个 2.已知过点A (-2,m )和B (m,4)的直线与斜率为-2的直线平行,则m 的值为 ( ) A .-8B .0C .2D .10 3.已知l 1⊥l 2,直线l 1的倾斜角为45°,则直线l 2的倾斜角为( )A .45°B .135°C .-45°D .120° 4.已知A (m,3),B (2m ,m +4),C (m +1,2),D (1,0),且直线AB 与直线CD 平行,则m 的值为( ) A .1 B .0 C .0或2 D .0或1 5.经过点A (1,1)和点B (-3,2)的直线l 1与过点C (4,5)和点D (a ,-7)的直线l 2平行,则a =________.6. 直线l 1,l 2的斜率k 1,k 2是关于k 的方程2k 2-3k -b =0的两根,若l 1⊥l 2,则b =________;若l 1∥l 2,则b =________.7.(1)已知四点A (5,3),B (10,6),C (3,-4),D (-6,11),求证:AB ⊥CD .(2)已知直线l 1的斜率k 1=34,直线l 2经过点A (3a ,-2),B (0,a 2+1)且l 1⊥l 2,求实数a 的值.8. 如图所示,在平面直角坐标系中,四边形OPQR 的顶点坐标按逆时针顺序依次为O (0,0)、P (1,t )、Q (1-2t,2+t )、R (-2t,2),其中t >0.试判断四边形OPQR 的形状.二、能力提升9.顺次连接A (-4,3),B (2,5),C (6,3),D (-3,0)所构成的图形是( )A .平行四边形B .直角梯形C .等腰梯形D .以上都不对 10.已知直线l 1的倾斜角为60°,直线l 2经过点A (1,3),B (-2,-23),则直线l 1,l 2的位置关系是____________.11.已知△ABC 的顶点B (2,1),C (-6,3),其垂心为H (-3,2),则其顶点A 的坐标为________.12.已知△ABC三个顶点坐标分别为A(-2,-4),B(6,6),C(0,6),求此三角形三边的高所在直线的斜率.三、探究与拓展13.已知四边形ABCD的顶点A(m,n),B(5,-1),C(4,2),D(2,2),求m和n的值,使四边形ABCD为直角梯形.答案1.A 2.A 3.B 4.D5.526.2 -987.(1)证明 由斜率公式得:k AB =6-310-5=35, k CD =114-6-3=-53, 则k AB ·k CD =-1,∴AB ⊥CD .(2)解 ∵l 1⊥l 2,∴k 1·k 2=-1,即34×a 2+120-3a=-1,解得a =1或a =3. 8.解 由斜率公式得k OP =t -01-0=t , k QR =22+t -2t 1-2t =-t -1=t ,k OR =2-0-2t -0=-1t , k PQ =2+t -t 1-2t -1=2-2t =-1t. ∴k OP =k QR ,k OR =k PQ ,从而OP ∥QR ,OR ∥PQ . ∴四边形OPQR 为平行四边形.又k OP ·k OR =-1,∴OP ⊥OR ,故四边形OPQR 为矩形.9.B10.平行或重合11.(-19,-62)12.解 由斜率公式可得k AB =6462=54, k BC =6-66-0=0, k AC =6402=5. 由k BC =0知直线BC ∥x 轴,∴BC 边上的高线与x 轴垂直,其斜率不存在. 设AB 、AC 边上高线的斜率分别为k 1、k 2,由k 1·k AB =-1,k 2·k AC =-1,即k 1·54=-1,k 2·5=-1, 解得k 1=-45,k 2=-15.∴BC 边上的高所在直线的斜率不存在;AB 边上的高所在直线的斜率为-45; AC 边上的高所在直线的斜率为-15. 13.解 ∵四边形ABCD 是直角梯形,∴有2种情形:(1)AB ∥CD ,AB ⊥AD ,由图可知:A (2,-1).(2)AD ∥BC ,AD ⊥AB ,⎩⎪⎨⎪⎧k AD =k BCk AD ·k AB =-1 ⇒⎩⎪⎨⎪⎧n -2m -2=3-1n -2m -2·n +1m -5=-1 ∴⎩⎪⎨⎪⎧ m =165n =-85.综上⎩⎪⎨⎪⎧ m =2n =-1或⎩⎪⎨⎪⎧m =165n =-85.。
高中数学人教A版必修2练习第三章 单元检测 Word版含解析
第三章单元检测班级姓名考号分数本试卷满分分,考试时间分钟.一、选择题:本大题共小题,每小题分,共分.在下列各题的四个选项中,只有一个选项是符合题目要求的..在轴与轴上截距分别为-的直线的倾斜角为( ).°.°.°.°答案:.直线+-=和直线(-)-+=平行,则的值是( )..-.或.-或答案:解析:当=时,两直线方程分别为+=和--=,不平行;当≠时,=≠,解得=..下列三点能构成三角形的三个顶点的为( ).()()().(-)()(-).()()().(,-)()()答案:解析:因为,,选项中的三点均共线,不能构成三角形..已知点(-)和(),则原点到直线的距离为( )..答案:解析:直线的方程为-+=,==..过点()且在两坐标轴上截距相等的直线方程是( ).=.+-=.+-=或=.+-=或-+=答案:解析:当所求直线过原点时,它在两坐标轴上的截距都是,适合题意,此时直线方程为=;当所求直线不过原点时,可设它的方程为+=,把点()的坐标代入得=,解得=,故此时直线的方程为+-=..已知直线的斜率为-,将直线绕点顺时针旋转°所得到的直线的斜率为( ).-..+答案:解析:直线的斜率为-,则直线的倾斜角为°,所求直线的倾斜角为°,°=..两平行线:-+=与:++=(>)之间的距离是,则的值是( )..-.-答案:解析:根据两直线平行得:=≠,所以=-.又两直线的距离是,所以有:=,即-=,所以=或=(舍去),所以=-,=代入==-..已知点在直线+-=上,点在直线++=上,线段的中点为(,),且<+,则的取值范围是( ).[-,].(-,).(-,+∞).(-∞,-)∪(,+∞)答案:解析:∵点在直线+-=上,点在直线++=上,线段的中点为(,),∴=,化为++=.又<+,设=,当点位于线段(不包括端点)时,则>,当点位于射线(不包括端点)时,<-.∴的取值范围是(-∞,-)∪(,+∞).故选..已知点(-)和(),在轴上求一点,使+取最小值,则点的坐标为( ).(-) .().() .(-)答案:.直线++=与连接(),(-)的线段相交,则的取值范围是( ).[-].(-∞,-)∪[,+∞).[-).(-∞,-]∪[,+∞)答案:解析:直线++=过定点(,-),当直线处于与之间时必与线段相交,应满足-≥,或-≤-,即≤-,或≥..过点(,-)向直线作垂线,垂足为(-),则直线与坐标轴围成的三角形的面积是( ) ...答案:解析:因为(,-),(-),所以直线的斜率是==-,所以直线的斜率=,直线方程是:-=(+),即直线方程是-+=,直线与坐标轴的交点坐标是(,),(-),所以直线与坐标轴围成的三角形的面积=××=..如图所示,已知(),(),从点()射出的光线经直线反射后再射到直线上,最后经直线反射后又回到点,则光线所经过的路程是( )....答案:解析:分别求关于直线+=及轴的对称点,为()、(-),由物理知识知,光线所经路程即为=.二、填空题:本大题共小题,每小题分,共分.把答案填在题中横线上..若直线的倾斜角为°,⊥,则直线的斜率为.答案:-解析:,的斜率之积为-..已知直线与直线+-=平行,且与两坐标轴围成的图形面积是,则直线的方程为.答案:++=,或+-=。
高中数学(人教版必修2)配套练习 第三章3.1.1
第三章直线与方程§3.1直线的倾斜角与斜率3.1.1倾斜角与斜率一、基础过关1.下列说法中:①任何一条直线都有唯一的倾斜角;②任何一条直线都有唯一的斜率;③倾斜角为90°的直线不存在;④倾斜角为0°的直线只有一条.其中正确的个数是() A.0 B.1 C.2 D.32.斜率为2的直线经过点A(3,5)、B(a,7)、C(-1,b)三点,则a、b的值为() A.a=4,b=0 B.a=-4,b=-3C.a=4,b=-3 D.a=-4,b=33.在平面直角坐标系中,正三角形ABC的边BC所在直线的斜率是0,则AC,AB所在直线的斜率之和为() A.-2 3 B.0 C. 3 D.2 34.直线l过原点(0,0),且不过第三象限,那么l的倾斜角α的取值范围是() A.[0°,90°]B.[90°,180°)C.[90°,180°)或α=0°D.[90°,135°]5.若直线AB与y轴的夹角为60°,则直线AB的倾斜角为____________,斜率为__________.6.若经过点P(1-a,1+a)和Q(3,2a)的直线的倾斜角为钝角,则实数a的取值范围为_______.7. 如图所示,菱形ABCD中,∠BAD=60°,求菱形ABCD各边和两条对角线所在直线的倾斜角和斜率.8.一条光线从点A(-1,3)射向x轴,经过x轴上的点P反射后通过点B(3,1),求P点的坐标.二、能力提升9.设直线l过坐标原点,它的倾斜角为α,如果将l绕坐标原点按逆时针方向旋转45°,得到直线l1,那么l1的倾斜角为() A.α+45°B.α-135°C.135°-αD.当0°≤α<135°时,倾斜角为α+45°;当135°≤α<180°时,倾斜角为α-135°10. 若图中直线l 1、l 2、l 3的斜率分别为k 1、k 2、k 3,则 ( )A .k 1<k 2<k 3B .k 3<k 1<k 2C .k 3<k 2<k 1D .k 1<k 3<k 211.已知直线l 的倾斜角为α-20°,则α的取值范围是________.12.△ABC 为正三角形,顶点A 在x 轴上,A 在边BC 的右侧,∠BAC 的平分线在x 轴上,求边AB 与AC 所在直线的斜率. 三、探究与拓展13.已知函数f (x )=log 2(x +1),a >b >c >0,试比较f (a )a ,f (b )b ,f (c )c 的大小.答案1.B 2.C 3.B 4.C5.30°或150° 33或-336.(-2,1)7.解 直线AD ,BC 的倾斜角为60°,直线AB ,DC 的倾斜角为0°,直线AC 的倾斜角为30°,直线BD 的倾斜角为120°.k AD =k BC =3,k AB =k CD =0, k AC =33,k BD =- 3.8.解 设P (x,0),则k P A =3-0-1-x =-3x +1,k PB =1-03-x =13-x ,依题意,由光的反射定律得k P A =-k PB ,即3x +1=13-x ,解得x =2,即P (2,0). 9.D 10.D 11.20°≤α<200°12.解 如右图,由题意知∠BAO =∠OAC =30°,∴直线AB 的倾斜角为180°-30°=150°,直线AC 的倾斜角为30°,∴k AB =tan 150°=-33,k AC =tan 30°=33.13.解 画出函数的草图如图,f (x )x可视为过原点直线的斜率.由图象可知:f (c )c >f (b )b >f (a )a .小课堂:如何培养中学生的自主学习能力?自主学习是与传统的接受学习相对应的一种现代化学习方式。
21人教版高中a版数学同步必修2模块练习题--3.3.1和3.3.2两条直线的交点坐标和两点间的距离
3.3 直线的交点坐标与距离公式3.3.1 两条直线的交点坐标3.3.2 两点间的距离基础过关练题组一 两条直线的交点坐标1.直线3x+my-1=0与4x+3y-n=0的交点为(2,-1),则m+n 的值为( ) A.12 B.10 C.-8 D.-62.(2019安徽淮南第一中学高一月考)已知直线kx-y+2k+1=0与直线2x+y-2=0的交点在第一象限,则实数k 的取值范围是( ) A.-32<k<-1 B .k<-32或k>-1C.k<-13或k>12D.-13<k<123.(2018北京高二期末)已知直线l 1:4x+By-C=0,直线l 2:2x-3y-1=0,若l 1与l 2的交点在x 轴上,则C 的值为 .4.已知直线l 1:x-y-1=0,l 2:2x-y+3=0,l 3:x+my-5=0,若直线l 1,l 2,l 3只有两个交点,则m= .5.已知两条直线l 1:mx+8y+n=0和l 2:2x+my-1=0,试分别确定满足下列条件的m,n 的值:(1)l 1与l 2相交于一点P(m,1); (2)l 1∥l 2且l 1过点(3,-1); (3)l 1⊥l 2且l 1在y 轴上的截距为-1.6.如图,在△ABC中,BC边上的高所在直线的方程为x-2y+1=0,∠BAC的平分线所在直线的方程为y=0,若点B的坐标为(1,2),求点A和点C的坐标.题组二两点间的距离7.(2019天津耀华中学高二开学考试)已知过点M(-2,a),N(a,4)的直线的斜率为-12,则|MN|等于( )A.10B.180C.6√3D.6√58.若点A在x轴上,点B在y轴上,线段AB的中点M的坐标为(3,4),则线段AB的长度为( )A.10B.5C.8D.69.已知平面上两点A(x,√2-x),B(√22,0),则|AB|的最小值为( )A.3B.13C.2 D.1210.已知点A(-1,2),B(3,4),P(x,0),|PA|=|PB|,则|PA|= .题组三与对称相关的问题11.已知点A(x,5)关于点(1,y)对称的点为(-2,-3),则点P(x,y)到原点的距离是( )A.2B.4C.5D.√1712.点P(-3,4)关于直线x+y-2=0对称的点Q的坐标是( )A.(-2,1)B.(-2,5)C.(2,-5)D.(4,-3)13.与直线2x+3y-6=0关于点(1,-1)对称的直线方程是( )A.3x-2y+2=0B.2x+3y+7=0C.3x-2y-12=0D.2x+3y+8=014.光线从点B(-3,5)出发射到x轴上,经反射后过点A(2,10),则光线从点B到点A 经过的路程为.15.已知点A(10,-2),B(5,7).若在x轴上存在一点P,使||PA|-|PB||最大,则点P 的坐标为.16.过点P(0,1)作直线l使它被直线l1:2x+y-8=0和l2:x-3y+10=0截得的线段被点P平分,求直线l的方程.能力提升练一、选择题1.(★★☆)两条直线l 1:y=kx+1+2k,l 2:y=-12x+2的交点在直线x-y=0的上方,则k的取值范围是( ) A.(-12,110)B.(-∞,-110)∪(12,+∞)C.(-∞,-12)∪(110,+∞) D.(-110,12) 2.(★★☆)已知两点M(a,b),N(c,d),且√a 2+b 2-√c 2+d 2=0,则( ) A.原点一定是线段MN 的中点 B.M,N 一定都与原点重合C.原点一定在线段MN 上,但不一定是中点D.M,N 到原点的距离相等3.(★★☆)直线3ax-y-2=0和(2a-1)x+5ay-1=0分别过定点A,B,则|AB|的值为( ) A.√895B.175C.135D.1154.(2019贵州高二开学考试,★★☆)著名数学家华罗庚曾说过:“数形结合百般好,割裂分家万事休.”事实上,有很多代数问题可以转化为几何问题加以解决,如:√(x -a )2+(y -b )2可以转化为平面上点M(x,y)与点N(a,b)的距离.结合上述观点,可得f(x)=√x 2+10x +26+√x 2+6x +18的最小值为( ) A.2√2 B.2√5 C.√2+√10 D .3+√5二、填空题5.(★★☆)动点P在直线x+y-1=0上运动,Q(1,1)为定点,当|PQ|最小时,点P的坐标为.6.(★★☆)点P1(a,b)关于直线x+y=0对称的点是P2,P2关于原点O对称的点是P3,则|P1P3|= .7.(★★☆)已知直线l:5mx-5y-m+3=0.若使直线l不经过第二象限,则m的取值范围为.8.(★★☆)已知函数y=2x的图象与y轴交于点A,函数y=lg x的图象与x轴交于点B,点P在直线AB上移动,点Q(0,-2),则|PQ|的最小值为.9.(★★☆)已知直线l:3x+λy-2+2λx+4y+2λ=0,则直线l过定点.三、解答题10.(★★☆)过点A(3,-1)作直线l交x轴于点B,交直线l1:y=2x于点C,若|BC|=2|AB|,求直线l的方程.11.(★★☆)光线从A(-4,-2)点射出,到直线y=x上的B点后被直线y=x反射到y 轴上的C点,又被y轴反射,这时反射光线恰好过点D(-1,6),求BC所在直线的方程.12.(★★☆)已知两直线l1:ax-2y=2a-4,l2:2x+a2y=2a2+4(0<a<2)与两坐标轴围成四边形.当a为何值时,围成的四边形面积取得最小值?并求最小值.13.(★★★)(1)已知点P是平面上一动点,A(1,1),B(2,-2)是平面上两个定点,求|PA|2+|PB|2的最小值,并求此时点P的坐标;(2)求函数f(x)=√x2-4x+13+√x2-12x+37的最小值.答案全解全析 基础过关练1.B 将点(2,-1)代入3x+my-1=0,可得m=5,将点(2,-1)代入4x+3y-n=0,可得n=5,所以m+n=10.2.D 由{kx -y +2k +1=0,2x +y -2=0得{x =1-2k2+k ,y =2+6k 2+k (k≠-2). ∵直线kx-y+2k+1=0与直线2x+y-2=0的交点在第一象限, ∴1-2k2+k >0,2+6k2+k >0,解得-13<k<12.则实数k 的取值范围是(-13,12).故选D.3.答案 2解析 因为l 2与x 轴的交点为(12,0),所以4×12+B×0-C=0,所以C=2. 4.答案 -1或-12解析 ∵l 1与l 2相交,故只需l 1∥l 3或l 2∥l 3即可, 若l 1∥l 3,则-1m =1,可得m=-1,若l 2∥l 3,则-1m=2,可得m=-12,经检验,m=-1或m=-12均满足题意.故答案为-1或-12.5.解析 (1)把点P(m,1)的坐标分别代入l 1,l 2的方程,得m 2+8+n=0,2m+m-1=0,解得m=13,n=-739. (2)显然m≠0.∵l 1∥l 2且l 1过点(3,-1),∴{m2=8m ≠n-1,3m -8+n =0,解得{m =4,n =-4或{m =-4,n =20.(3)当l 1⊥l 2时,满足2m+8m=0,解得m=0,又l 1在y 轴上的截距为-1,即l 1过点(0,-1),代入得-8+n=0,解得n=8,∴m=0,n=8.6.解析 由方程组{x -2y +1=0,y =0得顶点A(-1,0),则AB 的斜率k AB =2-01-(-1)=1.∵∠BAC 的平分线所在直线的方程为y=0,∴直线AC 的斜率为-1,AC 所在直线的方程为y=-(x+1). ∵BC 边上的高所在直线的方程为x-2y+1=0,∴k BC =-2. 又点B 的坐标为(1,2),∴BC 所在直线的方程为y=-2(x-1)+2. 由{y =-2(x -1)+2,y =-(x +1)得C(5,-6). 综上,A(-1,0),C(5,-6).7.D ∵过点M(-2,a),N(a,4)的直线的斜率k=4-aa -(-2)=-12,解得a=10,∴|MN|=√(a +2)2+(4-a )2=6√5.故选D.8.A 由题意可得A 点的坐标为(6,0),B 点的坐标为(0,8),所以由两点间距离公式得|AB|=10.9.D ∵|AB|=√(x -√22)2+(√2-x )2=√2(x -3√24)2+14≥12,当且仅当x=3√24时等号成立,∴|AB|min =12.10.答案√652解析 解法一:由题意得|PA|=√[x -(-1)]2+(0-2)2=√x 2+2x +5,|PB|=√(x -3)2+(0-4)2=√x 2-6x +25.由|PA|=|PB|,得√x 2+2x +5=√x 2-6x +25,解得x=52.故点P 的坐标为(52,0).|PA|=√[52-(-1)]2+(0-2)2=√652.解法二:因为A(-1,2),B(3,4),|PA|=|PB|,所以点P 在线段AB 的垂直平分线上,k AB =4-23-(-1)=12,线段AB 的中点坐标为(1,3),则线段AB 的垂直平分线l 的斜率k=-1k AB=-2,l 的直线方程为y=-2(x-1)+3,令y=0,解得x=52,故点P 的坐标为(52,0).|PA|=√[52-(-1)]2+(0-2)2=√652.11.D 根据中点坐标公式得到x -22=1且5-32=y,解得x=4,y=1,所以点P 的坐标为(4,1),则点P(x,y)到原点的距离d=√(4-0)2+(1-0)2=√17.12.B 设对称点Q 的坐标为(a,b),则{a -32+b+42-2=0,b -4a+3=1,解得{a =-2,b =5,即Q(-2,5).13.D 由平面几何知识易知所求直线与已知直线2x+3y-6=0平行, 则可设所求直线方程为2x+3y+C=0(C≠-6).在直线2x+3y-6=0上任取一点(3,0),则(3,0)关于点(1,-1)对称的点为(-1,-2), 则点(-1,-2)必在所求直线上, ∴2×(-1)+3×(-2)+C=0, ∴C=8.∴所求直线方程为2x+3y+8=0.14.答案 5√10解析 点B(-3,5)关于x 轴对称的点为B'(-3,-5),设AB'交x 轴于P 点,则|PA|+|PB|=|AB'|=√[2-(-3)]2+[10-(-5)]2=5√10,即光线从点B 到点A 经过的路程为5√10.15.答案 (12,0)解析 易知点A 关于x 轴对称的点A'的坐标为(10,2), 设直线A'B 的方程为y=kx+b,∴{7=5k +b ,2=10k +b , 解得{k =-1,b =12,∴直线A'B 的方程为y=-x+12. 令y=0,解得x=12,∴P(12,0).16.解析 设l 1与l 的交点为A(a,8-2a),则由题意知,点A 关于点P 对称的点B(-a,2a-6)在l 2上, 将其代入l 2的方程,得-a-3(2a-6)+10=0, 解得a=4,即点A(4,0)在直线l 上, 所以直线l 的方程为x+4y-4=0.能力提升练一、选择题1.C 由方程组{y =kx +1+2k ,y =-12x +2解得{x =2-4k2k+1,y =6k+12k+1.∵交点在直线x-y=0的上方, ∴6k+12k+1>2-4k 2k+1,解得k∈(-∞,-12)∪(110,+∞),故选C.2.D 原式可变形为√(a -0)2+(b -0)2=√(c -0)2+(d -0)2,其意义是点M(a,b)与点N(c,d)到原点O(0,0)的距离相等,故选D.3.C 直线3ax-y-2=0过定点A(0,-2),直线(2a-1)x+5ay-1=0过定点B (-1,25),由两点间的距离公式,得|AB|=135.4.B f(x)=√(x +5)2+(0+1)2+√(x +3)2+(0-3)2,表示x 轴上的点(x,0)到点(-5,-1)、(-3,3)的距离之和, f(x)的最小值即为距离之和的最小值d min ,则d min =√[(-3)-(-5)]2+[3-(-1)]2=2√5.二、填空题 5.答案 (12,12)解析 设P(x,1-x),由两点间距离公式得|PQ|=√(1-x )2+x 2=√2x 2-2x +1=√2(x -12)2+12,所以当x=12时,|PQ|最小,所以P (12,12). 6.答案 √2|a-b|解析 由题意得P 2(-b,-a),P 3(b,a),∴|P 1P 3|=√(a -b )2+(b -a )2=√2|a-b|.7.答案 [3,+∞)解析 直线l 的方程可化为y-35=m (x -15),所以无论m 取何值,直线l 恒过定点A (15,35).令x=0,则y=3-m 5,若直线l 不经过第二象限,则3-m 5≤0,解得m≥3.所以m 的取值范围为[3,+∞).8.答案 3√22 解析 易知A(0,1),B(1,0),所以直线AB:y=1-x.设P(x 0,y 0),则y 0=1-x 0,又Q(0,-2),所以|PQ|=√(x 0-0)2+(y 0+2)2=√x 02+(3-x 0)2=√2(x 0-32)2+92≥√92=3√22(当且仅当x 0=32时等号成立),所以|PQ|的最小值为3√22. 9.答案 (-2,2)解析 根据题意将直线l 化为3x+4y-2+λ(2x+y+2)=0.由{3x +4y -2=0,2x +y +2=0解得{x =-2,y =2. 所以直线l 过定点(-2,2).三、解答题10.解析 当直线l 的斜率不存在时,直线l:x=3,所以B(3,0),C(3,6).此时|BC|=6,|AB|=1,|BC|≠2|AB|,所以直线l 的斜率存在.设直线l 的方程为y+1=k(x-3),显然k≠0且k≠2.令y=0,得x=3+1k ,所以B (3+1k ,0).由{y =2x ,y +1=k (x -3)得点C 的横坐标x C =3k+1k -2. 因为A 、B 、C 三点共线,且|BC|=2|AB|,所以|x C -x B |=2|x B -x A |,所以|3k+1k -2-1k -3|=2|1k |,所以3k+1k -2-1k -3=2k 或3k+1k -2-1k -3=-2k ,解得k=- 32或k=14. 所以直线l 的方程为3x+2y-7=0或x-4y-7=0.11.解析 作出草图,如图所示,设A 关于直线y=x 对称的点为A',D 关于y 轴对称的点为D',则易得A'(-2,-4),D'(1,6).由反射角等于入射角可得A'D'所在直线经过点B 与点C.故BC 所在直线的方程为y -6-4-6=x -1-2-1,即10x-3y+8=0.12.解析 两直线l 1:a(x-2)=2(y-2),l 2:2(x-2)=-a 2·(y -2),都过点(2,2),如图:设两直线l 1,l 2的交点为C,且它们的斜率分别为k 1和k 2,∵0<a<2,∴k 1=a 2∈(0,1),k 2=-2a 2∈(-∞,-12).∵直线l 1与y 轴的交点A 的坐标为(0,2-a),直线l 2与x 轴的交点B 的坐标为(2+a 2,0),∴S 四边形OACB =S △OAC +S △OCB =12(2-a)×2+12×(2+a 2)×2=a 2-a+4=(a -12)2+154.∴当a=12时,四边形OACB 的面积最小,最小值为154.13.解析 (1)设点P(x,y)(x∈R,y∈R),则|PA|=√(x -1)2+(y -1)2,|PB|=√(x -2)2+(y +2)2, ∴|PA|2+|PB|2=(x-1)2+(y-1)2+(x-2)2+(y+2)2=2x 2-6x+2y 2+2y+10=2(x -32)2+2(y +12)2+5.∴当x=32,y=-12时,|PA|2+|PB|2最小.故|PA|2+|PB|2的最小值为5,此时P (32,-12).(2)f(x)=√(x -2)2+9+√(x -6)2+1=√(x -2)2+(0-3)2+√(x -6)2+(0-1)2. 设A(2,3),B(6,1),P(x,0),如图,则问题转化为求|PA|+|PB|的最小值.易知点A 关于x 轴对称的点为A'(2,-3),∵|PA|+|PB|=|PA'|+|PB|≥|A'B|=4√2,∴|PA|+|PB|≥4√2.∴函数f(x)的最小值为4√2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章直线与方程
§3.1直线的倾斜角与斜率
3.1.1倾斜角与斜率
一、基础过关
1.下列说法中:
①任何一条直线都有唯一的倾斜角;
②任何一条直线都有唯一的斜率;
③倾斜角为90°的直线不存在;
④倾斜角为0°的直线只有一条.
其中正确的个数是( ) A.0 B.1 C.2 D.3
2.斜率为2的直线经过点A(3,5)、B(a,7)、C(-1,b)三点,则a、b的值为( )
A.a=4,b=0 B.a=-4,b=-3
C.a=4,b=-3 D.a=-4,b=3
3.在平面直角坐标系中,正三角形ABC的边BC所在直线的斜率是0,则AC,AB所在直线的斜率之和为( ) A.-2 3 B.0 C. 3 D.2 3
4.直线l过原点(0,0),且不过第三象限,那么l的倾斜角α的取值范围是( ) A.[0°,90°] B.[90°,180°)
C.[90°,180°)或α=0° D.[90°,135°]
5.若直线AB与y轴的夹角为60°,则直线AB的倾斜角为____________,斜率为__________.6.若经过点P(1-a,1+a)和Q(3,2a)的直线的倾斜角为钝角,则实数a的取值范围为_______.
1
7. 如图所示,菱形ABCD中,∠BAD=60°,求菱形ABCD各边和两条对角线所在直线的
倾斜角和斜率.
8.一条光线从点A(-1,3)射向x轴,经过x轴上的点P反射后通过点B(3,1),求P点的坐标.
二、能力提升
9.设直线l过坐标原点,它的倾斜角为α,如果将l绕坐标原点按逆时针方向旋转45°,得到直线l1,那么l1的倾斜角为( ) A.α+45°
B.α-135°
C.135°-α
D.当0°≤α<135°时,倾斜角为α+45°;当135°≤α<180°时,倾斜角为α-135°10. 若图中直线l1、l2、l3的斜率分别为k1、k2、k3,则(
)
C.k3<k2<k1 D.k1<k3<k2
11.已知直线l的倾斜角为α-20°,则α的取值范围是________.
12.△ABC为正三角形,顶点A在x轴上,A在边BC的右侧,∠BAC的平分线在x轴上,求边AB与AC所在直线的斜率.
三、探究与拓展
1
旗开得胜
1
13.已知函数f (x )=log 2(x +1),a >b >c >0,试比较f a a
,
f b b
,
f c c
的大小.。