第五章 海洋水色遥感 - 海洋遥感..

合集下载

海洋遥感

海洋遥感
2015-5-10
卫星遥感不但为全球海洋和气候的物理研 究提供了可靠的数据,还为全球海洋初级
生产力的估计提供了充足的资料。
全球海洋初级生产力与全球碳循环有密切 联系。
全球碳循环与二氧化碳引起的全球变暖有
直接联系。 全球变暖可能导致全球海平面上升。 NASA(National Aeronautics and Space Administration)使用MODIS在2000年11月 对全球海洋叶绿素浓度(mg/m3)分布的观 测。
海洋遥感
学号:1434923 姓名:姚亚会
海洋遥感(ocean remote sensing)利用传感器对海
洋进行远距离非接触观测 ,
以获取海洋景观和海洋要 素的图像或数据资料。
2015-5-10
01 简介
海洋不仅不断向环境辐射电磁波能量,而且还会反射或散射太阳和人造辐射源(如
雷达)射来的电磁波能量,故可设计一些专门的传感器,把它装载在人造卫星、宇
全球海洋的年平均海表面温度(SST:Sea Surface Temperature)的等温线图像; 图中色标(colour bar)的单位是℃(摄氏度)。
该图清晰显示了西太平洋赤道暖水区
的范围和温度大小。 西太平洋赤道暖水区向大气输运的热 通量对于全球海洋大气热循环有举足 轻重的影响,它的范围和温度变化与
宙飞船、飞机、火箭和气球等工作平台上,接收并记录这些电磁辐射能,再经过传 输、加工和处理,得到海洋图像或数据资料。
遥感方式有主动式和被动式两种:①主动式遥感:传感器先向海面发射电磁波,再
由接收到的回波提取海洋信息或成像。这种传感器包括侧视雷达、微波散射计、雷 达高度计、激光雷达和激光荧光计等。②被动式遥感:传感器只接收海面热辐射能

《海洋遥感》课程教学大纲

《海洋遥感》课程教学大纲

《海洋遥感》课程教学大纲一、课程基本信息二、课程简介和教学目标1.课程简介(300-500字)海洋遥感课程主要讲述遥感及海洋遥感的基本理论、方法和基础知识。

主要内容有海洋遥感体系、分类及发展历史,海洋遥感物理基础、地物、海表与电磁波相互作用和遥感成像机理;不同遥感器特性与遥感平台;海洋遥感资料处理的方法与技术;海洋遥感定标技术、方法;海洋遥感技术应用领域及综合应用。

学生通过海洋遥感原理的学习,可以打牢海洋遥感的基础知识,进而可以运用到海洋研究中。

2.教学目标海洋遥感课程系统介绍了海洋遥感基本理论、方法和应用技术,是海洋技术专业海洋信息技术方向本科生的专业课之一。

通过该课程教学与实习,达到以下的教学目标:教学目标1:掌握海洋遥感的基本原理与方法,包括可见光遥感、红外遥感、微波遥感教学目标2:掌握海洋遥感的技术系统,数据处理流程和辐射定标的基本知识教学目标3:掌握海洋遥感常规产品的基本处理方法教学目标4:了解海洋遥感的应用领域,尤其是海洋遥感在海洋水色、水温和水动力等方面的应用教学目标5(课程思政):树立海洋强国意识。

3.教学目标与毕业要求指标点的支撑关系三、理论教学表1 理论教学安排四、实验教学五、考核与成绩评定方法六、建议教材及相关教学资源1、建议教材[1] 刘玉光等编著.《卫星海洋学》,高等教育出版社,2009[2] 梅安新彭望琭秦其明刘慧平编著.《遥感导论》,高等教育出版社,2001 2、参考资料[1] 潘德炉等编著.《海洋遥感基础及应用》,海洋出版社,2017[2] 蒋兴伟等译.《海洋遥感导论》,海洋出版社,2008[3] 赵英时等编著.《遥感应用分析原理与方法》,科学出版社,2003。

第5章 SAR海洋内波遥感探测技术

第5章 SAR海洋内波遥感探测技术

第5章SAR海洋内波遥感探测技术5.1 引言内波是发生在海洋内部的波动现象,是引起海水内部混合,形成温、盐细微结构的主要原因。

随着近代观测技术的进步,人们普遍认识到,海洋内波与海洋水声学、水下航行、海洋生物学、海洋光学、海洋沉积学、军事海洋学以及海洋水下建筑学等学科有着密切的联系(徐肇廷,1999)。

因此,提取内波参数,研究内波特性具有非常重要的意义。

长期以来, 它一直成为海洋学家潜心研究的前沿性课题(蔡树群,2001)。

在过去,人们通常利用锚系来测量内波。

如简易温度锚系可以测量内波的时空特征,包括波长、振幅、传播方向和速度等(陈守虎等,2004)。

然而,锚系测量内波站点有限平分辨率不高,难于推算出具有较大空间尺度的内波的波长及传播方向等空间特征。

大范围、全天时和高分辨率的合成孔径雷达的出现为内波探测提供了一种全新的方法(Alpers,1985;Liu,1998)。

综合利用SAR数据、CTD数据和海上同步测量数据等来研究海洋内波是当前的热点。

在研究背景里提到,一方面,SAR图像噪声大,给自动提取内波波长和半振幅宽度带来困难。

另一方面,传统的内波参数反演方法依赖于半日潮假定,对许多单个内波波群的SAR图像,无法开展定量的反演工作。

本章根据以上两个方面存在的问题,从两个方面来探讨内波参数提取和反演。

一方面,结合EMD方法从能量大小的角度来探讨合成孔径雷达非线性内波信号的提取方法。

目的主要有:一是比较希尔伯特—黄变换、傅立叶变换和小波分析对内波波长提取效果;二是比较希尔伯特—黄变换和小波变换对内波波形的提取效果;三是在提取内波波形的基础上对各个孤立波的半振幅宽度进行计算进而通过CTD辅助数据反演孤立子波的振幅。

效果评价采用定性分析,从原始信号和分离后的信号的比较以及内波成像的数学仿真模型来分析结果的好坏,对于内波振幅反演的精度评估方面,采用与Liu等的验证算例进行量级上的比对(Liu,1998)。

另一方面,结合M4S 微波散射模拟和内波动力学方程来探讨内波参数反演的新方法。

海洋遥感知识点总结

海洋遥感知识点总结

海洋遥感知识点总结本文将从海洋遥感技术的基本原理、常用遥感技术和海洋遥感的应用领域等方面进行详细的介绍,并结合一些实际案例,希望可以为读者对海洋遥感技术有一个更全面的了解。

一、海洋遥感技术的基本原理海洋遥感技术是通过传感器对海洋进行观测和测量,然后将获取到的数据传输到地面处理系统进行分析,从而得到关于海洋的信息。

传感器可以是搭载在卫星上的遥感仪器,也可以是在飞机、船只等平台上安装的探测设备。

遥感技术主要依靠电磁波在大气和海洋中的传播和反射特性来获取海洋信息。

具体而言,通过用不同波段的电磁波对目标进行监测和探测,再利用电磁波与目标反射或散射作用时的特性来获取目标物体的信息。

遥感技术主要包括被动遥感和主动遥感两种方式。

被动遥感是指通过接收目标物体所发出的自然辐射或反射的电磁波,比较常用的是太阳辐射。

而主动遥感是指通过发送特定频率的电磁波到目标物体上,然后将目标物体发射的辐射或反射返回的信号进行分析。

被动遥感和主动遥感一般配合使用,可以获取更加全面的目标物体信息。

二、常用的海洋遥感技术1. 被动微波遥感被动微波遥感是通过接收海洋表面微波辐射来获取海洋信息的一种遥感技术。

微波辐射可以在大气中穿透,因此即使在云层遮挡的情况下,也可以对海洋进行探测。

被动微波遥感技术可以用来测量海洋表面温度、海洋表面风速、盐度等信息,对海洋动力学和大气海洋相互作用研究有着重要的意义。

2. 被动光学遥感被动光学遥感是通过接收海洋表面反射的太阳光来获取海洋信息的一种遥感技术。

光学遥感可以测量海洋表面的叶绿素浓度、海水透明度、沉积物含量等信息,可以用于海洋生态系统监测和海洋污染监测等方面。

3. 合成孔径雷达遥感合成孔径雷达(SAR)是一种主动遥感技术,通过发送微波信号到海洋表面,然后接收被海洋表面物体反射的信号,来获取海洋表面的信息。

SAR可以用来监测海洋表面风场、海洋表面粗糙度、海洋污染等信息,对海上风暴预警、海洋污染监测等具有重要的应用价值。

第五章-海洋水色遥感---海洋遥感

第五章-海洋水色遥感---海洋遥感
(1 )Ed (,0 ) rREd (,0 )
R Eu ( ,0 ) / Ed ( ,0 )
2024/7/17

Ed ( ,0 )
(1 )
Ed ( ,0 )
1 rR
R (bsc a) /(bsc a)
5.3 生物-光学算法的物理基础
Lwc
c. 考虑多次散射和白浪引起的散射
Lw (ti / n ) Lu
Ls
2
w
ti , r , nw
Lt Lwt s rLs t d Lr La
rLs Lsr
2024/7/17
Lwc t s Lru
Lu
水中物质
海表
※.利用水气辐射传输模型反演的主要过程
(1)辐射定标
感水体表层叶绿素浓度的可行性。
• CZCS(Nimbus-7)
• SeaWifs(SeaStar)
• MODIS(Terra-Aqua)
• COCTS(HY-1A、HY-1B)
2024/7/17
5.1 概述
1.海洋水色遥感传感器
2024/7/17
5.1 概述
1.海洋水色遥感传感器
波段
设置
2024/7/17
海水的光学特性有:表观光学量和固有光学量。
表观光学量由光场和水中的成分而定,包括向下辐照
度、向上辐照度、离水辐亮度、遥感反射率、辐照度比等,
以及这些量的衰减系数。
固有光学量与光场无关,只与水中成分分布及其光学
特性有关,直接反映媒介的散射和吸收特征,如:吸收系
数;散射系数;体积散射函数等。
2024/7/17
归一化离水反射率和归一化离水辐射度与入射光达

(完整版)海洋遥感总结

(完整版)海洋遥感总结

(赤潮,油污水中物质组合)(括号中可不记)
22.①吸收系数:
a() lim A()
r0 r
(m1)
(上式各量意义自记) ②散射系数:
b() lim B()
r0 r
(m1)
(上式各量意义自记)
③衰减系数:吸收
系数与散射系数之 和
c() a() b()
(m1)
(上式各量意义自记)
④体散射函数:每单位距离,每单位角度光谱散射比的极限。
厄尔尼诺是热带大气和海洋相互作用的产物它原是指赤道海面的一种异常增温现在其定义为在全球范围内海气相互作用下造成的气候异2海洋资源调查的需要海洋是人类最大的资源宝库是全球生命支持系统的基本组成部分海洋资源的重要性促使人们采用各种手段对其进行调查研究海岸带是人类赖以生存和进行生产活动的重要场所海岸带资源的相关调查对于沿海资源的合理开发与利用非常重要3海洋遥感在海洋研究中的重要性海洋遥感具有大范围实时同步全天时全天候多波段成像技术的优势可以快速地探测海洋表面各物理量的时空变化规律
5.海面粗糙度判据:与波长和入射角有关 6.辐射能量W:以电磁波形式向外辐射的能量,单位为焦耳(J) 7.辐射通量(Radiant flux、辐射功率)Φ:单位时间内通过某一面的辐射能量,单位是 瓦/微米(W/μm),表示为:Φ=dw /dt。 8.总辐射通量:为各波段的和(积分)。 9.辐射通量密度 E′:单位时间内通过单位面积的辐射能量/通过单位面积的辐射通量,表 示为: E′=d Φ/dt,单位是瓦/米 2·微米(W/m 2·μm )。 10.立体角(Solid angle):为圆锥体所拦截的球面积σ与半径 r 的平方之比,表示为: Ω
= σ/r2。(单位用球面度(Steradian,简写为 Sr)表示,球面面积为 4πr2 的球, 其立体角为 4π球面度。 ) 11,辐射强度(Radiant intensity)I:是描述点辐射源的辐射特性的,即指点辐射源在 某一方向上单位立体角内的辐射通量,单位是瓦/球面度·微米(W/Sr·μm )。表示为 : I=d Φ/dΩ。(辐射强度 I 具有方向性,因此 I(θ)是θ的函数。对于各向辐射同性辐射源, I=

海洋水色遥感

海洋水色遥感

ISSN100922722 CN3721118/P海洋地质动态Marine Geology Letters第25卷第10期Vol25No10文章编号:100922722(2009)1020036206地质构造三维可视化系统设计与实现陈 军1,2,权文婷3,周冠华3,温珍河1,2(1国土资源部海洋油气资源与环境地质重点实验室;2青岛海洋地质研究所,青岛266071;3北京师范大学资源学院,北京100875)摘 要:地质构造三维可视化是地质勘探数据处理的重要环节,是正确认识地质构造的重要手段,从而为油藏模拟提供科学的依据。

在与Arcengine技术的支持下,结合地质构造数据特征及其应用要求,设计实现了地质构造三维分析与可视化系统。

试验结果提供了从整体到局部的多角度显示手段与几种常用的数据挖掘方法,从而有助于研究人员准确快速掌握地质构造信息,为进一步的地质研究提供科学依据。

关键词:地质构造;三维可视化;数据挖掘中图分类号:P618.02 文献标识码:A 地质对象相比于地理对象而言,具有平面分布、Z值变化连续、内部信息不完全(或者称地质对象是灰色的)和数据采集代价大等特点[1]。

长期以来,地质工作者习惯于用二维地图产品来抽象形成大脑中的三维地物,这给许多地学专家进行地学分析带来极大不便,单靠二维信息无法较好地描述地质体的三维结构。

为此,多年来地质工作者一直关注地质体三维可视化及建模技术[2]:1992年国际勘探地球物理学家协会和欧洲勘探地球物理学家协会成立了Seg/Eaeg3D建模委员会,开展了3D建模工程;1997年在巴塞罗那召开的国际数学地质会议上,Graeme和Bonham等强调地质材料收稿日期:2009207202基金项目:国家地质大调查专项“我国海域1∶100万地质地球物理系列图”(1212010511302);十一五国家科技支撑项目(2008BAC34B03)作者简介:陈 军(1982—),男,实习研究员,从事地理信息系统与遥感研究.E2mail:chenjun820711@ 3D可视化的重要性[3]。

海洋遥感

海洋遥感

可见光传感器
• 借助于可见光(电磁波的一部分,波长范围是0.38~0.78 微米)实现遥感的仪器 • 特点是空间分辨能力高,对所获取的信息记录在相片上, 比较直观、分析解译较容易、如在测量沿岸水深和水团混 合带,海面石油污染时.可以获得比较精确的图像。 • 缺点是不具有全天时(只能在白天)、全天候(不能透过云雾) 的工作能力。 • 适宜于拍摄云图、观测海冰、海岸形态、沿岸流流向、波 浪折射、浅海测深、海岛和浅滩定位、测定海洋水色透明 度及叶绿素含量等。


红外传感器的特点是:空间分辨率高,大体上接近于可 见光传感器的水平;照片较直观、解译不很难;热红外传 感器具有全天时(即夜间也能工作)的工作能力。缺点是不 能透过云盖米至30厘米之间的电磁波称为微波,工作在这 一波长范围内的传感器称为微波传感器。各种微波辐射计、 微波散射计、雷达高度计、微波测视雷达和合成孔径雷达 都属于微波传感器。 • 微波有其特定的透射“窗口”。对云层、冰雪、地表植被 有一定的穿透能力;另一方面有水汽和氧的选择带,可以 直接测量大气参数。微波传感器特别适用于海洋,因为海 水是一种导体,微波对海水的导电性能很敏感,可以用微 波测量海水盐度。微波能穿透海冰,所以可以用微波测量 海冰厚度。微波对海面粗糙度也十分敏感.因此可用微波 测量海面风速、风向以及波浪的有关参数, 微波传感器 还可用来测定海面油膜的厚度,以上这些都是可见光和红 外传感器很难胜任的。 • • 微波遥感传感器有无源和有源之分 。
海洋环境监测

海洋航运 海洋工程

发展趋势
• 海洋遥感技术的出现,使海洋观测系统有了根本 性的转变,目前已逐步转向以卫星遥感为主,辅 以航空遥感、调查船调查、锚泊浮标和岸站系统 的现代海洋观测系统。 • 近20年来,海洋卫星遥感技术发展迅猛异常,并 取得了举世瞩目的成就。现已从实验阶段发展到 业务应用阶段。全世界共发射10多颗专用的海洋 卫星。我国于1998年发射“风云—1(02)”卫 星.其中有3个半通道用于海洋通道;并已立项发 射我国专门的海洋卫星。 • 当前,一个多层、立体、多角度、全方位和全天 候的对地观测网正在形成。

浅论我国海洋遥感的发展及应用

浅论我国海洋遥感的发展及应用

浅论我国海洋遥感的发展及应用摘要随着对地球认识的不断深化,海洋的作用越来越被人们所认识。

因此海洋在我国社会经济建设中的战略地位极为重要,而利用空间技术检测海洋,在维护我国海洋权益、保护海洋环境、开发海洋资源、减轻海洋灾害和有效实施海洋管理等方面显得尤为重要和迫切。

关键词海洋遥感发展1前言随着对地球认识的不断深化,海洋的作用越来越被人们所认识。

海洋在整个地球环境变化中起着主要的作用,海洋环境的重要性,如对全球碳循环、全球气候变化的作用等,迫使人们采用各种手段对其进行观测和研究。

我国东临太平洋,是世界上重要的海洋国家之一。

大陆海岸线长达1.8万多千米,沿海岛屿有6500多个:岛屿岸线约1.4万多千米,并拥有300万平方千米的管辖海域。

因此海洋在我国社会经济建设中的战略地位极为重要,而利用空间技术检测海洋,在维护我国海洋权益、保护海洋环境、开发海洋资源、减轻海洋灾害和有效实施海洋管理等方面显得尤为重要和迫切。

2何谓海洋遥感海洋遥感(Oceanographic Remote Sensine)是指以海洋及海岸带作为监测、研究对象的遥感,包括物理海洋学遥感,如对海面温度、海浪谱、海风矢量、全球海平面变化等的遥感;生物海洋学和化学海洋学的遥感,如对海洋水色、黄色物体、叶绿素浓度等的遥感;海冰监测,如监测海冰类型、分布和动态变化;海洋污染监测,如油膜污染等。

海洋遥感是利用电磁波与大气和海洋的相互作用原理观测和研究海洋的,其内容涉及到物理学、海洋学和信息科学等多种学科,并与空间技术、光电子技术、微波技术、计算机技术、通讯技术密切相关,是20世纪后期海洋科学取得重大进展的关键学科之一。

3我国海洋遥感的发展我国海洋遥感技术研究始于70年代末,首次接收美国1979年和1981年发射的气象卫星系列TIROS-N/NOAh第六颗和第七颗的数据。

当时也只是把该卫星数据作为遥感试验资料,而真正投入业务运行还是80年代中期。

1990年,我国发射了气象卫星——“风云一号”,该卫星上的2个绿蓝波段是“海窗”对海水水色进行有效地遥感监测,我国开始用自己的卫星进行海洋监测。

水色遥感技术在海洋探测中的应用

水色遥感技术在海洋探测中的应用

水色遥感技术在海洋探测中的应用
水色遥感技术的原理
辐射传输是水色遥感技术的理论基础。

遥感技术关注的波段主要在可见光—近红外光线区域内,通过对于海面发出的辐射的频率和强度进行分析,计算及反演来获得海面的一些基本情况。

水色遥感技术为我们了解广阔无垠的海洋提供了一个可行的途径,能够极大的帮助我们了解海洋表面的一些生物及化学信息。

海面的光学特性是水色遥感技术的计算基础。

两种水体的划分
根据光学性质的不同,海水可以分为两类。

一类水体:其光学性质主要由浮游生物和其伴生物决定,例如深海大洋的开阔水体。

二类水体:其光学性质主要由悬浮物、黄色物质(即有色可溶有机物)决定,例如近岸、河口等受陆源物质排放影响较为严重的地方。

所以二类水体是我们最关注的水体,同时也是计算最复杂,最难以准确预测的水体。

水色遥感技术的应用
海洋是浩瀚而广阔的,同时也是最难以估料的。

传统中的“秀才不出门,便知天下事”在今日是否可以演化为秀才不出门,可知海洋事呢?这是水色遥感技术的一个重要的目的。

研究水色遥感,可以让我们方便的了解海面上的浮游生物及其他生物资源的情况,。

海洋遥感概述

海洋遥感概述

NASA使用MODIS在2000年11月对全球海洋叶绿素浓度(mg/m3)分布的观测
图中红色代表高浓度,绿色代表中等浓度,蓝色代表 低浓度。图中显示了蓝色的热带海洋只有很低的叶绿 素浓度,故被称为“海中沙漠”。
赤潮监测
利用HY-1A卫星资料进行海洋赤潮监测是HY-1A卫星的重要任务之一,通 过对海洋赤潮的监测,展示HY-1A卫星在海洋环境监测中的应用能力,为 我国海洋防灾减灾服务。对2002年6月15日、9月3日发生在渤海、华东 沿海和黄海赤潮进行监测,得到赤潮发生的地理位置和区域大小数据, 为海洋环境保护管理提供了科学依据。
对于海洋研究的重要性
• 海洋观测难度大,因此更依赖于卫星 遥感观测 • 在全球气候变化、大洋环流、赤潮监 测等多个领域具有重要作用 • 发展前景看好,对于考研以及今后的 个人发展具有重要意义。
我国的海洋遥感
• 2002年5月15日,中国第一颗海洋卫星 (“海洋一号A”)在太原卫星发射中心由 长征火箭发射升空,结束了中国没有海洋 卫星的历史。 • 2007年4月11日,装备更为精良的“海洋一 号B”卫星,由长征二号丙运载火箭在太原 卫星发射中心成功发射升空。 • 2011年8月16日,中国在太原卫星发射中心 用“长征四号乙”运载火箭,将中国第一 颗海洋动力环境监测卫星“海洋二号”成 功送入太空。
资源开发:二十一世纪是海洋的世纪,海洋蕴藏着巨大的资源与能源,
人类早已经认识到占地球表面70.8%的海洋对人类的作用和重要性。开发利 用海洋资源,日益成为国际竞争的重要领域。
人们预测,二十一世纪人类社会的经济发展将更加依赖海洋实际价值的利 用,海洋经济将会以更高的速度发展,人类在充分开发利用海洋的同时,更 加重视海洋资源和环境的保护以求持续发展,这是海洋事业发展的总趋势。

《水体和海洋遥感》课件

《水体和海洋遥感》课件
详细描述
遥感技术能够监测到水体中微小的污染物,并且能够通过 多光谱、高光谱等手段对污染物进行定性和定量分析,提 高污染治理的效率和效果。
海洋环境监测
总结词
利用遥感技术监测海洋环境状况,为海洋生态保 护提供数据支持。
总结词
遥感技术能够快速获取大面积的海洋环境数据, 并且能够实时监测海洋环境的变化情况,为海洋 灾害预警和应对提供支持。
水体的遥感信息提取方法
遥感图像处理
通过遥感图像处理技术,如辐 射定标、大气校正等,提取出 水体的信息。
水体参数反演
利用遥感数据和反演算法,计 算出水体的各种参数,如水深 、流速、叶绿素浓度等。
水体动态监测
通过比较不同时间段的遥感数 据,监测水体的变化情况,如 洪水、赤潮等。
03
海洋遥感基础
海洋环境的复杂性
输入 标题
详细描述
通过遥感卫星和无人机搭载的红外、多光谱等设备, 获取水下鱼群分布、数量等信息,分析渔业资源的状 况和变化趋势,为渔业管理提供科学依据。
总结词
总结词
遥感技术能够监测到鱼群的数量和分布情况,并且能 够通过多种手段对渔业生产和管理进行优化和调整,
提高渔业生产效益和管理水平。
详细描述
遥感技术能够快速获取大面积的渔业资源数据,并且 能够实时监测鱼群的变化情况,为渔业生产和管理提 供支持。
随着人工智能和机器学习技术的发展,遥感数据 处理算法将不断优化,提高数据处理的速度和准 确性。
遥感数据的应用拓展
生态环境监测
01
遥感数据将更广泛地应用于生态环境监测,包括水体污染、生
态变化、气候变化等领域。
灾害预警与应对
02
利用遥感数据,可以更快速、准确地监测和预警自然灾害,提

水体和海洋遥感

水体和海洋遥感

海洋遥感的历史Leabharlann 发展01历史回顾自20世纪70年代以来,随着卫星遥感技术的发展,海洋遥感逐渐成为
研究热点。早期的海洋遥感主要关注单一要素的探测,而随着技术的发
展,逐渐发展为多要素、多角度的综合探测。
02
技术进步
随着传感器技术的不断发展,海洋遥感的探测精度和覆盖范围不断提高。
新型传感器如高光谱、多光谱、合成孔径雷达等的应用,使得遥感数据
遥感测量可以获取海洋表面温度分布, 对于研究气候变化、海洋生态系统等 方面具有重要意义。
潮汐
遥感技术可以用于监测潮汐的涨落, 有助于研究海洋环流、河口治理等方 面的问题。
04
水体和海洋遥感的应用
水体遥感的应用
1 2 3
监测水体污染
通过遥感技术可以快速获取大面积水体的水质参 数,如浊度、叶绿素含量、溶解氧等,从而监测 水体污染状况。
水体和海洋遥感
• 水体遥感概述 • 海洋遥感概述 • 水体和海洋的物理特性与遥感测量 • 水体和海洋遥感的应用 • 水体和海洋遥感的未来发展
01
水体遥感概述
定义与特点
定义
水体遥感是指利用卫星、飞机、无人机等平台搭载的传感器,对地球表面水体 进行信息采集、处理和应用的技术。
特点
水体遥感具有大范围、快速、无损、动态监测等优势,能够提供水体分布、水 质状况、水生态等信息,为水资源管理、环境保护、灾害预警等领域提供重要 支持。
洪水预警
遥感技术可以实时监测河流水位变化,结合地理 信息系统(GIS)技术,可以预测洪水趋势,为 防洪减灾提供决策支持。
农业灌溉管理
遥感技术可以监测土壤湿度、作物生长状况等信 息,帮助农民合理安排灌溉时间和水量,提高农 业灌溉效率。

海洋遥感

海洋遥感

长波辐射传输方程—多层τ的线性近似法和 Pade 近似法 微波辐射的特性: 1. 海面发射率 ε 是观测天顶角 θ、辐射计频率 v、极化方式、真实温度 Ts、风速 u 和风向 φ 的函数。 2. 影响海面发射亮温的因素:海面粗糙度和泡沫。 3. 平静海面,满足热动力平衡条件时: ε=1-ρ。 微波表面散射:在两种均匀介质的分界面上,当电磁波从一种介质射入时,在分界面上产生 的散射,叫表面散射。 微波体散射:当电磁波通过某一界面,从一种介质进入另一种介质时,在介质内部产生的散 射,叫体散射。 大气对微波的影响: 1. 在微波波段(1-300GHz 或 30cm-1mm) ,大气衰减主要是 O2 和 H2O 的吸收、大气微粒 (主要是水滴,包括云雾、霾和降水、冰粒和尘埃)的散射造成。对于云雨天气,还考 虑云和降雨的衰减作用。 2. 对于波长相对较长的微波,在大气和非降水的云中传输时,散射作用可忽略,只考虑大 气的吸收和发射。 3. 对于波长相对较短的微波,微粒散射作用不可忽略。 如: 波长>0.3cm 的微波, 直径<100 μm 的水滴对电磁波的衰减主要是水滴的吸收;当水滴直径>100μm(降水)时,散射 作用就很重要 。 天线:是把高频电流转换成无线电波,或把无线电波转换成高频电流的变换器,主要用来发 射和接收无线电波。 天线的特性——辐射效率和辐射方向函数 雷达发射机输出的功率馈送到天线后,通过天线孔径辐射到空间,由于阻抗匹配等因素,发 射功率 Pt 中只有部分功率 Prad 辐射出去。用辐射效率 η 来表示: η=Prad / Pt。 天线的方向性:某特定方向上获得的辐射强度与各向同性天线辐射强度之比。 天线增益: 表示为某一天线与标准天线得到同样功率时在某一方向上的功率密度之比。 描述 了副天线把能量聚集到一个窄的角度范围的能力。分方向增益和功率增益。 波束宽度:指辐射电磁场的大小从主瓣峰值下降 3dB 时 2 点之间的角度间隔。 雷达方程:

海洋科学认知—海洋遥感

海洋科学认知—海洋遥感

大连海洋大学海洋环境工程学院 李微
大连海洋大学海洋环境工程学院 李微
大连海洋大学海洋环境工程学院 李微
大连海洋大学海洋环境工程学院 李微
大连海洋大学海洋环境工程学院 李微
大连海洋大学海洋环境工程学院 李微
大连海洋大学海洋环境工程学院 李微
气象数据监测
大连海洋大学海洋环境工程学院 李微
大连海洋大学海洋环境工程学院 李微
欧洲航天局Envisat卫星于4月22日拍到这张 墨西哥湾海面漂浮泄漏原油的照片,如图所示, 黑色的原油带距离路易斯安那州并不远。
大连海洋大学海洋环境工程学院 李微
4月25日,浮油面积扩大并发出微光
(MODIS)
大连海洋大学海洋环境工程学院 李微
在这张摄于4月28日的航空照片上,墨西哥 湾海面某处形成一条“原油河”。
大连海洋大学海洋环境工程学院 李微
海洋表面现象监测
大连海洋大学海洋环境工程学院 李微
其他应用实例介绍
大连海洋大学海洋环境工程学院 李微
大连海洋大学海洋环境工程学院 李微
舌状Байду номын сангаас角洲 人工截

黄河三角洲在上世纪六七十年代发现了丰厚的油 气资源,成为了我国第二大石油基地—胜利油田。 但是油田的勘探开发也随之带来周边沙环咀境的变化, 我们利用3S技术对黄河三角洲河口进行动态监测与 预报。
➢遥感概述 ➢海洋遥感概述 ➢海洋卫星 ➢应用实例
大连海洋大学海洋环境工程学院 李微
大连海洋大学海洋环境工程学院 李微
大连海洋大学海洋环境工程学院 李微
海洋遥感的应用
➢ 海洋渔业方面 ➢ 海洋水色环境监测 ➢ 海表温度监测 ➢ 海洋灾害监测与预报 ➢ 气象数据监测 ➢ 海洋表面现象监测

海洋遥感基础及应用

海洋遥感基础及应用

海洋遥感基础及应用一、引言海洋遥感是利用卫星、飞机等遥感技术获取海洋信息的一种方法。

随着科技的发展,海洋遥感在海洋资源开发、环境保护、气候变化等方面发挥着越来越重要的作用。

本文将介绍海洋遥感的基础原理以及其在海洋科学、渔业、海洋环境监测等方面的具体应用。

二、海洋遥感基础1. 电磁波与海洋信息获取海洋遥感利用电磁波与海洋中的物质相互作用的原理来获取海洋信息。

不同波段的电磁波与海洋中不同的物质有着不同的相互作用方式,从而可获取到海洋中的温度、盐度、叶绿素含量等信息。

2. 遥感传感器与数据获取遥感传感器是获取海洋遥感数据的核心设备。

常用的遥感传感器包括微波辐射计、红外线辐射计、可见光辐射计等。

这些传感器通过接收海洋反射或辐射出的电磁波,将其转化为数字信号,进而获取到海洋遥感数据。

三、海洋遥感的应用1. 海洋科学研究海洋遥感技术在海洋科学领域发挥着重要作用。

通过获取海洋表面温度、叶绿素含量等信息,科学家可以了解海洋的动态变化,研究海洋生态系统的结构和功能,探索海洋生物多样性等问题。

2. 渔业资源管理海洋遥感技术可用于监测海洋中的浮游生物分布、海洋温度等信息,从而为渔业资源管理提供科学依据。

通过分析海洋遥感数据,可以确定适宜的渔场位置、预测渔业资源的分布和变化趋势,帮助渔民提高渔业生产效益。

3. 海洋环境监测海洋遥感技术在海洋环境监测中也发挥着重要作用。

通过监测海洋表面温度、叶绿素含量、海洋溶解氧等指标的变化,可以实时监测海洋环境的状况,及时发现和预警海洋污染事件,保护海洋生态环境。

4. 气候变化研究海洋是地球上重要的热交换介质,对气候变化有着重要的影响。

海洋遥感技术可用于监测海洋表面温度、海洋风场等信息,为气候变化研究提供数据支持。

通过分析海洋遥感数据,科学家可以了解海洋对气候变化的响应过程,预测未来的气候变化趋势。

5. 海洋灾害预警海洋遥感技术在海洋灾害预警中起到了重要作用。

通过监测海洋表面风场、海浪高度等信息,可以及时预警台风、海啸等海洋灾害事件,为海洋沿线地区的居民提供重要的安全保障。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Lu
水中物质
海表
rLs Lsr
Lwc ts Lru
2018/10/14
※.利用水气辐射传输模型反演的主要过程
(1)辐射定标
(2)大气校正
Lt Lwts rLstd Lr La Lwcts Lru
采用近似法(如对模型进行合理的简化)和数值法(如 采用一些同步的大气数据进行计算); 利用近红外两个波段的离水辐射度近似为0来进行校正。
Carder,1996;
g1 0.0949 i, g 2 0.0794 i
辐射因子i为海气透射比与海水折射率之比;
总吸收系数和后向散射系数:
a aw ag ad a ph , bb bbw bbp
2018/10/14
以上这些吸收系数和后向散射系数对应着各物质的浓度。
5.4 海洋水色要素浓度反演
单位:Sr-1
5.4 海洋水色要素浓度反演
1.反演海洋水色要素需考虑的因素
(1)水色遥感图像的大气校正;
(2)多种水色要素对离水辐射度的共同贡献; (3)运动的海水对水色要素反演的影响。
2018/10/14
5.4 海洋水色要素浓度反演
2.海洋水色要素的反演方法
• 经验公式法
-通过测量水体表面的光谱辐射特征和水中各水 色要素的浓度,建立二者之间的定量关系。
2018/10/14
5.1 概述
4.海洋水色遥感的几个基本概念
d. 黄色物质
- 在全球碳循环研究中比较重要
海水中的融解有机物DOM包括颗粒状有机碳POC和融 解的有机碳DOC。 海水中的有色融解有机物(CDOM) 被称为黄色物质。黄色物质在蓝色波段具有强烈的吸收。 一般定义黄色物质浓度为:
2018/10/14
WN ( ) LWN ( ) E0 ( )
归一化离水反射率:
归一化离水反射率和归一化离水辐射度与入射光达 到海面的辐照度无关,只与当时当地的海洋内部各种粒 子的成分和浓度有关。
※ 遥感反射率: 2018/10/14
Rrs ( )
Lw ( ) ti (1 ) R LWN ( ) WN ( ) 2 Ed ( ,0 ) Qnw (1 rR) E0 ( )
La Lpath
Lt rLsta Lwta Lpath
Lt Lwts rLstd Lr La
Lr
ta , td , t s
Lwc
c. 考虑多次散射和白浪引起的散射
Lt Lwts rLstd Lr La
Lw (ti / n )Lu
2 w
Ls ti , r , nw
海洋遥感
The Oceanic Remote Sensing
2018/10/14
第五章 海洋水色遥感
概述


海洋水色遥感机理
生物-光学算法的物理基础 海洋水色要素浓度反演 赤潮现象的遥感监测与反演
2018/10/14
5.1 概述
1.海洋水色遥感传感器
1970年,Clarke等成功的验证了利用航空光谱遥 感水体表层叶绿素浓度的可行性。 • CZCS(Nimbus-7) • SeaWifs(SeaStar) • MODIS(Terra-Aqua) • COCTS(HY-1A、HY-1B)
2018/10/14
5.1 概述
4.海洋水色遥感的几个基本概念
c. 海水的色素
叶绿素:反映海洋生产力的变化,最主要的为叶绿素 a, 在蓝光(420-500nm)和红光(600-700nm)波段具有两 个强吸收谷。 荧光:浮游植物吸收的太阳能在某波段上的辐射光, 该值可作为植物健康状况的标志。 色素浓度:叶绿素a和褐色素浓度之和,常用C表示。

R (bsc a) /(bsc a)
5.3 生物-光学算法的物理基础
1.离水辐射度
(3)水次表面向上辐照度与辐射度 的关系
Eu (,0 ) Q Lu (,0 ) Ed (,0 )
Lw

r
Ed (,0 ) E (,0 ) Lu (,0 ) u
R
体积散射相函数Q为散射光方向的辐射度与辐照度之比,它与介质对 光子散射的空间分布有关。对于光学上各向同性的介质,Q等于π。在可见 光和近红外光波段,海水的Q约等于4.55;当接近中午太阳天顶角较小时, Q约等于 2018/10/145.0。
2018/10/14
5.2 海洋水色遥感机理
※.海洋水色遥感的正演与反演
2018/10/14
5.2 海洋水色遥感机理
※.大气校正前后的辐射度对水色要素的指示不同
TOA
BOA
2018/10/14
5.2 海洋水色遥感机理
2.具体的模型描述
- 水气辐射传输模型
a. 简化模型 b. a模型细化
Lt
太阳 传感器
2018/10/14
5.1 概述
4.海洋水色遥感的几个基本概念
b. 海水的光学特性
海水的光学特性有:表观光学量和固有光学量。 表观光学量由光场和水中的成分而定,包括向下辐照 度、向上辐照度、离水辐亮度、遥感反射率、辐照度比等, 以及这些量的衰减系数。 固有光学量与光场无关,只与水中成分分布及其光学 特性有关,直接反映媒介的散射和吸收特征,如:吸收系 数;散射系数;体积散射函数等。
2018/10/14
5.1 概述
4.海洋水色遥感的几个基本概念
f. 赤潮
海水中的浮游生物过度繁殖或聚焦致使海水变色(多 为红色)的一种生态环境恶化的现象。
2018/10/14
5.2 海洋水色遥感机理
1.海洋水色遥感机理的简单描述
海洋水色遥感是基于传感器接收的离水辐射(透射 入水的辐射经过水体反射离开水面的辐射)所进行的。 水中各重要成分浓度变化→水体吸收和散射光学性 质变化→离水辐射度变化→传感器接收信号发生变化。 水色遥感过程:通过大气校正,得到离水辐射,再 根据各成分浓度与离水辐射之间的相关关系,反演得到 各水色要素浓度。
生物-光学算法已经扩展到了水中其它组分及海水光学性质的研究。
2018/10/14
5.3 生物-光学算法的物理基础
1.离水辐射度
(1)水面上的下行辐照度
Ed (,0 ) Ed (,0 )
Lw

r
Ed (,0 ) E (,0 ) Lu (,0 ) u
(2)水面向下的辐照度
Ed (,0 )
5.3 生物-光学算法的物理基础
1.离水辐射度
(4)离水辐射度Lw的计算
Lw ( ,v ) Lw ( ,0)
(1 ) Ed ( ,0 ) Ed ( ,0 ) 1 rR

Ed (,0 )
t i Lu ( ,0 ) (nw ) 2

Lw

r
Ed (,0 ) E (,0 ) Lu (,0 ) u
2018/10/14
5.1 概述
4.海洋水色遥感的几个基本概念
a. 海洋水体分类
根据Morel等提出的双向分类法,可分为:
- Ⅰ类水体:光学特性主要由浮游植物及其分解物决定; - Ⅱ类水体:光学特性除了与浮游植物及其分解物有关外,
还由悬浮物、黄色物质决定,其水色由水体的各成分以非 线性方式来影响。
2018/10/14
5.1 概述
1.海洋水色遥感传感器
2018/10/14
5.1 概述
1.海洋水色遥感传感器
波段 设置
2018/10/14
5.1 概述
2.与海洋水色遥感有关的应用和研究
• 全球气候变化(包括海洋碳通量研究)
• 海岸带管理与(工程)环境评价
• 海洋初级生产力与海洋渔业资源的开发、保护 • 海洋污染环境的监测 • 海洋动力环境研究 • 海洋生态系统与混合层物理性质的关系研究
2018/10/14
※.利用水气辐射传输模型反演的主要过程
������ 以SeaWIFS(SeaStar)对一类水体探测为例, 设置了大气校正通道7(765nm) 和8(865nm)。这二 个波段的离水辐射度近似为0。
第8波段气溶胶散射 计算n值
其它波段气溶胶散射
(3)水色要素反演-(生物光学算法、经验公式法)
R
Ed (,0 ) (1 )Ed (,0 ) rEu (,0 ) (1 )Ed (,0 ) rREd (,0 )
R Eu (,0 ) / Ed (,0 )
2018/10/14
Ed ( ,0 )
(1 ) Ed ( ,0 ) 1 rR
(1)叶绿素浓度反演
a.代数法(基于模型的解析算法)
浮游植物色素浓度C的反演:
利用吸收系数: 利用衰减系数:
a( ) aw ( ) f1 ( ) exp(f 2 ( )) C b( 500nm) 0.3C 0.62
0.32i bbw 400 Y [ X( ) ] a 3.4
Lee等进行了改进:
2018/10/14
Rrs ( )
5.4 海洋水色要素浓度反演
(1)叶绿素浓度反演
b.经验算法(★)
对于I类水体:
a( ) aw ( ) a p , bb ( ) bbw ( ) bbp ( ) C
常用的经验关系:蓝绿比值经验算法
C A( Lw (i ) B ) Lw ( j ) logC log A B log( Lw (i ) ) Lw ( j )
• Gordon双通道算法
其它情况:
C 3.33(
Lu (443 ,0 ) B R(443,0 ) B ) 或 C A( ) ※. NASA的另一种方法: C A( Lu (550,0 ) R(550,0 )
相关文档
最新文档