电路与模拟电子技术 第4章 正弦交流电路
电工电子技术基础
读书笔记
读书笔记
对于我这个学计算机的人来说这本书相对简单,对理解深入的电学知识有很好的指导。 这本书解答了我最近的很多疑惑,非常满意。
目录分析
01
1.1电路及 其模型
02
1.2电路基 本物理量
03
1.3基尔霍 夫定律
04
1.4电路元 件
06
1.6内容拓 展基尔霍夫 简介
05
1.5电路的 工作状态
05
3.5正弦交 流电路
3.8小结
3.7内容拓展非正 弦周期信号电路的
谐波分析
3.9习题
4.1三相电源 4.2三相负载的联结
4.3三相功率 4.4安全用电
4.6小结
4.5内容拓展电能 生产、输送、分配
和消费
4.7习题
5.2 RC电路的响应
5.1暂态过程与换 路定则
5.3一阶电路的三 要素法
5.4静态工 作点的稳定
02
7.5共集电 极放大电路
03
7.6功率放 大电路
04
7.7内容拓 展电子管及 其放大电路
05
7.8小结
06
7.9习题
1
8.1集成运算 放大器概述
2
8.2放大电路 中的负反馈
3
8.3基本运算 电路
4
8.4正反馈振 荡电路
5 8.5内容拓展
集成电路及反 馈拓展应用
谢谢观看
4
10.8小结
5
10.9习题
11.1双稳态触发器 11.2寄存器
11.3计数器
11.4内容拓展智能 尘埃粒子计数器
11.5小结
11.6习题
作者介绍
同名作者介绍
这是《电工电子技术基础》的读书笔记模板,暂无该书作者的介绍。
模拟电子技术题库参考答案(1-5章) - 副本
(2) A um
( Rc // Rc )
rbe
30(5 // 15) 75 1
-3-
模拟电子技术试题汇编参考答案
(3)
Ri Rb1 // Rb 2 // rbe rbe 1k R0 Rc 5k
(4) C e 断开, Re 有电流串联负反馈,( Aum 下降), Ri 增加, R0 不变;
(1) 画出直流通路和微变等效电路 (6 分)。 (2)设 U BEQ 0.7V ,求静态工作点
I CQ 、 U CEQ (4 分)
(3)求 Ri 、 Ro 、 Au
.
Uo Ui
.
.
,设 =30,
rbb' =19 4 (6 分)
(4) I CEO 、U CES 忽略不计,估算最大 不失真输出电压峰值 U om
rbe
100 (3 // 3) 50 3
Ri 5 // 15 // 3k 1.66k R0 RC 3k
(3) Aus
. . Ri 1.66 Au (50) 31.2 R s Ri 1 1.66
-4-
模拟电子技术试题汇编参考答案
3、如下图, C1 ~ C4 足够大,
Ri R1 // R3 // rbe rbe rbb ' (1 ) 26 26 194 (1 30) 1K 1 I EQ
(3) R R 10 K 0 4
U ( R4 // R L ) 30(10 // 10) 150 Au 0 1 u rbe
B;A (8)C (9)A (10)B(11)C(12) C
(1)A(2)B;A;C(3)B;C;C (4) C,B (5)C(6) A(7) ① B ② C ③B15、C
第3章正弦交流电路电路与模拟电子技术(1)
j 5π 4 2π 3 π 4
( 2 ) i1 ( t ) 10 cos( 100 π t 30 )
0
i2 ( t ) 10 sin( 100 π t 15 )
0
i1 ( t ) 10 sin(100πt 1200 )
i1 i2
称i1超前于i2
t
j 12 < 0
i2 i1
称i1滞后于i2
t
1
2
20
称i1与i2 同相位
t
1=
j 1 2 = 0
i1 i2
j 12 = 1800
i1 i2
i1与i2 反相位
t
1 2
12
15
例
解
计算下列两正弦量的相位差。
(1) i1 ( t ) 10 sin(100π t 3π 4) i2 ( t ) 10 sin(100π t π 2)
60 o 30 o
I 860 A I 6 30 A
o 1
. o 2
.
I2
相量图 相量式
22
正弦量的相量表示:
有效值相量
复数的模表示正弦量的有效值 复数的幅角表示正弦量的初相位
u(t ) 2U cos( t ) U U
幅值相量 复数的模表示正弦量的幅值
复数的幅角表示正弦量的初相位
第3章 正弦交流电路
3.1 正弦量的基本概念 3.2 正弦量的相量表示法及相量图 3.3 正弦稳态电路的相量模型
3.4 阻抗和导纳
3.5 阻抗的串联与并联
3.6 正弦稳态电路的分析
3.7 正弦稳态电路的功率及功率因数的提高
模拟电子技术第4章习题答案
4 基本放大电路自我检测题一.选择和填空1. 在共射、共基、共集三种基本放大电路组态中,希望电压放大倍数绝对值大,可选用 A 或C ;希望带负载能力强,应选用 B ;希望从信号源索取电流小,应选用 B ;希望既能放大电压,又能放大电流,应选用 A ;希望高频响应性能好,应选用 C 。
(A .共射组态,B .共集组态,C .共基组态)2.射极跟随器在连接组态方面属共 集电 极接法,它的电压放大倍数接近 1 ,输入电阻很 大 ,输出电阻很 小 。
3.H 参数等效电路法适用 低 频 小 信号情况。
4.图解分析法适用于 大 信号情况。
5.在线性放大条件下,调整图选择题5所示电路有关参数,试分析电路状态和性能指标的变化。
(A .增大, B .减小,C .基本不变) (1)当R c 增大时,则静态电流I CQ 将 C ,电压放大倍数v A 将 A ,输入电阻R i 将 C ,输出电阻R o 将 A ;(2)当V CC 增大,则静态电流I CQ 将 A ,电压放大倍数v A 将 A ,输入电阻R i 将 B ,输出电阻R o 将 C 。
6.在图选择题5所示电路中 ,当输入电压为1kHz 、5mV 的正弦波时,输出电压波形出现底部削平失真。
回答以下问题。
(1)这种失真是 B 失真。
(A .截止,B .饱和,C .交越,D .频率) (2)为了消除失真,应 B 。
(A .增大C R ,B .增大b R ,C .减小b R ,D .减小 CC V ,E .换用β大的管子)。
R b R c+V CCC 2C 1R Lv iv oT图选择题57. 随着温度升高,晶体管的电流放大系数 _A_,穿透电流CEO I _A_,在I B 不变的情况下b-e 结电压V BE_B _。
( A .增大,B .减小,C .不变)8.随着温度升高,三极管的共射正向输入特性曲线将 C ,输出特性曲线将 A ,输出特性曲线的间隔将 E 。
(A .上移, B .下移,C .左移,D .右移,E .增大,F .减小,G .不变) 9.共源极放大电路的v o 与v i 反相位,多作为 中间级 使用。
中南大学电路与模拟电子技术(计算机类专用) 第3章 正弦交流电路PPT课件
变化进程,称为正弦量的相角或相位。
( )就是相角随时间变化的频率,即
d (t
dt
i
)
单位:rad/s,它是反映正弦量变化快慢的要素。
、T和f三者之间的关系:
T2
2f
频率f的单位为赫芝(HZ)
1KH 1Z30HZ 1MH 1Z 60 HZ
在工程实际中,往往以频率的大小作为区分电路的标志,如高频
电路,低频电路。
5
<三> 初相角Yi
i= Imcos( t+i)
5.2 正弦量3 它是正弦量在t=0时刻的相角,即 (ti)/t 0i
单位:弧度或度 ( 0 ) 。
i 主值范围内取值
iImcost(76)Imcost(56)
Yi的大小与计时起点的选择有关。
正弦交流电路 章3第
第5章 正弦交流电路相量法
掌握相量与正弦量的关系;电阻、电容和电感元件电压和电 流的相量关系。掌握用相量法分析正弦稳态电路的方法(包 括结点法、网孔法、叠加定理和戴维宁定理),掌握正弦电 路功率计算问题。 注意:直流电路的一般分析方法和电路定理同样可用于分析
正弦稳态电路。 相量是正弦量的一种表示方法,它们之间是一一对应 关系, 而相量不等于正弦量。
A B B A e ejj B a B Aej(a b)B A(ab)
几何意义: j
B A/B
A
1
16
3.2.3 相量法的基础
一、正弦量5的.相3量相量法的基础1
欧拉公式: co sjsin ej
i 2Icost (i)Re2[Iej(ti)] Re2[Iejiejt]
电路与模拟电子技术基础 习题及实验指导答案 第二版
《电路与模拟电子技术基础 习题及实验指导答案 第二版》第1章 直流电路一、填 空 题1.4.1 与之联接的外电路;1.4.2 1-n ,)1(--n b ;1.4.3 不变;1.4.4 21W ,负载;1.4.5 Ω1.65A , ; 1.4.6 1A 3A , ; 1.4.7 3213212)(3)23(R R R R R R R +++=; 1.4.8 1A ;1.4.9 Ω4.0,A 5.12;1.4.10 电压控制电压源、电压控制电流源、电流控制电压源、电流控制电流源;1.4.11 3A ;1.4.12 3A ;1.4.13 Ω2;1.4.14 15V ,Ω5.4;1.4.15 V 6S =U 。
二、单 项 选 择 题1.4.16 C ; 1.4.17 B ; 1.4.18 D ; 1.4.19 A ;1.4.20 A ; 1.4.21 C ; 1.4.22 B ; 1.4.23 D 。
第2章一阶动态电路的暂态分析一、填 空 题2.4.1 短路,开路;2.4.2 零输入响应;2.4.3 短路,开路;2.4.4 电容电压,电感电流;2.4.5 越慢;2.4.6 换路瞬间;2.4.7 三角波;2.4.8 s 05.0,k Ω25; 2.4.9 C R R R R 3232+; 2.4.10 mA 1,V 2。
二、单 项 选 择 题2.4.11 B ; 2.4.12 D ; 2.4.13 B ;2.4.14 D ; 2.4.15 B ; 2.4.16 C 。
第3章 正弦稳态电路的分析一、填 空 题3.4.1 ︒300.02s A 10, , ; 3.4.2 V )13.532sin(25)(︒+=t t u ;3.4.3 容性, A 44;3.4.4 10V ,2V3.4.5 相同;3.4.6 V 30,20V ;3.4.7 A 44,W 7744;3.4.8 A 5;3.4.9 减小、不变、提高;3.4.10 F 7.87μ;3.4.11 20kVA ,12kvar -;3.4.12 不变、增加、减少;3.4.13 电阻性,电容性; 3.4.14 LC π21,阻抗,电流;3.4.15 1rad/s ,4;3.4.16 Ω10;3.4.17 P L U U =,P L 3I I =,︒-30; 3.4.18 P L 3U U =,P L I I =,超前。
模拟电子技术基础-总复习最终版
其中 RP R1 // R2 // R3 // R4
另外,uN
R R Rf
uo,uN
uP
ui1 R1 ui2i1 R2 ui3i2R3
P+ + u
o
R4 i4
uo
RP 1
Rf R
ui1 R1
ui 2 R2
ui3 R3
i3
4、 电路如图所示,各引入那种组态的负反馈?设集成运放 输出电压的最大幅值为±14V,填表。
11
14
5、求解图示电路的运算关系式。
同相求和电路 电压串联负反馈
6、求解图示电路的运算关系式。
R2
R1 ui R3
_
R4
+A1+ uo1
R5
_ +A2+
uo
7、求解图示电路的运算关系式。
电压并联负反馈。 电压放大倍数为:-R2/R1。
(3)交流负反馈是指 。 A.阻容耦合放大电路中所引入的负反馈 B.只有放大交流信号时才有的负反馈 C.在交流通路中存在的负反馈
解:(1)D (2)B (3)C
4、选择合适答案填入空内。
A.电压 B.电流 C.串联 D.并联
(1)为了稳定放大电路的输出电压,应引入 负反馈;
(2)为了稳定放大电路的输出电流,应引入 负反馈;
解:将电容开路、变压器线圈短路即为直流通路,图略。 各电路的交流通路如解图P2.2所示。
5.在图示电路中,已知晶体管β,rbe,RB,RC=RL,VCC。
(1)估算电路的静态工作点、电压放大倍数、输入电阻和输出电阻。
(2)当考虑信号源内阻为RS时,Aus的数值。
6. 电路如图所示,晶体管的=100,=100Ω。
《电路与模拟电子技术》课后习题答案
U=IR+US=2×1+4=6V
PI=I2R=22×1=4W,
US与I为关联参考方向,电压源功率:PU=IUS=2×4=8W,
U与I为非关联参考方向,电流源功率:PI=-ISU=-2×6=-12W,
验算:PU+PI+PR=8-12+4=0
1.5求题1.5图中的R和Uab、Uac。
解:对d点应用KCL得:I=4A,故有
RI=4R=4,R=1Ω
Uab=Uad+Udb=3×10+(-4)=26V
Uac=Uad-Ucd=3×10-(-7)×2=44V
1.6求题1.6图中的U1、U2和U3。
解:此题由KVL求解。
对回路Ⅰ,有:
U1-10-6=0,U1=16V
对回路Ⅱ,有:
U1+U2+3=0,U2=-U1-3=-16-3=-19V
UT=4IT+2I1-2I1=4IT
因此,当RL=R0=4Ω时,它吸收的功率最大,最大功率为
第三章正弦交流电路
3.1两同频率的正弦电压, ,求出它们的有效值和相位差。
解:将两正弦电压写成标准形式
,
其有效值为
,
3.2已知相量 ,试写出它们的极坐标表示式。
解:
3.3已知两电流 ,若 ,求i并画出相图。
解: ,两电流的幅值相量为
解:以结点a,b,c为独立结点,将电压源变换为电流源,结点方程为
解方程得
Ua=21V,Ub=-5V,Uc=-5V
2.12用弥尔曼定理求题2.12图所示电路中开关S断开和闭合时的各支路电流。
解:以0点为参考点,S断开时,
, ,
,IN=0,
S合上时
模拟电子技术 随堂练习
模拟电子技术随堂练习第1章常用半导体器件4. 电路如图所示,设全部二极管均为理想元件,当输入电压ui=10sin tV时,输出电压最大值为10V的电路是( )。
参考答案:C5. 电路如图所示,D1,D2均为理想二极管,设U1=10V,ui=40sinωtV,则输出电压uO应为( )。
6.稳压管的动态电阻rZ是指( )。
A.稳定电压与相应电流IZ之比B.稳压管端电压变化量UZ与相应电流变化量IZ的比值3. 晶体管的电流放大系数是指( )。
A.工作在饱和区时的电流放大系数B.工作在放大区时的电流放大系数C.工作在截止区时的电流放大系数参考答案:B4. 低频小功率晶体管的输入电阻rbe等于( )。
A. B.C.参考答案:B5. 某电路如下图所示,晶体管集电极接有电阻RC,根据图中的数据判断该管处在( )。
参考答案:B6. 某场效应管的漏极特性曲线如图所示,则该场效应管为( )。
A.P沟道耗尽型MOS管B.N沟道增强型MOS管C.P沟道增强型MOS管D.N沟道耗尽型MOS管参考答案:B7. 已知某场效应管的漏极特性曲线如图所示,则此管子的夹断电压约为( )。
A.0VB.+2VC.-2VD.-1V参考答案:C8. 已知某场效应管的漏极特性曲线如图所示,则在UDS=10V,UGS=0V处的跨导gm约为( )。
A.1mA./VB.0.5mA./VC.-1mA./VD.-0.5mA./V参考答案:A9. 如图示放大电路中接线有错误的元件是( )。
A.RLB.RBC.C1D.C2参考答案:B10. 放大电路如图所示,由于RB1,和RB2阻值选取得不合适而产生了饱和失真,为了改善失真,正确的做法是( )。
A.适当增加RB2,减小RB1B.保持RB1不变,适当增加RB2C.适当增加RB1,减小RB2D.保持RB2不变,适当减小RB1参考答案:C11. 图示电路,已知晶体管,,忽略UBE,如要将集电极电流IC调整到1.5mA.,RB应取( )。
模拟电子技术基础-自测题答案
第1章半导体二极管及其基本应用1.1 填空题1.半导体中有空穴和自由电子两种载流子参与导电。
2.本征半导体中,假设掺入微量的五价元素,则形成N 型半导体,其多数载流子是电子;假设掺入微量的三价元素,则形成P型半导体,其多数载流子是空穴。
3.PN结在正偏时导通反偏时截止,这种特性称为单向导电性。
4.当温度升高时,二极管的反向饱和电流将增大,正向压降将减小。
5.整流电路是利用二极管的单向导电性,将交流电变为单向脉动的直流电。
稳压二极管是利用二极管的反向击穿特性实现稳压的。
6.发光二极管是一种通以正向电流就会发光的二极管。
7.光电二极管能将光信号转变为电信号,它工作时需加反向偏置电压。
8.测得某二极管的正向电流为1 mA,正向压降为0.65 V,该二极管的直流电阻等于650 Ω,交流电阻等于26 Ω。
1.2 单项选择题1.杂质半导体中,多数载流子的浓度主要取决于( C )。
A.温度B.掺杂工艺C.掺杂浓度D.晶格缺陷3.硅二极管的反向电流很小,其大小随反向电压的增大而(B )。
A.减小B.基本不变C.增大4.流过二极管的正向电流增大,其直流电阻将( C )。
A.增大B.基本不变C.减小5.变容二极管在电路中主要用作(D )。
、A.整流B.稳压C.发光D.可变电容器1.3 是非题1.在N型半导体中如果掺人足够量的三价元素,可将其改型为P型半导体。
(√)2.因为N型半导体的多子是自由电子,所以它带负电。
(×)3.二极管在工作电流大于最大整流电流I F时会损坏。
(×)4.只要稳压二极管两端加反向电压就能起稳压作用。
(×)第2章半导体三极管及其基本应用2.1 填空题1.晶体管从结构上可以分成PNP 和NPN两种类型,它工作时有2种载流子参与导电。
2.晶体管具有电流放大作用的外部条件是发射结正偏,集电结反偏。
3.晶体管的输出特性曲线通常分为三个区域,分别是放大、饱和、截止。
4.当温度升高时,晶体管的参数β增大,I CBO增大,导通电压U BE 减小。
电路与模拟电子技术殷瑞祥主编-课后习题答案
电路与模拟电子技术殷瑞祥主编-课后习题答案电路与模拟电子技术殷瑞祥主编_课后习题答案第1章电阻电路1.1 正弦交流电交流电1.2 电流电压功率1.3 电压电流功率1.4 幅值相位频率1.5 幅值相位频率 2 21.6 2 21.7 相电压线电压220V 380V1.8 星型三角形1.9 31.10 超前滞后同相1.11 31.12——1.25 F F T T F F T F F T T F T T (1)固定电阻器可分为碳膜电阻器、金属氧化膜电阻器、金属膜电阻器、线绕电1.26 答:阻器和贴片式电阻器等。
①碳膜电阻器:碳膜电阻器以碳膜作为电阻材料,在小圆柱形的陶瓷绝缘基体上,利用浸。
电阻值的调整和确定通过在碳膜上刻螺纹槽来实渍或真空蒸发形成结晶的电阻膜(碳膜)现;②金属氧化膜电阻器:金属氧化膜电阻器的电感很小,与同样体积的碳膜电阻器相比,其额定负荷大大提高。
但阻值范围小,通常在200Kω 以下;③金属膜电阻器:金属膜电阻器的工作稳定性高,噪声低,但成本较高,通常在精度要求较高的场合使用;④线绕电阻器:线绕电阻器与额定功率相同的薄膜电阻相比,具有体积小的优点⑤贴片式电阻器:贴片式电阻器的端面利用自动焊接技术,直接焊到线路板上。
这种不需引脚的焊接方法有许多优点,如重量轻、电路板尺寸小、易于实现自动装配等。
(2)电位器根据电阻体的材料分有:合成碳膜电位器、金属陶瓷电位器、线绕电位器、实心电位器等①合成碳膜电位器:分辨率高、阻值范围大,滑动噪声大、耐热耐湿性不好;②金属陶瓷电位器:具有阻值范围大,体积小和可调精度高(±0.01)等特点;③线绕式电位器:线绕式电位器属于功率型电阻器,具有噪声低、温度特性好、额定负荷大等特点,主要用于各种低频电路的电压或电流调整;④微调电位器:微调电位器一般用于阻值不需频繁调节的场合,通常由专业人员完成调试,用户不可随便调节。
⑤贴片式电位器:贴片式电位器的负荷能力较小,一般用于通信、家电等电子产品中。
模拟电子技术基础知识直流电路与交流电路的区别与应用
模拟电子技术基础知识直流电路与交流电路的区别与应用电子技术是现代社会中不可或缺的一部分,而直流电路和交流电路是电子技术中最基本的两种电路。
在本文中,我们将重点讨论直流电路和交流电路的区别以及它们在实际应用中的不同用途。
一、直流电路的概念与特点直流电路是指电流的方向始终保持不变的电路。
直流电路中的电流流向是单一的,电压也是恒定的,不会随时间的变化而改变。
与直流电路相关的特点包括以下几个方面:1. 电流方向不变:直流电路中的电流流向始终保持一致,不会发生反向流动。
2. 电压恒定:直流电路中的电压是恒定的,不会随时间的推移而发生变化。
3. 集中式能量传输:直流电路能够以高效的方式将能量从电源传输到负载,因此广泛应用于远距离能量传输、电池和蓄电池等场景。
二、交流电路的概念与特点交流电路是指电流方向随时间周期性变化的电路。
交流电路中的电流和电压呈正弦波形,在正半周期和负半周期中电流方向会反向流动。
与交流电路相关的特点包括以下几个方面:1. 电流方向周期性变化:交流电路中的电流方向会随时间定期改变,呈现正弦波形。
2. 电压周期性变化:交流电路中的电压也会周期性变化,同样呈现正弦波形。
3. 分布式能量传输:交流电路适合长距离能量传输和电力系统中的能量分配,因此广泛应用于电网输电、家庭用电等领域。
三、区别与应用直流电路和交流电路在特点和应用方面存在明显的区别。
1. 电流和电压特点区别:直流电路的电流是单向流动的,电压是恒定的;交流电路的电流和电压都是周期性变化的。
2. 应用领域区别:直流电路的应用领域包括电池供电设备、电子计算机及其周边设备等。
例如,手机、笔记本电脑等个人电子设备通常采用直流电源供电。
交流电路的应用领域广泛,包括电力系统、家庭用电、电机传动、电焊等。
例如,电力系统中的输电线路以及家庭中的插座都是交流电路。
四、直流电路与交流电路的应用案例比较下面通过两个实际应用案例,进一步比较直流电路和交流电路的应用差异。
模拟电子技术教学课件正弦波振荡电路
·
+
I
C
+
超前移相网络
U·i
R
U·o
·
+
I
R
+
滞后移相网络
U·i
C U·o
-
-
-
-
(a)
(b)
图10.17 RC串联移相网络
2024/7/27
15
H ( ) 1 0 .7
0 ( )
截止频率
C=
1
τ= RC
H
U o U i
+ 90° + 45°
0
C
图10.18 RC串联超前网络的频率特性曲线
58
二.电容反响式振荡电路(电容三点式)
50 F 50mH
12V
0.047F 10 F
6.8k 10k
C
0.01F
8
1.起振过程及起振条件 •
Ui
·
•
Uo
••
A
Au Fu 1
•
•
•
U f Ui
Uf
·
F
A • uF • u A u ejA F u ejF A u F u ej(A F )
AuFu 1 幅度起振条件
AF2n n0,1,2相位起振条件
2024/7/27
9
2.平衡条件
••
Au Fu 1
•
•
U f Ui
L
Is
C
U o
r
Z
电路图
2024/7/27
48
(rjL)
Z
rjL
1
jC
1
jC
L
r j(C L1C)
L
令 1
0
模拟电子技术基础第四版课后答案解析
模拟电子技术基础第1章 常用半导体器件选择合适答案填入空内。
(l)在本征半导体中加入( A )元素可形成N 型半导体,加入( C )元素可形成P 型半导体。
A.五价 B. 四价 C. 三价 (2)当温度升高时,二极管的反向饱和电流将(A) 。
A.增大 B.不变 C.减小(3)工作在放大区的某三极管,如果当I B 从12 uA 增大到22 uA 时,I C 从l mA 变为2mA ,那么它的β约为( C ) 。
(4)当场效应管的漏极直流电流I D 从2mA 变为4mA 时,它的低频跨导g m 将( A ) 。
A.增大;B.不变;C.减小 电路如图 所示,已知10sin i u t ω=(V ),试画出i u 与o u 的波形。
设二极管导通电压可忽略不计。
图 解图解:i u 与o u 的波形如解图所示。
电路如图所示,已知t u i ωsin 5=(V ),二极管导通电压U D =。
试画出i u 与o u 的波形图,并标出幅值。
图 解图电路如图所示, 二极管导通电压U D =,常温下mV U T 26≈,电容C 对交流信号可视为短路;i u 为正弦波,有效值为10mV 。
试问二极管中流过的交流电流的有效值为多少?解:二极管的直流电流 ()/ 2.6DD I V U R mA =-=其动态电阻:/10D T D r U I ≈=Ω 图故动态电流的有效值:/1di D I U r mA =≈现有两只稳压管,稳压值分别是6V 和8V ,正向导通电压为。
试问: (1)若将它们串联相接,则可得到几种稳压值?各为多少? (2)若将它们并联相接,则又可得到几种稳压值?各为多少?解:(1)串联相接可得4种:;14V ;;。
(2)并联相接可得2种:;6V 。
已知图 所示电路中稳压管的稳定电压6ZU V =,最小稳定电流min 5Z I mA =,最大稳定电流max 25Z I mA =。
(1)分别计算I U 为10V 、15V 、35V 三种情况下输出电压O U 的值; (2)若35IU V=时负载开路,则会出现什么现象? 为什么?解:(1)只有当加在稳压管两端的 电压大于其稳压值时,输出电压才为6V 。
模拟电子技术(西电第三版)第4章 差动放大电路与集成运算放大器
4
实图4.1 LM741的管脚排列及序号 (a) 外引脚排列顺序;(b) 符号
5
2. 负反馈的引入 由第3章可知,放大器引入负反馈后,可以改善很多性 能。集成运放若不接负反馈或接正反馈,只要有一定的输入 信号(即使是微小的输入信号),输出端就会达到最大输出值 (即饱和值),运放的这种工作状态称为非线性工作状态。非 线性工作状态常用在电压比较器和波形发生器等电路中,这 里暂不考虑。集成运放引入负反馈后,就可工作于线性状态。 线性状态时,输出电压Uo与输入电压Ui之间的运算关系仅取 决于外接反馈网络与输入端的外接阻抗,而与运算放大器本 身参数无关。这一点大家在实训中要充分体会。
6
3. 反相比例运算电路 依外接元件连接的不同,集成运放可以构成比例放大、 加减法、微分、积分等多种数学运算电路。本实训只进行其 中一种运算——反相比例运算的练习。 反相比例运算电路如实图4.2所示。输入信号Ui从反相 输入端输入,同相输入端经电阻接地。这个电路的输出与输 入之间有如下关系:
7
即输出电压与输入电压成比例,比例系数仅与外接电阻Rf、 R1有关,与运放本身的参数无关。同相端所接R2、R3称为平 衡电阻,其作用是避免由于电路的不平衡而产生误差。
43
图 4.1.9 加调零电位器的差动放大器 (a) 射极调零;(b) 集电极调零
44
例4.1.2 图4.1.10(a)为带恒流源及调零电位器的差动 放大器,二极管VD的作用是温度补偿,它使恒流源IC3基本 不受温度变化的影响。设UCC=UEE=12 V,Rc=100 kΩ, RP=200 Ω,R1=6.8 kΩ,R2=2.2 kΩ,R3=33 kΩ,Rb= 10 kΩ,UBE3=UVD=0.7 V,各管的β值均为72,求静态时的 UC1,差模电压放大倍数及输入、输出电阻。
模拟电子技术第一,四章答案
2.73k
A u
(Rc ∥ RL ) rbe (1 )Rf
7.7
Ri Rb1 ∥ Rb2 ∥[rbe (1 )Rf ] 3.7k
Ro Rc 5k
(2)Ri 增大, Ri≈4.1kΩ;
A u
减小,
Au
RL' Rf Re
≈- 1.92。
§4.5
一、 电路如 图 P4.5.1 所示,晶体管的=80,rbe=1kΩ。 (1)求出 Q 点;
(7)× (8)√ (9)√ (10)× (11)× (12)√
二 电路如 图 P4.3.2 所示,已知晶体管 =50,在下列情况下,用直流电
压 表 测 晶 体 管 的 集 电 极 电 位 ,应 分 别 为 多 少 ? 设 VCC= 12V,晶 体 管 饱 和 管 压
降 UCES= 0.5V。
( 1) 正 常 情 况
解答:p102
二、填空
1、三极管实现放大的三个内部条件是(
)、(
)、
(
)。
2、三极管具有放大作用外部电压条件是发射结( ),集电结( )。
3、三极管工作在饱和区时,发射结( ),集电结( );工作在截止区时,发射结( ),
集电结( );
3 工作在放大区的某三极管,如果当 IB 从 12μA 增大到 22μA 时,IC 从 1mA 变为 2mA,
化?
图 P4.4.1
解 :( 1) 静 态 分 析 :
U BQ
Rb1 Rb1 Rb2
VCC
2V
I EQ
U BQ U BEQ Rf Re
1mA
I BQ
I EQ 1
10μ
A
U CEQ VCC I EQ (Rc Rf Re ) 5.7V
电路与模拟电子技术基础 正弦稳态电路的分析习题解答 第章习题解答
第3章 正弦稳态电路的分析习题解答3.1 已知正弦电压()V 314sin 10θ-=t u ,当0=t 时,V 5=u 。
求出有效值、频率、周期和初相,并画波形图。
解 有效值为 V 07.7210==UHz 502314==πf ;s 02.01==f T将 0=t , V 5=u 代入,有 )sin(105θ-=,求得初相︒-=30θ。
波形图如下3.2 正弦电流i 的波形如图3.1所示,写出瞬时值表达式。
图3.1 习题3.2波形图解 从波形见,电流i 的最大值是A 20,设i 的瞬时值表达式为A π2sin 20⎪⎭⎫⎝⎛+=θt T i当 0=t 时,A =10i ,所以 θsin 2010=,求得 ︒=30θ 或 6π=θ。
当 s 2=t 时,A =20i ,所以 ⎪⎭⎫⎝⎛+⨯=6π2π2sin 2020T,求得 s 12=T 。
所以 A ⎪⎭⎫⎝⎛︒+=306πsin 20t i 。
3.3正弦电流()A 120 3cos 51︒-=t i ,A )45 3sin(2︒+=t i 。
求相位差,说明超前滞后关系。
解 若令参考正弦量初相位为零,则1i 的初相位︒-=︒-︒=30120901θ,而2i 初相位︒=452θ,其相位差 ︒-=︒-︒-=-=75453021θθϕ, 所以1i 滞后于2i ︒75 角,或2i 超前1i ︒75 角。
3.4 正弦电流和电压分别为(1)V )60 4sin(23o1+=t u(2)V )75 4cos(52︒-=t u (3)A )90 4sin(2o1+-=t i (4) V )45 4cos(252︒+-=t i 写出有效值相量,画出相量图。
解 (1) V 6031︒∠=•U ,相量图如图(1) (2) V )15 4sin(5)75 4cos(52︒+=︒-=t t u 有效值相量为 V 15252︒∠=•U ,相量图如图(2)(3) ()()A 90 4sin 290 4sin 21︒-=︒+-=t t i 有效值相量为 A 9021︒-∠=•I ,相量图如图(3)(4) ()()A 45 4sin 2545 4cos 252︒-=︒+-=t t i 有效值相量为 A 4552︒-∠=•I ,相量图如图(4)3.5 图3.2中,已知A )452sin(221︒+=t i ,A )452(cos 222︒+=t i ,求S i 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 T
T
0
i 2dt
电路及模拟电子技术
设 i Im sin( t )
I 1 T
T
0
i 2dt
1 T
T
0
2 Im sin 2 ω t dt
Im 2 U E m 同理: U E m 2 2 注意: i Im sin( t ) 2I sin( t )
②有效值关系:UR=RIR(或IR=GUR)
电路及模拟电子技术
用相量形式表示,则有
RI U m m RI U
其相量图如右图所示 2.电阻功率 瞬时功率:
Um Im p ui U m I m sin t (1 cos 2t ) 2 UI (1 cos 2t )
【例4-1】设F1=3+j4,F2=10 45°。求F1+F2和F1/F2。
【解】求复数的代数和用代数式。
F2=10 45°=
10(cos45 j sin45) 7.07 j7.07
F1+F2=(3+j4)+(7.07+j7.07)=10.07+j10.07
电路及模拟电子技术
转换为指数式,有
ψ1 ψ2
若
ψ1 ψ2 0
电压超前电流
电路及模拟电子技术
电压与电流同相 u i u i O
ψ1 ψ2 0
ψ1 ψ2 180
电压与电流反相 u i u i
ωt
O
ωt
注意: 两同频率的正弦量之间的相位差为常数, 与计 时的选择起点无关。 不同频率的正弦量比较无意义。
若以正弦电流i 2I sin( t i )为例,有
i Im[ 2 Ie j i e j t ]
表示,即 其中,复常数Ie j i 称为正弦量的相量 ,用I
Ie j i I i I
t 35)V 例:u 220 2 sin(
100 60A, 100rad/s I
I U 220 2.2A R 100 U 220 2.2A R 100
f 50Hz
电阻接到220V, f 100Hz 的电源时
I
结论:
电阻电流与频率无关,电源电压有效值不变, 电流有效值也不变。
电路及模拟电子技术
4.3.2 纯电感电路
1.电阻电压和电流的关系
设电压和电流取关联参考方向,如图所示
可得
I I (15 2 45 5 2 30)A I 1 2 (15 j15 6.12 j3.54)A (21.12 j11.46)A 24.03 28.5 A
i 2I sin( t ) 34sin( t 28.5)A I1
电路及模拟电子技术
第4章 正弦交流电路
教学目标与要求
掌握正弦量的三要素以及正弦量的表示方法 掌握单一元件(电阻、电感、电容)交流电路中 电压与电流的关系 能够熟练运用相量法分析R、L、C串联的交流电 路,并熟练计算有功功率 了解瞬时功率、无功功率和视在功率的概念以及 功率因数的提高
了解交流电路的频率特性、谐振电路的特征
电路及模拟电子技术
4.2.3 正弦量的运算
1. 同频率的正弦量的加减运算
设u1 2U1 sin( t 1 ) u2 2U 2 sin( t 2 )
则
u u1 u2 Im[ 2U1e j( t ) ] Im[ 2U 2e j(t ) ]
1 2
2
i
p P o π
u
平均功率(有功功率):
1 P T 1 T 0 pdt T 0 UI (1 cos 2t )dt 2 U UI RI 2 R
T
2πt
电路及模拟电子技术
【例4-3】把一个电阻值为100Ω的电阻接到220V的工频 交流电源上工作,其电流是多少?若将其接到220V, 100Hz的交流电源上工作,其电流又是多少? 【解】 电阻接到220V工频电源时,频率
4.2.2 正弦量的相量表示
t ,则 设复数F F e j,令
F Fe
j( ω t )
F cos( t ) j F sin( t ) Im[ F ] F sin( t )
若用Im[F ]表示复数的虚部,则有
电路及模拟电子技术
j L
选择电流为参考正弦量(初相位设为0o)
i I m sin t
电感端电压为
di d( I m sin t ) u L L LIm cos t U m sin(t 90) dt dt
电路及模拟电子技术
结论
UL ① 大小关系: U L LI( ) L 或I L L ②相位关系:电感的电流滞后电压π/2。
Ie j i I i 设正弦电流的相量为 I
将该相量乘上 e j 可得
j i j j( i ) j Ie Ie e Ie
即 相量的模不变,只是沿逆时针方向旋转了 角。
)A, 【例4-2】已知两同频正弦电流分别为 i1 30sin(t 45°
: 给出了观察正弦波的起点或参考点。
电路及模拟电子技术
注意:初相位可为正,也可为负。如图:
u
+
0
_
t
0
Hale Waihona Puke 电路及模拟电子技术相位差 :
两同频率的正弦量之间的初相位之差。 u Umsi n( ω t ψ1 ) 如:
i I msin(ω t ψ2 )
( t 1 ) ( t 2 )
有效值相量
220 35V U
i 100 2 sin( t 60)A
I
相量图:用来表示各个正弦量的大小 和相位关系的图形。
i
u
U
图 4.5 相量图
电路及模拟电子技术
特别提示
1.正弦量的相量只是用来表示正弦量,而不等 于弦量。 2.正弦量的相量一般指其有效值相量,如正弦 表示;有时也用最大值相量表 电流相量用 I 。 示,即 I m 3.只有同频率的正弦量才可以在同一个相量图 中表示,也只有同频率的正弦量之间才可以 进行比较、计算。
感抗:电压有效值与电流有效值的比值,单位:欧姆 U X L L 2πfL 结论 I 频率越高,感抗越大,电感对电流的阻碍能力越强。
电感具有通直阻交的作用。 用相量形式表示电感电压与电流关系
u
jX I jLI U L
i
电路及模拟电子技术
2.电感功率 瞬时功率:
e j t ] Im[ 2U e jt ] Im[ 2U 1 2 U )e j t ] Im[ 2 (U
1 2
结论 ①同频率的正弦量之和为同频率的正弦量;
e j t ] Im[ 2U
②同频率正弦量和的相量等于各正弦量的相量和。
电路及模拟电子技术
2. 正弦量的乘法运算
11.07 arg(F1 F2 ) arctan 47.7 10.07
F1 F2 11.07 2 10.07 2 14.95
即有
F1 F2 14.95 47.7
F1F2 (3 j4) 10 45 5 53.1 10 45 50 98.1
电路及模拟电子技术
4.3 单一参数的交流电路
4.3.1 纯电阻电路
1.电阻电压和电流的关系 设电压和电流取关联参考方向,如图所示 选择电流为参考正弦量(初相位设为0o) 由欧姆定律得
i
+
i I m sin t
u _
R
结论:
u Ri RIm sin t Um sin t
①相位关系:电阻的电压和电流同相位。
b
j
F
a 1
(复数的辐角)
O
电路及模拟电子技术
F 和与a和b之间的关系:
a F cos b F sin
或
F a 2 b2 b arctan a
3. 指数式 根据欧拉公式 e j cos j sin 可将三角式变为指数式
F | F | e j
4. 极坐标式 注 意
F | F |
e j cos jsin
电路及模拟电子技术
二、复数的基本运算 1. 复数的加减运算:用代数式或三角式 如:设F1=a1+jb1,F2=a2+jb2 则 F1 F2 (a1 jb1 ) (a2 jb2 )
说明
(a1 a2 ) j(b1 b2 )
电路及模拟电子技术
4.1.2 正弦量的瞬时值、幅值与有效值
瞬时值:正弦量在任一瞬间的值 用小写字母如u、i、e表示 幅值:Im、Um、Em
幅值必须大写, 下标加 m。
有效值:与交流热效应相等的直流定义为交流电的有 效值。 T 2 2 I RT 0 i R dt
交流 直流
则有
有效值必 须大写
I
电路及模拟电子技术
4.2 正弦交流电路的分析基础
4.2.1 复数
一、复数的表示形式 1. 代数式 j
F a jb
1
虚单位
Re [F ] a, Im[F ] b
2. 三角式
几何意义:有向线段(向量),如图所示。
|F|:复数的模
F | F | (cos j sin )
: arg F
可以用平行四边形法则或多边形法则实现复数的加减 运算,如图所示。
j
F1 F2
F1 F2
j
F1
F2
O
F1 F2