人教版数学高一必修2阶段质量检测(四)
高中数学 阶段质量检测(四)新人教A版必修2
阶段质量检测(四)(A 卷 学业水平达标) (时间120分钟,满分150分)一、选择题(共10小题,每小题6分,共60分)1.直线l :y =k ⎝ ⎛⎭⎪⎫x +12与圆C :x 2+y 2=1的位置关系为( )A .相交或相切B .相交或相离C .相切D .相交答案:D2.已知圆x 2+y 2+Dx +Ey =0的圆心在直线x +y =1上,则D 与E 的关系是( ) A .D +E =2 B .D +E =1 C .D +E =-1 D .D +E =-2 答案:D3.若圆C :x 2+y 2-2(m -1)x +2(m -1)y +2m 2-6m +4=0过坐标原点,则实数m 的值为( )A .2或1B .-2或-1C .2D .1 答案:C4.以正方体ABCD A 1B 1C 1D 1的棱AB ,AD ,AA 1所在的直线为坐标轴建立空间直角坐标系,且正方体的棱长为一个单位长度,则棱CC 1中点坐标为( )A.⎝ ⎛⎭⎪⎫12,1,1B.⎝ ⎛⎭⎪⎫1,12,1 C.⎝⎛⎭⎪⎫1,1,12D.⎝ ⎛⎭⎪⎫12,12,1 答案:C5.圆O 1:x 2+y 2-2x =0和圆O 2:x 2+y 2-4y =0的位置关系是( )A.相离B.相交C.外切D.内切答案:B6.自点A(-1,4)作圆(x-2)2+(y-3)2=1的切线,则切线长为( )A. 5 B.3C.10 D.5答案:B7.直线3x-y+m=0与圆x2+y2-2x-2=0相切,则实数m等于( )A.3或- 3 B.-3或33C.-33或 3 D.-33或33答案:C8.圆心在x轴上,半径长为2,且过点(-2,1)的圆的方程为( )A.(x+1)2+y2=2B.x2+(y+2)2=2C.(x+3)2+y2=2D.(x+1)2+y2=2或(x+3)2+y2=2答案:D9.设P是圆(x-3)2+(y+1)2=4上的动点,Q是直线x=-3上的动点,则|PQ|的最小值为( )A.6 B.4C.3 D.2答案:B10.若直线x-y=2被圆(x-a)2+y2=4所截得的弦长为22,则实数a的值为( ) A.-1或 3 B.1或3C .-2或6D .0或4答案:D二、填空题(共4小题,每小题5分,共20分)11.在如图所示的长方体ABCD A 1B 1C 1D 1中,已知A 1(a,0,c ),C (0,b,0),则点B 1的坐标为________.答案:(a ,b ,c )12.(北京高考)直线y =x 被圆x 2+(y -2)2=4截得的弦长为________. 答案:2213.设点A 为圆(x -2)2+(y -2)2=1上一动点,则A 到直线x -y -5=0的最大距离为________.答案:522+114.已知M (-2,0),N (2,0),则以MN 为斜边的直角三角形的直角顶点P 的轨迹方程是________.答案:x 2+y 2=4(x ≠±2)三、解答题(共6小题,共70分,解答时应写出文字说明、证明过程或演算步骤) 15.(本小题满分10分)设圆上的点A (2,3)关于直线x +2y =0的对称点仍在圆上,且圆与直线x -y +1=0相交的弦长为22,求圆的方程.解:设所求圆的方程为(x -a )2+(y -b )2=r 2, 则圆心为(a ,b ),半径长为r .∵点A (2,3)关于直线x +2y =0的对称点A ′仍在这个圆上, ∴圆心(a ,b )在直线x +2y =0上.∴a+2b=0,①且(2-a)2+(3-b)2=r2.②又直线x-y+1=0截圆所得的弦长为22,∴r2-⎝⎛⎭⎪⎪⎫a-b+122=(2)2.③解由方程①②③组成的方程组,得⎩⎪⎨⎪⎧a=6,b=-3,r2=52或⎩⎪⎨⎪⎧a=14,b=-7,r2=244.∴所求圆的方程为(x-6)2+(y+3)2=52或(x-14)2+(y+7)2=244.16.(本小题满分12分)正方形ABCD和正方形ABEF的边长都是1,并且平面ABCD ⊥平面ABEF,点M在AC上移动,点N在BF上移动.若|CM|=|BN|=a(0<a<2).(1)求MN的长度;(2)当a为何值时,MN的长度最短.解:因为平面ABCD⊥平面ABEF,且交线为AB,BE⊥AB,所以BE⊥平面ABCD,所以BA,BC,BE两两垂直.取B为坐标原点,BA,BE,BC所在直线分别为x轴、y轴和z轴,建立如图所示的空间直角坐标系.因为|BC|=1,|CM|=a,点M在坐标平面xBz上且在正方形ABCD的对角线AC上,所以点M⎝⎛⎭⎪⎪⎫22a,0,1-22a.因为点N在坐标平面xBy上且在正方形ABEF的对角线BF上,|BN|=a,所以点N⎝⎛⎭⎪⎪⎫22a,22a,0.(1)由空间两点间的距离公式,得|MN |=⎝ ⎛⎭⎪⎪⎫22a -22a 2+⎝ ⎛⎭⎪⎪⎫0-22a 2+⎝ ⎛⎭⎪⎪⎫1-22a -02=a 2-2a +1,即MN 的长度为a 2-2a +1.(2)由(1)得|MN |=a 2-2a +1=⎝ ⎛⎭⎪⎪⎫a -222+12,当a =22(满足0<a <2)时,⎝ ⎛⎭⎪⎪⎫a -222+12取得最小值22,即MN 的长度最短,最短为22.17.(本小题满分12分)一座圆拱桥,当水面在如图所示位置时,拱顶离水面2米,水面宽12米,当水面下降1米后,水面宽多少米?解:以圆拱顶点为原点,以过圆拱顶点的竖直直线为y 轴,建立如图所示的平面直角坐标系.设圆心为C ,水面所在弦的端点为A ,B ,则由已知可得A (6,-2),设圆的半径长为r ,则C (0,-r ),即圆的方程为x 2+(y +r )2=r 2.将点A 的坐标代入上述方程可得r =10,所以圆的方程为x 2+(y +10)2=100.当水面下降1米后,可设A ′(x 0,-3)(x 0>0),代入x 2+(y +10)2=100,解得2x 0=251,即当水面下降1米后,水面宽251米.18.(本小题满分12分)已知圆M 的方程为x 2+(y -2)2=1,直线l 的方程为x -2y =0,点P 在直线l 上,过P 点作圆M 的切线PA ,PB ,切点为A ,B .(1)若∠APB =60°,试求点P 的坐标;(2)若点P 的坐标为(2,1),过P 作直线与圆M 交于C ,D 两点,当CD =2时,求直线CD 的方程.解:(1)设P (2m ,m ),由题可知MP =2,所以(2m )2+(m -2)2=4,解得m =0或m=45,故所求点P 的坐标为P (0,0)或P ⎝ ⎛⎭⎪⎫85,45. (2)由题意易知k 存在,设直线CD 的方程为y -1=k (x -2),由题知圆心M 到直线CD 的距离为22,所以22=|-2k -1|1+k 2,解得k =-1或k =-17,故所求直线CD 的方程为:x+y -3=0或x +7y -9=0.19.(本小题满分12分)已知P 是直线3x +4y +8=0上的动点,PA 、PB 是圆x 2+y 2-2x -2y +1=0的两条切线,A 、B 是切点,C 是圆心,求四边形PACB 面积的最小值.解:∵点P 在直线3x +4y +8=0上,如图所示,∴设P ⎝⎛⎭⎪⎫x ,-2-34x ,C 点坐标为(1,1),S 四边形PACB =2S △PAC =|AP |·|AC |=|AP |,∵|AP |2=|PC |2-|AC |2=|PC |2-1,∴当|PC |最小时,|AP |最小,四边形PACB 的面积最小. ∴|PC |2=(1-x )2+⎝⎛⎭⎪⎫1+2+34x 2=2516x 2+52x +10=⎝⎛⎭⎪⎫54x +12+9, ∴|PC |min =3.当|PC |最小时,|PA |=32-1=22,∴四边形PACB 面积的最小值为22.20.(本小题满分12分)已知方程x 2+y 2-2x -4y +m =0. (1)若此方程表示圆,求m 的取值范围;(2)若(1)中圆与直线x +2y -4=0相交于M ,N 两点,且OM ⊥ON (O 为坐标原点),求m 的值;(3)在(2)的条件下,求以MN 为直径的圆的方程.解:(1)∵x 2+y 2-2x -4y +m =0, ∴D =-2,E =-4,F =m , 由D 2+E 2-4F =20-4m >0,可得m <5.故m 的取值范围为(-∞,5).(2)联立方程组⎩⎪⎨⎪⎧x +2y -4=0,x 2+y 2-2x -4y +m =0,消去x 得5y 2-16y +8+m =0. 设M (x 1,y 1),N (x 2,y 2), ∴y 1+y 2=165,y 1y 2=8+m5.∵OM ⊥ON , ∴x 1x 2+y 1y 2=0,∴5y 1y 2-8(y 1+y 2)+16=0. ∴m =85.(3)设圆心为(a ,b ),则a =x 1+x 22=45,b =y 1+y 22=85,半径r =|MN |2=455.∴圆的方程为⎝ ⎛⎭⎪⎫x -452+⎝ ⎛⎭⎪⎫y -852=165.(B 卷 能力素养提升) (时间120分钟,满分150分)一、选择题(共10小题,每小题6分,共60分) 1.由方程x 2+y 2+x +(m -1)y +12m 2=0所确定的圆中,最大面积是( )A.32πB.34π C .3πD .不存在解析:选B 将方程化为标准方程为⎝ ⎛⎭⎪⎫x +122+⎝ ⎛⎭⎪⎫y +m -122=-m 2-2m +24,∴半径r =12-m 2-2m +2=12-m +12+3.要使圆的面积最大,应使半径最大,当m =-1时,r max =32,∴最大面积为πr 2max =34π. 2.已知圆C 经过A (5,2),B (-1,4)两点,圆心在x 轴上,则圆C 的方程是( ) A .(x -2)2+y 2=13 B .(x +2)2+y 2=17 C .(x +1)2+y 2=40D .(x -1)2+y 2=20解析:选D 设圆心坐标为C (a,0),则AC =BC ,即a -52+22=a +12+42,解得a =1,所以半径r =1+12+42=20=25,所以圆C 的方程是(x -1)2+y 2=20.3.设两圆C 1,C 2都和两坐标轴相切,且都过点(4,1),则两圆心的距离|C 1C 2|=( ) A .4 B .42 C .8D .82解析:选C 依题意,可设与两坐标轴相切的圆的圆心坐标为(a ,a ),半径长为r ,其中r =a >0,因此圆的方程是(x -a )2+(y -a )2=a 2,由圆过点(4,1)得(4-a )2+(1-a )2=a 2,即a 2-10a +17=0,则该方程的两根分别是圆心C 1,C 2的横坐标,|C 1C 2|=2×102-4×17=8,故选C.4.对任意的实数k ,直线y =kx +1与圆x 2+y 2=2的位置关系一定是( ) A .相离 B .相切C.相交但直线不过圆心D.相交且直线过圆心解析:选C 圆心C(0,0)到直线kx-y+1=0的距离为d=1k2+1<2,∴直线与圆相交,且圆心C(0,0)不在该直线上.5.与直线2x-y+1=0平行且与圆x2+y2=5相切的直线的方程是( ) A.2x-y+5=0B.2x-y-5=0C.2x+y+5=0或2x+y-5=0D.2x-y+5=0或2x-y-5=0解析:选D 设所求的直线方程为2x-y+C=0,则圆心(0,0)到该直线的距离d=|C| 5=5,得C=±5.∴所求直线的方程为2x-y±5=0.6.过点P(4,2)作圆x2+y2=4的两条切线,切点分别为A、B,O为坐标原点,则△OAB 的外接圆方程是( )A.(x-2)2+(y-1)2=5B.(x-4)2+(y-2)2=20C.(x+2)2+(y+1)2=5D.(x+4)2+(y+2)2=20解析:选A 由圆x2+y2=4,得到圆心O坐标为(0,0),∴△OAB的外接圆为四边形OAPB的外接圆,又P(4,2),∴外接圆的直径为|OP|=42+22=25,半径为5外接圆的圆心为线段OP的中点是(2,1),所以△OAB的外接圆方程是(x-2)2+(y-1)2=5.7.把圆x2+y2+2x-4y-a2-2=0的半径减小一个单位则正好与直线3x-4y-4=0相切,则实数a的值为( )A.-3 B.3C.-3或3 D.以上都不对解析:选C 圆的方程可变为(x +1)2+(y -2)2=a 2+7,圆心为(-1,2),半径为a 2+7,由题意得|-1×3-4×2-4|-32+42=a 2+7-1,解得a =±3.8.已知圆C 与直线x -y =0及x -y -4=0都相切,圆心在直线x +y =0上,则圆C 的方程为( )A .(x +1)2+(y -1)2=2B .(x -1)2+(y +1)2=2C .(x -1)2+(y -1)2=2D .(x +1)2+(y +1)2=2解析:选B 因为圆心在直线x +y =0上,所以设圆心坐标为(a ,-a )(此时排除C 、D),因为圆C 与直线x -y =0及x -y -4=0都相切,所以|a +a |2=|a +a -4|2,解得a =1,r =|a +a |2=2,所以圆C 的方程为(x -1)2+(y +1)2=2.9.已知A (-2,0),B (0,2),点M 是圆x 2+y 2-2x =0上的动点,则点M 到直线AB 的最大距离是( )A.322-1 B.322C.322+1D .22解析:选C 可知圆的圆心坐标为(1,0),半径为1,直线AB :-x 2+y2=1,即x -y +2=0,则圆心到直线的距离为d =|1-0+2|2=32 2.∴点M 到直线AB 的最大距离是d +r =322+1.10.实数x ,y 满足x 2+y 2-6x -6y +12=0,则y x的最大值为( )A .3 2B .3+22C .2+2D.6解析:选B 实数x ,y 满足x 2+y 2-6x -6y +12=0,所以点(x ,y )在以(3,3)为圆心,6为半径的圆上,则y x为圆上的点与原点连线的直线的斜率,设过原点的直线方程为y =kx ,则直线与圆相切时|3k -3|k 2+1=6,解得k =3±22,所以y x的最大值为3+22,选B.二、填空题(共4小题,每小题5分,共20分)11.空间直角坐标系中,点A (-2,1,3)关于x 轴的对称点为点B ,又已知C (x,0,-2),且|BC |=32,则x 的值为________.解析:易知B (-2,-1,-3),|BC |=x +22+1+1=32,解得x =2或-6.答案:2或-612.(山东高考)圆心在直线 x -2y =0上的圆 C 与 y 轴的正半轴相切,圆 C 截x 轴所得弦的长为23,则圆C 的标准方程为__________________________________________.解析:依题意,设圆心的坐标为(2b ,b )(其中b >0),则圆C 的半径为2b ,圆心到x 轴的距离为b ,所以24b 2-b 2=23,b >0,解得b =1,故所求圆C 的标准方程为(x-2)2+(y -1)2=4.答案:(x -2)2+(y -1)2=413.已知圆x 2+y 2+x -6y +m =0和直线x +2y -3=0交于P ,Q 两点,且OP ⊥OQ (O 为坐标原点),则圆的方程为________.解析:法一:设P (x 1,y 1),Q (x 2.y 2),由⎩⎪⎨⎪⎧x 2+y 2+x -6y +m =0,x +2y -3=0,得5x 2+10x +4m -27=0, 所以x 1+x 2=-2,x 1x 2=4m -275,又y 1y 2=12(-x 1+3)×12(-x 2+3)=14[x 1x 2-3(x 1+x 2)+9]=m +125,因为OP ⊥OQ ,所以OP ―→·OQ ―→=x 1x 2+y 1y 2=5m -155=0,解得m =3,则所求圆的方程为x 2+y 2+x -6y +3=0.法二:据题意设以PQ 为直径的圆的方程为x 2+y 2+x -6y +m +λ(x +2y -3)=0, 即x 2+y 2+(1+λ)x +(2λ-6)y +m -3λ=0.因为OP ⊥OQ ,所以点O (0,0)在以PQ 为直径的圆上,则m -3λ=0,①设圆心为C ,则其坐标为⎝⎛⎭⎪⎫-1+λ2,3-λ,由点⎝ ⎛⎭⎪⎫-1+λ2,3-λ在直线x +2y -3=0上,得-1+λ2+2(3-λ)-3=0,解得λ=1,由①得m =3,则所求圆的方程为x 2+y 2+x-6y +3=0.答案:x 2+y 2+x -6y +3=014.已知点P 是直线3x +4y +8=0上的动点,PA 、PB 是圆x 2+y 2-2x -2y +1=0的两条切线,A 、B 是切点,C 是圆心,那么四边形PACB 面积的最小值为________.解析:可知C (1,1),半径r =1,S 四边形PACB =2S △PAC ,则要使四边形PACB 的面积最小,只需使Rt △PAC 的面积最小,观察Rt △PAC ,直角边AC =r =1,所以要使△PAC 的面积最小,只需斜边PC 最短,而当PC 垂直于直线3x +4y +8=0时,PC 最短,为|3×1+4×1+8|32+42=3,这时|PA |=|PC |2-|AC |2=22.所以四边形PACB 面积的最小值为2×12×22×1=22. 答案:22三、解答题(共6小题,共70分,解答时应写出文字说明、证明过程或演算步骤) 15.(本小题满分10分)有一圆与直线l :4x -3y +6=0相切于点A (3,6),且经过点B (5,2),求此圆的方程.解:法一:由题意可设所求圆的方程为:(x -3)2+(y -6)2+λ(4x -3y +6)=0,又因为此圆过点(5,2),将坐标(5,2)代入圆的方程求得λ=-1,所以所求圆的方程为x 2+y 2-10x -9y +39=0.法二:设圆的标准方程,寻找三个方程构成方程组求解. 设圆的方程为(x -a )2+(y -b )2=r 2,则圆心为C (a ,b ), 由|CA |=|CB |,CA ⊥l ,得⎩⎪⎨⎪⎧3-a 2+6-b 2=r 2,5-a 2+2-b 2=r 2,b -6a -3×43=-1,解得⎩⎪⎨⎪⎧a =5,b =92,r 2=254,所以圆的方程为(x -5)2+⎝ ⎛⎭⎪⎫y -922=254. 法三:设圆的一般方程求解.设圆的方程为x 2+y 2+Dx +Ey +F =0,圆心为C , 由CA ⊥l ,A (3,6)、B (5,2)在圆上,得⎩⎪⎨⎪⎧32+62+3D +6E +F =0,52+22+5D +2E +F =0,-E 2-6-D 2-3×43=-1,解得⎩⎪⎨⎪⎧D =-10,E =-9,F =39.所以所求圆的方程为x 2+y 2-10x -9y +39=0.16.(本小题满分12分)已知圆C :(x -3)2+(y -4)2=4, (1)若直线l 1过定点A (1,0),且与圆C 相切,求l 1的方程;(2)若圆D 的半径为3,圆心在直线l 2:x +y -2=0上,且与圆C 外切,求圆D 的方程.解:(1)①若直线l 1的斜率不存在,即直线是x =1,符合题意. ②若直线l 1斜率存在,设直线l 1为y =k (x -1), 即kx -y -k =0.由题意知,圆心(3,4)到已知直线l 1的距离等于半径2,即|3k -4-k |k 2+1=2,解之得k =34.所求直线方程是x =1,3x -4y -3=0. (2)依题意设D (a,2-a ),又已知圆C 的圆心C (3,4),r =2, 由两圆外切,可知CD =5 ∴可知a -32+2-a -42=5,解得a =3,或a =-2, ∴D (3,-1)或D (-2,4),∴所求圆的方程为(x -3)2+(y +1)2=9或(x +2)2+(y -4)2=9.17.(本小题满分12分)已知△ABC 三个顶点坐标分别为:A (1,0),B (1,4),C (3,2),直线l 经过点(0,4).(1)求△ABC 外接圆⊙M 的方程;(2)若直线l 与⊙M 相切,求直线l 的方程; (3)若直线l 与⊙M 相交于A ,B 两点,且AB =23,求直线l 的方程.解:(1)法一:设⊙M 的方程为x 2+y 2+Dx +Ey +F =0,则由题意得⎩⎪⎨⎪⎧1+D +F =0,17+D +4E +F =0,13+3D +2E +F =0,解得⎩⎪⎨⎪⎧D =-2,E =-4,F =1∴⊙M 的方程为x 2+y 2-2x -4y +1=0,或(x -1)2+(y -2)2=4. 法二:∵A (1,0),B (1,4)的横坐标相同,故可设M (m,2), 由MA 2=MC 2得(m -1)2+4=(m -3)2,解得m =1,∴⊙M 的方程为(x -1)2+(y -2)2=4,或x 2+y 2-2x -4y +1=0.(2)当直线l 与x 轴垂直时,显然不合题意,因而直线l 的斜率存在,设l :y =kx +4, 由题意知|k -2+4|k 2+1=2,解得k =0或k =43,故直线l 的方程为y =4或4x -3y +12=0.(3)当直线l 与x 轴垂直时,l 方程为x =0,它截⊙M 得弦长恰为23;当直线l 的斜率存在时,设l :y =kx +4,圆心到直线y =kx +4的距离为|k +2|k 2+1, 由勾股定理得⎝ ⎛⎭⎪⎪⎫|k +2|k 2+12+⎝ ⎛⎭⎪⎪⎫2322=4,解得k =-34, 故直线l 的方程为x =0或3x +4y -16=0.18.(本小题满分12分)已知直线l 与圆C :x 2+y 2+2x -4y +a =0相交于A ,B 两点,弦AB 的中点为M (0,1),(1)求实数a 的取值范围以及直线l 的方程; (2)若圆C 上存在四个点到直线l 的距离为2,求实数a 的取值范围;(3)已知N (0,-3),若圆C 上存在两个不同的点P ,使PM =3PN ,求实数a 的取值范围.解:(1)圆C :(x +1)2+(y -2)2=5-a ,C (-1,2),r =5-a (a <5),据题意:CM =2<5-a ⇒a <3,即实数a 的取值范围为(-∞,3).因为CM ⊥AB ⇒k CM ·k AB =-1,k CM =-1⇒k AB =1, 所以直线l 的方程为x -y +1=0. (2)与直线l 平行且距离为2的直线为l 1:x -y +3=0过圆心,有两个交点,l 2:x -y -1=0与圆相交,⇒22<5-a ⇒a <-3.故实数a 的取值范围为(-∞,-3). (3)设P (x ,y ),PM =3PN ⇒x 2+(y +5)2=12,据题意:两个圆相交:|5-a -23|<52<5-a +23⇒-57-206<a <206-57,且206-57<3,所以-57-206<a <206-57.故实数a 的取值范围为(-57-206,206-57).19.(本小题满分12分)若圆C :x 2+y 2+8x -4y =0与以原点为圆心的某圆关于直线y =kx +b 对称.(1)求k ,b 的值;(2)若这时两圆的交点为A ,B ,求∠ACB 的度数. 解:(1)将圆C 的方程化为标准方程,为 (x +4)2+(y -2)2=20. ∴圆心为(-4,2),半径r =25.圆C 关于直线y =kx +b 对称的圆的圆心为(0,0), 半径为25.∴⎩⎪⎨⎪⎧1=-2k +b ,2-4·k =-1,解得⎩⎪⎨⎪⎧k =2,b =5.(2)显然直线AB 的方程就是y =2x +5,即2x -y +5=0. 设AB 的中点为D ,则|CD |=55= 5.∵r =25, ∴|AD |=20-5=15,在Rt △CDA 中,sin ∠DCA =|AD |r=32, ∴∠DCA =60°.故∠ACB =2∠DCA =120°.20.(本小题满分12分)已知⊙C 经过点A (2,4)、B (3,5)两点,且圆心C 在直线2x -y -2=0上.(1)求⊙C 的方程;(2)若直线y =kx +3与⊙C 总有公共点,求实数k 的取值范围. 解:(1)法一:设圆的方程为x 2+y 2+Dx +Ey +F =0,则⎩⎪⎨⎪⎧22+42+2D +4E +F =0,32+52+3D +5E +F =0,2⎝ ⎛⎭⎪⎫-D 2- ⎝ ⎛⎭⎪⎫-E 2-2=0,⇒⎝⎛D =-6,E =-8,F =24,所以⊙C 方程为x 2+y 2-6x -8y +24=0.法二:由于AB 的中点为D ⎝ ⎛⎭⎪⎫52,92,k AB =1,则线段AB 的垂直平分线方程为y =-x +7,而圆心C 必为直线y =-x +7与直线2x -y -2=0的交点,由⎩⎪⎨⎪⎧ y =-x +7,2x -y -2=0,解得⎩⎪⎨⎪⎧x =3,y =4,即圆心C (3,4), 又半径为|CA |=2-32+4-42=1,故⊙C 的方程为(x -3)2+(y -4)2=1.(2)法一:因为直线y =kx +3与⊙C 总有公共点, 则圆心C (3,4)到直线y =kx +3的距离不超过圆的半径, 即|3k -4+3|1+k 2≤1,将其变形得4k 2-3k ≤0,解得0≤k ≤34.法二:由⎩⎪⎨⎪⎧x -32+y -42=1y =kx +3⇒(1+k 2)x 2-(6+2k )x +9=0.因为直线y =kx +3与⊙C 总有公共点,则Δ=(6+2k )2-36(1+k 2)≥0,解得0≤k ≤34.故k 的取值范围是⎣⎢⎡⎦⎥⎤0,34.。
最新人教版高中数学必修第二册第四单元《统计》检测卷(答案解析)(2)
一、选择题1.甲、乙、丙、丁四所学校分别有150、120、180、150名高二学生参加某次数学调研测.为了解学生能力水平,需从这600名学生中抽取一个容量为100的样本作卷面分析,试记这项调查为①;在丙校有50名数学培优生,需要从中抽取10名学生进行失分分析,记②完成这两项调查宜采用的抽样方法依次是()这项调查为.A.分层抽样法、系统抽样法B.分层抽样法、简单随机抽样法C.系统抽样法、分层抽样法D.简单随机抽样法、分层抽样法2.随机调查某学校50名学生在学校的午餐费,结果如表:餐费678(元)人数102020这50个学生的午餐费的平均值和方差分别是( )A.7.2元,0.56元2B.7.2元,0.56元C.7元,0.6元2D.7元,0.6元3.某工厂利用随机数表对生产的700个零件进行抽样测试,先将700个零件进行编号,001,002,……,699,700.从中抽取70个样本,下图提供随机数表的第4行到第6行,若从表中第5行第6列开始向右读取数据,则得到的第6个样本编号是()32 21 18 34 29 78 64 54 07 32 52 42 06 44 38 12 23 43 56 77 35 78 90 56 4284 42 12 53 31 34 57 86 07 36 25 30 07 32 86 23 45 78 89 07 23 68 96 08 0432 56 78 08 43 67 89 53 55 77 34 89 94 83 75 22 53 55 78 32 45 77 89 23 45A.623 B.328 C.253 D.0074.甲、乙两班在我校举行的“不忘初心,牢记使命”合唱比赛中,7位评委的评分情况如茎叶图所示,其中甲班成绩的中位数是81,乙班成绩的平均数是86,若正实数,a b满足:x ab y成等比数列,则,,a b的最小值为()A.4 B.8C.22D.425.总体由编号为01,02,…,39,40的40个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第6列和第7列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为()50 44 66 44 21 66 06 58 05 62 61 65 54 35 02 42 35 48 96 32 14 52 41 52 4822 66 22 15 86 26 63 75 41 99 58 42 36 72 24 58 37 52 18 51 03 37 18 39 11A .23B .21C .35D .326.某中学高一年级甲班有7名学生,乙班有8名学生参加数学竞赛,他们取得的成绩的茎叶图如图所示,其中甲班学生的平均分是85,乙班学生成绩的中位数是82,若从成绩在[80,90)的学生中随机抽取两名学生,则两名学生的成绩都高于82分的概率为( )A .12B .13C .14D .157.已知一组样本数据12345x ,x ,x ,x ,x 恰好构成公差为5的等差数列,则这组数据的方差为 A .25B .50C .125D .2508.已知一组数据的频率分布直方图如图所示,则众数、中位数、平均数是A .63、64、66B .65、65、67C .65、64、66D .64、65、649.我们正处于一个大数据飞速发展的时代,对于大数据人才的需求也越来越大,其岗位大致可分为四类:数据开发、数据分析、数据挖掘、数据产品. 以北京为例,2018年这几类工作岗位的薪资(单位:万元/月)情况如下表所示:薪资/岗位[]0.5,1(]1,2(]2,3(]3,5数据开发 8% 25%32%35%数据分析 15%36% 32% 17% 数据挖掘 9% 12% 28% 51% 数据产品7%17%41%35%由表中数据可得各类岗位的薪资水平高低情况为( ) A .数据挖掘>数据开发>数据产品>数据分析 B .数据挖掘>数据产品>数据开发>数据分析 C .数据挖掘>数据开发>数据分析>数据产品 D .数据挖掘>数据产品>数据分析>数据开发10.10名小学生的身高(单位:cm )分成了甲、乙两组数据,甲组:115,122,105, 111,109;乙组:125,132,115, 121,119.两组数据中相等的数字特征是( ) A .中位数、极差 B .平均数、方差 C .方差、极差D .极差、平均数11.甲、乙、丙、丁四名同学在某次军训射击测试中,各射击10次.四人测试成绩对应的条形图如下,以下关于四名同学射击成绩的数字特征判断不正确...的是( )A .平均数相同B .中位数相同C .众数不完全相同D .甲的方差最小12.某小区为了调查本小区业主对物业服务满意度的真实情况,对本小区业主进行了调查,调查中问了两个问题1:你的手机尾号是不是奇数?问题2:你是否满意物业的服务?调查者设计了一个随机化装置,其中装有大小、形状和质量完全相同的白球和红球,每个被调查者随机从装置中摸到红球和白球的可能性相同,其中摸到白球的业主回答第一个问题,摸到红球的业主回答第二个问题,回答“是”的人往一个盒子中放一个小石子,回答“否”的人什么都不要做由于问题的答案只有“是”和“否”,而且回答的是哪个问题别人并不知道,因此被调查者可以毫无顾虑地给出符合实际情况的答案.已知某小区80名业主参加了问卷,且有47名业主回答了“是”,由此估计本小区对物业服务满意的百分比大约为( ) A .85%B .75%C .63.5%D .67.5%13.设样本数据1210,,,x x x 的均值和方差分别为1和4,若(i i y x a a =+为非零常数,1,2,,10)i =,则1210,,,y y y 的均值和方差分别为( )A .1,4a +B .1,4a a ++C .1,4D .1,4a +二、解答题14.某中学组织了地理知识竞赛,从参加考试的学生中抽出40名学生,将其成绩(均为整数)分成六组[)40,50,[)50,60,…,[]90,100,其部分频率分布直方图如图所示.观察图形,回答下列问题.(1)求成绩在[)70,80的频率,并补全这个频率分布直方图;(2)估计这次考试的平均分(计算时可以用组中值代替各组数据的平均值); (3)从成绩在[)40,50和[]90,100的学生中选两人,求他们在同一分数段的概率. 15.全国中小学生的体质健康调研最新数据表明我国小学生近视眼发病率为22.78%,初中生为55.22%,高中生为70.34%.影响青少年近视形成的因素有遗传因素和环境因素,主要原因是环境因素.学生长时期近距离的用眼状态,加上不注意用眼卫生、不合理的作息时间很容易引起近视.除了学习,学生平时爱看电视、上网玩电子游戏、不喜欢参加户外体育活动,都是造成近视情况日益严重的原因.为了解情况,现从某地区随机抽取16名学生,调查人员用对数视力表检查得到这16名学生的视力状况的茎叶图(以小数点前的一位数字为茎,小数点后的一位数字为叶),如图:(1)写出这组数据的众数和中位数;(2)若视力测试结果不低于5.0,则称为“好视力”.①从这16名学生中随机选取3名,求至少有2名学生是“好视力”的概率;②以这16名学生中是“好视力”的频率代替该地区学生中是“好视力”的概率.若从该地区学生(人数较多)中任选3名,记X 表示抽到“好视力”学生的人数,求X 的分布列及数学期望.16.汽车是碳排放量比较大的行业之一,欧盟规定,从2015年开始,将对2CO 排放量超过130g/km 的1M 型新车进行惩罚(视为排放量超标),某检测单位对甲、乙两类1M 型品牌抽取5辆进行2CO 排放量检测,记录如下(单位:g/km ): 甲 80 110 120 140 150 乙100120xy160经测算发现,乙品牌车2CO 排放量的平均值为120/x g cm =乙.(Ⅰ)从被检测的5辆甲类品牌中任取2辆,则至少有一辆2CO 排放量超标的概率是多少? (Ⅱ)若乙类品牌的车比甲类品牌的2CO 的排放量的稳定性要好,求x 的范围.17.进入12月以来,某地区为了防止出现重污染天气,坚持保民生、保蓝天,严格落实机动车限行等一系列“管控令”,该地区交通管理部门为了了解市民对“单双号限行”的赞同情况,随机采访了220名市民,将他们的意见和是否拥有私家车情况进行了统计,得到如下的2×2列联表: 赞同限行 不赞同限行 合计 没有私家车 90 20 110 有私家车 70 40 110 合计16060220(1)根据上面的列联表判断,能否有99%的把握认为“赞同限行与是否拥有私家车”有关; (2)为了解限行之后是否对交通拥堵、环境污染起到改善作用,从上述调查的不赞同限行的人员中按分层抽样抽取6人,再从这6人中随机抽出2名进行电话回访,求抽到的2人中至少有1名“没有私家车”人员的概率.参考公式:K 2=()()()()2()n ad bc a b c d a c b d -++++P (K 2≥k ) 0.10 0.05 0.010 0.005 0.001 k2.7063..8416.6357.87910.82818.某学习小组在研究性学习中,对昼夜温差大小与绿豆种子一天内出芽数之间的关系进行研究.该小组在4月份记录了1日至6日每天昼夜最高、最低温度(如图1),以及浸泡的100颗绿豆种子当天内的出芽数(如图2).根据上述数据作出散点图,可知绿豆种子出芽数y (颗)和温差x (0C )具有线性相关关系.(1)求绿豆种子出芽数y (颗)关于温差x (0C )的回归方程y bx a =+;(2)假如4月1日至7日的日温差的平均值为110C ,估计4月7日浸泡的10000颗绿豆种子一天内的出芽数.附:121()()()niii nii x x y y b x x ==--=-∑∑1221ni ii nii x y nxyxnx ==-=-∑∑,a y bx =-19.为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成,A B 两组,每组100只,其中A 组小鼠给服甲离子溶液,B 组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C 为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到()P C 的估计值为0.70.(1)求乙离子残留百分比直方图中,a b 的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).20.天猫“双11”全球狂欢节正在火热进行,某天猫商家对2017年“双11”期间的10000名网络购物者的消费情况进行统计,发现消费金额(单位:万元)都在区间[]0.3,0.9内,其频率分布直方图如图所示:(1)求直方图中的a的值.(2)估计这10000名网络购物者在2017年度的消费的中位数和平均数.(保留小数点后三位)21.哈三中数学竞赛辅导班进行选拔性测试,且规定:成绩大于等于110分的有参加资格,110分以下(不包括110分)的则淘汰.若现有1500人参加测试,频率分布直方图如下:(Ⅰ)求获得参加资格的人数;(Ⅱ)根据频率直方图,估算这1500名学生测试的平均成绩.22.某中学从高三男生中随机抽取100名学生,将他们的身高数据进行整理,得到下侧的频率分布表.组号分组频率第1组[160,165)0.05第2组[165,170)0.35第3组[170,175)0.3第4组[175,180)0.2(Ⅰ)为了能对学生的体能做进一步了解,该校决定在第3,4,5组中用分层抽样的方法抽取6名学生进行体能测试,问第3,4,5组每组各应抽取多少名学生进行测试;(Ⅱ)在(Ⅰ)的前提下,学校决定在6名学生中随机抽取2名学生进行引体向上测试,求第3组中至少有一名学生被抽中的概率;(Ⅲ)试估计该中学高三年级男生身高的中位数位于第几组中,并说明理由. 23.2018年2月925-日,第23届冬奥会在韩国平昌举行.4年后,第24届冬奥会将在中国北京和张家口举行.为了宣传冬奥会,某大学在平昌冬奥会开幕后的第二天,从全校学生中随机抽取了120名学生,对是否收看平昌冬奥会开幕式情况进行了问卷调查,统计数据如下:(1)根据上表说明,能否有99%的把握认为,收看开幕式与性别有关?(2)现从参与问卷调查且收看了开幕式的学生中,采用按性别分层抽样的方法选取8人,参加2022年北京冬奥会志愿者宣传活动.①问男、女学生各选取多少人?②若从这8人中随机选取2人到校广播站开展冬奥会及冰雪项目宣传介绍,求恰好选到一名男生一名女生的概率P.附:22()()()()()n ad bcKa b c d a c b d-=++++,其中n a b c d=+++.24.某网站从春节期间参与收发网络红包的手机用户中随机抽取10000名进行调查,将受访用户按年龄分成5组:[10,20),[20,30),…,[50,60],并整理得到如下频率分布直方图:(Ⅰ)求a的值;(Ⅱ)从春节期间参与收发网络红包的手机用户中随机抽取一人,估计其年龄低于40岁的概率;(Ⅲ)估计春节期间参与收发网络红包的手机用户的平均年龄.25.为了了解高一(1)班53名同学的牙齿健康状况,需从中抽取5名同学做医学检验,现已对53名同学编号为00,01,02,…,50,51,52.从下面所给的随机数表的第1行第3列的5开始从左向右读下去,则选取的号码依次为____________.随机数表如下:0154 3287 6595 4287 53467953 2586 5741 3369 83244597 7386 5244 3578 624126.为了解高三年级学生寒假期间的学习情况,某学校抽取了甲、乙两班作为对象,调查这两个班的学生在寒假期间平均每天学习的时间(单位:小时),统计结果绘成频率分布直方图(如图).已知甲、乙两班学生人数相同,甲班学生平均每天学习时间在区间[]2,4的有8人.10,12的人数;(I)求直方图中a的值及甲班学生平均每天学习时间在区间(](II)从甲、乙两个班平均每天学习时间大于10个小时的学生中任取4人参加测试,设4人中甲班学生的人数为k,求k的分布列和数学期望.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据分层抽样和简单随机抽样的定义进行判断即可. 【详解】①,四所学校,学生有差异,故①使用分层抽样,②在同一所学校,且人数较少,使用的是简单随机抽样,故选B . 【点睛】本题主要考查简单抽样的应用,根据分层抽样的定义是解决本题的关键.2.A解析:A 【分析】直接利用平均数公式与方差公式求解即可. 【详解】先计算这50个学生午餐费的平均值是()16107208207.250x =⨯⨯+⨯+⨯=, 所以方差是()()()222211067.22077.22087.20.5650S ⎡⎤=⨯⨯-+⨯-+⨯-=⎣⎦,故选A .【点睛】本题主要考查平均数公式与方差公式的应用,属于基础题. 样本数据的算术平均数公式:12n 1(++...+)x x x x n=;样本方差公式:2222121[()()...()]n s x x x x x x n =-+-++-.3.A解析:A 【解析】分析:从第五行第六列开始向右读,依次读取,将其中不符合要求的也就是超范围的数据去掉,再将重复的去掉,最后找到满足条件的数据. 详解:从第5行第6列开始向又读取数据, 第一个数为253,第二个数是313,第三个数是457,下一个数是860,不符合要求,下一个数是736,不符合要求,下一个是253,重复, 第四个是007,第五个是328,第六个是623,故选A.点睛:这是一道有关随机数表的题目,明确随机数的含义是关键,在读取数据的过程中,需要把超范围的数据和重复的数据都去掉,接着往下读就行了.4.A解析:A 【分析】由中位数、平均数可得x ,y 的值,再由,,x ab y 成等比数列得到4ab xy ==,最后利用基本不等式可得+a b 的最小值. 【详解】甲班成绩的中位数是81,故1x =,乙班成绩的平均数是86,则768082(80)919396867y +++++++=,解得4y =,又,,x ab y 成等比数列,故4ab xy ==,所以,4a b +≥=,当且仅当2,2a b ==时,等号成立. 故选:A. 【点睛】本题考查利用基本不等式求最值的问题,涉及到茎叶图、中位数、平均数等知识,属于中档题.5.B解析:B 【分析】从随机数表第1行的第6列和第7列数字开始由左到右依次选取两个数字,于是将两个数字构成的编号依次写出,然后读取出在01,02,…,39,40编号内编号(重复的算一次),依次选取5个不重复的即可得到. 【详解】解随机数表第1行的第6列和第7列数字为6,4 所以从这两个数字开始,由左向右依次选取两个数字如下 64,42,16,60,65,80,56,26,16,55,43,50,24,23,54,89,63,21,45,… 其中落在编号01,02,…,39,40内的有:16,26,24,23,21, … 故第5个编号为21. 故选B . 【点睛】本题考查了抽样中的随机抽样法,理清本题中随机抽样的规则是解题的关键,依次写出落在规定范围内的不重复的编号,从而解决问题.6.D解析:D 【分析】计算得到5x =,3y =,再计算概率得到答案. 【详解】78798080859296857x x +++++++==,解得5x =;8180822y++=,解得故232615C p C ==.故选:D . 【点睛】本题考查了平均值,中位数,概率的计算,意在考查学生的应用能力.7.B解析:B 【分析】先计算数据平均值,再利用方差公式得到答案. 【详解】数据12345x ,x ,x ,x ,x 恰好构成公差为5的等差数列331245+++x x x x x +5x x ==2222221050510505s ++++==故答案选B 【点睛】本题考查了数据的方差的计算,将平均值表示为3x 是解题的关键,意在考查学生的计算能力.8.B解析:B 【分析】①在频率直方图中,众数是最高的小长方形的底边的中点横坐标的值;②中位数是所有小长方形的面积和相等的分界线;③平均数是各小长方形底边中点的横坐标与对应频率的积的和. 【详解】解:由频率直方图可知,众数=60+70=652; 由100.03+50.04=0.5⨯⨯,所以面积相等的分界线为65,即中位数为65; 平均数=550.3+650.4+750.15+850.1+950.05=67⨯⨯⨯⨯⨯.故选B . 【点睛】本题主要考查频率直方图的众数、中位数、平均数,需理解并牢记公式.9.B解析:B 【解析】 【分析】计算各岗位的平均薪资,即可比较各岗位平均工资的高低.由表格中的数据可知,数据开发岗位的平均薪资为0.750.08 1.50.25 2.50.3240.25 2.235⨯+⨯+⨯+⨯=(万元),数据分析岗位的平均薪资为0.750.15 1.50.36 2.50.3240.17 2.1325⨯+⨯+⨯+⨯=(万元),数据挖掘岗位的平均薪资为0.750.09 1.50.12 2.50.2840.51 2.9875⨯+⨯+⨯+⨯=(万元),数据产品岗位的平均薪资为0.750.07 1.50.17 2.50.4140.35 2.7325⨯+⨯+⨯+⨯=(万元),因此,各类岗位的薪资水平高低情况为:数据挖掘>数据产品>数据开发>数据分析, 故选B . 【点睛】本题考查平均数的计算,考查学生对数据的收集和分析能力,解题关键就是频率分布表中平均数公式的应用,考查计算能力,属于中等题.10.C解析:C 【分析】将甲、乙两组数据的极差、平均数、中位数、方差全部算出来,并进行比较,可得出答案. 【详解】甲组数据由小到大排列依次为:105、109、111、115、122,极差为17,平均数为112.4中位数为111,方差为33.44,乙组数据由小到大排列依次为:115、119、121、125、132,极差为17,平均数为122.4中位数为121,方差为33.44,因此,两组数据相等的是极差和方差,故选C . 【点睛】本题考查样本的数字特征,理解极差、平均数、中位数、方差的定义并利用相关公式进行计算是解本题的关键,考查计算能力,属于基础题.11.D解析:D 【分析】观察四名同学的统计图的特征,四位同学的直方图都关于5环对称,因此它们的平均数都是5,中位数相同,众数显然不完全相同,根据方差的定义分别计算四名同学的方差即可得出结论. 【详解】解:由图的对称性可知,平均数都为5;由图易知,四组数据的众数不完全相同,中位数相同;记甲、乙、丙、丁图所对应的方差分别为22221234,,,s s s s ,则()()2221450.5650.51s =-⨯+-⨯=,()()()22222450.3550.4650.30.6s =-⨯+-⨯+-⨯=,()()()()()2222223350.3450.1550.2650.1750.3 2.6s =-⨯+-⨯+-⨯+-⨯+-⨯=, ()()()()()2222224250.1450.3550.2650.3850.1 2.4s =-⨯+-⨯+-⨯+-⨯+-⨯=,所以丙的方差最大. 故选:D . 【点睛】本小题考查统计图表、数字特征的概念等基础知识;考查运算求解能力;考查数形结合思想、统计与概率思想;考查直观想象、数据处理、数学运算等核心素养,体现基础性、应用性.12.D解析:D 【分析】由问卷设计方式可知,回答第一个问题的人数有40人,其中有20人的手机号是奇数,回答第二个问题的人数为40人,其中27人回答了“是”,由此可以估计本小区对物业服务满意的百分比. 【详解】要调查80名居民,在准备的两个问题中每一个问题被问到的概率相同,第一个问题可能被询问40次,在被询问的40人中有20人手机号是奇数,而有47人回答了“是”,估计有27个人回答是否满意物业的服务时回答了“是”,在40人中有27个人满意服务, 估计本小区对物业服务满意的百分比2767.5%40=, 故选: D 【点睛】本题考查频数的求法,考查古典概型的应用,考查学生分析解决问题的能力,属于中档题.13.A解析:A 【解析】试题分析:因为样本数据1210,,,x x x 的平均数是1,所以1210,,...y y y 的平均数是121012101210.........1101010y y y x a x a x a x x x a a ++++++++++++==+=+;根据i i y x a =+(a 为非零常数,1,2,,10i =),以及数据1210,,,x x x 的方差为4可知数据1210,,,y y y 的方差为2144⨯=,综上故选A.考点:样本数据的方差和平均数.二、解答题14.(1)频率为0.3,频率分布直方图见解析;(2)71分;(3)715. 【分析】(1)由所有频率之和为1可求得成绩在[)70,80的频率,从而可补全频率分布直方图; (2)由每组数据的中值乘以频率相加可得均值;(3)成绩在[)40,50的人数为400.14⨯=人,成绩在[)90,100的人数为400.052⨯=人,将分数段[)40,50的4人编号为1A ,2A ,3A ,4A ,将[]90,100分数段的2人编号为1B ,2B ,用列举法写出任取2人的所有基本事件,同时得出同一分数段内所含基本事件,计数后可得概率. 【详解】(1)因为各组的频率之和等于1,所以成绩在[)70,80的频率为1(0.0250.01520.010.005)100.3-+⨯++⨯=.补全频率分布直方图如图所示:(2)利用中值估算学生成绩的平均分,则有450.1550.15650.15750.3850.25950.0571⨯+⨯+⨯+⨯+⨯+⨯= 所以本次考试的平均分为71分.(3)成绩在[)40,50的人数为400.14⨯=人,成绩在[)90,100的人数为400.052⨯=人 从成绩在[)40,50和[]90,100的学生中选两人,将分数段[)40,50的4人编号为1A ,2A ,3A ,4A ,将[]90,100分数段的2人编号为1B ,2B ,从中任选两人,则基本事件构成集合{}1213141112232412=A ,A ,A ,A ,A ,A ,A ,B ,A ,B ,A ,A ,(A ,A (B ,B )Ω()()()()()()) 共15个,其中同一分数段内所含基本事件为:()12A A ,,()13,A A ,()14,A A ,()23,A A ,()24,A A ,()34,A A ,12(,)B B 共7个,故所求概率为P =715. 【点睛】方法点睛:本题考查频率分布直方图,考查由频率分布直方图求均值,考查古典概型.求古典概型的方法:列举法,用列举法写出事件空间中的所有基本事件,同时得出所求概率事件中所含有的基本事件,计数后计算概率.如果元素个数较多,事件的个数也可用排列组合知识计算.15.(1)众数为4.6和4.7,中位数为4.75(2)①19140②见解析,3()4E X = 【分析】(1)直接观察茎叶图中的数据即可求出答案(2)①设事件i A ,表示“所选3名学生中有i 名是‘好视力’”(0,1,2,3)i =,设事件A 表示“至少有2名学生是好视力”.由()()213112423331616()C C C P A P A P A C C =+=+求出即可 ②X 近似服从二项分布13,4B ⎛⎫⎪⎝⎭,然后列出分布列和算出期望即可. 【详解】(1)由题意知众数为4.6和4.7, 中位数为4.7 4.84.752+=. (2)①设事件i A ,表示“所选3名学生中有i 名是‘好视力’”(0,1,2,3)i =,设事件A 表示“至少有2名学生是好视力”.则()()213112423331616()C C C P A P A P A C C =+=+ 19140=②因为这16名学生中是“好视力”的频率为14,所以该地区学生中是“好视力”的概率为14. 由于该地区学生人数较多,故X 近似服从二项分布13,4B ⎛⎫ ⎪⎝⎭. 3327(0)464P X ⎛⎫===⎪⎝⎭,2131327(1)4464P X C ⎛⎫⎛⎫==⨯⨯=⎪ ⎪⎝⎭⎝⎭, 223139(2)4464P X C ⎛⎫⎛⎫==⨯⨯=⎪ ⎪⎝⎭⎝⎭, 311(3)464P X ⎛⎫===⎪⎝⎭, 所以X 的分布列为X 的数学期望为()344E X =⨯=. 【点睛】本题考查的知识点有:茎叶图、众数、中位数、二项分布等,是一道比较典型的概率与统计的题.16.(Ⅰ)()0.7P A =;(Ⅱ)()90,130. 【分析】(Ⅰ)由题意逐个列出从被检测的5辆甲类品牌中任取2辆,共有10种不同的2CO 排放量结果及事件A 包含的结果,利用古典概型事件的概率公式即可求得;(Ⅱ)由题意算出甲乙的平均值,并算出方差,利用乙类品牌的车2CO 的排放量稳定性比甲类品牌的车2CO 的排放量的稳定性好,建立方程求解. 【详解】解:(Ⅰ)从被检测的5辆甲类品牌中任取2辆,共有10种不同的2CO 排放量结果:()80,110,()80,120,()80,140,()80,150,()110,120,()110,140,()110,150,()120,140,()120,150,()120,150,()140,150设“至少一辆不符合2CO 排放量”为事件A ,则A 包含以下7种结果:()80,140,()80,150,()110,140,()110,150,()120,140,()120,150,()140,150所以()70.710P A ==. (Ⅱ)因为801201101401501205x ++++==甲,所以120x x ==甲乙,220x y +=.()()()()()2222225801201101201201201401201501203000S =-+-+-+-+-=甲()()()()()()222222225100120120120120120(160120)2000120120S x y x y =-+-+-+-+-=+-+-乙 因为220x y +=,所以()()22252000120100S x x =+-+-乙由乙类品牌的车2CO 的排放量稳定性比甲类品牌的车稳定性要好,得2255S S <乙甲即()()2220001201003000x x +-+-<,所以2220117000x x -+<,解得90130x <<所以x 的取值范围为()90,130 【点睛】本题考查了古典概型的事件的概率,还考查了方差的意义及利用方差意义建立方程,还考查了一元二次方程的求解,属于中档题.17.(1)有99%的把握认为“赞同限行与是否拥有私家车有关”;(2)35【分析】(1)根据列联表里的数据,计算出2K 的值,然后进行判断;(2)根据分层抽样的要求得到没有私家车的应抽取2人 有私家车的4人,再求出总的情况数和符合要求的情况数,由古典概型公式,得到答案. 【详解】解:(1)根据列联表,计算()()()()22()n ad bc K a b c d a c b d -=++++2220(90402070)11011016060⨯⨯-⨯=⨯⨯⨯ 559.167 6.6356=≈> 所以有99%的把握认为“赞同限行与是否拥有私家车有关”; (2)从不赞同限行的人员中按分层抽样法抽取6人, 没有私家车的应抽取2人 有私家车的4人. 随机抽出2人,总的情况数为26C ,至少有1名“没有私家车”人员的情况数为2264C C -, 所以根据古典概型的公式得:22642693155C C P C -===. 【点睛】本题考查列联表分析,分层抽样,古典概型,属于中档题. 18.(1) 11942y x =+ (2) 5125颗. 【分析】(1)根据题中信息,作出温差()xC 与出芽数y (颗)之间数据表,计算出x 、y ,并将表格中的数据代入最小二乘法公式计算出b 和a ,即可得出回归直线方程; (2)将4月1日至7日的日平均温差代入回归直线方程,可得出100颗绿豆种子的发芽数,于是可计算出10000颗绿豆种子在一天内的发芽数. 【详解】(1)依照最高(低)温度折线图和出芽数条形图可得如下数据表:故10x =,32y =,()()1(3)(9)(2)(6)25(1)(1)381377iii x x y y =--=-⨯-+-⨯-+⨯+-⨯-+⨯+⨯=∑,()622222221(3)(2)2(1)3128i i x x =-=-+-++-++=∑,所以()()()616217711ˆ284iii i i x x y y bx x ==--===-∑∑, 所以119ˆˆ321042ay bx =-=-⨯=, 所以绿豆种子出芽数y (颗)关于温差x (C )的回归方程为11942y x =+; (2)因为4月1日至7日的日温差的平均值为11C , 所以4月7日的温差77116017()x C =⨯-=, 所以71192051751.25424y =⨯+==, 所以4月7日浸泡的10000颗绿豆种子一天内的出芽数约为5125颗. 【点睛】本题主要考查回归分析及其应用等基础知识,解题的关键就是理解和应用最小二乘法公式,考查数据处理能力和运算求解能力,考查学生数学建模和应用意识,属于中等题. 19.(1) 0.35a =,0.10b =;(2) 4.05,6. 【分析】(1)由()0.70P C =及频率和为1可解得a 和b 的值;(2)根据公式求平均数. 【详解】(1)由题得0.200.150.70a ++=,解得0.35a =,由0.050.151()10.70b P C ++=-=-,解得0.10b =.(2)由甲离子的直方图可得,甲离子残留百分比的平均值为0.1520.2030.3040.2050.1060.057 4.05⨯+⨯+⨯+⨯+⨯+⨯=,乙离子残留百分比的平均值为0.0530.1040.1550.3560.2070.1586⨯+⨯+⨯+⨯+⨯+⨯=【点睛】本题考查频率分布直方图和平均数,属于基础题.20.(1)3(2)中位数0.533,平均数0.537 【解析】 【分析】(1)利用频率和为1,求得a .(2)设中位数为t ,则()1.50.1 2.50.10.530.5t ⨯+⨯+-⨯=,可求t ;平均数0.35?0.150.45?0.250.55?0.30.65?0.20.75?0.080.85?0.02x =+++++ 计算即可. 【详解】(1)由题意可知,0.020.080.150.20.250.11a +++++⨯=,解得3a =.(2)设中位数为t ,则()1.50.1 2.50.10.530.5t ⨯+⨯+-⨯=,则0.533t ≈ 平均数0.35?0.150.45?0.250.55?0.30.65?0.20.75?0.080.85?0.02x =+++++0.537= 【点睛】本题考查频率分布直方图的应用,属基础题. 21.(Ⅰ)225;(Ⅱ)78.48. 【分析】()1由频率分布直方图得成绩大于等于110分的频率,然后计算出人数 ()2运用条形统计图计算平均数的方法来求解【详解】(Ⅰ)由频率分布直方图得成绩大于等于110分的频率为:()0.00430.0032200.15+⨯=,成绩大于等于110分的有参加资格,110分以下(不包括110分)的则淘汰.现有1500人参加测试,∴获得参加资格的人数为:15000.15225⨯=.(Ⅱ)根据频率直方图,估算这1500名学生测试的平均成绩为:400.006520600.014020800.0170201000.0050201200.0043201400.00322078.48⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯=. 【点睛】本题考查了频率分布直方图的实际运用,按照题目要求求出频率,继而可以求出人数和平均成绩,较为简单22.(1)3人,2人,1人.(2)0.8.(3)第3组 【解析】分析:(Ⅰ)由分层抽样方法可得第3组:30660⨯=3人;第4组:20660⨯=2人;第5组:10660⨯=1人;(Ⅱ)利用列举法可得6个人抽取两人共有15中不同的结果,其中第4组的两位同学至少有一位同学被选中的情况有12种,利用古典概型概率公式可得结果;。
人教版高一数学必修二第四章圆与方程(单元测试,含答案).doc
与方程姓名:班级:一、选择题(共8小题;共40分)1Mx2 +尸一4x + 6y = 0的圆心坐标是()A (2,3)B (-2,3) C(-2,-3) D(2,-3)2OO的百径是3,百线1与OO相交,圆心0到百线1的距离是d,贝M应满足()Ad > 3 B 15 < d < 3 C 0 < d < 15 Dd < 0 3圆(x — 2)2 + (y- l)2 = 4与圆(x + l)2 + (y- 2)2 = 9的公切线有()条A1 B 2 C3 D4 4从原点向圆x2 + y2 一12y + 27 = 0作两条切线,则该圆夹在两条切线间的劣弧长为()A nB 2nC 4TTD 6TT5过点(1,1)的直线与圆(x - 2)2 + (y - 3)2 = 9相交于A, B两点,贝lj| AB |的最小值为() A2V3 B4 C2V5 D5 6已知圆C的半径为2, |员|心在x轴的正半轴上,直线3x + 4y + 4 = 0与圆C相切,贝I」圆C的方程为()Ax2 4-y2 - 2x - 3 = 0 B x2 4- y2 + 4x = 0Cx2 +y2 + 2x - 3 = 0 D x2 + y2 - 4x = 07耍在边长为16米的正方形草坪上安装喷水龙头,使整个草坪都能喷洒到水.假设每个喷水龙头的喷洒范閘都是半径为6米的圆面,则需安装这种喷水龙头的个数最少是()A6 B 5 C4 D38 已知圆:C1:(x-2)2 + (y-3)3 = 1,圆:C2:(x-3)2 + (y-4)2 = 9, M、N分别是圆C〔、C?上的动点,P为x轴上的动点,贝OIPMI + IPNI的最小值为()A5V2-4 B V17- 1 C6-2V2 D V17二、填空题(共7小题;共35分)9过点A(3,—4)与闘x2 +y2 = 25相切的直线方程是_______ .10如果单位圆X? +y2 = 1与圆C: (x — a)2 + (y - a)2 = 4相交,则实数a的取值范围为 ________ 11在空间直角坐标系,已知点A(l,0,2), B(l,-3,1),点M在y轴上,且M到A与到B的距离相等,则点M的坐标是 _____ ・12已知圆C: (x-2)2+y2 = l.若直线y二k(x+l)上存在点P,使得过P向圆C所作的州条切线所成的角为夕则实数k的取值范闌为 _______ .13如图,以棱长为a的止方体的三条棱所在的直线为坐标轴建立空间百角坐标系,若点P为对角线AB的点,点Q在棱CD上运动,则PQ的最小值为 .14在圆C:(x-2)2 + (y-2)2 = 8内,过点P(l,0)的最长的弦为AB,最短的弦为DE,贝9以边形ADBE的面积为____ •15据气象台预报:在A城正东方300km的海而B处有一台风心,正以每小时40km的速度向術北方向移动,在距台风心250km以内的地区将受其影响.从现在起经过约__________ h,台风将影响A城, 持续时间约为_______ h.(结果精确到Olh)三、解答题(共5小题;共65分)16若关于x, y的方程X? + y? - 4x + 4y + m = 0表示圆C.(1)求实数m的取值范围;(2)若圆C与圆M:x2 4-y2 = 2相离,求m的取值范囤.17已知圆C:x? + y? + 4x + 4y + m = 0,直线l:x + y 4- 2 = 0.(1)若I员IC与直线1相离,求m的取值范围;(2)若I员1D过点P(l,l), H.与恻C关丁•直线1对称,求I処D的方程.18如图,在平面直角坐标系xOy,点A(0,3),直线l:y = 2x-4.设圆C的半径为1,圆心在1上.(1)若圆心C也在直线y = x-l上,过点A作圆C的切线,求切线的方程;(2)若圆C上存在点M,使MA = 2M0,求圆心C的横坐标a的取值范|节|・19已知直线啲方程为2x+(l + m)y+2m = 0, m€R,点P的坐标为(-1,0).(1)求证:直线1恒过定点,并求出定点坐标;(2)求点P到直线1的距离的最大值;(3)设点P在直线1上的射影为点M, N的坐标为(2,1),求线段MN长的取值范闱.20 在平面直角坐标系xOy,已知圆Ci: (x + 3)2 + (y - I)2 = 4和圆C?: (x 一4)2 + (y — 5)2 = 4.(1)若直线1过点A(4,0), £L被圆C]截得的弦长为2孙,求直线啲方程;(2)设P为平面上的点,满足:存在过点P的无穷多对互相垂肖的肖线h和12,它们分别与圆C1 和圆C2相交,且直线h被圆C]截得的弦长与直线12被圆C2截得的弦长相等,试求所有满足条件的点p的坐标.答案第一部分I D 2 C 3 B 4 B 5 B 6 D 7 C 8 A第二部分9 3x-4y = 2510 -—< a < H J C —< a < —」 2 22 2 II (0,-1,0) 12 [一普,晋]13 yal4 4V615 20; 66第三部分 16 (1) |w|C 化简为(x- 2)2 4-(y + 2)2 = 8-m,所以8 — m > 0,即m V 8.(2)圆C 的圆心为(2,-2),半径为V8^ (m<8),圆M 的圆心为(0,0),半径为返,由题意,得圆心距大于两圆的半径和,则“22 + 22 + 解得6<m<8.17 (1)圆Ux?+y2+4x + 4y + m = 0即(x 4- 2)2 + (y + 2)2 = 8 - m.圆心C(-2,—2)到直线啲距离d =三|旦=V2,若圆C 与直线1相离,则d > r,所以 * = 8 — m < 2即 m > 6乂严=8 - m > 0即m V 8.故m 的取值范围是(6,8).(2)设圆D 的圆心D 的坐标为(xo ,y ()),由于圆C 的圆心C(_2,_2), 依题意知点D 和点C 关于直线1对称,解牡:0 所以圆D 的方程为x 2+y 2 = r 2,而r=|DP |=V2,因此,圆D 的方程为x 2+y 2 = 2.18 (1)由题设,I 员I 心C 是直线y = 2x- 4和y = x- 1的交点, 解得点C(3,2),于是切线的斜率必存在.设过A(0,3)的圆C 的切线方稈为y = kx + 3由题意,得解得:k=0或—孑 4故所求切线方程为{Xo-2 Yo+2Xo+2 + 竽+2 = 0x (-1) = -1I 3k + 1 |Vk 2 + 1y = 3 或3x + 4y — 12 = 0(2)因为圆心在直线y = 2x —4上,所以圆C的方程为(x — a)2 3 + [y — 2 (a — 2)]2 = 1 设点M(x,y),因为MA = 2M0,所以Jx2 + (y — 3)2 = 2jx2 +y2, 化简得x? + y2 + 2y — 3 = 0,即x2 + (y + l)2 = 4, 所以点M在以D(0,-l)为圆心,2为半径的圆上.由题意,点M(x,y)在圆C上,所以圆(:与圆D有公共点,贝I」12-11 < CD <2 + 1, 即l<Va2 + (2a-3)2<3 整理,得—8 S 5a2— 12a S 0由5a2-12a + 8>0,得a G R;S5a2 - 12a < 0,得12所以点C的横坐标a的取值范闌为[0,y .19(1)由2x + (l + m)y+2m = 0得2x + y + m(y + 2) = 0,所以直线1恒过直线2x + y= 0与直线y + 2 = 0交点Q.解方程组炸暮律得Q(l,-2),所以直线1恒过定点,且定点为Q(l,-2).2 设点P在直线1上的射影为点M,贝IJIPMI < |PQ|,当且仅当直线1与PQ垂直时,等号成立, 所以点P到直线1的距离的最大值即为线段PQ的长度为2逅.3因为直线1绕着点Q(l,-2)旋转,所以点M在以线段PQ为直径的I员1上,其I员I心为点C(O.-l),半径为说,因为N的坐标为(2,1),所以|CN| = 2V2,从而V2 < |MN| < 3V2.20(1)由于直线x = 4与圆C]不相交,所以直线1的斜率存在.设直线1的方程为y = k(x - 4),圆C]的I员I心到直线1的距离为d, 乂因为直线1被I员©截得的弦长为2箱,所以|l-k(-3-4)| d = ------- , ----Vl + k 2 y = 0 或 7x + 24y - 28 = 0 (2)设点P(a,b)满足条件,不妨设直线h 的方程为y — b = k(x — a), k H 0, 则直线】2的方程为山点到直线的距离公式得 d = J22 - (V3)2 = 1从而即所以直线1的方程k(24k + 7) = 0, 7 241因为圆Ci和C2的半径相等,及宜线I】被圆C]截得的弦长与直线-被【员丄2截得的弦长相等,所以I 员IC]的|员]心到直线1]的距离和圆C2的國心到直线】2的距离相等,即|1 一k(-3 - a) - b| |5 + £ (4 — a) — b|整理得|1 + 3k + ak — bl = |5k + 4 — a — bk|,从而1 + 3k + ak — b = 5k + 4 — a - bk,(a + b — 2)k — b — a + 3, 因为k的取值有无穷多个,所以(a + b — 2 = 0,戒(a — b + 8 = 0, (b - a + 3 = 0 严ia + b-5 = 0 解得这样点P只可能是点P] (I,-扌)或点卩2 (-!,¥)• 经检验点P]和P2满足题口条件.。
人教新课标版数学高一-必修2 单元质量评估(四)
温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
单元质量评估(四)(第四章)(120分钟150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如果圆x2+y2+Dx+Ey+F=0与x轴相切于原点,则( )A.E≠0,D=F=0B.D≠0,E≠0,F=0C.D≠0,E=F=0D.F≠0,D=E=0【解析】选A.圆与x轴相切于原点,则圆心在y轴上,D=0,圆心的纵坐标的绝对值等于半径,F=0,E≠0,故选A.2.(2015·广州高一检测)直线l:y=k与圆C:x2+y2=1的位置关系是( )A.相交或相切B.相交或相离C.相切D.相交【解析】选D.圆C的圆心(0,0)到直线y=k的距离d=,因为d2=<<1,所以位置关系为相交.【一题多解】选D.直线l:y=k过定点,而点在圆C:x2+y2=1内部,故直线l与圆C相交.3.(2015·广东高考)平行于直线2x+y+1=0且与圆x2+y2=5相切的直线的方程是( )A.2x-y+=0或2x-y-=0B.2x+y+=0或2x+y-=0C.2x-y+5=0或2x-y-5=0D.2x+y+5=0或2x+y-5=0【解析】选D.设所求切线方程为2x+y+c=0,依题有=,解得c=±5,所以所求的直线方程为2x+y+5=0或2x+y-5=0.4.若直线ax+by=4与圆x2+y2=4有两个不同的交点,则点P(a,b)与圆的位置关系是( )A.点P在圆外B.点P在圆上C.点P在圆内D.不能确定【解析】选A.根据直线与圆相交得圆心到直线的距离小于半径,<2,即a2+b2>4,所以点P(a,b)在圆x2+y2=4的外部.【延伸探究】若本题条件换为“直线ax+by=4与圆x2+y2=4相切”则结论又如何呢?【解析】选B.由题意知=2,即a2+b2=4.则点P在圆上.5.在平面直角坐标系xOy中,直线3x+4y-5=0与圆x2+y2=4相交于A,B 两点,则弦AB的长等于( )A.3B.2C.D.1【解析】选B.圆x2+y2=4的圆心(0,0)到直线3x+4y-5=0的距离d=1,圆的半径为2,所以弦长|AB|=2=2.6.(2015·深圳高一检测)将直线2x-y+λ=0沿x轴向左平移1个单位,所得直线与圆x2+y2+2x-4y=0相切,则实数λ的值为( )A.-3或7B.-2或8C.0或10D.1或11【解析】选A.直线2x-y+λ=0沿x轴向左平移1个单位得2x-y+λ+2=0,圆x 2+y2+2x-4y=0的圆心为C(-1,2),r=,d==,λ=-3,或λ=7.7.以点(3,-1)为圆心且与直线3x+4y=0相切的圆的方程是( )A.(x+3)2+(y-1)2=1B.(x+3)2+(y-1)2=2C.(x-3)2+(y+1)2=1D.(x-3)2+(y+1)2=2【解析】选C.由已知,r=d==1,故选C.8.(2015·重庆高考)已知直线l:x+ay-1=0(a∈R)是圆C:x2+y2-4x-2y+1=0的对称轴.过点A(-4,a)作圆C的一条切线,切点为B,则= ( )A.2B.4C.6D.2【解析】选C.圆的标准方程为(x-2)2+(y-1)2=4,圆心为C(2,1),半径为r=2,因为直线l为圆的对称轴,所以直线经过圆心C(2,1),即2+a-1=0,所以a=-1,A(-4,-1),所以==2.又AB为圆的切线,所以===6.9.以正方体ABCD -A1B1C1D1的棱AB,AD,AA1所在的直线为坐标轴建立空间直角坐标系,且正方体的棱长为一个单位长度,则棱CC1中点坐标为( )A. B.C. D.【解析】选C.如图所示:设C1C的中点为M,则M在xOy平面上的射影为C,坐标为(1,1,0),在z轴上的射影为,所以M点坐标为,故选C.10.(2014·江西高考)在平面直角坐标系中,A,B分别是x轴和y轴上的动点,若以AB为直径的圆C与直线2x+y-4=0相切,则圆C面积的最小值为( )A.πB.πC.(6-2)πD.π【解题指南】数形结合,找到圆的半径最小时的情况即可.【解析】选A.由题意得,当原点到已知直线的距离恰为圆的直径时,圆的面积最小,此时圆的半径为×=,圆的面积为S=π=.11.已知直线l过点(-2,0),当直线l与圆x2+y2=2x有两个交点时,其斜率k的取值范围是( )A.(-2,2)B.(-,)C. D.【解析】选C.易知圆心坐标是(1,0),圆的半径是1,直线l的方程是y=k(x+2),即kx-y+2k=0,根据点到直线的距离公式得<1,即k2<,解得-<k<.12.圆x2+y2-2x-2y=0上的点到直线x+y+2=0的距离最大为( )A. B.2 C.3 D.2+2【解析】选C.由题知圆心为(1,1),半径为,圆心到直线x+y+2=0的距离为=2,所以圆上点到该直线的距离的最大值为2+=3,故选C.二、填空题(本大题共4个小题,每小题5分,共20分.把答案填在题中的横线上)13.(2015·武汉高一检测)已知圆M的圆心在直线x-y-4=0上并且经过圆x2+y2+6x-4=0与圆x2+y2+6y-28=0的交点,则圆M的标准方程为.【解析】联立两圆的方程得交点坐标(-1,3)和(-6,-2);设圆心坐标(a,a-4),所以=解得a=,圆心坐标,r2=,方程为+=.答案:+=14.已知点A(1,2,3),B(2,-1,4),点P在y轴上,且|PA|=|PB|,则点P 的坐标是.【解析】设点P(0,b,0),则=,解得b=-.答案:15.(2015·石家庄高一检测)集合A={(x,y)|x2+y2=4},B={(x,y)|(x-3)2+(y-4)2=r2},其中r>0,若A∩B中有且仅有一个元素,则r的值是.【解题指南】根据A∩B中有且仅有一个元素,说明两圆相切,注意分外切和内切分别求r的值.【解析】因为A∩B中有且仅有一个元素,所以两圆相切.当两圆外切时,2+r=5,即r=3;当两圆内切时,r-2=5,即r=7.所以r的值是3或7. 答案:3或716.方程x2+y2+2ax-2ay=0表示的圆,①关于直线y=x对称;②关于直线x+y=0对称;③其圆心在x轴上,且过原点;④其圆心在y轴上,且过原点,其中叙述正确的是.【解析】将已知方程配方,得(x+a)2+(y-a)2=2a2(a≠0),圆心坐标为(-a,a),它在直线x+y=0上,所以已知圆关于直线x+y=0对称.故②正确.答案:②三、解答题(本大题共6个小题,共70分,解答时写出必要的文字说明、证明过程或演算步骤)17.(10分)(2015·郑州高一检测)求下列各圆的标准方程:(1)圆心在y=-x上且过两点(2,0),(0,-4).(2)圆心在直线5x-3y=8上,且与坐标轴相切.【解析】(1)设所求圆的方程为(x-a)2+(y-b)2=r2.因两点在此圆上,且圆心在x+y=0上,所以得方程组解得故所求圆的方程为:(x-3)2+(y+3)2=10.(2)与坐标轴相切,所以圆心到两个坐标轴距离相等,所以x=y或x=-y 又圆心在5x-3y-8=0上,若x=y,则x=y=4;若x=-y,则x=1,y=-1.所以圆心是(4,4)或(1,-1).因为半径就是圆心到切线距离,即到坐标轴距离,所以圆心是(4,4),则r=4;圆心是(1,-1),则r=1,所以所求圆的标准方程为(x-4)2+(y-4)2=16和(x-1)2+(y+1)2=1. 18.(12分)(2015·佛山高一检测)如图所示,在长方体ABCD-A1B1C1D1中,|AB|=|AD|=3,|AA1|=2,点M在A1C1上,|MC1|=2|A1M|,N在D1C上且为D1C的中点,求M,N两点间的距离.【解析】如图,分别以AB,AD,AA1所在直线为x轴、y轴、z轴建立空间直角坐标系.由题意可知C(3,3,0),D(0,3,0),因为|DD1|=|CC1|=2,所以C1(3,3,2),D1(0,3,2).因为N为CD1的中点,所以N.因为|MC1|=2|A1M|,故M是A1C1的三等分点且靠近点A1,所以M(1,1,2).由两点间距离公式,得|MN|==.19.(12分)(2015·大连高一检测)已知圆C:(x-1)2+y2=9内有一点P(2,2),过点P作直线l交圆C于A,B两点.(1)当l经过圆心C时,求直线l的方程.(2)当弦AB被点P平分时,写出直线l的方程.【解析】(1)已知圆C:(x-1)2+y2=9的圆心为C(1,0),因直线l过点P,C,所以直线l的斜率为2,直线l的方程为y=2(x-1),即2x-y-2=0. (2)当弦AB被点P平分时,l⊥PC,直线l的方程为y-2=-(x-2),即x+2y-6=0.20.(12分)已知圆O:x2+y2=1与直线l:y=kx+2.(1)当k=2时,求直线l被圆O截得的弦长.(2)当直线l与圆O相切时,求k的值.【解析】(1)当k=2时,直线l的方程为2x-y+2=0.设直线l与圆O的两个交点分别为A,B,过圆心O(0,0)作OD⊥AB于点D,则|OD|==,所以|AB|=2|AD|=2=.(2)当直线l与圆O相切时,即圆心到直线的距离等于圆的半径.所以=1,即=2,解得k=±.【一题多解】(1)当k=2时,联立方程组消去y,得5x2+8x+3=0,解得x=-1或x=-,代入y=2x+2,得y=0或y=,设直线l与圆O的两个交点分别为A,B,则A(-1,0)和B,所以|AB|==.(2)联立方程组消去y,得(1+k2)x2+4kx+3=0,当直线l与圆O相切时,即上面关于x的方程只有一个实数根.则Δ=(4k)2-4×3(1+k2)=0,即4k2-12=0,k2=3,所以k=±.21.(12分)(2015·长春高一检测)已知圆C:x2+y2-2x+4y-4=0.(1)写出圆C的标准方程,并指出圆心坐标和半径大小;(2)是否存在斜率为1的直线m,使m被圆C截得的弦为AB,且OA⊥OB(O 为坐标原点).若存在,求出直线m的方程;若不存在,说明理由.【解题指南】(1)由圆的一般方程x2+y2+Dx+Ey+F=0(D2+E2-4F>0)得其圆心,半径为,从而可得圆C的标准方程,此题也可以通过配方法直接得到圆C的标准方程,然后再写出其圆心坐标和半径.(2)首先根据题意设出m的方程,然后与圆的方程联立消y得关于x的一元二次方程,运用根与系数的关系得到两根的和及积的关系,然后再根据OA⊥OB不难得出关于两根和及积的方程,从而可求直线m的方程.【解析】(1)根据圆的一般方程结合已知得:D=-2,E=4,F=-4,则-=-=1,-=-=-2,==3,即圆心C的坐标为(1,-2),半径为3,所以圆C的标准方程为:(x-1)2+(y+2)2=9.(2)根据题意可设直线m:y=x+b,代入圆的方程得:2x2+2(b+1)x+b2+4b-4=0,因为直线与圆相交,所以b2+6b-9<0,x1+x2=-b-1,x1x2=,设A(x1,y1),B(x2,y2),则y1=x1+b,y2=x2+b,由OA⊥OB得: ·=-1⇒=-1⇒(x 1+b)(x2+b)+x1x2=0,2x1x2+b(x1+x2)+b2=0⇒b2+3b-4=0,得b=-4或b=1,均满足b2+6b-9<0,故所求直线m存在,且方程为y=x-4或y=x+1.22.(12分)如图所示,l1,l2是通过某城市开发区中心O的南北和东西走向的街道,连接M,N两地之间的铁路线是圆心在l2上的一段圆弧,点M 在点O正北方向,且|MO|=3km,点N到l1,l2的距离分别为4km和5km.(1)建立适当的坐标系,求铁路线所在圆弧的方程.(2)若该城市的某中学拟在点O正东方向选址建分校,考虑到环境问题,要求校址到点O的距离大于4km,并且铁路线上任意一点到校址的距离不能小于km.求校址距离点O的最近距离.(注:校址视为一个点)【解析】(1)以城市开发区中心O为原点,分别以l2,l1为x轴、y轴,向东,向北为正方向,建立平面直角坐标系.根据题意,得M(0,3),N(4,5),故k MN==,MN的中点为(2,4),所以线段MN的垂直平分线方程为y-4=-2(x-2).令y=0,得x=4,故圆心A的坐标为(4,0),半径r==5.所以圆A的方程为(x-4)2+y2=25,所以的方程为(x-4)2+y2=25(0≤x≤4).(2)设校址选在点B(a,0)(a>4),则≥在0≤x≤4上恒成立,又y 2=25-(x-4)2,所以(8-2a)x+a2-17≥0①对0≤x≤4恒成立.令f(x)=(8-2a)x+a2-17,所以f(x)在[0,4]上为减函数,要使①恒成立,当且仅当时,即所以a≥5,即校址距离点O的最近距离为5km.关闭Word文档返回原板块。
(人教版)高中数学必修二(全册)同步练习+单元检测卷汇总
(人教版)高中数学必修二(全册)同步练习+单元检测卷汇总课后提升作业一棱柱、棱锥、棱台的结构特征(45分钟70分)一、选择题(每小题5分,共40分)1.下列说法中正确的是( )A.棱柱的面中,至少有两个面互相平行B.棱柱中两个互相平行的平面一定是棱柱的底面C.棱柱中一条侧棱的长就是棱柱的高D.棱柱的侧面一定是平行四边形,但它的底面一定不是平行四边形【解析】选A.棱柱的两底面互相平行,故A正确;棱柱的侧面也可能有平行的面(如正方体),故B错;立在一起的一摞书可以看成一个四棱柱,当把这摞书推倾斜时,它的侧棱就不是棱柱的高,故C错;由棱柱的定义知,棱柱的侧面一定是平行四边形,但它的底面可以是平行四边形,也可以是其他多边形,故D错.2.四棱柱有几条侧棱,几个顶点( )A.四条侧棱、四个顶点B.八条侧棱、四个顶点C.四条侧棱、八个顶点D.六条侧棱、八个顶点【解析】选C.结合正方体可知,四棱柱有四条侧棱,八个顶点.3.下列说法错误的是( )A.多面体至少有四个面B.九棱柱有9条侧棱,9个侧面,侧面为平行四边形C.长方体、正方体都是棱柱D.三棱柱的侧面为三角形【解析】选D.三棱柱的侧面是平行四边形,故D错误.4.如图,将装有水的长方体水槽固定底面一边后倾斜一个小角度,则倾斜后水槽中的水形成的几何体是( )A.棱柱B.棱台C.由一个棱柱与一个棱锥构成D.不能确定【解析】选 A.根据棱柱的结构特征,当倾斜后水槽中的水形成了以左右(或前后)两个侧面为底面的四棱柱.5.(2016·郑州高一检测)如图都是正方体的表面展开图,还原成正方体后,其中两个完全一样的是( )A.(1)(2)B.(2)(3)C.(3)(4)D.(1)(4)【解题指南】让其中一个正方形不动,其余各面沿这个正方形的各边折起,进行想象后判断.【解析】选B.在图(2)(3)中,⑤不动,把图形折起,则②⑤为对面,①④为对面,③⑥为对面,故图(2)(3)完全一样,而(1)(4)则不同. 【补偿训练】下列图形经过折叠可以围成一个棱柱的是( )【解析】选D.A,B,C中底面多边形的边数与侧面数不相等.6.若棱台上、下底面的对应边之比为1∶2,则上、下底面的面积之比是( )A.1∶2B.1∶4C.2∶1D.4∶1【解析】选 B.由棱台的概念知,上、下两底面是相似的多边形,故它们的面积之比等于对应边长之比的平方,故为1∶4.7.(2016·温州高一检测)在五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个五棱柱的对角线的条数共有( )A.20条B.15条C.12条D.10条【解析】选 D.因为棱柱的侧棱都是平行的,所以过任意不相邻的两条侧棱的截面为一个平行四边形,共可得5个截面,每个平行四边形可得到五棱柱的两条对角线,故共有10条对角线.8.(2015·广东高考)若空间中n个不同的点两两距离都相等,则正整数n的取值( )A.大于5B.等于5C.至多等于4D.至多等于3【解析】选 C.正四面体的四个顶点是两两距离相等的,即空间中n 个不同的点两两距离都相等,则正整数n的取值至多等于4.二、填空题(每小题5分,共10分)9.在正方体上任意选择4个顶点,它们可能是如下各种几何体的4个顶点,这些几何体是________.(写出所有正确结论的编号)①矩形;②不是矩形的平行四边形;③有三个面为等腰直角三角形,有一个面为等边三角形的四面体;④每个面都是等边三角形的四面体;⑤每个面都是直角三角形的四面体.【解析】如图:①正确,如图四边形A1D1CB为矩形;②错误,任意选择4个顶点,若组成一个平面图形,则必为矩形或正方形,如四边形ABCD为正方形,四边形A1BCD1为矩形;③正确,如四面体A1ABD;④正确,如四面体A1C1BD;⑤正确,如四面体B1ABD;则正确的说法是①③④⑤.答案:①③④⑤10.(2016·天津高一检测)一个棱柱有10个顶点,所有的侧棱长的和为60cm,则每条侧棱长为________cm.【解析】因为n棱柱有2n个顶点,又此棱柱有10个顶点,所以它是五棱柱,又棱柱的侧棱都相等,五条棱长的和为60cm,可知每条侧棱长为12cm.答案:12三、解答题(每小题10分,共20分)11.根据下面对几何体结构特征的描述,说出几何体的名称.(1)由8个面围成,其中2个面是互相平行且全等的六边形,其他各面都是平行四边形.(2)由5个面围成,其中一个是正方形,其他各面都是有1个公共顶点的三角形.【解析】(1)根据棱柱的结构特征可知,该几何体为六棱柱.(2)根据棱锥的结构特征可知,该几何体为四棱锥.12.已知三棱柱ABC-A′B′C′,底面是边长为1的正三角形,侧面为全等的矩形且高为8,求一点自A点出发沿着三棱柱的侧面绕行一周后到达A′点的最短路线长.【解析】将三棱柱侧面沿侧棱AA′剪开,展成平面图形如图,则AA″即为所求的最短路线.在Rt△AA1A″中,AA1=3,A1A″=8,所以AA″==.【延伸探究】本题条件不变,求一点自A点出发沿着三棱柱的侧面绕行两周后到达A′点的最短路线长.【解析】将两个相同的题目中的三棱柱的侧面都沿AA′剪开,然后展开并拼接成如图所示,则AA″即为所求的最短路线.在Rt△AA1A″中,AA1=6,A1A″=8,所以AA″===10.【能力挑战题】如图,在边长为2a的正方形ABCD中,E,F分别为AB,BC的中点,沿图中虚线将3个三角形折起,使点A,B,C重合,重合后记为点P.问:(1)折起后形成的几何体是什么几何体?(2)这个几何体共有几个面,每个面的三角形有何特点?(3)每个面的三角形面积为多少?【解析】(1)如图,折起后的几何体是三棱锥.(2)这个几何体共有4个面,其中△DEF为等腰三角形,△PEF为等腰直角三角形,△DPE和△DPF均为直角三角形.(3)S△PEF=a2,S△DPF=S△DPE=×2a×a=a2,S△DEF=S正方形ABCD-S△PEF-S△DPF-S△DPE=(2a)2-a2-a2-a2=a2.关闭Word文档返回原板块温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
高一数学人教A版必修2试题:综合学业质量标准检测 含答案试卷分析详
本册综合学业质量标准检测本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(·泰安二中高一检测)直线y =kx 与直线y =2x +1垂直,则k 等于 ( C ) A .-2B .2C .-12D .13[解析] 由题意,得2k =-1,∴k =-12.2.空间中到A 、B 两点距离相等的点构成的集合是 ( B ) A .线段AB 的中垂线 B .线段AB 的中垂面 C .过AB 中点的一条直线D .一个圆[解析] 空间中线段AB 的中垂面上的任意一点到A 、B 两点距离相等. ①三角形的高线的平行投影,一定是这个三角形的平行投影的高线; ②三角形的中线的平行投影,一定是这个三角形的平行投影的中线; ③三角形的角平分线的平行投影,一定是这个三角形的平行投影的角平分线; ④三角形的中位线的平行投影,一定是这个三角形的平行投影的中位线. A .①②B .②③C .③④D .②④[解析] 垂直线段的平行投影不一定垂直,故①错;线段的中点的平行投影仍是线段的中点,故②正确;三角形的角平分线的平行投影,不一定是角平分线,故③错;因为线段的中点的平行投影仍然是线段的中点,所以中位线的平行投影仍然是中位线,故④正确.选D .4.如图,在同一直角坐标系中,表示直线y =ax 与y =x +a 正确的是 ( C )[解析] 当a >0时,直线y =ax 的斜率k =a >0,直线y =x +a 在y 轴上的截距等于a >0,此时,选项A 、B 、C 、D 都不符合;当a <0时,直线y =ax 的斜率k =a <0,直线y =x +a 在y 轴上的截距等于a <0,只有选项C 符合,故选C .5.已知圆x 2+y 2+4x -4y +m =0截直线x +y +2=0所得弦的长度为2,则实数m 的值是 ( C )A .3B .4C .5D .7[解析] 圆x 2+y 2+4x -4y +m =0的圆心(-2,2),半径r =8-m (m <8).圆心(-2,2)到直线x +y +2=0的距离d =|-2+2+2|12+12=2,由题意,得m =5.6.在圆柱内有一个内接正三棱锥,过一条侧棱和高作截面,正确的截面图形是 ( D )[解析] 如图所示,由图可知选D .7.(·天水市高一检测)圆x 2+y 2-4x +6y =0和圆x 2+y 2-6x =0交于A 、B 两点,则AB 的垂直平分线的方程是 ( C )A .x +y +3=0B .2x -y -5=0C .3x -y -9=0D .4x -3y +7=0[解析] 圆x 2+y 2-4x +6y =0的圆心C 1(2,-3),圆x 2+y 2-6x =0的圆心C 2(3,0),AB 的垂直平分线过圆心C 1、C 2,∴所求直线的斜率k =0+33-2=3,所求直线方程为y =3(x -3),即3x -y -9=0.8.(·南平高一检测)已知直线l 与直线2x -3y +4=0关于直线x =1对称,则直线l 的方程为 ( A )A .2x +3y -8=0B .3x -2y +1=0C .x +2y -5=0D .3x +2y -7=0[解析] 由⎩⎪⎨⎪⎧ 2x -3y +4=0x =1,得⎩⎪⎨⎪⎧x =1y =2. 由题意可知直线l 的斜率k 与直线2x -3y +4=0的斜率互为相反数, ∴k =-23,故直线l 的方程为y -2=-23(x -1),即2x +3y -8=0.9.某几何体的三视图如下所示,则该几何体的体积是 ( B )A .332B .1336C .233D .1136[解析] 该几何体是一个正三棱柱和一个三棱锥的组合体,故体积V =34×22×32+13×34×22×2=1336. 10.(~·郑州高一检测)过点M (1,2)的直线l 与圆C :(x -3)2+(y -4)2=25交于A ,B 两点,C 为圆心,当∠ACB 最小时,直线l 的方程是 ( D )A .x -2y +3=0B .2x +y -4=0C .x -y +1=0D .x +y -3=0[解析] 由圆的几何性质知,圆心角∠ACB 最小时,弦AB 的长度最短, 此时应有CM ⊥AB . ∵k CM =1, ∴k l =-1.∴直线l 方程为y -2=-(x -1),即x +y -3=0. 故选D .11.若圆C :x 2+y 2-4x -4y -10=0上至少有三个不同的点到直线l :x -y +c =0的距离为22,则c 的取值范围是 ( C )A .[-22,22]B .(-22,22)C .[-2,2]D .(-2,2)[解析] 圆C :x 2+y 2-4x -4y -10=0整理为(x -2)2+(y -2)2=(32)2,∴圆心坐标为C (2,2),半径长为32,要使圆上至少有三个不同的点到直线l :x -y +c =0的距离为22,如右图可知圆心到直线l 的距离应小于等于2,∴d =|2-2+c |1+1=|c |2≤2,解得|c |≤2,即-2≤c ≤2.12.已知圆C 1:(x -2)2+(y -3)2=1,圆C 2:(x -3)2+(y -4)2=9,M 、N 分别是圆C 1、C 2上的动点,P 为x 轴上的动点,则|PM |+|PN |的最小值为 ( A )A .52-4B .17-1C .6-22D .17[解析] 两圆的圆心均在第一象限,先求|PC 1|+|PC 2|的最小值,作点C 1关于x 轴的对称点C 1′(2,-3),则(|PC 1|+|PC 2|)min =|C 1′C 2|=52,所以(|PM |+|PN |)min =52-(1+3)=52-4.第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.(·曲阜师大附中高一检测)△ABC 中,已知点A (2,1)、B (-2,3)、C (0,1),则BC 边上的中线所在直线的一般方程为__x +3y -5=0__.[解析] BC 边的中点D 的坐标为(-1,2),∴BC 边上的中线AD 所在直线的方程为y -21-2=x +12+1,即x +3y -5=0.14.(·南安一中高一检测)已知直线y =kx +2k +1,则直线恒经过的定点__(-2,1)__. [解析] 解法一:直线y =kx +2k +1,即 k (x +2)+1-y =0,由⎩⎪⎨⎪⎧ x +2=01-y =0,得⎩⎪⎨⎪⎧x =-2y =1. ∴直线恒经过定点(-2,1).解法二:原方程可化为y -1=k (x +2), ∴直线恒经过定点(-2,1).15.一个正四棱台,其上、下底面边长分别为8 cm 和18 cm ,侧棱长为13 cm ,则其表面积为__1 012 cm 2__.[解析] 由已知可得正四棱台侧面梯形的高为 h =132-(18-82)2=12(cm),所以S 侧=4×12×(8+18)×12=624(cm 2),S 上底=8×8=64(cm 2),S 下底=18×18=324(cm 2), 于是表面积为S =624+64+324=1 012(cm 2).①三棱锥A -D 1PC 的体积不变;②A 1P ∥平面ACD 1;③DP ⊥BC 1;④平面PDB 1⊥平面ACD 1.[解析] ①因为BC 1∥AD 1,所以BC 1∥平面AD 1C ,所以直线BC 1上任一点到平面AD 1C 的距离都相等,所以VA -D 1PC =VP -AD 1C =VB -AD 1C 为定值,正确;②因为AC ∥A 1C 1,AD 1∥BC 1,AC ∩AD 1=A ,A 1C 1∩BC 1=C 1,所以平面ACD 1∥平面A 1BC 1,因为A 1P ⊂平面A 1BC 1,所以A 1P ∥平面ACD 1,正确;③假设DP ⊥BC 1,因为DC ⊥BC 1,DC ∩DP =D ,所以BC 1⊥平面DPC ,所以BC 1⊥CP ,因为P 是BC 1上任一点,所以BC 1⊥CP 不一定成立,错误;④因为B 1B ⊥平面ABCD ,AC ⊂平面ABCD ,所以B 1B ⊥AC ,又AC ⊥BD ,BD ∩B 1B =B ,所以AC ⊥平面BB 1D ,所以AC ⊥DB 1,同理可知AD 1⊥DB 1,因为AC ∩AD 1=A ,所以DB 1⊥平面ACD 1,因为DB 1⊂平面PDB 1,所以平面PDB 1⊥平面ACD 1,正确.故填①②④.三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)已知直线l 1:ax -by -1=0(a 、b 不同时为0),l 2:(a +2)x +y +a =0.(1)若b =0且l 1⊥l 2,求实数a 的值;(2)当b =2,且l 1∥l 2时,求直线l 1与l 2之间的距离. [解析] (1)若b =0,则l 1:ax -1=0, l 2:(a +2)x +y +a =0.∵l 1⊥l 2,∴a (a +2)=0,∴a =-2或0(舍去),即a =-2. (2)当b =2时,l 1:ax -2y -1=0, l 2:(a +2)x +y +a =0,∵l 1∥l 2,∴a =-2(a +2),∴a =-43.∴l 1:4x +6y +3=0,l 2:2x +3y -4=0,∴l 1与l 2之间的距离d =|32+4|22+32=111326.18.(本小题满分12分)自A (4,0)引圆x 2+y 2=4的割线ABC ,求弦BC 中点P 的轨迹方程.[解析] 连接OP ,则OP ⊥BC ,设P (x ,y ),当x ≠0时,k OP ·k AP =-1, 即y x ·yx -4=-1. 即x 2+y 2-4x =0.①当x =0时,P 点坐标为(0,0)是方程①的解,所以BC 中点P 的轨迹方程为x 2+y 2-4x =0(在已知圆内).19.(本小题满分12分)(2019·葫芦岛高一检测)已知半径为2,圆心在直线y =x +2上的圆C .(1)当圆C 经过点A (2,2)且与y 轴相切时,求圆C 的方程;(2)已知E (1,1)、F (1,3),若圆C 上存在点Q ,使|QF |2-|QE |2=32,求圆心横坐标a 的取值范围.[解析] (1)设圆心坐标为(a ,-a +2), ∵圆经过点A (2,2)且与y 轴相切,∴⎩⎪⎨⎪⎧(2-a )2+[2-(-a +2)]2=4|a |=2, 解得a =2.∴圆C 的方程为(x -2)2+y 2=4. (2)设Q (x ,y ),由已知,得(x -1)2+(y +3)2-[(x -1)2+(y -1)2]=32, 即y =3.∴点Q 在直径y =3上.又∵Q 在圆C 上,∴圆C 与直线y =3相交, ∴1≤-a +2≤5,∴-3≤a ≤1. ∴圆心横坐标a 的取值范围为-3≤a ≤1.20.(本小题满分12分)已知圆C :x 2+y 2-2x +4y -4=0,斜率为1的直线l 与圆C 交于A 、B 两点.(1)化圆的方程为标准形式,并指出圆心和半径;(2)是否存在直线l ,使以线段AB 为直径的圆过原点?若存在,求出直线l 的方程,若不存在,说明理由;(3)当直线l 平行移动时,求△CAB 面积的最大值. [解析] (1)(x -1)2+(y +2)2=9.圆心C (1,-2),r =3. (2)假设存在直线l ,设方程为y =x +m ,A (x 1,y 1),B (x 2,y 2), ∵以AB 为直径的圆过圆心O , ∴OA ⊥OB ,即x 1x 2+y 1y 2=0.⎩⎪⎨⎪⎧y =x +m x 2+y 2-2x +4y -4=0, 消去y 得2x 2+2(m +1)x +m 2+4m -4=0. Δ>0得-32-3<m <32-3. 由根与系数关系得:x 1+x 2=-(m +1),x 1x 2=m 2+4m -42,y 1y 2=(x 1+m )(x 2+m )=x 1x 2+m (x 1+x 2)+m 2 ∴x 1x 2+y 1y 2=2x 1x 2+m (x 1+x 2)+m 2=0. 解得m =1或-4.直线l 方程为y =x +1或y =x -4.(3)设圆心C 到直线l :y =x +m 的距离为d , |AB |=29-d 2,S △CAB =12×29-d 2×d =9d 2-d 4=814-(d 2-92)2≤92,此时d =322,l 的方程为y =x 或y =x -6. 21.(本小题满分12分)(2019·全国卷Ⅰ文,18)如图,在四棱锥P -ABCD 中,AB ∥CD ,且∠BAP =∠CDP =90°.(1)证明:平面P AB ⊥平面P AD ;(2)若P A =PD =AB =DC ,∠APD =90°,且四棱锥P -ABCD 的体积为83,求该四棱锥的侧面积.[解析] (1)证明:由已知∠BAP =∠CDP =90°,得AB ⊥AP ,CD ⊥PD . 因为AB ∥CD ,所以AB ⊥PD .又AP ∩DP =P ,且AP ,DP ⊂平面P AD 所以AB ⊥平面P AD . 因为AB ⊂平面P AB , 所以平面P AB ⊥平面P AD .(2)解:如图,在平面P AD 内作PE ⊥AD ,垂足为点E .由(1)知,AB ⊥平面P AD ,故AB ⊥PE ,AB ⊥AD ,又∵AD ∩AB =A . 可得PE ⊥平面ABCD .设AB =x ,则由已知可得AD =2x ,PE =22x . 故四棱锥P -ABCD 的体积V P -ABCD =13AB ·AD ·PE =13x 3.由题设得13x 3=83,故x =2.从而结合已知可得P A =PD =AB =DC =2,AD =BC =22,PB =PC =2 2. 可得四棱锥P -ABCD 的侧面积为12P A ·PD +12P A ·AB +12PD ·DC +12BC 2sin 60°=6+2 3. 22.(本小题满分12分)已知⊙C :x 2+y 2+2x -4y +1=0. (1)若⊙C 的切线在x 轴、y 轴上截距相等,求切线的方程;(2)从圆外一点P (x 0,y 0)向圆引切线PM ,M 为切点,O 为原点,若|PM |=|PO |,求使|PM |最小的P 点坐标.[解析] ⊙C :(x +1)2+(y -2)2=4, 圆心C (-1,2),半径r =2. (1)若切线过原点设为y =kx , 则|-k -2|1+k 2=2,∴k =0或43.若切线不过原点,设为x +y =a , 则|-1+2-a |2=2,∴a =1±22, ∴切线方程为:y =0,y =43x ,x +y =1+22和x +y =1-2 2.(2)x 20+y 20+2x 0-4y 0+1=x 20+y 20,∴2x 0-4y 0+1=0,|PM |=x 20+y 20+2x 0-4y 0+1=5y 20-2y 0+14∵P 在⊙C 外,∴(x 0+1)2+(y 0-2)2>4, 将x 0=2y 0-12代入得5y 20-2y 0+14>0, ∴|PM |min =510.此时P ⎝⎛⎭⎫-110,15.。
(人教版)高中数学必修二(全册)单元测试卷汇总
(人教版)高中数学必修二(全册)单元测试卷汇总、阶段通关训练(一)(60分钟 100分)一、选择题(每小题5分,共3。
分)1・已知某几何体的三视图如图所示,那么这个几何体是□ □便視囲A. 长方体 C.匹棱锥【解析】选A.该几何体是长方体,如图所示» 入城商中目字必零二01 :酚俭1王训停 爺人椒版為中教学宕偌2!; &馈通关训号 信,奴薮版快9E 必偌二好:阶段遑关训澤 司:人馭艇苣中数猝偌二桂測:跻蜀■美训遂 琼人板版毫中gtl 修二窗I ;樓埃蜃量怦估 S 人会版毎中數⑴ C 2) Word 版言眾忻 Word 版合解忻 W 。
招版含解忻 (AS ) Word 板合樹ff (B 卷)WordB.圆性 D.四棱台正視图悟视图2.以钝角三角形旳较小边所在的直线为轴,其他两边旋转一周所得到的几何体是()A .两个圆锥拼桜而成的组合体B.一个圖台C.一个圆锥D . 一个圆锥挖去一个同底的小圆维【解析】选D.如图以AB为轴所得的几何体是一个大圆锥挖去一个同底的小圆锥.3.已知AAB攏边长为2a的正三角形,那么△ABCE勺平面直观图△ A'B‘ C'的面积为()D.\Ga~【鮮析】选C.直观图面积S与原图面积S具有关系:S' Mfs.因为S 好芸12a)所以S …c 三•X\/3a'=^a .4- 4 4【补偿训练】某三角形的直观图是斜边长为2的等腰直角三角形,如图所示,则原三信形的面积是【解析】根据宜观图和原图形的关系可知原图形的面积为X 2vl X 2二2卮 答案:2^24. 某三梭锥的三视图如图所示,则该三検锥的体积是【解析】选B .由三视图可判断该三棱锥底面为等腰直角三角形,三 棱锥旳高为 2. RI V=x x 1 x 1 x 2=.^【补偿洲练】已知正三棱镣V-ABC 的正视图、侧视图和帽视图如图所 示,则该正三枝锥侧视图的面积是A.B. C. D.1A.v39B.6\,r 3D.6俯视C.即3【解析】选D .如图,根据三视图间的关系可得BCM3,所以侧视图 中VA 二\|铲一任X ? X 2妁七整,所以三橙锥侧视图面积S- 海=x 2V 3X 2\顶二6,故选 D.5.(2016 •蚌瑋高二检测)若一个回锥的侧面展开图是面积为 2工的半圆面,则该圆锥的体积为B.V3 X C .拓x【解析】选A.设园锥的母线长为I,底面半径为r,由题意|7苗2 = 211,vnl = 2TTT ,解得'所以圆锥的高为 h=\F —尸=寸3 , V= * r 2h= r x 12x r = L . 6.(2016 •雅安高二检测)设正方体的全面积为 24,邪么其内切球的体积是A .扼KB.兀32 D.—【解析】 选B.正方体的全面积为24,所以,设正方体的棱长为a.6 宀 24, a 二2,正方体的内切球的直径就是正方体的校长,所以球的半径为1,内切球旳体积:V = 7t . ID RC乙 第*已回刮寻詠回王曲>=s '哥USS 甲'里蛔国皿【果到】&&価91实逐刘t ¥豈我到国丑屬T 風濕&一天喔宰邕€好日-6肝里N 二縛:毒虽•*+£,W=M*£Axl X >t=S rft凰峯4 Z^A^Ax^ x=A '風刘"坦 NN 八一醇E3HI 诳乙 弟学段皿期一旧耳闻1/峯'皓也乎书屋絶三零净【爆蜴】醇車回1/溟【四'(国⑰)国隴三阳财回廿必日(脈玛二堆※困• 9L0S1-8LL :孝晶U=x 韧 N 刮’壽」三三)阜尚‘X 興覃毋号密祺[菓到】 麹*辛矣廚留丄壬至藏乌去廖犯讪目丄竺羽诲同争宙【睾里區墙】^实些阳号屛醇斟濯施*09实邊回回淮即回通士互士 .乙屿%邊国基’9L 实雙団驚勢N(G&详‘&9鲤W 辱)谴乏帯 '二=M 媛苴'務nD所以AQ=\吃,A O=R^/6.所以S丼二4兀F<=24T.答案:24 x10•圖台的底面半径分别为1和2,母线长为3,则此圖台的体积为【解析】圆台的高h= 732 - (2 - I)2 =2 <1 ,所以体积71 2 aV=y(R+Rr4-r )h=^^i(. 答案:學三、解答题(共4小题,共50分)11.(12分)如區几何体上半部分是母线长为5,底面圆半径为3的圆锥,下半部分是下底面圆半径为2,母线长为2的圆台,计算该几何体的表面枳和体枳【韻析】圖锥侧面积为S = X rl=15r ,圖台的侧面积为缶冗(r+r ' )1二10冗,圖台的底面宜积为订’』牝,所以表面积为:S=S+S+S s=15i +10兀+4H=29X;圆锥的体积V-xr2hi=12x ,圆台的体积V:= r h2(r :+rr , +「’ 2)=^y^r ,所以体积为:V=V+U=12i------ X .312.(12分)如图是一个几何体的正视图和俯视图(1)试判断该几何体是什么几何体?(2)画出其侧视图,并求该平面图形的面积.(3)求出该几何体的体积.【解析】(1)由该几何体的正视图和俯视图可知该几何体是一个正六棱锥.(2)该几何体的側视图如图.其中AB=AC AD^BC,且BC的长是俯视图正六边形对边的距离,即BC=v3a, AD是正六棱锥的高,即AD十3a,所以该平面图形的面积(3)没这个正六棱锥的底面积是S,体积为V,则S=6< —a=—a\4 2所以V=x三歯x JJa=a°.13.(13分)如图所示,在四边形ABC畔,Z DAB=90 , ZADCF35 ,AB二5 CD二不臣,AD二2求四边形ABC说AD旋转一周所成几何体的表面积及体积.【鮮析】S 表面二S SOFB +S Bo ma +S 四部面=it x 5~+ i x (2+5) x 5+ r X 2X 2V2=(4 克+60) x .V=V H&-V B*=z (4-r if z+Fj )h- x h148=I (25+10+4) X 4- Jt X 4X 2. x .14.(13分)(2016 ,湖北实验中学高一检测 )如图,△ ABC中,ZACB=90 , Z ABC=30* , BC%3 在三角形内挖去一个半圆(圆心。
人教版高中数学必修第二册第四单元《统计》检测(答案解析)
一、选择题1.随机调查某学校50名学生在学校的午餐费,结果如表:餐费(元)678人数102020这50个学生的午餐费的平均值和方差分别是( )A.7.2元,0.56元2B.7.2元,0.56元C.7元,0.6元2D.7元,0.6元2.某校高一年级有男生400人,女生300人,为了调查高一学生对于高二时文理分科的意向,拟随机抽取35人的样本,则应抽取的男生人数为()A.25 B.20 C.15 D.103.“幸福感指数”是指某个人主观地评价他对自己目前生活状态的满意程度的指标.常用区间[]0,10内的一个数来表示,该数越接近10表示满意度越高.甲、乙两位同学分别随机抽取10位本地市民调查他们的幸福感指数,甲得到十位市民的幸福感指数为5,6,6,7,7,7,7,8,8,9,乙得到十位市民的幸福感指数的平均数为8、方差为2.2,则这20位市民幸福感指数的方差为()A.1.75 B.1.85 C.1.95 D.2.054.某赛季甲、乙两名篮球运动员每场比赛得分用茎叶图表示,茎叶图中甲得分的部分数据被墨迹污损不清(如图1),但甲得分的折线图完好(如图2),则下列结论错误的是()A.乙运动员得分的中位数是17,甲运动员得分的极差是19B.甲运动员发挥的稳定性比乙运动员发挥的稳定性差C.甲运动员得分有12的叶集中在茎1上D.甲运动员得分的平均值一定比乙运动员得分的平均值低5.10名小学生的身高(单位:cm)分成了甲、乙两组数据,甲组:115,122,105,111,109;乙组:125,132,115, 121,119.两组数据中相等的数字特征是( )A.中位数、极差B.平均数、方差C.方差、极差D.极差、平均数6.一组数据从小到大的顺序排列为1,2,2,x,5,10,其中5x≠,已知该组数据的中位数是众数的32倍,则该组数据的标准差为( ) A .9 B .4 C .3 D .27.某班所有学生某次数学考试的得分均在区间[90, 140]内,其频率分布直方图如右图所示,若前4 组的频率依次成等差数列,则实数aA .0.02B .0.024C .0.028D .0.038.容量为100的样本,其数据分布在[2]18,,将样本数据分为4组:[2,6),[6,10),[10,14),[14,18],得到频率分布直方图如图所示,则下列说法不正确的是( )A .样本数据分布在[6,10)的频率为0.32B .样本数据分布在[10,14)的频数为40C .样本数据分布在[2,10)的频数为40D .估计总体数据大约有10%分布在[10,14) 9.2007年以前,北京市先后组织实施了多个阶段的大气污染防治行动,针对燃煤、工业、扬尘排放和机动车排放等采取了数百项治理措施.2008年北京市首次探索区域联防联控,取得了良好效果.2013年北京市制定实施以防治细颗粒物为重点的《2013-2017年清洁空气行动计划》,治理成效显著.上图是2000年至2018年可吸入颗粒物、细颗粒物、二氧化氮、二氧化硫等主要污染物年日均值的折线图.根据图中信息,下列结论中正确的是()A.2013年到2018年,空气中可吸入颗粒物的年日均值逐年下降B.2013年到2018年,空气中细颗粒物的年日均值逐年下降C.2000年到2018年,空气中二氧化氮的年日均值都低于40微克/立方米D.2000年到2018年,空气中二氧化硫的年日均值最低的年份是2008年10.某小区为了调查本小区业主对物业服务满意度的真实情况,对本小区业主进行了调查,调查中问了两个问题1:你的手机尾号是不是奇数?问题2:你是否满意物业的服务?调查者设计了一个随机化装置,其中装有大小、形状和质量完全相同的白球和红球,每个被调查者随机从装置中摸到红球和白球的可能性相同,其中摸到白球的业主回答第一个问题,摸到红球的业主回答第二个问题,回答“是”的人往一个盒子中放一个小石子,回答“否”的人什么都不要做由于问题的答案只有“是”和“否”,而且回答的是哪个问题别人并不知道,因此被调查者可以毫无顾虑地给出符合实际情况的答案.已知某小区80名业主参加了问卷,且有47名业主回答了“是”,由此估计本小区对物业服务满意的百分比大约为()A.85% B.75% C.63.5% D.67.5%11.随着2020年北京冬奥会临近,中国冰雪产业快速发展,冰雪运动人数快速上升,冰雪运动市场需求得到释放,将引领户外用品行业市场增长.下面是2012年至2018年中国雪场滑雪人次(万人次)与同比增长率的统计图,则下面结论中不正确的是()A.2013年至2018年,中国雪场滑雪人次逐年增加B.2013年至2015年,中国雪场滑雪人次和同比增长率均逐年增加C.2018年与2013年相比,中国雪场滑雪人次的同比增长率近似相等,所以同比增长人数也近似相等D.2018年与2016年相比,中国雪场滑雪人次增长率约为30.5%12.总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从第1行的第5列和第6列数字开始由左往右依次选取两个数字,则选出来的第5个个体的编号为()A .01B .02C .14D .1913.某公司10位员工的月工资(单位:元)为1x ,2x ,…,10x ,其均值和方差分别为x 和2s ,若从下月起每位员工的月工资增加100元,则这10位员工下月工资的均值和方差分别为( )A .x ,22s 100+B .100x +,22s 100+C .x ,2sD .100x +,2s二、解答题14.茎叶图记录了甲,乙两组各四名同学单位时间内引体向上的次数,乙组记录中有一个数据模糊,无法确认,在图中以X 表示.(1)如果X =8,求乙组同学单位时间内引体向上次数的平均数和方差;(2)如果X =9,分别从甲,乙两组中随机选取一名同学,求这两名同学单位时间内引体向上次数和为19的概率.15.从某食品厂生产的面包中抽取100个,测量这些面包的一项质量指标值,由测量结果得如下频数分布表:质量指标值分组[75,85) [85,95) [95,105) [105,115) [115,125) 频数 8 22 37 28 5(1)在相应位置上作出这些数据的频率分布直方图;(2)估计这种面包质量指标值的平均数x(同一组中的数据用该组区间的中点值作代表);(3)根据以上抽样调查数据,能否认为该食品厂生产的这种面包符合“质量指标值不低于85的面包至少要占全部面包90%的规定?”16.2020年新冠肺炎疫情期间,某区政府为了解本区居民对区政府防疫工作的满意度,从本区居民中随机抽取若干居民进行评分.根据调查数据制成如下表格和频率分布直方图.已知评分在[80,100]的居民有600人.满意度评分[40,60)[60,80)[80,90)[90,100]满意度等级不满意基本满意满意非常满意(1)求频率分布直方图中a的值及所调查的总人数;η<,则防疫工作需要进行大的调(2)定义满意指数η=满意程度的平均分/100,若0.8整,否则不需要大调整.根据所学知识判断该区防疫工作是否需要进行大调整?(3)为了解部分居民不满意的原因,从不满意的居民(评分在[40,50)、[50,60))中用分层抽样的方法抽取6名居民,倾听他们的意见,并从6人中抽取2人担任防疫工作的监督员,求这2人中仅有一人对防疫工作的评分在[40,50)内的概率.17.为创建全国文明城市,我市积极打造“绿城”的创建目标,使城市环境绿韵萦绕,使市民生活绿意盎然.有效增加城区绿化面积,提高城区绿化覆盖率,提升城市形象品位.林业部门推广种植甲、乙两种树苗,并对甲、乙两种树苗各抽测了10株树苗的高度(单位:厘米),数据如下面的茎叶图:(1)根据茎叶图求甲、乙两种树苗的平均高度;(2)根据茎叶图,计算甲、乙两种树苗的高度的方差,运用统计学知识分析比较甲、乙两种树苗高度整齐情况.18.某校命制了一套调查问卷(试卷满分均为100分),并对整个学校的学生进行了测试.现从这些学生的成绩中随机抽取了50名学生的成绩,按照[)[)[]50,60,60,70,,90,100⋅⋅⋅分成5组,制成了如图所示的频率分布直方图(假定每名学生的成绩均不低于50分).(1)求频率分布直方图中x 的值,并估计所抽取的50名学生成绩的平均数、中位数(同一组中的数据用该组区间的中点值代表);(2)用样本估计总体,若该校共有2000名学生,试估计该校这次测试成绩不低于70分的人数;(3)若利用分层抽样的方法从样本中成绩不低于70分的学生中抽取6人,再从这6人中随机抽取3人,试求成绩在[]80,100的学生至少有1人被抽到的概率.19.为庆祝国庆节,某中学团委组织了“歌颂祖国,爱我中华”知识竞赛,从参加考试的学生中抽出60名,将其成绩(成绩均为整数)分成[40,50),[50,60),…,[90,100)六组,并画出如图所示的部分频率分布直方图,观察图形,回答下列问题:(1)求第四组的频率,并补全这个频率分布直方图;(2)请根据频率分布直方图,估计样本的众数、中位数和平均数.(每组数据以区间的中点值为代表)20.为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成,A B 两组,每组100只,其中A 组小鼠给服甲离子溶液,B 组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到()P C的估计值为0.70.(1)求乙离子残留百分比直方图中,a b的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).21.某学校共有教职工900人,分成三个批次进行继续教育培训,在三个批次中男、女教职工人数如下表所示.已知在全体教职工中随机抽取1名,抽到第二批次中女教职工的概率是0.16.第一批次第二批次第三批次女教职工196x y男教职工204156z(1)求x的值;(2)现用分层抽样的方法在全体教职工中抽取54名做培训效果的调查,问应在第三批次中抽取教职工多少名?22.随着电子商务的发展, 人们的购物习惯正在改变, 基本上所有的需求都可以通过网络购物解决. 小韩是位网购达人, 每次购买商品成功后都会对电商的商品和服务进行评价. 现对其近年的200次成功交易进行评价统计, 统计结果如下表所示.对服务好评对服务不满意合计对商品好评8040120(1) 是否有99.9%的把握认为商品好评与服务好评有关? 请说明理由;(2) 若针对商品的好评率, 采用分层抽样的方式从这200次交易中取出5次交易, 并从中选择两次交易进行观察, 求只有一次好评的概率.(22()()()()()n ad bcKa b c d a c b d-=++++,其中n a b c d=+++)23.某中学从高三男生中随机抽取100名学生,将他们的身高数据进行整理,得到下侧的频率分布表.(Ⅰ)为了能对学生的体能做进一步了解,该校决定在第3,4,5组中用分层抽样的方法抽取6名学生进行体能测试,问第3,4,5组每组各应抽取多少名学生进行测试;(Ⅱ)在(Ⅰ)的前提下,学校决定在6名学生中随机抽取2名学生进行引体向上测试,求第3组中至少有一名学生被抽中的概率;(Ⅲ)试估计该中学高三年级男生身高的中位数位于第几组中,并说明理由.24.为了了解甲、一两个工厂生产的轮胎的宽度说法达标,分别从两厂随机个选取了10个轮胎,经每个轮胎的宽度(单位:mm)记录下来并绘制出如下的折线图:(1)分别计算甲、乙两厂提供10个轮胎宽度的平均值(2)轮胎的宽度在[194,196]内,则称这个轮胎是标准轮胎(i)若从甲厂提供的10个轮胎中随机选取1个,求所选的轮胎是标准轮胎的概率?(ii)试比较甲、乙两厂分别提供的10个轮胎中所有标准轮胎宽度的方差的大小,根据两厂的标准轮胎宽度的平均水平及其波动情况,判断这两个工厂哪个厂的轮胎相对更好?25.利民中学为了了解该校高一年级学生的数学成绩,从高一年级期中考试成绩中抽出100名学生的成绩,由成绩得到如下的频率分布直方图.根据以上频率分布直方图,回答下列问题:(1)求这100名学生成绩的及格率;(大于等于60分为及格)(2)试比较这100名学生的平均成绩和中位数的大小.(精确到0.1)26.某研究院为了调查学生的身体发育情况,从某校随机抽频率组距测120名学生检测他们的身高(单位:米),按数据分成[1.2,1.3],(1.3,1.4],,(1.7,1.8]这6组,得到如图所示的频率分布直方图,其中身高大于或等于1.59米的学生有20人,其身高分别为1.59,1.59,1.61,1.61,1.62,1.63,1.63,1.64,1.65,1.65,1.65,1.65,1.66,1.67,,1.68,1.69,1.69,1.71,1.72,1.74,以这120名学生身高在各组的身高的频率估计整个学校的学生在各组身高的概率.(1)求该校学生身高大于1.60米的频率,并求频率分布直方图中m 、n 、t 的值; (2)若从该校中随机选取3名学生(学生数量足够大),记X 为抽取学生的身高在(1.4,1.6]的人数求X 的分布列和数学期望.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】直接利用平均数公式与方差公式求解即可.【详解】先计算这50个学生午餐费的平均值是()16107208207.250x =⨯⨯+⨯+⨯=, 所以方差是()()()222211067.22077.22087.20.5650S ⎡⎤=⨯⨯-+⨯-+⨯-=⎣⎦,故选A . 【点睛】本题主要考查平均数公式与方差公式的应用,属于基础题. 样本数据的算术平均数公式:12n 1(++...+)x x x x n=;样本方差公式:2222121[()()...()]n s x x x x x x n =-+-++-.2.B解析:B 【解析】分析:设应抽取的男生人数为x ,根据分层抽样的定义对应成比例可得35400300400x=+,解出方程即可.详解:设应抽取的男生人数为x ,∴35400300400x=+,解得20x,即应抽取的男生人数为20,故选B.点睛:本题考查应从高一年级学生中抽取学生人数的求法,考查分层抽样等基础知识,考查运算求解能力,是基础题.3.C解析:C 【分析】设乙得到十位市民的幸福感指数分别为111220,,,x x x ,根据这10个数据的平均数为8、方差为2.2可得221120662x x ++=,再根据方差的公式可求20个数据的方差.【详解】设甲得到的十位市民的幸福感指数分别为1210,,,x x x ,乙得到十位市民的幸福感指数分别为111220,,,x x x ,故这20位市民的幸福感指数的方差为()22222212101120120x x x x x x ++++++-,因为乙得到十位市民的幸福感指数的平均数为8、方差为2.2,11122081080x x x +++=⨯=,故56677778891087.520x ++++++++++⨯==,而()221120164 2.210x x ++-=,故221120662x x ++=,而222222222121056647289502x x x +++=+++⨯+⨯+=,故所求的方差为()215026627.5 1.9520+-=, 故选:C. 【点睛】本题考查方差的计算,注意样本数据12,,,n x x x 的方差为()211nii x xn =-∑,也可以是2211n ii x x n =-∑,本题属于中档题. 4.D解析:D 【分析】先根据甲得分的折线图确定被墨迹污损的两个数字取值范围,再根据极差、平均数、中位数等概念以及茎叶图判断大小以及稳定性,即可作出判断选择. 【详解】由茎叶图得乙运动员得分的中位数是17,平均值为9+14+15+17+18+19+20=148根据甲得分的折线图确定被墨迹污损的两个数字取值范围为[13,15],所以甲运动员得分的极差是28919-=,甲运动员得分有41=82的叶集中在茎1上,甲运动员得分数据比乙分散,所以甲发挥的稳定性比乙运动员发挥的稳定性差,甲运动员得分平均值9+12+13+13+13+20+26+28>>148x 甲,所以D 错误,故选:D 【点睛】本题考查茎叶图、折线图及其应用,考查基本分析判断计算能力,属基础题.5.C解析:C 【分析】将甲、乙两组数据的极差、平均数、中位数、方差全部算出来,并进行比较,可得出答案. 【详解】甲组数据由小到大排列依次为:105、109、111、115、122,极差为17,平均数为112.4中位数为111,方差为33.44,乙组数据由小到大排列依次为:115、119、121、125、132,极差为17,平均数为122.4中位数为121,方差为33.44,因此,两组数据相等的是极差和方差,故选C . 【点睛】本题考查样本的数字特征,理解极差、平均数、中位数、方差的定义并利用相关公式进行计算是解本题的关键,考查计算能力,属于基础题.6.C解析:C 【解析】分析:根据题意求出x 的值后再求该组数据的标准差.详解:由题意得该组数据的中位数为()12122xx +=+;众数为2. ∴312322x +=⨯=, ∴4x =.∴该组数据的平均数为()1122451046x =+++++=, ∴该组数据的方差为()()()()()()22222221142424445410496s ⎡⎤=-+-+-+-+-+-=⎣⎦, ∴该组数据的标准差为3. 故选C . 点睛:平均数与方差都是重要的数字特征,是对总体的一种简明的描述,它们所反映的情况有着重要的实际意义,平均数、中位数、众数描述其集中趋势,方差和标准差描述其波动大小.7.B解析:B 【详解】分析:由已知中前4组的频率依次成等差数列,结合各组的累积频率为1,构造方程,解得答案.详解::∵前4组的频率依次成等差数列, ∴前4组矩形的高依次成等差数列,故[]0.034220.034320.034101a a a ++-+-⨯⨯=()(), 即70.168a =, 解得0.024a = , 故选B .点睛:本题考查的知识点频率分布直方图,难度不大,属于基础题.8.D解析:D 【分析】根据频率分布直方图对给出的四个选项逐一分析、判断后可得结果. 【详解】对于A ,由图可得样本数据分布在[)6,10的频率为0.0840.32⨯=,所以A 正确. 对于B ,由图可得样本数据分布在[)10,14的频数为()1000.1440⨯⨯=,所以B 正确. 对于C ,由图可得样本数据分布在[)2,10的频数为()1000.020.08440⨯+⨯=,所以C 正确.对于D ,由图可估计总体数据分布在[)10,14的比例为0.140.440%⨯==,故D 不正确.故选D.【点睛】本题考查频率分布直方图的应用,考查识图和用图解题的能力,解题时容易出现的错误是误认为图中小长方形的高为频率,求解时要注意这一点.9.B解析:B【分析】观察折线图,确定数据的变化规律,判断各选项.【详解】2014年空气中可吸入颗粒物年日均值比2013年多,A错;2013年到2018年,空气中细颗粒物的年日均值逐年下降,B正确;2007年(含2007年)之前空气中二氧化氮的年日均值都高于40微克/立方米,C错;2000年到2018年,空气中二氧化硫的年日均值最低的年份是2018年,D错.故选:B.10.D解析:D【分析】由问卷设计方式可知,回答第一个问题的人数有40人,其中有20人的手机号是奇数,回答第二个问题的人数为40人,其中27人回答了“是”,由此可以估计本小区对物业服务满意的百分比.【详解】要调查80名居民,在准备的两个问题中每一个问题被问到的概率相同,第一个问题可能被询问40次,在被询问的40人中有20人手机号是奇数,而有47人回答了“是”,估计有27个人回答是否满意物业的服务时回答了“是”,在40人中有27个人满意服务, 估计本小区对物业服务满意的百分比2767.5% 40,故选: D【点睛】本题考查频数的求法,考查古典概型的应用,考查学生分析解决问题的能力,属于中档题. 11.C解析:C【分析】根据图中条形统计图和折线图的实际意义分析逐个判定即可.【详解】由2012年至2018年中国雪场滑雪人次(万人次)与同比增长率的统计图可知:对于A,由条状图可知,2013年至2018年,中国雪场滑雪人次逐年增加,故A正确;对于B,2013年至2015年,中国雪场滑雪人次和同比增长率均逐年增加,故B正确;对于C,2018年与2013年相比,中国雪场滑雪人次的同比增长率近似相等,但是同比增长人数也不相等,2018年比2013年增长人数多,故C 错误; 对于D ,2018年与2016年相比,中国雪场滑雪人次增长率约为1970-1510100%30.5%1510⨯≈故D 正确. 故选:C . 【点睛】本题考查统计图表的应用,考查学生的数据分析能力,属于基础题.12.A解析:A 【解析】从随机数表第一行的第五列和第六列数字开始由左到右依次选取两个数字中小于20的和编号依次为08,02,14,19,14,01,其中第三个和第五个都是14,重复.可知对应的数值为08,02,14,19, 01,则第五个个体的编号为01. 故选A.13.D解析:D 【解析】 试题分析:均值为;方差为,故选D.考点:数据样本的均值与方差.二、解答题14.(1)8.75x =,s 21116=;(2)14【分析】(1)根据数据,利用平均数和方差的公式求解.(2)先明确是古典概型,用列举法将总的基本事件数列出,再找出所研究事件的基本事件的个数,代入古典概型概率公式求解. 【详解】(1)X =8时,乙组数据分别为8,8,9,10;计算这组数据的平均数为14x =⨯(8+8+9+10)=8.75,方差为s214=⨯[2×(8﹣8.75)2+(9﹣8.75)2+(10﹣8.75)2]1116=;(2)记甲组四名同学为A1,A2,A3,A4,他们投篮命中次数依次为9,9,11,11;乙组四名同学为B1,B2,B3,B4,他们投篮命中次数依次为:9,8,9,10;分别从而甲、乙两组中随机选取一名同学,所有可能的结果有16个,他们是:(A1,B1),(A1,B2),(A1,B3),(A1,B4),(A2,B1),(A2,B2),(A2,B3),(A2,B4),(A3,B1),(A3,B2),(A3,B3),(A3,B4),(A1,B1),(A2,B2),(A3,B3),(A4,B4),用C表示:“选出的两名同学的投篮命中次数和为19”这一件事,则C中的结果有4个,他们是:(A1,B1),(A2,B4),(A3,B2),(A4,B2),故所求概率为P(C)41 164 ==.【点睛】本题主要考查了茎叶图和古典概型的概率,还考查了数据处理和运算求解的能力,属于中档题.15.(1)见解析;(2)100;(3)见解析.【详解】试题分析:(1)根据题设中的数据,即可画出频率分布直方图;(2)利用平均数的计算公式,即可求得平均数x;(3)计算得质量指标值不低于85的面包所占比例的估计值,即可作出判断.试题(1)画图.(2)质量指标值的样本平均数为800.08900.22x=⨯+⨯1000.371100.28+⨯+⨯1200.05100+⨯=.所以这种面包质量指标值的平均数的估计值为100.(3)质量指标值不低于85的面包所占比例的估计值为0.220.370.280.050.92+++=,由于该估计值大于0.9,故可以认为该食品厂生产的这种面包符合“质量指标值不低于85的面包至少要占全部面包90%的规定.”16.(1)0.025a =,所调查的总人数为1000人;(2)不需要;(3)815. 【分析】(1)根据频率分布直方图的面积和为1,即可求得a ;再结合评分在[80,100]的居民有600人,用频率除以总数即为频率的公式计算,即可求得结果; (2)根据频率分布直方图求得平均数,再求得η,即可判断;(3)先求得在[40,50),[50,60)的人数,列举出所有抽取2人的可能性;再找出满足题意的可能性,用古典概型的概率计算公式即可求得结果. 【详解】(1)由频率分布直方图得:(0.0020.0040.0140.020.035)101a +++++⨯=, 解得0.025a =, 设总共调查了n 人,则6001000(0.0350.025)10n ==+⨯,即调查的总人数为1000人;(2)由频率分布直方图知,满意程度的平均分为450.02550.04650.14750.2850.35950.2580.7x =⨯+⨯+⨯+⨯+⨯+⨯=,所以,满意指数80.70.8070.8100η==>, 因此,该区防疫工作不需要大的调整;(3)由题意可知,评分在在[40,50)、[50,60)的频率之比为0.0210.042=, 所以,所抽取的6人中评分在[40,50)的人数为1623⨯=,分别记为,a b ,评分在[50,60)的人数为2643⨯=,分别记为A 、B 、C 、D , 抽取2人的基本事件为:ab 、aA 、,,,,,,,,,,,,aB aC aD bA bB bC bD AB AC AD BC CD CD 、共15个,而仅有一人来自[40,50)的基本事件有:,,,,,,,,aA aB aC aD bA bB bB bC bD 共8个, 因此,所抽取的2人中仅有一人对防疫工作的评分在[40,50)内的概率为815P =. 【点睛】本题考查利用频率分布直方图求平均数、参数值,涉及古典概型的概率计算,属综合中档题.17.(1)甲种树苗的平均高度为27(厘米);乙种树苗的平均高度为30(厘米)(2)甲种树苗的方差为35,乙种树苗的方差为207.8,甲种树苗长的比较整齐,乙种树苗长的参差不齐【分析】(1)利用平均数公式计算即可得到答案;(2)根据数据的方差公式计算出方差,再比较方差的大小可得答案. 【详解】(1)甲种树苗的平均高度为192120292325373132332710+++++++++=(厘米).乙种树苗的平均高度为101410272630474644463010+++++++++=(厘米).(2)甲种树苗的方差为:22221[(1927)(2127)(2027)(2927)10-+-+-+-222222(2327)(2527)(3727)(3127)(3227)(3327)]+-+-+-+-+-+-()164364941641001625363510=+++++++++=, 乙种树苗的方差为:2221[(1030)(1430)(1030)10-+-+-+222(2730)(2630)(3030)-+-+-+2222(4730)(4630)(4430)(4630)]-+-+-+-()14002564009160289256196256207.810=+++++++++=, 故甲种树苗长的比较整齐,乙种树苗长的参差不齐. 【点睛】本题考查了茎叶图,考查了均值和方差的计算公式,属于基础题.18.(1)0.02x =,74,2203;(2)1200;(3)1920. 【分析】(1)根据频率和为1可求得第第4组的频率,由此求得x 的值;根据频率分布直方图中平均数和中位数的估计方法可计算得到结果;(2)计算得到50名学生中成绩不低于70分的频率,根据样本估计总体的方法,利用总数⨯频率可得所求人数;(3)根据分层抽样原则确定[)70,80、[)80,90和[]90,100种分别抽取的人数,采用列举法列出所有结果,从而可知成绩在[]80,100的学生没人被抽到的概率;根据对立事件概率公式可求得结果. 【详解】(1)由频率分布直方图可得第4组的频率为:()10.010.030.030.01100.2-+++⨯=0.2100.02x ∴=÷=估计所抽取的50名学生成绩的平均数为:()550.01650.03750.03850.02950.011074⨯+⨯+⨯+⨯+⨯⨯=由于前两组的频率之和为0.10.30.4+=,前三组的频率之和为0.10.30.30.7++=∴中位数在第3组中设中位数为t ,则有:()700.030.1t -⨯=,解得:2203t = 即所求的中位数为2203(2)由(1)知:50名学生中成绩不低于70分的频率为:0.30.20.10.6++= 用样本估计总体,可以估计高三年级2000名学生中成绩不低于70分的人数为:20000.61200⨯=(3)由(1)可知,后三组中的人数分别为15,10,5∴这三组中所抽取的人数分别为3,2,1记成绩在[)70,80的3名学生分别为,,a b c ,成绩在[)80,90的2名学生分别为,d e ,成绩在[]90,100的1名学生为f ,则从中随机抽取3人的所有可能结果为:(),,a b c ,(),,a b d ,(),,a b e ,(),,a b f ,(),,a c d ,(),,a c e ,(),,a c f ,(),,a d e ,(),,a d f ,(),,a e f ,(),,b c d ,(),,b c e ,(),,b c f ,(),,b d e ,(),,b d f ,(),,b e f ,(),,c d e ,(),,c d f ,(),,c e f ,(),,d e f ,共20种其中成绩在[]80,100的学生没人被抽到的可能结果为(),,a b c ,只有1种, 故成绩在[]80,100的学生至少有1人被抽到的概率:11912020P =-= 【点睛】本题考查利用频率分布直方图计算频率、频数、估计平均数、中位数的问题,分层抽样、古典概型概率问题的求解;考查学生对于统计和概率部分知识的综合掌握情况,属于常考题型.19.(1)第四组的频率为0.3,直方图见解析;(2)众数:75,中位数:1733,均分为71分 【分析】(1)由各组的频率和等于1求解第四组频率,再补全直方图即可(2)利用最高的矩形得众数;利用左右面积相等求中位数;利用组中值估算抽样学生的平均分 【详解】(1)因为各组的频率和等于1,所以第四组的频率为10.0250.01520.0100.0()05100.3--⨯++⨯=.补全的频率分布直方图如图所示.。
21人教版高中a版数学同步必修2 第四章 圆与方程达标检测(可编辑word)
本章达标检测一、选择题(本题共12小题,每小题5分,共60分)1.已知圆C的圆心为(2,-1),半径长是方程(x+1)(x-4)=0的根,则圆C的标准方程为( )A.(x+1)2+(y-2)2=4B.(x-2)2+(y-1)2=4C.(x-2)2+(y+1)2=16D.(x+2)2+(y-1)2=162.圆x2+y2+2x+4y-3=0上到直线x+y+1=0的距离为√2的点共有( )A.1个B.2个C.3个D.4个3.若将直线3x-y+c=0向右平移1个单位再向下平移1个单位,平移后的直线与圆x2+y2=10相切,则c的值为( )A.14或-6B.12或-8C.8或-12D.6或-144.经过三点A(-1,0),B(3,0),C(1,2)的圆的面积是( )A.πB.2πC.3πD.4π5.空间直角坐标系中,点A(3,4,0)和点B(1,y,5)的距离为3√5,则y的值为( )A.0B.8C.0或8D.-8或06.若圆x2+y2-2x-5=0与圆x2+y2+2x-4y-4=0的交点为A,B,则线段AB的垂直平分线的方程是( )A.x+y-1=0B.2x-y+1=0C.x-2y+1=0D.x-y+1=07.若过点A(3,0)的直线l与曲线(x-1)2+y2=1有公共点,则直线l的斜率的取值范围为( )A.(-√3,√3)B.[-√3,√3]C.(-√33,√33)D.[-√33,√33]8.已知直线x-2y+a=0与圆O:x2+y2=2相交于A,B两点(O为坐标原点),且△AOB为等腰直角三角形,则实数a的值为( )A.√6或-√6B.√5或-√5C.√6D.√59.直线l:kx-y+k+1=0与圆x2+y2=8交于A,B两点,且|AB|=4√2,过点A,B分别作l 的垂线与y轴分别交于点M,N,则|MN|等于( )A.2√2B.4C.4√2D.810.设圆x2+y2-2x-2y-2=0的圆心为C,直线l过(0,3),且与圆C交于A,B两点,若|AB|=2√3,则直线l的方程为( )A.3x+4y-12=0或4x-3y+9=0B.3x+4y-12=0或x=0C.4x-3y+9=0或x=0D.3x-4y+12=0或4x+3y+9=011.已知圆x2+y2=4上有且仅有两个点到直线12x-5y+m=0的距离为1,则实数m的取值范围是( )A.(13,39)∪(-39,-13)B.(-∞,-13)∪(13,+∞)C.(13,+∞)D.(-∞,-13)12.已知圆C的圆心为原点O,且与直线x+y+4√2=0相切.点P在直线x=8上,过点P 引圆C的两条切线PA,PB,切点分别为A,B,如图所示,则直线AB恒过的定点的坐标为( )A.(2,0)B.(0,2)C.(1,0)D.(0,1)二、填空题(本题共4小题,每小题5分,共20分)13.若点P(x,y)满足x2+y2=16,则x-y的最大值为.14.已知圆C:x2+y2+kx+2y=-k2,当圆C的面积取最大值时,圆心C的坐标为.15.在平面直角坐标系xOy中,若圆C1:x2+(y-1)2=r2(r>0)上存在点P,且点P关于直线x-y=0对称的点Q在圆C2:(x-2)2+(y-1)2=1上,则r的取值范围是.16.若A为圆C1:x2+y2=1上的动点,B为圆C2:(x-3)2+(y+4)2=4上的动点,则线段AB 长度的最大值是.三、解答题(本题共6小题,共70分)17.(10分)已知圆C过点P(2,1),圆心为C(5,-3).(1)求圆C的标准方程;(2)如果过点A(0,1)且斜率为k的直线l与圆C没有公共点,求实数k的取值范围.18.(12分)已知圆C经过P(4,-2),Q(-1,3)两点,且圆心C在直线x+y-1=0上.(1)求圆C的方程;(2)若直线l∥PQ,且l与圆C交于点A,B,且以线段AB为直径的圆经过坐标原点,求直线l的方程.19.(12分)已知与曲线C:x2+y2-2x-2y+1=0相切的直线l和x轴、y轴的正半轴分别交于A,B两点,O为坐标原点,|OA|=a,|OB|=b(a>2,b>2).(1)求证:直线l与曲线C相切的条件是(a-2)(b-2)=2;(2)求线段AB中点的轨迹方程.20.(12分)已知圆M:x2+y2=1.(1)求过点(-1,-2)的圆M的切线方程;(2)设圆M与x轴相交于A,B两点,点P为圆M上异于A,B的任意一点,直线PA,PB 分别与直线x=3交于C,D两点.(i)当点P的坐标为(0,1)时,求以线段CD为直径的圆的圆心坐标及半径长; (ii)当点P在圆M上运动时,以线段CD为直径的圆C2被x轴截得的弦长是不是定值?请说明理由.21.(12分)在平面直角坐标系xOy中,已知圆C1:(x+3)2+(y-1)2=4与圆C2:(x-4)2+(y-5)2=4.(1)若直线l过点A(4,0),且被圆C1截得的弦长为2√3,求直线l的方程;(2)设P为平面上的点,且满足:存在过点P的无穷多对互相垂直的直线l1和l2,它们分别与圆C1和圆C2相交,且直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,试求所有满足条件的点P的坐标.22.(12分)在平面直角坐标系中,已知A(-1,0),B(2,0),动点M(x,y)满足|MA||MB|=12,设动点M的轨迹为曲线C.(1)求动点M的轨迹方程,并说明曲线C是什么图形;(2)过点(1,2)的直线l与曲线C交于E,F两点,若|EF|=4√55,求直线l的方程; (3)设P是直线x+y+8=0上的点,过P点作曲线C的切线PG,PH,切点分别为G,H,设C'(-2,0),求证:过G,P,C'三点的圆必过定点,并求出所有定点的坐标.答案全解全析 基础过关练一、选择题1.C 根据圆C 的半径长是方程(x+1)(x-4)=0的根,可得半径长为4,故要求的圆的标准方程为(x-2)2+(y+1)2=16.2.C 易得圆心坐标为(-1,-2),半径长r=12√4+16+12=2√2,又圆心到直线x+y+1=0的距离d=√2=√2,∴过圆心且平行于直线x+y+1=0的直线与圆有2个交点,另一条与直线x+y+1=0的距离为√2的平行线与圆相切,只有1个交点,∴共有3个点.3.A 将直线3x-y+c=0即y=3x+c 向右平移1个单位再向下平移1个单位,平移后的直线方程为y=3(x-1)+c-1,即3x-y+c-4=0.由直线3x-y+c-4=0与圆x 2+y 2=10相切,得√32+(-1)=√10,即|c-4|=10,所以c=14或c=-6.4.D 由题意可知,线段AB 的中垂线l 1的方程为x=1,线段AC 的中点坐标为(0,1),直线AC 的方程为y=x+1,从而线段AC 的中垂线l 2的方程为x+y-1=0,联立l 1与l 2的方程可得圆心坐标为Q(1,0),从而半径长r=|QB|=√(1-3)2+(0-0)2=2,所以圆的面积S=πr 2=4π.故选D.5.C 由两点间的距离公式得|AB|=√(3-1)2+(4-y )2+(0-5)2=3√5,解得y=0或y=8.6.A 将圆的方程x 2+y 2-2x-5=0,x 2+y 2+2x-4y-4=0化为(x-1)2+y 2=6,(x+1)2+(y-2)2=9.设两圆圆心分别为C 1(1,0),C 2(-1,2).线段AB 的垂直平分线必经过C 1,C 2,所以直线C 1C 2为线段AB 的垂直平分线,直线C 1C 2的方程为x+y-1=0.7.D 作图如下,易知直线l 的斜率存在,设直线l 的方程为y=k(x-3),即kx-y-3k=0,则圆心(1,0)与直线kx-y-3k=0的距离应小于等于半径长1,即√1+k2≤1,解得-√33≤k≤√33.8.B 由题意知,O 到直线AB 的距离为1,由点到直线的距离公式可得√12+(-2)=1,所以a=±√5.9.D 因为圆x 2+y 2=8,所以半径长r=2√2,因为|AB|=4√2=2r,所以AB 为圆x 2+y 2=8的一条直径.所以直线AB 过圆心(0,0),所以k=-1,则直线l 的方程为y=-x,所以两条垂线的斜率均为1,倾斜角为45°, 结合图象(图略)易知|MN|=2×√2×2√2=8.10.B 当直线l 的斜率不存在时,直线l 的方程为x=0,联立得{x =0,x 2+y 2-2x -2y -2=0,解得{x =0,y =1-√3或{x =0,y =1+√3,∴|AB|=2√3,符合题意.当直线l 的斜率存在时,设直线l 的方程为y=kx+3,∵圆x 2+y 2-2x-2y-2=0即(x-1)2+(y-1)2=4,∴圆心为C(1,1),圆的半径长r=2,易知圆心C(1,1)到直线y=kx+3的距离d=√k 2+1=√k 2+1,∵d 2+(|AB |2)2=r 2,∴(k+2)2k 2+1+3=4,解得k=-34,∴直线l 的方程为y=-34x+3,即3x+4y-12=0.综上,直线l 的方程为3x+4y-12=0或x=0.11.A 由题意得,圆心到直线的距离d 满足1<d<3,即1<|m |13<3,解得13<m<39或-39<m<-13.故选A.12.A 依题意得圆C 的半径长r=√2√12+12=4,所以圆C 的方程为x 2+y 2=16.因为PA,PB 是圆C 的两条切线,所以OA⊥AP,OB⊥BP,所以A,B 在以OP 为直径的圆上,设点P 的坐标为(8,b),b∈R,则线段OP 的中点坐标为(4,b2),所以以OP 为直径的圆的方程为(x-4)2+(y -b 2)2=42+(b 2)2,b∈R,化简得x 2+y 2-8x-by=0,b∈R,因为AB 为两圆的公共弦,所以直线AB 的方程为8x+by=16,b∈R,即8(x-2)+by=0.所以直线AB 恒过定点(2,0).二、填空题13.答案 4√2解析 令x-y=t,则y=x-t,将其代入x 2+y 2=16得2x 2-2tx+t 2-16=0,所以Δ=4t 2-8(t 2-16)≥0,所以t 2≤32,所以t 的最大值为4√2,即x-y 的最大值为4√2. 14.答案 (0,-1)解析 圆C 的方程可化为(x +k 2)2+(y+1)2=-34k 2+1.所以当k=0时,圆C 的面积最大,此时C 的坐标为(0,-1). 15.答案 [√2-1,√2+1]解析 C 2关于直线x-y=0对称的圆为圆C:(x-1)2+(y-2)2=1,由题意知,圆C 与圆C 1有交点,所以r-1≤√2≤r+1,所以r 的取值范围是[√2-1,√2+1]. 16.答案 8解析 圆C 1:x 2+y 2=1的圆心为C 1(0,0),半径长r 1=1,圆C 2:(x-3)2+(y+4)2=4的圆心为C 2(3,-4),半径长r 2=2, ∴|C 1C 2|=5.又A 为圆C 1上的动点,B 为圆C 2上的动点, ∴线段AB 长度的最大值是|C 1C 2|+r 1+r 2=5+1+2=8.三、解答题17.解析 (1)由已知可得圆的半径长为|PC|=√(5-2)2+(-3-1)2=5.∴圆C 的标准方程为(x-5)2+(y+3)2=25.(2)由题意可知,直线方程为y=kx+1,即kx-y+1=0. 由√k 2+1>5,解得k>940.∴实数k 的取值范围是(940,+∞). 18.解析 (1)∵P(4,-2),Q(-1,3),∴线段PQ 的中点M 的坐标为(32,12),斜率k PQ =-1,则线段PQ 的垂直平分线的方程为y-12=1×(x -32),即x-y-1=0.解方程组{x -y -1=0,x +y -1=0得{x =1,y =0,∴圆心C(1,0),半径长r=√(4-1)2+(-2-0)2=√13.故圆C 的方程为(x-1)2+y 2=13.(2)由l∥PQ,设l 的方程为y=-x+m.代入圆C 的方程,得2x 2-2(m+1)x+m 2-12=0. 设A(x 1,y 1),B(x 2,y 2), 则x 1+x 2=m+1,x 1x 2=m 22-6.故y 1y 2=(m-x 1)(m-x 2)=m 2+x 1x 2-m(x 1+x 2), 依题意知OA⊥OB,∴y 1x 1·y2x 2=-1,即x 1x 2+y 1y 2=0,于是m 2+2x 1x 2-m(x 1+x 2)=0,即m 2-m-12=0.∴m=4或m=-3,经检验,都满足Δ>0. 故直线l 的方程为y=-x+4或y=-x-3.19.解析 (1)证明:设l 的方程为x a +yb =1(a>2,b>2),化为一般式方程为bx+ay-ab=0.圆C 的标准方程为(x-1)2+(y-1)2=1. 因为l 与圆C 相切,所以√a 2+b 2=1,即ab(ab+2-2a-2b)=0,又a>2,b>2,所以ab≠0,所以ab+2-2a-2b=0.所以(a-2)(b-2)=2. (2)设AB 的中点为M(x,y). 由题意得{x =a+02,y =0+b 2,即{a =2x ,b =2y ,代入(a-2)(b-2)=2,得(2x-2)(2y-2)=2 . 又a=2x>2,b=2y>2,所以AB 中点的轨迹方程为(x-1)(y-1)=12(x>1,y>1).20.解析 (1)因为点(-1,-2)在圆M 外,所以圆M 过点(-1,-2)的切线有两条. 当直线的斜率不存在时,直线方程为x=-1,满足条件.当直线的斜率存在时,可设为y+2=k(x+1),即kx-y+k-2=0. 由圆心到切线的距离d=√k 2+1=1,解得k=34.此时切线方程为3x-4y-5=0.综上,圆M 的切线方程为x+1=0或3x-4y-5=0.(2)因为圆M 与x 轴相交于A,B 两点,所以不妨设A(-1,0),B(1,0).(i)当点P 的坐标为(0,1)时,直线PA 的斜率为k PA =1,直线PA 的方程为y=x+1. 直线PA 与直线x=3的交点坐标为C(3,4),同理,直线PB 的斜率为k PB =-1,直线PB 的方程为y=-x+1.直线PB 与直线x=3的交点坐标为D(3,-2).所以以线段CD 为直径的圆的圆心为(3,1),半径长为3. (ii)以线段CD 为直径的圆C 2被x 轴截得的弦长为定值4√2.设点P(x 0,y 0)(y 0≠0),则x 02+y 02=1.直线PA 的斜率为k PA =y 0x 0+1,直线PA 的方程为y=y 0x 0+1(x+1). 直线PA 与直线x=3的交点坐标为C (3,4y 0x 0+1). 同理,直线PB 的斜率为k PB =y 0x 0-1,直线PB 的方程为y=y 0x 0-1(x-1). 直线PB 与直线x=3的交点坐标为D (3,2y 0x 0-1). 所以所求圆的圆心为C 2(3,y 0(3x 0-1)x 02-1),半径长r=|y 0(x 0-3)x 02-1|.解法一:圆C 2被x 轴截得的弦长为2√|y 0(x 0-3)x 02-1|2-[y 0(3x 0-1)x 02-1]2=2√8y 02(1-x 02)(x 02-1)2=2√8(1-x 02)(1-x 02)(x 02-1)2=4√2.所以以线段CD 为直径的圆C 2被x 轴截得的弦长为定值4√2.解法二:圆C 2的方程为(x-3)2+[y -y 0(3x 0-1)x 02-1]2=[y 0(x 0-3)x 02-1]2. 令y=0,解得(x-3)2=[y 0(x 0-3)x 02-1]2-(-y 0(3x 0-1)x 02-1)2=8y 02(1-x 02)(x 02-1)2=8(1-x 02)(1-x 02)(x 02-1)2=8.所以x=3±2√2.所以圆C 2与x 轴的交点坐标分别为(3-2√2,0),(3+2√2,0).所以以线段CD 为直径的圆C 2被x 轴截得的弦长为定值4√2.21.解析 (1)由题意可知直线l 的斜率存在,设直线l 的方程为y=k(x-4),即kx-y-4k=0,所以圆心C 1(-3,1)到直线l 的距离d=√k 2+(-1)=√4-(2√32)2=1,化简得24k 2+7k=0,解得k=0或k=-724. 所以直线l 的方程为y=0或y=-724(x-4),即y=0或7x+24y-28=0.(2)设点P 的坐标为(m,n),不妨设直线l 1,l 2的方程分别为y-n=k'(x-m),y-n=-1k '(x-m),即k'x-y+n-k'm=0,-1k 'x-y+n+m k '=0.因为直线l 1被圆C 1截得的弦长与直线l 2被圆C 2截得的弦长相等,两圆的半径长也相等,所以圆心C 1(-3,1)到直线l 1的距离与圆心C 2(4,5)到直线l 2的距离相等,即√k '+(-1)=|-4k '-5+n+m k '|√(-1k ')2+(-1),化简得(2-m-n)k'=m-n-3或(m-n+8)k'=m+n-5,关于k'的方程有无穷多解,则{2-m -n =0,m -n -3=0或{m -n +8=0,m +n -5=0, 解得{m =52,n =-12或{m =-32,n =132,故满足条件的点P 的坐标为(52,-12)或(-32,132).22.解析 (1)由题意得√(x+1)2+y 2√(x -2)+y 2=12,化简可得(x+2)2+y 2=4, 所以动点M 的轨迹方程为(x+2)2+y 2=4.曲线C 是以(-2,0)为圆心,2为半径长的圆.(2)①当直线l 的斜率不存在时,直线l 的方程为x=1,不符合题意; ②当直线l 的斜率存在时,设l:y-2=k(x-1),即kx-y+2-k=0, 圆心C(-2,0)到l 的距离为d=√1+k 2. ∵|EF|=2√4-d 2=4√55, ∴d 2=165=(2-3k )21+k 2,即29k 2-60k+4=0,解得k 1=2,k 2=229, ∴l 的方程为2x-y=0或2x-29y+56=0.(3)证明:∵P 在直线x+y+8=0上,∴设P(m,-m-8).∵C'为曲线C 的圆心,由圆的切线的性质可得PG⊥GC',∴经过G,P,C'三点的圆是以线段PC'为直径的圆,则方程为(x+2)(x-m)+y(y+m+8)=0,整理可得x 2+y 2+2x+8y+m(-x-2+y)=0,令x 2+y 2+2x+8y=0,且-x-2+y=0,解得{x =-2,y =0或{x =-5,y =-3.则经过G,P,C'三点的圆必过定点,所有定点的坐标为(-2,0),(-5,-3).。
高中数学(人教版必修2)阶段质量检测(四) Word版含答案
阶段质量检测(四)(卷学业水平达标)(时间分钟,满分分)一、选择题(共小题,每小题分,共分).直线:=与圆:+=的位置关系为( ).相交或相切.相交或相离.相交.相切答案:.已知圆+++=的圆心在直线+=上,则与的关系是( ).+=.+=.+=-.+=-答案:.若圆:+-(-)+(-)+-+=过坐标原点,则实数的值为( ).或.-或-..答案:.以正方体的棱,,所在的直线为坐标轴建立空间直角坐标系,且正方体的棱长为一个单位长度,则棱中点坐标为( )答案:.圆:+-=和圆:+-=的位置关系是( ).相离.相交.内切.外切答案:.自点(-)作圆(-)+(-)=的切线,则切线长为( )..答案:.直线-+=与圆+--=相切,则实数等于( )或-.-或.-或.-或答案:.圆心在轴上,半径长为,且过点(-)的圆的方程为( ).(+)+=.+(+)=.(+)+=.(+)+=或(+)+=答案:.已知三点(),(,),(,),则△外接圆的圆心到原点的距离为( )答案:.若直线-=被圆(-)+=所截得的弦长为,则实数的值为( ).或.-或.或.-或答案:二、填空题(共小题,每小题分,共分).在如图所示的长方体中,已知(,),(,),则点的坐标为.答案:(,,).(北京高考)直线=被圆+(-)=截得的弦长为.答案:.设点为圆(-)+(-)=上一动点,则到直线--=的最大距离为.答案:+.已知(-),(),则以为斜边的直角三角形的直角顶点的轨迹方程是.答案:+=(≠±)三、解答题(共小题,共分,解答时应写出文字说明、证明过程或演算步骤).(本小题满分分)已知两圆:+---=和:+--+=.()求证:圆和圆相交;()求圆和圆的公共弦所在直线的方程和公共弦长.。
高中数学 阶段质量检测(四)圆与方程 新人教A版必修2
阶段质量检测(四) 圆与方程(时间120分钟 满分150分)一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.直线x +y -1=0被圆(x +1)2+y 2=3截得的弦长等于( ) A. 2 B .2 C .2 2D .4解析:选B 由题意,得圆心为(-1,0),半径r =3,弦心距d =|-1+0-1|12+12=2,所以所求的弦长为2r 2-d 2=2,选B.2.若点P (1,1)为圆x 2+y 2-6x =0的弦MN 的中点,则弦MN 所在直线的方程为( ) A .2x +y -3=0 B .x -2y +1=0 C .x +2y -3=0D .2x -y -1=0解析:选D 由题意,知圆的标准方程为(x -3)2+y 2=9,圆心为A (3,0).因为点P (1,1)为弦MN 的中点,所以AP ⊥MN .又AP 的斜率k =1-01-3=-12,所以直线MN 的斜率为2,所以弦MN 所在直线的方程为y -1=2(x -1),即2x -y -1=0.3.半径长为6的圆与x 轴相切,且与圆x 2+(y -3)2=1内切,则此圆的方程为( ) A .(x -4)2+(y -6)2=6 B .(x ±4)2+(y -6)2=6 C .(x -4)2+(y -6)2=36D .(x ±4)2+(y -6)2=36解析:选D ∵半径长为6的圆与x 轴相切,设圆心坐标为(a ,b ),则b =6.再由a 2+32=5,可以解得a =±4,故所求圆的方程为(x ±4)2+(y -6)2=36.4.经过点M (2,1)作圆x 2+y 2=5的切线,则切线方程为( ) A.2x +y -5=0 B.2x +y +5=0 C .2x +y -5=0D .2x +y +5=0解析:选C ∵M (2,1)在圆上,∴切线与MO 垂直. ∵k MO =12,∴切线斜率为-2.又过点M (2,1),∴y -1=-2(x -2),即2x +y -5=0.5.把圆x 2+y 2+2x -4y -a 2-2=0的半径减小一个单位则正好与直线3x -4y -4=0相切,则实数a 的值为( )A .-3B .3C .-3或3D .以上都不对解析:选C 圆的方程可变为(x +1)2+(y -2)2=a 2+7,圆心为(-1,2),半径为a 2+7,由题意得|-1×3-4×2-4|-32+42=a 2+7-1,解得a =±3. 6.如图,一座圆弧形拱桥,当水面在如图所示的位置时,拱顶离水面2米,水面宽12米,当水面下降1米后,水面宽度为( )A .14米B .15米 C.51米 D .251米解析:选D如图,以圆弧形拱桥的顶点为原点,以过圆弧形拱桥的顶点的水平切线为x 轴,以过圆弧形拱桥的顶点的竖直直线为y 轴,建立平面直角坐标系.设圆心为C ,水面所在弦的端点为A ,B , 则由已知可得A (6,-2), 设圆的半径长为r ,则C (0,-r ), 即圆的方程为x 2+(y +r )2=r 2.将点A 的坐标代入上述方程可得r =10, 所以圆的方程为x 2+(y +10)2=100,当水面下降1米后,水面弦的端点为A ′,B ′,可设A ′(x 0,-3)(x 0>0),代入x 2+(y +10)2=100,解得x 0=51, ∴水面宽度|A ′B ′|=251米.7.过点(3,1)作圆(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为( ) A .2x +y -3=0 B .2x -y -3=0 C .4x -y -3=0D .4x +y -3=0解析:选A 设点P (3,1),圆心C (1,0).已知切点分别为A ,B ,则P ,A ,C ,B 四点共圆,且PC 为圆的直径.故四边形PACB 的外接圆圆心坐标为⎝ ⎛⎭⎪⎫2,12,半径长为123-12+1-02=52.故此圆的方程为(x -2)2+⎝ ⎛⎭⎪⎫y -122=54.① 圆C 的方程为(x -1)2+y 2=1.②①-②得2x +y -3=0,此即为直线AB 的方程.8.已知在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2=-2y +3,直线l 经过点(1,0)且与直线x -y +1=0垂直,若直线l 与圆C 交于A ,B 两点,则△OAB 的面积为( )A .1 B. 2C .2D .2 2解析:选A 由题意,得圆C 的标准方程为x 2+(y +1)2=4,圆心为(0,-1),半径r =2.因为直线l 经过点(1,0)且与直线x -y +1=0垂直,所以直线l 的斜率为-1,方程为y -0=-(x -1),即为x +y -1=0.又圆心(0,-1)到直线l 的距离d =|0-1-1|2=2,所以弦长|AB |=2r 2-d 2=24-2=2 2.又坐标原点O 到弦AB 的距离为|0+0-1|2=12,所以△OAB的面积为12×22×12=1.故选A.二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分.请把正确答案填在题中的横线上)9.圆心在直线x =2上的圆C 与y 轴交于两点A (0,-4),B (0,-2),则圆C 的方程为________________.解析:由题意知圆心坐标为(2,-3),半径r =2-02+-3+22=5,∴圆C的方程为(x -2)2+(y +3)2=5.答案:(x -2)2+(y +3)2=510.已知空间直角坐标系中三点A ,B ,M ,点A 与点B 关于点M 对称,且已知A 点的坐标为(3,2,1),M 点的坐标为(4,3,1),则B 点的坐标为______________.解析:设B 点的坐标为(x ,y ,z ),则有x +32=4,y +22=3,z +12=1,解得x =5,y =4,z =1,故B 点的坐标为(5,4,1). 答案:(5,4,1)11.圆O :x 2+y 2-2x -2y +1=0上的动点Q 到直线l :3x +4y +8=0的距离的最大值是________.解析:∵圆O 的标准方程为(x -1)2+(y -1)2=1,圆心(1,1)到直线l 的距离为|3×1+4×1+8|32+42=3>1,∴动点Q 到直线l 的距离的最大值为3+1=4. 答案:412.已知过点(1,1)的直线l 与圆C :x 2+y 2-4y +2=0相切,则圆C 的半径为________,直线l 的方程为________.解析:圆C 的标准方程为x 2+(y -2)2=2, 则圆C 的半径为2,圆心坐标为(0,2).点(1,1)在圆C 上,则直线l 的斜率k =-12-10-1=1,则直线l 的方程为y =x ,即x -y =0. 答案: 2 x -y =013.已知圆C :(x -1)2+y 2=25与直线l :mx +y +m +2=0,若圆C 关于直线l 对称,则m =________;当m =________时,圆C 被直线l 截得的弦长最短.解析:当圆C 关于l 对称时,圆心(1,0)在直线mx +y +m +2=0上,得m =-1.直线l :m (x +1)+y +2=0恒过圆C 内的点M (-1,-2),当圆心到直线l 的距离最大,即MC ⊥l 时,圆C 被直线l 截得的弦长最短,k MC =-2-0-1-1=1,由(-m )×1=-1,得m =1.答案:-1 114.已知点M (2,1)及圆x 2+y 2=4,则过M 点的圆的切线方程为________,若直线ax -y +4=0与该圆相交于A ,B 两点,且|AB |=23,则a =________.解析:若过M 点的圆的切线斜率不存在,则切线方程为x =2,经验证满足条件.若切线斜率存在,可设切线方程为y =k (x -2)+1,由圆心到切线的距离等于半径得|-2k +1|k 2+1=2,解得k =-34,故切线方程为y =-34(x -2)+1,即3x +4y -10=0.综上,过M 点的圆的切线方程为x =2或3x +4y -10=0. 由4a 2+1=4-32得a =±15.答案:x =2或3x +4y -10=0 ±1515.已知两圆C 1:x 2+y 2-2ax +4y +a 2-5=0和C 2:x 2+y 2+2x -2ay +a 2-3=0,则两圆圆心的最短距离为________,此时两圆的位置关系是________.(填“外离、相交、外切、内切、内含”中的一个)解析:将圆C 1:x 2+y 2-2ax +4y +a 2-5=0化为标准方程得(x -a )2+(y +2)2=9,圆心为C 1(a ,-2),半径为r 1=3,将圆C 2:x 2+y 2+2x -2ay +a 2-3=0化为标准方程得(x +1)2+(y -a )2=4,圆心为C 2(-1,a ),半径为r 2=2.两圆的圆心距d =a +12+-2-a2=2a 2+6a +5=2⎝ ⎛⎭⎪⎫a +322+12,所以当a =-32时,d min =22,此时22<|3-2|,所以两圆内含.答案:22内含 三、解答题(本大题共5小题,共74分,解答时写出必要的文字说明、证明过程或演算步骤)16.(本小题满分14分)已知正四棱锥P ABCD 的底面边长为4,侧棱长为3,G 是PD 的中点,求|BG |.解:∵正四棱锥P ABCD 的底面边长为4,侧棱长为3,∴正四棱锥的高为1.以正四棱锥的底面中心为原点,平行于AB ,BC 所在的直线分别为y 轴、x 轴,建立如图所示的空间直角坐标系,则正四棱锥的顶点B ,D ,P 的坐标分别为B (2,2,0),D (-2,-2,0),P (0,0,1).∴G 点的坐标为G ⎝ ⎛⎭⎪⎫-1,-1,12∴|BG |=32+32+14=732.17.(本小题满分15分)已知从圆外一点P (4,6)作圆O :x 2+y 2=1的两条切线,切点分别为A ,B .(1)求以OP 为直径的圆的方程; (2)求直线AB 的方程.解:(1)∵所求圆的圆心为线段OP 的中点(2,3), 半径为12|OP |= 124-02+6-02=13,∴以OP 为直径的圆的方程为(x -2)2+(y -3)2=13. (2)∵PA ,PB 是圆O :x 2+y 2=1的两条切线, ∴OA ⊥PA ,OB ⊥PB ,∴A ,B 两点都在以OP 为直径的圆上.由⎩⎪⎨⎪⎧x 2+y 2=1,x -22+y -32=13,得直线AB 的方程为4x +6y -1=0.18.(本小题满分15分)已知圆过点A (1,-2),B (-1,4). (1)求周长最小的圆的方程;(2)求圆心在直线2x -y -4=0上的圆的方程.解:(1)当线段AB 为圆的直径时,过点A ,B 的圆的半径最小,从而周长最小, 即以线段AB 的中点(0,1)为圆心,r =12|AB |=10为半径.则所求圆的方程为x 2+(y -1)2=10.(2)法一:直线AB 的斜率k =4--2-1-1=-3,则线段AB 的垂直平分线的方程是y -1=13x ,即x -3y +3=0.由⎩⎪⎨⎪⎧x -3y +3=0,2x -y -4=0,解得⎩⎪⎨⎪⎧x =3,y =2,即圆心的坐标是C (3,2).∴r 2=|AC |2=(3-1)2+(2+2)2=20. ∴所求圆的方程是(x -3)2+(y -2)2=20. 法二:设圆的方程为(x -a )2+(y -b )2=R 2. 则⎩⎪⎨⎪⎧1-a 2+-2-b 2=R 2,-1-a 2+4-b 2=R 2,2a -b -4=0⇒⎩⎪⎨⎪⎧a =3,b =2,R 2=20.∴所求圆的方程为(x -3)2+(y -2)2=20.19.(本小题满分15分)已知圆x 2+y 2-4ax +2ay +20a -20=0. (1)求证:对任意实数a ,该圆恒过一定点; (2)若该圆与圆x 2+y 2=4相切,求a 的值.解:(1)证明:圆的方程可整理为(x 2+y 2-20)+a (-4x +2y +20)=0, 此方程表示过圆x 2+y 2-20=0和直线-4x +2y +20=0交点的圆系.由⎩⎪⎨⎪⎧x 2+y 2-20=0,-4x +2y +20=0得⎩⎪⎨⎪⎧x =4,y =-2.∴已知圆恒过定点(4,-2).(2)圆的方程可化为(x -2a )2+(y +a )2=5(a -2)2. ①当两圆外切时,d =r 1+r 2, 即2+5a -22=5a 2,解得a =1+55或a =1-55(舍去); ②当两圆内切时,d =|r 1-r 2|, 即|5a -22-2|=5a 2,解得a =1-55或a =1+55(舍去). 综上所述,a =1±55. 20.(本小题满分15分)在平面直角坐标系xOy 中,O 为坐标原点,以O 为圆心的圆与直线x -3y -4=0相切.(1)求圆O 的方程.(2)直线l :y =kx +3与圆O 交于A ,B 两点,在圆O 上是否存在一点M ,使得四边形OAMB 为菱形?若存在,求出此时直线l 的斜率;若不存在,说明理由.解:(1)设圆O 的半径长为r ,因为直线x -3y -4=0与圆O 相切,所以r =|0-3×0-4|1+3=2,所以圆O 的方程为x 2+y 2=4.(2)法一:因为直线l :y =kx +3与圆O 相交于A ,B 两点, 所以圆心(0,0)到直线l 的距离d =|3|1+k2<2,解得k >52或k <-52. 假设存在点M ,使得四边形OAMB 为菱形,则OM 与AB 互相垂直且平分, 所以原点O 到直线l :y =kx +3的距离d =12|OM |=1.所以|3|1+k2=1,解得k 2=8,即k =±22,经验证满足条件. 所以存在点M ,使得四边形OAMB 为菱形. 法二:设直线OM 与AB 交于点C (x 0,y 0).因为直线l 斜率为k ,显然k ≠0,所以直线OM 方程为y =-1kx ,由⎩⎪⎨⎪⎧y =kx 0+3,y =-1k x 0,解得⎩⎪⎨⎪⎧x 0=-3kk 2+1,y 0=3k 2+1.所以点M 的坐标为⎝ ⎛⎭⎪⎫-6k k 2+1,6k 2+1.因为点M 在圆上,所以⎝⎛⎭⎪⎫-6k k 2+12+⎝ ⎛⎭⎪⎫6k 2+12=4,解得k =±22,经验证均满足条件. 所以存在点M ,使得四边形OAMB 为菱形.。
人教版高一数学必修四测试题(含详细答案)
高一数学试题(必修4)(特别适合按14523顺序的省份)必修4 第一章三角函数(1)一、选择题:1.已知A={第一象限角},B={锐角},C={小于90°的角},那么A、B、C关系是()A.B=A∩C B.B∪C=C C.AC D.A=B=C2 等于()A B C D3.已知的值为()A.-2 B.2 C.D.-4.下列函数中,最小正周期为π的偶函数是()A.y=sin2xB.y=cos C .sin2x+cos2x D. y=5 若角的终边上有一点,则的值是()A B C D6.要得到函数y=cos()的图象,只需将y=sin的图象()A.向左平移个单位 B.同右平移个单位C.向左平移个单位 D.向右平移个单位7.若函数y=f(x)的图象上每一点的纵坐标保持不变,横坐标伸长到原来的2倍,再将整个图象沿x轴向左平移个单位,沿y轴向下平移1个单位,得到函数y=sinx的图象则y=f(x)是()A.y= B.y=C.y=D.8. 函数y=sin(2x+)的图像的一条对轴方程是()A.x=-B. x=- C .x=D.x=9.若,则下列结论中一定成立的是()A. B. C. D.10.函数的图象()A.关于原点对称 B.关于点(-,0)对称 C.关于y轴对称 D.关于直线x=对称11.函数是()A.上是增函数 B.上是减函数C.上是减函数D.上是减函数12.函数的定义域是()A.B.C. D.二、填空题:13. 函数的最小值是 .14 与终边相同的最小正角是_______________15. 已知则 .16 若集合,,则=_______________________________________三、解答题:17.已知,且.a)求sinx、cosx、tanx的值.b)求sin3x – cos3x的值.18 已知,(1)求的值(2)求的值19. 已知α是第三角限的角,化简20.已知曲线上最高点为(2,),由此最高点到相邻的最低点间曲线与x轴交于一点(6,0),求函数解析式,并求函数取最小值x的值及单调区间必修4 第一章三角函数(2)一、选择题:1.已知,则化简的结果为()A. B. C. D. 以上都不对2.若角的终边过点(-3,-2),则( )A.sin tan>0 B.cos tan>0C.sin cos>0 D.sin cot>03 已知,,那么的值是()A B C D4.函数的图象的一条对称轴方程是()A. B. C. D.5.已知,,则tan2x= ( ) A. B. C. D.6.已知,则的值为()A. B. 1 C. D. 2 7.函数的最小正周期为()A.1 B. C. D.8.函数的单调递增区间是()A. B.C. D.9.函数,的最大值为()A.1 B. 2 C. D.10.要得到的图象只需将y=3sin2x的图象()A.向左平移个单位B.向右平移个单位C.向左平移个单位 D.向右平移个单位11.已知sin(+α)=,则sin(-α)值为()A. B. — C. D. —12.若,则()A. B. C. D.二、填空题13.函数的定义域是14.的振幅为初相为15.求值:=_______________16.把函数先向右平移个单位,然后向下平移2个单位后所得的函数解析式为________________________________三、解答题17 已知是关于的方程的两个实根,且,求的值18.已知函数,求:(1)函数y的最大值,最小值及最小正周期;(2)函数y的单调递增区间19.已知是方程的两根,且,求的值20.如下图为函数图像的一部分(1)求此函数的周期及最大值和最小值(2)求与这个函数图像关于直线对称的函数解析式必修4 第三章三角恒等变换(1)一、选择题:1.的值为 ( )A 0BC D2.,,,是第三象限角,则()A B C D3.设则的值是( )A B C D4. 已知,则的值为()A B C D5.都是锐角,且,,则的值是()A B C D6. 且则cos2x的值是()A B C D7.在中,的取值域范围是 ( )A B C D8. 已知等腰三角形顶角的余弦值等于,则这个三角形底角的正弦值为()A B C D9.要得到函数的图像,只需将的图像()A、向右平移个单位B、向右平移个单位C、向左平移个单位D、向左平移个单位10. 函数的图像的一条对称轴方程是()A、 B、 C、 D、11.若是一个三角形的最小内角,则函数的值域是( )A B C D12.在中,,则等于 ( )A B C D二、填空题:13.若是方程的两根,且则等于14. .在中,已知tanA ,tanB是方程的两个实根,则15. 已知,则的值为16. 关于函数,下列命题:①若存在,有时,成立;②在区间上是单调递增;③函数的图像关于点成中心对称图像;④将函数的图像向左平移个单位后将与的图像重合.其中正确的命题序号(注:把你认为正确的序号都填上)三、解答题:17. 化简18. 求的值.19. 已知α为第二象限角,且sinα=求的值.20.已知函数,求(1)函数的最小值及此时的的集合。
高一数学人教A版必修2章末综合测评4 Word版含解析
章末综合测评(四) 圆与方程(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在空间直角坐标系中,点A (-3,4,0)与点B (2,-1,6)的距离是( ) A .243 B .221 C .9D.86【解析】 由空间直角坐标系中两点间距离公式得: |AB |=(-3-2)2+(4+1)2+(0-6)2=86. 【答案】 D2.当圆x 2+y 2+2x +ky +k 2=0的面积最大时,圆心坐标是( ) A .(0,-1) B .(-1,0) C .(1,-1)D .(-1,1)【解析】 圆的标准方程得:(x +1)2+⎝ ⎛⎭⎪⎫y +k 22=1-3k 24,当半径的平方1-3k 24取最大值为1时,圆的面积最大.∴k =0,即圆心为(-1,0).【答案】 B3.圆O 1:x 2+y 2-4x -6y +12=0与圆O 2:x 2+y 2-8x -6y +16=0的位置关系是( )A .相交B .相离C .内含D .内切【解析】 把圆O 1:x 2+y 2-4x -6y +12=0与圆O 2:x 2+y 2-8x -6y +16=0分别化为标准式为(x -2)2+(y -3)2=1和(x -4)2+(y -3)2=9,两圆心间的距离d =(4-2)2+(3-3)2=2=|r 1-r 2|,所以两圆的位置关系为内切,故选D.【答案】 D4.(2016·葫芦岛高一检测)过点(2,1)的直线中,被圆x 2+y 2-2x +4y =0截得的最长弦所在的直线方程为( )A .3x -y -5=0B .3x +y -7=0C .x +3y -5=0D .x -3y +1=0【解析】依题意知所求直线通过圆心(1,-2),由直线的两点式方程,得y+2 1+2=x-12-1,即3x-y-5=0,故选A.【答案】 A5.已知点M(a,b)在圆O:x2+y2=1外,则直线ax+by=1与圆O的位置关系是()A.相切B.相交C.相离D.不确定【解析】由题意知点在圆外,则a2+b2>1,圆心到直线的距离d=1a2+b2<1,故直线与圆相交.【答案】 B6.若P(2,-1)为圆C:(x-1)2+y2=25的弦AB的中点,则直线AB的方程是()A.2x-y-5=0 B.2x+y-3=0C.x+y-1=0 D.x-y-3=0【解析】圆心C(1,0),k PC=0-(-1)1-2=-1,则k AB=1,AB的方程为y+1=x-2,即x-y-3=0,故选D.【答案】 D7.圆心在x轴上,半径为1,且过点(2,1)的圆的方程是()A.(x-2)2+y2=1B.(x+2)2+y2=1C.(x-1)2+(y-3)2=1D.x2+(y-2)2=1【解析】设圆心坐标为(a,0),则由题意可知(a-2)2+(1-0)2=1,解得a =2.故所求圆的方程是(x-2)2+y2=1.【答案】 A8.(2016·泰安高一检测)圆x2+y2-4x-4y-10=0上的点到直线x+y-14=0的最大距离与最小距离的差是()【导学号:09960151】A.36 B.18C.6 2 D.5 2【解析】圆x2+y2-4x-4y-10=0的圆心为(2,2),半径为32,圆心到直线x+y-14=0的距离为|2+2-14|2=52>32,圆上的点到直线的最大距离与最小距离的差是2R=6 2.【答案】 C9.过点P(-2,4)作圆O:(x-2)2+(y-1)2=25的切线l,直线m:ax-3y=0与直线l平行,则直线l与m的距离为()A.4 B.2C.85 D.125【解析】P为圆上一点,则有k OP·k l=-1,而k OP=4-1-2-2=-34,∴k l=43.∴a=4,∴m:4x-3y=0,l:4x-3y+20=0.∴l与m的距离为|20|42+(-3)2=4.【答案】 A10.一个几何体的三视图如图1所示,正视图和侧视图都是等边三角形,该几何体的四个顶点在空间直角坐标系Oxyz中的坐标分别是(0,0,0),(2,0,0),(2,2,0),(0,2,0),则第五个顶点的坐标可能是()图1A.(1,1,1) B.(1,1,2)C.(1,1,3) D.(2,2,3)【解析】 由三视图知,该几何体为正四棱锥,正四棱锥的顶点在底面的射影是底面正方形的中心,高为3,则第五个顶点的坐标为(1,1,3).故选C.【答案】 C11.已知圆C 1:(x +2)2+(y -2)2=2,圆C 2与圆C 1关于直线x -y -1=0对称,则圆C 2的方程为( )A .(x +3)2+(y -3)2=2B .(x -1)2+(y +1)2=2C .(x -2)2+(y +2)2=2D .(x -3)2+(y +3)2=2【解析】 设点(-2,2)关于直线x -y -1=0的对称点为Q (m ,n ),则⎩⎪⎨⎪⎧n -2m +2×1=-1,m -22-n +22-1=0,解得m =3,n =-3,所以圆C 2的圆心坐标为(3,-3),所以圆C 2的方程为(x -3)2+(y +3)2=2,故选D.【答案】 D12.(2016·台州高二检测)已知圆O :x 2+y 2-4=0,圆C :x 2+y 2+2x -15=0,若圆O 的切线l 交圆C 于A ,B 两点,则△OAB 面积的取值范围是( )图2A .[27,215]B .[27,8]C .[23,215]D .[23,8]【解析】 S △OAB =12|AB |·2=|AB |, 设C 到AB 的距离为d , 则|AB |=242-d 2,又d ∈[1,3],7≤42-d 2≤15,所以S △OAB =|AB |∈[27,215]. 【答案】 A二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13.已知A (1,2,3),B (5,6,-7),则线段AB 中点D 的坐标为________. 【解析】 设D (x ,y ,z ),由中点坐标公式可得x =1+52=3,y =2+62=4,z =3-72=-2,所以D (3,4,-2).【答案】 (3,4,-2)14.以原点O 为圆心且截直线3x +4y +15=0所得弦长为8的圆的方程是________.【解析】 原点O 到直线的距离d =1532+42=3,设圆的半径为r ,∴r 2=32+42=25,∴圆的方程是x 2+y 2=25.【答案】 x 2+y 2=2515.(2015·重庆高考)若点P (1,2)在以坐标原点为圆心的圆上,则该圆在点P 处的切线方程为________.【解析】 ∵以原点O 为圆心的圆过点P (1,2), ∴圆的方程为x 2+y 2=5. ∵k OP =2,∴切线的斜率k =-12.由点斜式可得切线方程为y -2=-12(x -1), 即x +2y -5=0. 【答案】 x +2y -5=016.若x ,y ∈R ,且x =1-y 2,则y +2x +1的取值范围是________.【解析】x =1-y 2⇔x 2+y 2=1(x ≥0),此方程表示半圆,如图,设P (x ,y )是半圆上的点,则y +2x +1表示过点P (x ,y ),Q (-1,-2)两点直线的斜率.设切线QA 的斜率为k ,则它的方程为y +2=k (x +1).从而由|k -2|k 2+1=1,解得k =34.又k BQ =3,∴所求范围是⎣⎢⎡⎦⎥⎤34,3.【答案】 ⎣⎢⎡⎦⎥⎤34,3三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)求经过两点A (-1,4),B (3,2)且圆心在y 轴上的圆的方程.【解】 法一:∵圆心在y 轴上, 设圆的标准方程是x 2+(y -b )2=r 2. ∵该圆经过A 、B 两点,∴⎩⎨⎧ (-1)2+(4-b )2=r 2,32+(2-b )2=r 2,∴⎩⎨⎧b =1,r 2=10.所以圆的方程是x 2+(y -1)2=10. 法二:线段AB 的中点为(1,3), k AB =2-43-(-1)=-12,∴弦AB 的垂直平分线方程为y -3=2(x -1), 即y =2x +1.由⎩⎨⎧y =2x +1,x =0,得(0,1)为所求圆的圆心. 由两点间距离公式得圆半径r 为 (0+1)2+(1-4)2=10,∴所求圆的方程为x 2+(y -1)2=10.18.(本小题满分12分)如图3所示,BC =4,原点O 是BC 的中点,点A 的坐标是⎝ ⎛⎭⎪⎫32,12,0,点D 在平面yOz 上,且∠BDC =90°,∠DCB =30°,求AD 的长度.图3【解】 由题意得B (0,-2,0),C (0,2,0),设D (0,y ,z ),在Rt △BDC 中,∠DCB =30°,∴|BD |=2,|CD |=23,∴z =3,2-y =3, ∴y =-1,∴D (0,-1,3). 又∵A ⎝ ⎛⎭⎪⎫32,12,0,∴|AD |=⎝ ⎛⎭⎪⎫322+⎝⎛⎭⎪⎫12+12+()-32= 6.19.(本小题满分12分)已知圆C :(x -1)2+(y -2)2=25,直线l :(2m +1)x +(m +1)y -7m -4=0(m ∈R ).(1)证明:不论m 为何值时,直线和圆恒相交于两点; (2)求直线l 被圆C 截得的弦长最小时的方程. 【解】 (1)证明:由(2m +1)x +(m +1)y -7m -4=0, 得(2x +y -7)m +x +y -4=0. 解⎩⎨⎧ 2x +y -7=0,x +y -4=0,得⎩⎨⎧x =3,y =1,∴直线l 恒过定点A (3,1).又∵(3-1)2+(1-2)2=5<25, ∴(3,1)在圆C 的内部,故直线l 与圆C 恒有两个公共点.(2)当直线l 被圆C 截得的弦长最小时,有l ⊥AC ,由k AC =-12,得l 的方程为y -1=2(x -3),即2x -y -5=0.20.(本小题满分12分)点A(0,2)是圆x2+y2=16内的定点,B,C是这个圆上的两个动点,若BA⊥CA,求BC中点M的轨迹方程,并说明它的轨迹是什么曲线.【解】设点M(x,y),因为M是弦BC的中点,故OM⊥BC.又∵∠BAC=90°,∴|MA|=12|BC|=|MB|.∵|MB|2=|OB|2-|OM|2,∴|OB|2=|MO|2+|MA|2,即42=(x2+y2)+[(x-0)2+(y-2)2],化简为x2+y2-2y-6=0,即x2+(y-1)2=7.∴所求轨迹为以(0,1)为圆心,以7为半径的圆.21.(本小题满分12分)如图4所示,平行四边形ABCD的对角线AC与BD 交于E点,定点A,C的坐标分别是A(-2,3),C(2,1).图4(1)求以线段AC为直径的圆E的方程;(2)若B点的坐标为(-2,-2),求直线BC截圆E所得的弦长.【解】(1)AC的中点E(0,2)即为圆心,半径r=12|AC|=1242+(-2)2=5,所以圆E的方程为x2+(y-2)2=5.(2)直线BC的斜率k=1-(-2)2-(-2)=34,其方程为y-1=34(x-2),即3x-4y-2=0.点E到直线BC的距离为d=|-8-2|5=2,所以BC截圆E所得的弦长为25-22=2.22.(本小题满分12分)如图5,已知圆C:x2+y2+10x+10y=0,点A(0,6).(1)求圆心在直线y=x上,经过点A,且与圆C相外切的圆N的方程;(2)若过点A的直线m与圆C交于P,Q两点,且圆弧PQ恰为圆C周长的1 4,求直线m的方程.【导学号:09960152】图5【解】(1)由x2+y2+10x+10y=0,化为标准方程:(x+5)2+(y+5)2=50.所以圆C的圆心坐标为C(-5,-5),又圆N的圆心在直线y=x上,所以当两圆外切时,切点为O,设圆N的圆心坐标为(a,a),则有(a-0)2+(a-6)2=(a-0)2+(a-0)2,解得a=3,所以圆N的圆心坐标为(3,3),半径r=32,故圆N的方程为(x-3)2+(y-3)2=18.(2)因为圆弧PQ恰为圆C周长的14,所以CP⊥CQ.所以点C到直线m的距离为5.当直线m的斜率不存在时,点C到y轴的距离为5,直线m即为y轴,所以此时直线m的方程为x=0.当直线m的斜率存在时,设直线m的方程为y=kx+6,即kx-y+6=0.所以|-5k+5+6|1+k2=5,解得k=4855.所以此时直线m的方程为4855x-y+6=0,即48x-55y+330=0,故所求直线m的方程为x=0或48x-55y+330=0.。
最新人教版高中数学必修第二册第四单元《统计》检测卷(有答案解析)
一、选择题1.某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200400300100,,,件,为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取()件.A.24 B.18 C.12 D.62.2020年春节后,因受疫情影响,某高中学校为学生导学助学开展网课,为了解网课教学方式对学生视力影响情况,在学校抽取了100名同学进行视力调查.如图为这100名同学视力的频率分布直方图,其中前4组的频率成等比数列,后6组的频数成等差数列,设最大频率为a,在4.6到5.0之间的数据个数为b,则a b、的值分别为()A.0.27,78B.0.27,73C.2.7,78D.2.7,733.某赛季甲、乙两名篮球运动员每场比赛得分用茎叶图表示,茎叶图中甲得分的部分数据被墨迹污损不清(如图1),但甲得分的折线图完好(如图2),则下列结论错误的是()A.乙运动员得分的中位数是17,甲运动员得分的极差是19B.甲运动员发挥的稳定性比乙运动员发挥的稳定性差C.甲运动员得分有12的叶集中在茎1上D.甲运动员得分的平均值一定比乙运动员得分的平均值低4.某单位青年、中年、老年职员的人数之比为10∶8∶7,从中抽取200名职员作为样本,若每人被抽取的概率是0.2,则该单位青年职员的人数为()A.280 B.320 C.400 D.10005.一组数据从小到大的顺序排列为1,2,2,x,5,10,其中5x ,已知该组数据的中位数是众数的32倍,则该组数据的标准差为( ) A .9B .4C .3D .26.某体校甲、乙两个运动队各有6名编号为1,2,3,4,5,6的队员进行实弹射击比赛,每人射击1次,击中的环数如表: 学生 1号 2号 3号 4号 5号 6号 甲队 6 7 7 8 7 7 乙队676797则以上两组数据的方差中较小的一个为2s (= )A .16B .13C .12D .1第II 卷(非选择题)请点击修改第II 卷的文字说明参考答案7.某小学共有学生2000人,其中一至六年级的学生人数分别为400,400,400,300,300,200.为做好小学放学后“快乐30分”活动,现采用分层抽样的方法从中抽取容量为200的样本进行调查,那么应抽取一年级学生的人数为( ) A .120B .40C .30D .208.某校为了解高二年级学生某次数学考试成绩的分布情况,从该年级的1120名学生中随机抽取了100 名学生的数学成绩,发现都在[]80,150内现将这100名学生的成绩按照[)8090,,[)90100,,[)100110,,[)110120,,[)120130,,[)130140,,[]140150,分组后,得到的频率分布直方图如图所示,则下列说法正确的是( )A .频率分布直方图中a 的值为0.040B .样本数据低于130分的频率为0.3C .总体的中位数(保留1位小数)估计为123.3分D .总体分布在[)90100,的频数一定与总体分布在[)100110,的频数相等 9.若样本数据1x ,2x ,…,10x 的方差为2,则数据121x -,221x -,…,1021x -的方差为( ) A .4B .8C .16D .3210.总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从第1行的第5列和第6列数字开始由左往右依次选取两个数字,则选出来的第5个个体的编号为( )A .01B .02C .14D .1911.某企业开展职工技能比赛,并从参赛职工中选1人参加该行业全国技能大赛.经过6轮选拔,甲、乙两人成绩突出,得分情况如茎叶图所示.若甲乙两人的平均成绩分别是x 甲,x 乙,则下列说法正确的是( ). A .x x >甲乙,乙比甲成绩稳定,应该选乙参加比赛 B .x x >甲乙,甲比乙成绩稳定,应该选甲参加比赛 C .x x <甲乙,甲比乙成绩稳定,应该选甲参加比赛 D .x x <甲乙,乙比甲成绩稳定,应该选乙参加比赛 12.设数据123,,,,n x x x x 是郑州市普通职工*(3,)n n n N ≥∈个人的年收入,若这n 个数据的中位数为x ,平均数为y ,方差为z ,如果再加上世界首富的年收入1n x +,则这1n +个数据中,下列说法正确的是( )A .年收入平均数大大增大,中位数一定变大,方差可能不变B .年收入平均数大大增大,中位数可能不变,方差变大C .年收入平均数大大增大,中位数可能不变,方差也不变D .年收入平均数可能不变,中位数可能不变,方差可能不变13.在发生某公共卫生事件期间,我国有关机构规定:该事件在一段时间没有发生规模群体感染的标志为“连续10天每天新增加疑似病例不超过7人”.根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是( ) A .甲地总体均值为3,中位数为4 B .乙地总体均值为2,总体方差大于0 C .丙地中位数为3,众数为3D .丁地总体均值为2,总体方差为3二、解答题14.某高级中学今年高一年级招收“国际班”学生720人,学校为这些学生开辟了直升海外一流大学的绿色通道,为了逐步提高这些学生与国际教育接轨的能力,将这720人分为三个批次参加国际教育研修培训,在这三个批次的学生中男、女学生人数如下表:第一批次第二批次第三批次女m n72男180132k已知在这720名学生中随机抽取1名,抽到第一批次、第二批次中女学生的概率分别是0.25,0.15.m n k的值;(1)求,,(2)为了检验研修的效果,现从三个批次中按分层抽样的方法抽取6名同学问卷调查,则三个批次被选取的人数分别是多少?(3)若从第(2)小问选取的学生中随机选出两名学生进行访谈,求“参加访谈的两名同学至少有一个人来自第一批次”的概率.15.全国中小学生的体质健康调研最新数据表明我国小学生近视眼发病率为22.78%,初中生为55.22%,高中生为70.34%.影响青少年近视形成的因素有遗传因素和环境因素,主要原因是环境因素.学生长时期近距离的用眼状态,加上不注意用眼卫生、不合理的作息时间很容易引起近视.除了学习,学生平时爱看电视、上网玩电子游戏、不喜欢参加户外体育活动,都是造成近视情况日益严重的原因.为了解情况,现从某地区随机抽取16名学生,调查人员用对数视力表检查得到这16名学生的视力状况的茎叶图(以小数点前的一位数字为茎,小数点后的一位数字为叶),如图:(1)写出这组数据的众数和中位数;(2)若视力测试结果不低于5.0,则称为“好视力”.①从这16名学生中随机选取3名,求至少有2名学生是“好视力”的概率;②以这16名学生中是“好视力”的频率代替该地区学生中是“好视力”的概率.若从该地区学生(人数较多)中任选3名,记X表示抽到“好视力”学生的人数,求X的分布列及数学期望.16.辽宁省六校协作体(葫芦岛第一高中、东港二中、凤城一中、北镇高中、瓦房店高中、丹东四中)中的某校文科实验班的100名学生期中考试的语文、数学成绩都不低于100,110、100分,其中语文成绩的频率分布直方图如图所示,成绩分组区间是:[)[)140,150.110,120、[)120130,、[]130140,、[)(1)根据频率分布直方图,估计这100名学生语文成绩的中位数和平均数;(同一组数据用该区间的中点值作代表;中位数精确到0.01)(2)若这100名学生语文成绩某些分数段的人数x 与数学成绩相应分数段的人数y 之比如下表所示: 分组区间[)100,110[)110,120[)120130, [)130140, :x y 1:31:13:4 10:1从数学成绩在[]130,150的学生中随机选取2人,求选出的2人中恰好有1人数学成绩在[]140,150的概率.17.某单位开展岗前培训期间,甲、乙2人参加了5次考试,成绩统计如下:第一次 第二次 第三次 第四次 第五次 甲的成绩 82 82 79 95 87 乙的成绩9575809085(1)根据有关统计知识回答问题:若从甲、乙2人中选出1人上岗,你认为选谁合适?请说明理由;(2)根据有关概率知识解答以下问题:若一次考试两人成绩之差的绝对值不超过3分,则称该次考试两人“水平相当”.由上述5次成绩统计,任意抽查两次考试,求至少有一次考试两人“水平相当”的概率.18.为创建全国文明城市,我市积极打造“绿城”的创建目标,使城市环境绿韵萦绕,使市民生活绿意盎然.有效增加城区绿化面积,提高城区绿化覆盖率,提升城市形象品位.林业部门推广种植甲、乙两种树苗,并对甲、乙两种树苗各抽测了10株树苗的高度(单位:厘米),数据如下面的茎叶图:(1)根据茎叶图求甲、乙两种树苗的平均高度;(2)根据茎叶图,计算甲、乙两种树苗的高度的方差,运用统计学知识分析比较甲、乙两种树苗高度整齐情况.19.2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有72,108,120人,现采用分层抽样的方法,从该单位上述员工中抽取25人调查专项附加扣除的享受情况.项目A B C D E F员工子女教育○○×○×○继续教育××○×○○大病医疗×××○××住房贷款利○○××○○息住房租金××○×××赡养老人○○×××○(2)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为A,B,C,D,E,F.享受情况如下表,其中“○”表示享受,“×”表示不享受.现从这6人中随机抽取2人接受采访.①试用所给字母列举出所有可能的抽取结果;②设M为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件M发生的概率.20.为提高产品质量,某企业质量管理部门经常不定期地抽查产品进行检测,现在某条生产线上随机抽取100个产品进行相关数据的对比,并对每个产品进行综合评分(满分100分),将每个产品所得的综合评分制成如图所示的频率分布直方图.记综合评分为80分及以上的产品为一等品.(1)求图中a的值,并求综合评分的中位数;(2)用样本估计总体,以频率作为概率,按分层抽样的思想,先在该条生产线中随机抽取5个产品,再从这5个产品中随机抽取2个产品记录有关数据,求这2个产品中恰有一个一等品的概率.21.经过多年的努力,炎陵黄桃在国内乃至国际上逐渐打开了销路,成为炎陵部分农民脱贫致富的好产品.为了更好地销售,现从某村的黄桃树上随机摘下了100个黄桃进行测重,其质量分布在区间[200,500]内(单位:克),统计质量的数据作出其频率分布直方图如图所示:(1)按分层抽样的方法从质量落在[350,400),[400,450)的黄桃中随机抽取5个,再从这5个黄桃中随机抽2个,求这2个黄桃质量至少有一个不小于400克的概率;(2)以各组数据的中间数值代表这组数据的平均水平,以频率代表概率,已知该村的黄桃树上大约还有100000个黄桃待出售,某电商提出两种收购方案:A.所有黄桃均以20元/千克收购;B.低于350克的黄桃以5元/个收购,高于或等于350克的以9元/个收购.请你通过计算为该村选择收益最好的方案.(参考数据:⨯+⨯+⨯+⨯+⨯+⨯=)2250.052750.163250.243750.34250.24750.05354.522.对某校高一年级学生参加社区服务次数进行统计,随机抽取M名学生作为样本,得到这M名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下:分组频数频率[10,15)100.25[15,20)25n[20,25)m p[25,30)20.05合计M1(1)求出表中M,p及图中a的值;(2)若该校高一学生有360人,试估计该校高一学生参加社区服务的次数在区间[15,20)内的人数;(3)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,请列举出所有基本事件,并求至多1人参加社区服务次数在区间[20,25)内的概率.23.哈三中数学竞赛辅导班进行选拔性测试,且规定:成绩大于等于110分的有参加资格,110分以下(不包括110分)的则淘汰.若现有1500人参加测试,频率分布直方图如下:(Ⅰ)求获得参加资格的人数;(Ⅱ)根据频率直方图,估算这1500名学生测试的平均成绩.24.某校高二文科分四个班,各班人数恰好成等差数列,高二数学调研测试后,对四个文科班的学生试卷按每班人数进行分层抽样,对测试成绩进行统计,人数最少的班抽取了22人,抽取的所有学生成绩分为6组:[70,80),[80,90),[90,100),[100,110),[110,120),[120,130),得到如图所示的频率分布直方图,其中第六组分数段的人数为5人.(1)求a的值,并求出各班抽取的学生数各为多少人?(2)在抽取的学生中,任取一名学生,求分数不小于90分的概率(视频率为概率).(3)估计高二文科四个班数学成绩的平均分25.利民中学为了了解该校高一年级学生的数学成绩,从高一年级期中考试成绩中抽出100名学生的成绩,由成绩得到如下的频率分布直方图.根据以上频率分布直方图,回答下列问题:(1)求这100名学生成绩的及格率;(大于等于60分为及格)(2)试比较这100名学生的平均成绩和中位数的大小.(精确到0.1)26.青少年“心理健康”问题越来越引起社会关注,某校对高一600名学生进行了一次“心理健康”知识测试,并从中抽取了部分学生的成绩(得分取正整数,满分100分)作为样本,绘制了下面尚未完成的频率分布表和频率分布直方图.分组频数频率20.04[50,60)80.16[60,70)10[70,80)[80,90)140.28[90,100]合计1.00(1)填写答题卡上频率分布表中的空格,并补全频率分布直方图;(2)试估计该年段成绩在[70,90)段的有多少人?(3)请你估算该年段的平均分.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据分层抽样列比例式,解得结果. 【详解】根据分层抽样得应从丙种型号的产品中抽取30060=18200+400+300+100⨯,选B.【点睛】在分层抽样的过程中,为了保证每个个体被抽到的可能性是相同的,这就要求各层所抽取的个体数与该层所包含的个体数之比等于样本容量与总体的个体数之比,即n i ∶N i =n ∶N .2.A解析:A 【分析】根据频率分布直方图,分别求得[)4.3,4.4,[)4.4,4.5,[)4.5,4.6,[)4.6,4.7,进而求得[)4.7,5.2的频率,在结合等差数列,求得d ,求得[)4.7,4.8,[)4.8,4.9,[)4.9,5.0,[)5.0,5.1,[)5.1,5.2,进而求得,a b 的值,即可求解.【详解】这100名同学视力的频率分布直方图,其中前4组的频率成等比数列, 因为[)4.3,4.4的频率为0.10.10.01⨯=;[)4.4,4.5的频率为0.30.10.03⨯=; [)4.5,4.6的频率为0.0330.09⨯=; [)4.6,4.7的频率为0.0930.27⨯=;[)4.7,5.2的频率为10.010.030.090.270.6----=,所以后6中的频数成等差数列,所以1610.276560.60.272a S a d =⎧⎪⎨⨯=+=+⎪⎩,解得0.05d =-, 所以[)4.7,4.8的频率为0.22,[)4.8,4.9的频率为0.17,[)4.9,5.0的频率为0.12,[)5.0,5.1的频率为0.07,[)5.1,5.2的频率为0.02,所以[)4.6,5.0的频率为0.270.220.170.120.78+++=,所以0.27a =,在4.6到5.0之间的数据个数为0.7810078b =⨯=. 故选:A. 【点睛】本题主要考查了频率分布直方图的频率、频数的求法,以及等差数列、等比数列的性质等基础知识的应用,着重考查了运算与求解能力,属于基础题.3.D解析:D 【分析】先根据甲得分的折线图确定被墨迹污损的两个数字取值范围,再根据极差、平均数、中位数等概念以及茎叶图判断大小以及稳定性,即可作出判断选择. 【详解】由茎叶图得乙运动员得分的中位数是17,平均值为9+14+15+17+18+19+20=148根据甲得分的折线图确定被墨迹污损的两个数字取值范围为[13,15],所以甲运动员得分的极差是28919-=,甲运动员得分有41=82的叶集中在茎1上,甲运动员得分数据比乙分散,所以甲发挥的稳定性比乙运动员发挥的稳定性差,甲运动员得分平均值9+12+13+13+13+20+26+28>>148x 甲,所以D 错误,故选:D 【点睛】本题考查茎叶图、折线图及其应用,考查基本分析判断计算能力,属基础题.4.C解析:C 【分析】由题意知这是一个分层抽样问题,根据青年、中年、老年职员的人数之比为1087∶∶,从中抽取200名职员作为样本,得到要从该单位青年职员中抽取的人数,根据每人被抽取的概率为0.2,得到要求的结果 【详解】由题意知这是一个分层抽样问题,青年、中年、老年职员的人数之比为1087∶∶,从中抽取200名职员作为样本,∴要从该单位青年职员中抽取的人数为:10200801087⨯=++每人被抽取的概率为0.2,∴该单位青年职员共有804000.2= 故选C 【点睛】本题主要考查了分层抽样问题,运用计算方法求出结果即可,较为简单,属于基础题.5.C解析:C 【解析】分析:根据题意求出x 的值后再求该组数据的标准差. 详解:由题意得该组数据的中位数为()12122x x +=+;众数为2. ∴312322x +=⨯=, ∴4x =.∴该组数据的平均数为()1122451046x =+++++=, ∴该组数据的方差为()()()()()()22222221142424445410496s ⎡⎤=-+-+-+-+-+-=⎣⎦, ∴该组数据的标准差为3. 故选C . 点睛:平均数与方差都是重要的数字特征,是对总体的一种简明的描述,它们所反映的情况有着重要的实际意义,平均数、中位数、众数描述其集中趋势,方差和标准差描述其波动大小.6.B解析:B 【解析】 【分析】观察两组数据的波动性大小判断方差大小,再利用平均数公式计算平均数,利用方差公式求方差的值. 【详解】甲组数据为:6,7,7,8,7,7, 乙组数据为:6,7,6,7,9,7, 所以甲组数据波动较小,方差也较小, 甲组数据的平均数为()167787776x =⨯+++++=, 方差为(22211s [1)0010063⎤=⨯-+++++=⎦,故选B . 【点睛】本题考查了平均数与方差的计算问题,是基础题.算术平均数公式12n 1(++...+)x x x x n=;样本方差公式()()()2222121...n s x x x x x x n ⎡⎤=-+-++-⎣⎦. 7.B解析:B 【分析】根据分层抽样的定义即可得到结论.【详解】假设抽取一年级学生人数为n . ∵一年级学生400人∴抽取一个容量为200的样本,用分层抽样法抽取的一年级学生人数为4002000200n= ∴40n =,即一年级学生人数应为40人, 故选B . 【点睛】在分层抽样的过程中,为了保证每个个体被抽到的可能性是相同的,这就要求各层所抽取的个数与该层所包含的个体数之比等于样本容量与总体的个体数之比,即::i i n N n N =.8.C解析:C 【分析】对于A :由频率分布直方图中所有小矩形面积之和为1,列出等式可求得a 的值,进而作出判断;对于B :先计算高于130分的频率,然后再用1减去于高于130分的频率即可得到低于130分的频率,进而作出判断;对于C :先计算[)80,120的频率和[)120130,的频率,再求出总体的中位数,进而作出判断;对于D :根据样本分布在[)90,100的频数一定与样本分布在[)100,110的频数相等,总体分布在[)90,100的频数不一定与总体分布在[)100,110的频数相等作出判断即可. 【详解】由频率分布直方图得:()0.0050.0100.0100.0150.0250.005101a ++++++⨯=,解得0.030a =,故A 错误;样本数据低于130分的频率为:()10.0250.005100.7-⨯+=,故B 错误;[)80,120的频率为:()0.0050.0100.0100.015100.4+++⨯=,[)120130,的频率为:0.030100.3⨯=, ∴总体的中位数(保留1位小数)估计为:0.50.412010123.30.3-+⨯≈分,故C 正确; 样本分布在[)90,100的频数一定与样本分布在[)100,110的频数相等,总体分布在[)90,100的频数不一定与总体分布在[)100,110的频数相等,故D 错误. 故选:C . 【点睛】本题考查频率分布直方图的应用,考查逻辑思维能力和计算能力,属于基础题.9.B解析:B 【分析】根据Y aX b =+,则2()()D Y a D X =即可求解. 【详解】因为样本数据1x ,2x ,…,10x 的方差为2,21(1,2,10)i i y x i =-=所以1y ,2y ,…,10y 的方差为()(21)4()8D y D x D x =-==,故选B. 【点睛】本题主要考查了方差的概念及求法,属于容易题.10.A解析:A 【解析】从随机数表第一行的第五列和第六列数字开始由左到右依次选取两个数字中小于20的和编号依次为08,02,14,19,14,01,其中第三个和第五个都是14,重复.可知对应的数值为08,02,14,19, 01,则第五个个体的编号为01. 故选A.11.D解析:D 【解析】 试题分析:727879858692826x +++++==甲,788688889193876x +++++=≈乙,所以x x <甲乙.()2110016991610041.676S =+++++≈甲,()2181111163622.676S =+++++≈乙,因为22S S 乙甲<,所以乙成绩比甲成绩稳定,应该选乙参加比赛.考点:1.茎叶图;2.平均数和方差 12.B解析:B 【解析】∵数据x 1,x 2,x 3,…,x n 是郑州普通职工n (n ⩾3,n ∈N ∗)个人的年收入, 而x n +1为世界首富的年收入 则x n +1会远大于x 1,x 2,x 3,…,x n , 故这n +1个数据中,年收入平均数大大增大, 但中位数可能不变,也可能稍微变大,但由于数据的集中程序也受到x n +1比较大的影响,而更加离散,则方差变大. 故选B13.D解析:D 【分析】通过举反例可判断ABC 选项的正误;假设108x ≥,利用方差公式推出矛盾,可判断D 选项合乎要求. 【详解】对于A 选项,反例:0、0、1、1、4、4、4、4、4、8,满足中位数为4,均值为3,与题意矛盾,A 选项不合乎题意;对于B 选项,反例:0、1、1、1、1、1、1、2、4、8,满足均值为2,方差大于0,与题意矛盾,B 选项不合乎题意;对于C 选项,反例:0、1、1、3、3、3、3、3、3、8,满足中位数为3,众数为3,与题意矛盾,C 选项不合乎要求;对于D 选项,将10个数由小到大依次记为1x 、2x 、3x 、4x 、5x 、6x 、7x 、8x 、9x 、10x ,假设108x ≥,若均值为2,则方差为()()1022102122 3.61010ii x x s =--=≥=∑,矛盾,故108x <,假设不成立,故丙地没有发生规模群体感染,D 选项合乎要求. 故选:D. 【点睛】关键点点睛:解决本题的关键在于以下两点: (1)在判断选项不成立时,可通过举反例来推导;(2)在判断D 选项时,可假设108x ≥,利用反证法来进行推导.二、解答题14.(1)180,108,48m n k ===;(2)3,2,1;(3)45. 【解析】分析:(1)由题意结合所给的数据计算可得180,108,48m n k ===;(2)由题意结合分层抽样比计算可得第一批次,第二批次,第三批次被抽取的人数分别为3,2,1.(3)设第一批次选取的三个学生设为123,,,A A A 第二批次选取的学生为1,B 2B ,第三批次选取的学生为C ,利用列举法可得从这6名学员中随机选出两名学员的所有基本事件为15个,“两名同学至少有一个来自第一批次”的事件包括共12个,由古典概型计算公式可得相应的概率值为45p =. 详解:(1)7200.25180,7200.15108,m n =⨯==⨯=7201801081327248k =----=;(2)由题意知,第一批次,第二批次,第三批次的人数分别是360,240,120.36024012063,62,61,720720720⨯=⨯=⨯= 所以第一批次,第二批次,第三批次被抽取的人数分别为3,2,1.(3)第一批次选取的三个学生设为123,,,A A A 第二批次选取的学生为1,B 2B ,第三批次选取的学生为C ,则从这6名学员中随机选出两名学员的所有基本事件为:1213111212321222313231212,,,,,,,,,,,,,,A A A A A B A B AC A A A B A B A C A B A B A C B B B C B C 共15个,“两名同学至少有一个来自第一批次”的事件包括:121311121232122231323,,,,,,,,,,,A A A A A B A B AC A A A B A B A C A B A B A C 共12个,所以“两名同学至少有一个来自第一批次”的概率124155p ==. 点睛:本题主要考查古典概型,分层抽样等知识,意在考查学生的转化能力和计算求解能力.15.(1)众数为4.6和4.7,中位数为4.75(2)①19140②见解析,3()4E X = 【分析】(1)直接观察茎叶图中的数据即可求出答案(2)①设事件i A ,表示“所选3名学生中有i 名是‘好视力’”(0,1,2,3)i =,设事件A 表示“至少有2名学生是好视力”.由()()213112423331616()C C C P A P A P A C C =+=+求出即可 ②X 近似服从二项分布13,4B ⎛⎫⎪⎝⎭,然后列出分布列和算出期望即可. 【详解】(1)由题意知众数为4.6和4.7, 中位数为4.7 4.84.752+=. (2)①设事件i A ,表示“所选3名学生中有i 名是‘好视力’”(0,1,2,3)i =,设事件A 表示“至少有2名学生是好视力”.则()()213112423331616()C C C P A P A P A C C =+=+ 19140=②因为这16名学生中是“好视力”的频率为14,所以该地区学生中是“好视力”的概率为14. 由于该地区学生人数较多,故X 近似服从二项分布13,4B ⎛⎫ ⎪⎝⎭.3327(0)464P X ⎛⎫===⎪⎝⎭,2131327(1)4464P X C ⎛⎫⎛⎫==⨯⨯= ⎪ ⎪⎝⎭⎝⎭, 223139(2)4464P X C ⎛⎫⎛⎫==⨯⨯=⎪ ⎪⎝⎭⎝⎭,311(3)464P X ⎛⎫===⎪⎝⎭, 所以X 的分布列为X 的数学期望为()344E X =⨯=. 【点睛】本题考查的知识点有:茎叶图、众数、中位数、二项分布等,是一道比较典型的概率与统计的题.16.(1)中位数是121.67;平均数是123;(2)35. 【分析】(1)利用中位数左边矩形面积之和为0.5可求出中位数,将每个矩形底边中点值乘以相应矩形的面积,再相加可得出这100名学生语文成绩的平均数;(2)计算出数学成绩在[]130,150、[]140,150的学生人数,列举出所有的基本事件,然后利用古典概型的概率公式可计算出所求事件的概率. 【详解】(1)0.050.40.30.750.5++=>,0.750.50.25-=,∴这100名学生语文成绩的中位数是0.2513010121.670.3-⨯=.这100名学生语文成绩的平均数是:1050.051150.41250.31350.21450.05123⨯+⨯+⨯+⨯+⨯=;(2)数学成绩在[)100,140之内的人数为 4130.050.40.30.210097310⎛⎫⨯++⨯+⨯⨯=⎪⎝⎭, ∴数学成绩在[]140,150的人数为100973-=人,设为1a 、2a 、3a ,而数学成绩在[)130140,的人数为10.2100210⨯⨯=人,设为1b 、2b , 从数学成绩在[]130,150的学生中随机选取2人基本事件为:()12,a a 、()13,a a 、()11,a b 、()12,a b 、()23,a a 、()21,a b 、()22,a b 、()31,a b 、()32,a b 、()12,b b ,共10个,选出的2人中恰好有1人数学成绩在[]140,150的基本事件为:()11,a b 、()12,a b 、()21,a b 、()22,a b 、()31,a b 、()32,a b ,共6个,∴选出的2人中恰好有1人数学成绩在[]140,150的概率是35.【点睛】本题考查利用频率分布直方图计算平均数与中位数,同时也考查了利用古典概型的概率公式计算事件的概率,考查计算能力,属于中等题. 17.(1)应派甲去,理由见解析(2)710【分析】(1)先求出甲和乙的平均成绩相同,再求出甲和乙的成绩的方差,方差较小的发挥比较稳定,应该派他去(2)从5次考试的成绩中,任意取出2次的成绩,所有的基本事件有10个,用列举法求得满足条件至少有一次考试两人“水平相当”的有7个,由此求得所求事件的概率. 【详解】(1)甲的平均成绩为8282799587855x ++++==甲,乙的平均成绩为9575809085855x ++++==乙,故甲乙二人的平均水平一样. 甲的成绩的方差为52211()315i i S x x ==∑-=甲甲, 乙的成绩的方差为52211()505i i Sx x ==∑-=乙乙, ∴22S S <甲乙,故应派甲合适.(2)从5次考试的成绩中,任意取出2次,所有的基本事件有10个,其中,满足至少有一次考试两人“水平相当”的有7个:(79,80)和(87,85)、(79,80)和(82,95)、(79,80)和(87,75)、(79,80)和(95,90)、(87,85)和(82,95)、(87,85)和(82,75)、(87,85)和(95,90),共有7个,故所求事件的概率等于 710. 【点睛】本题考查古典概型及其概率计算公式的应用,应用列举法来解题是这一部分的最主要思想,平均数和方差的应用,属于基础题.18.(1)甲种树苗的平均高度为27(厘米);乙种树苗的平均高度为30(厘米)(2)甲种树苗的方差为35,乙种树苗的方差为207.8,甲种树苗长的比较整齐,乙种树苗长的参差不齐 【分析】(1)利用平均数公式计算即可得到答案;(2)根据数据的方差公式计算出方差,再比较方差的大小可得答案. 【详解】(1)甲种树苗的平均高度为192120292325373132332710+++++++++=(厘米).乙种树苗的平均高度为101410272630474644463010+++++++++=(厘米).(2)甲种树苗的方差为:22221[(1927)(2127)(2027)(2927)10-+-+-+-222222(2327)(2527)(3727)(3127)(3227)(3327)]+-+-+-+-+-+-()164364941641001625363510=+++++++++=, 乙种树苗的方差为:2221[(1030)(1430)(1030)10-+-+-+222(2730)(2630)(3030)-+-+-+2222(4730)(4630)(4430)(4630)]-+-+-+-()14002564009160289256196256207.810=+++++++++=, 故甲种树苗长的比较整齐,乙种树苗长的参差不齐. 【点睛】本题考查了茎叶图,考查了均值和方差的计算公式,属于基础题. 19.(1)从老、中、青员工中分别抽取6人,9人,10人(2)①{,}A B ,{,}A D ,{,}A E ,{,}A F ,{,}B D ,{,}B E ,{,}B F ,{,}C E ,{,}C F ,{,}D F ,{,}E F ,共11种 ②1115【分析】(1)根据分层抽样各层所抽比例相等可得结果; (2)①用列举法求出基本事件数;②用列举法求出事件M 所含基本事件数以及对应的概率。
【三维设计】高一数学人教版必修2阶段质量检测(四) Word版含答案[ 高考]
圆与方程一、选择题(共10小题,每小题5分,共50分)1. 直线l :y =k ⎝⎛⎭⎫x +12与圆C :x 2+y 2=1的位置关系为( ) A .相交或相切 B .相交或相离 C .相切D .相交解析:选D 圆C 的圆心(0,0)到直线y =k ⎝⎛⎭⎫x +12的距离为d =⎪⎪⎪⎪12k k 2+1.因为d 2=14k 2k 2+1<14<1,所以直线与圆相交,或由直线经过定点⎝⎛⎭⎫-12,0在圆内,故相交. 2.方程x 2+y 2+x +y -m =0表示一个圆,则m 的取值范围是( ). A .m >-12B .m <-12C .m ≤-12D .m ≥-12解析:选A 由题意得1+1+4m >0.解得m >-12.3. 空间直角坐标系中,已知A (2,3,5),B (3,1,4),则A ,B 两点间的距离为( ) A .6 B. 6 C.30D.42解析:选B |AB |=(3-2)2+(1-3)2+(4-5)2= 6.4.以正方体ABCD -A 1B 1C 1D 1的棱AB 、AD 、AA 1所在的直线为坐标轴建立空间直角坐标系,且正方体的棱长为一个单位长度,则棱CC 1中点坐标为( )A.⎝⎛⎭⎫12,1,1B.⎝⎛⎭⎫1,12,1 C.⎝⎛⎭⎫1,1,12 D.⎝⎛⎭⎫12,12,1答案:C5.圆O 1:x 2+y 2-2x =0和圆O 2:x 2+y 2-4y =0的位置关系是( ) A .相离 B .相交 C .外切D .内切 解析:选B 化为标准方程:圆O 1:(x -1)2+y 2=1,圆O 2:x 2+(y -2)2=4,则O 1(1,0),O 2(0,2), |O 1O 2|=(1-0)2+(0-2)2=5<r 1+r 2,又r 2-r 1<5,所以两圆相交.6.自点A (-1,4)作圆(x -2)2+(y -3)2=1的切线,则切线长为( ) A. 5 B .3 C.10D .5解析:选B 点A 到圆心距离为10,切线长为l =10-1=3.7.直线3x -y +m =0与圆x 2+y 2-2x -2=0相切,则实数m 等于( ) A.3或- 3 B .-3或3 3 C .-33或 3D .-33或3 3解析:选C 圆的方程变形为(x -1)2+y 2=3,圆心(1,0)到直线的距离等于半径⇒|3+m |3+1=3⇒|3+m |=23⇒m =3或m =-33,故选C.8.圆心在x 轴上,半径长为 2,且过点(-2,1)的圆的方程为( ) A .(x +1)2+y 2=2 B .x 2+(y +2)2=2 C .(x +3)2+y 2=2D .(x +1)2+y 2=2或(x +3)2+y 2=2解析:选D 设圆心坐标为(a,0),则由题意知(a +2)2+(0-1)2=2,解得a =-1或a =-3,故圆的方程为(x +1)2+y 2=2或(x +3)2+y 2=2.9.圆C 1:(x +2)2+(y -m )2=9与圆C 2:(x -m )2+(y +1)2=4外切,则m 的值为( ) A .2 B .-5 C .2或-5D .不确定解析:选C 圆C 1:(x +2)2+(y -m )2=9的圆心为(-2,m ),半径长为3,圆C 2:(x -m )2+(y +1)2=4的圆心为(m ,-1),半径长为2.依题意有(-2-m )2+(m +1)2=3+2,即m 2+3m -10=0,解得m =2或m =-5.10.若直线x -y =2被圆(x -a )2+y 2=4所截得的弦长为2 2.则实数a 的值为( ) A .-1或 3 B .1或3 C .-2或6D .0或4解析:选D 圆心(a,0)到直线x -y =2的距离d =|a -2|2,则(2)2+(|a -2|2)2=22,解得a =0或4.二、填空题(共4小题,每小题5分,共20分)11.在如图所示的长方体ABCD -A 1B 1C 1D 1中,已知A 1(a,0,c ),C (0,b,0),则点B 1的坐标为________.解析:由题中图可知,点B 1的横坐标和竖坐标与点A 1的横坐标和竖坐标相同,点B 1的纵坐标与点C 的纵坐标相同,∴B 1(a ,b ,c ).答案:(a ,b ,c )12.(2012·北京高考)直线y =x 被圆x 2+(y -2)2=4截得的弦长为________.解析:如图所示,|CO |=2,圆心C (0,2)到直线y =x 的距离|CM |=|0-2|2=2,所以弦长为2|OM |=24-2=2 2.答案:2 213.设A 为圆(x -2)2+(y -2)2=1上一动点,则A 到直线x -y -5=0的最大距离为________.解析:圆心到直线的距离d =|2-2-5|2=522,则A 到直线x -y -5=0的最大距离为522+1.答案:522+114.已知M (-2,0),N (2,0),则以MN 为斜边的直角三角形的直角顶点P 的轨迹方程是________.解析:设P (x ,y ),由条件知PM ⊥PN ,且PM ,PN 的斜率肯定存在,故k PM ·k PN =-1,即y -0x +2·y -0x -2=-1,x 2+y 2=4. 又当P 、M 、N 三点共线时,不能构成三角形,所以x ≠±2, 即所求轨迹方程为x 2+y 2=4(x ≠±2). 答案:x 2+y 2=4(x ≠±2)三、解答题(共4小题,共50分,解答时应写出文字说明、证明过程或演算步骤) 15.(本小题满分12分)求圆心在直线x -3y =0上,且与y 轴相切,在x 轴上截得的弦长为42的圆的方程.解:设圆的方程为(x -a )2+(y -b )2=r 2, 由题意可得⎩⎪⎨⎪⎧a -3b =0,|a |=r ,b 2+8=r 2,解得⎩⎪⎨⎪⎧ a =3,b =1,r =3或⎩⎪⎨⎪⎧a =-3,b =-1,r =3,所以圆的方程为(x -3)2+(y -1)2=9或(x +3)2+(y +1)2=9.16.(本小题满分12分)已知正方体的棱长为a ,过B 1作B 1E ⊥BD 1于点E ,求A 、E 两点之间的距离.解:建立如图所示的空间直角坐标系,根据题意,可得A (a,0,0)、B (a ,a,0)、D 1(0,0,a )、B 1(a ,a ,a ). 过点E 作EF ⊥BD 于F ,如图所示, 则在Rt △BB 1D 1中,|BB 1|=a ,|BD 1|=3a ,|B 1D 1|=2a , 所以|B 1E |=a ·2a 3a=6a3,所以在Rt △BEB 1中,|BE |=33a . 由Rt △BEF ∽Rt △BD 1D , 得|BF |=23a ,|EF |=a 3, 所以点F 的坐标为(2a 3,2a3,0),则点E 的坐标为(2a 3,2a 3,a3).由两点间的距离公式,得 |AE |=(a -2a 3)2+(0-2a 3)2+(0-a 3)2=63a ,所以A 、E 两点之间的距离是63a . 17.(本小题满分12分)一座圆拱桥,当水面在如图所示位置时,拱顶离水面2米,水面宽12米,当水面下降1米后,水面宽多少米?解:以圆拱顶点为原点,以过圆拱顶点的竖直直线为y 轴,建立如图所示的平面直角坐标系.设圆心为C ,水面所在弦的端点为A ,B ,则由已知可得A (6,-2),设圆的半径长为r ,则C (0,-r ),即圆的方程为x 2+(y +r )2=r 2.将点A 的坐标代入上述方程可得r =10,所以圆的方程为x 2+(y +10)2=100.当水面下降1米后,可设A ′(x 0,-3)(x 0>0),代入x 2+(y +10)2=100,解得2x 0=251,即当水面下降1米后,水面宽251米.18.(本小题满分14分)(2012·淮安高二检测)已知圆M 的方程为x 2+(y -2)2=1,直线l 的方程为x -2y =0,点P 在直线l 上,过P 点作圆M 的切线P A ,PB ,切点为A ,B .(1)若∠APB =60°,试求点P 的坐标;(2)若P 点的坐标为(2,1),过P 作直线与圆M 交于C ,D 两点,当CD =2时,求直线CD 的方程.解:(1)设P (2m ,m ),由题可知MP =2,所以(2m )2+(m -2)2=4,解得m =0或m =45,故所求点P 的坐标为P (0,0)或P ⎝⎛⎭⎫85,45.(2)由题意易知k 存在,设直线CD 的方程为y -1=k (x -2),由题知圆心M 到直线CD 的距离为22,所以22=|-2k -1|1+k 2,解得k =-1或k =-17,故所求直线CD 的方程为:x +y -3=0或x+7y-9=0.。
人教A版数学必修四第二学期高一模块质量检查(必修4).docx
福州市2008—2009学年第二学期高一模块质量检查 数 学(4) 试 卷(满分:150分;完卷时间:120分钟)A 卷(满分100分)一、选择题:本大题共10小题.每小题5分。
共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.5sin()3π-的值为 A .32 B .32- C .12- D .122.角α的终边经过点P(-3,4)且cos 10m α=,则m 的值为 A .6 B .-6 C .3 D .-33.一个半径为R 的圆中,060的圆心角所对的弧长为 A .60R B .6R πC .13RD .3R π 4.已知a v = (2,3),b v =(4,y),且a v ∥b v ,则y 的值为A .6B .-6C .83D .-83 5.已知作用在点A(1,1)的三个力,1F u u v =(3,4),2F u u v =(2,-5),3F u u v =(3,1),则合力123F F F F =++u v u u v u u v u u v 的终点坐标为A .(9,1)B .(1,9)C .(9,0)D .(0,9)6.在△ABC 中,下列结论错误的是 .sin()sin .sincos 22.tan()tan ().cos()cos 2 B C A A A B C B C A B C C D A B C π++==+=-≠+= 7.在平行四边形ABCD 中,若AB AD AB AD +=-u u u v u u u v u u u v u u u v ,则必有A .0AD =u u u v vB .0AB =u u u v v 或0AD =u u u v vC .ABCD 是矩形 D .ABCD 是菱形8.函数cos(2)4y x π=+图象可由cos 2y x =的图象经下列哪种变换得到 A .向右平移4π个单位长度 B .向右平移8π个单位长度 C .向左平移4π个单位长度 D .向左平移8π个单位长度 9.下列函数中,最小正周期是2π的偶函数为 A .cos 2y x = B .22cos 21y x =- C .tan 2y x = D .sin 4y x =10.下列命题中,正确的是 A .若AB DC =u u u v u u u v ,则ABCD 是平行四边形B .若a b =v v ,则或a b a b ==-v v v vC .若,a b b c ==v v v v ,则a c =v vD .若a v ∥b v ,b v ∥c v ,则a v ∥c v 二、填空题:本大题共3小题,每小题4分,共12分.在答题卡上的相应题目的答题区域内 作答. 11.若a v =3,与b a v v 的方向相反,且b v =5,则a v =___________b v . 12.设向量12与e e u v u u v 不共线,若12123(10)(47)2xe y e y e xe +-=-+u v u u v u v u u v ,则实数x=____________. y =________________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
阶段质量检测(四)(A 卷 学业水平达标) (时间120分钟,满分150分)一、选择题(共10小题,每小题6分,共60分)1.直线l :y =k ⎝⎛⎭⎫x +12与圆C :x 2+y 2=1的位置关系为( ) A .相交或相切 B .相交或相离 C .相切 D .相交答案:D2.已知圆x 2+y 2+Dx +Ey =0的圆心在直线x +y =1上,则D 与E 的关系是( ) A .D +E =2 B .D +E =1 C .D +E =-1 D .D +E =-2答案:D3.若圆C :x 2+y 2-2(m -1)x +2(m -1)y +2m 2-6m +4=0过坐标原点,则实数m 的值为( )A .2或1B .-2或-1C .2D .1答案:C4.以正方体ABCD -A 1B 1C 1D 1的棱AB ,AD ,AA 1所在的直线为坐标轴建立空间直角坐标系,且正方体的棱长为一个单位长度,则棱CC 1中点坐标为( )A.⎝⎛⎭⎫12,1,1 B.⎝⎛⎭⎫1,12,1 C.⎝⎛⎭⎫1,1,12 D.⎝⎛⎭⎫12,12,1 答案:C5.圆O 1:x 2+y 2-2x =0和圆O 2:x 2+y 2-4y =0的位置关系是( ) A .相离 B .相交 C .外切 D .内切答案:B6.自点A (-1,4)作圆(x -2)2+(y -3)2=1的切线,则切线长为( ) A. 5 B .3 C.10 D .5答案:B7.直线3x-y+m=0与圆x2+y2-2x-2=0相切,则实数m等于()A.3或- 3 B.-3或3 3C.-33或 3 D.-33或3 3答案:C8.圆心在x轴上,半径长为2,且过点(-2,1)的圆的方程为()A.(x+1)2+y2=2B.x2+(y+2)2=2C.(x+3)2+y2=2D.(x+1)2+y2=2或(x+3)2+y2=2答案:D9.设P是圆(x-3)2+(y+1)2=4上的动点,Q是直线x=-3上的动点,则|PQ|的最小值为()A.6 B.4C.3 D.2答案:B10.若直线x-y=2被圆(x-a)2+y2=4所截得的弦长为22,则实数a的值为() A.-1或 3 B.1或3C.-2或6 D.0或4答案:D二、填空题(共4小题,每小题5分,共20分)11.在如图所示的长方体ABCD-A1B1C1D1中,已知A1(a,0,c),C(0,b,0),则点B1的坐标为________.答案:(a,b,c)12.(北京高考)直线y=x被圆x2+(y-2)2=4截得的弦长为________.答案:2 213.设点A为圆(x-2)2+(y-2)2=1上一动点,则A到直线x-y-5=0的最大距离为________.答案:522+114.已知M (-2,0),N (2,0),则以MN 为斜边的直角三角形的直角顶点P 的轨迹方程是________.答案:x 2+y 2=4(x ≠±2)三、解答题(共6小题,共70分,解答时应写出文字说明、证明过程或演算步骤) 15.(本小题满分10分)设圆上的点A (2,3)关于直线x +2y =0的对称点仍在圆上,且圆与直线x -y +1=0相交的弦长为22,求圆的方程.解:设所求圆的方程为(x -a )2+(y -b )2=r 2, 则圆心为(a ,b ),半径长为r .∵点A (2,3)关于直线x +2y =0的对称点A ′仍在这个圆上, ∴圆心(a ,b )在直线x +2y =0上. ∴a +2b =0,①且(2-a )2+(3-b )2=r 2.②又直线x -y +1=0截圆所得的弦长为22, ∴r 2-⎝⎛⎭⎪⎫a -b +122=(2)2.③解由方程①②③组成的方程组,得⎩⎪⎨⎪⎧ a =6,b =-3,r 2=52或⎩⎪⎨⎪⎧a =14,b =-7,r 2=244.∴所求圆的方程为(x -6)2+(y +3)2=52或(x -14)2+(y +7)2=244.16.(本小题满分12分)正方形ABCD 和正方形ABEF 的边长都是1,并且平面ABCD ⊥平面ABEF ,点M 在AC 上移动,点N 在BF 上移动.若|CM |=|BN |=a (0<a <2).(1)求MN 的长度;(2)当a 为何值时,MN 的长度最短.解:因为平面ABCD ⊥平面ABEF ,且交线为AB ,BE ⊥AB ,所以BE ⊥平面ABCD ,所以BA ,BC ,BE 两两垂直.取B 为坐标原点,BA ,BE ,BC 所在直线分别为x 轴、y 轴和z 轴,建立如图所示的空间直角坐标系.因为|BC |=1,|CM |=a ,点M 在坐标平面xBz 上且在正方形ABCD 的对角线AC 上, 所以点M⎝⎛⎭⎫22a ,0,1-22a .因为点N 在坐标平面xBy 上且在正方形ABEF 的对角线BF 上,|BN |=a ,所以点N⎝⎛⎭⎫22a ,22a ,0.(1)由空间两点间的距离公式,得 |MN |=⎝⎛⎭⎫22a -22a 2+⎝⎛⎭⎫0-22a 2+⎝⎛⎭⎫1-22a -02=a 2-2a +1,即MN 的长度为a 2-2a +1.(2)由(1)得|MN |=a 2-2a +1=⎝⎛⎭⎫a -222+12,当a =22(满足0<a <2)时,⎝⎛⎭⎫a -222+12取得最小值22,即MN 的长度最短,最短为22.17.(本小题满分12分)一座圆拱桥,当水面在如图所示位置时,拱顶离水面2米,水面宽12米,当水面下降1米后,水面宽多少米?解:以圆拱顶点为原点,以过圆拱顶点的竖直直线为y 轴,建立如图所示的平面直角坐标系.设圆心为C ,水面所在弦的端点为A ,B ,则由已知可得A (6,-2),设圆的半径长为r ,则C (0,-r ),即圆的方程为x 2+(y +r )2=r 2.将点A 的坐标代入上述方程可得r =10,所以圆的方程为x 2+(y +10)2=100.当水面下降1米后,可设A ′(x 0,-3)(x 0>0),代入x 2+(y +10)2=100,解得2x 0=251,即当水面下降1米后,水面宽251米.18.(本小题满分12分)已知圆M 的方程为x 2+(y -2)2=1,直线l 的方程为x -2y =0,点P 在直线l 上,过P 点作圆M 的切线PA ,PB ,切点为A ,B .(1)若∠APB =60°,试求点P 的坐标;(2)若点P 的坐标为(2,1),过P 作直线与圆M 交于C ,D 两点,当CD =2时,求直线CD 的方程.解:(1)设P (2m ,m ),由题可知MP =2,所以(2m )2+(m -2)2=4,解得m =0或m =45,故所求点P 的坐标为P (0,0)或P ⎝⎛⎭⎫85,45.(2)由题意易知k 存在,设直线CD 的方程为y -1=k (x -2),由题知圆心M 到直线CD 的距离为22,所以22=|-2k -1|1+k 2,解得k =-1或k =-17,故所求直线CD 的方程为:x +y-3=0或x +7y -9=0.19.(本小题满分12分)已知P 是直线3x +4y +8=0上的动点,PA 、PB 是圆x 2+y 2-2x -2y +1=0的两条切线,A 、B 是切点,C 是圆心,求四边形PACB 面积的最小值.解:∵点P 在直线3x +4y +8=0上,如图所示, ∴设P ⎝⎛⎭⎫x ,-2-34x , C 点坐标为(1,1),S 四边形PACB =2S △PAC =|AP |·|AC |=|AP |, ∵|AP |2=|PC |2-|AC |2=|PC |2-1,∴当|PC |最小时,|AP |最小,四边形PACB 的面积最小. ∴|PC |2=(1-x )2+⎝⎛⎭⎫1+2+34x 2 =2516x 2+52x +10=⎝⎛⎭⎫54x +12+9, ∴|PC |min =3.当|PC |最小时,|PA |=32-1=22,∴四边形PACB 面积的最小值为2 2.20.(本小题满分12分)已知方程x 2+y 2-2x -4y +m =0. (1)若此方程表示圆,求m 的取值范围;(2)若(1)中圆与直线x +2y -4=0相交于M ,N 两点,且OM ⊥ON (O 为坐标原点),求m 的值;(3)在(2)的条件下,求以MN 为直径的圆的方程. 解:(1)∵x 2+y 2-2x -4y +m =0, ∴D =-2,E =-4,F =m , 由D 2+E 2-4F =20-4m >0,可得m <5.故m 的取值范围为(-∞,5).(2)联立方程组⎩⎪⎨⎪⎧x +2y -4=0,x 2+y 2-2x -4y +m =0,消去x 得5y 2-16y +8+m =0. 设M (x 1,y 1),N (x 2,y 2), ∴y 1+y 2=165,y 1y 2=8+m 5.∵OM ⊥ON , ∴x 1x 2+y 1y 2=0, ∴5y 1y 2-8(y 1+y 2)+16=0. ∴m =85.(3)设圆心为(a ,b ),则 a =x 1+x 22=45,b =y 1+y 22=85,半径r =|MN |2=455.∴圆的方程为⎝⎛⎭⎫x -452+⎝⎛⎭⎫y -852=165.(B 卷 能力素养提升) (时间120分钟,满分150分)一、选择题(共10小题,每小题6分,共60分)1.由方程x 2+y 2+x +(m -1)y +12m 2=0所确定的圆中,最大面积是( )A.32π B.34π C .3πD .不存在解析:选B 将方程化为标准方程为⎝⎛⎭⎫x +122+⎝⎛⎭⎪⎫y +m -122=-m 2-2m +24, ∴半径r =12-m 2-2m +2=12-(m +1)2+3.要使圆的面积最大,应使半径最大,当m =-1时,r max =32,∴最大面积为πr 2max =34π. 2.已知圆C 经过A (5,2),B (-1,4)两点,圆心在x 轴上,则圆C 的方程是( ) A .(x -2)2+y 2=13 B .(x +2)2+y 2=17 C .(x +1)2+y 2=40D .(x -1)2+y 2=20解析:选D 设圆心坐标为C (a,0),则AC =BC ,即(a -5)2+22=(a +1)2+42,解得a =1,所以半径r =(1+1)2+42=20=25,所以圆C 的方程是(x -1)2+y 2=20.3.设两圆C 1,C 2都和两坐标轴相切,且都过点(4,1),则两圆心的距离|C 1C 2|=( ) A .4 B .4 2 C .8D .8 2解析:选C 依题意,可设与两坐标轴相切的圆的圆心坐标为(a ,a ),半径长为r ,其中r =a >0,因此圆的方程是(x -a )2+(y -a )2=a 2,由圆过点(4,1)得(4-a )2+(1-a )2=a 2,即a 2-10a +17=0,则该方程的两根分别是圆心C 1,C 2的横坐标,|C 1C 2|=2×102-4×17=8,故选C.4.对任意的实数k ,直线y =kx +1与圆x 2+y 2=2的位置关系一定是( ) A .相离 B .相切C .相交但直线不过圆心D .相交且直线过圆心解析:选C 圆心C (0,0)到直线kx -y +1=0的距离为d =1k 2+1<2,∴直线与圆相交,且圆心C (0,0)不在该直线上.5.与直线2x -y +1=0平行且与圆x 2+y 2=5相切的直线的方程是( ) A .2x -y +5=0 B .2x -y -5=0C .2x +y +5=0或2x +y -5=0D .2x -y +5=0或2x -y -5=0解析:选D 设所求的直线方程为2x -y +C =0,则圆心(0,0)到该直线的距离d =|C |5=5,得C =±5.∴所求直线的方程为2x -y ±5=0.6.过点P (4,2)作圆x 2+y 2=4的两条切线,切点分别为A 、B ,O 为坐标原点,则△OAB的外接圆方程是( )A .(x -2)2+(y -1)2=5B .(x -4)2+(y -2)2=20C .(x +2)2+(y +1)2=5D .(x +4)2+(y +2)2=20解析:选A 由圆x 2+y 2=4,得到圆心O 坐标为(0,0),∴△OAB 的外接圆为四边形OAPB 的外接圆,又P (4,2),∴外接圆的直径为|OP |=42+22=25,半径为5外接圆的圆心为线段OP 的中点是(2,1),所以△OAB 的外接圆方程是(x -2)2+(y -1)2=5.7.把圆x 2+y 2+2x -4y -a 2-2=0的半径减小一个单位则正好与直线3x -4y -4=0相切,则实数a 的值为( )A .-3B .3C .-3或3D .以上都不对解析:选C 圆的方程可变为(x +1)2+(y -2)2=a 2+7,圆心为(-1,2),半径为a 2+7,由题意得|-1×3-4×2-4|(-3)2+42=a 2+7-1,解得a =±3.8.已知圆C 与直线x -y =0及x -y -4=0都相切,圆心在直线x +y =0上,则圆C 的方程为( )A .(x +1)2+(y -1)2=2B .(x -1)2+(y +1)2=2C .(x -1)2+(y -1)2=2D .(x +1)2+(y +1)2=2解析:选B 因为圆心在直线x +y =0上,所以设圆心坐标为(a ,-a )(此时排除C 、D),因为圆C 与直线x -y =0及x -y -4=0都相切,所以|a +a |2=|a +a -4|2,解得a =1,r=|a +a |2=2,所以圆C 的方程为(x -1)2+(y +1)2=2.9.已知A (-2,0),B (0,2),点M 是圆x 2+y 2-2x =0上的动点,则点M 到直线AB 的最大距离是( )A.322-1B.322C.322+1D .2 2解析:选C 可知圆的圆心坐标为(1,0),半径为1,直线AB :-x 2+y2=1,即x -y +2=0,则圆心到直线的距离为d =|1-0+2|2=32 2.∴点M 到直线AB 的最大距离是d +r =322+1.10.实数x ,y 满足x 2+y 2-6x -6y +12=0,则yx 的最大值为( ) A .3 2 B .3+2 2 C .2+ 2D. 6解析:选B 实数x ,y 满足x 2+y 2-6x -6y +12=0,所以点(x ,y )在以(3,3)为圆心,6为半径的圆上,则yx 为圆上的点与原点连线的直线的斜率,设过原点的直线方程为y =kx ,则直线与圆相切时|3k -3|k 2+1=6,解得k =3±22,所以yx 的最大值为3+22,选B. 二、填空题(共4小题,每小题5分,共20分)11.空间直角坐标系中,点A (-2,1,3)关于x 轴的对称点为点B ,又已知C (x,0,-2),且|BC |=32,则x 的值为________.解析:易知B (-2,-1,-3),|BC |=(x +2)2+1+1=32,解得x =2或-6.答案:2或-612.(山东高考)圆心在直线 x -2y =0上的圆 C 与 y 轴的正半轴相切,圆 C 截x 轴所得弦的长为23,则圆C 的标准方程为__________________________________________.解析:依题意,设圆心的坐标为(2b ,b )(其中b >0),则圆C 的半径为2b ,圆心到x 轴的距离为b ,所以24b 2-b 2=23,b >0,解得b =1,故所求圆C 的标准方程为(x -2)2+(y -1)2=4.答案:(x -2)2+(y -1)2=413.已知圆x 2+y 2+x -6y +m =0和直线x +2y -3=0交于P ,Q 两点,且OP ⊥OQ (O 为坐标原点),则圆的方程为________.解析:法一:设P (x 1,y 1),Q (x 2.y 2),由⎩⎪⎨⎪⎧x 2+y 2+x -6y +m =0,x +2y -3=0,得5x 2+10x +4m -27=0, 所以x 1+x 2=-2,x 1x 2=4m -275,又y 1y 2=12(-x 1+3)×12(-x 2+3)=14[x 1x 2-3(x 1+x 2)+9]=m +125,因为OP ⊥OQ ,所以OP ―→·OQ ―→=x 1x 2+y 1y 2=5m -155=0,解得m =3,则所求圆的方程为x 2+y 2+x -6y +3=0.法二:据题意设以PQ 为直径的圆的方程为x 2+y 2+x -6y +m +λ(x +2y -3)=0, 即x 2+y 2+(1+λ)x +(2λ-6)y +m -3λ=0.因为OP ⊥OQ ,所以点O (0,0)在以PQ 为直径的圆上,则m -3λ=0,①设圆心为C ,则其坐标为⎝ ⎛⎭⎪⎫-1+λ2,3-λ,由点⎝ ⎛⎭⎪⎫-1+λ2,3-λ在直线x +2y -3=0上,得-1+λ2+2(3-λ)-3=0,解得λ=1,由①得m =3,则所求圆的方程为x 2+y 2+x -6y +3=0.答案:x 2+y 2+x -6y +3=014.已知点P 是直线3x +4y +8=0上的动点,PA 、PB 是圆x 2+y 2-2x -2y +1=0的两条切线,A 、B 是切点,C 是圆心,那么四边形PACB 面积的最小值为________.解析:可知C (1,1),半径r =1,S 四边形PACB =2S △PAC ,则要使四边形PACB 的面积最小,只需使Rt △PAC 的面积最小,观察Rt △PAC ,直角边AC =r =1,所以要使△PAC 的面积最小,只需斜边PC 最短,而当PC 垂直于直线3x +4y +8=0时,PC 最短,为|3×1+4×1+8|32+42=3,这时|PA |=|PC |2-|AC |2=2 2.所以四边形PACB 面积的最小值为2×12×22×1=2 2.答案:2 2三、解答题(共6小题,共70分,解答时应写出文字说明、证明过程或演算步骤) 15.(本小题满分10分)有一圆与直线l :4x -3y +6=0相切于点A (3,6),且经过点B (5,2),求此圆的方程.解:法一:由题意可设所求圆的方程为:(x -3)2+(y -6)2+λ(4x -3y +6)=0,又因为此圆过点(5,2),将坐标(5,2)代入圆的方程求得λ=-1,所以所求圆的方程为x 2+y 2-10x -9y +39=0.法二:设圆的标准方程,寻找三个方程构成方程组求解.设圆的方程为(x -a )2+(y -b )2=r 2,则圆心为C (a ,b ), 由|CA |=|CB |,CA ⊥l ,得⎩⎪⎨⎪⎧ (3-a )2+(6-b )2=r 2,(5-a )2+(2-b )2=r 2,b -6a -3×43=-1,解得⎩⎨⎧a =5,b =92,r 2=254,所以圆的方程为(x -5)2+⎝⎛⎭⎫y -922=254. 法三:设圆的一般方程求解.设圆的方程为x 2+y 2+Dx +Ey +F =0,圆心为C , 由CA ⊥l ,A (3,6)、B (5,2)在圆上,得⎩⎪⎨⎪⎧32+62+3D +6E +F =0,52+22+5D +2E +F =0,-E2-6-D 2-3×43=-1,解得⎩⎪⎨⎪⎧D =-10,E =-9,F =39.所以所求圆的方程为x 2+y 2-10x -9y +39=0.16.(本小题满分12分)已知圆C :(x -3)2+(y -4)2=4, (1)若直线l 1过定点A (1,0),且与圆C 相切,求l 1的方程;(2)若圆D 的半径为3,圆心在直线l 2:x +y -2=0上,且与圆C 外切,求圆D 的方程. 解:(1)①若直线l 1的斜率不存在,即直线是x =1,符合题意. ②若直线l 1斜率存在,设直线l 1为y =k (x -1), 即kx -y -k =0.由题意知,圆心(3,4)到已知直线l 1的距离等于半径2,即|3k -4-k |k 2+1=2,解之得k =34.所求直线方程是x =1,3x -4y -3=0. (2)依题意设D (a,2-a ),又已知圆C 的圆心C (3,4),r =2, 由两圆外切,可知CD =5 ∴可知(a -3)2+(2-a -4)2=5,解得a =3,或a =-2, ∴D (3,-1)或D (-2,4),∴所求圆的方程为(x -3)2+(y +1)2=9或(x +2)2+(y -4)2=9.17.(本小题满分12分)已知△ABC 三个顶点坐标分别为:A (1,0),B (1,4),C (3,2),直线l 经过点(0,4).(1)求△ABC 外接圆⊙M 的方程;(2)若直线l 与⊙M 相切,求直线l 的方程;(3)若直线l 与⊙M 相交于A ,B 两点,且AB =23,求直线l 的方程. 解:(1)法一:设⊙M 的方程为x 2+y 2+Dx +Ey +F =0, 则由题意得⎩⎪⎨⎪⎧1+D +F =0,17+D +4E +F =0,13+3D +2E +F =0,解得⎩⎪⎨⎪⎧D =-2,E =-4,F =1∴⊙M 的方程为x 2+y 2-2x -4y +1=0,或(x -1)2+(y -2)2=4. 法二:∵A (1,0),B (1,4)的横坐标相同,故可设M (m,2), 由MA 2=MC 2得(m -1)2+4=(m -3)2,解得m =1,∴⊙M 的方程为(x -1)2+(y -2)2=4,或x 2+y 2-2x -4y +1=0.(2)当直线l 与x 轴垂直时,显然不合题意,因而直线l 的斜率存在,设l :y =kx +4, 由题意知|k -2+4|k 2+1=2,解得k =0或k =43,故直线l 的方程为y =4或4x -3y +12=0.(3)当直线l 与x 轴垂直时,l 方程为x =0,它截⊙M 得弦长恰为23;当直线l 的斜率存在时,设l :y =kx +4,圆心到直线y =kx +4的距离为|k +2|k 2+1, 由勾股定理得⎝ ⎛⎭⎪⎪⎫|k +2|k 2+12+⎝⎛⎭⎫2322=4,解得k =-34, 故直线l 的方程为x =0或3x +4y -16=0.18.(本小题满分12分)已知直线l 与圆C :x 2+y 2+2x -4y +a =0相交于A ,B 两点,弦AB 的中点为M (0,1),(1)求实数a 的取值范围以及直线l 的方程;(2)若圆C 上存在四个点到直线l 的距离为2,求实数a 的取值范围;(3)已知N (0,-3),若圆C 上存在两个不同的点P ,使PM =3PN ,求实数a 的取值范围.解:(1)圆C :(x +1)2+(y -2)2=5-a ,C (-1,2),r =5-a (a <5),据题意:CM =2<5-a⇒a <3,即实数a 的取值范围为(-∞,3).因为CM ⊥AB ⇒k CM ·k AB =-1,k CM =-1⇒k AB =1, 所以直线l 的方程为x -y +1=0.(2)与直线l 平行且距离为2的直线为l 1:x -y +3=0过圆心,有两个交点, l 2:x -y -1=0与圆相交,⇒22<5-a ⇒a <-3.故实数a 的取值范围为(-∞,-3).(3)设P (x ,y ),PM =3PN ⇒x 2+(y +5)2=12, 据题意:两个圆相交:|5-a -23|<52<5-a +23⇒-57-206<a <206-57,且206-57<3,所以-57-206<a <206-57. 故实数a 的取值范围为(-57-206,206-57).19.(本小题满分12分)若圆C :x 2+y 2+8x -4y =0与以原点为圆心的某圆关于直线y =kx +b 对称.(1)求k ,b 的值;(2)若这时两圆的交点为A ,B ,求∠ACB 的度数. 解:(1)将圆C 的方程化为标准方程,为 (x +4)2+(y -2)2=20.∴圆心为(-4,2),半径r =2 5.圆C 关于直线y =kx +b 对称的圆的圆心为(0,0), 半径为2 5.∴⎩⎨⎧1=-2k +b ,2-4·k =-1,解得⎩⎪⎨⎪⎧k =2,b =5.(2)显然直线AB 的方程就是y =2x +5,即2x -y +5=0. 设AB 的中点为D ,则|CD |=55= 5. ∵r =25, ∴|AD |=20-5=15,在Rt △CDA 中,sin ∠DCA =|AD |r =32,∴∠DCA =60°.故∠ACB =2∠DCA =120°.20.(本小题满分12分)已知⊙C 经过点A (2,4)、B (3,5)两点,且圆心C 在直线2x -y -2=0上.(1)求⊙C 的方程;(2)若直线y =kx +3与⊙C 总有公共点,求实数k 的取值范围. 解:(1)法一:设圆的方程为x 2+y 2+Dx +Ey +F =0,则⎩⎪⎨⎪⎧ 22+42+2D +4E +F =0,32+52+3D +5E +F =0,2⎝⎛⎭⎫-D 2- ⎝⎛⎭⎫-E 2-2=0,⇒⎝⎛D =-6,E =-8,F =24,所以⊙C 方程为x 2+y 2-6x -8y +24=0. 法二:由于AB 的中点为D ⎝⎛⎭⎫52,92,k AB =1, 则线段AB 的垂直平分线方程为y =-x +7,而圆心C 必为直线y =-x +7与直线2x -y -2=0的交点,由⎩⎪⎨⎪⎧ y =-x +7,2x -y -2=0,解得⎩⎪⎨⎪⎧x =3,y =4,即圆心C (3,4), 又半径为|CA |=(2-3)2+(4-4)2=1,故⊙C 的方程为(x -3)2+(y -4)2=1.(2)法一:因为直线y =kx +3与⊙C 总有公共点, 则圆心C (3,4)到直线y =kx +3的距离不超过圆的半径, 即|3k -4+3|1+k2≤1, 将其变形得4k 2-3k ≤0,解得0≤k ≤34.法二:由⎩⎪⎨⎪⎧(x -3)2+(y -4)2=1y =kx +3⇒(1+k 2)x 2-(6+2k )x +9=0. 因为直线y =kx +3与⊙C 总有公共点,则 Δ=(6+2k )2-36(1+k 2)≥0, 解得0≤k ≤34.故k 的取值范围是⎣⎡⎦⎤0,34.。