《双曲线》ppt课件
合集下载
双曲线定义PPT课件
x2 a2
by22
1(a,bo)
x2 y2 b2 a2 1(a,bo)
y
y
. .B
A1 o A x
. B.
A1 o A x
B1
B1
关系
c2 = a2 + b 2
例题:
根据下列条件,求双曲线的标准方程:
1、过点 P ( 3 , 15 )、Q ( 16 , 5 ) 且焦点在坐标
4
3
轴上;
2、 c = 6 ,经过点 (-5 , 2 ),焦点在 x 轴上;
的焦点坐标.
3.已知方程
x2
y2
1表示双曲线,求的取值范围.
2m m1
精选
•
例3,证明椭圆
x2 25
+
y2 =1
9
与双曲线x2-15y2=15的焦点相同.
• 变:椭圆与双曲线的一个交点为P, F1是椭圆的左焦点,求|PF1|.
精选
小结
焦点在 x 轴上
焦点在 y 轴上
定义 方程
图象
| | MF1 | - | MF2 | | = 2a ( 2a <| F1F2 | )
共性: 1、两者都是平面内动点到两定点的距离问题; 2、两者的定点都是焦点; 3、两者定点间的距离都是焦距。
区别: 椭圆是距离之和; 双曲线是距离之差的绝对值。
求双曲线的标准方程
点击观看动画
精选
1、建系设点。
设M(x , y),双曲线的焦距 为2c(c>0),F1(-c,0),F2(c,0)
常数=2a
同的符号。
精选
• 例线1,、求如m果的方范程围mx-21+2-ym2 = 1表示双曲 • 解(m-1)(2-m)<0,∴m>2或m<1
3-2-1双曲线及其标准方程 课件(共67张PPT)
【解析】 距离的差要加绝对值,否则只为双曲线的一支.若 F1,F2 表示双曲线的左、右焦点,且点 P 满足|PF1|-|PF2|=2a,则点 P 在右支上;若点 P 满足|PF2|-|PF1|=2a,则点 P 在左支上.
互动 2 在双曲线的定义中,必须要求“常数小于|F1F2|”, 那么“常数等于|F1F2|”“常数大于|F1F2|”或“常数为 0”时,动 点的轨迹是什么?
【解析】 (1)若“常数等于|F1F2|”时,此时动点的轨迹是以 F1,F2 为端点的两条射线 F1A,F2B(包括端点),如图所示.
(2)若“常数大于|F1F2|”,此时动点轨迹不存在. (3)若“常数为 0”,此时动点轨迹为线段 F1F2 的垂直平分线.
互动 3 已知点 P(x,y)的坐标满足下列条件,试判断下列各 条件下点 P 的轨迹是什么图形?
2.关于双曲线应注意的几个问题 (1)双曲线的标准方程与选择的坐标系有关,当且仅当双曲线 的中心在原点,焦点在坐标轴上时,双曲线的方程才具有标准形 式.
(2)如图,设 M(x,y)为双曲线上任意一点,若 M 点在双曲线 的右支上,则|MF1|>|MF2|,|MF1|-|MF2|=2a(0<2a<|F1F2|);若 M 在双曲线的左支上,则|MF1|<|MF2|,|MF1|-|MF2|=-2a,因 此得|MF1|-|MF2|=±2a,这与椭圆不同.
(3)列式:由|MF1|-|MF2|=±2a, 可得 (x+c)2+y2- (x-c)2+y2=±2a.①
(4)化简:移项,平方后可得 (c2-a2)x2-a2y2=a2(c2-a2). 令 c2-a2=b2,得双曲线的标准方程为xa22-yb22=1(a>0,b>0).② (5)从上述过程可以看到,双曲线上任意一点的坐标都满足方 程②;以方程②的解(x,y)为坐标的点到双曲线两个焦点(-c, 0),(c,0)的距离之差的绝对值为 2a,即以方程②的解为坐标的 点都在双曲线上.这样,就把方程②叫作双曲线的标准方程.
互动 2 在双曲线的定义中,必须要求“常数小于|F1F2|”, 那么“常数等于|F1F2|”“常数大于|F1F2|”或“常数为 0”时,动 点的轨迹是什么?
【解析】 (1)若“常数等于|F1F2|”时,此时动点的轨迹是以 F1,F2 为端点的两条射线 F1A,F2B(包括端点),如图所示.
(2)若“常数大于|F1F2|”,此时动点轨迹不存在. (3)若“常数为 0”,此时动点轨迹为线段 F1F2 的垂直平分线.
互动 3 已知点 P(x,y)的坐标满足下列条件,试判断下列各 条件下点 P 的轨迹是什么图形?
2.关于双曲线应注意的几个问题 (1)双曲线的标准方程与选择的坐标系有关,当且仅当双曲线 的中心在原点,焦点在坐标轴上时,双曲线的方程才具有标准形 式.
(2)如图,设 M(x,y)为双曲线上任意一点,若 M 点在双曲线 的右支上,则|MF1|>|MF2|,|MF1|-|MF2|=2a(0<2a<|F1F2|);若 M 在双曲线的左支上,则|MF1|<|MF2|,|MF1|-|MF2|=-2a,因 此得|MF1|-|MF2|=±2a,这与椭圆不同.
(3)列式:由|MF1|-|MF2|=±2a, 可得 (x+c)2+y2- (x-c)2+y2=±2a.①
(4)化简:移项,平方后可得 (c2-a2)x2-a2y2=a2(c2-a2). 令 c2-a2=b2,得双曲线的标准方程为xa22-yb22=1(a>0,b>0).② (5)从上述过程可以看到,双曲线上任意一点的坐标都满足方 程②;以方程②的解(x,y)为坐标的点到双曲线两个焦点(-c, 0),(c,0)的距离之差的绝对值为 2a,即以方程②的解为坐标的 点都在双曲线上.这样,就把方程②叫作双曲线的标准方程.
2.3.1 双曲线及其标准方程 课件(共23张ppt)
o
x
因 为 PA PB 340 2 680 0,所 以 x 0.
因此炮弹爆炸点的轨迹(双曲线)的方程为
x2 y2 1( x 0). 115 600 44 400
【举一反三】 1.若在A,B两地同时听到炮弹爆炸声,则炮弹爆炸点 的轨迹是什么? 解: 爆炸点的轨迹是线段AB的垂直平分线.
X
离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆.
问题2:如果把椭圆定义中的“距离之和”改为“距
离之差”,那么点的轨迹是怎样的曲线?
即“平面内与两个定点F1,F2的距离的差等于非零常
数的点的轨迹 ”是什么?
看图分析动点M满足的条件: ①如图(A),
|MF1|-|MF2|=|F2F| =2a. ②如图(B),
解:
如图所示,建立直角坐标系xOy,使A,B两点在x
轴上,并且坐标原点O与线段AB的中点重合.
设爆炸点P的坐标为(x,y),则
PA PB 340 2 680,
y
A
P B
即 2a=680,a=340. 又 AB 800,
所以 2c=800,c=400,
b2 c 2 a 2 44 400,
3.列式 由定义可知,双曲线就是集合: P= {M
|||MF1
| - | MF2|| = 2a },
即
( x c )2 y 2 ( x c )2 y 2 2a .
2
4.化简 代数式化简得:(c 2 a 2) x 2 a 2 y a 2(c 2 a 2),
两 边 同 除 以 a 2 ( c 2 a 2 ), 得
x2 y2 2 1. 2 2 a c a
双曲线 PPT课件
足 PA PB =0,M、N分别为PA、PB的中点,
求证: OMON =0(O为坐标原点).
y
MP A
O
Nx
B
[例2]直线l:y=kx+1与双曲线C:2x2-y2=1的右支交于不 同的两点A、B. (1)求实数k的取值范围; (2)是否存在实数k,使得以线段AB为直径的圆经 过双曲线C的右焦点F?若存在,求出k的值;若不存 在,说明理由.
【例】双曲线xa22-by22=1(a>1,b>0)的焦距为 2c,直线 l 过点 A(a,0)和点 B(0,b),点 C(1,0)到直线 l 的距离与点 D(-1,0)到直线 l 的距离之和 S≥45c,求双曲线的离心 率 e 的取值范围.
【练习】设双曲线 C:xa22-y2=1(a>0)与直线 l:x+y=1 相交于两个不同的点 A、B. (1)求双曲线 C 的离心率 e 的取值范围; (2)设直线 l 与 y 轴的交点为 P,且P→A=152P→B, 求 a 的值.
直线与双曲线的位置关系
相交----有两个交点或一个交点(直线与
(1)位置关系
渐近线平行).
相切----有且只有一个公共点,且直线
不平行于双曲线的渐近线.
相离----无公共点.
(2)判定方法:
将直线与双曲线的方程联立消去一个
未知数,得到一个一元二次方程.
△< 0
相离
△= 0
相切或相交(一个公共点)
△> 0
率为1的直线l,若l与双曲线M的两条渐近线分
别相交于点B、C,且B是AC的中点,求双曲
线M的离心率和焦点坐标.
[点评]列方程求出b的值,是解决本题的关键.求离心率,关键在
于求 c ,有时可以求出a、c的值,有时可以列出a、b、c的等
求证: OMON =0(O为坐标原点).
y
MP A
O
Nx
B
[例2]直线l:y=kx+1与双曲线C:2x2-y2=1的右支交于不 同的两点A、B. (1)求实数k的取值范围; (2)是否存在实数k,使得以线段AB为直径的圆经 过双曲线C的右焦点F?若存在,求出k的值;若不存 在,说明理由.
【例】双曲线xa22-by22=1(a>1,b>0)的焦距为 2c,直线 l 过点 A(a,0)和点 B(0,b),点 C(1,0)到直线 l 的距离与点 D(-1,0)到直线 l 的距离之和 S≥45c,求双曲线的离心 率 e 的取值范围.
【练习】设双曲线 C:xa22-y2=1(a>0)与直线 l:x+y=1 相交于两个不同的点 A、B. (1)求双曲线 C 的离心率 e 的取值范围; (2)设直线 l 与 y 轴的交点为 P,且P→A=152P→B, 求 a 的值.
直线与双曲线的位置关系
相交----有两个交点或一个交点(直线与
(1)位置关系
渐近线平行).
相切----有且只有一个公共点,且直线
不平行于双曲线的渐近线.
相离----无公共点.
(2)判定方法:
将直线与双曲线的方程联立消去一个
未知数,得到一个一元二次方程.
△< 0
相离
△= 0
相切或相交(一个公共点)
△> 0
率为1的直线l,若l与双曲线M的两条渐近线分
别相交于点B、C,且B是AC的中点,求双曲
线M的离心率和焦点坐标.
[点评]列方程求出b的值,是解决本题的关键.求离心率,关键在
于求 c ,有时可以求出a、c的值,有时可以列出a、b、c的等
第2讲双曲线课件理课件.ppt
【互动探究】
1.设双曲线1x62-9y2=1 上的点 P 到点(5,0)的距离为 15,则 P 点到(-5,0)的距离是( D )
A.7 B.23 C.5 或 23 D.7 或 23 解析:容易知道(5,0)与(-5,0)是给出双曲线的焦点,P 是双 曲线上的点,直接从定义入手.设所求的距离为 d,则由双曲线 的定义可得:|d-15|=2a=8⇒d=7 或 23.
AB 的方程为 y=x+1,
因此 M 点的坐标为12,23, F→M=-32,32. 同理可得F→N=-32,-32. 因此F→M·F→N=-322+32×-32=0 综上F→M·F→N=0,即 FM⊥FN. 故以线段 MN 为直径的圆经过点 F.
的范围变化值需探究;
(3)运用不等式知识转化为 a、b、c 的齐次式是关键.
错源:没有考虑根的判别式 例 5:已知双曲线 x2-y22=1,问过点 A(1,1)是否存在直线 l 与双曲线交于 P、Q 两点,并且 A 为线段 PQ 的中点?若存在求 出直线 l 的方程,若不存在请说明理由.
误解分析:没有考虑根的判别式,导致出错.
y2 9
Hale Waihona Puke -2x72 =1D.以上都不对
3.已知双曲线ax22-by22=1(a>0,b>0)的离心率为 26,则双曲 线的渐近线方程为( C )
A.y=±2x B.y=± 2x
C.y=±
2 2x
D.y=±12x
4.已知双曲线ax22-by22=1(a>0,b>0)的一条渐近线方程为 x
+2y=0,则双曲线的离心率 e 的值为( A )
正解:设符合题意的直线 l 存在,并设 P(x1,y1),Q(x2,y2),
双曲线的性质PPT课件
⑵与双曲线 x2 y2 1 有公共焦点,且过点(3 2 , 2) 16 4
2021/4/18
第12页/共22页
⑴与双曲线 x2 y2 1 有共同渐近线,且过点 (3, 2 3 ) ; 9 16
⑴法一: 直接设标准方程,运用待定系数法考虑.(一般要分类讨论)
解:双曲线 x2 y2 1 的渐近线为 y 4 x ,令 x=-3,y=±4,因 2 3 4 ,
图象
y
M
Y p
F1 0
F2 X
F1 0
F2 X
2021/4/18
第18页/共22页
图形
方程 范围
y
. .B2
F1 A1O A2 F2 x F1(-c,0) B1 F2(c,0)
x2 a2
y2 b2
1
(a
b
0)
x≥a 或 x ≤a,y R
..
y
A2 F2
B2
B1
A1O
F1
F2(0,c) x F1(0,-c)
b
3
,而c 2
a2
3 b2,a2
b2
8
a3
解出 a2 6,b2 2
双曲线方程为 x2 y2 1 6 2 第17页/共22页
小结
椭圆
双曲线
方程 a b c关系
x2 a2
y2 b2
1( a> b >0)
c 2 a 2 b 2 (a> b>0)
x2 a2
y2 b2
1
(
a>
0
b>0)
c 2 a 2 b 2 (a> 0 b>0)
16 k 0且4 k 0
2021/4/18
∴ (3 2)2
16 k
2021/4/18
第12页/共22页
⑴与双曲线 x2 y2 1 有共同渐近线,且过点 (3, 2 3 ) ; 9 16
⑴法一: 直接设标准方程,运用待定系数法考虑.(一般要分类讨论)
解:双曲线 x2 y2 1 的渐近线为 y 4 x ,令 x=-3,y=±4,因 2 3 4 ,
图象
y
M
Y p
F1 0
F2 X
F1 0
F2 X
2021/4/18
第18页/共22页
图形
方程 范围
y
. .B2
F1 A1O A2 F2 x F1(-c,0) B1 F2(c,0)
x2 a2
y2 b2
1
(a
b
0)
x≥a 或 x ≤a,y R
..
y
A2 F2
B2
B1
A1O
F1
F2(0,c) x F1(0,-c)
b
3
,而c 2
a2
3 b2,a2
b2
8
a3
解出 a2 6,b2 2
双曲线方程为 x2 y2 1 6 2 第17页/共22页
小结
椭圆
双曲线
方程 a b c关系
x2 a2
y2 b2
1( a> b >0)
c 2 a 2 b 2 (a> b>0)
x2 a2
y2 b2
1
(
a>
0
b>0)
c 2 a 2 b 2 (a> 0 b>0)
16 k 0且4 k 0
2021/4/18
∴ (3 2)2
16 k
双曲线的性质课件(PPT 15页)
y
B2
A1 F1 O
F2 A2
x
B1
y C3C2 C1
O
x
焦点在x轴上的双曲线图像
y 渐进线方程: b x a
Y x2 y2 1 a2 b2
B2
F1
A1
A2 F2 X B1
离心率对双曲线形状的影响
焦点在y轴上的双曲线图
像
Y
y2 a2
x2 b2
1
F2
A2
B1
O
B2
X
A1
F1
焦点在y轴上的双曲线的几何性质
2、对称性:关于x轴,y轴,
原点对称。 3、顶点 A1(-a,0),A2(a,0)
F1 A1 O
A2 F2
x
4、轴:实轴 A1A2 虚轴 B1B2
B1
|A1A2|=2ca,|B1B2|=2b 5、离心率:e= a
根据以上几何性质能够
根据以上几何性质能否
较准确地画出椭圆的图形? 较准确地画出双曲线的图形呢?
双曲线标准方程:y 2 x 2 1 双曲线性质: a 2 b2
Y
1、范围:y≥a或y≤-a
F2
2、对称性:关于x轴,y轴,原点对称。
A2
3、顶点 A1(0,-a),A2(0,a)
4、轴:实轴 A1A2 ; 虚轴 B1B2 B1
5、渐近线方程: y a x
o
b
6、离心率:e=c/a
A1
F2
B2 X
Y
F1
B2
F’1 A1 o
B1
X
A2 F’2
F2
证明:(1)设已知双曲线的方程是:
x2 a2
y2 b2
1
双曲线课件.ppt
距为2c(c>0),F1(-c,0),F2(c,0)
F1
3.列式.|MF1| - |MF2|= 2a
y
M
o F2 x
即 (x+c)2 + y2 - (x-c)2 + y2 = +_ 2a
4.化简.
(x c)2 y2 (x c)2 y2 2a
( (x c)2 y2 )2 ( (x c)2 y2 2a)2
|MN接近于0 ,|MQ|也接近于0
就是说,双曲线在第一象限的部分从射线ON的下方逐渐接近于 射线ON.在其他象限内,也可类似证明。
我们把两条直线
y 叫做b双曲x线的渐近线。 a
特殊地,
在方程 x2 a2
y2 b2
1中,如果a=b,那么双曲线的方程为
x2 y2 a2 它的实轴和虚轴都是2a,
② |F1F2|=2c ——焦距.
M
注意 (1)距离之差的绝对值
| |MF1| - |MF2| | = 2a
F1 o F2
(2)常数要小于|F1F2|大于0
0<2a<2c
3.双曲线的标准方程
1.段建F系1F.2的以如中F何1点,F求2为所这原在优点的美建直的立线曲直为线角X的轴坐方,标程线? 系
2.设点.设M(x , y),双曲线的焦
北京摩天大楼
巴西利亚大教堂
法拉利主题公园
花瓶
反比例函数的图像
冷却塔
罗兰导航系统原理
画双曲线
演示实验:用拉链画双曲线
画双曲线
演示实验:用拉链画双曲线
①如图(A), |MF1|-|MF2|=|F2F|=2a
②如图(B), |MF2|-|MF1|=|F1F|=2a
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
F
O
1
F
2
x
设M(x , y),则F1(-c,0),F2(c,0)
y
3.列式
|MF1| - |MF2|=±2a
( x c) 2 y 2 ( x c) 2 y 2 2a
F
1
M
即
4.化简
O
F
2
x
若建系时,焦点在y轴上呢?
y
M
y
M F2 x
F
O
1
F
2
x
O
F1
x y 2 1 2 a b
∴ 由双曲线的定义可知, 点 P 的轨迹是双曲线的一支 (右支), ∵焦点为 F1 (5,0), F2 (5,0)
x y ∴可设双曲线方程为: 2 2 1 (a>0,b>0). a b 2 2 2 ∵2a=6,2c=10,∴a=3,c=5.∴b =5 -3 =16.
x y 1 ( x 0) . 所以点 P 的轨迹方程为 9 16
4.a=4,过点(1, 4 10 ) 3
y 2 x2 1 16 9
小
1、双曲线的定义
结
2、双曲线的标准方程
探究:
平面内与两个定点F1,F2的距离的差的绝对值
0 2a F1F2
2a 0
2a= 2a
等于常数2a
F1F2
F1 F2
的点的轨迹是什么?
2
2
y x 1 2 2 a b
2
2
(a 0,b 0)
x y 2 1 2 a b
2
2
y
M
y
M F2
F ( ±c, 0)
F1
o
F2
x
F1
x
y2 x2 2 1 2 a b
F(0, ± c)
问题:如何判断双曲线的焦点在哪个轴上?
(二次项系数为正,焦点在相应的轴上)
练习1.判断下列方程是否表示双曲线,若是, 求出三量 a,b,c 的值
平面内与两个定点F1,F2的距离的差的绝对值等于常 数(小于|F1F2 |)的点的轨迹叫做双曲线。 这两个定点F1、F2叫做双曲线的焦点。 两焦点的距离叫做焦距。
双曲线的标准方程
求曲线方程的步骤:
y
M
1. 建系.
以F1,F2所在的直线为x轴,线段 F1F2的中点为原点建立直角坐标系 2.设点.
2 2
2
2
练习3
写出适合下列条件的双曲线的标准方程 1.a=4,b=3,焦点在x轴上;
2.焦点为(0,-6),(0,6),过点(2,-5)
x2 y 2 1 16 9 y 2 x2 1 20 16
2 y 2 15 x 1 , 2). 3.焦点在x轴上,经过点 ( 2, 3), ( 3 3
(3) 9 y 2 x 36
2 2
例题讲解
例 1. 已 知 两 定 点 F1 (5,0) , F2 (5,0) , 动 点 P 满 足
PF1 PF2 6 , 求动点 P 的轨迹方程.
解:∵ F1F2 10 >6,
PF1 PF2 6
∴ 由双曲线的定义可知,点 P 的轨迹是一条双曲线, ∵焦点为 F1 (5,0), F2 (5,0)
x y 1 ( 1) 4 2 √
2 2
x x 1 ( 2) 4 2 × a 2, b 2, c 6.
2 2
2
2
x y √ 1 ( 3) 4 2
a 2, b 2, c 6.
练习1:写出下列双曲线的焦点坐标。
( 1)
x
2
2
y
2
1
16
9
2
x y ( 2) 1 12 4
任瑶
回顾椭圆的定义
平面内与两定点F1、F2的距离的 和 等于常数
2a ( 2a>|F1F2|>0) 的点的轨迹.
Y
M x, y
F1 c, 0
O
F2 c, 0 X
提出并探究新的轨迹问题:
平面内与两定点F1、F2的距离的 差 等于常数 的点的轨迹是什么呢?
几何画板
双曲线的定义:
x2 y2 ∴可设所求方程为: 2 2 1 (a>0,b>0). a b ∵2a=6,2c=10,∴a=3,c=5. x2 y2 1. 所以点 P 的轨迹方程为 9 16
变式训练:已知两定点 F1 (5,0) , F2 (5,0) ,动点 P 满足
PF1 PF2 6 ,求动点 P 的轨迹方程. 解: ∵ F1F2 10 >6, PF1 PF2 6