16 SAS中典型相关分析(可以先上本章,再上对应分析)
SAS软件应用之典型相关分析
![SAS软件应用之典型相关分析](https://img.taocdn.com/s3/m/92eb23cccd22bcd126fff705cc17552707225e15.png)
SAS软件应用之典型相关分析典型相关分析(Canonical Correlation Analysis,CCA)是一种多变量统计分析方法,用于研究两组变量之间的关系以及它们之间的线性组合。
SAS软件提供了强大的工具和函数来执行典型相关分析,包括PROC CANCORR和CORRCAN。
PROCCANCORR是SAS中执行典型相关分析的主要过程。
它可以分析两组变量之间的关系,并计算它们之间的典型相关系数以及相关变量之间的线性组合得分。
以下是一个使用PROCCANCORR进行典型相关分析的示例代码:```/* 导入数据集data1和data2 */data data1;input var1 var2 var3;datalines;123456789;run;data data2;input var4 var5 var6;datalines;101112131415161718;run;/*运行PROCCANCORR进行典型相关分析*/proc cancorr data=data1 data=data2 out=results;var var1 var2 var3;with var4 var5 var6;run;/*输出典型相关系数和相关变量的得分*/proc print data=results;run;```在上述示例中,我们首先导入两个数据集`data1`和`data2`,其中`data1`包含三个自变量(`var1`,`var2`,`var3`),`data2`包含三个因变量(`var4`,`var5`,`var6`)。
然后,我们使用PROC CANCORR指定自变量和因变量,并将结果保存在名为`results`的输出数据集中。
最后,我们使用PROC PRINT打印结果数据集。
在输出结果中,我们可以查看典型相关系数以及自变量和因变量的得分。
典型相关系数表示两组变量之间的相关程度,取值范围为-1到1、得分表示原始变量的线性组合结果,可以用于分析变量之间的关系。
sas数据分析案例
![sas数据分析案例](https://img.taocdn.com/s3/m/acc1605d974bcf84b9d528ea81c758f5f61f2983.png)
sas数据分析案例SAS数据分析案例。
在实际工作中,数据分析是一项非常重要的工作。
SAS作为一种常用的数据分析工具,被广泛应用于各个行业中。
本文将通过一个实际案例来介绍SAS在数据分析中的应用。
案例背景:某电商公司希望了解其用户的购物行为,以便更好地制定营销策略和提升用户体验。
为了实现这一目标,他们收集了大量的用户购物数据,包括用户的基本信息、购买记录、浏览记录等。
数据准备:首先,我们需要对收集到的数据进行清洗和整理。
这包括去除重复数据、处理缺失值、统一数据格式等工作。
在SAS中,我们可以使用数据步和PROC SQL等工具来完成这些任务。
数据分析:一、用户购买行为分析。
我们可以通过对用户购买记录的统计分析,来了解用户的购买习惯和偏好。
比如,我们可以计算用户的购买频次、购买金额分布、购买时间分布等指标,从而找出用户的消费特点。
二、用户行为路径分析。
除了购买行为,用户在网站上的浏览行为也是非常重要的。
我们可以利用SAS的数据挖掘功能,对用户的浏览记录进行分析,找出用户的行为路径,了解用户在网站上的行为轨迹。
三、用户画像分析。
通过对用户的基本信息进行分析,我们可以建立用户的画像,包括用户的性别、年龄、地域分布等特征。
这些信息对于制定个性化营销策略非常有帮助。
结果呈现:在数据分析完成后,我们需要将分析结果进行可视化呈现。
SAS提供了丰富的图表和报表功能,可以将分析结果直观地展现出来,帮助决策者更好地理解数据。
结论与建议:通过对用户购物数据的分析,我们可以得出一些结论和建议,比如哪些产品更受用户欢迎、哪些时段用户购物活跃度更高、哪些地区的用户消费能力更强等。
这些结论可以为公司的营销策略和产品推广提供参考。
总结:本文通过一个实际案例,介绍了SAS在数据分析中的应用。
SAS作为一种强大的数据分析工具,可以帮助企业更好地理解和利用数据,从而实现商业目标。
以上就是关于SAS数据分析案例的全部内容,希望对大家有所帮助。
SAS使用学习笔记(对应分析)
![SAS使用学习笔记(对应分析)](https://img.taocdn.com/s3/m/27755029e2bd960590c67798.png)
SAS使用学习笔记(对应分析)1对应分析是不仅研究变量之间的关系、还要研究样品之间的关系。
它通过在同一个直角坐标系内同时表达出变量与样品两者之间的相互关系。
2对应分析例子下面是某研究者收集到的资料,试分析各种基因频率与民族之间的关系。
各民族下面的小数是44种基因出现的频率。
基因型(JY)藏族(Z) 尼泊尔(N) 印度(Y) 汉族(H)。
程序:DATA b;INPUT jy $ 1-3 z 6-11 n 14-19 y 22-27 h 30-35;cards;A1 0.0308 0.01800.11900.0149A2 0.3333 0.10700.14800.3492A3 0.0204 0.01900.10100.0176A9 0.3037 0.27900.15600.1414A100.0409 0.01800.03900.0313A110.1354 0.42200.12600.2977A280.0000 0.01800.08300.0094A300.0413 0.00000.00000.0217A310.0518 0.03700.02200.0121A320.0000 0.01900.03900.0013A330.0000 0.06700.08300.0608B5 0.2828 0.11800.13400.0825B7 0.0000 0.01900.08000.0244B8 0.0102 0.01180.04500.0094B120.0102 0.03700.06600.0121B130.0102 0.07700.00600.0650B140.0000 0.00000.00600.0013B150.1923 0.25400.09600.1092B180.0050 0.02800.02200.0000B270.1067 0.00000.02600.0204B350.0626 0.05700.14800.0342B370.0102 0.01800.00900.0067B380.04650.0470 0.00300.0015B390.01020.0000 0.00900.0176B460.01020.00900.00000.1813B480.05720.15000.00300.0108B500.01020.01800.03700.0000B530.00500.0000 0.00600.0000B540.01530.00000.00000.0176B550.05720.02800.02600.0217B560.01020.00900.00600.0040B570.00500.01800.03900.0341B580.00000.06700.03300.0139B600.06260.02800.02200.0723B610.08990.00000.08300.1080B700.00500.00000.00800.0000C1 0.08990.03700.02300.1716C2 0.02040.00000.07300.0397C3 0.17980.10700.08300.3269C4 0.16510.07700.13400.0495C5 0.00000.00900.01600.0054C6 0.02560.24500.04500.0081C7 0.17120.21800.11900.1152C8 0.00500.00000.00400.0027;run;PROC CORRESP data=b OUTC=ccc;VAR z n y h;LABEL z='藏族'n='尼泊尔'y='印度'h='汉族';ID jy;RUN;DATA ccc;SET ccc;X=dim1;Y=dim2;XSYS ='2';YSYS ='2';TEXT =jy;SIZE =2;LABEL X='Dimension 1'Y='Dimension 2';keep X Y TEXT XSYS YSYS SIZE;RUN;PROC GPLOT DATA=ccc;SYMBOL1V=#;AXIS1LENGTH=5 IN ORDER=-1.3 TO 1.3 BY 0.2;AXIS2LENGTH=5 IN ORDER=-1.3 TO 1.3 BY 0.2;PLOT Y*X=1 / ANNOTATE=ccc FRAME HAXIS=AXIS1VAXIS=AXIS2 HREF=0VREF=0;RUN;输出:The CORRESP ProcedureInertia and Chi-Square DecompositionSingular Principal Chi- CumulativeValue Inertia Square Percent Percent 8 16 24 32 40----+----+----+----+----+---0.42302 0.17895 1.83072 41.61 41.61 **************************0.39266 0.15418 1.57736 35.85 77.46 **********************0.31137 0.09695 0.99184 22.54 100.00 **************Total 0.43007 4.39992 100.00Degrees of Freedom = 129SAS 系统 2008年05月04日星期日下午02时39分56秒 The CORRESP ProcedureRow CoordinatesDim1 Dim2A1 0.5878 0.8300A2 -0.4233 0.1209A3 0.5708 0.7845A9 0.0741 -0.1562A10 -0.0466 0.2818A11 0.0191 -0.3738A28 0.8269 0.8844A30 -0.7954 0.0516A31 0.1126 -0.1366A32 0.9506 0.5206A33 0.2931 0.1666B5 -0.0085 0.0766B7 0.5508 0.7576B8 0.5282 0.6647B12 0.6453 0.3736B13 -0.1439 -0.5749B14 0.6310 1.2240B15 0.1193 -0.3016B18 0.8250 -0.1198B27 -0.3381 0.2782B35 0.4306 0.4728B37 0.2494 -0.2481B38 0.1990 -0.6104B46 -1.2499 0.0376B48 0.4093 -0.9132B50 0.7714 0.4510B53 0.3664 0.8090B54 -0.9706 0.0684B55 -0.0427 0.0207B56 0.1278 -0.1051B57 0.0754 0.3742B58 0.6482 -0.3801B60 -0.4505 0.0137B61 -0.3745 0.4819B70 0.4748 0.9100C1 -0.7041 0.0091C2 0.0968 0.8397C3 -0.5193 0.0178C4 0.1452 0.2307C5 0.5711 0.3791C6 0.7305 -0.8444C7 0.1169 -0.1805C8 -0.1612 0.5353SAS 系统 2008年05月04日星期日下午02时39分56秒 The CORRESP ProcedureSummary Statistics for the Row PointsQuality Mass InertiaA1 0.9966 0.0179 0.0431A2 0.9583 0.0916 0.0431A3 0.9744 0.0154 0.0347A9 0.3838 0.0860 0.0156A10 0.8715 0.0126 0.0027A11 0.6324 0.0959 0.0494A28 0.9068 0.0108 0.0406A30 0.5695 0.0062 0.0160A31 0.1562 0.0120 0.0056A32 0.9073 0.0058 0.0174A33 0.2820 0.0206 0.0193B5 0.0274 0.0603 0.0304B7 0.7996 0.0121 0.0308B8 0.9666 0.0075 0.0129B12 0.9043 0.0122 0.0175B14 0.9031 0.0007 0.0035B15 0.8864 0.0637 0.0176B18 0.9645 0.0054 0.0090B27 0.1832 0.0150 0.0364B35 0.9998 0.0295 0.0281B37 0.9998 0.0043 0.0012B38 0.5599 0.0096 0.0164B39 0.9636 0.0036 0.0040B46 0.6708 0.0196 0.1062B48 0.9847 0.0216 0.0511B50 0.9990 0.0064 0.0118B53 0.7205 0.0011 0.0027B54 0.9637 0.0032 0.0073B55 0.0150 0.0130 0.0045B56 0.3142 0.0029 0.0006B57 0.3852 0.0094 0.0083B58 0.7578 0.0111 0.0193B60 0.9902 0.0181 0.0086B61 0.9992 0.0275 0.0238B70 0.8576 0.0013 0.0036C1 0.9447 0.0314 0.0383C2 0.9242 0.0130 0.0234C3 0.9069 0.0681 0.0471C4 0.3959 0.0416 0.0182C5 0.6915 0.0030 0.0047C6 0.9669 0.0316 0.0949C7 0.9160 0.0609 0.0072C8 0.7360 0.0011 0.0011SAS 系统 2008年05月04日星期日下午02时39分56秒 The CORRESP ProcedurePartial Contributions to Inertia for the Row PointsDim1 Dim2A1 0.0345 0.0798A2 0.0918 0.0087A3 0.0281 0.0616A9 0.0026 0.0136A10 0.0002 0.0065A11 0.0002 0.0869A28 0.0412 0.0547A30 0.0218 0.0001A31 0.0009 0.0015A32 0.0293 0.0102A33 0.0099 0.0037B5 0.0000 0.0023B7 0.0204 0.0449B8 0.0116 0.0214B12 0.0285 0.0111B13 0.0018 0.0332B14 0.0016 0.0069B15 0.0051 0.0376B18 0.0204 0.0005B27 0.0096 0.0075B35 0.0306 0.0428B37 0.0015 0.0017B38 0.0021 0.0231B39 0.0059 0.0040B46 0.1711 0.0002B48 0.0202 0.1168B50 0.0212 0.0084B53 0.0008 0.0046B54 0.0169 0.0001B55 0.0001 0.0000B56 0.0003 0.0002B57 0.0003 0.0085B58 0.0261 0.0104B60 0.0205 0.0000B61 0.0215 0.0414B70 0.0016 0.0068C1 0.0871 0.0000C2 0.0007 0.0595C3 0.1026 0.0001C4 0.0049 0.0144C5 0.0054 0.0028C6 0.0944 0.1463C7 0.0047 0.0129C8 0.0002 0.0021SAS 系统 2008年05月04日星期日下午02时39分56秒 The CORRESP ProcedureIndices of the Coordinates that Contribute Most to Inertia for the Row PointsDim1 Dim2 BestA1 2 2 2 A2 1 0 1 A3 2 2 2 A9 0 0 2 A10 0 0 2 A11 0 2 2 A28 2 2 2 A30 1 0 1 A31 0 0 2 A32 1 0 1 A33 0 0 1 B5 0 0 2 B7 0 2 2 B8 0 0 2 B12 1 0 1 B13 0 2 2 B14 0 0 2 B15 0 2 2 B18 0 0 1 B27 0 0 1 B35 2 2 2 B37 0 0 2 B38 0 0 2 B39 0 0 1 B46 1 0 1 B48 0 2 2 B50 0 0 1 B53 0 0 2 B54 0 0 1 B55 0 0 1 B56 0 0 1 B57 0 0 2 B58 1 0 1 B60 0 0 1 B61 2 2 2 B70 0 0 2 C1 1 0 1 C2 0 2 2 C3 1 0 1 C4 0 0 2 C5 0 0 1 C6 2 2 2 C7 0 0 2C8 0 0 2SAS 系统 2008年05月04日星期日下午02时39分56秒 The CORRESP ProcedureSquared Cosines for the Row PointsDim1 Dim2A1 0.3329 0.6637A2 0.8860 0.0723A3 0.3373 0.6371A9 0.0705 0.3133A10 0.0232 0.8483A11 0.0016 0.6307A28 0.4230 0.4838A30 0.5671 0.0024A31 0.0632 0.0931A32 0.6979 0.2094A33 0.2131 0.0689B5 0.0003 0.0270B7 0.2765 0.5231B8 0.3742 0.5924B12 0.6773 0.2270B13 0.0341 0.5446B14 0.1896 0.7135B15 0.1198 0.7666B18 0.9445 0.0199B27 0.1092 0.0739B35 0.4533 0.5465B37 0.5025 0.4972B38 0.0538 0.5061B39 0.6037 0.3599B46 0.6702 0.0006B48 0.1647 0.8200B50 0.7445 0.2545B53 0.1227 0.5979B54 0.9589 0.0048B55 0.0122 0.0029B56 0.1874 0.1268B57 0.0150 0.3701B58 0.5639 0.1939B60 0.9893 0.0009B61 0.3762 0.6230B70 0.1835 0.6741C1 0.9445 0.0002C2 0.0121 0.9121C3 0.9058 0.0011C4 0.1123 0.2836C5 0.4801 0.2115C6 0.4139 0.5530C7 0.2707 0.6453C8 0.0612 0.6748SAS 系统 2008年05月04日星期日下午02时39分56秒 The CORRESP ProcedureColumn CoordinatesDim1 Dim2藏族 -0.2025 0.0083尼泊尔 0.3658 -0.5460印度 0.4529 0.5754汉族 -0.5915 0.0430Summary Statistics for the Column PointsQuality Mass Inertia藏族 0.1413 0.2629 0.1777尼泊尔 0.9737 0.2630 0.2713印度 0.9815 0.2274 0.2888汉族 0.7697 0.2468 0.2622Partial Contributions to Inertia for the Column PointsDim1 Dim2藏族 0.0602 0.0001尼泊尔 0.1967 0.5086印度 0.2606 0.4883汉族 0.4825 0.0030Indices of the Coordinates that Contribute Most to Inertia for the Column PointsDim1 Dim2 Best藏族 0 0 1尼泊尔 2 2 2印度 2 2 2汉族 1 0 1 Squared Cosines for the Column PointsDim1 Dim2藏族 0.1411 0.0002尼泊尔 0.3016 0.6721印度 0.3754 0.6060汉族 0.7657 0.0040说明:根据Column CoordinatesDim1 Dim2藏族 -0.2025 0.0083尼泊尔 0.3658 -0.5460印度 0.4529 0.5754汉族 -0.5915 0.0430,我们可以得到:藏族=-0.202490Dim1+0.008300Dim2尼泊尔= 0.365818Dim1-0.546045Dim2印度= 0.452903Dim1+0.575439Dim2汉族=-0.591500Dim1+0.042981Dim2在以dim1与dim2作为横轴与纵轴的直角坐标系内,每个变量就是1个点,如Z(藏族)点的坐标为(-0.202490,0.008300)。
SAS典型相关分析
![SAS典型相关分析](https://img.taocdn.com/s3/m/10c812d0240c844769eaeeb4.png)
5
S S12 S S 21 a i = S S12 S S 21S a i
-1 11 -1 22 -1 11 -1 22 1 1 1 - æ ö -1 2 2 ÷ = S112 ç S S S S S a 11 12 22 21 11 i ç ÷ è ø
1 2 11 -
= S112 r i2a i æ -1 ö 2 ÷ = r i2 ç S a 11 i ç ÷ è ø 2 = r i ai
¢
1 2 11
1 2 22
1
1
1
1
= =
1 ¢ -2 -1 S12 S 222 b 1 b 1 S 22 S 21 S11 r1
1
1
1 1 ö 1 ¢æ -2 -1 2 ÷ S S S S S b1 ç 22 21 11 12 22 b 1 ÷ ç r1 è ø 1 ¢ 2 = b1 r1 b1 r1
(9.1.10)
(
)
1 æ 1 -1 ö 2 2 ÷ = r i2 ç S S S ç r 11 12 22 b i ÷ è i ø 2 = ri ai
对应分析与典型相关分析
![对应分析与典型相关分析](https://img.taocdn.com/s3/m/1ff6326c011ca300a6c390cd.png)
17
对应分析基本思想
v λ ... v λ 1m m 11 1 O M = ( λ1 v1 ,..., λm vm ), AR = M v λ L v p1 1 pm λm
u11 λ1 ... u1m λm AQ = M O M = ( λ1 u1,..., λm um ), un1 λ1 L unm λm
由于SR和 具有相同的非零特征值 具有相同的非零特征值, 由于 和SQ具有相同的非零特征值,而这些特征值又正好是各个 公共因子的方差,因此可以用相同的因子轴 相同的因子轴同时表示变量点和样品 公共因子的方差,因此可以用相同的因子轴同时表示变量点和样品 即把变量点和样品点同时反映在具有相同坐标轴的因子平面上, 点,即把变量点和样品点同时反映在具有相同坐标轴的因子平面上, 以便对变量点和样品点一起考虑进行分类。 以便对变量点和样品点一起考虑进行分类。
如果SR的特征值 如果 的特征值 λ i 对应的标准化特征向量为 vi , 则SQ的特征值 λi 对应的标准化特征向量: 的特征值 对应的标准化特征向量: 1 ui = Zv i
λi
由此可以方便地由R型因子分析而得到 型因子分析的结果 由此可以方便地由 型因子分析而得到Q型因子分析的结果。由SR的特征值和 型因子分析而得到 型因子分析的结果。 的特征值和 特征向量即可以写出R型因子分析的因子载荷矩阵 记为AR) 型因子分析的因子载荷矩阵( 特征向量即可以写出 型因子分析的因子载荷矩阵(记为 )和Q型因子分析的 型因子分析的 因子载荷矩阵(记为AQ): 因子载荷矩阵(记为 ):
3
引例1. 引例1.
下表为2006年年底我国 个省市按照行业(这里仅列出12 年年底我国31个省市按照行业 这里仅列出12 下表为 年年底我国 个省市按照行业( 个行业)城镇单位就业人数, 个行业)城镇单位就业人数,在一定程度上可以反映该地 区的经济结构。 区的经济结构。 我国地域辽阔,东西南北发展不平衡,是否按照地域划分 我国地域辽阔,东西南北发展不平衡,是否按照地域划分 就合理了呢? 就合理了呢? 自然地理位置对经济结构的影响固然重要,但是数据分析 自然地理位置对经济结构的影响固然重要,但是数据分析 显然更有说服力。 显然更有说服力。
第十六章SAS在统计分析中的应用课件
![第十六章SAS在统计分析中的应用课件](https://img.taocdn.com/s3/m/8c465673590216fc700abb68a98271fe900eaf40.png)
能注释。
Test等,对临床试验数据
进行分析和解释,为新药
研发或治疗方案选择提供
依据。
THANKS
感谢观看
数据重塑
有时需要将数据从一种格式转换为另一种格式。例如,使用`PROC TRANSPOSE`过程可以将列数据转换为行数据,或使用`PROC SQL`和`UNION` 操作符将多个表连接在一起。
05
CATALOGUE
案例分析
案例一:使用SAS进行市场调查数据分析
总结词
数据清洗和整理
描述性统计分析
探索性数据分析
高级统计分析
总结词
高级统计分析是在传统统计分析基础上, 结合具体领域和实际问题,发展出的一 系列更为复杂、专业的统计方法。
VS
详细描述
高级统计分析主要包括回归分析、方差分 析、主成分分析、因子分析、聚类分析等。 这些方法可以应用于各个领域,如经济学、 心理学、医学等。在SAS中,可以使用多 种程序包和过程进行高级统计分析,如 PROC REG、PROC ANOVA、PROC Factor等。
SAS软件开始支持互联网和分 布式计算,推出 SAS/Enterprise Miner等模块。
1960年代
SAS由美国北卡罗来纳大学的 两名研究生开发,用于统计分 析。
1980年代
SAS软件不断扩展,推出 SAS/BASE、SAS/ECON、 SAS/OR等模块。
2000年代至今
SAS软件不断更新升级,推出 更多新功能和模块,满足不同 领域的需求。
时间序列分析
利用SAS的时间序列分析过程, 如ARIMA或FORECAST,对金融 数据进行时间序列分析,预测未管理工具,如VaR 模型,对投资组合进行风险评估 和管理。
SAS第十一讲 典型相关分析
![SAS第十一讲 典型相关分析](https://img.taocdn.com/s3/m/f690f67601f69e314332949b.png)
主讲人 景学安
主讲人 景学安
典型相关分析
典型相关分析
一、基本概念 典型相关分析(canonical correlation analysis)是研究两 组变量之间相关关系的一种多元统计分析方法。医学研究中常 需要研究两组变量X=(X1,X2,…,Xp)和Y=(Y1,Y2,…,Yq) 的相互关系,例如成年男性体型与血压之间的关系,体型用身 高(X1),体重(X2)和体型指数(X3),血压用收缩压 (Y1),舒张压(Y2)和脉率(Y3)。
体素质的指标:50米跑、跳高、跳远、实心球掷远进行典型
相关分析。实测数据如表1。
2012年8月13日
12
2012年8月13日
13
SAS程序如下: Data can;
infile'd:\sas\sas7\can.txt';
input x1-x4 y1-y4; proc cancorr out=can1 outstat=can2 all; var x1-x4; with y1-y4; run;
过程的语法格式如下:
2012年8月13日
8
Proc cancorr [选项]; Var <变量名列>;/*用来列出被分析的两组变量中的第一组变量。必须
是数值变量。*/
With <变量名列>;/*用来列出被分析的两组变量中的第二组变量。必须
是数值变量。*/
[freq <变量名>;] /* 指明该变量为频数变量。*/
x3
x4
-0.2589
-0.3246
0.7343
0.7471
0.6437
0.7169
0.6921
SAS学习系列21.-相关分析
![SAS学习系列21.-相关分析](https://img.taocdn.com/s3/m/b2e978fcfc4ffe473268ab63.png)
SAS学习系列21.-相关分析21. 相关分析相关分析和回归分析是研究变量与变量间相互关系的重要方法。
相关分析是研究两个或两组变量之间的线性相关情况,回归分析是拟合出变量间的表达式关系。
(一)Pearson直线相关一、适用于两个变量均为服从正态分布,每对数据对应的点在直角坐标系中(即散点图)呈现直线趋势。
做相关分析时,要注意剔除异常值;相关关系不一定是因果关系。
二、用相关系数r∈[-1,1]来表示相关程度的大小:r>0: 正相关;r<0: 负相关;r=0: 不相关;r=1: 完全正相关;r=-1: 完全负相关。
相关程度的判断标准:看相关系数的平方r2,若r2<0.5,结果无实际价值。
注:相关系数只是刻画直线相关(Y=X2相关系数≠1)。
三、假设检验1. H0: 总体相关系数ρ=0;H1: ρ≠0;计算r值,P值,若P值≤α,则在显著水平α下拒绝H0;2. 若H0成立,从ρ=0的总体中抽样,所得到的样本相关系数r 呈对称分布(近似正态分布),此时可用t 检验。
3. 必要时对相关系数做区间估计从相关系数ρ≠0的总体中抽样,样本相关系数的分布是偏态的。
用Z变换后,服从某种正态分布,估计z,再变换回r.(三)典型相关分析实际问题中经常遇到研究两组变量间的线性相关情况,例如,考察q个质量指标与p个原材料指标之间的内在联系和相关关系,这就需要用到典型相关分析。
其思想类似于主成分分析(降维思想),分别找出两组变量的一对线性组合V和V的相互关系,既可以使变量个数简化,又可以达到分析相关性的目的。
如果一对线性组合不够,可以继续找下一对线性组合之间的关系,直到找不到相关变量对时为止。
至于选取多少对典型相关可通过检验来确定。
注:(1)第一对典型相关含有最多的有关两组变量间相关的信息,第二对其次,其他对依次递减,各对典型相关所含的信息互不重复;(2)经标准化的两组变量间的典型相关系数与原始的两组变量间的相应典型相关系数是相同的;(3)每个典型变量除在另一组里与其配对的那个典型变量外,它同所有其他典型变量变量均不相关;(4)第一对典型相关的大小至少同任一变量与对应的那组变量间的多重相关一样大。
sas案例分析
![sas案例分析](https://img.taocdn.com/s3/m/80e0fa5af08583d049649b6648d7c1c709a10b73.png)
sas案例分析SAS案例分析。
SAS(Statistical Analysis System)是一种统计分析系统,它提供了强大的数据分析和数据管理功能,广泛应用于商业、医疗、金融等领域。
本文将通过一个实际案例,介绍SAS在数据分析中的应用。
案例背景。
某公司想要了解其销售业绩与市场环境的关系,以制定更科学的销售策略。
为了达到这一目的,他们收集了过去几年的销售数据以及市场环境的相关指标,希望通过数据分析找出其中的规律,并进行预测。
数据准备。
首先,我们需要对收集到的数据进行清洗和整理。
这些数据包括销售额、销售量、市场份额、市场规模、竞争对手数据等。
在SAS中,我们可以通过数据步骤和PROC SQL来完成数据的清洗和整理工作,确保数据的质量和准确性。
数据分析。
接下来,我们可以利用SAS进行数据分析。
首先,我们可以通过描述性统计分析来了解各个变量的分布情况,包括平均值、标准差、最大最小值等。
然后,我们可以利用相关性分析来探索不同变量之间的关系,找出销售业绩与市场环境的相关性。
在SAS中,我们可以使用PROC CORR来进行相关性分析,并通过相关系数来衡量变量之间的相关程度。
模型建立。
在了解了各个变量之间的关系后,我们可以利用SAS来建立预测模型。
常用的预测模型包括线性回归、逻辑回归、时间序列分析等。
通过这些模型,我们可以预测未来的销售业绩,为公司制定销售策略提供参考依据。
结果解释。
最后,我们需要对模型的结果进行解释和评估。
在SAS中,我们可以利用PROC REG、PROC LOGISTIC等过程来进行模型的拟合和评估,得到模型的参数估计、显著性检验、预测能力等指标。
通过这些指标,我们可以评估模型的有效性,并对结果进行解释,为公司决策提供支持。
结论与建议。
通过对销售数据的分析,我们可以得出销售业绩与市场环境存在一定的相关性,市场规模、竞争对手数据等因素对销售业绩有一定影响。
基于这些分析结果,我们可以向公司提出一些建议,包括加大市场推广力度、优化产品结构、加强竞争对手分析等,以提升销售业绩。
实验报告七-SAS典型相关分析
![实验报告七-SAS典型相关分析](https://img.taocdn.com/s3/m/4636ca63168884868762d64f.png)
实验报告实验项目名称典型相关分析所属课程名称统计分析及SAS实现实验类型验证性实验实验日期2016-12-11班级数学与应用数学学号姓名成绩【实验方案设计】一.理解典型相关分析的概念及步骤;二.掌握典型相关分析的方法;三.用INSIGHT、“分析家”计算统计量和编程实现实际问题中的典型相关分析;【实验过程】(实验步骤、记录、数据、分析)【练习7-1】对某高中一年级男生38人进行体力测试及运动能力测试,如表所示,试对两组指标作典型相关分析。
34 47 55 113 40 71.4 19 64 7.6 410 29 7 33135 49 74 120 53 54.5 22 59 6.9 500 33 21 34236 44 52 110 37 54.9 14 57 7.5 400 29 2 42137 52 66 130 47 45.9 14 45 6.8 505 28 11 35538 48 68 100 45 53.6 23 70 7.2 522 28 9 352其中,体力测试指标为:X1-------反复横向跳(次),X2-------纵跳(cm),X 3------背力(kg),X4------捏力(kg),X5-----台阶测试(指数),X6------定向体前屈(cm),X7-------俯卧上提后仰(cm)。
运动能力测试的指标为y1-50m跑(s),y2-跳远(cm),y3-投球(m),y4引体向上(次),y5-耐力跑(s)。
【解答】利用INSIGHT模块进行典型相关分析:结果:表7.1 Univariate StatisticsVariable N Mean Std Dev Minimum Maximumy1 38 7.1316 0.3354 6.6000 8.0000y2 38 441.8421 43.2138 362.0000 522.0000y3 38 27.8158 2.7495 21.0000 33.0000y4 38 7.5263 3.8326 2.0000 21.0000由表7.1得知一些基本统计量,各变量下的均值、标准差、最大值、最小值。
对应分析、典型相关分析、定性数据分析
![对应分析、典型相关分析、定性数据分析](https://img.taocdn.com/s3/m/5748bfab534de518964bcf84b9d528ea81c72f8d.png)
应用领域的拓展
对应分析的应用领域 拓展
随着数据科学和商业智能的不断 发展,对应分析的应用领域将不 断拓展,如市场细分、消费者行 为分析、社交网络分析等,对应 分析将为这些领域提供更有效的 分析和预测工具。
典型相关分析的应用 领域拓展
典型相关分析作为一种重要的多 元统计分析方法,其应用领域也 将不断拓展,如生物信息学、环 境科学、金融风险管理等,典型 相关分析将为这些领域提供更准 确的数据分析和预测工具。
典型相关分析
能够揭示两组变量之间的关联,但需要较大的样本量, 且对异常值敏感。
定性数据分析
能够挖掘数据中的模式和规律,但主观性强,需要经 验丰富的分析师进行操作。
05
对应分析、典型相关分析、定性数据分析的 未来发展
CHAPTER
新方法的出现
对应分析的新方法
随着数据科学和统计学的不断发展,对应分析的新方法将不断涌现,如基于机器学习的对应分析方法、网络分析方法 等,这些新方法将为对应分析提供更强大的工具和更广泛的应用领域。
心理学研究
在心理学研究中,对应分析可用于揭示人类行为和心理状态之间的关系。
例如,它可以用于研究不同性格类型或心理状态的人在不同情境下的行
为反应。
02 典型相关分析
CHAPTER
典型相关分析的定义
典型相关分析是一种多元统计分析方 法,用于研究两组变量之间的相关关 系。
它通过寻找两组变量之间的典型相关 变量,来解释两组变量之间的相互关 系。
市场调研
在市场调研中,定性数据分析可用于深入了解消费者需求、 态度和行为,为产品定位和市场策略提供依据。
01
社会学研究
在社会学研究中,定性数据分析常用于 探究社会现象、文化差异和群体行为等, 以揭示社会结构和动态。
第3章 SAS对应分析
![第3章 SAS对应分析](https://img.taocdn.com/s3/m/2d7ffb1f650e52ea55189845.png)
第3章对应分析第1节方法的概述主成分分析、因子分析、变量聚类分析都是研究变量之间的相互关系。
有时,在某些实际问题中,既要研究变量之间的关系、还要研究样品之间的关系。
不仅如此,人们往往还希望能在同一个直角坐标系内同时表达出变量与样品两者之间的相互关系。
实现这一目的的方法,称为对应分析(Correspondence Analysis)。
对应分析,也称相应分析,它是列联表资料的加权主成分分析,用它去寻求列联表的行列变量之间联系的低维图示法。
此方法的关键是利用一种数据变换方法,使含有n个样品m个变量的原始数据矩阵变成另一个矩阵,并使R=Z'Z(分析变量之间关系的协方差矩阵)与Q=ZZ'(分析样品之间关系的协方差矩阵)具有相同的非零特征根,它们相应的特征向量之间也有密切的关系。
对协方差矩阵R、Q进行加权主成分分析或因子分析,分别能提取两个最重要的公因子R1、R2与Q1、Q2。
由于采取的是一种特殊变换方法,公因子R1与Q1在本质上是相同的,同理,R2与Q2在本质上也是相同的,故可用dim1作为R1、Q1的统一标志;用dim2作为R2、Q2的统一标志,于是可将(R1,Q1)和(R2,Q2)两组数据点在由(dim1,dim2)组成的同一个直角坐标系中。
这样,便于考察变量与样品之间的相互关系。
第2节对应分析中的变量变换方法设原始数据矩阵X=(xij)nm,i=1,2,…,n(n为样品数);j=1,2,…,m(m为变量数)。
又设xi.为第i行的合计、x.j为第j列的合计、x..为全部数据的合计,则变量变换的公式为:(6.3.1)由此变换产生出矩阵Z,即。
分别对R=Z'Z与Q=ZZ'进行加权主成分分析或因子分析,就实现了对应分析。
从这种变换可以看出:原始数据xij并非一定是频数,也可以是正实数。
这说明对应分析可以处理R×C列联表资料,也可处理适合作主成分分析、因子分析、聚类分析的资料。
sas案例分析
![sas案例分析](https://img.taocdn.com/s3/m/2baa8a9dcf2f0066f5335a8102d276a2002960bc.png)
sas案例分析SAS案例分析。
SAS(Statistical Analysis System)是一种统计分析系统,被广泛应用于数据分析、数据挖掘、预测分析等领域。
它提供了丰富的数据处理和分析功能,能够帮助用户有效地进行数据探索和建模分析。
下面我们将通过一个实际案例来展示SAS在数据分析中的应用。
某电商公司希望通过分析用户行为数据,提高用户留存率和购买转化率。
为了实现这一目标,他们收集了大量的用户数据,包括用户的浏览记录、购买记录、点击广告的行为等。
接下来,我们将使用SAS对这些数据进行分析,以期找到一些有益的信息。
首先,我们将对用户的浏览记录进行分析。
通过SAS的数据处理功能,我们可以对用户的浏览行为进行统计,比如哪些商品被浏览次数最多,用户在网站停留的平均时间等。
这些信息可以帮助我们了解用户的兴趣和偏好,从而为后续的推荐系统提供依据。
其次,我们可以利用SAS对用户的购买记录进行分析。
通过对用户购买行为的统计分析,我们可以找到哪些商品的销量最好,哪些用户购买频率较高,哪些商品组合销售效果较好等。
这些信息可以帮助我们优化商品推荐和营销策略,提高用户的购买转化率。
此外,我们还可以通过SAS对用户的点击广告行为进行分析。
通过对广告点击率、转化率等指标的统计分析,我们可以找到哪些广告的效果较好,哪些广告的点击率较高,哪些广告的转化率较低等。
这些信息可以帮助我们优化广告投放策略,提高广告的转化效果。
最后,我们可以利用SAS进行用户群体分析。
通过对用户数据的聚类分析,我们可以找到不同用户群体的特征和行为模式,从而为不同群体的用户制定个性化的营销策略和推荐策略。
通过以上分析,我们可以看到SAS在数据分析中的强大功能。
它能够帮助我们从海量的数据中找到有用的信息,为企业决策提供有力支持。
希望通过这个案例的介绍,能够让大家对SAS在数据分析中的应用有一个更深入的了解。
SAS软件应用之典型相关分析
![SAS软件应用之典型相关分析](https://img.taocdn.com/s3/m/a780cbd8a300a6c30d229fa8.png)
CANCORR过程
▪ WP选择项用来为WITH语句中变量的典型变量命 名前缀,名字不超过40个字符串长。
▪ EDF选择项用来指定该回归分析的残差自由度。 ▪ VAR语句列出两组变量中的第一组变量。若缺省,
则所有不出现在其它语句中的数值变量均将列在 第一组内。 ▪ WITH语句列出两组变量中的第二组变量。该语 句不能省略。 ▪ PARTIAL语句用来指定协变量。系统以此协变量 来计算偏相关系数矩阵,然后进行典型相关分析。 ▪ 另外,freq语句、weight语句、by语句等也实用。
第21章 诊断试验的ROC分析
学习目标
▪ 熟悉诊断试验的常用评价指标; ▪ 熟悉ROC曲线的含义以及构建; ▪ 通过SAS实例掌握进行ROC分析的SAS程
序;
概述
▪ 诊断性试验是对疾病进行诊断的试验方法,它不 仅包括实验室检查,还包括各种影像诊断,如X诊断、CT、核磁共振(MRI) 、超声波诊断以及同 位素检查、纤维内诊镜、电镜等诊断方法。诊断 性试验(diagnostic test) 的质量通常用敏感度和特 异度来衡量。在同一试验中,如果取不同的临界 值,则可得到不同的敏感度和特异度,将这些点 在以敏感度为Y轴,以(1-特异度) 为X轴的坐标上 标出并连成线,就可得到一条ROC曲线。
诊断试验
▪ 对于诊断试验的评价,首先应知道受试者 (人、动物或影像等)的真实类别,即哪 些属于对照组(或无病组,正常组,噪声组 等),哪些属于病例组(或有病组,异常组, 信号组等)。划分病例与对照这两个组的标 准就是金标准。医学研究中常见的金标准 有:活组织检查、尸体解剖、手术探查和 跟踪随访结果等。尽管金标准不需要十全 十美,但是它们应比评价的诊断试验更加 可靠,且与评价的诊断试验无关。
SAS系统和数据分析典型相关分析
![SAS系统和数据分析典型相关分析](https://img.taocdn.com/s3/m/28f98d32f18583d0496459f4.png)
第三十七课 典型相关分析典型相关分析(Canonical Correlation Analysis )是研究两组变量间相关关系的一种多元统计分析方法。
它能够揭示两组变量之间的内在联系,真正反映两组变量间的线性相关情况。
一、 典型相关分析我们研究过两个随机变量间的相关,它们可以用相关系数表示。
然而,在实际中常常会遇到要研究两组随机变量间),,,(21p x x x 和),,,(21q y y y 的相关关系问题。
),,,(21p x x x 和),,,(21q y y y 可能是完全不同的,但是它们的线性函数可能存在密切的关系,这种密切的关系能反映),,,(21p x x x 和),,,(21q y y y 之间的相关关系。
因此,就要找出),,,(21p x x x 的一个线性组合u 及),,,(21q y y y 的一个线性组合v ,希望找到的u 和v 之间有最大可能的相关系数,以充分反映两组变量间的关系。
这样就把研究两组随机变量间相关关系的问题转化为研究两个随机变量间的相关关系。
如果一对变量(u ,v )还不能完全刻画两组变量间的相关关系时,可以继续找第二对变量,希望这对变量在与第一对变量(u ,v )不相关的情况下也具有尽可能大的相关系数。
直到进行到找不到相关变量对时为止。
这便引导出典型相关变量的概念。
1. 典型相关系数与典型相关变量设有两组随机变量),,,(21p x x x 和),,,(21q y y y ,假定它们都已经标准化了,即p i x D x E i i ,,2,1= ,1=)(,0=)( ,q i y D y E i i ,,2,1= ,1=)(,0=)( ,若记:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=p p y y y y x x x x 2121, 此时,它们的协方差矩阵(也是相关系数矩阵)为:R R R R R y x D yy xy yx xx =⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛ 其中,()()yx xy yy xx R R y x Cov R y D R x D ====),(,,实际上,我们要找:y m v x l u 1111,'='=使1u 和1v 的相关系数),(11v u ρ达到最大。
SPSS软件中对应分析
![SPSS软件中对应分析](https://img.taocdn.com/s3/m/2616ff9ccd22bcd126fff705cc17552706225e5e.png)
SPSS软件中对应分析对应分析当A 与B 的取值较少时,把所得的数据放在⼀张列联表中,就可以很直观的对A 与B 之间及它们的各种取值之间的相关性作出判断,当ij P 较⼤时,则说明属性变量A 的第i 状态与B 的第j 状态之间有较强的依赖关系.但是,当A 或者B 的取值⽐较多时,就很难正确的作出判断,此时就需要利⽤降维的思想简化列联表的结构.⼏个基本定义:我们此处讨论因素A 有n 个⽔平,因素B 有p 个⽔平。
⾏剖⾯:当变量A 的取值固定为i 时(i=1,2,…,n ),变量B 的各个状态相对出现的概率情况,即:可以⽅便的把第i ⾏表⽰成在p 维欧⽒空间中的⼀个点,其坐标为:),,,(..2.1i ip i i i i rip p p p p p p = ,i=1,2,… , n ,实际上,该坐标可以看成p 维超平⾯121=+++p x x x 上的点。
记n 个⾏剖⾯的集合为n(r)。
由于列联表⾏与列的地位是对等的,由上⾯⾏剖⾯的定义⽅法,可以很容易的定义列剖⾯。
列剖⾯:),,,(..2.1j njj j j j cjp p p p p p p = ,j=1,2,… , p,实际上,该坐标可以看成n 维超平⾯121=+++n x x x 上的点。
记p 个列剖⾯的集合为p(c)。
定义了⾏剖⾯和列剖⾯之后,我们看到属性变量A 的各个取值情况可以⽤p 维空间的n 个点来表⽰,⽽B 的不同取值情况可以⽤n 维空间上的p 个点来表⽰。
⽽对应分析就是利⽤降维思想,把A 的各个状态表现在⼀张⼆维图上,⼜把B 的各个状态表现在⼀张⼆维图上,且通过后⾯的分析可以看到,这两张⼆维图的坐标有着相同的含义,即可以把A 的各个取值与B 的各个取值同时在⼀张⼆维图上表⽰出来。
距离:通过⾏剖⾯与列剖⾯的定义,A 的不同取值可以利⽤P 维空间中的不同点表⽰,各个点的坐标分别为ri P (i=1,2,…,n )。
⽽B的不同取值可以⽤n 维空间中的不同点表⽰,各个点的坐标分别为cj P (j=1,2,…,p )。
使用SAS进行数据分析的步骤
![使用SAS进行数据分析的步骤](https://img.taocdn.com/s3/m/a685e52530b765ce0508763231126edb6f1a76a1.png)
使用SAS进行数据分析的步骤第一章:引言数据分析是现代商业和科学领域中不可或缺的一部分。
它可以帮助我们从数据中获取有价值的信息和见解,用以支持决策制定和问题解决。
而SAS(Statistical Analysis System)作为一种流行的数据分析工具,被广泛应用于各个领域。
本文将介绍使用SAS进行数据分析的步骤,并以实例来说明每个步骤的具体操作。
第二章:数据准备一个成功的数据分析过程必须以正确的数据准备开始。
首先,收集所需数据,并确保数据的完整性和准确性。
然后,对数据进行清洗和预处理,包括处理缺失值、异常值和重复值等。
接下来,对数据进行变量选择和变换,以便更好地适应后续的分析需求。
第三章:探索性数据分析在进行正式的统计分析之前,我们需要对数据进行探索性分析,以了解数据的基本特征和潜在关系。
这包括计算和绘制描述性统计指标,如均值、中位数、方差等,以及创建图表和图形,如直方图、散点图、箱线图等。
通过这些分析,我们可以对数据的分布、相关性和异常情况有一个初步的了解。
第四章:假设检验当我们想要通过数据来验证一个假设时,可以使用假设检验进行统计分析。
首先,我们需要明确研究的问题和假设,并选择适当的假设检验方法。
然后,我们将数据导入SAS,并根据所选的假设检验方法进行相应的计算和分析。
最后,根据分析结果来判断是否拒绝或接受原假设。
第五章:建立模型在一些情况下,我们希望通过建立数学模型来解释和预测数据。
在SAS中,我们可以使用线性回归、逻辑回归、时间序列分析等方法来建立模型。
首先,我们需要选择适当的变量和模型类型。
然后,我们可以使用SAS的建模工具来进行变量筛选、模型拟合和验证。
最后,我们可以评估模型拟合的好坏,并通过模型预测来进行决策支持。
第六章:结果解释和报告当我们完成数据分析时,需要将结果进行解释和报告,以便他人理解和使用。
首先,我们需要对分析结果进行解释,包括各个变量的作用和解释、模型的拟合程度、假设检验的结论等。
SAS-典型相关分析
![SAS-典型相关分析](https://img.taocdn.com/s3/m/d4126adb6f1aff00bed51e05.png)
u2 = a12 x1 + a22 x2 + + a p 2 x p
v2 = b12 y1 + b22 y2 + + bq 2 yq
u2和v2与u1和v1相互独立,但u2和v2相关. 如此继续下去,直至进行到r步,r≤min(p,q), 可以得到r组变量.
U = ( u1 , , u r )′ V = ( v1 , , v r ) ′
将 ∑12∑1 左乘(3)的第二式,得 22
∑12∑ 1 ∑ 21α1 ν∑12∑ 1 ∑ 22 β1 = 0 22 22 ∑12∑ 1 ∑ 21α1 ν∑12 β1 = 0 22
1 ∑11 ∑12∑ 1 ∑ 21 的特征根 22
并将第一式代入,得
∑12∑ 1 ∑ 21α1 λ2∑11α1 = 0 22
典型相关分析 典型相 关系数 调整典型 相关系数 近似方差 典型相关系 数的平方
1
0.687948
0.687848
0.005268
0.473272
2
0.186865
0.186638
0.009651
0.034919
X组典型变量的系数 U1 X1 X2 0.7689 0.2721 V1 Y1 Y2 Y3 0.0491 0.8975 0.1900 U2 -1.4787 1.6443 V2 1.0003 -0.5837 0.2956
1 ∑11∑12∑ 1 ∑ 21α1 λ2α1 = 0 22
是 λ2 ,相应的特征向 量为 α1
1 ∑12∑11 左乘(3)的第一式,并将第二式代入,得 将
1 ∑ 21∑11∑ 21β1 λ∑12α1 = 0 1 ∑ 21∑11∑12 β1
1 ∑ 1 ∑12∑11 ∑ 21 的特征根 22
实验报告七-SAS典型相关分析
![实验报告七-SAS典型相关分析](https://img.taocdn.com/s3/m/4636ca63168884868762d64f.png)
实验报告实验项目名称典型相关分析所属课程名称统计分析及SAS实现实验类型验证性实验实验日期2016-12-11班级数学与应用数学学号姓名成绩【实验方案设计】一.理解典型相关分析的概念及步骤;二.掌握典型相关分析的方法;三.用INSIGHT、“分析家”计算统计量和编程实现实际问题中的典型相关分析;【实验过程】(实验步骤、记录、数据、分析)【练习7-1】对某高中一年级男生38人进行体力测试及运动能力测试,如表所示,试对两组指标作典型相关分析。
34 47 55 113 40 71.4 19 64 7.6 410 29 7 33135 49 74 120 53 54.5 22 59 6.9 500 33 21 34236 44 52 110 37 54.9 14 57 7.5 400 29 2 42137 52 66 130 47 45.9 14 45 6.8 505 28 11 35538 48 68 100 45 53.6 23 70 7.2 522 28 9 352其中,体力测试指标为:X1-------反复横向跳(次),X2-------纵跳(cm),X 3------背力(kg),X4------捏力(kg),X5-----台阶测试(指数),X6------定向体前屈(cm),X7-------俯卧上提后仰(cm)。
运动能力测试的指标为y1-50m跑(s),y2-跳远(cm),y3-投球(m),y4引体向上(次),y5-耐力跑(s)。
【解答】利用INSIGHT模块进行典型相关分析:结果:表7.1 Univariate StatisticsVariable N Mean Std Dev Minimum Maximumy1 38 7.1316 0.3354 6.6000 8.0000y2 38 441.8421 43.2138 362.0000 522.0000y3 38 27.8158 2.7495 21.0000 33.0000y4 38 7.5263 3.8326 2.0000 21.0000由表7.1得知一些基本统计量,各变量下的均值、标准差、最大值、最小值。