绝对值基础练习题

合集下载

绝对值基础练习题

绝对值基础练习题

绝对值基础练习题(共4页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--绝对值基础练习一、绝对值:数轴上表示数a的点与原点的距离叫做数a的绝对值.正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0由于距离总是正数或零,所以有理数的绝对值不可能是负数,即对于任意的有理数a,总有│a │≥0.性质:用数学式子表示:①若a>0,则│a│=a;②若a=0,则│a│=0;③若a<0,则│a │=-a.二、利用数轴和绝对值比较大小1.①在数轴上找出表示两点的数;②利用“右边的数大于左边的数”进行比较.2.利用绝对值,“正数都大于0,负数都小于0,正数大于一切负数,两个负数,绝对值大的反而小.3.非负数:正数与零的统称。

非正数:负数和0的统称非负整数:正整数和0统称非正整数:负整数和0的统称一、选择题1.如果,则()A. B . C. D .2.下面说法中正确的是()A.若,则B.若,则C.若,则D.若,则3.下面说法中正确的是()A.若和都是负数,且有,则B.若和都是负数,且有,则C.若,且,则D.若都是正数,且且,则4.数轴上有一点到原点的距离是5,则()A.这一点表示的数的相反数是5B.这一点表示的数的绝对值是5C.这一点表示的数是5D.这一点表示的数是-5二、填空题1.已知某数的绝对值是,则该数是______或_______;2.绝对值最小的有理数是________;3.一个数的相反数是8,则这个数的绝对值是_________;4.已知数轴上有一点到原点的距离是3,则这点所表示的数的绝对值是________,这点所表示的数是________.三、判断题11.有理数的绝对值总是正数.()2.有理数的绝对值就等于这个有理数的相反数.()3.两个有理数,绝对值大的数反而小.()4.两个正有理数,绝对值大的数较小.()5.()四、解答题1.求下列各数的绝对值,并把它们用“<”连起来-,0,,-.2.把下列一组数用“>”连起来-999,,,,.3.计算下列各式的值(1);(2);(3);(4)4.如图,比较和的绝对值的大小.5.计算下面各式的值(1)-(-2);(2)-(+2).6.比较大小(填写“>”或“<”号)(1)-53_____|-21|(2)|-51|_____0(3)|-56|_____|-34|(4)-79_____-567.计算(1)|-2|×(-2)=_____(2)|-21|×=_____(3)|-21|-21=_____(4)-3-|-|=_____8.(1) 51+=_______;5.3-=_______;0=_______;(2)- 3-=_______;-37.0+=_______;(3) 8-+2-=_______;36-÷-=_______;2155.6---=_______.(1)3-+ 110---;(2)2324-⨯-÷-;(3)6312165-⨯⎪⎪⎭⎫⎝⎛++--.9.在数轴上表示下列各数:23(1)211-;(2)0;(3)绝对值是的负数; (4)绝对值是43的负数。

绝对值练习题(含答案)

绝对值练习题(含答案)

bc a 10,绝对值一、选择题1.下列说法中正确的个数是( )(1)一个正数的绝对值是它本身;(2)一个非正数的绝对值是它的相反数;(3)•两个负数比较,绝对值大的反而小;(4)一个非正数的绝对值是它本身.个 个 个 个2.若-│a │=,则a 是( )A.3.2B.-3.2C.±D.以上都不对[3.若│a │=8,│b │=5,且a+b>0,那么a-b 的值是( )或13 或-13 C.3或-3 或-134.一个数的绝对值等于它的相反数的数一定是( )A.负数B.正数C.负数或零D.正数或零<0时,化简||3a a a 结果为( ) A.23.0 C D.-2a 二、填空题6.绝对值小于5而不小于2的所有整数有_________.:7.绝对值和相反数都等于它本身的数是_________.8.已知│a-2│+(b-3)2+│c-4│=0,则3a+2b-c=_________.9.比较下列各对数的大小(用“)”或“〈”填空〉(1)-35_______-23;(2)16;(3)-(-19)______-|-110|. 10.有理数a,b,c 在数轴上的位置如图所示:试化简:│a+b │-│b-1│-│a-c │-│1-c │=___________. 三、解答题 11.计算;(1)││+│+│; (2)|-813|-|-323|+|-20|12.比较下列各组数的大小:(1)-112与-43(2)-13与;?13.已知│a-3│+│-b+5│+│c-2│=0,计算2a+b+c的值.14.如果a、b互为相反数,c、d互为倒数,x的绝对值是1,求代数式x2+(a+b)x-•cd的值. *15.求|110-111|+|111-112|+…|149-150|的值.。

16.化简│1-a│+│2a+1│+│a│(a>-2).-17.若│a│=3,│b│=4,且a<b,求a,b的值.(18.已知-a<b<-c<0<-d,且│d│<│c│,试将a,b,c,d,0•这五个数由大到小用“>”依次排列出来.答案:一、二、6.±4,±3,±2 9.(1)>;(2)>>三、11.(1);(2)32; 12.(1)-12<-43(2)-13<;13.∵│a-3│+│-b+5│+│c-•2│=0,又│a-3│≥0,│-b+5│≥0,│c-2│≥0.∴a-3=0,-b+5=0,c-2=0,即a=3,b=•5,c=2,∴2a+b+c=1314.由条件可知:a+b=0,cd=1,x=±1,则x2=1,?∴x2+(a+b)x-cd=0 •15.原式=110-111+111-112+…+149-150=110-150=22516.∵a<-2,∴1-a>0,2a+1<0.∴│1-a│+│2a+1│+│a│=1-a+(-2a-1)+(-a)=-4a 17.∵│a│=3,│b│=4∴a=±3,b=±4又a<b,则a=±3,b=4>c>0>d>b。

数字的绝对值练习题

数字的绝对值练习题

数字的绝对值练习题练习一:计算数值的绝对值1. |-5| =2. |10| =3. |-3.14| =4. |0| =5. |-100| =练习二:求解绝对值方程1. |x| = 7,求解x的值。

2. |2y - 3| = 5,求解y的值。

3. |2z + 1| = 3,求解z的值。

4. |4m - 5| = 1,求解m的值。

5. |n + 2| = 8,求解n的值。

练习三:绝对值的性质1. a > 0时,|a| = ?2. a < 0时,|a| = ?3. a = 0时,|a| = ?4. 给出两个负数a和b,比较|a|和|b|的大小关系。

5. 给出一个正数a和一个负数b,比较|a|和|b|的大小关系。

练习四:计算表达式的绝对值1. |-4 + 7| =2. |5 - 9| =3. |-2 - 8| =4. |10 - 3| =5. |-6 + 3| =练习五:求解绝对值不等式1. |x - 2| < 4,求解x的范围。

2. |y + 1| > 5,求解y的范围。

3. |z - 3| ≤ 2,求解z的范围。

4. |2m + 5| ≥ 3,求解m的范围。

5. |n - 4| > 1,求解n的范围。

练习六:绝对值的应用1. 小明距离学校的直线距离是5公里。

他沿着一个环形跑道跑步,每圈的周长是2公里。

小明跑了多少圈才能累计跑过10公里?2. 一本书的原价是100元,现在打折降价25%。

实际售价是多少?3. |x - 3| = 7有两个解,求解x的值。

4. 某股票的涨跌幅为-10%,如果一开始的价格为50元,最后的价格是多少?5. 小红购买了一件原价80元的衣服,收到后发现有瑕疵。

商家表示可以退货,并退还全款的绝对值。

小红获得了多少退款?练习七:综合应用1. 解方程2(x - 3) + |x + 1| = 7。

2. 解不等式|x - 2| + 3 < 6。

3. 小明去购物,若其消费满100元,可以使用一张面值为10元的优惠券。

(完整版)初一绝对值练习(含例题、基础、拨高)

(完整版)初一绝对值练习(含例题、基础、拨高)

综合练习题一1、有理数的绝对值一定是( )A 、正数B 、整数C 、正数或零D 、自然数 2、绝对值等于它本身的数有( )A 、0个B 、1个C 、2个D 、无数个 3、下列说法正确的是( ) A 、—|a |一定是负数B 只有两个数相等时它们的绝对值才相等C 、若|a|=|b |,则a 与b 互为相反数D 、若一个数小于它的绝对值,则这个数为负数 4、比较21、31、41的大小,结果正确的是( ) A 、21<31<41 B 、21<41<31 C 、41<21<31 D 、31<21<415 )A 、a 〉|b |B 、a<bC 、|a |〉|b |D 、|a|〈|b | 6、判断。

(1)若|a|=|b |,则a=b 。

(2)若a 为任意有理数,则|a|=a 。

(3)如果甲数的绝对值大于乙数的绝对值,那么甲数一定大于乙数( ) (4)|31_|和31_互为相反数。

( ) 7、相反数等于-5的数是______,绝对值等于5的数是________。

8、-4的倒数的相反数是______.9、绝对值小于∏的整数有________。

10、若|-x|=2,则x=____;若|x-3|=0,则x=______;若|x-3|=1,则x=_______。

11、实数|b|的大小关系是_______。

12、比较下列各组有理数的大小。

(1)—0。

6○-60 (2)-3.8○—3。

9(3)0○|-2| (4)43-○54-13、已知|a|+|b|=9,且|a|=2,求b的值.14、已知|a|=3,|b|=2,|c|=1,且a〈b〈c,求a、b、c的值.绝对值综合练习题二一、选择题1、 如果m 〉0, n<0, m 〈|n|,那么m ,n ,-m, -n 的大小关系( ) A.-n>m>-m 〉n B.m>n>-m 〉-n C 。

—n 〉m 〉n 〉—m D.n>m 〉-n 〉—m2、绝对值等于其相反数的数一定是…………………( ) A .负数 B .正数 C .负数或零 D .正数或零3、给出下列说法:①互为相反数的两个数绝对值相等; ②绝对值等于本身的数只有正数; ③不相等的两个数绝对值不相等; ④绝对值相等的两数一定相等.其中正确的有…………………………………………( ) A .0个 B .1个 C .2个 D .3个 4、如果,则的取值范围是 ………………………( )A .>OB .≥OC .≤OD .<O5、绝对值不大于11.1的整数有………………………………( )A .11个B .12个C .22个D .23个 6、绝对值最小的有理数的倒数是( )A 、1B 、-1C 、0D 、不存在 7、在有理数中,绝对值等于它本身的数有( )A 、1个B 、2个C 、3个D 、无数多个 8、下列各数中,互为相反数的是( )A 、│-32│和-32B 、│-23│和-32C 、│-32│和23D 、│-32│和329、下列说法错误的是()A、一个正数的绝对值一定是正数B、一个负数的绝对值一定是正数C、任何数的绝对值都不是负数D、任何数的绝对值一定是正数10、│a│= -a,a一定是()A、正数B、负数C、非正数D、非负数11、下列说法正确的是()A、两个有理数不相等,那么这两个数的绝对值也一定不相等B、任何一个数的相反数与这个数一定不相等C、两个有理数的绝对值相等,那么这两个有理数不相等D、两个数的绝对值相等,且符号相反,那么这两个数是互为相反数。

绝对值练习题(精)100道

绝对值练习题(精)100道

小书童教育连锁机构(通济分校)初一数学姓名绝对值综合练习题一1、有理数的绝对值一定是()2、绝对值等于它本身的数有()个3、下列说法正确的是()A、—|a|一定是负数B只有两个数相等时它们的绝对值才相等C、若|a|=|b|,则a与b互为相反数D、若一个数小于它的绝对值,则这个数为负数4.)A、a>|b|B、a<bC、|a|>|b|D、|a|<|b|5、相反数等于-5的数是______,绝对值等于5的数是________。

6、-4的倒数的相反数是______。

7、绝对值小于2的整数有________。

8、若|-x|=2,则x=____;若|x-3|=0,则x=______;若|x-3|=1,则x=_______。

9、实数a_______。

10、已知|a|+|b|=9,且|a|=2,求b的值。

11、已知|a|=3,|b|=2,|c|=1,且a<b<c,求a、b、c的值。

12、如果m>0, n<0, m<|n|,那么m,n,-m, -n的大小关系()13、如果,则的取值范围是()A.>O B.≥O C.≤O D.<O14、绝对值不大于11.1的整数有()A.11个B.12个C.22个D.23个15、│a│= -a,a一定是()A、正数B、负数C、非正数D、非负数16、有理数m,n在数轴上的位置如图,17、若|x-1| =0,则x=__________,若|1-x |=1,则x=_______.18、如果,则,.19、已知│x+y+3│=0, 求│x+y│的值。

20、│a-2│+│b-3│+│c-4│=0,则a+2b+3c=21、如果a,b互为相反数,c,d互为倒数,x的绝对值是1,求代数式x ba++x2+cd的值。

22、已知│a│=3,│b│=5,a与b异号,求│a-b│的值。

23.如果 a,b互为相反数,那么a + b = ,2a + 2b = .24. a+5的相反数是3,那么, a = .25.如果a 和 b表示有理数,在什么条件下, a +b 和a -b互为相反数?26、若X的相反数是—5,则X=______;若—X的相反数是—3.7,则X=_______27、若一个数的倒数是1.2,则这个数的相反数是________,绝对值是________28、若—a=1,则a=____; 若—a=—2,则a=_______;如果—a=a,那么a=_______29、已知|X—4|+|Y+2|=0,求2X—|Y|的值。

(完整版)绝对值练习题(含答案)

(完整版)绝对值练习题(含答案)
10.有理数a,b,c在数轴上的位置如图所示:
试化简:│a+b│-│b-1│-│a-c│-│1-c│=___________.
三、解答题
11.计算
(1)│-6.25│+│+2.7│; (2)|-8 |-|-3 |+|-20|
12.比较下列各组数的大小:(1)-1 与- (2)- 与-0.3;
13.已知│a-3│+│-b+5│+│c-2│=0,计算2a+b+c的值.
14.如果a、b互为相反数,c、d互为倒数,x的绝对值是1,求代数式x2+(a+b)x- cd的值.
15.求| - |+| - |+…| - |的值.
16.化简│1-a│+│2a+1│+│a│(a>-2).
17.若│a│=3,│b│=4,且a<b,求a,b的值.
18.已知-a<b<-c<0<-d,且│d│<│c│,试将a,b,c,d,0这五个数由大到小用“>”依次排列出来.
7.绝对值和相反数都等于它本身的数是_________.
8.已知│a-2│+(b-3)2+│c-4│=0,则3a+2b-c=_________.
9.比较下列各对数的大小(用“)”或“〈”填空〉
(1)- _______- ;(2)-1 _______-1.167;(3)-(- )______-|- |.
2.3绝对值
一、选择题
1.下列说法中正确的个数是( )
(1)一个正数的绝对值是它本身;(2)一个非正数的绝对值是它的相反数;(3) 两个负数比较,பைடு நூலகம்对值大的反而小;(4)一个非正数的绝对值是它本身.

绝对值练习题(经典)100道

绝对值练习题(经典)100道

绝对值综合练习题1、有理数的绝对值一定是_________。

2、绝对值等于它本身的数有________个。

3、下列说法正确的是()A、—|a|一定是负数B、只有两个数相等时它们的绝对值才相等C、若|a|=|b|,则a与b互为相反数D、若一个数小于它的绝对值,则这个数为负数4.若有理数在数轴上的对应点如下图所示,则下列结论中正A、a>|b|B、a<bC、|a|>|b|D、|a|<|b|5、相反数等于-5的数是______,绝对值等于5的数是________。

6、-4的倒数的相反数是______。

7、绝对值小于2的整数有________。

8、若|-x|=2,则x=____;若|x-3|=0,则x=______;若|x-3|=1,则x=_______。

10、已知|a|+|b|=9,且|a|=2,求b的值。

11、已知|a|=3,|b|=2,|c|=1,且a<b<c,求a、b、c的值。

12、如果m>0, n<0, m<|n|,那么m,n,-m, -n的大小关系_________________.13、如果,则的取值范围是()A.>O B.≥O C.≤O D.<O 14、绝对值不大于11.1的整数有()A.11个B.12个C.22个D.23个15、│a│= -a,a一定是()A、正数B、负数C、非正数D、非负数16、有理数m,n在数轴上的位置如图,17、若|x-1| =0,则x=__________,若|1-x |=1,则x=_______.18、如果,则,.19、已知│x+y+3│=0, 求│x+y│的值。

20、│a-2│+│b-3│+│c-4│=0,则a+2b+3c=21、如果a,b互为相反数,c、d互为倒数,x的绝对值是1,求代数式x ba +x2+cd的值。

22、已知│a │=3,│b │=5,a 与b 异号,求│a -b │的值。

23、如果 a,b 互为相反数,那么 a + b = ,2a + 2b= .24、a+5的相反数是3,那么, a = .25、若X 的相反数是—5,则X=______;若—X 的相反数是—3.7,则X=______26、若一个数的倒数是1.2,则这个数的相反数是________,绝对值是________27、若—a=1,则a=____; 若—a=—2,则a=_______;如果—a=a,那么a=_______28、已知|X —4|+|Y+2|=0,求2X —|Y|的值。

绝对值经典练习题

绝对值经典练习题

绝对值专项训练一、基础题1、绝对值的几何定义:在数轴上表示数a 的点与__________的距离叫做数a 的绝对值,记作__________.2、绝对值的代数定义:一个正数的绝对值是_________;一个负数的绝对值是________;0的绝对值是_________.3、12-的绝对值等于 23-等于 3设a 是实数,则|a|-a 的值A 、可以是负数B 、不可能是负数C 、必是正数D 、可以是正数也可以是负数4、1任何数都有绝对值,有________个.2由绝对值的几何意义可知:距离不可能为负数,因此,任何一个数的绝对值都是_____数,绝对值最小的数是______.3绝对值是正数的数有_____个,它们互为_________.4两个互为相反数的绝对值________;反之,绝对值相等的两个数______或________.5、有理数的大小比较正数_________0,负数________0,正数________负数;两个负数比较大小的时候,__________大的反而小.5比较41,31,21--的大小,结果正确的是A 、413121<-<-B 、314121-<<-C 、213141-<-<D 、412131<-<- 二、典型例题6、若4x -=,则x =__________;若30x -=,则x =__________;若31x -=,则x =__________.2--的倒数是7、化简(4)--+的结果为______3、如果22a a -=-,则a 的取值范围是8、已知a b 、为有理数,且0a <,0b >,a b >,则A 、a b b a <-<<-B 、b a b a -<<<-C 、a b b a -<<-<D 、b b a a -<<-<三、自主练习题一、选择题9、有理数的绝对值一定是A 、正数B 、整数C 、正数或零D 、自然数10、下列说法中正确的个数有①互为相反数的两个数的绝对值相等;②绝对有正数;③不相等的两个数的绝对值不相等;④绝对值相等的两个数一定相等A 、1个B 、2个C 、3个D 、4个11、如果甲数的绝对值大于乙数的绝对值,那么A 、甲数必定大于乙数B 、甲数必定小于乙数C 、甲、乙两数一定异号D 、甲、乙两数的大小,要根据具体值确定12、绝对值等于它本身的数有A 、0个B 、1个C 、2个D 、无数个13、下列说法正确的是A 、a -一定是负数B 、只有两个数相等时它们的绝对值才相等C 、若a b =,则a 与b 互为相反数D 、若一个数小于它的绝对值,则这个数为负数二、填空题14、数轴上,绝对值为4,且在原点左边的点表示的有理数为___________.15、绝对值小于π的整数有______________________16、如果3a >,则3a -=__________,3a -=___________.17、若1x x =,则x 是__ __数;若1x x=-,则x 是_ _“正”或“负”数;18、已知3x =,4y =,且x y <,则x y +=________三、解答题19、比较下列各组数的大小135-,34- 256-,45-,115- 20、实数a 、b 在数轴上的位置如图所示,那么化简|a -b|-a 的结果是 A 、2a -b B 、b C 、-b D 、-2a+b21、已知a b 、互为相反数,c d 、互为倒数,m 的绝对值等于2,求2a b m cd a b c++-++的值.22、已知3a =,2b =,1c =且a b c <<,求a b c ++的值23、检查5袋水泥的质量,把超过标准质量的克数记为正数,不足标准质量的克数记为负数,检查结果如表格所示:1最接近标准质量的是几号水泥2质量最多的水泥比质量最少的水泥多多少千克。

绝对值练习题及答案

绝对值练习题及答案

绝对值练习题及答案绝对值练习题及答案绝对值是数学中一个非常重要的概念,它可以帮助我们解决各种与数值相关的问题。

在这篇文章中,我们将探讨一些绝对值的练习题,并给出相应的答案。

通过这些练习题的训练,我们可以更好地理解和应用绝对值的概念。

一、基础练习题1. 计算以下数的绝对值:-5, 0, 7, -2, 10.答案:5, 0, 7, 2, 10.2. 求解以下方程:|x| =3.答案:x = 3 或 x = -3.3. 如果|x - 2| = 4, 求解x的可能值。

答案:x = 6 或 x = -2.4. 求解以下不等式:|2x - 3| ≤5.答案:-1 ≤ x ≤ 4.二、进阶练习题1. 已知|x - 4| = 2x + 1,求解x的值。

答案:x = -3.解析:将方程两边平方,得到(x - 4)² = (2x + 1)²,展开化简后得到x² - 10x - 15 = 0,解这个方程可以得到x = -3 或 x = 5,但是只有x = -3满足原方程。

2. 若|3x - 2| = 5x + 1,求解x的值。

答案:x = -1 或 x = 1.解析:将方程两边平方,得到(3x - 2)² = (5x + 1)²,展开化简后得到4x² + 14x -3 = 0,解这个方程可以得到x = -1 或 x = 1,均满足原方程。

三、挑战练习题1. 若|2x - 3| < 4x + 1,求解x的值。

答案:-1 < x < 2/3.解析:对于绝对值不等式,我们可以将其转化为两个不等式,即2x - 3 < 4x +1 和 2x - 3 > -(4x + 1),解这两个不等式可以得到-1 < x < 2/3,满足原不等式。

2. 若|3x - 4| > 2x + 1,求解x的值。

答案:x < -1 或 x > 3.解析:同样地,我们将绝对值不等式转化为两个不等式,即3x - 4 > 2x + 1 或3x - 4 < -(2x + 1),解这两个不等式可以得到x < -1 或 x > 3,满足原不等式。

(完整版)绝对值练习题

(完整版)绝对值练习题

绝对值练习题一、选择题1、如果m>0, n<0, m<|n|,那么m,n,-m, -n的大小关系()A.-n>m>-m>nB.m>n>-m>-nC.-n>m>n>-mD.n>m>-n>-m2、绝对值等于其相反数的数一定是…………………()A.负数 B.正数C.负数或零 D.正数或零3、下列说法中正确的是………………………………()A.一定是负数B.只有两个数相等时它们的绝对值才相等C.若则与互为相反数D.若一个数小于它的绝对值,则这个数是负数4、给出下列说法:①互为相反数的两个数绝对值相等;②绝对值等于本身的数只有正数;③不相等的两个数绝对值不相等;④绝对值相等的两数一定相等.其中正确的有…………………………………………〖〗A.0个B.1个C.2个D.3个5、如果,则的取值范围是…………………………………………〖〗A.>O B.≥OC .≤OD .<O6、绝对值不大于11.1的整数有……………………………………… 〖 〗A .11个B .12个C .22个D .23个 7、绝对值最小的有理数的倒数是( )A 、1B 、-1C 、0D 、不存在 8、在有理数中,绝对值等于它本身的数有( )A 、1个B 、2个C 、3个D 、无数多个 9、下列各数中,互为相反数的是( )A 、│-32│和-32 B 、│-23│和-32 C 、│-32│和23 D 、│-32│和3210、下列说法错误的是( )A、一个正数的绝对值一定是正数B、一个负数的绝对值一定是正数C、任何数的绝对值都不是负数D、任何数的绝对值一定是正数11、│a│= -a,a一定是()A、正数B、负数C、非正数D、非负数12、下列说法正确的是()A、两个有理数不相等,那么这两个数的绝对值也一定不相等B、任何一个数的相反数与这个数一定不相等C、两个有理数的绝对值相等,那么这两个有理数不相等D、两个数的绝对值相等,且符号相反,那么这两个数是互为相反数。

绝对值函数基础练习题(含答案解析)

绝对值函数基础练习题(含答案解析)

绝对值函数基础练习题(含答案解析)
绝对值函数是数学中的一种基本函数,它表示一个数与零的距离。

下面是一些绝对值函数的基础练题,每个题目都包含了答案和解析。

1. 求解以下绝对值方程:
a) |2x - 3| = 5
b) |4 - 3x| = 7
答案解析:
a) 2x - 3 = 5 或者 2x - 3 = -5
解得 x = 4 或者 x = -1
b) 4 - 3x = 7 或者 4 - 3x = -7
解得 x = -1 或者 x = 11/3
2. 求解以下绝对值不等式:
a) |3x + 2| > 10
b) |5 - 2x| ≤ 8
答案解析:
a) 3x + 2 > 10 或者 3x + 2 < -10
解得 x > 8/3 或者 x < -4
b) 5 - 2x ≤ 8 或者 5 - 2x ≥ -8
解得x ≤ -1/2 或者x ≥ 13/2
3. 求以下函数的定义域:
a) f(x) = |x - 1|
b) g(x) = |2x + 3|
答案解析:
a) f(x) = |x - 1| 为一个绝对值函数,对于任意实数 x,f(x) 都有定义。

因此,f(x) 的定义域为所有实数。

b) g(x) = |2x + 3| 为一个绝对值函数,对于任意实数 x,g(x) 都有定义。

因此,g(x) 的定义域为所有实数。

以上就是绝对值函数基础练题的答案解析部分。

希望这些练题能够帮助你更好地理解和应用绝对值函数。

绝对值专项练习60题(有答案)ok

绝对值专项练习60题(有答案)ok

绝对值专项练习60题(有答案)1.下列说法中正确的是( )A . 有理数的绝对值是正数B . 正数负数统称有理数C . 整数分数统称有理数D . a 的绝对值等于a2.在数轴上距﹣2有3个单位长度的点所表示的数是( )A . ﹣5B . 1C . ﹣1D . ﹣5或 13.计算:|﹣4|=( )A . 0B . ﹣4C .D . 44.若x 的相反数是3,|y|=5,则x+y 的值为( )A . ﹣8B . 2C . 8或﹣2D . ﹣8或25.如果|a|=﹣a ,那么a 的取值范围是( )A . a >0B . a <0C . a ≤0D . a ≥06.如图,数轴上的点A 所表示的是实数a ,则点A 到原点的距离是( )A . aB . ﹣aC . ±aD . ﹣|a|7.如果a 是负数,那么﹣a 、2a 、a+|a|、这四个数中,负数的个数( )A . 1个B . 2个C . 3个D . 4个8.在﹣(﹣2),﹣|﹣7|,﹣|+3|,,中,负数有( )A. 1个 B . 2个 C . 3个 D . 4个9.如图,数轴的单位长度为1,如果点A 、C 表示的数的绝对值相等,则点B 表示的数是()A . 1B . 0C . ﹣1D . ﹣ 210.任何一个有理数的绝对值在数轴上的位置是( )A. 原点两旁 B . 整个数轴 C . 原点右边 D . 原点及其右边11.a ,b 在数轴位置如图所示,则|a|与|b|关系是( )A . |a|>|b|B . |a|≥|b|C . |a|<|b|D . |a|≤|b|12.已知|x|=3,则在数轴上表示x 的点与原点的距离是( )A . 3B . ±3C . ﹣3D . 0﹣313.若|a|=﹣a ,则数a 在数轴上的点应是在( )A.原点的右侧B.原点的左侧C.原点或原点的右侧D.原点或原点的左侧14.下列判断错误的是()A.任何数的绝对值一定是正数B.一个负数的绝对值一定是正数C.一个正数的绝对值一定是正数D.任何数的绝对值都不是负数15.a为有理数,下列判断正确的是()A.﹣a一定是负数B.|a|一定是正数C.|a|一定不是负数D.﹣|a|一定是负数16.若ab<0,且a>b,则a,|a﹣b|,b的大小关系为()A.a>|a﹣b|>b B.a>b>|a﹣b| C.|a﹣b|>a>b D.|a﹣b|>b>a17.若|a|=8,|b|=5,a+b>0,那么a﹣b的值是()A.3或13 B.13或﹣13 C.3或﹣3 D.﹣3或1318.下列说法正确的是()A.﹣|a|一定是负数B.只有两个数相等时,它们的绝对值才相等C.若|a|=|b|,则a与b互为相反数D.若一个数小于它的绝对值,则这个数为负数19.一个数的绝对值一定是()A.正数B.负数C.非负数D.非正数20.若ab>0,则++的值为()A.3B.﹣1 C.±1或±3 D.3或﹣121.已知:a>0,b<0,|a|<|b|<1,那么以下判断正确的是()A. 1﹣b>﹣b>1+a>a B. 1+a>a>1﹣b>﹣b C. 1+a>1﹣b>a>﹣b D. 1﹣b>1+a>﹣b>a22.若|﹣x|=﹣x,则x是()A.正数B.负数C.非正数D.非负数23.若|a|>﹣a,则a的取值范围是()A.a>0 B.a≥0 C.a<0 D.自然数24.若|m﹣1|=5,则m的值为()A.6B.﹣4 C.6或﹣4 D.﹣6或425.下列关系一定成立的是()A.若|a|=|b|,则a=b B.若|a|=b,则a=b C.若|a|=﹣b,则a=b D.若a=﹣b,则|a|=|b|26.已知a、b互为相反数,且|a﹣b|=6,则|b﹣1|的值为()A.2B.2或3 C.4D.2或427.a<0时,化简结果为()A.B.0C.﹣1 D.﹣2a28.在有理数中,绝对值等于它本身的数有()A.1个B.2个C.3个D.无穷多个29.已知|a|=﹣a、|b|=b、|a|>|b|>0,则下列正确的图形是()A.B.C.D.30.若|a|+|b|=|a+b|,则a、b间的关系应满足()A.b同号B.b同号或其中至少一个为零C.b异号D.b异号或其中至少一个为零31.已知|m|=4,|n|=3,且mn<0,则m+n的值等于()A.7或﹣7 B.1或﹣1 C.7或1 D.﹣7或﹣132.已知a、b、c大小如图所示,则的值为()A.1B.﹣1 C.±1 D.033.下列各式的结论成立的是()A.若|m|=|n|,则m>n B.若m≥n,则|m|≥|n| C.若m<n<0,则|m|>|n| D.若|m|>|n|,则m>n34.绝对值小于4的整数有()A.3个B.5个C.6个D.7个35.绝对值大于1而小于3.5的整数有()个.A.7B.6C.5D.436.若x的绝对值小于1,则化简|x﹣1|+|x+1|得()A.0B.2C.2x D.﹣2x37.3.14﹣π的差的绝对值为()A.0B.3.14﹣πC.π﹣3.14 D.0.1438.下列说法正确的是()A.有理数的绝对值一定是正数B.有理数的相反数一定是负数C.互为相反数的两个数的绝对值相等D.如果两个数的绝对值相等,那么这两个数相等39.下面说法错误的是()A.﹣(﹣5)的相反数是(﹣5)B.3和﹣3的绝对值相等C.数轴上右边的点比左边的点表示的数小D.若|a|>0,则a一定不为零40.已知|a|>a,|b|>b,且|a|>|b|,则()A.a>b B.a<b C.不能确定D.a=b41.已知|x|≤1,|y|≤1,那么|y+1|+|2y﹣x﹣4|的最小值是_________.42.从1000到9999中,四位数码各不相同,且千位数与个位数之差的绝对值为2的四位数有_________个.43.最大的负整数是_________,绝对值最小的有理数是_________.44.最大的负整数,绝对值最小的数,最小的正整数的和是0_________.45.若x+y=0,则|x|=|y|.(_________)46.绝对值等于10的数是_________.47.若|﹣a|=5,则a=_________.48.设A=|x﹣b|+|x﹣20|+|x﹣b﹣20|,其中0<b<20,b≤x≤20,则A的最小值是_________.49.﹣3.5的绝对值是_________;绝对值是5的数是_________;绝对值是﹣5的数是_________.50.绝对值小于10的所有正整数的和为_________.51.化简:|x﹣2|+|x+3|,并求其最小值.52.若a,b为有理数,且|a|=2,|b|=3,求a+b的值.53.若|x|=3,|y|=6,且xy<0,求2x+3y的值.54.试求|x﹣1|+|x﹣3|+…+|x﹣2003|+|x﹣2005|的最小值.55.有理数a、b在数轴上的位置如图所示,化简|a﹣b|+|a+b|.56.已知a=12,b=﹣3,c=﹣(|b|﹣3),求|a|+2|b|+|c|的值.57.已知a、b、c在数轴上的位置如图所示,化简|a|+|c﹣b|+|a﹣c|+|b﹣a|58.小刚在学习绝对值的时候发现:|3﹣1|可表示数轴上3和1这两点间的距离;而|3+1|即|3﹣(﹣1)|则表示3和﹣1这两点间的距离.根据上面的发现,小刚将|x﹣2|看成x与2这两点在数轴上的距离;那么|x+3|可看成x与_________在数轴上的距离.小刚继续研究发现:x取不同的值时,|x﹣2|+|x+3|=5有最值,请你借助数轴解决下列问题(1)当|x﹣2|+|x+3|=5时,x可取整数_________(写出一个符合条件的整数即可);(2)若A=|x+1|+|x﹣5|,那么A的最小值是_________;(3)若B=|x+2|+|x|+|x﹣1|,那么B的最小值是_________,此时x为_________;(4)写出|x+5|+|x+3|+|x+1|+|x﹣2|的最小值.59.若ab<0,试化简++.60.同学们都知道,|5﹣(﹣2)|表示5与﹣2之差的绝对值,实际上也可理解为5与﹣2两数在数轴上所对的两点之间的距离.试探索:(1)求|5﹣(﹣2)|=_________.(2)设x是数轴上一点对应的数,则|x+1|表示_________与_________之差的绝对值(3)若x为整数,且|x+5|+|x﹣2|=7,则所有满足条件的x为_________.参考答案:1.A、有理数0的绝对值是0,故A错误;B、正数、0、负数统称有理数,故B错误;C、整数分数统称有理数,故C正确;D、a<0时,a的绝对值等于﹣a,故D错误.故选C.2.依题意得:|﹣2﹣x|=3,即﹣2﹣x=3或﹣2﹣x=﹣3,解得:x=﹣5或x=1.故选D.3.根据一个负数的绝对值是它的相反数,可知|﹣4|=4.故选D.4.x的相反数是3,则x=﹣3,|y|=5,y=±5,∴x+y=﹣3+5=2,或x+y=﹣3﹣5=﹣8.则x+y的值为﹣8或2.故选D5因为一个负数的绝对值是它的相反数;0的绝对值是0或相反数,所以如果|a|=﹣a,那么a的取值范围是a≤0.故选C.6.依题意得:A到原点的距离为|a|,∵a<0,∴|a|=﹣a,∴A到原点的距离为﹣a.故选B.7.当a是负数时,根据题意得,﹣a>0,是正数,2a<0,是负数,a+|a|=0,既不是正数也不是负数,=﹣1,是负数;所以,2a、是负数,所以负数2个.故选B.8.∵﹣(﹣2)=2,是正数;﹣|﹣7|=﹣7,是负数;﹣|+3|=﹣3是负数;=,是正数;=﹣是负数;∴在以上数中,负数的个数是3.故选C.9.如图,AC的中点即数轴的原点O.根据数轴可以得到点B表示的数是﹣1.故选C.10.∵任何非0数的绝对值都大于0,∴任何非0数的绝对值所表示的数总在原点的右侧,∵0的绝对值是0,∴0的绝对值表示的数在原点.故选D.11.∵a<﹣1,0<b<1,∴|a|>|b|.故选A12.∵|x|=3,又∵轴上x的点到原点的距离是|x|,∴数轴上x的点与原点的距离是3;故选A.13.∵|a|=﹣a,∴a≤0,即可得数a在数轴上的点应是在原点或原点的左侧.故选D.14.根据绝对值性质可知,一个负数的绝对值一定是正数;一个正数的绝对值一定是正数;任何数的绝对值都不是负数.B,C,D都正确.A中,0的绝对值是0,错误.故选A.15.A、错误,a=0时不成立;B、错误,a=0时不成立;C、正确,符合绝对值的非负性;D、错误,a=0时不成立.故选C16.∵ab<0,且a>b,∴a>0,b<0∴a﹣b>a>0∴|a﹣b|>a>b故选C.17.∵|a|=8,|b|=5,∴a=±8,b=±5,又∵a+b>0,∴a=8,b=±5.∴a﹣b=3或13.故选A.18.A、﹣|a|不一定是负数,当a为0时,结果还是0,故错误;B、互为相反数的两个数的绝对值也相等,故错误;C、a等于b时,|a|=|b|,故错误;D、若一个数小于它的绝对值,则这个数为负数,符合绝对值的性质,故正确.故选D.19.一个数的绝对值一定是非负数.故选C.20.因为ab>0,所以a,b同号.①若a,b同正,则++=1+1+1=3;②若a,b同负,则++=﹣1﹣1+1=﹣1.故选D.21.∵a>0,∴|a|=a;∵b<0,∴|b|=﹣b;又∵|a|<|b|<1,∴a<﹣b<1;∴1﹣b>1+a;而1+a>1,∴1﹣b>1+a>﹣b>a.故选D.22.∵|﹣x|=﹣x;∴x≤0.即x是非正数.故选C.23.若|a|>﹣a,则a的取值范围是a>0.故选A.24.∵|m﹣1|=5,∴m﹣1=±5,∴m=6或﹣4.故选C.25.选项A、B、C中,a与b的关系还有可能互为相反数.故选D.26.∵a、b互为相反数,∴a+b=0,∵|a﹣b|=6,∴b=±3,|b﹣1|=2或4.故选D.27.∵a<0,∴==0.故选B28.在有理数中,绝对值等于它本身的数为所有非负有理数,而非负有理数有无穷多个.故选D.29.∵|a|=﹣a、|b|=b,∴a<0,b>0,即a在原点的左侧,b在原点的右侧,∴可排除A、B,∵|a|>|b|,∴a到原点的距离大于b到原点的距离,∴可排除C,故选D.30.设a与b异号且都不为0,则|a+b|=||a|﹣|b||,当|a|>|b|时为|a|﹣|b|,当|a|≤|b|时为|b|﹣|a|.不满足条件|a|+|b|=|a+b|,当a与b同号时,可知|a|+|b|=|a+b|成立;当a与b至少一个为0时,|a|+|b|=|a+b|也成立.故选B.31. ∵|m|=4,|n|=3,∴m=±4,n=±3,又∵mn<0,∴当m=4时,n=﹣3,m+n=1,当m=﹣4时,n=3,m+n=﹣1,故选B.32.根据图示,知a<0<b<c,∴=++=﹣1+1+1=1.故选A.33.A、若m=﹣3,n=3,|m|=|n|,m<n,故结论不成立;B、若m=3,n=﹣4,m≥n,则|m|<|n|,故结论不成立;C、若m<n<0,则|m|>|n|,故结论成立;D、若m=﹣4,n=3,|m|>|n|,则m<n,故结论不成立.故选:C34.绝对值小于4的整数有:±3,±2,±1,0,共7个数.故选D35.绝对值大于1而小于3.5的整数有:2,3,﹣2,﹣3共4个.故选D.36.∵x的绝对值小于1,数轴表示如图:从而知道x+1>0,x﹣1<0;可知|x+1|+|x﹣1|=x+1+1﹣x=2.故选B.37.∵π>3.14,∴3.14﹣π<0,∴|3.14﹣π|=﹣(3.14﹣π)=π﹣3.14.故选:C38.A∵0的绝对值是0,故本选项错误.B∵负数的相反数是正数,故本选项错误.C∵互为相反数的两个数的绝对值相等,故本选项正确.D∵如果两个数的绝对值相等,那么这两个数相等或互为相反数,故本选项错误.故选C.39.A、﹣(﹣5)=5,5的相反数是﹣5,故本选项说法正确;B、3和﹣3的绝对值都为3,故本选项说法正确;C、数轴上右边的数总大于左边的数,故本选项说法错误;D、绝对值大于0的数可能是正数也可能是负数,故本选项说法正确.故选C.40.∵|a|>a,|b|>b,∴a、b均为负数,又∵|a|>|b|,∴a<b.故选B41.∵|x|≤1,|y|≤1,∴﹣1≤x≤1,﹣1≤y≤1,故可得出:y+1≥0;2y﹣x﹣4<0,∴|y+1|+|2y﹣x﹣4|=y+1+(4+x﹣2y)=5+x﹣y,当x取﹣1,y取1时取得最小值,所以|y+1|+|2y﹣x﹣4|min=5﹣1﹣1=3.故答案为:342.∵千位数与个位数之差的绝对值为2,可得“数对”,分别是:(0,2),(1,3),(2,4),(3,5),(4,6),(5,7),(6,8),(7,9),∵(0,2)只能是千位2,个位0,∴一共15种选择,∴从1000到9999中,四位数码各不相同,且千位数与个位数之差的绝对值为2的四位数有15×8×7=840个.43.最大的负整数是﹣1,绝对值最小的有理数是0.44.最大的负整数是﹣1,绝对值最小的数0,最小的正整数是1∵﹣1+0+1=0,∴最大的负整数,绝对值最小的数,最小的正整数的和是0正确.故答案为:√45.∵x+y=0,∴x、y互为相反数.∴|x|=|y|.故答案为(√)46.绝对值等于10的数是±10.47.若|﹣a|=5,则a=±5.48.由题意得:从b≤x≤20得知,x﹣b≥0 x﹣20≤0 x﹣b﹣20≤0,A=|x﹣b|+|x﹣20|+|x﹣b﹣20|=(x﹣b)+(20﹣x)+(20+b﹣x)=40﹣x,又x最大是20,则上式最小值是40﹣20=20.49.﹣3.5的绝对值是 3.5;绝对值是5的数是±5;绝对值是﹣5的数是不存在.50.绝对值小于10的正整数有:1、2、3、4、5、6、7、8、9,和为:1+2+3+4+5+6+7+8+9=45.故本题的答案是:45.51.①当x≤﹣3时,原式=2﹣x﹣x﹣3=﹣2x﹣1;②当﹣3<x<2时,原式=2﹣x+x+3=5;③当x≥2时,原式=x﹣2+x+3=2x+1;∴最小值为552.∵a,b为有理数,|a|=2,|b|=3,∴a=±2,b=±3,当a=+2,b=+3时,a+b=2+3=5;当a=﹣2,b=﹣3时,a+b=﹣2﹣3=﹣5;当a=+2,b=﹣3时,a+b=2﹣3=﹣1;当a=﹣2,b=+3时,a+b=﹣2+3=1.故答案为:±5、±1.53.∵|x|=3,|y|=6,∴x=±3,y=±6,∵xy<0,∴x=3,y=﹣6,或x=﹣3,y=6,①x=3,y=﹣6时,原式=2×3+3×(﹣6)=6﹣18=﹣12;②x=﹣3,y=6,原式=2×(﹣3)+3×6=﹣6+18=1254.∵2005=2×1003﹣1,∴共有1003个数,∴x=502×2﹣1=1003时,两边的数关于|x﹣1003|对称,此时的和最小,此时|x﹣1|+|x﹣3|+…+|x﹣2003|+|x﹣2005|=(x﹣1)+(x﹣3)…+(1001﹣x)+(1003﹣x)+(1005﹣x)+…+(2005﹣x)=2(2+4+6+ (1002)=2×=503004.故答案为:503004.55.∵在数轴上原点右边的数大于0,左边的数小于0,右边的数总大于左边的数可知,b<a<0,∴|a﹣b|=a﹣b,|a+b|=﹣a﹣b,∴原式=a﹣b﹣a﹣b=﹣2b56. ∵a=12,b=﹣3,∴c=﹣(|b|﹣3)=﹣(3﹣3)=0,∴|a|+2|b|+|c|=12+2×3+0=18.57.由数轴,得b>c>0,a<0,∴c﹣b<0,a﹣c<0,b﹣a>0,∴|a|+|c﹣b|+|a﹣c|+|b﹣a|=﹣a﹣(c﹣b)﹣(a﹣c)+b﹣a=﹣a﹣c+b﹣a+c+b﹣a =2b﹣3a.58.∵|x+3|=|x﹣(﹣3)|,∴|x+3|可看成x与﹣3的点在数轴上的距离;(1)x=0时,|x﹣2|+|x+3|=|﹣2|+|3|=2+3=5;(2)|x+1|+|x﹣5|表示x到点﹣1与到点5的距离之和,当﹣1≤x≤5时,A有最小值,即表示数5的点到表示数﹣1的点的距离,所以A的最小值为6;(3)|x+2|+|x|+|x﹣1|表示x到数﹣2、0、1三点的距离之和,所以当x=0时,它们的距离之和最小,即B的最小值为3,此时x=0;(4)|x+5|+|x+3|+|x+1|+|x﹣2|表示x到数﹣5、﹣3、﹣1、2四点的距离之和,所以当﹣3≤x≤﹣1时,它们的距离之和有最小值9,即|x+5|+|x+3|+|x+1|+|x﹣2|的最小值为9.59.∵ab<0,∴a和b中有一个正数,一个负数,不妨设a>0,b<0,原式=1﹣1﹣1=﹣160.(1)|5﹣(﹣2)|=|5+2|=7;(2)|x+1|表示x与﹣1之差的绝对值;(3)∵|x+5|表示x与﹣5两数在数轴上所对的两点之间的距离,|x﹣2|表示x与2两数在数轴上所对的两点之间的距离,而﹣5与2两数在数轴上所对的两点之间的距离为2﹣(﹣5)=7,|x+5|+|x﹣2|=7,∴﹣5≤x≤2.故答案为7;x,﹣1;﹣5≤x≤2.。

绝对值练习题及答案

绝对值练习题及答案

绝对值练习题及答案一、选择题1. 绝对值的定义是:对于任意实数x,其绝对值表示为|x|,满足以下哪个条件?A. x ≥ 0B. x ≤ 0C. x > 0D. x < 0答案:A2. 计算绝对值 |-5| 的结果是多少?A. 5B. -5C. 0D. 1答案:A3. 如果 |x - 3| = 4,那么 x 的可能值是:A. -1B. 7C. 1D. 3答案:B, C二、填空题4. 绝对值 |-8| 等于 _______。

答案:85. 如果 |x + 2| = 3,那么 x 的值可以是 _______ 或 _______。

答案:1,-56. 绝对值不等式 |x - 4| < 2 的解集是 _______。

答案:2 < x < 6三、解答题7. 解绝对值方程 |x - 5| = 6。

解:由绝对值的定义,我们有 x - 5 = 6 或 x - 5 = -6。

解得 x = 11 或 x = -1。

8. 已知 |3x + 1| = 8,求 x 的值。

解:由绝对值的定义,我们有 3x + 1 = 8 或 3x + 1 = -8。

解得 x = 7/3 或 x = -3。

9. 证明:对于任意实数 a 和 b,有|a + b| ≤ |a| + |b|。

证明:考虑 a 和 b 的正负情况,我们可以将问题分为四种情况:- 当a ≥ 0 且 b ≥ 0 时,|a + b| = a + b = |a| + |b|。

- 当a ≥ 0 且 b < 0 时,|a + b| = a - |b| ≤ |a| + |b|。

- 当 a < 0 且b ≥ 0 时,|a + b| = |b| - a ≤ |a| + |b|。

- 当 a < 0 且 b < 0 时,|a + b| = -(a + b) = |a| + |b|。

综上,对于任意实数 a 和 b,都有|a + b| ≤ |a| + |b| 成立。

绝对值练习题(精)100道

绝对值练习题(精)100道

绝对值综合练习题一1、有理数的绝对值一定是()2、绝对值等于它本身的数有()个3、下列说法正确的是()A、—|a|一定是负数B只有两个数相等时它们的绝对值才相等C、若|a|=|b|,则a与b互为相反数D、若一个数小于它的绝对值,则这个数为负数4.()A、a>|b|B、a<bC、|a|>|b|D、|a|<|b|5、相反数等于-5的数是______,绝对值等于5的数是________。

6、-4的倒数的相反数是______。

7、绝对值小于2的整数有________。

8、若|-x|=2,则x=____;若|x-3|=0,则x=_ __;若|x-3|=1,则x=_______。

9、实数a_______。

10、已知|a|+|b|=9,且|a|=2,求b的值。

11、已知|a|=3,|b|=2,|c|=1,且a<b<c,求a、b、c的值。

12、如果m>0, n<0, m<|n|,那么m,n,-m, -n的大小关系()13、如果,则的取值范围是()A.>O B.≥O C.≤O D.<O14、绝对值不大于11.1的整数有()A.11个B.12个C.22个D.23个15、│a│= -a,a一定是()A、正数B、负数C、非正数D、非负数16、有理数m,n在数轴上的位置如图,17、若|x-1| =0,则x=__________,若|1-x |=1,则x=_______.18、如果,则,.19、已知│x+y+3│=0, 求│x+y│的值。

20、│a-2│+│b-3│+│c-4│=0,则a+2b+3c=21、如果a,b互为相反数,c,d互为倒数,x的绝对值是1,求代数式x ba +x2+cd的值。

22、已知│a│=3,│b│=5,a与b异号,求│a-b│的值。

23.如果 a,b互为相反数,那么a + b = ,2a + 2b = .24. a+5的相反数是3,那么, a = .26、若X的相反数是—5,则X=___;若—X的相反数是—3.7,则X=_______bca127、若一个数的倒数是1.2,则这个数的相反数是________,绝对值是________ 28、若—a=1,则a=____; 若—a=—2,则a=_______;如果—a=a,那么a=_______ 29、已知|x —4|+|y+2|=0,求2x —|y|的值。

绝对值练习题及答案

绝对值练习题及答案

绝对值练习题及答案绝对值是数学中常见的概念之一,用来表示一个数与零的距离。

在解决实际问题中,经常会遇到有关绝对值的计算和应用。

本文将提供一些绝对值练习题,并提供详细的解答。

请阅读以下内容,进一步理解和掌握绝对值的概念和运算。

练习题1:计算以下数的绝对值:1. |-5|2. |3.14|3. |-2 - 7|4. |10 - 15 + 20 - 25|练习题2:解决以下不等式,并确定绝对值的解集:1. |x - 3| > 52. |2x + 1| ≤ 83. |5 - 2x| = 34. |3x + 2| > |4x + 1|练习题3:求以下函数的定义域与值域:1. f(x) = |x - 3|2. g(x) = |x + 2| + 13. h(x) = |2x - 5|练习题4:解决以下方程,并确定绝对值的解集:1. |x - 2| = 42. |3x + 1| = 53. |2x - 3| + 1 = 24. |4x + 5| - |x + 2| = 10答案及解析:练习题1:1. |-5| = 52. |3.14| = 3.143. |-2 - 7| = |-9| = 94. |10 - 15 + 20 - 25| = |-10| = 10练习题2:1. |x - 3| > 5解:根据不等式性质,将绝对值拆分为两个等式:x - 3 > 5 或 x - 3 < -5得到:x > 8 或 x < -2解集为:(-∞, -2) ∪ (8, +∞)2. |2x + 1| ≤ 8解:根据不等式性质,将绝对值拆分为两个等式:2x + 1 ≤ 8 或2x + 1 ≥ -8得到:x ≤ 7/2 或x ≥ -9/2解集为:(-∞, -9/2] ∪ [-7/2, +∞)3. |5 - 2x| = 3解:根据绝对值的定义,将等式拆分为两个等式: 5 - 2x = 3 或 -(5 - 2x) = 3得到:x = 1 或 x = -4解集为:{1, -4}4. |3x + 2| > |4x + 1|解:根据绝对值的性质,将不等式拆分为两个等式: 3x + 2 > 4x + 1 或 3x + 2 < -(4x + 1)得到:x < 1 或 x > -1解集为:(-∞, -1) ∪ (1, +∞)练习题3:1. f(x) = |x - 3|定义域:所有实数值域:大于等于0的实数2. g(x) = |x + 2| + 1定义域:所有实数值域:大于等于1的实数3. h(x) = |2x - 5|定义域:所有实数值域:大于等于0的实数练习题4:1. |x - 2| = 4解:根据绝对值的定义,将等式拆分为两个等式: x - 2 = 4 或 -(x - 2) = 4得到:x = 6 或 x = -2解集为:{6, -2}2. |3x + 1| = 5解:根据绝对值的定义,将等式拆分为两个等式:3x + 1 = 5 或 -(3x + 1) = 5得到:x = 4/3 或 x = -6/3解集为:{4/3, -2}3. |2x - 3| + 1 = 2解:根据绝对值的定义,将等式拆分为两个等式:2x - 3 + 1 = 2 或 -(2x - 3) + 1 = 2得到:x = 2 或 x = -1解集为:{2, -1}4. |4x + 5| - |x + 2| = 10解:根据绝对值的性质,将等式拆分为四个等式:4x + 5 - (x + 2) = 10 或 4x + 5 + (x + 2) = -104x + 5 - (-(x + 2)) = 10 或 4x + 5 + (-(x + 2)) = -10得到:x = 3 或 x = -6解集为:{3, -6}通过以上的练习题及答案,希望你对绝对值的概念、计算和应用有了更深入的理解。

绝对值练习基础篇提高篇拓展篇

绝对值练习基础篇提高篇拓展篇

绝对值练习基础篇、提高篇,拓展篇(一)绝对值练习基础篇1、 ______5=-;______312=-;______31.2=-;______=+π. 2、 ______510=-+-;______36=-÷-;______5.55.6=---3、 2-的相反数是 2--的倒数是 。

4、 -0.02的绝对值的相反数是5、 如果3-=a ,则______=-a ,______=a 。

6、 绝对值为3的数为____________ 。

7、 一个数的绝对值是,那么这个数为______。

8、 -|-6/7|=________________。

(4)--+=___________。

9、 12的相反数和-7的绝对值的和是____________________。

10、 绝对值小于π的整数有______________________。

11、 绝对值小于3.1的所有非负整数为 。

12、 绝对值不大于2005的所有整数的和是 ,积是 。

13、 7=x ,则______=x ; 7=-x ,则______=x 。

14、 绝对值不大于11.1的整数有 个。

15、 若4x -=,则x =__________若31x -=,则x =__________16、 在-(-2),-|-2|,(-2)2,-22四个数中,负数有_________个17、 有理数的绝对值一定是 ,绝对值等于它本身的数有 。

18、 若|x|=-x ,则x 是_________数;19、 已知a=-8 b=-6,求-│b ∣-│-a ∣的值为 。

3220、 已知a<0,ab<0,且│a │>│b │,试在数轴上简略地表示出a ,b ,-a 和-b 的位置,并用“<”号将它们连接起来为 。

(二)绝对值练习提高篇A 绝对值的非负性,平方根的非负性1、 若|a+2|+|b -1|=0,则a= b= ;2、 若023=-++b a ,则b a 的值为 。

绝对值练习题(经典)100道

绝对值练习题(经典)100道

绝对值练习题(经典)100道绝对值综合练习题1、有理数的绝对值⼀定是_________。

2、绝对值等于它本⾝的数有________个。

3、下列说法正确的是()A、—|a|⼀定是负数B、只有两个数相等时它们的绝对值才相等C、若|a|=|b|,则a与b互为相反数D、若⼀个数⼩于它的绝对值,则这个数为负数4.若有理数在数轴上的对应点如下图所⽰,则下列结论中正A、a>|b|B、aC、|a|>|b|D、|a|<|b|5、相反数等于-5的数是______,绝对值等于5的数是________。

6、-4的倒数的相反数是______。

7、绝对值⼩于2的整数有________。

8、若|-x|=2,则x=____;若|x-3|=0,则x=______;若|x-3|=1,则x=_______。

10、已知|a|+|b|=9,且|a|=2,求b的值。

11、已知|a|=3,|b|=2,|c|=1,且a12、如果m>0, n<0, m<|n|,那么m,n,-m, -n的⼤⼩关系_________________.13、如果,则的取值范围是()A.>O B.≥O C.≤O D.<O 14、绝对值不⼤于11.1的整数有()A.11个B.12个C.22个D.23个15、│a│= -a,a⼀定是()A、正数B、负数C、⾮正数D、⾮负数16、有理数m,n在数轴上的位置如图,17、若|x-1| =0,则x=__________,若|1-x |=1,则x=_______.18、如果,则,.19、已知│x+y+3│=0, 求│x+y│的值。

20、│a-2│+│b-3│+│c-4│=0,则a+2b+3c=21、如果a,b互为相反数,c、d互为倒数,x的绝对值是1,求代数式xb a ++x 2+cd 的值。

22、已知│a │=3,│b │=5,a 与b 异号,求│a -b │的值。

23、如果 a,b 互为相反数,那么 a + b = ,2a + 2b= .24、a+5的相反数是3,那么, a = .25、若X 的相反数是—5,则X=______;若—X 的相反数是—3.7,则X=______26、若⼀个数的倒数是1.2,则这个数的相反数是________,绝对值是________27、若—a=1,则a=____; 若—a=—2,则a=_______;如果—a=a,那么a=_______28、已知|X —4|+|Y+2|=0,求2X —|Y|的值。

完整版)绝对值练习题(含答案)

完整版)绝对值练习题(含答案)

完整版)绝对值练习题(含答案)2.3 绝对值一、选择题1.下列说法中正确的个数是(。

)1) 一个正数的绝对值是它本身;2) 一个非正数的绝对值是它的相反数;3) 两个负数比较,绝对值大的反而小;4) 一个非正数的绝对值是它本身。

A。

1个 B。

2个 C。

3个 D。

4个2.若 -│a│ = -3.2,则 a 是(。

)A。

3.2 B。

-3.2 C。

±3.2 D。

以上都不对3.若│a│=8,│b│=5,且 a+b>0,那么 a-b 的值是(。

) A。

3 或 13 B。

13 或 -13 C。

3 或 -3 D。

-3 或 -134.一个数的绝对值等于它的相反数的数一定是(。

)A。

负数 B。

正数 C。

负数或零 D。

正数或零5.当 a<0 时,化简 a+|a| 的结果为(。

)A。

3a/2 B。

0 C。

-1 D。

-2a/3二、填空题6.绝对值小于 5 而不小于 2 的所有整数有_________。

4,-3,-2,2,3,47.绝对值和相反数都等于它本身的数是_________。

8.已知│a-2│+(b-3)+│c-4│=0,则 3a+2b-c=_________。

179.比较下列各对数的大小(用“)”或“〈”填空〉1) -3/2 〈 -3211/1000.2) -1 〈 -1.167.3) -5/369 〈 |-1|。

10.有理数 a,b,c 在数轴上的位置如图所示:试化简:│a+b│-│b-1│-│a-c│-│1-c│=___________。

2三、解答题11.计算1) │-6.25│+│+2.7│=6.25+2.7=8.95;2) |-8|+|-3|+|-20|=8+3+20=31.12.比较下列各组数的大小:1) -1/2 〈 -2/3 〈 -0.3;2) -2/33 〈 -2 〈 -3/10.13.已知│a-3│+│-b+5│+│c-2│=0,计算 2a+b+c 的值。

a+b+c=0,代入得 2a+b+c=2a-2b+8.14.如果 a、b 互为相反数,c、d 互为倒数,x 的绝对值是1,求代数式 x+(a+b)x-•cd 的值。

绝对值练习题及答案

绝对值练习题及答案

绝对值练习题及答案1. 计算下列各数的绝对值:- |-5|- |3|- |-12|- |0|2. 如果一个数的绝对值是5,那么这个数可能是什么?3. 解释绝对值的性质,并给出一个例子。

4. 计算以下表达式的值:- |-7 - 3|- |-8 + 2|5. 如果 |a| = 4,a 可能等于什么?6. 一个数的绝对值是它本身,这个数可能是什么?7. 计算以下表达式的值:- |-x| 如果 x = 3- |-y| 如果 y = -48. 如果 |x - 5| = 3,求 x 的所有可能值。

9. 一个数的绝对值是它相反数的3倍,这个数是什么?10. 计算以下表达式的值:- |-2x| 如果 x = -1答案1. 计算结果如下:- |-5| = 5- |3| = 3- |-12| = 12- |0| = 02. 如果一个数的绝对值是5,那么这个数可能是5或-5。

3. 绝对值的性质包括:- 非负性:绝对值总是非负的。

- 正数的绝对值是其本身。

- 负数的绝对值是其相反数。

- 零的绝对值是零。

例子:|-7| = 7,|7| = 7,|0| = 0。

4. 计算结果如下:- |-7 - 3| = |-10| = 10- |-8 + 2| = |-6| = 65. 如果 |a| = 4,a 可能等于4或-4。

6. 如果一个数的绝对值是它本身,这个数可能是正数或零。

7. 计算结果如下:- |-x| = 3 当 x = 3- |-y| = 4 当 y = -48. 如果 |x - 5| = 3,那么 x - 5 = 3 或 x - 5 = -3,解得 x = 8 或 x = 2。

9. 如果一个数的绝对值是它相反数的3倍,设这个数为 a,那么 |a| = 3|-a|,解得 a = 0。

10. 计算结果如下:- |-2x| = 2 当 x = -1通过这些练习题,学生可以更好地理解绝对值的概念,并提高解决相关问题的能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

9.绝对值大于 2.5 小于 7.2 的所有负整数为 _____.绝对值小于 4 的整数有 _______.
10.将下列各数由小到大排列顺序是 _____.
16.某班举办“迎七一”知识竞赛,规定答对一题得
10 分,不答得 0 分,答
21
1
- 3 , 5 , | - 2 | , 0, | - 5.1|
③若 a<0, 则│ a│ =- a.
二、利用数轴和绝对值比较大小
1. ①在数轴上找出表示两点的数;②利用“右边的数大于左边的数”进
行比较 .
2. 利用绝对值,“正数都大于0,负数都小于0,正数大于一切负数,
两个负数,绝对值大的反而小 .
3. 非负数:正数与零的统称。
非正数:负数和 0 的统称
非负整数:正整数和 0 统称
减少的
套数为负数):
星期





x
x
3.若 x =1,求 x.若 x =- 1,求 x.
4/ 5
4. 试比较 2a 和 3a 的大小 .
5. 如果 a =4, b =3, 且 a>b, 求 a,b 的值 .
绝对值基础练习题
5/ 5
2/ 5
知识点三、绝对值(二)
1.若 a=-3 则 - a =( )
A.-3 B.3 C.-3
或 3 D. 以上都不对
2.下列各组数中,互为相反数的是
22 与
A. 3
3 B.
23 与
3
2 C.
2与 2 3 3 D.
2与 3 32
3. 用“ >”连接, 2 ,- 3 , 0,正确的是(

A. 2 >- 3 >0 B.
D.一个数的绝对值是它的相反数,则这个数一定是负数
9.下列结论正确的是(

A.若 |x|=|y| ,则 x=- y
B.若 x=-y,则 |x|=|y|
C.若 |a| <|b| ,则 a< b
D.若 a< b,则 |a| < |b|
1
1
10. | 2 a|= - 2 a,则 a 一定是(

A.负数
C.非正数
13
5
5
6
17
( 1) 24
8 ( 2) 6
7
21
1 17.把- 3.5 、 | -2| 、- 1.5、 |0| 、 3 3 、 | - 3.5| 记在数轴上,并按从小到大的
顺序排列出来.
四、解答题 1.若 |x - 2|+|y+3|+|z -5|=0
计算:( 1) x, y,z 的值 . ( 2)求 |x|+|y|+|z|
5.绝对值等于 5 的数是 _____,它们互为 _____.
增减
+7
-3
+4
-2
-5
6.若 b< 0 且 a=|b| ,则 a 与 b 的关系是 ______. 7 .一个数大于另一个数的绝对值,则这两个数的和一定
_____0 (填“>”或
请问产量最少的是星期几?生产量是多少?
“<”).
8.如果 |a| > a,那么 a 是 _____.
11.一个数在数轴上对应点到原点的距离为
A.- m
B. m C .±m
B.正数
D.非负数
m,则这个数为(

D. 2m
12.如果一个数的绝对值等于这个数的相反数,那么这个数是(
A.正数
B.负数
C.正数、零
D.负数、零
13.下列说法中,正确的是(

A.一个有理数的绝对值不小于它自身
B.若两个有理数的绝对值相等,则这两个数相等
2.下面说法中正确的是(

A.若
,则
B.若
,则
C.若
,则
D.若
,则
D.这一点表示的数是- 5
二、填空题
1.已知某数的绝对值是
,则该数是 ______或 _______;
2.绝对值最小的有理数是 ________;
3.一个数的相反数是 8,则这个数的绝对值是 _________;
4.已知数轴上有一点到原点的距离是 3,则这点所表示的数的绝对值是 ________,这点所表示的数是 ________.
C.若两个有理数的绝对值相等,则这两个数互为相反数
D.- a 的绝对值等于 a
二、填空题
1.互为相反数的两个数的绝对值 _____.
2.一个数的绝对值越小,则该数在数轴上所对应的点,离原点越
2 3.- 3 的绝对值是 _____.
4.绝对值最小的数是 _____.
) _____.
3/ 5
绝对值基础练习题
绝对值基础练习
绝对值)
一、绝对值:数轴上表示数 a 的点与原点的距离叫做数 a 的绝对值 .
正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0
由于距离总是正数或零,所以有理数的绝对值不可能是负数,即对于任
意的有理数 a,总有│ a│≥0 .
性质:用数学式子表示: ①若 a>0,则│ a│= a;②若 a=0, 则│ a│=0;
2 >0>- 3
C. - 3 < 2 < 0 D.0< -
4. 下列各式中,正确的是
3< 2
A. -
16
>0 B.
0.2 0.2
>
C.
45 7 > 7 D.
6
<0
11
,1,
5. 在 -0.1 , 2 2 这四个数中,最小的一个数是(

A. -0.1 B.
1
1
2 C. 1 D. 2
6.任何一个有理数的绝对值一定(
三、判断题
1/ 5
1.有理数的绝对值总是正数.(

2.有理数的绝对值就等于这个有理数的相反数.(

3.两个有理数,绝对值大的数反而小.(

4.两个正有理数,绝对值大的数较小.(

5.


四、解答题
1.求下列各数的绝对值,并把它们用“<”连起来
- 2.37 , 0,
,- 385.7 .
2.把下列一组数用“>”连起来
的值.
14.已知 a =2, b =2, c =3,且有理数 a, b, c 计算 a+b+c 的值。
在数轴上的位置如图
2-5 所示,
2.若 2<a<4,化简 |2 - a|+|a - 4| .
15.某制衣厂本周计划每日生产 100 套西服,由于工人实行轮休,每日上班人数不
一定相等,实行每日生产量与计划量相比情况如下表(增加的套数为正数,
9
6
( 4)- 7 _____- 5
7. 计算
1 ( 1)| -2| ×(- 2) =_____( 2) | - 2 | ×5.2=_____
11 ( 3)| - 2 | - 2 =_____ ( 4)- 3- | -5.3|=_____
8.(1)
1
5
=_______;
3.5
=_______;
0
=_______;(2)-
错一题扣 10 分,今有甲、乙、丙、丁四名同学所得分数,分别为
+50,+20,0,-
30,请问哪个同学分数最高,哪个最低,为什么?最高分高出最低分多少?
11.如果- |a|=|a| ,那么 a=_____. 12.已知 |a|+|b|+|c|=0 ,则 a=_____, b=_____, c=_____. 13.比较下列各数的大小(要有解答过程):
非正整数:负整数和 0 的统称
一、选择题
A.若 和 都是负数,且有
,则
B.若 和 都是负数,且有
,则
C.若
,且
,则
D.若
都是正数,且且
,则
4.数轴上有一点到原点的距离是 5,则(

A.这一点表示的数的相反数是 5
B.这一点表示的数的绝对值是 5
C.这一点表示的数是 5
1.如果
,则(

A.
B.
C.
D.
3 =_______;- 0.37 =_______;
;( 4)
1
6.5 5
(3)
8 + 2 =_______; 6 3 =_______;
2 =_______.
511
6
(1) 3 + 10 1 ;( 2) 24 3 2 ;( 3) 6
2
3
.
9. 在数轴上表示下列各数:
11
3
(1) 2 ;( 2) 0 ;( 3)绝对值是 1.5 的负数; ( 4)绝对值是 4 的负数。

A.大于 0
B.小于 0
C.不大于 0
D.不小于 0
7.若 a> 0, b< 0,且 |a| <|b| ,则 a+b 一定是(

A.正数
B.负数
C.非负数
D.非正数
8.下列说法正确的是(

A.一个有理数的绝对值一定大于它本身
绝对值基础练习题
B.只有正数的绝对值等于它本身
C.负数的绝对值是它的相反数
- 999,

, 0.01 ,

3.计算下列各式的值
( 1)
;( 2)
;( 3)
4.如图,比较 和 的绝对值的大小.
5.计算下面各式的值
绝对值基础练习题 (1)-(- 2);( 2)-(+ 2).
6. 比较大小(填写“>”或“<”号)
相关文档
最新文档