相似三角形的综合应用(培优提高)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相似三角形的应用
【学习目标】
1、探索相似三角形的性质,能运用性质进行有关计算.
2、通过典型实例认识现实生活中物体的相似,能运用图形相似的知识解决一些简单的实际问题(如何把实际问题抽象为数学问题).
【知识回顾】
一、相似三角形的性质
(1)对应边的比相等,对应角相等.
(2)相似三角形的周长比等于相似比. (3)相似三角形的面积比等于相似比的平方......
. (4)相似三角形的对应边上的高、中线、角平分线的比等于相似比.
二、相似三角形的应用:
1、利用三角形相似,可证明角相等;线段成比例(或等积式);
2、利用三角形相似,求线段的长等
3、利用三角形相似,可以解决一些不能直接测量的物体的长度.如求河的宽度、求建筑物的高度等.
【典型例题】
例1:如图,△ABC 是一块锐角三角形余料,边BC=120mm , 高AD=80mm , 要把它加工成矩形零件,使一边在BC 上,其余两个顶点分别在边AB 、AC 上, (1)若这个矩形是正方形,那么边长是多少? (2)若这个矩形的长是宽的2倍,则边长是多少?
【同步练习】如图,△ABC 是一块三角形余料,AB=AC=13cm ,BC=10cm ,现在要把它加工成正方形零件,使正方形的一边在△ABC 的边上,其余两个顶点分别在三角形另外两条边上.试求正方形的边长是多少?
例2:阅读以下文字并解答问题:
在“测量物体的高度” 活动中,某数学兴趣小组的4名同学选择了测量学校里的四棵树的高
A
B
C
Q
M D N
P
E
度.在同一时刻的阳光下,他们分别做了以下工作:
小芳:测得一根长为1米的竹竿的影长为0.8米,甲树的影长为4.08米(如图1). 小华:发现乙树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上(如图2),墙壁上的影长为1.2米,落在地面上的影长为2.4米.
小丽:测量的丙树的影子除落在地面上外,还有一部分落在教学楼的第一级台阶上(如图3),测得此影子长为0.2米,一级台阶高为0.3米,落在地面上的影长为4.4米.
小明:测得丁树落在地面上的影长为2.4米,落在坡面上影长为3.2米(如图4).身高是1.6m 的小明站在坡面上,影子也都落坡面上,小芳测得他的影长为2m .
(1)在横线上直接填写甲树的高度为
米. (2)求出乙树的高度(画出示意图).
(3)请选择丙树的高度为( )
A 、6.5米
B 、5.75米
C 、6.05米
D 、7.25米
(4)你能计算出丁树的高度吗?试试看.
【同步练习】如图,有一路灯杆AB(底部B 不能直接到达),在灯光下,小明在点D 处测得自己的影长DF =3m ,沿BD 方向到达点F 处再测得自己得影长FG =4m ,如果小明得身高为1.6m ,求路灯杆AB 的高度.
图1 图2
图3
图4
例3:如图,已知AD是△ABC的中线,M是边AC上的一动点,=
CM nAM,BM交AD于N点。
⑴如图①,若1
n=
,则=
AN
ND
。如图②,若2
n=,则=
AN
ND
。
如图③,若3
n=,则=
AN
ND
。
⑵猜想,
AN
ND
与n存在怎样的关系?并证明你的结论。
⑶当n=时,恰有
AN CM
ND AM
=
【同步练习】如图,DE是△ABC的中位线,M是DE的中点,CM的延长线交AB于点N,则S△DMN∶S四边形ANME =
例4:如图,在ABC
△中,9010
A BC ABC
∠==
°,,△的面积为25,点D为AB边上的任意一点(D不与A、B重合),过点D作DE BC
∥,交AC于点E.设DE x
=,以DE为折线将ADE
△翻折(使ADE
△落在四边形DBCE所在的平面内),所得的A DE
'
△与梯形DBCE重叠部分的面积记为y.
(1)用x表示ADE
△的面积;
(2)求出05
x
<≤时y与x的函数关系式;
(3)求出510
x
<<时y与x的函数关系式;
(4)当x取何值时,y的值最大?最大值是多少?
【同步练习】如图,已知矩形ABCD的边长AB=2,BC=3,点P是AD边上的一动点(P异于A、D),Q是BC边上的任意一点. 连AQ、DQ,过P作PE∥DQ交AQ于E,作PF∥AQ交DQ
B C
A
E
A'
D
B C
A
于F.
(1)求证:△APE∽△ADQ;
(2)设AP的长为x,试求△PEF的面积S△PEF关于x的函数关系式,并求当P在何处时,S△PEF 取得最大值?最大值为多少?
例5:等腰△ABC,AB=AC=8,∠BAC=120°,P为BC的中点,小慧拿着含30°角的透明三角板,使30°角的顶点落在点P,三角板绕P点旋转.
(1)如图a,当三角板的两边分别交AB、AC于点E、F时.求证:△BPE~△CFP;
(2)操作:将三角板绕点P旋转到图b情形时,三角板的两边分别交BA的延长线、边AC于点E、F.
①探究1:△BPE与△CFP还相似吗?(只需写出结论)
②探究2:连结EF,△BPE与△PFE是否相似?请说明理由;
③设EF=m,△EPF的面积为S,试用m的代数式表示S.