现代信号处理复习要点总结

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《信号处理技术及应用》复习要点总结

题型:10个简答题,无分析题。前5个为必做题,后面出7个题,选做5个,每个题10分。

要点:

第一章:几种变换的特点,正交分解,内积,基函数;

第二章:信号采样中的窗函数与泄露,时频分辨率,相关分析及应用(能举个例子最好)

第三章:傅里叶级数、傅里叶变换、离散傅里叶变换(DFT)的思想及公式,FFT校正算法、功率谱密度函数的定义,频谱细化分析,倒频谱、解调分析、时间序列的基本原理(可能考其中两个)第四章:一阶和二阶循环统计量的定义和计算过程,怎么应用?

第五章:多分辨分析,正交小波基的构造,小波包的基本概念

第六章:三种小波各自的优点,奇异点怎么选取

第七章:二代小波提出的背景及其优点,预测器和更新器系数计算方法,二代小波的分解和重构,定量识别的步骤

第八章:EMD基本概念(瞬时频率和基本模式分量)、基本原理,HHT的基本原理和算法。看8.3小节。

信号的时域分析

信号的预处理

传感器获取的信号往往比较微弱,并伴随着各种噪声。

不同类型的传感器,其输出信号的形式也不尽相同。

为了抑制信号中的噪声,提高检测信号的信噪比,便于信息提取,须对传感器检测到的信号进行预处理。

所谓信号预处理,是指在对信号进行变换、提取、识别或评估之前,对检测信号进行的转换、滤波、放大等处理。

常用的信号预处理方法

信号类型转换

信号放大

信号滤波

去除均值

去除趋势项

理想低通滤波器具有矩形幅频特性和线性相位特性。

经典滤波器

定义:当噪声和有用信号处于不同的频带时,噪声通过滤波器将被衰减或消除,而有用信号得以保留

现代滤波器

当噪声频带和有用信号频带相互重叠时,经典滤波器就无法实现滤波功能

现代滤波器也称统计滤波器,从统计的概念出发对信号在时域进行估计,在统计指标最优的意义下,用估计值去逼近有用信号,相应的噪声也在统计最优的意义下得以减弱或消除

将连续信号转换成离散的数字序列过程就是信号的采样,它包含了离散和量化两个主要步骤

采样定理:为避免混叠,采样频率ωs必须不小于信号中最高频率ωmax的两倍,一般选取采样频率ωs为处理信号中最高频率的2.5~4倍

量化是对信号采样点取值进行数字化转换的过程。量化结果以一定位数的数字近似表示信号在采样点的取值。

信号采样过程须使用窗函数,将无限长信号截断成为有限长度的信号。

从理论上看,截断过程就是在时域将无限长信号乘以有限时间宽度的窗函数

数字信号的分辨率包括时间分辨率和频率分辨率

数字信号的时间分辨率即采样间隔ρt,它反映了数字信号在时域中取值点之间的细密程度

数字信号的频率分辨率为ρω=2π/T

t e t x X t j d )()(ωω-+∞

-⎰

=

频率分辨率表示了数字信号的频谱在频域中取值点之间的细密程度 常用的时域参数和指标

1) 均值;2) 均方值;3) 均方根值;4) 方差; 5) 标准差;6) 概率密度函数;7) 概率分布函数; 8) 联合概率密度函数等

有量纲参数指标包括方根幅值、平均幅值、均方幅值和峰值四种 无量纲参数指标包括了波形指标、峰值指标、脉冲指标和裕度指标

有量纲参数指标不但与机器的状态有关,且与机器的运动参数如转速、载荷等有关。

而无量纲参数指标具有对信号幅值和频率变化均不敏感的特点。这就意味着理论上它们与机器的运动条件无关,只依赖于概率密率函数的形状。

所谓相关,就是指变量之间的线性联系或相互依赖关系。

如果信号随自变量时间的取值相似,内积结果就大。反之亦然。可定义信号的相关性度量指标。 ⎰

+=∞→T

T t

t y t x T

R 0

d )()(1

lim

)(ττ

信号x (t )的自相关函数和自相关系数定义为

t

t x t x T

R T

T x d )()(1

lim

)(0

±=∞→ττ

自相关分析的应用

信号中的周期性分量在相应的自相关函数中不会衰减,且保持了原来的周期。因此,自相关函数可从被噪声干扰的信号中找出周期成分

在用噪声诊断机器运行状态时,正常机器噪声是由大量、无序、大小近似相等的随机成分叠加的结果,因此正常机器噪声具有较宽而均匀的频谱。当机器状态异常时,随机噪声中将出现有规则、周期性的信号,其幅度要比正常噪声的幅度大得多。用噪声诊断机器故障时,依靠自相关函数 就可在噪声中发现隐藏的周期分量,确定机器的缺陷所在

互相关函数可定义为

t

t y t x T

R T

T xy d )()(1

lim

)(0

+=∞→ττ

互相关函数 的性质如下

信号的频域分析

傅里叶变换

)(ωX )(ωφ傅里叶逆变换

ω

ωπ

ω

d )

(21)(t j e X t x ⎰

+∞

-=

可写成

)

(|)(|)(ωφωωj e

X X =

| |为信号的连续幅值谱, 为信号的连续相位谱

非周期信号的幅值谱| X(w)|和周期信号的幅值谱 Cn 很相似,但两者是有差别的 Cn|的量纲与信号幅值的量纲一样;

| X(w)|的量纲与信号幅值的量纲不一样,它是单位频带dw 上的幅值。 傅里叶变换的性质

相关文档
最新文档