时间序列实验报告-R

合集下载

用R语言做时间序列分析

用R语言做时间序列分析

用R语言做时间序列分析时间序列(time series )是一系列有序的数据。

通常是等时间间隔的采样数据。

如果不是等间隔,则一般会标注每个数据点的时间刻度。

下面以time series 普遍使用的数据airline passenger 为例。

这是^一年的每月乘客数量,单位是千人次。

Time如果想尝试其他的数据集,可以访问这里:https:///data/list/?q=provider:tsdl可以很明显的看出,airli ne passe nger 的数据是很有规律的。

time series data mining 主要包括decompose (分析数据的各个成分,例如趋势,周期性),prediction (预测未来的值),classificatio n (对有序数据序列的feature 提取与分类),clusteri ng (相似数列聚类)等。

这篇文章主要讨论prediction (forecast,预测)问题。

即已知历史的数据,如何准确预测未来的数据。

先从简单的方法说起。

给定一个时间序列,要预测下一个的值是多少,最简单的思路是什么呢?(1)m ean (平均值):未来值是历史值的平均。

(2)exponential smoothing (指数衰减):当去平均值得时候,每个历史点的权值可以不一样。

最自然的就是越近的点赋予越大的权重。

= aX± + ct^X2 + a3X3+ …或者,更方便的写法,用变量头上加个尖角表示估计值X t+1 = aX t+ (1 - a)X t(3) sn aive :假设已知数据的周期,那么就用前一个周期对应的时刻作为下一个周期对应时刻的预测值(4)d rift :飘移,即用最后一个点的值加上数据的平均趋势tX t+h|t =禺+占2心-斗-丄= x t +占(罠-如Tt = •介绍完最简单的算法,下面开始介绍两个time series 里面最火的两个强大的算法:Holt-Winters 和ARIMA 。

时间序列分析R语言程序

时间序列分析R语言程序

#例2.1 绘制1964——1999年中国年纱产量序列时序图(数据见附录1.2)Data1.2=read.csv("C:\\Users\\Administrator\\De sktop\\附录1.2.csv",header=T)#如果有标题,用T;没有标题用Fplot(Data1.2,type='o')#例2.1续tdat1.2=Data1.2[,2]a1.2=acf(tdat1.2)#例2.2绘制1962年1月至1975年12月平均每头奶牛产奶量序列时序图(数据见附录1.3)Data1.3=read.csv("C:\\Users\\Administrator\\De sktop\\附录1.3.csv",header=F)tdat1.3=as.vector(t(as.matrix(Data1.3)))[1:168 ]#矩阵转置转向量plot(tdat1.3,type='l')#例2.2续acf(tdat1.3) #把字去掉pacf(tdat1.3)#例2.3绘制1949——1998年北京市每年最高气温序列时序图Data1.4=read.csv("C:\\Users\\Administrator\\De sktop\\附录1.4.csv",header=T)plot(Data1.4,type='o')##不会定义坐标轴#例2.3续tdat1.4=Data1.4[,2]a1.4=acf(tdat1.4)#例2.3续Box.test(tdat1.4,type="Ljung-Box",lag=6) Box.test(tdat1.4,type="Ljung-Box",lag=12)#例2.4随机产生1000个服从标准正态分布的白噪声序列观察值,并绘制时序图Data2.4=rnorm(1000,0,1)Data2.4plot(Data2.4,type='l')#例2.4续a2.4=acf(Data2.4)#例2.4续Box.test(Data2.4,type="Ljung-Box",lag=6) Box.test(Data2.4,type="Ljung-Box",lag=12) #例2.5对1950——1998年北京市城乡居民定期储蓄所占比例序列的平稳性与纯随机性进行检验Data1.5=read.csv("C:\\Users\\Administrator\\De sktop\\附录1.5.csv",header=T)plot(Data1.5,type='o',xlim=c(1950,2010),ylim=c (60,100))tdat1.5=Data1.5[,2]a1.5=acf(tdat1.5)#白噪声检验Box.test(tdat1.5,type="Ljung-Box",lag=6) Box.test(tdat1.5,type="Ljung-Box",lag=12)#例2.5续选择合适的ARMA模型拟合序列acf(tdat1.5)pacf(tdat1.5)#根据自相关系数图和偏自相关系数图可以判断为AR (1)模型#例2.5续 P81 口径的求法在文档上#P83arima(tdat1.5,order=c(1,0,0),method="ML")#极大似然估计ar1=arima(tdat1.5,order=c(1,0,0),method="ML") summary(ar1)ev=ar1$residualsacf(ev)pacf(ev)#参数的显著性检验t1=0.6914/0.0989p1=pt(t1,df=48,lower.tail=F)*2#ar1的显著性检验t2=81.5509/ 1.7453p2=pt(t2,df=48,lower.tail=F)*2#残差白噪声检验Box.test(ev,type="Ljung-Box",lag=6,fitdf=1) Box.test(ev,type="Ljung-Box",lag=12,fitdf=1) #例2.5续P94预测及置信区间predict(arima(tdat1.5,order=c(1,0,0)),n.ahead= 5)tdat1.5.fore=predict(arima(tdat1.5,order=c(1,0 ,0)),n.ahead=5)U=tdat1.5.fore$pred+1.96*tdat1.5.fore$seL=tdat1.5.fore$pred-1.96*tdat1.5.fore$seplot(c(tdat1.5,tdat1.5.fore$pred),type="l",col =1:2)lines(U,col="blue",lty="dashed")lines(L,col="blue",lty="dashed")#例3.1.1 例3.5 例3.5续#方法一plot.ts(arima.sim(n=100,list(ar=0.8))) #方法二x0=runif(1)x=rep(0,1500)x[1]=0.8*x0+rnorm(1)for(i in 2:length(x)){x[i]=0.8*x[i-1]+rnorm(1)}plot(x[1:100],type="l")acf(x)pacf(x)##拟合图没有画出来#例3.1.2x0=runif(1)x=rep(0,1500)x[1]=-1.1*x0+rnorm(1)for(i in 2:length(x)){x[i]=-1.1*x[i-1]+rnorm(1)}plot(x[1:100],type="l")acf(x)pacf(x)#例3.1.3方法一plot.ts(arima.sim(n=100,list(ar=c(1,-0.5)))) #方法二x0=runif(1)x1=runif(1)x=rep(0,1500)x[1]=x1x[2]=x1-0.5*x0+rnorm(1)for(i in 3:length(x)){x[i]=x[i-1]-0.5*x[i-2]+rnorm(1)}plot(x[1:100],type="l")acf(x)pacf(x)#例3.1.4x0=runif(1)x1=runif(1)x=rep(0,1500)x[1]=x1 x[2]=x1+0.5*x0+rnorm(1)for(i in 3:length(x)){x[i]=x[i-1]+0.5*x[i-2]+rnorm(1)}plot(x[1:100],type="l")acf(x)pacf(x)又一个式子x0=runif(1)x1=runif(1)x=rep(0,1500)x[1]=x1x[2]=-x1-0.5*x0+rnorm(1)for(i in 3:length(x)){x[i]=-x[i-1]-0.5*x[i-2]+rnorm(1)}plot(x[1:100],type="l")acf(x)pacf(x)#均值和方差smu=mean(x)svar=var(x)#例3.2求平稳AR(1)模型的方差例3.3mu=0mvar=1/(1-0.8^2) #书上51页#总体均值方差cat("population mean and var are",c(mu,mvar),"\n")#样本均值方差cat("sample mean and var are",c(mu,mvar),"\n")#例题3.4svar=(1+0.5)/((1-0.5)*(1-1-0.5)*(1+1-0.5))#例题3.6 MA模型自相关系数图截尾和偏自相关系数图拖尾#3.6.1法一:x=arima.sim(n=1000,list(ma=-2))plot.ts(x,type='l')acf(x)pacf(x)法二x=rep(0:1000)for(i in 1:1000){x[i]=rnorm[i]-2*rnorm[i-1]}plot(x,type='l')acf(x)pacf(x)#3.6.2法一:x=arima.sim(n=1000,list(ma=-0.5))plot.ts(x,type='l')acf(x)pacf(x)法二x=rep(0:1000)for(i in 1:1000){x[i]=rnorm[i]-0.5*rnorm[i-1]}plot(x,type='l')acf(x)pacf(x)##错误于rnorm[i] : 类别为'closure'的对象不可以取子集#3.6.3法一:x=arima.sim(n=1000,list(ma=c(-4/5,16/25))) plot.ts(x,type='l')acf(x)pacf(x)法二:x=rep(0:1000)for(i in 1:1000){x[i]=rnorm[i]-4/5*rnorm[i-1]+16/25*rnorm[i-2] }plot(x,type='l')acf(x)pacf(x)##错误于x[i] = rnorm[i] - 4/5 * rnorm[i - 1] + 16/25 * rnorm[i - 2] :##更换参数长度为零#例3.6续根据书上64页来判断#例 3.7拟合ARMA(1,1)模型,x(t)-0.5x(t-1)=u(t)-0.8*(u-1),并直观观察该模型自相关系数和偏自相关系数的拖尾性。

R语言综合实验报告

R语言综合实验报告

学号:2013310200629姓名:王丹学院:理学院专业:信息与计算科学成绩:日期:年月日基于工业机器人能否准确完成操作的时间序列分析摘要:时间序列分析是预测领域研究的重要工具之一,它描述历史数据随时间变化的规律,并用于预测数据。

本文首先介绍了一些常用的时间序列模型,包括建模前对数据的预处理、模型的识别以及模型的预测等。

通过多种方法分析所得到的数据,实现准确建模,可以得出正确的结论。

关键词:自回归(AR)模型,滑动平均(MA)模型,自回归滑动平均(ARMA)模型,ARMA最优子集一、问题提出,问题分析随着社会日新月异的发展,不断创新的科技为我们的生活带来了越来越多的便利。

机器人也逐渐走向了我们的生活,工厂里使用机器人去工作也可以大大减少生产成本,但为了保证产品质量,工厂使用的机器人应该多次测试,确保动作准确无误。

现有一批数据,包含了来自工业机器人的时间序列(机器人需要完成一系列的动作,与目标终点的距离以英寸为单位被记录下来,重复324次得到该时间序列),对于这些离散的数据,我们期望从中发掘一些信息,以便对机器人做更好的改进或者确定机器人是否可以投入使用。

但我们从中并不能看出什么,需要借助工具做一些处理,对数据进行分析。

时间序列分析是通过直观的数据比较或作图观测,去寻找序列中包含的变化规律,这种分析方法称为描述性时序分析。

在物理、天文、海洋学等科学领域,这种描述性时序分析方法经常能够使人们发现一些意想不到的规律,操作起来十分简单而且直观有效,因此从史前到现在一直被人们广泛使用,它也是我们进行统计时序分析的第一步。

我们将利用自回归(AR)模型、滑动平均(MA)模型以及自回归滑动平均(ARMA)模型去解决遇到的问题。

二、数据描述和初步分析下面是我们接收到的数据,数据来源:/~kchan/TSA.htm0.0011 0.0011 0.0024 0.0000 -0.0018 0.0055 0.0055 -0.00150.0047 -0.0001 0.0031 0.0031 0.0052 0.0034 0.0027 0.00410.0041 0.0034 0.0067 0.0028 0.0083 0.0083 0.0030 0.00320.0035 0.0041 0.0041 0.0053 0.0026 0.0074 0.0011 0.0011-0.0001 0.0008 0.0004 0.0000 0.0000 -0.0009 0.0038 0.00540.0002 0.0002 0.0036 -0.0004 0.0017 0.0000 0.0000 0.00470.0021 0.0080 0.0029 0.0029 0.0042 0.0052 0.0056 0.00550.0055 0.0010 0.0043 0.0006 0.0013 0.0013 0.0008 0.00230.0043 0.0013 0.0013 0.0045 0.0037 0.0015 0.0013 0.00130.0029 0.0039 -0.0018 0.0016 0.0016 -0.0003 0.0000 0.00090.0017 0.0017 0.0030 -0.0001 0.0070 -0.0008 -0.0008 0.00090.0025 0.0031 0.0002 0.0002 0.0022 0.0020 0.0003 0.00330.0033 0.0044 -0.0010 0.0048 0.0019 0.0019 0.0031 0.00200.0017 0.0014 0.0014 0.0039 0.0052 0.0020 0.0012 0.00120.0031 0.0022 0.0040 0.0038 0.0038 0.0007 0.0016 0.00240.0003 0.0003 0.0057 0.0006 0.0009 0.0040 0.0040 0.00350.0032 0.0068 0.0028 0.0028 0.0048 0.0035 0.0042 -0.0020-0.0020 0.0023 -0.0011 0.0062 -0.0021 -0.0021 0.0000 -0.0019-0.0005 0.0048 0.0048 0.0027 0.0009 -0.0002 0.0079 0.00790.0017 0.0034 0.0030 0.0025 0.0025 0.0004 0.0031 0.0057-0.0003 -0.0003 0.0006 0.0018 0.0022 0.0042 0.0042 0.0055-0.0005 -0.0053 0.0028 0.0028 0.0005 0.0036 0.0017 -0.0043-0.0043 0.0066 -0.0016 0.0055 -0.0011 -0.0011 -0.0049 0.00470.0056 0.0057 0.0057 -0.0002 0.0056 0.0037 0.0012 0.00120.0018 -0.0025 -0.0011 0.0027 0.0027 0.0039 0.0058 0.00030.0040 0.0040 0.0042 0.0000 0.0056 -0.0029 -0.0029 -0.00260.0016 0.0019 0.0015 0.0015 0.0007 0.0007 -0.0044 -0.0030-0.0030 0.0013 0.0029 -0.0010 0.0009 0.0009 -0.0016 0.00000.0000 0.0014 0.0014 -0.0003 0.0009 -0.0068 0.0003 0.0003-0.0012 0.0037 -0.0019 0.0023 0.0023 -0.0033 -0.0002 -0.00100.0021 0.0021 0.0026 -0.0002 0.0011 0.0028 0.0028 -0.00040.0026 -0.0015 0.0002 0.0002 0.0018 -0.0005 0.0004 -0.0008-0.0008 0.0018 0.0019 0.0029 -0.0022 -0.0022 0.0010 -0.00330.0020 0.0000 0.0000 0.0003 0.0007 -0.0009 -0.0035 -0.00350.0010 0.0007 0.0028 -0.0008 -0.0008 -0.0034 -0.0010 -0.0018-0.0021 -0.0021 -0.0006 -0.0018 -0.0046 -0.0017 -0.0017 -0.0001-0.0029 0.0020 -0.0049 -0.0049 -0.0021 -0.0027 -0.0018 -0.0015-0.0015 0.0051 -0.0002 0.0000 -0.0006 -0.0006 -0.0012 0.00120.0000 0.0021 0.0021 -0.0001 0.0022 0.0055 -0.0010 -0.00100.0048 0.0006 0.0026 0.0004 0.0004 0.0000 0.0000 0.00080.0044 0.0044 0.0002 0.0036这一群数目庞大的数据,以我们直观的判断,它们错综复杂,且毫无规律可言,根本不能从中得到有用的消息。

时间序列分析试验报告

时间序列分析试验报告

时间序列分析试验报告
一、试验简介
本次试验旨在探索时间序列分析,以分析日期变化的影响与规律。


间序列分析是数据分析的一种,目的是预测未来正确的趋势,并且分析既
有趋势的影响及其变化。

二、试验材料
本次试验使用的资料为最近12个月(即2024年1月到2024年12月)的电子商务网站销售数据。

该电子商务网站以每月总销售量、每月总销售
额及每月交易次数三个变量作为试验数据。

三、试验方法
1.首先,收集2024年1月到2024年12月的电子商务销售数据,记
录每月总销售量、总销售额及交易次数。

2.然后,编制时间序列分析图表,反映每月总销售量、总销售额及
交易次数的变化情况。

3.最后,分析每月的变化趋势,比较每月的销售数据,并进行相关
分析推断。

四、实验结果
1.通过时间序列分析图表可以看出,每月总销售量、总销售额及交
易次数均呈现出稳定上升趋势。

2.从图表中可以推断,在2024年底到2024年底,当月的总销售量、总销售额及交易次数均较上月有所增加。

3.从表中可以推断,每月的总销售量、总销售额及交易次数都在逐渐增加,最终在2024年末达到高峰。

五、结论
通过本次实验可以得出结论。

时间序列实验报告

时间序列实验报告

重庆交通大学学生实验报告实验课程名称时间序列分析开课实验中心数统学院实验教学中心开课学院数学与统计学院专业年级应用统计学2015级1班姓名XXXX学号6315XXXXXXXX任课老师XXXXX开课时间2017—2018学年第1学期此页空页!实验一R语言简介: 基本操作一实验目的1、了解软件R:安装、启动、退出、帮助等。

2、熟悉R的操作界面。

二、实验内容及要求:1、实验内容:(1)R的安装;(2)启动与退出;(3)包的安装及R的更新;(4)帮助及移除多个对象等;(5)常见命令2、实验要求:(1)熟悉R的操作环境;(2)熟悉包的安装与帮助;(3)学习常见命令,熟悉 R 的操作界面。

三、实验过程及结果1、(1)R的安装(2)启动与退出;(3)包的安装及R的更新;A、包的安装> chooseCRANmirror()> install.packages()B、R的更新> install.packages("installr") > library(installr)> updateR()(4)帮助及移除多个对象等;> ?关键字> ??关键字> help.start()#帮助> rm()> rm(list=ls())#移除多个对象(5)常见命令四、实验心得了解了R的一些基本使用及其常见的命令,为自己深入学习r的使用打下了基础。

实验二R语言简介: 数据集创建与处理一实验目的1、掌握R数据集的不同创建形式。

2、熟悉并掌握利用R对时间序列数据集进行变换与处理。

二、实验内容及要求1、实验内容:(1)利用data.frame函数创建数据集;(2)读取 d.txt 型数据框;(3)读取 excel 数据及对某变量数据进行某些处理(4)导出 R 中数据集(5)时间序列数据输入(6)对已有数据集中数据的处理2、实验要求:熟悉R数据集的不同创建方法,掌握利用R对时序数据集进行变换与处理三、实验过程及结果1、实验内容:(1)利用data.frame函数创建数据集;(2)读取 d.txt 型数据框;m(3)读取 excel 数据及对某变量数据进行某些处理(4)导出 R 中数据集(5)时间序列数据输入(6)对已有数据集中数据的处理(5)(6)合> library(readxl)> X2_7<- read_excel("C:/Users/Administrator/Desktop/2.7.x lsx")> summary(X2_7)330.45 330.97 331.64 332.87 333.61Min. :331.6 Min. :330.1 Min. :328.6 Min. :328.3 Min. :329.41st Qu.:332.9 1st Qu.:332.4 1st Qu.:331.9 1st Qu.:33 1.5 1st Qu.:332.8Median :334.7 Median :334.4 Median :333.7 Median :33 4.4 Median :335.1Mean :335.0 Mean :334.2 Mean :333.9 Mean :334.3 Mean :335.23rd Qu.:336.8 3rd Qu.:336.1 3rd Qu.:335.9 3rd Qu.:33 7.0 3rd Qu.:337.7Max. :339.2 Max. :338.2 Max. :339.9 Max. :340.6 Max. :341.2333.55Min. :330.61st Qu.:333.9Median :336.0Mean :335.73rd Qu.:338.0Max. :340.9四、实验心得通过本次实验,首先,我知道了文件其他格式的文件如何导入R,知晓乐数据集的创建,使用及一些简单的处理。

统计学实验报告--时间序列分析

统计学实验报告--时间序列分析

实验目的:
1.综合运用统计学时间序列相关知识,并结合经济学等方面的知识进
行回归分析,预测2012年社会投资额。

2.根据时间序列预测结果,建立回归方程,预测该地2012年GDP。

实验步骤:
1.对所搜集的数据资料进行分类整理。

2.绘制表格及频数分布直方图。

3.运用时间数列,进行回归分析,预测2012年社会投资额。

4.运用时间数列预测结果,建立回归方程,预测2012年GDP。

某地区资料如下:
分析: (1)设X=a+bt b=(∑xt -n
/1∑∑t x )/[∑2^t -2)^(/1∑t n ]
=(3086-1/6*384*21)/(91-1/6*21^2) =7.7429 x =140.5 t =3.5 a=x -b t
=140.5-7.7429*3.5 =113.3999+7.7429t
故,2012年,即t=7时,社会投资额为167.6002亿元。

(2)设ŷ=c+dx
d=(∑xy-1/n∑∑y
/1
n
x]
2^x
x)/[∑∑
-2
)^
(
=(284740-1/6*2021*843)/(179509-1/6*843^2)
=0.74
c=y-d x=232.86
故,2012年该地GDP为356.88亿元。

实验结论:运用时间序列进行回归分析,可以根据以往的经济数据进行预测分析,提高经济活动的目的性与计划性。

时间序列分析R语言程序

时间序列分析R语言程序

#例2.1绘制196 ------- 1999年中国年纱产量序列时序图(数据见附录1.2)Data1.2=read.csv("C:\\Users\\Administrator\\Desktop\\ 附录1.2.csv",header=T)#如果有标题,用T;没有标题用Fplot(Data1.2,type='o')#例2.1续tdat1.2=Data1.2[,2]a1.2=acf(tdat1.2)#例2.2绘制1962年1月至1975年12月平均每头奶牛产奶量序列时序图(数据见附录1.3)Data1.3=read.csv("C:\\Users\\Administrator\\Desktop\\ 附录 1.3.csv”,header=F)tdat1.3=as.vector(t(as.matrix(Data1.3)))[1:168]# 矩阵转置转向量plot(tdat1.3,type=T)#例2.2续acf(tdat1.3) #把字去掉pacf(tdat1.3)#例2.3绘制1949——1998年北京市每年最高气温序列时序图Data1.4=read.csv("C:\\Users\\Administrator\\Desktop\\ 附录 1.4.csv”,header=T)plot(Data1.4,type='o')##不会定义坐标轴#例2.3续tdat1.4=Data1.4[,2]a1.4=acf(tdat1.4)#例2.3续Box.test(tdat1.4,type="Ljung-Box”,lag=6)Box.test(tdat1.4,type="Ljung-Box”,lag=12)#例2.4随机产生1000个服从标准正态分布的白噪声序列观察值,并绘制时序图Data2.4=rnorm(1000,0,1)Data2.4plot(Data2.4,type=T)#例2.4续a2.4=acf(Data2.4)#例2.4续Box.test(Data2.4,type="Ljung-Box”,lag=6)Box.test(Data2.4,type="Ljung-Box”,lag=12)#例2.5对195 ——1998年北京市城乡居民定期储蓄所占比例序列的平稳性与纯随机性进行检验Data1.5=read.csv("C:\\Users\\Administrator\\Desktop\\ 附录 1.5.csv”,header=T)plot(Data1.5,type='o',xlim=c(1950,2010),ylim=c(60,100) )tdat1.5=Data1.5[,2]a1.5=acf(tdat1.5)#白噪声检验Box.test(tdat1.5,type="Ljung-Box”,lag=6)Box.test(tdat1.5,type="Ljung-Box”,lag=12)#例2.5续选择合适的ARMA模型拟合序列acf(tdat1.5)pacf(tdat1.5)#根据自相关系数图和偏自相关系数图可以判断为AR(1)模型#例2.5续P81 口径的求法在文档上#P83arima(tdat1.5,order=c(1,0,0),method="ML")# 极大似然估计ar1=arima(tdat1.5,order=c(1,0,0),method="ML") summary(ar1)ev=ar1$residualsacf(ev)pacf(ev)#参数的显著性检验t1=0.6914/0.0989p1=pt(t1,df=48,lower.tail=F)*2#ar1的显著性检验t2=81.5509/ 1.7453p2=pt(t2,df=48,lower.tail=F)*2#残差白噪声检验Box.test(ev,type="Ljung-Box”,lag=6,fitdf=1)Box.test(ev,type="Ljung-Box”,lag=12,fitdf=1)#例2.5续P94预测及置信区间predict(arima(tdat1.5,order=c(1,0,0)),n.ahead=5)tdat1.5.fore=predict(arima(tdat1.5,order=c(1,0,0)),n.ahea d=5)U=tdat1.5.fore$pred+1.96*tdat1.5.fore$seL=tdat1.5.fore$pred-1.96*tdat1.5.fore$seplot(c(tdat1.5,tdat1.5.fore$pred),type="l”,col=1:2)lines(U,co l=”blue”,lty=”dashed”)lines(L,col=”blue”,lty=”dashed”)#例3.1.1例3.5 例3.5续#方法一plot.ts(arima.sim(n=100,list(ar=0.8)))#方法二x0=runif(1)x=rep(0,1500)x[1]=0.8*x0+rnorm(1) for(i in 2:length(x)) {x[i]=0.8*x[i-1]+rnorm(1)} plot(x[1:100],type=T) acf(x)pacf(x)##拟合图没有画出来x[1]=x1x[2 ]=-x1-0.5*x0+rnorm(1)for(i in 3:length(x)){x[i]=-x[i-1]-0.5*x[i-2]+rnorm(1)} plot(x[1:100],type=T)acf(x)pacf(x)#例3.1.2x0=runif(1)x=rep(0,1500)x[1]=-1.1*x0+rnorm(1) for(i in 2:length(x)) #均值和方差smu=mean(x) svar=var(x){x[i]=-1.1*x[i-1]+rnorm(1)} plot(x[1:100],type=T) acf(x) pacf(x) #例3.2求平稳AR (1)模型的方差例3.3 mu=0 mvar=1/(1-0.8A2) #书上51 页#总体均值方差#例3.1.3方法一plot.ts(arima.sim(n=100,list(ar=c(1,-0.5)))) #方法二x0=runif(1)x1=runif(1)x=rep(0,1500)x[1]=x1x[2]=x1-0.5*x0+rnorm(1)for(i in 3:length(x)){x[i]=x[i-1]-0.5*x[i-2]+rnorm(1)}plot(x[1:100],type=T)acf(x)pacf(x) cat("population mean and var are”,c(mu,mvar),"\n")#样本均值方差cat("sample mean and var are”,c(mu,mvar),"\n")#例题3.4svar=(1+0.5)/((1-0.5)*(1-1-0.5)*(1+1-0.5))#例题3.6 MA模型自相关系数图截尾和偏自相关系数图拖尾#3.6.1法:x=arima.sim(n=1000,list(ma=-2))plot.ts(x,type='l')acf(x)#例3.1.4x0=runif(1)x1=runif(1)x=rep(0,1500)x[1]=x1x[2]=x1+0.5*x0+rnorm(1)for(i in 3:length(x)){x[i]=x[i-1]+0.5*x[i-2]+rnorm(1)} plot(x[1:100],type=T)acf(x)pacf(x) pacf(x)法二x=rep(0:1000)for(i in 1:1000){x[i]=rnorm[i]-2*rnorm[i-1]} plot(x,type=T)acf(x)pacf(x)#3.6.2法一:又一个式子x0=runif(1)x1=runif(1)x=rep(0,1500) x=arima.sim(n=1000,list(ma=-0.5)) plot.ts(x,type='l')acf(x)pacf(x)法二x=rep(0:1000)for(i in 1:1000){x[i]=rnorm[i]-0.5*rnorm[i-1]}plot(x,type='l')acf(x)pacf(x)##错误于rnorm[i]:类别为'closure'的对象不可以取子集#3.6.3法^:x=arima.sim(n=1000,list(ma=c(-4/5,16/25)))plot.ts(x,type=T)acf(x)pacf(x)法二:x=rep(0:1000)for(i in 1:1000) {x[i]=rnorm[i]-4/5*rnorm[i-1]+16/25*rnorm[i-2]} plot(x,type='l')acf(x)pacf(x)##错误于x[i] = rnorm[i] - 4/5 * rnorm[i - 1] + 16/25 * rnorm[i - 2] :##更换参数长度为零#例3.6续根据书上64页来判断#例3.7拟合ARMA ( 1,1)模型,x(t)-0.5x(t-1)=u(t)-0.8*(u-1),并直观观察该模型自相关系数和偏自相关系数的拖尾性。

时间序列分析实验报告

时间序列分析实验报告

引言概述:
时间序列分析是一种用于研究时间数据的统计方法,主要关注数据随时间的变化趋势、季节性和周期性等特征。

时间序列分析应用广泛,可以用于金融预测、经济分析、气象预测等领域。

本实验报告旨在介绍时间序列分析的基本概念和方法,并通过实例分析来展示其应用。

正文内容:
1.时间序列分析基本概念
1.1时间序列的定义
1.2时间序列的模式
1.3时间序列分析的目的
2.时间序列分析方法
2.1随机游走模型
2.2移动平均模型
2.3自回归移动平均模型
2.4季节性模型
2.5ARCH和GARCH模型
3.时间序列数据预处理
3.1数据平稳性检验
3.2数据平滑
3.3缺失值填补
3.4离群值检测
3.5数据变换
4.时间序列模型建立与评估
4.1模型的选择
4.2参数估计
4.3拟合优度检验
4.4模型诊断
4.5预测准确性评估
5.实例分析:某公司销售数据时间序列分析
5.1数据收集与预处理
5.2模型建立与评估
5.3预测分析与结果解释
5.4预测精度评估
5.5结果讨论与进一步改进方向
总结:
时间序列分析是一种重要的统计方法,可用于预测和分析时间相关的数据。

本报告介绍了时间序列分析的基本概念和方法,并通
过实例分析展示了其应用过程。

通过时间序列分析,可以更好地理解数据的趋势和周期性,并进行准确的预测。

时间序列分析也面临着多样的挑战,如数据质量问题和模型选择困难等。

因此,在实际应用中,需要综合考虑多种因素,灵活运用合适的方法和技巧,以提高预测准确性和分析可靠性。

时间序列模型操作实训报告

时间序列模型操作实训报告

一、实训目的本次实训旨在使学生掌握时间序列模型的基本原理,熟悉时间序列模型的构建过程,并能运用时间序列模型进行实际数据的预测分析。

通过本次实训,提高学生对时间序列分析方法的实际应用能力,为以后从事相关领域的研究和工作打下基础。

二、实训内容1. 时间序列分析概述时间序列分析是统计学的一个重要分支,它研究的是一组按时间顺序排列的观测值。

通过对时间序列数据的分析,我们可以揭示数据中的规律性、趋势性、季节性和周期性,从而对未来的数据进行预测。

2. 时间序列模型的构建(1)平稳性检验在构建时间序列模型之前,首先要检验序列的平稳性。

常用的平稳性检验方法有ADF单位根检验、KPSS检验等。

(2)自回归模型(AR)自回归模型(AR)是一种描述序列自身过去值对当前值影响的模型。

AR模型的数学表达式为:Y_t = c + φ_1Y_{t-1} + φ_2Y_{t-2} + ... + φ_pY_{t-p} + ε_t其中,Y_t表示时间序列,c为常数项,φ_1, φ_2, ..., φ_p为自回归系数,ε_t为误差项。

(3)移动平均模型(MA)移动平均模型(MA)是一种描述序列过去值对当前值影响的模型。

MA模型的数学表达式为:Y_t = c + ε_t + θ_1ε_{t-1} + θ_2ε_{t-2} + ... + θ_qε_{t-q}其中,Y_t表示时间序列,c为常数项,θ_1, θ_2, ..., θ_q为移动平均系数,ε_t为误差项。

(4)自回归移动平均模型(ARMA)自回归移动平均模型(ARMA)是AR模型和MA模型的结合,它同时考虑了序列自身过去值和过去误差对当前值的影响。

ARMA模型的数学表达式为:Y_t = c + φ_1Y_{t-1} + φ_2Y_{t-2} + ... + φ_pY_{t-p} + θ_1ε_{t-1} + θ_2ε_{t-2} + ... + θ_qε_{t-q}(5)自回归差分移动平均模型(ARIMA)自回归差分移动平均模型(ARIMA)是在ARMA模型的基础上,对序列进行差分处理,以消除非平稳性。

时间序列分析R语言程序

时间序列分析R语言程序

时间序列分析R语言程序时间序列分析是一种研究数据随时间变化的趋势、周期性和不规则性的方法。

它在许多领域中都有广泛的应用,包括经济学、金融学、气象学和工程学等。

R语言是一种非常适合进行时间序列分析的编程语言,它提供了丰富的工具包和函数来进行数据处理、模型建立和预测。

为了进行时间序列分析,首先需要加载相关的R包,例如“ts”和“forecast”。

然后,可以使用“read.csv”函数将时间序列数据导入R 中。

以下是一个示例代码:```R#加载相关包library(ts)library(forecast)#导入时间序列数据data <- read.csv("data.csv")#将数据转换为时间序列对象ts_data <- ts(data$Value, start = c(year(data$Date)[1], month(data$Date)[1]), frequency = 12)#绘制时间序列图plot(ts_data, main = "Time Series Plot", xlab = "Date", ylab = "Value")#拟合时间序列模型model <- auto.arima(ts_data)#显示模型的摘要信息summary(model)#进行未来预测forecast <- forecast(model, h = 12)print(forecast)```上述代码中,首先加载了“ts”和“forecast”两个R包,然后使用“read.csv”函数导入了名为“data.csv”的时间序列数据文件。

数据文件中应包含“Date”和“Value”两列,分别表示时间和对应的数值。

接着,使用“ts”函数将导入的数据转换为时间序列对象。

在这个例子中,假设数据按月份记录,函数中的“start”参数指定了时间序列的起始年份和月份,而“frequency”参数表示每年包含的时间周期数。

时间序列分解实验报告

时间序列分解实验报告

一、实验目的本实验旨在通过时间序列分解的方法,分析某一经济指标(如某城市月度居民消费价格指数CPI)的变化规律,并对未来一段时间内的CPI进行预测。

通过本次实验,我们能够掌握时间序列分解的基本原理和步骤,以及如何运用时间序列分析方法解决实际问题。

二、实验数据实验数据为某城市1980年1月至2020年12月的月度居民消费价格指数(CPI),共计241个数据点。

数据来源于国家统计局。

三、实验步骤1. 数据预处理首先,对实验数据进行可视化,观察数据的基本特征,如趋势、季节性等。

通过观察时序图,发现CPI数据存在明显的上升趋势和季节性波动。

2. 时间序列分解采用STL(Seasonal-Trend decomposition using Loess)方法对CPI数据进行分解。

STL方法可以将时间序列分解为趋势(T)、季节性(S)和残差(R)三个部分。

(1)季节性分解首先,对CPI数据进行季节性分解,提取季节性成分。

通过观察季节性成分图,发现CPI数据存在明显的季节性波动,每年1月、7月和12月为高峰期,4月和10月为低谷期。

(2)趋势分解接下来,对CPI数据进行趋势分解,提取趋势成分。

通过观察趋势成分图,发现CPI数据呈现出明显的上升趋势。

(3)残差分解最后,对CPI数据进行残差分解,提取残差成分。

残差成分表示去除季节性和趋势后的随机波动。

3. 预测根据分解后的趋势和季节性成分,对未来一段时间内的CPI进行预测。

采用ARIMA 模型(自回归移动平均模型)进行预测,根据AIC(赤池信息量准则)选择合适的模型参数。

4. 结果分析通过对比实际值与预测值,评估预测模型的准确性。

计算均方误差(MSE)和均方根误差(RMSE)等指标,以衡量预测误差。

四、实验结果1. 时间序列分解结果(1)季节性成分图(2)趋势成分图(3)残差成分图2. 预测结果(1)预测值与实际值对比图(2)预测误差分析MSE:0.0135RMSE:0.1166五、实验结论1. 通过时间序列分解,成功提取了CPI数据的趋势、季节性和残差成分,揭示了CPI变化的内在规律。

时间序列分析实验报告

时间序列分析实验报告

时间序列分析实验报告一、实验目的时间序列分析是一种用于处理和分析随时间变化的数据的统计方法。

本次实验的主要目的是通过对给定的时间序列数据进行分析,掌握时间序列分析的基本方法和技术,包括数据预处理、模型选择、参数估计和预测,并评估模型的性能和准确性。

二、实验数据本次实验使用了一组某商品的月销售量数据,数据涵盖了过去两年的时间范围,共 24 个观测值。

数据的具体形式为一个时间序列,其中每个观测值表示该商品在相应月份的销售量。

三、实验方法1、数据预处理首先,对数据进行了可视化,绘制了时间序列图,以便直观地观察数据的趋势、季节性和随机性。

然后,对数据进行了平稳性检验。

采用了 ADF(Augmented DickeyFuller)检验来判断数据是否平稳。

如果数据不平稳,则需要进行差分处理,使其达到平稳状态。

2、模型选择根据数据的特点和可视化结果,考虑了几种常见的时间序列模型,如 ARIMA(AutoRegressive Integrated Moving Average)模型、SARIMA(Seasonal AutoRegressive Integrated Moving Average)模型和HoltWinters 模型。

通过对不同模型的参数进行估计,并比较它们在训练数据上的拟合效果和预测误差,选择了最适合的模型。

3、参数估计对于选定的模型,使用最大似然估计或最小二乘法等方法来估计模型的参数。

通过对参数的估计值进行分析,判断模型的合理性和稳定性。

4、预测使用估计得到的模型参数,对未来一段时间内的销售量进行预测。

为了评估预测的准确性,采用了均方根误差(RMSE)、平均绝对误差(MAE)等指标来衡量预测值与实际值之间的差异。

四、实验过程1、数据可视化通过绘制时间序列图,发现数据呈现出明显的季节性和上升趋势。

同时,数据的波动范围也较大,存在一定的随机性。

2、平稳性检验对原始数据进行 ADF 检验,结果表明数据是非平稳的。

实验报告关于时间序列(3篇)

实验报告关于时间序列(3篇)

第1篇一、实验目的1. 了解时间序列的基本概念和特性;2. 掌握时间序列的常用分析方法;3. 学会运用时间序列分析方法解决实际问题。

二、实验内容1. 时间序列数据收集2. 时间序列描述性分析3. 时间序列平稳性检验4. 时间序列模型构建5. 时间序列预测三、实验方法1. 时间序列数据收集:通过查阅相关文献、统计数据网站等方式获取实验所需的时间序列数据。

2. 时间序列描述性分析:对时间序列数据进行统计分析,包括均值、标准差、偏度、峰度等。

3. 时间序列平稳性检验:运用单位根检验(ADF检验)判断时间序列的平稳性。

4. 时间序列模型构建:根据时间序列的平稳性,选择合适的模型进行构建,如ARIMA模型、季节性分解模型等。

5. 时间序列预测:利用构建好的时间序列模型进行预测,并评估预测结果的准确性。

四、实验步骤1. 数据收集:选取我国某地区近十年的GDP数据作为实验数据。

2. 描述性分析:计算GDP数据的均值、标准差、偏度、峰度等统计量。

3. 平稳性检验:对GDP数据进行ADF检验,判断其平稳性。

4. 模型构建:根据ADF检验结果,选择合适的模型进行构建。

5. 预测:利用构建好的模型对GDP数据进行预测,并评估预测结果的准确性。

五、实验结果与分析1. 数据收集:获取我国某地区近十年的GDP数据,数据如下:年份 GDP(亿元)2010 200002011 230002012 260002013 290002014 320002015 350002016 380002017 410002018 440002019 470002. 描述性分析:计算GDP数据的均值、标准差、偏度、峰度等统计量,结果如下:均值:39600亿元标准差:4900亿元偏度:-0.2峰度:-1.83. 平稳性检验:对GDP数据进行ADF检验,结果显示ADF统计量在1%的显著性水平下拒绝原假设,说明GDP数据是非平稳的。

4. 模型构建:由于GDP数据是非平稳的,我们可以对其进行差分处理,使其变为平稳序列。

时间序列分析试验报告

时间序列分析试验报告
则得:
季平均值为:7058。1 5649.3 4909。6 6597.7
年平均值为:5873.0 5875.0 5853.3 6073.7 6262。5 6384。5
每个季度的数据的散点图:
图1城市居民季度用煤消耗量散点图
(2)分解回归直线趋势。由于数据有缓慢的上升趋势,可以试用回归直线表示趋势项,这时认为( 满足一元线性回归模型
end
Rt=dx-St;%求随机项估计
plot(1:24,St,’*—’,1:24,Rt,'<—’)%画出季节项和随机项图形
图2季节项和随机项散点图
预测:为得到1997年的预报值,可以利用公式

这里, 是用例中的24个观测数据对第 个数据的预测值,利用MATLAB编写命令:
for i=25:28
m=5780.1+21。9*(i)+s(i-24)%计算1997年四个季度的预测值
1.0371 —0.3936 -1.1552 0.5110
即季节项估计为
分解随机项:利用原始数据 减去趋势项的估计 和季节项的估计 后得到的数据就是随机项的估计 .
在Matlab命令窗口中继续输入下列命令:
for j=1:6
for k=1:4
St(k+4*(j—1))=s(k);%求季节项值St
end
6384.5
季平均
7058。1
5649。3
4909.6
6597。7
(1)由表8.1.1中每年每季的数据计算年平均值与季平均值,并绘出1991~1996年中每个季度的数据的散点图。
(2)用回归直线趋势法对序列进行分解。
(3)若1997年四季的数据分别为:7720。5 5973。3 5304。4 7075。1,运用(2)对1997年数据作预测并分析误差。

时间序列分析实习报告

时间序列分析实习报告

实习报告实习单位:某知名科技公司实习时间:2023年7月1日 - 2023年8月31日一、实习背景及目的随着大数据时代的到来,时间序列分析在各个领域中的应用越来越广泛。

为了提高自己在时间序列分析方面的实际操作能力,我选择了某知名科技公司进行为期两个月的实习。

实习的目的主要是通过实际项目操作,掌握时间序列数据的特点,学会使用时间序列分析方法对数据进行处理和分析,并提出合理的预测和解决方案。

二、实习内容及过程在实习期间,我参与了公司的一个时间序列分析项目,负责对某一产品的历史销售数据进行分析,并根据分析结果提出销售预测和建议。

具体实习内容如下:1. 数据收集和处理:首先,我需要从公司的数据库中收集所需的历史销售数据。

在收集数据的过程中,我学会了如何使用SQL语句进行数据查询。

然后,我对收集到的数据进行处理,包括数据清洗、数据整合和数据转换等,以确保分析结果的准确性。

2. 数据分析和建模:在数据处理完成后,我开始进行数据分析。

我首先使用描述性统计方法对数据进行初步分析,了解数据的基本特征。

然后,我使用时间序列分析方法对数据进行建模,包括ARIMA模型、季节性分解模型和趋势预测模型等。

通过对比不同模型的预测效果,我选择了一个最佳的模型进行进一步分析。

3. 结果分析和预测:在确定最佳模型后,我使用该模型对未来的销售数据进行预测,并根据预测结果提出销售建议。

我还对预测结果进行了敏感性分析,以评估预测结果的稳定性和可靠性。

三、实习收获和总结通过这次实习,我掌握了时间序列数据的特点和分析方法,学会了使用SQL语句进行数据查询和处理,提高了自己在实际项目中运用时间序列分析方法的能力。

同时,我也学会了如何根据分析结果提出合理的预测和建议,为公司提供决策支持。

在实习过程中,我认识到时间序列分析不仅仅是一种数据分析方法,更是一种解决问题的思维方式。

通过这次实习,我不仅提高了自己的专业技能,还培养了自己的问题解决能力和团队合作能力。

时间序列分析实验报告

时间序列分析实验报告

时间序列分析实验报告P185#1、某股票连续若干天的收盘价如表5-4(行数据)所示。

表5-4304 303 307 299 296 293 301 293 301 295 284 286 286 287 284 282 278 281 278 277 279 278 270 268 272 273 279 279 280 275 271 277 278 279 283 284 282 283 279 280 280 279 278 283 278 270 275 273 273 272 275 273 273 272 273 272 273 271 272 271 273 277 274 274 272 280 282 292 295 295 294 290 291 288 288 290 293 288 289 291 293 293 290 288 287 289 292 288 288 285 282 286 286 287 284 283 286 282 287 286 287 292 292 294 291 288 289选择适当模型拟合该序列的发展,并估计下一天的收盘价。

解:(1)通过SAS软件画出上述序列的时序图如下:程序:data example5_1;input x@@;time=_n_;cards;304 303 307 299 296 293 301 293 301 295 284 286 286 287 284282 278 281 278 277 279 278 270 268 272 273 279 279 280 275271 277 278 279 283 284 282 283 279 280 280 279 278 283 278270 275 273 273 272 275 273 273 272 273 272 273 271 272 271273 277 274 274 272 280 282 292 295 295 294 290 291 288 288290 293 288 289 291 293 293 290 288 287 289 292 288 288 285282 286 286 287 284 283 286 282 287 286 287 292 292 294 291288 289;proc gplot data=example5_1;plot x*time=1;symbol1c=black v=star i=join;run;上述程序所得时序图如下:上述时序图显示,该序列具有长期趋势又含有一定的周期性,为典型的非平稳序列。

时间序列_实验报告

时间序列_实验报告

一、实验目的1. 了解时间序列分析的基本原理和方法;2. 掌握时间序列数据的平稳性检验、模型识别和参数估计等基本操作;3. 通过实例,学习使用ARIMA模型进行时间序列预测。

二、实验环境1. 操作系统:Windows 102. 软件环境:EViews 9.0、R3.6.1三、实验数据1. 数据来源:某城市1980年1月至2020年12月每月的GDP数据;2. 数据格式:Excel表格。

四、实验步骤1. 数据预处理(1)导入数据:将Excel表格中的GDP数据导入EViews软件;(2)观察数据:绘制GDP时间序列图,观察数据的趋势、季节性和周期性;(3)平稳性检验:使用ADF检验判断GDP序列是否平稳。

2. 模型识别(1)自相关函数(ACF)和偏自相关函数(PACF)图:观察ACF和PACF图,初步确定ARIMA模型的阶数;(2)模型选择:根据ACF和PACF图,选择合适的ARIMA模型。

3. 模型估计(1)模型估计:使用EViews软件中的ARIMA过程,对选择的模型进行参数估计;(2)模型检验:对估计出的模型进行残差检验,包括残差的平稳性检验、白噪声检验等。

4. 时间序列预测(1)预测:使用估计出的ARIMA模型,对2021年1月至2025年12月的GDP进行预测;(2)预测结果分析:对预测结果进行分析,评估预测的准确性。

五、实验结果与分析1. 数据预处理(1)导入数据:将Excel表格中的GDP数据导入EViews软件;(2)观察数据:绘制GDP时间序列图,发现GDP序列存在明显的上升趋势和季节性;(3)平稳性检验:使用ADF检验,发现GDP序列在5%的显著性水平下拒绝原假设,序列是平稳的。

2. 模型识别(1)自相关函数(ACF)和偏自相关函数(PACF)图:根据ACF和PACF图,初步确定ARIMA模型的阶数为(1,1,1);(2)模型选择:根据ACF和PACF图,选择ARIMA(1,1,1)模型。

时间序列实训报告

时间序列实训报告

一、实训基本情况(一)实训时间:20xx年x月x日至20xx年x月x日(二)实训单位:XX大学经济与管理学院(三)实训目的:通过本次时间序列实训,使学生掌握时间序列分析的基本原理和方法,提高学生运用时间序列模型解决实际问题的能力。

二、实训内容1. 时间序列的基本概念和性质2. 时间序列的平稳性检验3. 时间序列的分解4. 时间序列的预测方法5. 时间序列模型的应用三、实训过程1. 时间序列的基本概念和性质实训过程中,我们学习了时间序列的定义、分类、性质等基本概念,了解了时间序列在统计学、经济学、气象学等领域的重要应用。

2. 时间序列的平稳性检验我们学习了如何对时间序列进行平稳性检验,包括ADF检验、KPSS检验等,以及如何处理非平稳时间序列。

3. 时间序列的分解我们学习了时间序列分解的基本方法,包括趋势分解、季节分解、周期分解等,并运用这些方法对实际数据进行分解。

4. 时间序列的预测方法我们学习了时间序列预测的基本方法,包括指数平滑法、ARIMA模型、季节性ARIMA模型等,并运用这些方法对实际数据进行预测。

5. 时间序列模型的应用我们选取了实际数据,运用所学的时间序列模型进行预测,并分析了预测结果。

四、实训心得1. 理论与实践相结合通过本次实训,我深刻认识到理论联系实际的重要性。

在实训过程中,我们不仅学习了时间序列分析的基本原理和方法,还运用所学知识解决实际问题,提高了自己的实际操作能力。

2. 团队合作与沟通在实训过程中,我们分组进行讨论和协作,共同完成实训任务。

这使我意识到团队合作和沟通在解决问题中的重要性。

3. 严谨的科研态度在实训过程中,我们对待数据和分析结果都要严谨,力求准确。

这使我明白了科研工作中严谨态度的重要性。

4. 拓宽知识面本次实训让我了解了时间序列分析在其他领域的应用,拓宽了我的知识面。

五、实训总结通过本次时间序列实训,我掌握了时间序列分析的基本原理和方法,提高了运用时间序列模型解决实际问题的能力。

时间序列实验报告-R资料

时间序列实验报告-R资料

实验报告课程名称时间序列分析实验项目名称ARCH建模班级与班级代码1125040实验室名称(或课室)北4-602 专业统计学任课教师陈根学号:11250401213姓名:柯跃实验日期:2014年6月08日广东财经大学教务处制姓名实验报告成绩评语:指导教师(签名)年月日说明:指导教师评分后,实验报告交院(系)办公室保存。

一.实验目的:将Merck股票从1946年6月到2008年12月的月简单收益变换成对数收益率,并解决下列问题:(a)对数收益率中有没有明显的相关性?用自相关系数和5%的显著性水平来回答该问题。

如果有,则移除序列相关性。

(b)此对数收益率存在ARCH效应么?如果(a)部分中有序列相关性,则该部分用其残差序列。

用Ljung-Box统计量,对收益率平方(或残差的平方)的6个间隔和12个间隔的自相关系数,在5%的显著性水平下回答该问题。

(c)对数据识别一个ARCH模型,然后给数据拟合被识别的模型,写出所拟合的模型。

二.实验设备:计算机、R-3.0.3三.实验过程及得出的结论:1.加载安装包并引入实验数据2.按实验目的输入实验代码,从运行结果得出结论(a)①对数收益率中有显著的序列相关性。

通过自相关系数和5%的显著性水平解答:0204060801000.00.20.40.60.81.0LagA C FSeries lmrk图1 Merck 股票对数收益率的自相关系数样本ACF 的值并没有在两个标准差之内,说明5%水平下它们与0有显著差别,对于对数收益率,Ljung-Box 统计量为Q(12)= 27.2364,对应的p 值为0.007144,p<a=0.05,拒绝原假设,即证实了Merck 股票对数收益率有显著的序列相关性。

②移除序列相关性I.使用ar()函数对对数收益率序列识别得一个阶数为8的AR 模型:II.月对数收益率拟合AR (8)模型得出残差序列:算得Q (12)=8.2078,并且基于自由度为4的Χ2分布的p 值为0.084. 然而,延迟为2、3、5、6的AR 系数在5%水平下是不显著的,所以改进模型见第三步。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验报告
课程名称时间序列分析
实验项目名称ARCH建模
班级与班级代码1125040
实验室名称(或课室)北4-602 专业统计学
任课教师陈根
学号:***********
*名:**
实验日期:2014年6月08日
广东财经大学教务处制
姓名实验报告成绩
评语:
指导教师(签名)
年月日说明:指导教师评分后,实验报告交院(系)办公室保存。

一.实验目的:
将Merck股票从1946年6月到2008年12月的月简单收益变换成对数收益率,并解决下列问题:
(a)对数收益率中有没有明显的相关性?用自相关系数和5%的显著性水平来
回答该问题。

如果有,则移除序列相关性。

(b)此对数收益率存在ARCH效应么?如果(a)部分中有序列相关性,则该部分
用其残差序列。

用Ljung-Box统计量,对收益率平方(或残差的平方)的6个间隔和12个间隔的自相关系数,在5%的显著性水平下回答该问题。

(c)对数据识别一个ARCH模型,然后给数据拟合被识别的模型,写出所拟合
的模型。

二.实验设备:
计算机、R-3.0.3
三.实验过程及得出的结论:
1.加载安装包并引入实验数据
2.按实验目的输入实验代码,从运行结果得出结论
(a)①对数收益率中有显著的序列相关性。

通过自相关系数和5%的显著性水平解答:
02040
6080100
0.00.20.40.60.8
1.0Lag
A C F
Series lmrk
图1 Merck 股票对数收益率的自相关系数
样本ACF 的值并没有在两个标准差之内,说明5%水平下它们与0有显著差别,对于对数收益率,Ljung-Box 统计量为Q(12)= 27.2364,对应的p 值为0.007144,p<a=0.05,拒绝原假设,即证实了Merck 股票对数收益率有显著的序列相关性。

②移除序列相关性
I.使用ar()函数对对数收益率序列识别得一个阶数为8的AR 模型:
II.月对数收益率拟合AR (8)模型得出残差序列:
算得Q (12)=8.2078,并且基于自由度为4的Χ2分布的p 值为0.084. 然而,延迟为2、3、5、6的AR 系数在5%水平下是不显著的,所以改进模型见第三步。

III .改进模型如下所示:
模型改进为:
a r
r
t
t
++++=8
-t 7
-t 4
-t 1
-t 0.1082
0.0474
0.0699
0.0826
-0.0107r
r
r

0698
.0^=σ
a
其中所有的估计在5%水平下都是显著的。

残差序列给出Q (12)=8.779,其p
值为0.361(基于28χ分布)。

该模型对数据的动态线性依赖性的建模是充分的。

(b )此对数收益率存在ARCH 效应。

由于(a)部分中存在序列相关性,因此需要用残差的平方做关于对数收益率的ARCH 效应检验。

使用Box-Ljung 检验的6个间隔与12个间隔的自相关系数在5%的显著性水平下对残差的平方进行检验,结果如下:
a t 序列的Ljung-Box 统计量Q (6)=22.5444,Q (12)= 33.0125,p 值都接近于0,这表明存在很强的ARCH 效应。

(c )建立ARCH 模型
用残差的平方做关于对数收益率的ARCH 效应检验图。

结果如图2所示:
图2 残差平方的PACF
由图2中的样本PACF 表明ARCH (3)模型可能是合适的,因此下面将对Merck 股票的月对数收益率具体建立一个如下形式的模型:
a r t
+=μt
,εσt
t t a =,a a a t t t t
2
3
322221102---∂∂∂∂+++=σ
5
10
15
20253035
-0.050.000.05
0.10Lag
P a r t i a l A C F
Series at^2
假定εt 是独立同分布的标准正态序列,我们得到的拟合模型为:
a r t
+=0.0120t
,a a a t t t t
2
3
222120.084140.069510.029670.00406---+++=σ
各个参数估计值的标准误差分别是0.0026,0.0003,0.0392,0.0372,0.0391,参见下面输出结果。

尽管估计值满足ARCH (3)模型的一般条件,然而∂1和∂2的估计值在5%的水平下不是统计显著的,模型需要进一步优化。

四.实验程序:
da=read.table("C:/m-mrk.txt",header=T)
da[1,]
mrk=da[,2]
lmrk=log(mrk+1)
acf(lmrk,lag=100)
Box.test(lmrk,lag=12,type='Ljung')
m1=ar(lmrk,method='mle')
m1$order
m2=arima(lmrk,order=c(8,0,0))
m2
(1+.0811-.0220+.0077-.0688-.0047-.0115-.0486-.1077)*mean(lmrk) sqrt(m2$sigma2)
Box.test(m2$residuals,lag=12,type='Ljung')
pv=1-pchisq(8.2078,4)
pv
m3=arima(lmrk,order=c(8,0,0),fixed=c(NA,0,0,NA,0,0,NA,NA,NA)) m3
(1+.0826-.0699-.0474-.1082)*mean(lmrk)
sqrt(m3$sigma2)
Box.test(m3$residuals,lag=12,type='Ljung')
pv=1-pchisq(8.779,8)
pv
at=lmrk-mean(lmrk)
Box.test(at^2,lag=6,type='Ljung')
Box.test(at^2,lag=12,type='Ljung')
pacf(at^2,lag.max=36)
library(fGarch)
arch1=garchFit(lmrk~garch(3,0),data=lmrk,trace=F) summary(arch1)。

相关文档
最新文档