用适当的方法解二元一次方程组 PPT

合集下载

(完整版)二元一次方程组优秀课件PPT

(完整版)二元一次方程组优秀课件PPT

矩阵法解二元一次方程组
总结词
利用矩阵的运算性质和逆矩阵的性质,将二元一次方程组转化为线性方程组进行求解。
详细描述
矩阵法的基本思路是将二元一次方程组转化为线性方程组,然后利用矩阵的运算性质和 逆矩阵的性质求解。具体步骤包括:将二元一次方程组写成矩阵形式,然后对矩阵进行 变换,将其化为行最简形式,得到线性方程组;然后利用逆矩阵的性质求解线性方程组
示例
x + y = 1, 2x - y = 3
二元一次方程组的解法概述
01
02
03
消元法
通过加减或代入法消去一 个未知数,将二元一次方 程组转化为一元一次方程 求解。
替换法
通过一个方程中的未知数 表示另一个未知数,然后 将其代入另一个方程求解 。
矩阵法
利用矩阵表示方程组,通 过矩阵运算求解。
二元一次方程组的应用场景
化学问题
在化学中,有些问题涉及到两种化学物质之间的反应,如反 应速率和反应物浓度等,这时也可以用二元一次方程组来表 示和解决。
04
二元一次方程组的扩展知识
二元一次方程组的几何意义
平面直角坐标系
二元一次方程组可以表示平面上的点集,通过坐标系将代数问题与几何问题相互 转换。
直线交点
二元一次方程组的解对应于直线交点,即两个方程的公共解。
二元一次方程组的解的个数与性质
解的个数
二元一次方程组可能有无数解、唯一 解或无解,取决于方程组中方程的系 数和常数项。
解的性质
解的个数与方程组系数矩阵的秩和增 广矩阵的秩有关,通过比较两者可以 判断解的情况。
二元一次方程组的解的判定定理
定理内容
如果二元一次方程组的系数矩阵的秩等于增广矩阵的秩,则该方程组有唯一解;如果秩不相等,则该 方程组无解或有无数解。

8.2.4 用适当的方法解二元一次方程组

8.2.4 用适当的方法解二元一次方程组


x2y 3
的解也是
二元一次方程x+y=2解,求k的值。
提示:两方程相减得x+y=k-2,从而得到k-2=2得k=4.
5、已知方程 1011x1010 y1009m 的解满足x+y=1,求m
的值。
1010 x1011 y 1012m
提示:两方程相加得x=y=m,很明显得到m=1.
例1、解二元一次方程组:
以下是小明的解题 过程。请你帮他检
3x 4 y 2 ①
验是否正确。
2x 3y 7 ②
解:由②得 y 7 2x ③
3
把③代入①得:3x 4 7 2x 2
3
两边同乘3得:9x 47 2x 2 你能指出错误原因吗?
解得:
x 31
四、运用活学:
(二)课外补充:
1、已知方程组
3x 5 y m

x

2
y

m

4中未知数的和等
于-1,求m的值。
1、选择适当的方法解二元一次方程组。
2、体会数学思想能使问题从难到易,不会 到会的过程。
即:x+y=2 ③
①-② 得:6x-6y=24
即:x-y=4 ④
③+④得:2x=6
解得 x=3
把x=3代入③解得:y=-1
所以这个方程组的解是 x=3

y=-1
类型二 未知数系数和(差)是定值
2.如果二元一次方程组
2x y 7 ① x 2 y 8 ②
那么x+y=_5____ ,x-y=__-1___
把x=2代入③得:
y
7
7

代入消元法PPT课件

代入消元法PPT课件

新知探究
同桌同学讨论,解二元一次方程组的基本思想法是什么?
消元(消去一个未知数)
二元一次方程组
转化
一元一次方程
求方程组解的过程叫做解方程组. 将未知数的个数由多化少,逐一解决的思想,叫做消 元思想.
课堂练习
1.把下列方程改写成为用含x的代数式表示y的情势.
(1)2x-y=﹣1
(2)x+2y-2=0
+ (2) 大瓶所装消毒液 小瓶所装消毒液 = 总生产量.
典例精析
解:设这些消毒液应该分装 x 大瓶、y 小瓶.
根据题意可列方程组

①得
y
5 2
x
.

5x 2 y,
500
x
250
y
22500000.
① ②
把 ③代入 ② 得 500x 250 5 x 22500000 .
2
解得 x = 20000. 把 x = 20000 代入③,得
解:设甲、乙两种蔬菜各种植了x、y亩,依题意得: x + y = 10, ① 2000x + 1500y = 18000. ②
由①得 y = 10 - x. ③ 将③代入②,得 2000x + 1500(10 - x) = 18000, 解得 x = 6.将 x = 6 代入③,得 y = 4.
答:李大叔去年甲、乙两种蔬菜各种植了 方程组
消元 代入法
一元一次方程
2.代入法的一般步骤

即: 变形

代替


回代 写解
3.能灵活运用适当方法解二元一次方程组
作业布置
习题1.2 第1题
课程结束 谢谢观看
巩固练习

二元一次方程组的图像解法PPT课件

二元一次方程组的图像解法PPT课件
y
y= -x+2.5
(2)画图
(3)两条直线有什么 位置关系?方程组解的 情况怎样?
两直线平行,无交点, 故方程组无解。
0
x
y= -x-2
通过以上各例及练习,你能说说二元一次 方程组的解的情况吗?有什么样的规律吗?
二元一次方程组
a1x+b1y=c
1
的解的情况有三种:
a2x+b2y=c2
1.当 a1:a2 ≠b1:b2 时 ,方程组有唯一解; 2.2.当 a1:a2=b1:b2 =c1 :c2时,有无穷多解; 3.3.当a1:a2=b1:b2 ≠c1 :c2时,无解。
2在平面直角坐标系内画出下列二元一次方程的图像二元一次方程相应的一次函数的图像上的点探究学习探究一次函数与二元一次方程组的关系探究一次函数与二元一次方程组的关系1解二元一次方程组x2y22xy62x2y2对应的一次函数为y12x132xy6对应的一次函数是y2x61它们有交点吗
13.4二元一次方程组的图像解法
活动三:实践应用
利用图象法解方程组:
x-y=-1 ① 2x+y=1 ②
解:由①得: y x1 由②得: y2x1
作出图象: 观察图象得:交点(0,-1) ∴方程组的解为 x=0
y=-1
y
y=x+1
O
x
y=-2x+4
你能说一说用图像解二元一次 方程组的一般步骤吗?
写函数,作图象,找交点,下结论
3、利用图像解方程组
;泉州代理记账 泉州代理记账;
道法,还有各种神术,奇术,都是从这三皇の秘术中演变而来の.太阴,太阳,太蚀.随便哪壹位古皇,都是震古烁今の人物,是这壹方天地の绝世强者.而这三皇の地位,又有些不同.因为太阴和太蚀,可以说是两位

(完整版)二元一次方程组优秀课件PPT

(完整版)二元一次方程组优秀课件PPT

答案解析
答案解析1
首先将方程组中的两个方程相加和相减,消去其中一个变量,得到一个一元一次方程,然 后求解得到一个变量的值,最后将这个变量的值代入原方程组中的任意一个方程,求得另 一个变量的值。
答案解析2
首先将方程组中的两个方程相加和相减,消去其中一个变量,得到一个一元一次方程,然 后求解得到一个变量的值,最后将这个变量的值代入原方程组中的任意一个方程,求得另 一个变量的值。
几何问题
例如,在计算几何图形的面积、 周长或体积时,需要使用二元一 次方程组来表示相关变量之间的
关系。
代数问题
例如,在解决代数方程组时,需要 使用二元一次方程组来表示未知数 之间的关系。
概率统计问题
例如,在计算概率分布或统计数据 时,需要使用二元一次方程组来表 示相关变量之间的关系。
科学中的二元一次方程组问题
化学反应
在化学反应中,常常需要用到 二元一次方程组来表示反应物 和生成物的关系。
几何问题
在解决涉及两个未知数的几何 问题时,如两点之间的距离、 角度等,常常需要用到二元一
次方程组。
02
二元一次方程组的解法
代入消元法
通过代入一个方程中的未知数,将其表示为另一个变量的函数,从而简化方程组的方法。
代入消元法是解二元一次方程组的一种常用方法。首先,选择一个方程中的未知数,用另一个未知数表示出来,然后将其代 入到另一个方程中,消去一个未知数,得到一个一元一次方程。接着解这个一元一次方程,得到一个变量的值,再将其代回 原方程中求得另一个变量的值。
01
02
03
购物问题
例如,在购买商品时,需 要计算不同商品的价格和 折扣,以确定最佳购买方 案。
交通问题

二元一次方程组解法综合ppt课件

二元一次方程组解法综合ppt课件

9+3y– 8y= 14
一元一次方程,求得一个未知
– 5y= 5
数的值;
y= – 1 求
把y= – 1代入③,得
3、把这个未知数的值代入上 面的式子,求得另一个未知数 的值;
x = 3+(-1)=2 ∴方程组的解是
x y
=2 = -1

.
4、写出方程组的解。
感悟之旅
加减消元法的基本思路
3x 5y 21 ① 2x 5y -11 ②
个螺帽,应如何分配工人才能使螺栓和螺帽 刚好配套?设生产螺栓x人,生产螺帽y人,
列方程组为( c )
x y 90 A 15x 24y
x y 90 C、 30x 24y
x 90 y
B、48 y 15 x
y 90x D、 2(15x) 24y
.
例1. 某蔬菜公司收购到某种蔬菜140吨,准备加工后上
解后语:二元一次方程要求含有未知数项的次 数都是1,同时未知数项的系数不能为零。
.
练习:
1、 2 -1=3y 是不是二元一次方程?答:不是 x
(“是”或“不是”)
2、方程3x – y =1有 无数 个解。
3、方程3x + 2y =1中,当x =1时,y = -1 。
4、若
=2
x y
2 。 3
是方程3x
2x-5y=7 ① 2x+3y=-1 ②
由①+②得:
由 ②-①得:8y=
两个5二x=元10一次方程中同一未-知8 数的系数互
为相反数或相等时,将两个方程的两边分别相
加或相减,就能消去这个未知数,得到一个一元一
次方程,这种方法叫做加减消元法,简称加减法.

《求解二元一次方程组》二元一次方程组PPT课件

《求解二元一次方程组》二元一次方程组PPT课件

x7 2
所以,原方程组 的解是
x 7 2 y 1
3x 2y 4,
1.二元一次方程5组x 2y 6 ()
A.x 1,
y
1;
x 1,
B.
y
1 2
;
x 1,
C.
y
1 2
;
【解析】选C
的解是
x 1,
D.
y
1 2
.
2.(芜湖·中考)方程组
2x 3y 7,
x
3
y
8
① ②
的解是
C.
y
4
答案:选B
D.
x 4
y
1
3.已知(2x+3y-4)2+∣x+3y-7∣=0,则x= -3 ,
10
y= 3
.
4.(青岛·中考)解方程组:
3x 4 y
x
y
4.
19,
【解析】
3x 4 y 19, ①
x
y
4.

由②,得x=4+y ③
把③代入①,得12+3y+4y=19,
解得:y=1.
求解求出两个未知数的值 Nhomakorabea写解写出方程组的解
2. 二元一次方程组的解法有____代__入__法__、__加__减__法__ _.
解所得的一元一次方程④ ,得x=3
再把x=3代入③,得y=2
x+y=5
这样,我们就得到二元一次方程组 4x+3y=18
x=3 的解
y=2
因此,李明和妈妈共买了苹果3 kg,梨2 kg.
归纳
上面的解法是把二元一次方程组中的一个方程的某 个未知数用含有另一个未知数的代数式表示出来,并代 入另一个方程中,从而消去一个未知数,化二元一次方 程组为一元一次方程.这种解方程组的方法称为代入消元 法,简称代入法.

二元一次方程组解法ppt课件

二元一次方程组解法ppt课件

x 1
所以原方程组的解是
y
1
3x 5y 21 ① 2x 5y -11 ②
解:由①+②得:
5x=10
x=2
把x=2代入①,得: y=3
x 2
所以原方程组的解是
y
3
直接加减消元法
3x 5y 21 ① 2x 5y -11 ②
由①+②得: 5x=10
2x-5y=7

2x+3y=-1 ②
4、写出方程组的解
随堂练习: 你解对了吗?
1、用代入消元法解下列方程组

y=2x x=4 x+y=12 y=8
x=y—2-5

x=5 y=15
4x+3y=65
x+y=11
3x-2y=9

x=9 ⑷
x=3
y=2 x-y=7
y=0
x+2y=3
能 力 检 验 解二元一次方程组
(1)
2a b 18, a 3b 2.
(2) 2x y 5, 3x 4y 2.
SUCCESS
THANK YOU
2024/10/21
1
1
2、若方程5x 2m+n + 4y 3m-2n = 9是关于x、y
的二元一次方程,求m 、n 的值.
解: 根据已知条件可
列方程组:
2m + n = ①
13m – 2n = ②
由①得:1 n = 1 – ③
by ay
3 3
的解是
x 2
y
1
,则 a b 的值是

7.已知关于x,y方程组
2x 3x
3y 5y

二元一次方程组优秀课件PPT

二元一次方程组优秀课件PPT
3 5 4 B x y x y 0

x y 5 C 2 2 x y 1
4、方程组 的解是( 5 x 4 y 1 x 2
1 y x 2 D 2 xy 1 3 x 2 y 5
1 x x 1 x 1 3 C B A 1 D y y 1 y 1 2 y 2
2、满足方程 2 x y 40且符合问题的实际意 义的x、 y 的值有哪些?把它们填入下表中 0 1 2 3 4 5 … 18 … 22 40 38 36 34 32 30 … 4 … -4 不难发现x=18,y=4既是 x+y=22的解,也是2x+y=40 的解,也就是说是这两个方程的公共解,我们把它们叫 x y 22 x 18 记作: 做方程组 的解 。 2 x y 40 y 4 x y
x y 22 2 x y 40
满足方程x+y=22的解
X y 0 22 1 21 2 20 3 19 4 18 5 17 6 16 7 15 8 14 9 13 10 12 11 11 12 10 13 9 14 8 15 7 16 6 17 5 18 4 19 3 20 2 21 1 22 0
(5) -5x=4y+2 (6)7+a=2b+11c (8)4xy+5=0
二元一次方程
不是二元一次方程
2、如果(a-1)x1a1+5y=100是二元一次 方程,求a的值。
解:∵方程(a-1)x1a1+5y=100是二元一次方程
∴1a1=1 且a≠1 ∴a=一1 变式:1、若mxy+9x+3yn-1=7是关于x 二元一次方程,则m = ,n = 2、若9x2m-1+3y3n-2m=7是关于x 二元一次方程,则m = ,n = ,y的 。 ,y的 。

7.2 二元一次方程组的解法课件(共20张PPT)

7.2 二元一次方程组的解法课件(共20张PPT)

3x 5y 5 3x 4y 23
① ②
等式性质
如果把这两个方程的左边与左边相减,右边与右边相减, 能得到什么结果?
分析: 3x 5y 3x 4y = 5 23
①左边
②左边 = ①右边 ②右边
解方程组:
3x 5y 5 3x 4y 23
① ②
分析: ①左边
②左边 = ①右边 ②右边
拓展
如何利用加减法解方程组35xx
6 4
y y
42 10
通过本节课的学习,你有哪 些收获?
通过本节课的学习,你还有 疑惑吗?
P32 练习:解下列方程组
谢谢!
两个方程
4x+6y=14
只要两边 分别相减就可以消去未知数 x
练一练
(二)用加减法解二元一次方程组。
⑴ 5x+y=7 3x-y=1
⑵ 4x-3y=5 4x+6y=14
答案:xy
1 2
答案:xy
2 1
练一练
3、已知
x 2
y
1
的解,则 a b
是二元一次方程aa组xx Fra bibliotekby by
7 1
的值为( -1 )
3x 5y 3x 4y = 5 23
3x 5y 3x 4y 18
注意符号
9y 18 y 2
将y=-2代入①,得 3x 5 2 5
x5
用括号将两个式子相减,注意减去前面是负 号的项,去括号要变号。
解方程组:
3x 3x
5 4
y y
5 23
① ②
解:由①-②得:
9y 18 y 2
问题:利用加减消元法直接解二元一
次方程组的前提条件是什么?

《二元一次方程组的解法》数学教学PPT课件(3篇)

《二元一次方程组的解法》数学教学PPT课件(3篇)

用一个未知数的代数式 表示另一个未知数 消去一个元 分别求出两个未知数的值
写出方程组的解
学习目标
1、理解解二元一次方程组的另一种常用方法——“加减 消元法” ; 2、熟练以及灵活应用加减消元法解二元一次方程组.
新知探究
想一想
为了解方程组
3x+2y=13 3x-2y=5
不用代入法能否消去其中的未知数y ?
旧校舍面积的4倍,那么应该拆除多少旧校舍,建造多少新校
舍?(单位:m2 )
拆 (x m2)
设应拆除旧校舍x m2 ,建 造新校舍y m2 .
根据题意列方程组
20000 m2
y=4x
y-x=20000× 30﹪.
y=4x 即
y-x=6000
新建 (y m2)
1.解方程组: x=3y+2, ① x+3y=8. ②
随堂练习
1、用代入消元法解下列方程组
y=2x ⑴
x=4
x=—y2-5
y=8 ⑵
x=5 y=15
x+y=12
4x+3y=65
x+y=11 x=9
3x-2y=9
x=3
⑶ x-y=7
y=2 ⑷ x+2y=3
y=0
2、若方程5x 2m+n + 4y 3m-2n = 9是关于x、y的二元 一次方程,求m 、n 的值.
把y=0.8代入①可得x=2
{ x=2
故原方程的解为 y=0.8
{7x+4y-10=0
例3 解方程组 4x+2y-5=0
{7x+4y=10 ①
解:原方程组可化为 4x+2y=5 ②
由方程②得y=(5-4x)/2 将上式带入①整理,得10- x =10

消元法解二元一次方程组ppt课件

消元法解二元一次方程组ppt课件
使二元一次方程两边的值相等的两个未
知数的值,叫做二元一次方程的解。
X Y
二元一次方程有无穷个解
谈谈思路:
2y – 3x = 1 ① 分析
例1 解方程组
x=y-1

解: 把②代入①得:
2 y – (3y-1) x =1
x=y-
2y – 3(y – 1)= 1
12y – 3y + 3
2=y1 – 3y = 1
9y 18
即 y 2
将y=-2代入①,得: 3x 5 2 5
3x 10 5 3x 5 10
3x 15
即 x5
所以方程组的解是
x 5

y

2
例2:解方程组: 3x 7 y 9 4x 7 y 5
分析:可以发现7y与-7y互为 相反数,若把两个方程的左 边与左边相加,右边与右边相 加,就可以消去未知数y
2a b 18, a 3b 2.
2x y 5, 3x 4 y 2.
s 3t 4, 0.25s 0.5t 0.
4(x y 1) 3(1 y) 2,

x 2

y 3

2.
知识拓展
2、用代入法解二元一次方程组
上述哪种解法更好呢? x 7

y

4
应选择方程组中 同一未知数系数 绝对值的最小公 倍数较小的未知 数消元.
加减法归纳:
用加减法解同一个未知数的 系数绝对值不相等,且不成整 数倍的二元一次方程组时,把 一个(或两个)方程的两边乘 以适当的数,使两个方程中某 一未知数的系数绝对值相等, 从而化为第一类型方程组求 解.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三、拓展拔高
换元法
问题3:
三、拓展拔高
问题4:
化繁为简法
四、当堂检测
1、用适当的方法解二元一次方程组:
1
2018x-2017y=4040 2017x#43;y -2y=0 3
2 2x+y -5=7y
3
x
3
=
y 6
3 x + y = - 1 5
四、当堂检测
2x+y=4
人教版七年级数学下册
一、目标导学
1、解二元一次方程组的基本思想是什么?
二元一次方程
消元 转化
一元一次方程
2、消元的方法有哪些? 代入消元法、加减消元法
二、质疑自学
解下列方程组,并思考:什么情况下用代入法简单?什么 情况下用加减法简单?
x 2y 5
x
4
代入法
2x y 5
3x
4y
代入法
5x-y=3
,求k的值。
五、课堂小结
1、解二元一次方程组的基本思想是什么?
消元→化二元一次方程为一元一次方程
2、本节课我们学习了哪些解二元一次方程组的方 法?
代入消元法、加减消元法、 整体代入消元法、换元法
三、拓展拔高
整体代入消元法
问题1:下列方程组将如何求解?
分析:方程①及②中均含有2x + 3y。可用整体 思想解。由①得2x+3y= 2代入②而求出y。
三、拓展拔高
换元法
问题2:
分析: 本题含有相同的式子,可用换元法求解。
三、拓展拔高
问题3:
大家应该也有点累了,稍作休息
大家有疑问的,可以询问和交流
2、已知方程组
x
+
2
y
=
5
,则x+y的值为(
D

A.-1 B.0
C.2
D.3
1011x+1010y=1009m 3、已知方程组 1010x+1011y=1012m的解满足方程 x - y = 3 ,
则k的值为____–__1__。
2x+3y=k
4、已知方程组
3x-4y=k+11
的解x、y满足方程
2
3x 3y 2
x
3y
4 加减法
3x 2y 6x 9y
8 加减法 21
寻找规律
怎样选用适当的方法解二元一次方程组? 代入法 当有一个未知数的系数为1或-1时
①当相同字母的未知数的系数相同时;
加减法 ②当相同字母的未知数的系数相反时;
③当相同字母的未知数的系数不相同或相反时, 如果同一个未知数的系数互为倍数
相关文档
最新文档