机械手毕业设计

合集下载

五自由度机械手毕业设计

五自由度机械手毕业设计

五自由度机械手毕业设计简介毕业设计项目是基于五自由度机械手的设计与调试。

机械手作为一种重要的自动化设备,被广泛应用于各种工业场景中。

本项目旨在设计和实现一个五自由度机械手,以达到特定的工作任务,并对其进行调试和性能优化。

设计目标本项目的设计目标如下:1.组装一台五自由度机械手,包括底座、前臂、手臂和手爪等组成部分。

2.实现机械手的运动控制和精确定位,以可靠地完成给定的任务。

3.进行机械手的调试和性能优化,以提高其准确性和灵活性。

设计流程步骤一:机械手构建首先,需要根据机械手的设计要求,选择合适的机械结构和零件。

设计一个稳定的底座来支持机械手的运动。

然后,设计前臂和手臂以实现机械手的五自由度运动。

最后,设计一个手爪用于抓取目标物体。

步骤二:运动控制系统设计一个运动控制系统,用于实现机械手的精确定位和运动控制。

可以使用传感器来获取机械手当前的位置和姿态信息,并使用控制算法来计算和控制机械手的运动。

可以选择合适的传感器和控制器来实现这个功能。

步骤三:系统调试完成机械手的组装和运动控制系统的搭建之后,需要进行系统的调试和测试。

在调试过程中,可以逐步验证机械手的各个自由度的运动是否准确,并优化运动控制系统的参数以提高机械手的运动准确性和稳定性。

步骤四:任务实现完成机械手的调试之后,可以设计和实现一系列的任务来验证机械手的性能和应用能力。

可以设计一些基础任务,如抓取、放置和搬运物体等。

还可以设计更复杂的任务,如拧螺丝、组装零件等,以验证机械手在复杂环境中的运动控制和应用能力。

预期成果通过完成本毕业设计项目,预期实现以下成果:1.完整的五自由度机械手,包括底座、前臂、手臂和手爪等组成部分。

2.可靠的运动控制系统,能够实现机械手的精确定位和运动控制。

3.调试和优化完毕的机械手,具有较高的运动准确性和稳定性。

4.完成的任务实现,验证机械手的性能和应用能力。

时间计划本项目的时间计划如下:•第一周:项目立项和需求分析•第二周:机械结构设计和零件采购•第三周:机械手组装和基本运动控制实现•第四周:运动控制系统调试和优化•第五周:任务实现和性能测试•第六周:项目总结和报告编写结论通过本毕业设计项目,将能够全面了解五自由度机械手的设计和调试过程,掌握机械手的运动控制原理和实现方法,并对机械手的性能和应用能力进行验证和提升。

工业机械手毕业设计

工业机械手毕业设计

工业机械手毕业设计毕业设计题目:基于工业机械手的智能装配生产线设计1.概述在现代制造业中,自动化和智能化已经成为发展的趋势。

工业机械手作为自动化生产线的关键设备之一,具有高精度、高速度、高可靠性以及灵活性等优点,被广泛应用于各个行业的生产过程中。

本设计旨在基于工业机械手设计一条智能装配生产线,提高装配效率和质量。

2.设计目标(1)提高装配效率:通过引入工业机械手自动进行装配操作,可大大提高装配效率,减少人力资源的投入。

(2)提高装配质量:工业机械手具备高精度和高可靠性,可以有效避免人为因素对装配质量的影响,保证产品质量的稳定性和一致性。

(3)降低生产成本:自动化装配生产线能够减少人员的参与,降低劳动成本,并且能够提高生产线的利用率,降低生产成本。

(4)提高生产线的灵活性:工业机械手具有灵活的操作能力,可以根据产品的不同需求进行灵活调整,提高生产线的适应性。

3.设计步骤(1)需求分析:根据装配产品的要求和生产线的布局要求,明确生产线所需工业机械手的功能和性能。

(2)机械手选择:根据需求分析结果,选择适合的工业机械手,并进行性能测试和验证。

(3)系统设计:设计生产线的布局和工业机械手的运输路径,确定机械手的动作控制方式和装配过程中的传感器安装位置。

(4)装配过程规划:根据产品的装配流程,设定机械手的装配动作序列和时间参数。

(5)动作控制编程:根据装配过程规划,编写机械手的动作控制程序,并对程序进行调试和测试。

(6)系统集成与优化:将工业机械手与其他相关设备进行集成,并进行系统整体测试和性能优化。

(7)安全保障与故障排除:设计合理的安全保护装置,制定故障排除方案,确保生产线的安全性和稳定性。

4.设计效果与意义(1)装配效率提高:通过自动化装配生产线的引入,能够大幅提高装配效率,减少装配时间,提高生产效率。

(2)装配质量提升:工业机械手具备高精度和高可靠性的优点,能够减少人为因素对装配质量的影响,提高产品的一致性和稳定性。

机械手的毕业设计

机械手的毕业设计

摘要通过对机械设计、制造及其自动化专业课程的学习,总结大学三年所学的知识,对工业机械手各部分机械结构和功能的论述和分析,以及实际操作中的应用情况,设计了一种圆柱坐标形式的数控机床上下料机械手。

重点针对机械手的手爪、手腕、手臂、腰座等各部分机械结构以及机械手控制系统(传动系统、驱动系统)进行了详细的设计。

同时对其控制系统和液压系统进行了理论分析和设计计算。

基于PLC对机械手的控制系统进行了深入细致的设计,通过对机械手作业的工艺过程和控制要求的分析,设计了控制系统的硬件电路,同时编制了机械手的控制程序。

设计达到了预期目标。

关键词:机械手;PLC;液压伺服定位;电液系统摘要 (1)关键词 (1)第一章前言 (4)1.1选题背景 (4)1.2设计目的 (4)1.3发展现状和趋势 (5)第二章机械手各部件的设计 (6)2.1机械手的总体设计 (6)2.1.1机械手总体结构的类型 (6)1.直角坐标机械手结构特点 (6)2.圆柱坐标机械手结构特点 (6)3.球坐标机械手结构特点 (7)4.关节型机械手结构特点 (7)2.1.2具体采用方案 (7)2.2机械手手爪结构设计 (8)2.2.1设计要求 (8)2.2.2驱动方式 (9)2.2.3典型结构 (10)2.3机械手手腕结构的设计 (11)2.3.1 手腕结构的设计要求 (11)2.3.2具体设计方案 (12)2.4机械手手臂结构的设计 (13)2.4.1手臂结构的设计要求 (13)2.4.2具体设计方案 (13)2.5机械手腰座结构的设计 (14)2.5.1腰座结构的设计要求 (14)2.5.2具体设计方案 (15)2.6机械手的机械传动机构设计 (15)2.6.1传动机构设计应注意的问题 (16)2.6.2常用的传动机构形式 (16)2.6.3具体设计方案 (18)2.7机械手驱动系统设计 (18)2.7.1常用驱动系统及其特点 (18)2.7.2具体设计方案 (19)2.8 机械手手臂的平衡机构设计 (19)2.8.1平衡机构的形式 (19)2.8.2具体设计方案 (20)第3章理论分析和设计计算 (20)3.1电机选型有关参数计算 (20)3.1.1有关参数的计算 (20)3.1.2电机型号的选择 (23)3.2液压传动系统设计计算 (25)3.2.1确定液压系统基本方案 (25)3.2.2拟定液压执行元件运动控制回路 (27)3.2.3液压源系统的设计 (27)3.2.4绘制液压系统图 (28)3.2.5确定液压系统的主要参数 (28)3.2.6计算和选择液压元件 (34)第4章机械手控制系统的设计 (36)4.1硬件设计 (36)4.1.1操作面板布置 (36)4.1.2工艺过程与控制要求 (37)4.1.3作业流程 (38)4.1.4控制器的选型 (39)4.1.5控制系统原理分析 (40)4.1.6 PLC外部接线设计 (41)4.1.7 I/O地址分配 (41)4.2软件设计 (42)4.2.1控制主程序流程图 (42)结论 (44)致谢 (45)参考文献 (46)第一章前言1.1选题背景由于工业自动化的全面发展和科学技术的不断提高,对工作效率的提高迫在眉睫。

毕业设计-机械手毕业论文

毕业设计-机械手毕业论文

毕业设计-机械手毕业论文机械手毕业设计目录摘要.............................. 错误!未定义书签。

第1章绪论 (1)1.1 课题背景 (1)1.2 机械手的定义与分类 (2)1.3 机械手应用及组成结构 (2)1.4 机械手的发展趋势 (3)1.5 总体设计要求 (4)第2章 PLC的介绍与选择 (5)2.1 PLC的特点 (5)2.2 PLC的选型 (6)2.3 三菱FX系列的结构功能 (7)第3章各功能实现形式与控制方式 (9)3.1 本机械手模型的机能和特性 (9)3.2 夹紧机构 (9)3.3 躯干 (10)3.4 旋转编码盘 (10)第4章控制系统设计 (11)4.1 控制系统硬件设计 (11)4.1.1 PLC梯形图中的编程元件 (12)4.1.2 PLC的I/O分配 (12)4.1.3 机械手控制系统的外部接线图 (14)4.2 控制系统软件设计 (15)4.2.1 公用程序 (15)4.2.2 自动操作程序 (17)4.2.3手动单步操作程序 (22)4.2.4 回原位程序 (24)4.3 PLC程序的上载和下载......... 错误!未定义书签。

4.3.1 PLC程序的上载........ 错误!未定义书签。

4.3.2 PLC程序的下载........ 错误!未定义书签。

第5章设计小结...................... 错误!未定义书签。

致谢 (28)参考文献 (29)第1章绪论1.1 课题背景随着现代工业技术的发展,工业自动化技术越来越高,生产工况也有趋于恶劣的态势,这对一线工人的操作技能也提出了更高的要求,同时操作工人的工作安全也受到了相应的威胁。

工人工作环境和工作内容也要求理想化简单化,对于一些往复的工作由机械手远程控制或自动完成显得非常重要。

这样可以避免一些人不能接触的物质对人体造成伤害,如冶金、化工、医药、航空航天等。

在机械制造业中,机械手应用较多,发展较快。

自动上下料机械手毕业设计

自动上下料机械手毕业设计

自动上下料机械手毕业设计一、需求分析随着工业自动化水平的提高,自动上下料机械手在工业生产线上的作用越来越重要。

自动上下料机械手能够替代人工完成重复的上下料工作,提高生产效率和产品质量。

因此,设计一个具有自动上下料功能的机械手成为了当前毕业设计的热门课题之一二、系统结构设计在设计自动上下料机械手之前,需要先明确机械手的结构和工作原理。

1.结构设计2.工作原理机械手的工作原理主要分为三个步骤:识别物体位置、抓取物体、放置物体。

a.物体识别机械手需要通过视觉系统或传感器来识别需要上下料的物体位置。

视觉系统可以通过图像处理技术识别物体的形状、颜色和位置信息,传感器可以通过接触或非接触方式感知物体的位置。

b.抓取物体机械手通过夹爪对物体进行抓取。

夹爪可以采用机械夹持、气动夹持或电磁夹持等方式来完成抓取动作。

在抓取物体时需要注意夹爪的力度和抓取位置,以确保物体不会被损坏或滑落。

c.放置物体机械手将抓取的物体放置到目标位置。

在放置物体时同样需要注意放置位置和力度,以确保物体能够准确放置到目标位置。

三、技术选型在设计自动上下料机械手的过程中,需要选取合适的技术和材料。

1.机械结构机械结构可以采用金属、塑料或复合材料制作,具体选材要根据机械手的负荷和精度要求来决定。

2.夹爪夹爪可以根据具体应用选择合适的类型,例如并行夹爪、夹具夹爪或磁力夹爪等。

3.控制系统机械手的运动控制系统可以采用单片机、PLC或伺服电机控制等方式。

选择控制系统时需要考虑运动速度、精度和整体效率等因素。

四、系统实现在设计完机械手的结构和选型之后,需要进行系统的实现。

1.机械结构制作根据设计要求制作机械手的机械结构,包括机械臂、夹爪和固定装置等。

2.控制系统搭建根据选定的控制系统,搭建机械手的运动控制系统。

可以通过编程、电路连接和传感器安装等方式完成。

3.调试和测试完成机械手的组装后,进行调试和测试。

通过调试和测试可以发现和解决机械手运动、抓取和放置等环节出现的问题,并对系统进行优化和改进。

机械手设计 毕业设计题目

机械手设计 毕业设计题目

有关“机械手设计”的毕业设计机械手设计是自动化和机器人领域的一个重要主题。

有关“机械手设计”的毕业设计如下:1.确定设计目标:在开始设计之前,明确你的设计目标是非常重要的。

这可能包括机械手的功能、应用领域、预期的精度和成本预算等。

2.调研和分析:在开始设计之前,进行充分的调研和分析是必要的。

了解当前市场上已有的机械手设计,分析其优缺点,并确定你的设计如何与它们区分开来。

3.机械手结构选择:根据设计目标,选择合适的机械手结构。

这可能包括机械臂、手指或其他运动部件。

了解不同类型的机械手结构及其运动特性,选择最适合你设计的结构。

4.运动规划:确定机械手的运动轨迹和操作方式。

这可能涉及确定关节角度、运动范围和速度等参数。

使用运动学方程或计算机仿真软件来验证和优化运动规划。

5.控制系统设计:设计用于控制机械手运动的控制系统。

这可能包括电机驱动、传感器输入和控制器算法等。

选择合适的控制系统硬件和软件,并编写控制程序以实现所需的运动和操作。

6.材料选择:选择用于制造机械手的材料。

这可能包括金属、塑料或其他复合材料。

考虑材料的强度、刚度、耐磨性和成本等因素。

7.制造和装配:将设计转化为实际的机械手结构。

这可能涉及制造工艺、装配和调试等步骤。

确保制造过程中保持精度和质量标准。

8.测试和评估:对制造完成的机械手进行测试和评估。

这可能包括性能测试、精度测试和可靠性测试等。

根据测试结果对设计进行必要的调整和优化。

9.文档编写和报告:完成设计后,编写详细的文档和报告,包括设计说明、制造流程、测试结果等。

这将有助于展示你的设计和理解,并为你的毕业设计提供全面的记录。

机械手总体方案毕业设计

机械手总体方案毕业设计

机械手总体方案毕业设计引言:机械手是一种能够模拟人手动作的自动化装置,广泛应用于工业生产、医疗领域、科研实验等。

本总体方案旨在设计一台能够实现多自由度运动、具备灵活性和精确性的机械手。

一、设计目标:1.实现多自由度运动:机械手设计应具备足够的关节自由度,能够在不同方向和角度进行运动,适应不同工作场景的需求。

2.提高操作灵活性:机械手应具备灵活的手指和手腕,能够适应各种尺寸和形状的物体抓取,而不会因为形变而导致抓取失败。

3.实现精确控制:机械手的运动应具备高精度,并能够实现准确定位和精确操控。

4.提高安全性:机械手设计应考虑安全性,具备防护装置和自动停机等功能,确保操作人员的安全。

二、机械结构设计:1.关节设计:机械手应由多个关节组成,每个关节由电动机驱动,实现灵活的运动。

关节设计应具备足够的承载能力和稳定性,以确保机械手长时间运行的可靠性。

2.手指设计:机械手手指应具备可调节的灵活性,能够适应不同尺寸和形状的物体抓取。

手指可以采用弹性材料或具有可伸缩性的结构,以增加抓取的稳定性。

3.手腕设计:机械手腕部分应具备多自由度运动,既能够实现水平方向的旋转,又能够实现垂直方向的上下移动,以适应不同工作场景的需求。

4.传动系统设计:机械手的传动系统应选择合适的传动方式,如齿轮传动、链条传动等,以确保精确的位置控制和运动控制。

三、控制系统设计:1.电路设计:机械手的控制系统应包括电源、电机驱动器和数据传输装置。

电路设计应考虑供电稳定性、电磁干扰等因素,以确保机械手的正常运行。

2.传感器设计:机械手应搭载合适的传感器,用于感知物体的位置、形状和力度等参数,以实现对物体的准确抓取和操控。

3.控制算法设计:机械手的控制算法应具备实时性和精确性,能够根据传感器信息实现对机械手的准确控制。

常见的控制算法包括PID控制、模糊控制等。

4.用户界面设计:机械手的控制系统应提供友好的用户界面,使操作人员能够方便地操作机械手,并获取相关信息。

机械手毕业设计 (2)

机械手毕业设计 (2)

机械手毕业设计1. 引言机械手,也称为机器手臂,是一种用于辅助、自动执行一系列工业任务的机械装置。

随着科技的不断发展,机械手在生产制造领域得到了广泛应用。

本文旨在介绍一个关于机械手的毕业设计项目,包括设计背景、目标、可行性分析,以及具体的设计方案和实施计划。

2. 设计背景目前,各个行业的生产制造过程中都需要使用机械手来完成繁重、危险或精密的工作。

为了提高工作效率和质量,设计与开发一个高效、精确的机械手成为迫切需求。

3. 设计目标本毕业设计旨在设计一个具有以下特点的机械手:•稳定性:机械手必须能够在不同工作环境下保持稳定,并且能够承受合适的负荷。

•灵活性:机械手需要具备足够的灵活性和适应性,能够完成不同种类的任务。

•精度:机械手在执行任务时需要具备较高的定位精度,以确保工作的准确性。

•自动化:机械手需要具备一定的自主决策和自动化能力,能够根据任务需要进行自主操作。

4. 可行性分析在设计过程中,我们进行了可行性分析来评估设计方案的可行性。

可行性分析包括以下几个方面:•技术可行性:通过相关的技术研究和实验,我们确定设计方案具备可行性。

•经济可行性:我们评估了设计和制造机械手所需要的成本,并进行了成本效益分析,确认项目的经济可行性。

•时间可行性:我们制定了详细的项目计划,并评估了完成设计和制造所需要的时间,确认项目的时间可行性。

基于可行性分析的结果,我们确定了毕业设计的可行性,并继续进行了后续工作。

5. 设计方案基于设计目标和可行性分析的结果,我们提出了下面的设计方案:•选择适当的机械结构:根据任务的特点和要求,我们选择了合适的机械结构,包括关节式和平行式机械手臂。

•配置合适的传感器:为了提高机械手的反馈控制能力,我们配置了合适的传感器,例如位置传感器、力传感器和视觉传感器等。

•开发控制系统:我们设计和开发了机械手的控制系统,包括硬件和软件部分。

控制系统能够实现机械手的运动控制、力控制和视觉控制等功能。

机械手毕业设计说明书

机械手毕业设计说明书

机械手毕业设计说明书一、设计目的本毕业设计旨在设计一种机械手,能够根据预先设定的程序自动执行各种操作。

通过该设计,可以提高工作效率,减少人力成本,同时具备高精度和高可靠性。

二、设计背景近年来,随着工业自动化的不断发展,机械手在工业生产中的应用越来越广泛。

机械手凭借其高速、高精度、高可靠性等优势,成为工厂生产线上的重要设备之一。

因此,设计一种功能强大的机械手对于工业生产的提升具有重要意义。

三、设计内容1.机械结构设计本设计采用七自由度机械手结构,包括基座、旋转关节、摇摆关节、剪切关节以及爪子等部分。

结构设计中要考虑刚性、稳定性以及重量平衡等因素,确保机械手能够准确地执行各种操作。

2.传感器系统设计为了使机械手具备自主感知能力,本设计将配备多种传感器,如力传感器、视觉传感器等。

通过传感器系统的设计,机械手可以根据实时的反馈信息进行运动控制,提高操作的准确性和安全性。

3.运动控制系统设计运动控制系统是机械手的核心部分,本设计将采用PLC (可编程逻辑控制器)作为控制器,结合伺服驱动器实现机械手的精确定位和协调运动。

通过编写程序,机械手可以根据预先设定的路径和信号执行各种操作。

四、设计过程1.需求分析针对机械手的应用场景和功能需求,进行需求分析。

确定机械手所需执行的任务类型、速度要求、负载能力等。

2.机械结构设计根据需求分析,设计机械手的结构,包括基座、旋转关节、摇摆关节、剪切关节和爪子等。

进行力学分析和模拟,确保结构设计的合理性和可靠性。

3.传感器系统设计根据需求分析,确定机械手所需的传感器类型和数量。

选择合适的传感器并安装在机械手上,设计传感器的接口电路和数据处理算法。

4.运动控制系统设计选择合适的PLC和伺服驱动器,进行硬件选型和连接。

编写控制程序,实现机械手的位置控制、速度控制和力控制等功能。

5.整体集成与测试将机械结构、传感器系统和运动控制系统进行整体集成。

进行系统测试,检验机械手的功能和性能是否满足设计要求。

多功能抓取机械手的设计 毕业设计

多功能抓取机械手的设计 毕业设计

设计一个多功能抓取机械手作为毕业设计是一个很有挑战性和创新性的课题。

以下是你可以考虑的一些建议和步骤:1. 项目背景和需求分析:-确定多功能抓取机械手的应用领域和具体需求,例如工业自动化、物流仓储等。

-分析市场上已有的类似产品,找出它们的优缺点,为设计提供参考。

2. 功能设计:-确定多功能抓取机械手需要具备的功能,如夹取、旋转、升降等。

-考虑集成传感器、视觉系统等技术,实现自动化控制和智能识别功能。

3. 机械结构设计:-设计机械手的结构,包括关节、连杆、末端执行器等部件,确保机械手具有足够的稳定性和灵活性。

-考虑采用轻量化材料和结构优化,以提高机械手的运动速度和精度。

4. 控制系统设计:-设计控制系统,选择合适的控制器和执行器,实现对机械手各部件的精准控制。

-考虑采用开放式控制系统,支持不同传感器和通讯接口的集成。

5. 电气系统设计:-设计电路板和电气布线,确保机械手的电气系统稳定可靠。

-考虑安全性设计,包括过载保护、紧急停止等功能。

6. 软件编程:-编写控制程序和用户界面,实现机械手的操作和监控。

-考虑采用先进的编程语言和算法,提高机械手的智能化水平。

7. 性能测试与优化:-进行多功能抓取机械手的性能测试,包括速度、精度、负载能力等指标。

-根据测试结果进行优化,提高机械手的性能和稳定性。

8. 报告撰写与展示:-撰写毕业设计报告,详细记录设计过程、方法和结果。

-准备设计成果的展示材料,向指导老师和评委展示你的设计成果和创新之处。

通过以上设计步骤和细致的实施,你可以完成一份出色的多功能抓取机械手毕业设计,并展示你在机械设计、控制技术和创新思维方面的能力和成就。

祝你顺利完成毕业设计!。

机械手毕业设计范文

机械手毕业设计范文

机械手毕业设计范文首先,机械手的结构设计是整个毕业设计的核心。

机械手通常由多个关节组成,每个关节通过电机驱动实现运动。

在设计关节结构时,需要考虑到工作负载、运动范围以及速度等因素。

一般来说,机械手的关节应该具备足够的承重能力,能够灵活地移动,并且能够在不同的工作环境下保持稳定。

此外,关节之间的连接采用合适的联接方式,如球接头或者滑动联接,以保证机械手的灵活度。

其次,控制系统是机械手设计中不可或缺的一部分。

控制系统负责接收用户输入的指令,并通过编程转化为机械手的运动。

在设计控制系统时,需要选择合适的控制器和传感器。

控制器可以是单片机、PLC或者计算机等,其根据输入的指令来控制关节的运动。

传感器则用于获取机械手与环境之间的信息,包括位置、力度和重量等。

这些信息能够帮助机械手实时地调整、适应不同的工作环境。

最后,操作便捷性也是机械手设计中需要考虑的因素之一、机械手的操作界面应该设计得简单易用,以便用户能够快速上手。

操作界面可以是一个触摸屏或者物理按钮等。

此外,机械手的操作也可以通过编程实现自动化,将一定的动作和指令存储在内存中,可以实现重复操作,提高工作效率。

为了验证机械手设计的可行性和性能,可以进行实验验证。

可以设计一些标准化的任务,如拾取物体、拧紧螺丝等,通过不同参数的调整以及不同工作环境下的实验来评估机械手的性能。

综上所述,机械手的毕业设计需要综合考虑结构设计、控制系统和操作便捷性等因素。

设计一个稳定、高效、易用的机械手可以提高工业生产效率和质量,具有广阔的应用前景。

通过实验验证可以得到机械手设计的可行性和性能,同时也可以为未来的研究提供基础。

总结一下,机械手的毕业设计需要考虑结构设计、控制系统和操作便捷性等因素。

合理选择关节结构和联接方式,设计适合的控制系统和传感器,以及简单易用的操作界面。

通过实验验证可以评估机械手的性能。

机械手的设计具有重要的意义和应用前景,可以提高工业生产的效率和质量。

毕业设计机械手的总结与思考

毕业设计机械手的总结与思考

毕业设计机械手的总结与思考
一、毕业设计机械手概述
在本次毕业设计中,我主要负责设计和实现一个机械手。

这个机械手的主要功能是模拟人类的手部运动,完成抓取、搬运和释放物体的任务。

为了实现这一目标,我需要对机械手的结构、驱动方式、控制系统等进行深入研究和设计。

二、设计过程与实现
在设计中,我首先对市场上现有的机械手进行了调研和分析,确定了机械手的整体结构和驱动方式。

然后,我使用三维建模软件对机械手进行了详细的设计,并进行了有限元分析,确保了机械手的结构强度和稳定性。

在实现阶段,我采用了Arduino作为主控制器,通过编写程序控制机械手的运动。

同时,我还为机械手设计了一套传感器系统,用于检测物体的位置和姿态,从而实现了自动抓取和搬运的功能。

三、遇到的问题与解决方案
在设计和实现过程中,我遇到了许多问题。

其中最大的问题是如何实现机械手的精准控制。

为了解决这个问题,我采用了PID控制算法,通过不断调整控制参数,实现了对机械手运动的精准控制。

此外,我还遇到了材料选择、结构设计、驱动系统选择等问题,通过查阅资料、实验和不断尝试,最终都得到了有效的解决。

四、总结与思考
通过这次毕业设计,我深入了解了机械手的设计和实现过程,掌握了许多实用的技能和方法。

同时,我也深刻认识到,设计过程中需要注重细节,不断尝试和优化,才能达到最好的效果。

此外,我也意识到自己在许多方面还有待提高,例如理论知识、实践经验等。

在未来的学习和工作中,我将继续努力,不断提高自己的能力。

机械手毕业设计

机械手毕业设计

机械手毕业设计篇一:机械手结构设计毕业论文1.绪论1.1工业机械手设计的意义1、熟悉机械手的应用场合及有关机械手设计的步骤;2、机械手可以提高生产过程中的自动化程度,减轻人力,便于有节奏的生产;3、结合机械手设计这方面的知识,在设计过程中学会怎样发现问题、研究问题、解决问题。

1.2国外的机械情况现代工业机械手起源于20世纪50年代初,是基于示教再现和主从控制方式、能适应产品种类变更,具有多自由度动作功能的柔性自动化。

机械手首先是从美国开始研制的。

1958年美国联合控制公司研制出第一台机械手。

他的结构是:机体上安装回转长臂,端部装有电磁铁的工件抓放机构,控制系统是示教型的。

1962年,美国机械铸造公司在上述方案的基础之上又试制成一台数控示教再现型机械手。

商名为Uni-mate(即万能自动)。

运动系统仿造坦克炮塔,臂回转、俯仰,用液压驱动;控制系统用磁鼓最存储装置。

不少球坐标式通用机械手就是在这个基础上发展起来的。

同年该公司和普鲁曼公司合并成立万能自动公司(Unimaton),专门生产工业机械手。

1962年美国机械铸造公司也试验成功一种叫Versatran机械手,原意是灵活搬运。

该机械手的中央立柱可以回转,臂可以回转、升降、伸缩、采用液压驱动,控制系统也是示教再现型。

虽然这两种机械手出现在六十年代初,但都是国外工业机械手发展的基础。

1978年美国Uni-mate公司和斯坦福大学、麻省理工学院联合研制一种Uni-mate型工业机械手,装有小型电子计算机进行控制,用于装配作业,定位误差可小于±1毫米。

美国还十分注意提高机械手的可靠性,改进结构,降低成本。

如Uni-mate公司建立了8年机械手试验台,进行各种性能的试验。

准备把故障前平均时间(注:故障前平均时间是指一台设备可靠性的一种量度。

它给出在第一次故障前的平均运行时间),由400小时提高到1500小时,精度可提高到±0.1毫米。

德国机器制造业是从1970年开始应用机械手,主要用于起重运输、焊接和设备的上下料等作业。

【精品毕设】机械手毕业设计

【精品毕设】机械手毕业设计

第一章 PLC控制机械手的发展历程1.1 气动机械手简介近20年来,气动技术的应用领域迅速拓宽,尤其是在各种自动化生产线上得到广泛应用。

电气可编程控制技术与气动技术相结合,使整个系统自动化程度更高,控制方式更灵活,性能更加可靠;气动机械手、柔性自动生产线的迅速发展,对气动技术提出了更多更高的要求;微电子技术的引入,促进了电-气比例伺服技术的发展;现代控制理论的发展,使气动技术从开关控制进入闭环比例伺服控制,控制精度不断提高;由于气动脉宽调制技术具有结构简单、抗污染能力强和成本低廉等特点,国内外都在大力开发研究。

随着微电子技术、PLC技术、计算机技术、传感技术和现代控制技术的发展与应用,气动技术已成为实现现代传动与控制的关键技术之一。

PLC控制能更灵活地模仿人手和臂的某些动作功能,用以按固定程序抓取、搬运物件或操作工具的自动操作装置,通常用作机床或其他机器的附加装置,如在自动机床或自动生产线上装卸和传递工件,在加工中心中更换刀具等,一般没有独立的控制装置。

有些操作装置需要由人直接操纵,如用于原子能部门操持危险物品的主从式操作手也常称为机械手。

能在有害环境下操作以保护人身安全,因而广泛应用于机械制造、冶金、电子、轻工和原子能等部门。

机械手为了抓取空间中任意位置和方位的物体,所需有6个自由度。

自由度是机械手设计的关键参数。

自由度越多,机械手的灵活性越大,通用性越广,其结构也越复杂。

一般专用机械手有2~3个自由度。

1.2 气动技术的发展气动技术由风动技术及液压技术演变、发展而成为独立的技术门类不到50年,却已经充分显示出它在自动化领域中强大的生命力,成为二十世纪应用最广,发展最快,也最易被接受及重视的技术之一。

气动技术有几个主要的历史发展阶段。

至50年代初.大多数组件从液压组件改造或演变过来,体积很大。

60年代,开始构成工业控制系统,自成体系,不与风动技术相提并论。

在70年代,由于与电子技术的结合应用,在自动化控制领域得到广泛的推广。

机械手毕业设计

机械手毕业设计

机械手毕业设计
机械手毕业设计可以选择以下几个方面进行研究和设计:
1. 机械手的运动学分析和控制:研究机械手的运动规律和控制方法,包括逆运动学、正运动学分析等,设计适合实际应用的控制算法。

2. 机械手的力学特性研究:研究机械手的力学特性,包括负载、工
具的配重、承载能力等因素,设计优化机械手的结构参数。

3. 仿人机械手的研究:研究仿人机械手的设计和控制,模仿人类手
部的动作和灵活性,实现更加精准的抓握和操作能力。

4. 机械手的智能控制研究:探索机械手的智能化控制方法,包括使
用传感器获取环境信息、利用机器学习算法实现自主学习和自适应
控制等。

5. 机械手在特定场景中的应用研究:研究机械手在特定领域中的应用,例如医疗、制造业、农业等,设计符合实际应用需求的机械手
系统。

以上是一些机械手毕业设计的方向,希望对你有所帮助。

祝你顺利完成毕业设计!。

机械手毕业设计论文

机械手毕业设计论文

机械手毕业设计论文机械手毕业设计论文引言:机械手作为一种重要的工业自动化装备,广泛应用于制造业、医疗领域和科学研究等多个领域。

本篇论文将探讨机械手的设计和应用,以及在毕业设计中的具体应用案例。

一、机械手的设计原理和结构机械手的设计原理基于机械、电气和控制等多学科的知识。

机械手的结构通常包括机械臂、末端执行器和控制系统。

机械臂由多个关节连接而成,通过电机驱动实现运动。

末端执行器可以是夹爪、吸盘或其他形式的装置,用于完成具体的任务。

控制系统通过传感器获取环境信息,并通过算法和控制器实现对机械手的控制。

二、机械手在制造业中的应用机械手在制造业中扮演着重要的角色。

它可以代替人工完成重复性、危险或繁琐的任务,提高生产效率和产品质量。

例如,在汽车制造过程中,机械手可以完成零件的搬运、焊接和喷涂等工作。

在电子产品制造中,机械手可以完成元件的装配和检测等工作。

机械手的应用不仅提高了生产效率,还减少了人力成本和劳动强度。

三、机械手在医疗领域中的应用机械手在医疗领域中的应用也日益广泛。

它可以用于手术辅助、康复治疗和医疗器械的研发等方面。

例如,在微创手术中,机械手可以通过微小的切口进入人体,完成精确的手术操作,减少手术创伤和恢复时间。

在康复治疗中,机械手可以模拟人体运动,帮助患者进行康复训练。

机械手在医疗领域的应用为患者提供了更安全、准确和有效的治疗手段。

四、机械手在科学研究中的应用机械手在科学研究中也发挥着重要的作用。

它可以用于实验室中的样品处理和实验操作,提高实验的自动化程度和准确性。

例如,在生物学研究中,机械手可以自动完成细胞培养、药物筛选和基因测序等实验操作。

在物理学研究中,机械手可以用于材料测试和器件制备等实验。

机械手的应用为科学研究提供了更高效、精确和可重复的实验手段。

结论:机械手作为一种重要的工业自动化装备,广泛应用于制造业、医疗领域和科学研究等多个领域。

通过对机械手的设计和应用进行论述,可以看出机械手在提高生产效率、改善医疗治疗和推动科学研究等方面具有重要的意义。

机械手控制系统毕业设计

机械手控制系统毕业设计

机械手控制系统毕业设计机械手控制系统毕业设计一、引言机械手是一种能够模拟人手动作的机械装置,广泛应用于工业生产线上。

机械手控制系统是机械手运动的核心,其设计和优化对于机械手的性能和效率具有重要影响。

本文将探讨机械手控制系统的毕业设计。

二、设计目标机械手控制系统的设计目标是实现精准、高效的机械手运动,以满足特定的工业生产需求。

设计过程需要考虑以下几个方面:1. 运动范围:机械手应具备足够的运动范围,以适应不同工作场景的需求。

同时,还需要确保机械手在运动过程中不会与其他物体发生碰撞。

2. 运动速度:机械手的运动速度需要根据具体任务进行调整。

对于一些需要高速操作的任务,机械手应具备较快的运动速度,以提高生产效率。

3. 精度要求:机械手的运动精度直接影响到其在工业生产中的可靠性和稳定性。

设计时需要考虑到工作环境的振动、温度等因素,以保证机械手的运动精度。

4. 控制方式:机械手的控制方式可以采用传统的有线控制,也可以采用无线控制。

设计时需要根据实际需求选择合适的控制方式,并确保控制信号的稳定和可靠。

三、设计方案基于以上设计目标,我们可以采用以下方案进行机械手控制系统的设计:1. 传感器选择:为了实现机械手的精准运动,我们可以选择合适的传感器来感知机械手的位置和姿态。

例如,可以使用光电编码器、陀螺仪等传感器来实时监测机械手的运动状态。

2. 控制算法:机械手的控制算法是实现精准运动的关键。

可以采用PID控制算法来对机械手的运动进行控制,通过调整控制参数来实现机械手的位置和姿态控制。

3. 控制器选择:为了实现机械手的运动控制,我们可以选择合适的控制器来实现算法的执行。

可以使用单片机、PLC等控制器来实现机械手控制系统的设计。

4. 通信方式:为了实现机械手的远程控制,我们可以选择合适的通信方式来传输控制信号。

可以采用有线通信、无线通信等方式,根据实际需求选择合适的通信方式。

四、实施与测试在设计完成后,我们需要进行实施和测试来验证机械手控制系统的性能和可靠性。

四轴机械手毕业设计

四轴机械手毕业设计

四轴机械手毕业设计【篇一:机械工程及自动化专业毕业设计论文-四轴简易机械手的设计】1前言1.1 设计的目的和意义机械手自问世以来,经过了40多年的发展,已广泛应用于各个领域。

机械手最早应用于汽车制造工业,常用于喷漆、焊接、搬运和上下料。

机械手可代替人从事危险、有毒、有害、高温、高压、重载、噪音、粉尘和低温等恶劣环境中的工作;代替人完成单调重复和繁重的劳动,不仅减少了人力资源的浪费,减轻了劳动强度,而且大大改善了工人的劳动条件,提高了生产效率和生产自动化水平。

目前机械手主要用于以下几个方面。

在核工业中,核反应堆内具有较强的放射性,为了人员的安全,经常需要机械手来完成相关的清理工作,另外在压铸、冲压、热处理、锻造、喷漆车间以及有强烈紫外线照射的电弧焊等危险领域的作业中也经常需要用到机械手。

目前研制出了搬运机械手、码垛机械手、汽车座椅装配机械手、点胶机械手等各类工业机械手,主要用于生产上实现自动化。

如当末端夹持焊枪时,可以对汽车或摩托车的车体进行点焊或弧焊作业;当末端安装喷枪时可以进行喷涂作业;当末端安装手钳时,可以给压铸机或成型机进行上下料作业或者用来装配机械零部件。

目前我国已经建成的自动生产线有很多,如沈阳水泵厂的环类深井泵轴承体加工自动线、上海动力机厂的箱体类气缸盖加工自动线、大连电机厂的轴类4号和5号电动机轴加工自动线、上海拖拉机齿轮厂的盘类齿坯加工自动线等等[1]。

在一些极地探索、火山探险、空间探索、深海探密等领域经常要用到机器人去探索,目前研制出了螃蟹机器人,用于水下勘测任务操作,它的身体结构接近于螃蟹,能够完成指定的指令,也可以用于海洋搜寻及石油天然气的勘测。

还有用于国际空间站的机器人,可以对空间站的外外表进行检测。

目前研制出了太阳能农用机器人,他可以找到隐藏在农作物中的杂草,这主要依赖于它的视觉系统,当发现有别于农作物的植物时,它便利用数据库提供的植物的特性与目标植物加以比较,当确定为杂草时,就会用机械手隔断杂草,同时还可以喷洒除草剂。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录
第一章绪论
1.1 项目的技术背景与研究意义
1.2 取苗装置的国内外研究现状
1.2.1国外取苗装置的研究现状
1.2.2国内取苗装置的研究现状
1.3论文的研究目标与研究内容
1.4论文研究的技术路线
第二章穴盘苗自动移栽机机械手整机方案设计
2.1 穴盘苗自动移栽机机械手工作原理和结构分析2.2 利用UG建立样机模型
第三章穴盘苗自动移栽机取苗装置的结构设计
3.1 取苗机构的基本构成
基本结构
(1)机械手
(2)穴盘定位平台
(3)驱动系统
(4)控制系统
PLC程序
(5)底座
3.2 取苗机构的工作原理
第四章穴盘苗自动移栽机送苗装置的设计要求分析1穴盘育苗及穴盘的选择
2送苗装置的工作原理和结构组成
3送苗机构的控制系统
第五章取苗装置的实验研究
1.取苗装置影响因素分析
2影响取苗成功率的因素
3取苗装置手臂角度的实验分析
第六章总结与展望1 全文总结
2研究展望
结束语
参考文献
致谢
第一章绪论
1.1项目的技术背景与研究意义
随着社会进步和人民生活水平的提高,设施农业已成为国民经济中的支柱产业,温室蔬菜、花卉及棉花生产对发展农村经济,增加农民收入,丰富人民的菜篮子,改善人民生活具有举足轻重的作用。

穴盘苗移栽是近年才兴起的种植新技术,它具有缩短生育期,提早成熟,提高棉花单产,具有广阔的推广前景。

过去几年温室大棚育出成品苗向大田移栽,全部是靠人工移栽。

穴盘苗自动移栽技术是温室蔬菜或花卉生产实现工厂化和自动化而采用的一种重要的种植方式。

目前,国内穴盘苗移栽的取苗、喂苗环节主要靠手工完成,劳动强度大,作业效率低,不能满足规模化生产的需要,从而制约了蔬菜生产的发展。

因此,研制开发适合我国国情、结构简单、价格低廉、性能稳定可靠的中小型穴盘苗自动移栽机迫在眉睫,而移栽机械手是温室穴盘苗移栽自动化的关键部分,能够完成“穴盘定位—自动送苗—钵苗抓取—钵苗投放”这一系列连续动作,其性能直接影响移栽机的移栽质量。

穴盘苗移栽机械手的研究对实现实现温室穴盘苗移栽生产过程自动化、减轻穴盘苗移栽作业的劳动强度、提高作物移栽质量,推进我国温室农业作物生产机械化和自动化进程,特别是我国“十二五”农业发展规划的顺利实施具有重大意义。

1.2 取苗装置的国内外研究现状
国外穴盘苗移栽机取苗装置的技术较成熟,而且大部分机型开始投入使用,尤其是应用于花卉、蔬菜等经济价值高的作物的大面积移栽,具有很好的经济价值。

国内的研究主要集中在各大高校及科研院所,且大部分的研究成果只是样机的试制,尚没有成型的机型投入生产应用。

1.2.1国外取苗装置研究现状
20 世纪初期部分国家开始出现移栽机具。

三十年代出现移栽装置或移栽器代替人工取苗。

五十年代移栽的生产技术研究,研制出了不同结构的半自动移栽机。

八十年代,半自动移栽机已在欧美国家的农业生产中广泛被使用,培育穴盘苗、移栽作物等,实现了制造机械、播种机械、移栽机等各种机械配套使用。

到90年代,有关部门加强从育苗到栽植整个系统的研究,使育苗和栽植有机地结合,研制出多种全自动移栽机,如日本90年代初将穴盘苗自动移栽机列为农业机械急需开发的项目,日本农机研究所联合三家农机公司,于1993年至1995年期间开发出了三种型号的全自动移栽机(图1-1~1-3),可移栽穴盘苗或纸钵苗,主要
移栽卷心菜!大白菜和葛芭等,完全是由机械自动从穴盘中取苗后种植. 美国Renaldo销售与服务公司于2003年开发出移栽空气整根钵苗的全自动蔬菜移栽机(实验样机图1-4)。

图1-1 PR2型全自动移栽机图1-62 SK20型自动移栽机
图1-3 PVR200型自动移栽机图1-4全自动蔬菜移栽机取苗机构作为全自动移栽机的关键部件之一,在国外正处于不断的研究与发展的阶段。

国外所研制的全自动移栽机中,日本 Tetsuo Nanbu 等人在移栽机中设计了带式取苗系统,采用两条平行纸带等间隔包裹苗钵钵体以使其串联起来进行培育的独特方式,作业时由剥纸带机构和传输带机构相互配合来完成取苗、栽植等一系列移栽作业;日本Takashi Onosaka 等人在移栽机中设计了机械手式取苗系统,苗盘由传送带传输至待取苗位置处,经秧苗纵向定位装置固定单个秧苗后,机械手夹取秧苗并将其从苗盘中取出;美国 Errol C.Armstrong 等人在其所研制的移栽机中设计了推苗杆式取苗系统,苗盘由自动牵引装置驱动进行垂直进给供苗,间歇机构控制其逐行向下喂入钵苗,取苗推杆在主从凸轮的带动下作往复直线运动实现将秧苗从穴苗盘中顶出后再退回的连续循环作业;美国
Frank W. Faulring 等人设计了真空泵式取苗系统来实现自动移栽,苗盘定位放置之后,将底盘抽出,秧苗在重力以及小电机驱动压缩机所产生的吸力作用下吸落至落苗口,随后进入落苗管完成后续的栽植作业。

韩国 Ryu 等设计一种由气动系统驱动的夹取装置。

该末端器由步进电机、气缸、气动卡盘和夹取指等组成,如图 1-7(1)所示。

其末端执行件由步进电机带动旋转,并根据植株的方位确定针状夹取指的位置,避免抓取时对植株叶片的伤害。

气缸可以推动夹取指插入苗盘的基质中,然后通过气动卡盘的开关来实现对穴盘苗的抓取、保持和释放。

但在土壤湿度较低的时候,这种末端执行件就会体现出它的局限性。

为了克服这个局限性,Ryu 等人又对此进行了改进,图 1-7(2)是改进后的夹取器的运动部分的结构图,两个手指成 15°,每个手指各装有一个气缸,增强了灵活性和可靠性。

(1)末端件原型(2)改进后的结构
图1-7夹取装置
综上所述,国外移栽作业的穴盘苗移栽机取苗装置机型比较多,自动化程度很高,适于大面积作业的自动移栽作业; 但是,由于其通用性比较差,整体结构控制部分复杂,并且价格昂贵,难以适应我国中小规模农户的需求。

1.2.2国内取苗装置的研究现状卓利元
国内于 20 世纪 60 年代初开始进行移栽机械的试验研究,起步较早,但由于农机和农艺明显脱节,忽略了综合经济效益,更没有对育苗移栽机械化过程的种种技术难题进行科学和系统地分析研究,致使这一技术搁浅,从而一直未能大
面积推广应用。

取苗装置研究在国内近些年才引起人们的重视,且大部分研究主要集中在各大农业类院校、科研院所等。

目前大部分投产的移栽机都是半自动移栽。

虽然植苗装置已基本实现自动化,但是取苗还是人工进行穴盘苗的投放。

由于人工的限制,移栽机的整体效率很难提高。

而且取苗装置大部分还处于试验阶段,研究很难达到作业要求。

在实际生产中还没有使用,没有成形的机型投入实际生产应用。

沈阳农业大学张诗研制的指针夹紧式穴盘苗移栽机械手处于穴盘苗的上方时指针伸出,移栽机械手下降后,由于气缸的驱动,指针向下运动,插入基质块中。

当气缸将要满行程时候,指针向里收缩,夹紧基质块。

移栽机械手向上移动,将穴盘苗从穴盘中取出。

最后移栽机械手下降,气缸反行程往回运动,指针再次张开和收缩,穴苗被植入新的生长盘中,以便可以有更好地生长空间继续生长,如图 1-8 所示。

张丽华研制的穴盘苗移栽取苗装置的机械手的运动由 PLC 控制,带动汽缸运动来实现。

机械手可以完成“穴盘定位→穴盘苗抓取→钵盆定位→穴盘苗投放”等连续动作,实现对穴盘苗的自动取苗过程,如图 1-9 所示。

图 1-8 移栽机械手装置图图 1-9 机械手装置简图。

相关文档
最新文档