八年级数学期中精选试卷专题练习(解析版)

合集下载

人教版2024-2025学年八年级数学上册期中试卷(解析版)

人教版2024-2025学年八年级数学上册期中试卷(解析版)

2024-2025八年级上册期中模拟试卷一、填空题(本题满分30分,每小题3分)1. 现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形的是( )A. B. C. D.【答案】D【解析】【分析】利用轴对称图形的概念可得答案.【详解】解:A .不是轴对称图形,故此选项不合题意;B .不是轴对称图形,故此选项不合题意;C .不是轴对称图形,故此选项不合题意;D .是轴对称图形,故此选项符合题意;故选:D .【点睛】本题主要考查了轴对称图形,关键是掌握如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.2. 已知长为a ,b ,c 的三条线段首尾顺次相接组成一个三角形.若7a =,9b =,则c 的取值范围是( ) A. 2>cB. 16c <C. 216c ≤≤D. 216c <<【答案】D【解析】【分析】根据三角形的三边关系,两边之和大于第三边,两边之差小于第三边,进行求解即可.【详解】解:∵长为a ,b ,c 的三条线段首尾顺次相接组成一个三角形,7a =,9b =, ∴b a c a b −<<+,即:9779c −<<+,∴216c <<;故选D .【点睛】本题考查三角形的三边关系.熟练掌握两边之和大于第三边,两边之差小于第三边,是解题的关键.3. 如图,ACE △≌DBF ,若11cm AD =,5cm =BC ,则AB 长为( )A. 6cmB. 7cmC. 4cmD. 3cm【答案】D【解析】 【分析】根据全等三角形的性质得到AC BD =,结合图形计算,得到答案.【详解】解:ACE ≌DBF ,AC BD ∴=,AC BC BD BC ∴−=−,即AB CD =,11cm AD = ,5cm =BC ,()11523cm AB ∴=−÷=,故选D .【点睛】本题考查全等三角形的性质,线段的和与差.掌握全等三角形的对应边相等是解题的关键. 4. 下列命题:①经过一点有且只有一条直线;②线段垂直平分线上的点到这条线段两端的距离相等;③有两边及其一角对应相等的两个三角形全等;④等腰三角形底边上的高线和中线重合.其中是真命题的有( )A. 1个B. 2个C. 3个D. 4个【答案】B【解析】【分析】根据直线、线段垂直平分线的性质、三角形全等的判定、等腰三角形的性质逐个判断即可得.【详解】解:①经过一点有无数条直线;则这个命题是假命题;②线段垂直平分线上的点到这条线段两端的距离相等;则这个命题是真命题;③有两边及其夹角对应相等的两个三角形全等;则这个命题是假命题;④等腰三角形底边上的高线和中线重合;则这个命题是真命题;综上,是真命题的有2个,故选:B .【点睛】本题考查了直线、线段垂直平分线的性质、三角形全等的判定、等腰三角形的性质,熟练掌握各判定定理与性质是解题关键.5. 如图,四边形ABCD 是轴对称图形,BD 所在的直线是它的对称轴, 1.6 cm AB =, 2.3 cm CD =,则四边形ABCD 的周长为( )A. 3.9cmB. 7.8cmC. 4cmD. 4.6cm【答案】B【解析】 【分析】本题考查了轴对称的性质,熟记性质得到相等的边是解题的关键.根据轴对称图形的性质得出 1.6cm AB BC ==, 2.3cm CD AD ==,进而求出即可.【详解】∵四边形ABCD 是轴对称图形,BD 所在的直线是它的对称轴, 1.6cm AB =, 2.3cm CD =, ∴ 1.6cm AB BC ==, 2.3cm CDAD ==, 则四边形ABCD 的周长为:1.6 1.6 2.3 2.37.8cm +++=.故选:B .6. 如图,CD ,CE ,CF 分别是ABC 的高、角平分线、中线,则下列各式中错误的是( )A. 2AB BF =B. 12ACE ACB ∠=∠C. AE BE =D. CD BE ⊥【答案】C【解析】 【分析】本题考查了三角形的角平分线、中线和高,从三角形的一个顶点向对边作垂线,垂足与顶点之间的线段叫做三角形的高,三角形一个内角的平分线与这个内角的对边交于一点,则这个内角的顶点与所交的点间的线段叫做三角形的角平分线,三角形一边的中点与此边所对顶点的连线叫做三角形的中线,依此即可求解,熟悉它们的定义和性质是解题的关键.【详解】解:∵CD ,CE ,CF 分别是ABC 的高、角平分线、中线,∴CD BE ⊥,12ACE ACB ∠=∠,2AB BF =,无法确定AE BE =,故选:C .7. 如图90B C ∠=∠=°,AD AE =,添加下列条件后不能..使ABD ECA △≌△的是( )A. 2AD BD =B. BD AC =C. =90DAE ∠°D. AB EC =【答案】A【解析】 【分析】要判断能不能使ABD ECA △≌△,主要看添加上条件后能否符合全等三角形判定方法所要求的条件即可.【详解】解:A .添加2AD BD =,无法证明ABD ECA △≌△,故此选项符合题意;B .添加BD AC =,可以利用HL 证明ABD ECA △≌△,故此选项不符合题意;C .添加=90DAE ∠°,可以利用AAS 证明ABD ECA △≌△,故此选项不符合题意;D .添加AB EC =,可以利用HL 证明ABD ECA △≌△,故此选项不符合题意;故选:A .AAS 、ASA 、SAS 、SSS ,直角三角形可用HL 定理,但AAA 、SSA ,无法证明三角形全等.8. 一个正多边形的边长是3,从一个顶点可以引出4条对角线,则这个正多边形的周长是( )A. 12B. 15C. 18D. 21【答案】D【解析】【分析】由n 边形从一个顶点出发可引出()3n −条对角线,可求出多边形的边数即可解答.【详解】解:∵经过多边形的一个顶点有4条对角线,∴这个多边形有437+=条边, ∴此正多边形的周长为3721×=,故选:D .【点睛】本题考查了多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.熟记n 边形从一个顶点出发可引出()3n −条对角线是解题的关键.9. 如图,在ABC 中,AB AC =,AB 的垂直平分线交AC 于点P ,若10cm AB =,6cm BC ,则PBC △的周长等于( )A. 16cmB. 12cmC. 8cmD. 20cm【答案】A【解析】 【分析】先求出10cm AC =,再根据线段垂直平分线的性质可得PA PB =,从而可得PB PC BC PA PC BC AC BC ++=++=+,由此即可得.【详解】解:AB AC = ,10cm AB =,10cm AC ∴=,AB 的垂直平分线交AC 于点P ,PA PB ∴=,6cm BC = ,PBC ∴△的周长为16cm PB PC BC PA PC BC AC BC ++=++=+=,故选:A .【点睛】本题主要考查了线段垂直平分线的性质,熟练掌握线段垂直平分线的性质是解题关键. 10. 如图,在ABC 中,BD 为AC 边上的中线,已知8BC =,5AB =,BCD △的周长为20,则ABD △的周长为( )A. 17B. 23C. 25D. 28【答案】A【解析】 【分析】根据三角形中线的性质可得AD CD =,进而根据三角形周长可得12BD AD +=,进而即可求解.【详解】解:∵在ABC 中,BD 为AC 边上的中线,∴AD CD =,8BC =,5AB =,BCD △的周长为20,20812BD AD ∴+−,∴ABD △的周长为51217AB BD AD ++=+=.故选A【点睛】本题考查了三角形中线的性质,掌握三角形中线的性质是解题的关键.11. 四盏灯笼的位置如图.已知A ,B ,C ,D 的坐标分别是()1,1−−,()1,1-,()2,1−,()3.2,1−,平移y 轴右侧的一盏灯笼,使得y 轴两侧的灯笼对称,则平移的方法可以是( )A. 将B 向左平移4.2个单位B. 将C 向左平移4个单位C. 将D 向左平移5.2个单位D. 将C 向左平移4.2个单位【答案】C【解析】 【分析】注意到A ,B 关于y 轴对称,只需要C ,D 关于y 轴对称即可,可以将点()2,1C −向左平移到()3.2,1−−,平移5.2个单位,或可以将()3.2,1D −向左平移到()2,1−−,平移5.2个单位.【详解】解:∵A ,B ,C ,D 这四个点的纵坐标都是1−,∴这四个点在一条直线上,这条直线平行于x 轴,∵()1,1A −−,()1,1B −,∴A ,B 关于y 轴对称,只需要C ,D 关于y 轴对称即可,∵()2,1C −,()3.2,1D −,∴可以将点()2,1C −向左平移到()3.2,1−−,平移5.2个单位,或可以将()3.2,1D −向左平移到()2,1−−,平移5.2个单位,故选:C .【点睛】本题考查了生活中的平移现象,关于y 轴对称的点的坐标,注意关于y 轴对称的点的坐标,横坐标互为相反数,纵坐标不变.12. 如图,在ABC ∆中,90A ∠=°,4AB =,3AC =,点O 为AB 的中点,点M 为ABC 内一动点且2OM =,点N 为OM 的中点,当BN CM +最小时,则ACM ∠的度数为( )A 15°B. 30°C. 45°D. 60°【答案】C【解析】 【分析】取OB 的中点D ,连接DM ,证明BON MOD ≌可得BN DM =,从而可判断当点D ,M ,C 共线时BN CM DM CM +=+最短,然后证明ACD 是等腰直角三角形即可.【详解】如图1,取OB 的中点D ,连接DM .∵4AB =,点O 为AB 中点,∴2AO BO ==,∵2OM =,∴OB OM =.∵D 是OB 的中点,点N 为OM 的中点,∴1ODON ==, ∵BON MOD ∠=∠,∴()SAS BON MOD ≌,∴BN DM =,∴BN CM DM CM +=+,∴当点D ,M ,C 共线时BN CM DM CM +=+最短.如图2,.的∵2,1OA OD ==, ∴3AD =,∵3AC =∴AD AC =.∵90A ∠=°,∴ACD 是等腰直角三角形,∴45ACD ∠=°. 故选C .【点睛】本题考查了全等三角形的判定与性质,两点之间线段最短,等腰直角三角形的判定与性质,正确作出辅助线是解答本题的关键.二.填空题(本题满分24分,每小题3分)13. 正五边形每个内角的度数为______.【答案】108°##108度【解析】分析】本题主要考查了正多边形内角和定理,外角和定理:方法一:先根据多边形的内角和公式()2180n −⋅°求出内角和,然后除以5即可;方法二:先根据正多边形的每一个外角等于外角和除以边数,再根据每一个内角与相邻的外角是邻补角列式计算即可得解.【详解】解:方法一:正五边形的内角和为()52180540−×°=°, ∴正五边形的一个内角度数为5405108°÷=°;方法二:正五边形一个外角的度数为360572°÷=°,∴正五边形的一个内角度数为18072108°−°=°;∴正五边形每个内角的度数为108°.故答案为:108°.【点评】本题考查了正多边形的内角与外角的关系,注意两种方法的使用,通常利用外角和与每一个外角的关系先求外角的度数更简单一些.【14. 若等腰三角形的一个内角为36°,则这个等腰三角形顶角的度数为_____________.【答案】36°或108°【解析】【分析】等腰三角形的一个内角是36°,则该角可能是底角,也可能是顶角,注意分情况讨论.【详解】解:分两种情况:当36°的角是底角时,则顶角度数为180°−36°×2=108°;当36°的角是顶角时,则顶角为36°.故答案为:36°或108°.【点睛】本题考查了等腰三角形的性质及三角形的内角和定理;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,也是解答问题的关键.15. 点P (1,-2)关于y 轴的对称点的坐标是_________.【答案】()1,2−−【解析】【分析】根据若点(),a b 关于y 轴对称的点的坐标为(),a b −,据此可求解.【详解】解:点P (1,-2)关于y 轴的对称点的坐标是()1,2−−;故答案为()1,2−−.关键.16. 过12边形的一个顶点可以画对角线的条数是____.【答案】9【解析】【分析】根据对角线的定义,得出过多边形的一个顶点可以画对角线的条数的规律,代入求解即可.【详解】解:根据对角线的定义可知,多边形的一个顶点可以与自身以及相邻的两个点以外的()3n − 个点形成对角线当12n = ,31239n −=−=故答案:9.【点睛】本题考查了多边形的对角线问题,掌握过多边形的一个顶点的对角线条数与边数的关系是解题的关键.17. 如图,点D 在BC 上,AB AC CD ==,AD BD =,则BAC ∠=_____. 为【答案】108°##108度【解析】【分析】本题考查了等边对等角、三角形外角的定义及性质、三角形内角和定理,由等边对等角得出ABC ACB BAD ∠=∠=∠,结合三角形外角的定义及性质得出2CAD CDA ABD ∠=∠=∠,再由三角形内角和定理计算得出36ABC ACB BAD ∠=∠=∠=°,从而推出272DAC BAD ∠=∠=°,即可得解.【详解】解:∵AD BD =,∴ABD BAD ∠=∠,∵AB AC CD ==,∴A ABC CB =∠∠,CAD CDA ∠=∠,∴ABC ACB BAD ∠=∠=∠,∵2CDA BAD ABD ABD ∠=∠+∠=∠,∴2CAD CDA ABD ∠=∠=∠, ∵225180CAD CDA ACD ABD ABD ACD ABD ∠+∠+∠∠+∠+∠∠°,∴ABC ACB BAD ∠=∠=∠=°∴272DAC BAD ∠=∠=°,∴108BAC DAC BAD ∠=∠+∠=°,故答案为:108°.18. 如图,在ABC 中,按以下步骤作图:①分别以点B 和C 为圆心,以大于12BC 的长为半径作弧,两弧相交于点M 和N ;②作直线MN ,分别交边AB BC ,于点D 和E ,连接CD .若90BCA ∠=°,8AB =,则CD 的长为_______.【答案】4【解析】【分析】本题考查了基本作图−作线段的垂直平分线,线段垂直平分线的性质“线段垂直平分线上点到线段两端点的距离相等”,直角三角形斜边中线的性质“直角三角形斜边中线等于斜边的一半”.根据线段垂直平分线的性质即可得到BD CD =,再利用直角三角形斜边中线的性质求解即可.【详解】解:连接CD .由作图知,MN 是线段BC 的垂直平分线,∴BD CD =,∴B BCD ∠=∠,∵90BCA ∠=°,∴90B A BCD ACD ∠+∠=°=∠+∠,∴ACD A ∠=∠,∴CD AD =,∵8AB =, ∴142CD AB ==. 故答案为:4.三. 解答题(本大题满分62分)19. 如图,B D BC DC ∠=∠=,.求证:AB AD =.【答案】见解析【解析】【分析】连接BD ,根据等腰三角形的性质得CBD CDB ∠=∠,再根据等腰三角形的判定定理,即可得到结论.本题主要考查等腰三角形的判定和性质定理,添加辅助线,构造等腰三角形,是解题的关键.【详解】证明:连接BD ,∵BC DC =,∴CBD CDB ∠=∠, ∵ABC ADC ∠=∠,∴ABC CBD ADC CDB ∠−∠=∠−∠,∴ABD ADB ∠=∠,∴AB AD =.20. 如图,在ABC 中,AB AC =,P 是边BC 的中点,PD AB PE AC ⊥⊥,,垂足分别为D ,E .求证:PD PE =.【答案】见解析【解析】【分析】利用AAS 证明PBD PCE ≌即可.本题考查了三角形全等的判定和性质,熟练掌握三角形全等的判定是解题的关键.【详解】证明:∵PD AB PE AC ⊥⊥,,∴90PDB PEC ∠=∠=°,∵AB AC =,∴B C ∠=∠,∵P 是边BC 的中点,∴PB PC =,∵PDB PEC B C PB PC ∠=∠ ∠=∠ =,∴PBD PCE ≌,∴PD PE =.21. 如图,ABC 中,16cm AC =,DE 为AB 的垂直平分线,交AC 于点E ,BCE 的周长为26cm ,求BC 的长.【答案】10cm BC =【解析】【分析】本题考查了线段垂直平分线的性质、三角形的周长,由线段垂直平分线的性质得出AE BE =,由BCE 的周长为26cm 得出()26cm BC AC +=,即可得解,熟练掌握线段垂直平分线的性质是解此题的关键.【详解】解:∵DE 垂直平分AB∴AED BED ≌,∴AE BE =,∵BCE 的周长为26cm ,∴()26cm BC CE BE BC CE AE BC AC ++=++=+=,∵16cm AC =,∴10cm BC =.22. 如图所示,等边三角形ABC 中,AD BC ⊥,垂足为D ,点E 在线段AD 上,45EBC ∠=°,求ACE ∠的度数.【答案】15ACE ∠=°.【解析】【分析】此题考查了等边三角形的性质、线段垂直平分线的性质等知识.根据等边三角形的性质可得ACB ∠的度数,并证得AD 是BC 的垂直平分线,利用线段垂直平分线性质定理可得BE CE =,再由等腰三角形的性质可求得ECB ∠的度数,即可求得结论.【详解】解:∵ABC 是等边三角形,AD BC ⊥,∴60ACB ∠=°,BD CD =,∴AD 是BC 的重直平分线,点E 在线段AD 上,∴BE CE =.∵45EBC ∠=°,∴45ECB EBC ∠=∠=°,∴604515ACE ACB ECB ∠=∠−∠=°−°=°.23. 在 ABC 中,CD ⊥AB 于D ,CE 是∠ACB 的平分线,∠A =20°,∠B =60°.求∠BCD 和∠ECD 的度数.【答案】∠BCD =30°,∠ECD =20°【解析】【分析】由CD ⊥AB 与∠B =60°,根据两锐角互余,即可求得∠BCD 的度数,又由∠A =20°,∠B =60°,求得∠ACB 的度数,由CE 是∠ACB 的平分线,可求得∠ACE 的度数,然后根据三角形外角的性质,求得∠CEB 的度数.【详解】∵CD ⊥AB ,∴∠CDB =90°,∵∠B =60°,∴∠BCD =90°﹣∠B =90°﹣60°=30°;∵∠A =20°,∠B =60°,∠A+∠B+∠ACB =180°,∴∠ACB =100°,∵CE 是∠ACB 的平分线,∴∠ACE =12∠ACB =50°, ∴∠CEB =∠A+∠ACE =20°+50°=70°,∠ECD =90°﹣70°=20°,∴∠BCD =30°,∠ECD =20°.【点睛】本题考查了三角形的外角性质,角平分线,直角三角形两锐角互余等知识点,灵活运用外角定理是快速解题的关键.24. ABC 在平面直角坐标系中的位置如图所示.(1)将ABC 先向下平移4个单位长度,再向右平移3个单位长度,画出平移后的111A B C △,并写出顶点1A ,1B ,1C 的坐标;(2)计算111A B C △的面积.【答案】(1)见解析,()11,1A −,()10.2B −,()12,3C −(2)1.5【解析】【分析】(1)利用点平移的坐标变换规律写出点1A ,1B ,1C 的坐标,然后描点即可;(2)用一个矩形的面积分别减去三个直角三角形的面积去计算111A B C △的面积.【小问1详解】∵将ABC 先向下平移4个单位长度,再向右平移3个单位长度,且()2,3A −,()3,2B −,()1,1C −∴()11,1A −,()10.2B −,()12,3C −,111A B C △如下图所示,【小问2详解】111A B C △的面积为:11122112112 1.5222×−××−××−××=. 【点睛】本题考查了作图与平移变换:作图时要先找到图形关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.25. 如图(1) ABC 和 DEC 都是等腰直角三角形,其中∠ACB =∠DCE =90°,BC =AC ,EC =DC ,点E 在 ABC 内部,直线AD 与BE 交于点F ,线段AF 、BF 、CF 之间存在怎么样的数量关系?(1)先将问题特殊化如图2,当点D 、F 重合时,直接写出线段AF 、BF 、CF 之间的数量关系式: ;(2)再探究一般情况如图1,当点D 、F 不重合时,证明(1)中的结论仍然成立.(3)如图3,若 ABC 和 DEC 都是含30°的直角三角形,若∠ACB =∠DCE =90°,∠BAC =∠EDC =30°,点E 在 ABC 内部,直线AD 、BE 交于点F ,直接写出一个等式,表示线段AF 、BF 、CF 之间的数量关系.【答案】(1)BF -AFCF的(2)见解析 (3)BF 【解析】【分析】(1)证明△ACD ≌△BCE (SAS ),则△CDE 为等腰直角三角形,故DE =EF CF ,进而求解; (2)由(1)知,△ACD ≌△BCE (SAS ),再证明△BCG ≌△ACF (ASA ),得到△GCF 为等腰直角三角形,则GF ,即可求解;问题拓展:证明△BCE ∽△CAD 和△BGC ∽△AFC ,得到BGBC GC AF AC CF ===,则,BG AF GC FC =,进而求解. 【小问1详解】结论:BF -AF ;理由:∵∠ACD +∠ACE =90°,∠ACE +∠BCE =90°,∴∠BCE =∠ACD ,∵BC =AC ,EC =DC ,∴△ACD ≌△BCE (SAS ),∴BE =AD ,∠EBC =∠CAD ,而点D 、F 重合,故BE =AD =AF ,而△CDE 为等腰直角三角形,故DE =EF CF ,则BF =BD =BE +ED =AF CF ;即BF -AF CF ;故答案为:BF -AF CF ;【小问2详解】如图(1),由(1)知,△ACD ≌△BCE (SAS ),∴∠CAF =∠CBE ,BE =AD ,过点C 作CG ⊥CF 交BF 于点G ,∵∠ACF +∠ACG =90°,∠ACG +∠GCB =90°,∴∠ACF =∠BCG ,∵∠CAF =∠CBE ,BC =AC ,∴△BCG ≌△ACF (ASA ),∴GC =FC ,BG =AF ,故△GCF 为等腰直角三角形,则GF CF ,则BF =BG +GF =AF CF ,即BF -AF CF ;【小问3详解】结论:BF AF FC =+. 理由:∵△ABC 和△DEC 都是含30°的直角三角形,∴,BC AC EC =,∴BCEC ACCD == ∵∠ACB =∠DCE ,∴∠BCE =∠ACD ,∴△BCE ∽△ACD ,∴∠CAD =∠CBE ,过点C 作CG ⊥CF 交BF 于点G ,由(2)知,∠BCG =∠ACF ,∴△BGC ∽△AFC ,∴BGBC GC AF AC CF===,则,,BG AF GC FC =,在Rt △CGF 中,GF ==,FG =则=+=+BF BG GF AF FC ,即BF AF FC =+. 理等知识,解题的关键是学会添加常用辅助线,构造全等三角形或相似三角形解决问题.26. 在平面直角坐标系中,点A 在x 轴正半轴上,点B 在y 轴正半轴上,∠ABC =90°,且AB BC =.(1)如图(1),(5,0)A ,(0,2)B ,点C 在第三象限,请直接写出点C 的坐标;(2)如图(2),BC 与x 轴交于点D ,AC 与y 轴交于点E ,若点D 为BC 的中点,求证:ADB CDE ∠=∠;(3)如图(3),(,0)A a ,M 在AC 延长线上,过点(,)M m a −作MN x ⊥轴于点N ,探究线段BM ,AN ,OB 之间的关系,并证明你的结论.【答案】(1)(2,3)C −−; (2)证明见解析; (3)AN BM OB =+.证明见解析.【解析】【分析】(1)过C 作CR y ⊥轴于R ,证明(AAS)AOB BRC ≌,得到5,2BRAO CR OB ====,即可得到答案;(2)作BF 平分ABC ∠交AD 于F 点,证明(SAS)CED BFD ≌即可得到结论; (3)在ON 上取一点H ,使NH BO =,证明(SAS)ABM MHA ≌,根据全等三角形的性质即可得出结论.【小问1详解】解:过C 作CR y ⊥轴于R ,如图1所示:则90BRC ∠=°, (5,0)A ,(0,2)B ,5,2OA OB ∴==,90AOB ABC BRC ∠=∠=∠=° , 90ABO CBR ∴∠+∠=°, 90CBR BCR ∠+∠=°, ABO BCR ∴∠=∠,AB BC = ,(AAS)AOB BRC ∴ ≌, 5,2BR AO CR OB ∴====, 3OR BR OB ∴=−=, (2,3)C ∴−−;【小问2详解】解:证明:作BF 平分ABC ∠交AD 于F 点,,90AB BC CBA =∠=° ,45C BAC DBF ABF ∴∠=∠=∠=∠=°,90CBE ABO BAF ABO ∠+∠=∠+∠=° ,CBE BAF ∴∠=∠,在BCE 和ABF △中,CBE BAF BC BABCE ABF ∠=∠ = ∠=∠, (ASA)BCE ABF ∴ ≌,CE BF ∴=,点D 为BC 的中点,CD BD ∴=,在CED △和BFD △中,CD BD C DBF CE BF = ∠=∠ =, (SAS)CED BFD ∴ ≌,CDE ADB ∴∠=∠;【小问3详解】解:AN BM OB =+.证明:在ON 上取一点H ,使NH BO =,如图3所示:(,0)A a ,AO a ∴=,MN x ⊥ 轴于G ,(,)M m a −,ON m MN a ∴=−=,AO MN ∴=,90AOB HNM ∠=∠=° ,(SAS)ABO MHN ∴ ≌,,BAO NMH AB HM ∴∠=∠=,AHG MHN ∠=∠ ,90ANM AGM ∴∠=∠=°,90,ABC BC AB ∠=°= ,45BAC ∴∠=°,AGM ∴ 是等腰直角三角形,45BAM GMA ∴∠=∠=°,又,AB HMAM MA == , (SAS)ABM MHA ∴ ≌,BM HA ∴=,AN AH NH =+ ,AN BM OB ∴=+.【点睛】本题主要考查了等腰直角三角形的判定与性质,全等三角形的判定和性质,坐标与图形性质,直角三角形的性质,熟练掌握等腰直角三角形的判定与性质,正确做出辅助线,构造全等三角形是解题的关键.。

浙江省宁波市2024-2025学年八年级上学期期中数学模拟试题(解析版)

浙江省宁波市2024-2025学年八年级上学期期中数学模拟试题(解析版)

2024-2025学年第一学期浙江省宁波市八年级数学期中模拟练习卷考试范围:八上第1-4章 考试时间:120分钟 试卷满分:120分一、选择题:本题共10题,每题3分,共30分.每小题只有一个选项符合题目要求.1. 下列图形中对称轴条数最多的是( )A.B. C. D. 【答案】A【解析】【分析】此题主要考查如何确定轴对称图形的对称轴条数及位置,掌握轴对称图形的概念是本题的解题关键.根据轴对称图形的定义:一个图形沿某条直线对折,直线两旁的部分能够完全重合,则这个图形就是轴对称图形,这条直线就是它的一条对称轴,由此找出各个图形的对称轴条数,再比较即可解答.【详解】解:A 、有5条对称轴;B 、有3条对称轴;C 、有0条对称轴;D 、有4条对称轴.故对称轴最多的有5条.故选:A .2. 若a b < )A. 11a b +<+B. 22a b −<−C. 33a b <D. 4a <4b 【答案】B【解析】【分析】根据不等式的性质逐个判断即可.【详解】解:A .∵a b <,∴11a b +<+,故本选项不符合题意; B .∵a b <,∴a b −>−,∴22a b −>−,故本选项符合题意;C .∵a b <,∴33a b <,故本选项不符合题意;D .∵a b <,∴4a <4b ,故本选项不符合题意; 故选:B .【点睛】本题考查了不等式的性质,能正确根据不等式的性质进行变形是解此题的关键,①不等式的性质1:不等式的两边都加(或减)同一个数或式子,不等号的方向不变,②不等式的性质2:不等式的两边都乘(或除以)同一个正数,不等号的方向不变,③不等式的性质3:不等式的两边都乘(或除以)同一个负数,不等号的方向改变.3. 如图,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,他们仅仅少走了几步路,却踩伤了花草.他们少走的路长为( )A. 2mB. 3mC. 3.5mD. 4m【答案】D【解析】 【分析】本题考查勾股定理的应用,利用勾股定理求出AB 的长,再根据少走的路长为AC BC AB +−,计算即可.明确少走的路长为AC BC AB +−是解题的关键.【详解】解:如图,点C A 和点B 都在长方形的边上且6AC =,8BC =, ∴90C ∠=°,∴10AB ,∴他们少走的路长为:()68104m AC BC AB +−=+−=. 故选:D .4. 下列条件中,可以判定ABC 是等腰三角形的是( )A. 40B ∠=°,80C ∠=°B. 123A B C ∠∠∠=::::C. 2A B C ∠=∠+∠D. 三个角的度数之比是2:2:1【答案】D【解析】【分析】本题考查了等腰三角形的判定,三角形内角和定理,熟练掌握等腰三角形的判定是解题的关键.利用三角形内角和定理,等腰三角形的判定,进行计算并逐一判断即可解答.【详解】解:A .∵40B ∠=°,80C ∠=°,∴18060AC B ∠=°−∠−∠=°, ∴ABC 不是等腰三角形,故选项A 错误;B .∵123A BC ∠∠∠=::::,180A B C ∠+∠+∠=°, ∴118030123A ∠=×°=°++,218060123B ∠=×°=°++,318090123C ∠=×°=°++, ∴ABC 不是等腰三角形,故选项B 错误;C .∵2A B C ∠=∠+∠,180A B C ∠+∠+∠=°,∴2180A A ∠+∠=°,∴60A ∠=°,而无法判断B ∠与C ∠的大小,∴ABC 不是等腰三角形,故选项C 错误;D .∵三个角的度数之比是2:2:1, ∴三个角的度数分别是218072221×°=°++,72°,218072221×°=°++, ∴ABC 是等腰三角形,故选项D 错误;故选:D .5. 某商品进价为700元,出售时标价为1100元,后由于商品积压,商店准备打折销售,但要保证利润率不低于10%,则至多可打( )A. 六折B. 七折C. 八折D. 九折 【答案】B【解析】【分析】设最多可打x 折,根据题意,得110070070010%10x ×−≥×,求整数解即可. 本题考查了一元一次不等式的应用,打折问题,正确理解,列出不等式解答是关键.【详解】解:设最多可打x 折, 根据题意,得110070070010%10x ×−≥×, 解得7x ≥.故最多打7折,6. 如图,在ABC 中,AB AC =,120A ∠=°,分别以点A 和C 为圆心,以大于12AC 的长度为半径作弧,两弧相交于点P 和点Q ,作直线PQ 分别交BC ,AC 于点D 和点E .若3CD =,则AB 的长为( )A. 5B.C. 6D. 8【答案】B【解析】 【分析】连接AD ,如图,先根据等腰三角形的性质和三角形内角和定理计算出30B C ∠=∠=°,再由作法得DDDD 垂直平分AC ,所以3DA DC ==, 所以30DAC C ∠=∠=°, 从而得到90BAD ∠=°, 然后根据含30度角的直角三角形三边的关系求BD 的长,进而求出AB 的长.【详解】连接AD , 如图∵,120AB AC A =∠=°,∴30B C ∠=∠=°,由作法得DE 垂直平分AC ,∴3DADC ==, ∴30DAC C ∠=∠=°,∴1203090BAD ∠=°−°=°,在Rt ABD △中,30B ∠=°,∴26BD AD ==,AB ∴=【点睛】本题考查了作图−基本作图,勾股定理,线段垂直平分线的性质和等腰三角形的性质,含30°角直角三角形的性质,解题的关键是掌握以上知识点.7. 在Rt △ABC 中,∠C =90°,AB =15,AC =12,以A 为圆心,适当长为半径画弧,交AC ,AB 于D ,E 两点,再分别以D ,E 为圆心,大于12DE 的长为半径画弧,两弧交于点M ,作射线AM 交BC 于点F ,则线段BF 的长为()A. 5B. 4C. 3D. 2.8【答案】A【解析】 【分析】过点F 作FN ⊥AB 于N ,由作图可知,AM 是∠BAC 的平分线,由角增分线的性质可得FN =FC ,则可利用HL 定理证明Rt △ACF ≌Rt △ANF ,得出AN =AC =12,再在Rt △ACB 中,由勾股定理求出BC =9,设BF =x ,则FN =CF =BC -BF =9-x ,由勾股定理列方程求解即可.【详解】解:过点F 作FN ⊥AB 于N ,由作图可知:AM 平分∠BAC ,∵∠C =90°,∴FC ⊥AC ,∵FN ⊥AB ,∴FN =FC ,在Rt △ACF 和Rt △ANF 中,FC FN AF AF = =, ∴Rt △ACF ≌Rt △ANF (HL),∴AN =AC =12,∴BN =AB -AN =15-12=3,在Rt △ACB 中,由勾股定理,得BC ==9,设BF =x ,则FN =CF =BC -BF =9-x ,在Rt △BNF 中,由勾股定理,得x 2=32+(9-x )2,解得:x =5,故选:A .【点睛】本题考查勾股定理,全等三角形的判定与性质,用尺规作角的平分线,角平分线的性质,由作图得出,AM 是∠BAC 的平分线是解题的关键.8. 如图,ABC 是等边三角形,AD 是BC 边上的高,点E 是AC 边的中点,点P 是AD 上的一个动点,当PC PE +最小时,CPE ∠的度数是( ).A. 30°B. 45°C. 60°D. 90°【答案】C【解析】 【分析】本题主要考查了等边三角形的性质,垂直平分线的性质,最短路径问题,掌握等边三角形三线合一的性质是解题关键.连接BP ,由等边三角形的性质,得出PB PC =,进而得到PC PE PB PE BE +=+≥,即当B 、P 、E 三点共线时,PC PE +有最小值,再利用三线合一性质,得到BE AC ⊥,即可得到CPE ∠的度数.【详解】解:如图,连接BP ,ABC 是等边三角形,AD 是BC 边上的高,D ∴是BC 中点,即AD 垂直平分BC ,PB PC ∴=,PC PE PB PE BE ∴+=+≥,即当B 、P 、E 三点共线时,PC PE +有最小值,点E 是AC 边的中点,BE AC ∴⊥,90CEP CEB ∴∠=∠=°,∵等边ABC 中60ABC ACB ∠=∠=°,BE AC ⊥, ∴1302CBE ABC ∠=∠=°, ∵PB PC =,∴此时30PCB PBC ∠=∠=°,∴60CPE PBC PCB ∠=∠+∠=°.故选:C .9. 如图,在平面直角坐标系中,长方形ABCD 的四条边与两条坐标轴平行,已知()1,2A −,()1,1C −.点P 从点A 出发,沿长方形的边顺时针运动,速度为每秒2个单位长度;点Q 从点A 出发,沿长方形的边逆时针运动,速度为每秒3个单位长度.记P Q ,在长方形边上第一次相遇时的点为1M ,第二次相遇时的点为2M ,……,则2024M 的坐标为是( )A. (1,0)B. ()0,1−C. ()1,0−D. ()1,2−【答案】B【解析】 【分析】本题考查了平面直角坐标系上点的坐标规律,求出长方形ABCD 的周长为()23210+×=,设经过t 秒,P Q ,第一次相遇,则点P 走的路程为2t ,点Q 走的路程为3t ,根据题意列出方程,求出相遇各点坐标,得出规律,即可得出答案.【详解】解:∵在平面直角坐标系中,长方形ABCD 的四条边与两条坐标轴平行,已知()1,2A −,()1,1C −.∴()1,1B −−,()1,2D ,∴2AD BC ==,3AB CD ==,∴长方形ABCD 的周长为:()23210+×=, 设经过t 秒,P Q ,第一次相遇,则点P 走的路程为2t ,点Q 走的路程为3t ,由题意得:2310t t +=,解得:2t =,∴当2t =时,P Q ,第一次相遇,此时相遇点1M 的坐标为()1,0,当4t =时,P Q ,第二次相遇,此时相遇点2M 的坐标为()1,0−,当6t =时,P Q ,第三次相遇,此时相遇点3M 的坐标为()1,2,当8t =时,P Q ,第四次相遇,此时相遇点4M 的坐标为()0,1−,当10t =时,P Q ,第五次相遇,此时相遇点5M 的坐标为()1,2−,当12t =时,P Q ,第六次相遇,此时相遇点6M 的坐标为()1,0,…,∴五次相遇为一循环,∵202454044÷=…,∴2024M 的坐标为是()0,1−,故选:B .10. 如图,C 为线段AE 上一动点(不与A ,E 重合),在AE 同侧分别作等边ABC 和等边ECD ,AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连接PQ ,则有以下五个结论:①AD BE =;②PQ AE ∥;③AP BQ =;④DE DP =;⑤60AOB ∠=°.其中正确的有( )A. ①③⑤B. ①③④⑤C. ①②③⑤D. ①②③④⑤【答案】C【解析】 【分析】此题主要考查了全等三角形的判定和性质的应用,等边三角形的判定和性质.①根据全等三角形的判定方法,判断出ACD BCE △△≌,即可判断出AD BE =.②首先根据全等三角形的判定方法,判断出ACP BCQ ≌△△,即可判断出CP CQ =;然后根据60PCQ ∠=°,可得PCQ △为等边三角形,所以60PQC DCE ∠=∠=°,据此判断出PQ AE ∥即可.③根据全等三角形的判定方法,判断出ACP BCQ ≌△△,即可判断出AP BQ =.④首先根据,60DC DE PCQ CPQ =∠=∠=°,可得60DPC ∠>°,然后判断出DP DC ≠,再根据DC DE =,即可判断出DP DE ≠.⑤60AOB DAE AEO DAE ADC DCE ∠=∠+∠=∠+∠=∠=°,据此判断即可.【详解】解:∵ABC 和ECD 都是等边三角形,∴,,60ACBC CD CE ACB DCE ====°∠∠, ∴ACB BCD DCE BCD ∠+∠=∠+∠,∴ACD BCE ∠=∠,在ACD 和BCE 中,∵,,AC BCACD BCE CD CE ∠∠===, ∴ACD BCE △△≌,∴AD BE =,结论①正确.∵ACD BCE △△≌,∴CAD CBE ∠=∠,又∵60ACB DCE °∠=∠=,∴180606060BCD ∠=°−°−°=°,∴60ACP BCQ ∠=∠=°, 在ACP △和BCQ △中,,,ACP BCQ CAP CBQ AC BC ∠=∠∠=∠,∴ACP BCQ ≌△△,∴CP CQ =,又∵60PCQ ∠=°, ∴PCQ △为等边三角形,∴60PQC DCE ∠=∠=°, ∴PQ AE ∥,结论②正确.∵ACP BCQ ≌△△,∴AP BQ =,结论③正确.∵,60DC DE PCQ CPQ =∠=∠=°, ∴60DPC ∠>°,∴DP DC ≠,又∵DC DE =,∴DP DE ≠,结论④不正确.∵60AOB DAE AEO ADC DCE ∠=∠+∠=∠+∠=∠=°,结论⑤正确.综上,可得正确的结论有4个:①②③⑤.故选:C .二、填空题:本大题共6个小题.每小题4分,共24分.把答案填在题中横线上. 11. 若不等式()11m x m −+<的解是1x >,则m 的取值范围是______.【答案】1m <【解析】【分析】先移项得(1)1m x m −<−,结合不等式的解集为1x >,可知10m −<,解之即可.【详解】解:∵()11m x m −+<,∴(1)1m x m −<−,∵不等式的解集为1x >,∴10m −<,则1m <,m<.故答案为:1【点睛】本题考查解一元一次不等式,掌握解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.12. 若等腰三角形的两边长分别为4和6,则其周长是____________.【答案】14或16【解析】【分析】根据等腰三角形的性质,分两种情况:①当腰长为6时,②当腰长为4时,解答出即可.【详解】解:根据题意,①当腰长为6时,三边为6,6,4,=++=;符合三角形三边关系,周长66416②当腰长为4时,三边为4,4,6,=++=.符合三角形三边关系,周长44614故答案为:14或16.【点睛】本题主要考查了等腰三角形的性质,注意本题要分两种情况解答.13. 如图,Rt△ABC中,∠ABC=90°,AB=BC,直线l1、l2、l3分别通过A、B、C三点,且l1∥l2∥l3.若l1与l2的距离为4,l2与l3的距离为6,则Rt△ABC的面积为________.【答案】26【解析】【详解】过点B作EF⊥l2,交l1于E,交l3于F,如图,∵EF⊥l2,l1∥l2∥l3,∴EF⊥l1⊥l3,∴∠ABE+∠EAB=90°,∠AEB=∠BFC=90°,又∵∠ABC=90°,∴∠ABE+∠FBC=90°,∴∠EAB=∠FBC,在△ABE和△BCF中,{AEB BFC EAB FCB AB BC∠=∠∠=∠=,∴△ABE≌△BCF,∴BE=CF=4,AE=BF=6,在Rt△ABE中,AB2=BE2+AE2,∴AB2=52,∴S△ABC=12AB⋅BC=12AB2=26.故答案是26.14. 在△ABC中,∠B和∠C的平分线交于点F,过点F作DF∥BC ,交AB于点D,交AC于点E,若BD+CE=9,则线段DE的长为________.【答案】9【解析】【详解】∵∠B和∠C的平分线相交于点F,∴∠DBF=∠FBC,∠BCF=∠ECF;∵DE∥BC,∴∠DFB=∠FBC=∠FBD,∠EFC=∠FCB=∠ECF,∴DF=DB,EF=EC,即DE=DF+FE=DB+EC=9.故答案为9.15. 如图,在△ABC中,∠ACB=90°,边BC的垂直平分线EF交AB于点D,连接CD,如果CD=6,那么AB的长为_____.【答案】12【解析】【分析】根据线段的垂直平分线的性质得到DC =DB =6,则∠DCB =∠B ,由∠ACB =∠ACD +∠DCB =90°,得∠A +∠B =90°,从而∠A =∠ACD ,DA =DC =6,则AB =AD +DB 便可求出.【详解】解:∵EF 是线段BC 的垂直平分线,DC =6,∴DC =DB =6,∴∠DCB =∠B ,又∵∠ACB =∠ACD +∠DCB =90°,∴∠A +∠B =90°,∴∠A =∠ACD ,∴DA =DC =6,∴AB =AD +DB =6+6=12,故答案为:12.【点睛】本题考查了线段的垂直平分线的性质,等腰三角形的判定和性质,直角三角形的两锐角互余,熟记性质是解题的关键.16. 如图,Rt BDE △中,90BDE ∠=°,2DB DE ==,A 是DE 的中点,连结AB ,以AB 为直角边作等腰Rt ABC △,其中90ABC ∠=°.①AC 的长为 ______;②连结CE ,则CE 的长为 _____.【答案】 ①. ②.【解析】【分析】①根据勾股定理先计算A BAC ,解答即可;②过E 点分别作AB ,BC 的垂线,垂足分别为G ,F ,根据等面积法可以求得EG FB =的长,再根据勾股定理求得EF 的长,最后计算出CE 的长即可.本题考查勾股定理、等腰直角三角形性质,解答本题的关键是明确题意,求出和的长.【详解】解:①∵90BDE ∠=°,2DB DE ==,A 是DE 的中点, ∴112DA AE DE ===根据勾股定理,得A BAC ,;②过E 点分别作AB ,BC 的垂线,垂足分别为G ,F ,∵90BDE ∠=°,2DB DE ==,A 是DE 的中点, ∴112DA AE DE ===, 四边形EGBF 是矩形,∴EG BF =,根据勾股定理,得A BBE ∴111221222ABE DBE S S ==×××= ,∴112EG =,∴EG =∴BF =,∴EF∴CE的.三、解答题:本大题共8个小题,共66分,解答应写出文字说明、证明过程或演算步骤 17. 解一元一次不等式组,并把解集表示在数轴上.(1)()2112x x −−−<; (2)4261139x x x x >− −+ ≤ 【答案】(1)2x >−,数轴见解析(2)32x −<≤,数轴见解析【解析】分析】(1)先去分母,再去括号,移项,然后合并同类项,并画出数轴,即可作答;(2)由①易得,3x >−,由②去分母,得331x x −≤+,故不等式组得解集为:32x −<≤,并画出数轴,即可作答.【小问1详解】解:去分母得,()()2212x x −−−<,去括号得,2222x x −−+<,移项得,2222x x −<+−,合并同类项得,2x −<,系数化为1得,2x >−,在数轴上表示为:;【小问2详解】 解:4261139x x x x >− −+≤①②,由①得,3x >−,【由②去分母,得331x x −≤+解得,2x ≤.故不等式组得解集为:32x −<≤.在数轴上表示:【点睛】本题考查了解一元一次不等式以及解一元一次不等式组,难度较小,正确掌握相关性质内容是解题的关键.18. 如图,在ABC 中,点D 在BC 上,点E 在AD 上,已知ABE ACE =∠∠,BED CED ∠=∠.试说明BE CE =的理由.【答案】见解析【解析】【分析】因为BED CED ∠=∠,所以AEB AEC ∠=∠,因为ABE ACE =∠∠,得证()AAS AEB AEC ≌,即可作答.【详解】证明:∵180AEB BED ∠=°−∠,180AECCED ∠=°−∠,BED CED ∠=∠ ∴AEB AEC ∠=∠,在AEB 和AEC △中,ABE ACE AEB AEC AE AE ∠=∠ ∠=∠ =, ∴()AAS AEB AEC ≌,∴BE CE =.【点睛】本题考查了全等三角形的判定与性质,难度较小,熟记全等三角形的判定与性质是解题的关键. 19. 如图,有一块凹四边形的绿地ABCD ,4m AD =,3m CD =,90ADC ∠=°,13m AB =,12m BC =,求这块绿地ABCD 的面积.为【答案】这块空地的面积是224m【解析】【分析】本题主要考查了勾股定理及其逆定理的应用,连接AC ,根据勾股定理求出AC ,再根据勾股定理的逆定理说明90ACB ∠=°,最后根据1122ABC ACD S S BC AC DC AD −=⋅−⋅ 得出答案. 【详解】解:连接AC ,∵90ADC ∠=°,4m AD =,3m CD =,∴()5m AC ,∵13m AB =,12m BC =,∴22222251213CB AC AB +=+==,∴90ACB ∠=°,∴四边形ABCD 面积为:1122ABC ACD S S BC AC DC AD −=⋅−⋅ ()2115123424m 22=××−××=. 答:这块空地面积是224m .20. 如图,网格中每个小正方格的边长都为1,点A 、B 、C 在小正方形的格点上.(1)画出与ABC 关于直线l 成轴对称的A B C ′′△;(2)求ABC 的面积;的(3)求BC 边上的高.【答案】(1)见解析 (2)4.5(3)BC 【解析】【分析】(1)利用网格特点和轴对称的性质画出点A 、B 关于直线l 的对称点即可;(2)用一个矩形的面积分别减去三个直角三角形的面积去计算ABC 的面积;(3)先计算出BC 的长,然后利用面积法求BC 边上的高.【小问1详解】解:如图,A B C ′′△为所作; 【小问2详解】解:ABC 的面积11134121433 4.5222=×−××−××−××=; 【小问3详解】解:设BC 边上的高为h ,∵BC,∴1 4.52h ×=,解得h =即BC 【点睛】本题考查了作图-轴对称变换:作轴对称后的图形的依据是轴对称的性质,掌握其基本作法是解决问题的关键(先确定图形的关键点;利用轴对称性质作出关键点的对称点;按原图形中的方式顺次连接对称点).也考查了勾股定理.21. 如图,在四边形ABED 中,90B E ∠=∠=°,点C 是BE 边上一点,AC CD ⊥,CB DE =.(1)求证:ABC CED △≌△.(2)若5AB =,2CB =,求AD 的长.【答案】(1)见解析;(2【解析】【分析】(1)根据“∠B=90°,AC ⊥CD”得出∠2=∠BAC ,即可得出答案;(2)由(1)可得AC=CD ,并根据勾股定理求出AC 的值,再次利用勾股定理求出AD 的值,即可得出答案.【详解】(1)证明:∵90B E ∠=∠=°,∴190BAC ∠+∠=°.∵AC CD ⊥,∴1290∠+∠=°, ∴2BAC ∠=∠.在ABC 和CED △中,2,,,BAC B E CB DE ∠=∠ ∠=∠ =()ABC CED AAS △≌△.(2)解:∵ABC CED △≌△,∴5AB CE ==,AC CD =.∵2BC =,∴在Rt ABC △中,AC∵CD =∴在Rt ACD △中,AD ==【点睛】本题考查的是全等三角形和勾股定理,解题关键是利用两个直角得出2BAC ∠=∠.22. 根据以下素材,探索完成任务.荡秋千问题素材1如图1,小丽与爸妈在公园里荡秋千,开始时小丽坐在秋千的起始位置,且起始位置与地面垂直.素材2 如图2,小丽从秋千的起始位置A 处,两脚在地面上用力一蹬,妈妈在距地面1m 高的B 处接住她后用力一推,爸爸在C 处接住她.若妈妈与爸爸到OA 的水平距离BD 、CE 分别为1.4m和1.8m ,90BOC ∠=°.问题解决任务1OBD 与COE 全等吗?请说明理由;任务2当爸爸在C 处接住小丽时,小丽距离地面有多高?【答案】任务1:OBD 与COE 全等,理由见解析;任务2:1.4m【解析】【分析】本题考查了利用三角形全等测距离的问题,理解题意及熟知全等三角形的性质与判定是解题关键. 任务1:利用AAS ,证得OBD 与COE 全等;任务2:根据全等三角形性质可求出OE 和OD 的值,进而求出OA 的值,最后根据OA OE AE −=,即可求出问题答案.【详解】解:任务1:由题意,得OB OA OC ,1m AD =, 1.4m BD =, 1.8m CE =,90BDO CEO ∠=∠=°,∴90EOC OCE ∠+∠=°,又90BOC BOD COE ∠=∠+∠=°, ∴BOD OCE ∠=∠,在OBD 与COE 中BOD OCE BDO CEO OB OC ∠=∠ ∠=∠ =, ∴()AAS OBD COE ≌ ;任务2:∵OBD COE ≌ ,∴ 1.4m BD OE ==, 1.8m OD CE ==∴1 1.8 1.4 1.4m AE AO OE AD OD OE =−=+−=+−=,即小丽距离地面有1.4m 高.23. 某电器超市销售A B 两种型号的电风扇,A 型号每台进价为200元,B 型号每台进价分别为150元,下表是近两天的销售情况: 销售时段销售数量销售收入A 种型号B 种型号 第一天3台 5台 1620元 第二天 4台 10台 2760元 (进价、售价均保持不变,利润=销售收入-进货成本)(1)求A 、B ;(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A 种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润不少于1060元的目标?若能,请给出相应的采购方案;若不能,请说明理由.【答案】(1)A 、B 两种型号的电风扇销售单价分别为240元、180元;(2)18;(3)能,方案为A 型号16台,B 型号14台;A 型号17台,B 型号13台;A 型号18台,B 型号12台【解析】【分析】(1)设A 、B 两种型号电风扇的销售单价分别为x 元、y 元,根据3台A 型号5台B 型号的电扇收入1620元,4台A 型号10台B 型号的电扇收入2760元,列方程组求解即可;(2)设采购A 种型号电风扇a 台,则采购B 种型号电风扇(30-a )台,根据金额不多余5400元,列不等式求解即可得出答案;(3)根据利润大于等于1060元,列不等式求出a 的取值范围,结合(2)中a 的取值范围,即可确定方案.【详解】(1)设A. B 两种型号的电风扇的销售价分别为x 、y 元,由题意得3516204102760x y x y += +=解得:240180x y = =答:A 型号电风扇的销售单价为240元,B 型号电风扇的销售单价为180元.(2)设采购A 种型号电风扇a 台,则采购B 种型号电风扇(30−a)台则200a+150(30−a)≤5400,解得:a ≤18,答:最多采购A 种型号的电风扇18台.(3)根据题意得:(240−200)a+(180−150)(30−a)≥1060,解得a ≥16,∵在(2)的条件下a ≤18,∴16≤a ≤18∵a 为正整数,∴a 可取16,17,18,∴符合题意的方案为:A 型号16台,B 型号14台;A 型号17台,B 型号13台;A 型号18台,B 型号12台;答:在(2)条件下超市销售完这30台电风扇能实现利润不少于1060元的目标,方案为:A 型号16台,B 型号14台;A 型号17台,B 型号13台;A 型号18台,B 型号12台.【点睛】本题考查二元一次方程组和一元一次不等式的应用,根据售价乘以销量等于销售收入列方程组是解题的关键.24. 等腰Rt ABC △中,=AB AC ,=90BAC °∠.的(1)如图1,D ,E 是等腰Rt ABC △斜边BC 上两动点,且=45DAE ∠°,将ABE 绕点A 逆时针旋转90°后,得到AFC ,连接DF .①求证:AED AFD ≌ .②当3BE =,7CE =时,求DE 的长;(2)如图2,点D 是等腰Rt ABC △斜边BC 所在直线上的一动点,连接AD ,以点A 为直角顶点作等腰Rt ADE ,当=3BD ,=9BC 时,则DE 的长 __________.(直接给出答案). 【答案】(1)①证明见解析;②297(2)或【解析】【分析】(1)①利用全等三角形的判定定理即可求证;②证=90DCF ∠°,进而在Rt DCF 中利用勾股定理即可求解;(2)分情况讨论点E 在线段BC ,点D 在线段CB 的延长线上,即可求解.【小问1详解】 ①证明:如图1中,BAE CAF ≅ ,AE AF ∴=,BAE CAF ∠=∠, =90BAC ∠° ,=45EAD ∠°,+=+=45CAD BAE CAD CAF ∴∠∠∠∠°,DAE DAF ∴∠=∠,在AED △和AFD △中,===AE AF EAD FAD AD AD ∠∠,(SAS)AED AFD ∴≅ .②解:如图1中,设DE x =,则7CD x =−.AB AC = ,=90BAC °∠,==45B ACB ∴∠∠°,==45ABE ACF ∠∠° ,=90DCF ∴∠°,(SAS)AED AFD ≅ ,DE DF x ∴==,在Rt DCF △中,∵222DF CD CF =+,3CFBE ==, ∴()22273x x =−+,解得297x, ∴297DE =. 【小问2详解】解:①当点E 在线段BC 上时,如图2中所示,连接BE :90BAC EAD ∠=∠=°EAB DAC ∴∠=∠,AE AD AB AC ==()EAB ADC SAS ∴ ≌45,6ABE C ABC EB CD ∴∠=∠=∠=°==90EBD ∴∠°=222226345DE BE BD ∴=+=+=DE ∴②当点D 在线段CB 的延长线上,如图3中所示,连接BE :同法可证DBE 是直角三角形12,3EB CD DB ===222222123153DE BE BD ∴=+=+=DE ∴ 【点睛】本题考查了全等三角形的判定与性质、用勾股定理解三角形等知识点.分类讨论的数学思想是解决本题的重要思路.。

辽宁省大连市甘井子区2023-2024学年八年级下学期期中数学试题(解析版)

辽宁省大连市甘井子区2023-2024学年八年级下学期期中数学试题(解析版)

2023—2024学年度第二学期阶段性随堂练习八年级数学(本试卷共23道题满分120分考试时间共120分钟)注意:所有试题必须在答题卡上作答,在本试卷上作答无效第一部分选择题(共30分)一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.有意义,则实数x 的取值范围是( )A. B. C. D. 【答案】C【解析】【分析】本题主要考查二次根式的意义和性质.根据二次根式有意义的条件,被开方数大于或等于0,可以得出x 的范围.【详解】解:根据题意得:,解得:,故选:C .2. 一元二次方程两根分别为,则的值为( )A. 2B. C. D. 3【答案】C【解析】【分析】根据一元二次方程根与系数的关系求解即可.【详解】解:∵该一元二次方程为,∴.故选C .【点睛】本题考查一元二次方程根与系数的关系.熟记一元二次方程根与系数的关系:和是解题关键.3. 下列运算结果正确的是( )A. B. C. D. 的2x >0x >2x ≥0x ≥20x -≥2x ≥2230x x +-=12x x 、12x x ⋅2-3-2230xx +-=12331c xx a -⋅===-20(0)ax bx c a ++=≠12b x x a+=-12c x x a ⋅=2=±5=-2=(218=【解析】【分析】本题考查了二次根式的性质、二次根式的乘法,根据二次根式的性质、二次根式的乘法法则逐项判断即可得出答案.【详解】解:A,故原选项计算错误,不符合题意;B,故原选项计算错误,不符合题意;C 、,故原选项计算错误,不符合题意;D 、,故原选项计算正确,符合题意;故选:D .4.由下列长度的三条线段组成的三角形不是直角三角形的是( )A. 12B. 2,3,5 C. ,2, D. 6,8,10【答案】B【解析】【分析】本题考查勾股定理的逆定理,是重要考点,难度较易,掌握相关知识是解题关键.根据直角三角形三边的数量关系,运用勾股定理逆定理,依次对四个选项进行计算、判断即可.【详解】解:A .,能组成直角三角形,故A 不符合题意;B .,不能组成三角形,更不可能组成直角三角形,故B 符合题意;C .,能组成直角三角形,故C 不符合题意;D .,能组成直角三角形,故D 不符合题意.故选:B .5. 如图,在一束平行光线中插入一张对边平行的纸板,如果光线与纸板左上方所成的是,那么光线与纸板右下方所成的的度数为( )A. B. C. D. 【答案】C 2=5=2=-(218== 1.5 2.522212+=235+=2221.52 2.5+=2226810+=1∠7215'︒2∠10745'︒7245'︒7215'︒1745'︒【分析】首先可证得四边形是平行四边形,再根据平行四边形的性质,即可求得.【详解】解:如图所示:光线平行,纸板对边平行,四边形是平行四边形故选:C【点睛】本题考查了平行四边形的判定与性质,熟练掌握和运用平行四边形的判定与性质是解决本题的关键.6. 如图,增加下列一个条件可以使平行四边形成为矩形的是( )A. B. C. D. 【答案】C【解析】【分析】本题考查了平行四边形的性质,矩形的判定,根据矩形的判定定理逐项分析判断,即可求解.【详解】解:A 、四边形是平行四边形,,故选项A 不符合题意;B 、四边形是平行四边形,,,故选项B 不符合题意;C 、四边形是平行四边形,,四边形是矩形,故选项C符合题意;CDEF FC ED ∴∥EF DC ∴CDEF 152721∴=∠︒∠'=ABCD BAD BCD∠=∠AD BC ∥90BAD ∠=︒AB BC= ABCD BAD BCD ∴∠=∠ ABCD ∴AD BC ∥ ABCD 90BAD ∠=︒∴ABCDD 、四边形是平行四边形,,四边形是菱形,故选项D 不符合题意;故选:C .7. 如图是一棵美丽的勾股树,它是由正方形和直角三角形拼成的,若正方形A ,B 的面积分别为28,12,则正方形C 的面积是( )A. 4B. C. 16 D. 40【答案】C【解析】【分析】本题考查勾股树,根据勾股定理可得正方形C ,B 的面积之和等于正方形A 的面积,由此可解.【详解】解:由勾股定理知,正方形C ,B 的边长的平方之和等于正方形A 的边长的平方,正方形C ,B 的面积之和等于正方形A 的面积,正方形A ,B 的面积分别为28,12,正方形C 的面积是,故选C .8. 某校举行风筝节活动,小明做了一个菱形风筝,他用两个木条沿着菱形的对角线做支架.经测量,,则这个风筝的面积是( )A. B. C. D. 【答案】B【解析】【分析】本题考查菱形的性质,解题的关键是掌握:菱形的面积公式是两条对角线的长度乘积的一半.据此列式解答即可.【详解】解:∵四边形是菱形,,,ABCD AB BC =∴ABCD ∴ ∴281216-=2dm AC =3dm BD =26dm 23dm 23dm 223dm 4ABCD 2dm AC =3dm BD =∴菱形的面积为:.故选:B .9. 如图,在中,,于,若,,则( )A. B. C. D. 5【答案】C【解析】【分析】本题主要考查了勾股定理的应用,理解并掌握勾股定理是解题关键.首先根据勾股定理解得的值,然后根据面积法计算的值即可.【详解】解:∵,,,∴,∵,∴,即,解得.故选:C .10. 在数学活动课上,小明通过测量,发现规格矩形纸片的长宽有固定关系,于是按如图所示的方法进行两次折叠,得到等腰直角三角形,若,则的长度是( )A. B. C. D. 【答案】A【解析】ABCD ()21233dm 2⨯⨯=ABC 90ACB ∠=︒CD AB ⊥D 4CA =3CB=CD =3545125AB CD 90ACB ∠=︒4CA =3CB =5AB ===CD AB ⊥1122ABC S CA CB AB CD =⨯=⨯ 1143522CD ⨯⨯=⨯⨯125CD =4A DMC 1AD =AB【分析】本题主要考查了矩形与折叠问题,勾股定理,根据翻折的性质可得,,,设,则,,在由勾股定理得,解方程即可得到答案.【详解】解:根据翻折的性质可得,,,设,则,∵是等腰直角三角形,∴,在中,由勾股定理得,解得∴,故选:A .第二部分 非选择题(共90分)二、填空题(本题共5小题,每小题3分,共15分)11.______.【解析】【分析】根据二次根式的除法运算法则即可求解.【点睛】本题考查二次根式的除法运算.分母有理化是解题的关键.12. 如图,在正方形的外侧,作等边,则____.1AD BE CD ====DM EM CE CM =BE CD x ==1CE x =-CD CE CM x ===Rt CEM △()()()222111x x x x -+-=-+1AD BE CD ====DM EM CE CM =BE CD x ==1CE x =-DMC CD CE CM x ===Rt CEM △()()()222111x x x x -+-=-+x =x =AB ====ABCD ADE V AEB ∠=【答案】##15度【解析】【分析】判断是顶角为的等腰三角形,求出的度数即可求解.【详解】解:∵四边形是正方形,∴,,∵是等边三角形,,∴,,∴,,∴,故答案:.【点睛】此题考查了正方形和等边三角形的性质,解题的关键是熟练掌握正方形和等边三角形的性质及其应用.13. 若一元二次方程有两个相等的实数根,则k =____________.【答案】12【解析】【分析】本题考查了一元二次方程根的判别式,一元二次方程的根与有如下关系:①,方程有两个不相等的实数根,②,方程有两个相等的实数根,③,方程没有实数根.根据题意得出,求解即可.【详解】解:由题意得:,解得:,故答案为:.14. 如图,的顶点的坐标分别是.则顶点的坐标是_________.为15︒ABE 150︒AEB ∠ABCD AB AD =90BAD ∠=︒ADE AD AE =60DAE ∠=︒AB AE =150BAE ∠=︒()1180150152AEB ∠=︒-︒=︒15︒23120x x k -+=()200ax bx c a ++=≠24b ac ∆=-0∆>Δ0=Δ0<()212430k ∆=--⨯⨯=()212430k ∆=--⨯⨯=12k =12ABCO O A C 、、()()()003012,、,、,B【答案】【解析】【分析】根据“平行四边形的对边平行且相等的性质”得到点的纵坐标与点的纵坐标相等,且,即可得到结果.【详解】解:在中,,,,,点的纵坐标与点的纵坐标相等,,故答案为:.【点睛】本题主要考查了平行四边形的性质和坐标与图形的性质,此题充分利用了“平行四边形的对边相等且平行”的性质.15. 如图1,第二十四届国际数学家大会会徽的设计基础是1700多年前中国古代数学家赵爽的“弦图”.如图2,在由四个全等的直角三角形(,,,)和中间一个小正方形拼成的大正方形中,若正方形与正方形的面积之比为m ,m 的值是____________.【答案】3【解析】【分析】本题考查勾股定理的证明,熟练掌握勾股定理是解题的关键.由正方形与正方形()42,B C 3BC OA == ABCO ()00O ,()30A ,3BC OA ∴==BC AO ∥∴B C ()42B ∴,()42,AEB △BFC △DGC AHD EFGH ABCD ABCD EFGH :AH HE =ABCD EFGH的面积之比为m ,得到,设,,得到,根据勾股定理列方程即可得到结论.【详解】解:∵正方形与正方形的面积之比为m ,∴,∴设,, ∵∴,∴,∵,∴,解得,故答案为:3.三、解答题(本题共8小题,共75分.解答应写出文字说明、演算步骤或推理过程)16. 计算:(1;(2).【答案】(1)(2)【解析】【分析】本题考查了二次根式的混合运算,熟练掌握运算法则是解此题的关键.(1)先根据二次根式的性质进行化简,再计算加减即可;(2)先根据二次根式的除法以及平方差公式去括号,再计算加减即可【小问1详解】:AB HE =HE x =AB =AH x =ABCD EFGH :AB HE =HE x =AB =:AH HE =AH x =BE AH x ==222AB AE BE =+222mx x x x ⎫⎫=++⎪⎪⎪⎪⎭⎭3m =+(-+6-;【小问2详解】.17. 解下列方程:(1)(2)【答案】(1),(2),【解析】【分析】本题考查了解一元二次方程,解题的关键是掌握一元二次方程的解法:直接开平方法,配方法,公式法,因式分解法等.(1)利用因式分解法解一元二次方程即可;(2)利用配方法解一元二次方程即可.【小问1详解】解:,;【小问2详解】解:=+-=(-++22=+-453=--6=-2x -=257311x x x ++=+10x =2x =11x =-21x =(0x x -=10x =2x =224x x +=22141x x ++=+()215x +=,18. 如图,四边形是平行四边形,是对角线上的两点,且.求证:四边形是平行四边形.【答案】见解析【解析】【分析】本题考查了平行四边形的判定与性质,熟练掌握平行四边形的判定与性质是解题的关键.由四边形是平行四边形,可得,可证,于是得到,,进一步得到,于是,即得证.【详解】证明: 四边形是平行四边形,,,,,,,,,,,,且,四边形是平行四边形.19. 一架长的梯子,斜靠在一面墙上,梯子底端离墙.(1)如图,,,求这架梯子的顶端距地面有多高?1x +=11x =-21x =-ABCD E F 、AC AE CF =EBFD ABCD DAE BCF ∠=∠DAE BCF ≌△△DE BF =AED CFB ∠=∠DEF BFE ∠=∠DE BF ∥ ABCD ∴AD BC =AD BC ∥ AD BC ∥∴DAE BCF ∠=∠ AE CF DAE BCF AD BC =⎧⎪∠=∠⎨⎪=⎩∴DAE BCF ≌△△∴DE BF =AED CFB ∠=∠∴DEF BFE ∠=∠∴DE BF ∥ DE BF =DE BF ∥∴EBFD 3m 1.8m 13m AB =18m .=BC(2)如图,如果梯子靠墙下移,底端向右移动至点处,求它的顶端A 沿墙下移多少米?【答案】(1)这架梯子的顶端距地面有(2)梯子的顶端沿墙下移【解析】【分析】本题考查了勾股定理的应用,熟练掌握利用勾股定理计算是解题的关键.(1)根据勾股定理,计算(2)根据、,结合勾股定理计算,最后根据得出答案即可.【小问1详解】解:∵于点,∴,在中,根据勾股定理,得,∵,,∴,答:这架梯子的顶端距地面有;【小问2详解】解:由题意,得,∴,∵,20.6m E 2.4m A 0.6mAC =CE BC BE =+DEAB=CD =AD AC CD =-AC BC ⊥C 90ACB ∠=︒Rt ACB △222AB AC BC =+3m AB =18m .=BC 2.4m AC ===2.4m 0.6m BE =1.80.6 2.4m CE BC BE =+=+=3m DE AB ==∴在中,根据勾股定理,得,∴,∴,答:梯子的顶端沿墙下移.20. 某快递公司为顾客邮寄的快递提供纸箱包装服务,现有一款底面积为,长,宽,高的比分别为的长方体包装纸箱.(1)求这个长方体包装纸箱的长,宽,高各是多少?(2)一顾客要邮寄甲乙两件正方体物品,它们的底面积分别为,,从节约材料的角度考虑,该快递公司的员工决定用这款长方体包装纸箱.如图所示,将甲乙两件正方体物品并排摆放在该长方体包装箱中.请问这名员工的想法能否实现,并说明理由.【答案】(1)这个长方体包装纸箱的长,宽,高分别为,,(2)这名员工的想法能实现,理由见解析【解析】【分析】本题考查了长方体的表面积,正方形的面积,平方根的应用,无理数的估算,理解题意得出要求包装的纸箱的尺寸范围是解题的关键.(1)设这个长方体包装纸箱的长为,则宽为,高为,根据长方体的底面积等于长宽列方程,求解即可;(2)根据甲乙两件礼品的底面积大小,可以估计这两件礼品的底面边长大小,然后与三款包装纸箱的尺寸比较,从而找到合适的纸箱.【小问1详解】解:设这个长方体包装纸箱的长为,则宽为,高为,由题意得:,∴,∵,Rt DCE V 222DE DC CE =+1.8m CD ===2.4 1.80.6m AD AC CD =-=-=A 0.6m 2720cm 2:1:12180cm 2320cm2cm x cm x cm x ⨯2cm x cm x cm x 22720x =2360x =0x >∴,则答:这个长方体包装纸箱的长,宽,高分别为,,.【小问2详解】解:设甲正方体物品棱长为,乙正方体物品棱长为,由题意得:,∵,∴,∴∵,∴,长方体纸箱长满足条件,∵,,∴∴这名员工的想法能实现.21. 【综合与实践】项目背景测量实物图:如图1,某校八年级数学“创新”小组,自主开展测量学校旗杆高度的项目研究,他们制订了测量方案,并进行实地测量项目方案测量示意图:测量过程:步骤一:如图2,线段表示旗杆高度,垂直地面于点,将系在旗杆顶端的绳子垂直到地面,并多出了一段,用皮尺测出的长度;x =2x =cm a cm b 2180a =2320b =00a b >>,a =b =a b +=+===<<==<<AB AB B BC BC步骤二:如图3,小新同学将绳子末端放置头顶,向正东方向水平移动,直到绳子拉直为止,此时该同学直立于地面点处,用皮尺测出距离.测量项目数据绳子垂到地面多出部分1米小新直立位置距旗杆底端的水平距离8.4米各项数据小新身高1.8米请根据表格所给信息,完成下列问题:(1)直接写出线段与之间的数量关系;(2)根据“创新”小组的测量方案和数据,求出学校旗杆的高度.【答案】(1)(2)学校旗杆的高度为【解析】【分析】(1)根据题意,旗杆的绳子长度始终保持不变,由图2与图3中的描述即可得到答案;(2)由题意,得到相关线段长度及关系,过点作于点,如图所示,设,则,,在中,由勾股定理可得列方程求解即可得到答案.【小问1详解】解:由图2可知,旗杆的绳子长为;由图3可知,旗杆的绳子长为;绳子垂到地面多出部分米,,故答案为:;【小问2详解】解:由题意得,,过点作于点,如图所示:E BE AB AD 1AB AD +=13mD DF AB ⊥F AB x =1AD x =+ 1.8AF x =-Rt AFD △AB BC +AD 1BC =∴1AB AD +=1AB AD +=8.4, 1.8,,BE DE AB BE DE BE ==⊥⊥90ABE DEB ∴∠=∠=︒D DF AB ⊥F,,四边形为矩形,,设,则,,在中,由勾股定理可得,则,解得,答:学校旗杆的高度为.【点睛】本题考查勾股定理解应用题,涉及矩形的判定与性质、勾股定理及解方程等知识,读懂题意,构造直角三角形由勾股定理求解是解决问题的关键.22. 在平面直角坐标系中,四边形为菱形,,对角线相交于原点,点是线段上一动点(不与点重合),以为腰向右侧作等腰,满足.(1)如图1,当点在点左侧时,连接,则与之间的数量关系是 ,与之间的位置关系是 ;(2)如图2,当点在点右侧时,(1)中的结论是否成立?若成立,请予以证明;若不成立,请说明理由.90DFB ∴∠=︒90ABE DEB DFB ∴∠=∠=∠=︒∴FBED 8.4, 1.8DF BE BF DE ∴====AB x =1AD x =+ 1.8AF x =-Rt AFD △222AD AF DF =+()()2221 1.88.4x x +=-+13x =13m ABCD 602,ADC AD ∠=︒=AC BD ,O E BD B D ,AE AEF △BAD EAF ∠=∠E O DF BE DF DF CD E O(3)连接,请在备用图中完成下列探究:①在点的运动过程中,的长度存在最小值为 ;②若,请求出此时点的坐标.【答案】(1)相等,垂直(2)成立,理由见解析(3)①;②或【解析】【分析】(1)由菱形性质、等腰三角形性质,结合三角形全等的判定与性质即可得到与之间的数量关系是相等;进而确定与之间的位置关系是垂直;(2)由菱形性质、等腰三角形性质,结合三角形全等的判定与性质即可得到与之间的数量关系是相等;进而确定与之间的位置关系是垂直;BF EBF BF =F3FF BE DF DF CD BE DF DF CD(3)①由三角形三边关系可知,从而确定当三点共线时,,由点到直线距离垂线段最短可知,当时,最小,在中,由含的直角三角形性质求出最小值即可确定在点的运动过程中,的长度存在最小值为;②由①知的长度存在最小值为,当,则分两种情况:在最小值的下方;在最小值的上方;分类求解即可得到答案.【小问1详解】解:在菱形中,,以腰向右侧作等腰,,,,即,在和中,,,即与之间的数量关系是相等;由可知,在菱形中,,则,,即与之间的位置关系是垂直;故答案为:相等;垂直;【小问2详解】解:(1)中的结论成立,理由如下:为2BF BA AF AF <+=+B A F 、、2BF AF =+AE BD ⊥AE Rt AOB △30︒AE E BF 3BF33BF =>3BF =3BF =ABCD AB AD = AE AEF △AE AF ∴= BAD EAF ∠=∠BAD EAD EAF EAD ∴∠-∠=∠-∠BAE DAF ∠=∠BAE DAF △AB AD BAE DAFAE AF =⎧⎪∠=∠⎨⎪=⎩()SAS BAE DAF ∴ ≌BE DF ∴=BE DF BAE DAF ≌ ADF ABE =∠∠ABCD 60ABC ADC ∠=∠=︒160302ADF ABE ∠=∠=⨯︒=︒603090CDF ADC ADF ∴∠=∠+∠=︒+︒=︒DF CD在菱形中,,以腰向右侧作等腰,,,,即,在和中,,,即与之间的数量关系是相等;由可知,在菱形中,,则,,即与之间的位置关系是垂直;【小问3详解】解:① 连接,如图所示:在中,,则当三点共线时,,,为ABCD AB AD = AE AEF △AE AF ∴= BAD EAF ∠=∠BAD EAD EAF EAD ∴∠-∠=∠-∠BAE DAF ∠=∠BAE DAF △AB AD BAE DAFAE AF =⎧⎪∠=∠⎨⎪=⎩()SAS BAE DAF ∴ ≌BE DF ∴=BE DF BAE DAF ≌ ADF ABE =∠∠ABCD 60ABC ADC ∠=∠=︒160302ADF ABE ∠=∠=⨯︒=︒603090CDF ADC ADF ∴∠=∠+∠=︒+︒=︒DF CD BF BAF △2BF BA AF AF <+=+B A F 、、2BF AF =+ AF AE =当最小时,有最小值,点在运动过程中,轨迹为,当时,最小,在中,,,,则,在点的运动过程中,的长度存在最小值为,故答案为:;②由①知的长度存在最小值为,当,则分两种情况:在最小值的下方;在最小值的上方,当在最小值的下方时,延长交于,过点作轴,如图所示:由(1)(2)知与之间的位置关系是垂直,即,在菱形中,,则,,,,,在中,,,则,由勾股定理可得在中,,,则,由勾股定理可得,在中,,,则由勾股定理可得,,∴AE BF E BD ∴AE BD ⊥AE Rt AOB △90AOB ∠=︒30ABO ∠=︒2AB =1AE AO ==∴E BF 33BF 33BF =>3BF =3BF =3BF =DF BA M F FN x ⊥DF CD MD CD ⊥ABCD BA CD ∥M D B M ⊥90BMD ∴∠=︒ 2AB AD ==30ABD BDA ∠=∠=︒60DAM DBA ADB ∴∠=∠+∠=︒Rt ADM △30MDA ∠=︒2AD =112AM AD ==MD ==Rt ADO △30ODA ∠=︒2AD =112AM AD ==OD ==Rt BFM 3BM AB AM =+=BF =MF ==DF MD MF ∴=-= 60FDN ∠=︒,;当在最小值的上方时,延长交于,过点作轴,如图所示:由(1)(2)知与之间的位置关系是垂直,即,在菱形中,,则,,,,,在中,,,则,由勾股定理可得在中,,,则,由勾股定理可得,在中,,,则由勾股定理可得,,,FN==ON OD DN ∴=-==∴F 3BF =DF BA M F FN x ⊥DF CD FD CD ⊥ABCD BA CD ∥M D B M ⊥90BMD ∴∠=︒ 2AB AD ==30ABD BDA ∠=∠=︒60DAM DBA ADB ∴∠=∠+∠=︒Rt ADM △30MDA ∠=︒2AD =112AM AD ==MD ==Rt ADO △30ODA ∠=︒2AD =112AM AD ==OD ==Rt BFM 3BM AB AM =+=BF =MF ==DF MD MF ∴=+=+ 60FDN ∠=︒,;综上所述,点的坐标为或.【点睛】本题考查几何综合,涉及图形与坐标、菱形性质、等腰三角形性质、三角形全等的判定与性质、三角形三边关系、点到直线的距离、三角形外角性质、动点最值问题、含的直角三角形性质、勾股定理等知识,数形结合,根据题意,准确构造辅助线,灵活运用相关几何性质与判定求解是解决问题的关键.23. 问题情境】折纸操作简单,富有数学趣味,我们可以通过折纸开展数学探究,探索数学奥秘,下面是折纸过程.【动手操作】步骤1:对折矩形纸片,使与重合,得到折痕,展平纸片;步骤2:点M 为边上任意一点(与点A ,D 不重合),沿折叠得到,折痕交于点N .【问题探究】(1)如图1,当点A 的对称点落在上时,连接.求证:四边形为菱形;(2)已知,继续对折矩形纸片,使与重合,折痕与交于点O .将沿折叠,连接,若点A 的对称点恰好落在线段上,此时.①尺规作图:请在图2中用直尺和圆规,作点A 的对称点(保留作图痕迹,不写作法);【FN ==ON OD DN ∴=-==∴F F F F 30︒ABCD AD BC EF AD ABM BM A BM '△BM EFA 'EF AN ANA M '2BC AB =ABCD AB DC GH EF ABM BM MO A 'MO 2AM =A '②求的长度;【拓展迁移】如图3,在矩形纸片的边上取一点P ,折叠纸片,使P ,B 两点重合,展平纸片,得到折痕;点为EF 上任意一点(与点E ,F 不重合),折叠纸片使B ,两点重合,得到折痕l 及点P 的对应点,折痕l 交EF 于点K ,展平纸片,连接, .(3)猜想与的数量关系,并证明.【答案】(1)见解析;(2)①见解析;②;(3),理由见解析【解析】【分析】(1)根据折叠可得出,,,,证明,利用平行线的性质得出,则,利用等角对等边得出,即可得证;(2)①以M 为圆心,为半径画弧交于即可;②利用折叠的性质,矩形的判定与性质可得出,证明,得出,在中,根据勾股定理,可求出,进而求出;(3)连接,,延长交于点M ,可证明,得出,,由折叠可得,利用等边对等角和三线合一的性质可得出,, ,利用线段垂直平分线的性质,利用三线合一性质可得出,则,由(1)中,可得出,即可得证.【详解】(1)证明:连接,AB ABCD AB EF B 'B 'P 'BP 'KP 'P B K ∠'BC P '∠6AB =3P BC BP K ''∠∠=NA NA '=MA MA '=AMB A MB '∠=∠AD EF ∥AMB MNA '∠=∠A MB MNA ''∠=∠MA NA ''=MA MO A '2BH AB A B AG OG '====()HL OA B OHB ' ≌OA OH OG '==Rt MGO △OG AB PK BK BK P B ''EB B MBB ''≌ BE B M '=90FEB BMB '∠=∠=︒BK PK P K B K ''===P BK BP K ''∠=∠KBB KB B ''∠=∠MB MP ''=BP BB ''=P BK KBB ''∠=∠P BK BP K KBB KB B ''''∠=∠=∠=∠BC EF ∥B BC KB B ''∠=∠AA '∵沿折叠,得到,∴垂直平分,∴,,,由折叠可知:,∵,∴,∵四边形为矩形,∴,∴,∴,∴,∴,∴,∴,∴四边形为菱形;(2)如图点即为所求,解:连接,由折叠可知:,,,,,由(1)得,∴四边形为矩形,∴,∵,ABM BM A BM '△BM AA 'NA NA '=MA MA '=AMB A MB '∠=∠AEF BEF ∠=∠180AEF BEF ∠+∠=︒90BEF ∠=︒ABCD 90DAB ∠=︒90BEF DAB ∠=∠=︒AD EF ∥AMB MNA '∠=∠A MB MNA ''∠=∠MA NA ''=MA NA NA MA ''===ANA M 'A 'BO AB A B '=2MA MA '==OH OG =2BC BH =A MA B '∠=∠90GHB HGA ∠=∠=︒ABHG BH AG =2AB BC =∴,∵,∴,∴,∴在中,根据勾股定理,得∴,即,∴,∴;(3)证明:连接,,延长交于点M ,∵l 为折痕,∴,,l 垂直平分,∴, ,∴,∵,∴,∴,,由折叠可知:,,,∴,∴,∴,∴,由(1)可知,∴,∴.2BH AB A B AG OG '====OB OB =()HL OA B OHB ' ≌OA OH OG '==Rt MGO △222OM OG MG =+()()222222OG OG OG +=+-3OG =6AB =PK BK BK P B ''P B B PBB '''∠=∠BP B P ''=BB 'KP KP '=KB KB '=KBB KB B ''∠=∠B B BB ''=()ASA EB B MBB '' ≌BE B M '=90FEB BMB '∠=∠=︒KP KB =EP EB =90FEB ∠=︒KP KB '=KP KB ''=P BK BP K ''∠=∠MB MP ''=BP BB ''=P BK BP K KBB KB B ''''∠=∠=∠=∠BC EF ∥B BC KB B ''∠=∠3P BC BP K ''∠=∠【点睛】本题考查了矩形与折叠,等腰三角形的判定与性质,全等三角形的判定与性质,线段垂直平分线的性质等知识,明确题意,灵活运用所学知识解决问题是解题的关键.。

浙江省杭州市西湖区保俶塔教育集团2023-2024学年上学期八年级期中数学试卷(解析版)

浙江省杭州市西湖区保俶塔教育集团2023-2024学年上学期八年级期中数学试卷(解析版)

杭州市保椒塔教育集团2023学年第一学期期中质量检数学试题卷满分120分,考试时间120分钟一、仔细选一选(本题有10个小题,每小题3分,共30分)每小题给出的四个选项中,只有一个是正确,注意可以用多种不同的方法来选取正确答案.1.下列常见的微信表情包中,属于轴对称图形的是()A. B. C. D.【答案】A【解析】【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.根据轴对称图形的概念求解.【详解】解:A .是轴对称图形,故本选项符合题意;B .不是轴对称图形,故本选项不合题意;C .不是轴对称图形,故本选项不合题意;D .不是轴对称图形,故本选项不合题意.故选:A .【点睛】本题考查了轴对称图形的概念,熟练掌握轴对称图形的概念是基础,找到对称轴是关键.2.如果三角形两边长分别是6厘米、8厘米,那么第三边长可能是()A.16厘米B.14厘米C.10厘米D.2厘米【答案】C【解析】【分析】本题考查的是三角形的三边关系,即任意两边之和大于第三边,任意两边之差小于第三边.设此三角形第三边的长为x ,根据三角形的三边关系求出x 的取值范围,找出符合条件的x 的值即可.【详解】解:设此三角形第三边的长为x ,则8686x -<<+,即214x <<,四个选项中只有10符合条件.故选:C .3.一元一次不等式x +1>2的解在数轴上表示为()A. B.C. D.【答案】A【解析】【分析】先求出不等式的解集,再在数轴上表示出来即可.【详解】解:x +1>2,得:x >1,在数轴上表示为:故选A .【点睛】本题考查了解一元一次不等式和在数轴上表示不等式的解集,能求出不等式的解集是解此题的关键.4.下列语句中,是真命题的是()A.已知24a =,求a 的值B.面积相等的两个三角形全等C.对顶角相等D.若a b >,则22a b >【答案】C【解析】A 不是命题;证明假命题的方法是举反例,对B ,D 假命题须举反例说明.【详解】A .已知24a =,求a 的值,不是判断语句,不是命题;B .面积相等的两个三角形全等,例如Rt ABC △和Rt DEF △,90BAC EDF ∠=∠=︒,4AB AC ==,8DE =,2DF =,∵1144822ABC S AB AC =⋅=⨯⨯= ,1182822DEF S DE DF =⋅=⨯⨯= ,∴ABC DEF S S = ,∵AB DE ≠,AC DF ≠,∴ABC 与DEF 不全等,∴原命题是假命题;C .对顶角相等,是真命题;D .若a b >,则22a b >,设1a =-,2b =-,∴a b >,∵()2211a =-=,()2224b =-=,∴14<,∴22a b <,∴原命题是假命题.故选:C .【点睛】本题主要考查了命题的判断,解决问题的关键是熟练掌握用举反例的方法说明假命题.此方法注意所举例子的题设符合原命题题设,例子的结论不符合原命题.5.如图,CD AB ⊥于点D ,EF AB ⊥于点F ,CD EF =.要根据“HL ”证明Rt Rt ACD BEF ≌ ,则还需要添加的条件是()A.A B∠=∠ B.AC BE = C.AD BE = D.AD BF=【答案】B【解析】【分析】根据直角三角形全等的判定方法进行判断即可.【详解】解:∵CD AB ⊥于点D ,EF AB ⊥于点F ,∴90ADC BFE ∠=∠=︒,∵CD EF =,∴当添加AC BE =时,根据“HL ”即可判断Rt Rt ACD BEF ≌ .故选:B .【点睛】本题主要考查了直角三角形全等的判定,掌握斜边和一条直角边对应相等的两个直角三角形全等是解答本题的关键.6.已知图中的两个三角形全等,则α∠的度数是()A.72︒B.60︒C.58︒D.50︒【答案】A【解析】【分析】根据全等三角形对应角相等,即可解答.【详解】解:∵图中的两个三角形全等,∴72α∠=︒,故选:A .【点睛】本题主要考查了全等三角形的性质,解题的关键是掌握全等三角形对应角相等.7.若实数m 、n 满足等式02m +=-,且m 、n 恰好是等腰ABC 的两条边的边长,则ABC 的周长是()A.6B.6或8C.8或10D.10【答案】D【解析】【分析】本题主要考查了等腰三角形三边关系,绝对值的非负性以及平方的非负性.据此求得m 、n 的值,再根据m 或n 作为腰,进行分类求解.【详解】解:∵02m =-∴20m -=,40n -=,解得2m =,4n =,当2m =作腰时,三边为2,2,4,此时224+=,不符合三边关系定理;当4n =作腰时,三边为2,4,4,符合三边关系定理,周长为∶24410++=.故选:D8.把一些书分给同学,设每个同学分x 本.若____;若分给11个同学,则书有剩余.可列不等式8(x +6)>11x ,则横线的信息可以是()A.分给8个同学,则剩余6本B.分给6个同学,则剩余8本C.如果分给8个同学,则每人可多分6本D.如果分给6个同学,则每人可多分8本【答案】C【解析】【分析】根据代数式8(x +6)的意义,结合题意,根据不等式表示的意义解答即可.【详解】解:设每个同学分x 本,8(x +6)的意义为如果分给8个同学,则每人可多分6本,由不等式8(x +6)>11x ,可得:把一些书分给几名同学,如果分给8个同学,则每人可多分6本;若每人分11本,则有剩余.故选C .【点睛】本题考查根据实际问题列不等式,解决问题的关键是读懂题意,找到关键描述语,找到所求的量的不等关系.9.如图,过边长为3的等边ABC 的边AB 上一点P ,作PE AC ⊥于E ,Q 为BC 延长线上一点,且CQ PA =,连接PQ 交AC 于点D ,则DE 的长为()A.1B.32C.2D.52【答案】B【解析】【分析】作PF BC 交AC 于点F ,利用等边三角形的性质和三线合一可得APF 是等边三角形、PE 是APF 的中线,则有12AE EF AF ==、PA PF AF CQ ===,根据60AFP ACB ∠=∠=︒可得120PFD QCD ∠=∠=︒,又FDP CDQ ∠=∠可判定PFD QCD ≌△△,则322AC AF AF DF DC --===,代入DE DF EF =+即可求解.【详解】作PF BC 交AC 于点F ,ABC 是等边三角形,60A ABC ACB ∴∠=∠=∠=︒,PF BC ∥,60APF ABC ACB AFP ∴∠=∠=︒=∠=∠,APF ∴△是等边三角形,PA PF AF ∴==,又PE AC ⊥ ,PE ∴是APF 的中线,12AE EF AF ∴==,CQ PA = ,PF PA CQ ∴==,60AFP ACB ∠=∠=︒ ,120PFD QCD ∴∠=∠=︒,在PFD 和QCD 中,FDP CDQ PFD QCD PF QC ∠=∠⎧⎪∠=∠⎨⎪=⎩()PFD QCD AAS ∴ ≌,322AC AF AF DF DC --∴===,33222AF AF DE DF EF -∴=+=+=.故选:B .【点睛】本题考查的知识点是等边三角形的性质与判定、三线合一、全等三角形的性质与判定,解题关键是利用辅助线构造等边三角形,利用等边三角形的性质判定全等后求DE 的长.10.如图,在四边形ABCD 中,AC 平分BAD ∠,CE AB ⊥于点E ,180ADC ABC ∠+∠=︒,有下列结论:①CD CB =;③2AD AB AE +=;③ACD BCE ∠=∠;④2ABC ADC BEC S S S -= .其中正确的是()A.②B.①②③C.①②④D.①②③④【答案】C【解析】【分析】本题主要考查的是全等三角形的判定与性质,等腰三角形三线合一,需要熟练掌握全等三角形的判定与性质,此外找出线段之间的和差关系是解决本题的关键.在EA 上截取EF BE =,连接CF ,根据“AC 平分BAD ∠”和“180ADC ABC ∠+∠=︒”证明出ACD ACF ≌ ,故选项①正确;由①可知,AD AF =,再根据线段间的和差关系可得:2AD AB AE +=,由三角形面积公式及等量代换可得2ABC ADC BEC S S S -= ,故选项②④正确.【详解】在EA 上截取EF BE =,连接CF,∵CE AB ⊥,∴CF CB =,BEC FEC S S = ,∴CFB B ∠=∠,∵180AFC CFB ∠+∠=︒,180ADC ABC ∠+∠=︒,∴D AFC ∠=∠,∵AC 平分BAD ∠,即DAC FAC ∠=∠,在ACD 和ACF △中,D AFC DAC FAC AC AC ∠∠⎧⎪∠∠⎨⎪⎩===,∴()AAS ACD ACF ≌,∴CD CF =,∴CD CB =,故①正确;∵ACD ACF ≌,∴AD AF =,∴2AD AB AF AE BE AF EF AE AE AE AE +=++=++=+=,故②正确;根据已知条件无法证明ACD BCE ∠=∠,故③错误;∵ACD ACF ≌ ,∴ACD ACF S S =△△,∴2ABC ADC ABC ACF CFB BEC S S S S S S -=-== ,即2ABC ADC BEC S S S -= ,故④正确.其中正确的是①②④.故选:C .二、认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清楚题目的条件和需要填写的内容,尽量完整地填写答案.11.“x 与7的和大于2”用不等式表示为________.【答案】72x +>【解析】【分析】本题主要考查了列不等式,x 与7的和即为7x +,则x 与7的和大于2即为72x +>.【详解】解:由题意得,“x 与7的和大于2”用不等式表示为72x +>,故答案为:72x +>.12.命题“等腰三角形的两个底角相等”的逆命题是___________.【答案】“两个角相等的三角形是等腰三角形”【解析】【分析】逆命题就是原命题的题设和结论互换,找到原命题的题设为等腰三角形,结论为两个角相等,互换即可.【详解】解:命题“等腰三角形的两个底角相等”的逆命题是“两个角相等的三角形是等腰三角形”,故答案为:“两个角相等的三角形是等腰三角形”.【点睛】本题考查逆命题的概念,解决本题的关键是熟练掌握逆命题的概念,知道题设和结论互换.13.如图,在ABC 中,65B ∠=︒,30C ∠=︒,分别以点A 和点C 为圆心,大于12画弧,两弧相交于点M ,N ,作直线MN ,连接AD ,则BAD ∠的度数为_________.【答案】55︒##55度【解析】【分析】本题考查的是作图-基本作图,熟知线段垂直平分线的作法是解答此题的关键.先根据三角形内角和定理求出BAC ∠的度数,再由线段垂直平分线的性质得出C CAD ∠=∠,进而可得出结论.【详解】解:∵在ABC 中,65B ∠=︒,30C ∠=︒,∴180653085BAC ∠=︒-︒-︒=︒,∵直线MN 是线段AC 的垂直平分线,∴30C CAD ∠=∠=︒,∴853055BAD BAC CAD ∠=∠-∠=︒-︒=︒.故答案为:55︒.14.如图,已知ABC 是等腰直角三角形,90ACB ∠=︒,4AB =,将ABC 沿直线AB 平移到DEF 的位置,当D 恰好是AB =_________.【答案】【解析】【分析】本题主要考查的是平移的性质,勾股定理的应用,等腰三角形的判定和性质,熟练运用以上知识是解题的关键.先求解4,2,AB DF AD BD BF BF ======再证明,EB DF ⊥再利用勾股定理求解即可.【详解】解:如图,连接,BE 由平移的性质可得:4AB DF ==,90ACB DEF ∠=∠=︒,AC BC DE FE ===,D 为AB 的中点,122AD BD BF AB ∴====,EB DF ⊥,又∵DE FE =,90DEF ∠=︒,∴45EDF EFD ∠=∠=︒,∴9045BED EDF ∠=-∠=︒2,EB BD ∴==AE ∴==故答案为:15.已知关于x 、y 的二元一次方程组2326x y k x y +=⎧⎨+=⎩(k 为常数).(1)若该方程组的解x ,y 满足3x y +<,则k 的取值范围为________.(2)若该方程组的解x ,y 均为正整数,且3k <,则该方程组的解为_________.【答案】①.1k <②.22x y =⎧⎨=⎩【解析】【分析】本题主要考查解一元一次不等式组和二元一次方程组,解题的关键是得出关于k 的不等式.(1)将方程组中的两个方程相加,即可得到用含k 的代数式表示出x y +,然后根据3x y +<,即可求得k 的取值范围(2)先用含k 的式子表示出方程组的解,再根据x ,y 均为正整数,且3k <,即可得到该方程组的解.【详解】解:(1)2326x y k x y +=⎧⎨+=⎩①②①+②,得3336x y k +=+,∴2x y k +=+,∵3x y +<,∴23k +<,∴1k <;故答案为:1k <;(2)由2326x y k x y +=⎧⎨+=⎩解得224x k y k =-⎧⎨=-+⎩,∵,x y 均为正整数,且3k <,∴当2k =时,2,2x y ==;当1k =时,0,3x y ==,不合题意,舍去;当1k <-时,220x k =-<,不符合题意,都舍去,由上可得,该方程组的解为22x y =⎧⎨=⎩.故答案为:22x y =⎧⎨=⎩.16.如图,折叠等腰三角形纸片ABC ,使点C 落在边AB 上的点F 处,折痕为DE .(1)已知AB AC FD BC =⊥,,则AFE ∠=________度;(2)如果46AF BF ==,,则AE =________.【答案】①.90②.295【解析】【分析】本题考查等腰三角形中的折叠问题,涉及勾股定理、三角形内角和等知识,解题的关键是掌握折叠的性质,熟练应用勾股定理列方程解决问题.(1)由AB AC =,折叠等腰三角形纸片ABC ,使点C 落在边AB 上的点F 处,可得B E ∠=∠FD ,即得BDF AFE Ð=Ð,而FD BC ⊥,故90AFE ∠=︒;(2)根据4,6AF BF ==,得10AB AF BF =+==AC ,设AE x =,则10CE x =-,在Rt AFE 中,可列方程2224(10)x x +-=,即可解得AE .【详解】(1)∵AB AC =,∴B C ∠=∠,∵折叠等腰三角形纸片ABC ,使点C 落在边AB 上的点F 处,,EFD C ∴∠=∠,B EFD ∴∠=∠180180,B EFD ∴︒-∠=︒-∠即,BDF BFD AFE BFD ∠+∠=∠+∠,BDF AFE ∴∠=∠,FD BC ⊥Q 90,BDF ∴∠=︒90,AFE ∴∠=︒故答案为:90;︒(2)4,6,AF BF ==Q 10,AB AF BF AC ∴=+==设,AE x =则10,CE x =-∵折叠等腰三角形纸片ABC ,使点C 落在边AB 上的点F 处,10,EF CE x ∴==-在Rt AFE 中,222AF EF AE +=,2224(10),x x ∴+-=解得295x =,29.5AE ∴=故答案为:295.三、全面答一答(本题有8个小题,共66分)解答应写出文字说明、证明过程或推演步骤,如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.解不等式(组):(1)()75223x x -<+;(2)25462113x x x x -<-⎧⎪+⎨≥-⎪⎩.【答案】(1)9x <(2)142x <≤【解析】【分析】本题主要考查了一元一次不等式组,解一元一次不等式,按照步骤解题即可.(1)按照解一元一次不等式的步骤进行计算,即可解答;(2)按照解一元一次不等式组的步骤进行计算,即可解答.【小问1详解】解:()75223x x -<+7546x x-<+7645x x -<+9x <【小问2详解】25462113x x x x -<-⎧⎪+⎨≥-⎪⎩解不等式2546x x -<-,得:12x >,解不等式2113x x +≥-,得4x ≤,∴原不等式组的解集为:142x <≤.18.已知:如图,AD 、BC 相交于点O ,OA OD =,AB CD ∥,求证:AB CD =.【答案】见解析【解析】【分析】本题主要考查全等三角形的判定和性质和平行线的性质,根据题意得A D B C ∠=∠∠=∠,,即可证明AOB DOC △△≌,即有结论成立.【详解】证明:∵AB CD ∥,∴A D B C ∠=∠∠=∠,,又∵OA OD =,∴()AOB DOC AAS ≌△△,∴AB CD =.19.在如图所示的网格中,每个小正方形的边长均为1个单位.(1)请你在图1中画一个以格点为顶点,面积为3个平方单位的等腰三角形.(画一个即可)(2)请你在图2中画一条以格点为端点,长度为的线段.(画一条即可)(3)请你在图3为直角边的直角三角形.(画一个即可)【答案】(1)见解析(2)见解析(3)见解析【解析】【分析】本题考查了勾股定理,勾股定理逆定理,熟练掌握相关定理是解题的关键.(1)以2为底,3为高构造等腰三角形即可;(2)根据勾股定理,构造直角边长度分别为1和3的直角三角形,斜边即为所求;(3)根据勾股定理以及勾股定理逆定理,即可解答.【小问1详解】解:如图所示:1,2332ABC AB AC S ==⨯⨯= ,即ABC 即为所求.【小问2详解】解:如图所示:DE ==,即DE 即为所求;【小问3详解】解:如图:FH FG ===GH ==,∵22220FH FG GH +==,∴FGH 为等腰直角三角形,即FGH 即为所求.20.如图,已知在ABC 中,高线AD ,BE 相交于点H ,点F 是BH 的中点,=45ABC ∠︒.(1)求证:BHD ADC ≌;(2)若5DF =,则求AC 的长度.【答案】(1)见解析;(2)10.【解析】【分析】本题考查了全等三角形的性质和判定,等腰三角形的性质,以及斜边上的中线等于斜边的一半的性质,解题的关键是正确寻找全等三角形解决问题.(1)由,AD BE 分别是BC 和AC 边上的高,证明ACD AHE ∠=∠,再证明ACD BHD ∠=∠,由90,45ADB ABC ∠=︒∠=︒,证明BD AD =,则可证明BHD ADC ≌;(2)由90ADB ∠=︒,点F 是BH 的中点,5DF =,则210BH FD ==,再由全等10AC BH ==.【小问1详解】证明:∵,AD BE 分别是BC 和AC 边上的高,∴AD BC ⊥,BE AC ⊥,∴90ADC AEH ∠=∠=︒,∴90CAD ACD AHE CAD ∠+∠=∠+∠=︒,∴ACD AHE ∠=∠,∵AHE BHD ∠=∠,∴ACD BHD ∠=∠,∵90,45ADB ABC ∠=︒∠=︒,∴45ABD BAD ∠=∠=︒,∴BD AD =,在BDH △与ADC △中,90BDH ADC ∠=∠=︒,BHD ACD ∠=∠,BD AD =,∴()AAS BDH ADC ≌.【小问2详解】∵90ADB ∠=︒,点F 是BH 的中点,5DF =,∴210BH FD ==,∵BDH ADC△≌△∴10AC BH ==.21.如图,在ABC 中,AB AC D E =,,分别是AB BC ,的中点,连结AE ,在AE 上取点F ,使得EF AD =,延长DF 交AC 于点G .(1)当60BAC ∠=︒时,求AGD ∠的度数.(2)设BAC a AGD β∠=∠=,,探究a β,之间的关系.【答案】(1)75︒;(2)1904βα=︒-.【解析】【分析】本题考查了等腰三角形的性质,三角形内角和定理,熟练掌握等腰三角形的性质,以及三角形内角和定理是解题的关键.(1)先利用等腰三角形的三线合一性质可得30,90BAE CAE AEB ∠=∠=︒∠=︒,再利用直角三角形斜边上的中线性质可得ED AD =,从而可得30BAE AED ∠=∠=︒,然后利用等量代换可得EF ED =,从而利用等腰三角形的性质以及三角形内角和定理可得75DFE FDE ∠=∠=︒,再利用对顶角相等可得75AFG DFE ∠=∠=︒,从而利用三角形内角和定理进行计算,即可解答;(2)先利用等腰三角形的三线合一性质可得1,902BAE CAE AEB α∠=∠=∠=︒,再利用直角三角形斜边上的中线性质可得ED AD =,从而可得12BAE AED α∠=∠=,然后利用等量代换可得EF ED =,从而利用等腰三角形的性质以及三角形内角和定理可得1904DFE FDE α=︒-∠=∠,再利用对顶角相等可得1904AFG DFE α∠=∠=︒-,从而利用三角形内角和定理进行计算,即可解答;.【小问1详解】如图,连接ED ,∵,60AB AC BAC =∠=︒,点E 是BC 的中点,∴130,902BAE CAE BAC AEB ∠=∠=∠=︒∠=︒,∵点D 是AB 的中点,1,2ED AD AB ∴==∴30BAE AED ∠=∠=︒,∵EF AD =,∴EF ED =,∴180752AED DFE FDE ︒-∠∠=∠==︒,∴75AFG DFE ∠=∠=︒,∴18075AGD CAE AFG ∠=︒-∠-∠=︒,∴AGD ∠的度数为75︒;【小问2详解】1904βα=︒-,理由:∵,AB AC BAC α=∠=,点E 是BC 的中点,∴11,9022BAE CAE BAC AEB α∠=∠=∠=∠=︒,∵点D 是AB 的中点,∴12ED AD AB ==,∴12BAE AED α∠=∠=,∵EF AD =,∴EF ED =,∴18019024AED DFE FDE α︒-∠∠=∠==︒-,∴1904AFG DFE α∠=∠=︒-,∴1180180(92AGD CAE AFG α∠=︒-∠-∠=︒--104α⎫︒-⎪⎭,∴11118090244βααα⎛⎫=︒--︒-=︒- ⎪⎝⎭,即1904βα=︒-,22.为了测量一条两岸平行的河流的宽度,三个数学研究小组设计了不同的方案,他们在河南岸的点B 处测得河北岸的树A 恰好在B 的正北方向,测量方案如下表:课题测量河流宽度工具测量角度的仪器,标杆,皮尺等小组第一小组第二小组第三小组测观测者从B 点向东走到C 点,此时观测者从B 点向东走到O 点,在观测者从B 点出发,沿着南偏量方案恰好测得45ACB ∠=︒.O 点插上一面标杆,继续向东走相同的路程到达C 点后,一直向南走到点D ,使得树、标杆、人在同一直线上.西80︒的方向走到点C ,此时恰好测得40ACB ∠=︒.测量示意图(1)第一小组认为要知道河宽AB ,只需要知道线段________的长度.(2)第二小组认为只要测得CD 就能得到河宽AB ,你认为第二小组的方案可行吗?如果可行,请给出证明;如果不可行,请说明理由(3)第三小组测得35BC =米,请你帮他们求出河宽AB .【答案】(1)BC(2)可行,证明见解析(3)35米【解析】【分析】(1)根据题意可得ABC 是等腰直角三角形,即可求解;(2)根据角边角,证明AOB DOC △≌△,根据全等三角形的性质即可得出结论;(3)根据方位角可得80DBC ∠=︒,根据三角形外角的性质,可得40A ∠=︒,继而根据等角对等边即可求解.【小问1详解】解:依题意,ABC 是等腰直角三角形,∴AB BC =,故答案为:BC ;【小问2详解】可行,理由如下,证明:在AOB 与DOC △中,ABO DCO BO CO AOB DOC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴AOB DOC △≌△,∴CD AB =,∴只要测得CD 就能得到河宽AB ;【小问3详解】解:∵80DBC ∠=︒,40ACB ∠=︒,∴40A ∠=︒,∴A ACB ∠=∠,∴BC AB =,∵35BC =米,∴35AB =米.【点睛】本题考查了全等三角形的性质与判定,等腰三角形的性质,三角形外角的性质,方位角,综合运用以上知识是解题的关键.23.如图,已知在ABC 中,90B Ð=°,10AC =,6BC =,若动点P 从点B 开始,按B A C B →→→的路径运动,且速度为每秒2t秒.(1)出发2秒后,求CP 的长.(2)出发几秒钟后,BCP 的面积等于18?(3)当t 为何值时,BCP 为等腰三角形?(直接写出答案)【答案】(1)(2)3t =或214(3)3t =或5.4或6或6.5【解析】【分析】(1)根据勾股定理求出AC ,根据题意求出BP ,再根据勾股定理计算,得到答案;(2)①当P 在AB 上时,设t 秒后,BCP 的面积等于18,可得1182BC BP ⨯= ,②当P 在AC 时,如图,由BCP ABC S CP S AC = ,可得:18=110682CP ⨯⨯,可得:7.5CP =,再求解时间t 即可;(3)①当P 在AB 上、6BP BC ==时,②当P 在AC 上、6CP CB ==时,4AP =,③当P 在AC 上,PC PB =时,如图,④当P 在AC 上,6BP BC ==时,如图,过点B 作BE AC ⊥于E ,则CE PE =,根据等腰三角形的性质、建立方程求解即可.【小问1详解】解:在ABC 中,90B Ð=°,10AC =,6BC =,∴8AB ==,∵P 从点B 开始,按B A C B →→→,且速度为2,∴出发2秒后,4BP =,由勾股定理得:PC ===【小问2详解】①当P 在AB 上时,设t 秒后,BCP 的面积等于18,∴1182BC BP ⨯= ,∴162182t ⨯⨯=,解得:3t =,②当P 在AC时,如图,由BCP ABC S CP S AC = ,可得:18=110682CP ⨯⨯,解得:7.5CP =,∴107.5 2.5AP =-=,∴8 2.510.5BA AP +=+=,∴10.52124t ==,综上:出发3秒钟或214秒钟后,BCP 的面积等于18;【小问3详解】①当P 在AB 上、6BP BC ==时,26t =,解得:3t =;②当P 在AC 上、6CP CB ==时,4AP =,则28412t =+=,解得:6t =;③当P 在AC 上,PC PB =时,如图,∴C PBC ∠=∠,∵90C A PBC PBA ∠+∠=︒=∠+∠,∴A PBA ∠=∠,∴PB PA =,∴5PB PA PC ===,∴8513BA AP +=+=,∴213t =,解得: 6.5t =;④当P 在AC 上,6BP BC ==时,如图,过点B 作BE AC ⊥于E ,则CE PE =,∵11681022ABC S BE =⨯⨯=⨯ ,∴解得: 4.8BE =,∴ 3.6CE ==,∴28107.2t =+-,解得: 5.4t =,综上可得:t =3或6或6.5或5.4时,BCP 为等腰三角形.【点睛】本题考查的是勾股定理、等腰三角形的概念和性质,掌握等腰三角形的概念、灵活运用分情况讨论思想是解题的关键.24.如图,在等腰ABC 中,CAB CBA ∠=∠,作射线BC ,AD 是腰BC 的高线,E 是ABC 外射线BC 上一动点,连结AE .(1)当4=AD ,5BC =时,求CD 的长;(2)当BC CE =时;求证:AE AB ⊥;(3)设ACD 的面积为1S ,ACE △的面积为2S ,且121825S S =,在点E 的运动过程中,是否存在ACE △为等腰三角形,若存在,求出相应的BE BC 的值,若不存在,请说明理由.【答案】(1)3;(2)见解析;(3)2或116.【解析】【分析】(1)利用勾股定理求解即可;(2)证明CA CE CB ==,推出CEA CAE ∠=∠,CAB B ∠=∠,利用三角形内角和定理,可得结论;(3)由ACD S :18ACE S = :25,推出CD :18CE =:25,设18CD k =,25CE k =,则7DE k =,接下来分情况讨论求解即可.【小问1详解】解:CAB B ∠=∠ ,5AC BC ∴==,AD BE ⊥ ,90ADC ∴∠=︒,3CD ∴===;【小问2详解】BC CE = ,AC CB =,AC CE CB ∴==,CEA CAE ∴∠=∠,CAB B ∠=∠,180AEC B EAB ∠+∠+∠=︒ ,22180AEB B ∴∠+∠=︒,90AEB B ∴∠+∠=︒,90EAB ∴∠=︒,AE AB ∴⊥;【小问3详解】ACD S :18ACE S = :25,CD ∴:18CE =:25,设18CD k =,25CE k =,则7DE k =,AD EC ⊥,DE CD ≠,AC AE ∴≠,当25CE CA k ==时,25BC CA k ==,50BE BC CE k ∴=+=,2BE BC=.当25AE EC k ==时,24AD k ===,30AC k ∴===,30BC AC k ∴==,55BE BC CE k ∴=+=,5511306BE k BC k ∴==,综上所述,满足条件的BE BC 的值为2或116.【点睛】本题属于三角形综合题,考查了三角形的面积计算、等腰三角形的性质和判定,勾股定理,三角形的内角和定理的应用等知识,灵活运用分情况讨论思想是解题的关键.。

北京市中国人民大学附属中学2023-2024学年八年级下学期期中数学试题(解析版)

北京市中国人民大学附属中学2023-2024学年八年级下学期期中数学试题(解析版)

人大附中2023~2024学年度第二学期初二年级数学期中练习说明:1.本试卷共6页,共两部分,三道大题,24道小题,满分100分,考试时间90分钟.2.试题答案一律填涂或书写在答题卡上,在试卷、草稿纸上作答无效.3.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答.第一部分 选择题一、选择题(共24分,每题3分)1. 以下列长度的三条线段为边能组成直角三角形的是( )A. 6,7,8B. 2,3,4C. 3,4,6D. 6,8,10【答案】D【解析】【分析】根据勾股定理逆定理即两短边的平方和等于最长边的平方逐一判断即可.【详解】解:.,不能构成直角三角形,故本选项错误;.,不能构成直角三角形,故本选项错误;.,不能构成直角三角形,故本选项错误;.,能构成直角三角形,故本选项正确.故选:.【点睛】本题考查的是勾股定理逆定理,熟知如果三角形的三边长,,满足,那么这个三角形就是直角三角形是解答此题的关键.2. 如图,中,于点,若,则的度数为( )A. B. C. D. 【答案】B【解析】【分析】由在□ABCD 中,∠EAD =35°,得出∠D 的度数,根据平行四边形的对角相等,即可求得∠B 的度数,继而求得答案.【详解】解:∵∠EAD =35°,AE ⊥CD ,∴∠D =55°,A 222678+≠ ∴B 222234+≠ ∴C 222346+≠ ∴D 2226810+= ∴D a b c 222+=a b c ABCD Y AE CD ⊥E 35EAD ∠=︒B ∠35︒55︒65︒125︒∴∠B =55°,故选:B .【点睛】此题考查了平行四边形的性质.此题难度不大,注意掌握数形结合思想的应用.3. 下列各式中,运算正确的是( )A. B. C. D. 【答案】A【解析】【分析】本题考查了算术平方根,二次根式的加减运算.熟练掌握算术平方根,二次根式的加减运算是解题的关键.根据算术平方根,二次根式的加减运算求解作答即可.【详解】解:AB .,错误,故不符合要求;C .D,错误,故不符合要求;故选:A .4. 在菱形中,点分别是的中点,若,则菱形的周长是( )A. 12B. 16C. 20D. 24【答案】D【解析】【分析】根据三角形中位线定理可得,再根据菱形的周长公式列式计算即可得到答案.【详解】解:点分别是的中点,是的中位线,,菱形的周长,=3=2=2=-=3=≠2+≠22=≠-ABCD E F ,AC DC ,3EF =ABCD 26AD EF == E F ,AC DC ,EF ∴ACD 2236AD EF ∴==⨯=∴ABCD 44624AD ==⨯=【点睛】本题主要考查了三角形中位线定理,菱形性质,熟练掌握三角形的中位线等于第三边的一半及菱形的四条边都相等,是解题的关键.5. 如图,正方形的边长为2,是的中点,,与交于点,则的长为( )A. B. C. D. 3【答案】A【解析】【分析】由正方形的性质得出∠DAF =∠B =90°,AB =AD =2,由E 是BC 的中点,得出BE =1,由勾股定理得出AEADF ≌△BAE(ASA ),即可得出答案.【详解】∵四边形ABCD是正方形,∴∠DAF =∠B =90°,BC =AB =AD =2,∴∠BAE +∠2=90°,∵AB =2,E 是BC 的中点,∴BE =1,∴AE ,∵AD ∥BC ,∴∠1=∠2,∵DF ⊥AE ,∴∠1+∠ADF =90°,∴∠ADF =∠BAE ,在△ADF 和△BAE 中,,的ABCD E BC DF AE ⊥AB F DF =DAF B AD ABADF BAE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADF ≌△BAE (ASA ),∴DF =AE故选:A .【点睛】此题主要考查了正方形的性质、全等三角形的判定和性质、勾股定理等知识;熟练掌握正方形的性质,证明三角形全等是解题的关键.6. 一个正方形的面积是22.73,估计它的边长大小在( )A. 2与3之间B. 3与4之间C. 4与5之间D. 5与6之间【答案】C 【解析】【分析】设正方形的边长为,根据其面积公式求出的值,估算出的取值范围即可.【详解】解:设正方形的边长为,正方形的面积是22.73,,,,它的边长大小在4与5之间,故选:C .【点睛】本题考查的是估算无理数的大小及算术平方根,估算无理数的大小时要用有理数逼近无理数,求无理数的近似值.7. 要判断一个四边形是否为矩形,下面是4位同学拟定的方案,其中正确的是 ( )A. 测量两组对边是否分别相等B. 测量两条对角线是否互相垂直平分C. 测量其中三个内角是作都为直角D. 测量两条对角线是否相等【答案】C【解析】【分析】根据矩形的判定和平行四边形的判定以及菱形的判定分别进行判断,即可得出结论.【详解】解:矩形的判定定理有①有三个角是直角的四边形是矩形,②对角线互相平分且相等的四边形是矩形,③有一个角是直角的平行四边形是矩形,、根据两组对边分别相等,只能得出四边形是平行四边形,故本选项错误;a a a a a ∴=1622.7325<< <<45<<∴A、根据对角线互相垂直平分得出四边形是菱形,故本选项错误;、根据矩形的判定,可得出此时四边形是矩形,故本选项正确;、根据对角线相等不能得出四边形是矩形,故本选项错误;故选:.【点睛】本题考查了矩形的判定、平行四边形和菱形的判定,主要考查学生的推理能力和辨析能力.8. 如图,点A ,B ,C 在同一条直线上,点B 在点A ,C 之间,点D ,E 在直线AC 同侧,,,,连接DE ,设,,,给出下面三个结论:①;②;.上述结论中,所有正确结论的序号是( )A. ①B. ①③C. ②③D. ①②③【答案】D【解析】【分析】此题考查了勾股定理,全等三角形的判定与性质,完全平方公式的应用,熟记勾股定理是解题的关键.①根据直角三角形的斜边大于任一直角边即可;②在三角形中,两边之和大于第三边,据此可解答;③将用和表示出来,再进行比较.【详解】解:①过点作,交于点;过点作,交于点.∵,,,又,,B C D C AB BC <90A C ∠=∠=︒EAB BCD ≌△△AB a =BC b =DE c =a b c +<a b +>)a b c +>c a b D DF AC ∥AE F B BG FD ⊥FD G DF AC ∥AC AE ⊥DF AE ∴⊥BG FD ⊥ BG AE ∴四边形为矩形,同理可得,四边形也为矩形,,在中,则,故①正确,符合题意;②∵,,在中,,,故②正确,符合题意;③∵,,,又,,.,,,,,.故③正确,符合题意;故选:D第二部分 非选择题二、填空题(共24分,每题3分)∴ABGF BCDG FD FG GD a b ∴=+=+∴Rt EFD DF ED<a b c +<EAB BCD ≌△△AE BC b ∴==Rt EAB△BE ==AB AE BE +>a b ∴+>EAB BCD ≌△△AEB CBD ∠∠∴=BE BD =90AEB ABE ∠+∠=︒ 90CBD ABE ∴∠+=∠︒90EBD ∴∠︒=BE BD = 45BED BDE ∴∠=∠=︒sin 45BE c ∴==⋅︒=c ∴= 22222222()2(2)2()42()a b a ab b a b ab a b +=++=++>+∴)a b +>∴)a b c +>9.有意义,则实数x 的取值范围是______.【答案】【解析】【分析】本题主要考查了二次根式有意义的条件,解题的关键是熟练掌握二次根式被开方数为非负数.有意义,∴,解得:,故答案为:.10. 如图,在中,若,点D 是的中点,,则的长度是_____.【答案】2【解析】【分析】本题考查了直角三角形的性质,利用直角三角形斜边上的中线等于斜边的一半可得的长度.【详解】解:∵在中,,点D 是的中点,,∴.故答案为:2.11. 如图,在数轴上点 A 表示的实数是_____.【解析】【分析】根据勾股定理求得的长度,即可得到的长度,根据点的位置即可得到点表示的数.【详解】解:如图,1x ≥10x -≥1x ≥1x ≥ABC 90ACB ∠=︒AB 4AB =CD CD ABC 90ACB ∠=︒AB 4AB =114222CD AB ==⨯=BD AB B A根据勾股定理得:,,点【点睛】本题考查了实数与数轴,掌握直角三角形两直角边的平方和等于斜边的平方是解题的关键.12. 如图,在四边形中,对角线相交于点O .如果,请你添加一个条件,使得四边形成为平行四边形,这个条件可以是______________________.【答案】(答案不唯一)【解析】【分析】本题考查了平行四边形的判定.熟练掌握平行四边形的判定是解题的关键.根据平行四边形的判定作答即可.【详解】解:由题意知,可添加的条件为,∵,,∴四边形平行四边形,故答案为:.13. 如图,矩形的对角线相交于点O ,,,则矩形对角线的长为___________,边的长为___________.【答案】①. 8 ②. 【解析】【分析】本题主要考查了矩形的性质,等边三角形的性质与判定,勾股定理,先由矩形对角线相等且互相是BD ==∴AB BD ==∴A ABCD AC BD ,AB CD ∥ABCD AD BC ∥AD BC ∥AD BC ∥AB CD ∥ABCD AD BC ∥ABCD AC BD ,60AOB ∠=︒4AB =BD BC平分得到,再证明是等边三角形,得到,则,据此利用勾股定理求出的长即可.【详解】解:∵四边形是矩形,∴,∵,∴是等边三角形,∴,∴,在中,由勾股定理得故答案为:8;14. 小明用四根长度相同的木条制作了能够活动的菱形学具,他先活动学具成为图1所示的菱形,并测得,对角线的长为,接着活动学具成为图2所示的正方形,则图2中对角线的长为________.【答案】【解析】【分析】如图1,2中,连接AC .在图2中,利用勾股定理求出BC ,在图1中,只要证明△ABC 是等边三角形即可解决问题.【详解】解:如图1,2中,连接AC .如图1中,∵AB =BC ,∠B =60°,∴△ABC 是等边三角形,∴AB =BC =AC =30,在图2中,∵四边形ABCD 是正方形,2290AC BD OA BD ABC ====︒,∠AOB 4OA OB AB ===28AC BD OB ===BC ABCD 2290OA OB AC BD OA BD ABC =====︒,,∠60AOB ∠=︒AOB 4OA OB AB ===28AC BD OB ===Rt ABC △BC ===60B ∠︒AC 30cm AC cm∴AB =BC ,∠B =90°,∵AB =BC =30cm ,∴AC =cm ,故答案为:.【点睛】本题考查菱形的性质、正方形的性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.15. 如图,将菱形纸片ABCD 折叠,使点B 落在AD 边的点F 处,折痕为CE ,若∠D =80°,则∠ECF 的度数是________.【答案】40°【解析】【分析】根据题意由折叠的性质可得∠BCE =∠FCE ,BC =CF ,由菱形的性质可得BC ∥AD ,BC =CD ,可求∠BCF =∠CFD =80°,即可求解.【详解】解:∵将菱形纸片ABCD 折叠,使点B 落在AD 边的点F 处,∴∠BCE =∠FCE ,BC =CF ,∵四边形ABCD 是菱形,∴BC ∥AD ,BC =CD ,∴CF =CD ,∴∠CFD =∠D =80°,∵BC ∥AD ,∴∠BCF =∠CFD =80°,∴∠ECF =40°.故答案为:40°.【点睛】本题考查翻折变换以及菱形的性质,熟练掌握并运用折叠的性质是解答本题的关键.16. 图1中的直角三角形有一条直角边长为3,将四个图1中的直角三角形分别拼成如图2,图3所示的正方形,其中阴影部分的面积分别记为,,则的值为___________.【答案】9【解析】【分析】设直角三角形另一直角边为,然后分别用表示出两个阴影部分的面积,最后求解即可.本题主要考查了三角形和正方形面积的求法,解题的关键在于能够熟练地掌握相关的知识点.【详解】解:设直角三角的另一直角边为,则,,,.故答案为:9三、解答题(共52分,第17题8分,第18-19题,每题5分,第20题6分,第21题5分,第22题6分,第23题7分,第24题10分)解答应写出文字说明、演算步骤或证明过程.17. 计算:(1);(2).【答案】(1(2)【解析】【分析】本题考查了利用二次根式的性质进行化简,二次根式的加减运算,二次根式的混合运算.熟练掌握利用二次根式的性质进行化简,二次根式的加减运算,二次根式的混合运算是解题的关键.(1)先利用二次根式的性质进行化简,然后进行加减运算即可;1S 2S 12S S -a a a 2211(3)4392S a a a =+-⨯⨯=+22S a a a =⋅=221299S S a a ∴-=+-=(1-(2)先分别计算二次根式的乘除,然后进行加减运算即可.【小问1详解】解:【小问2详解】解:.18. 如图,四边形为平行四边形,,是直线上两点,且,连接,.求证:.【答案】见详解【解析】【分析】本题考查平行四边形的性质、平行线的性质、全等三角形的判定与性质,根据可得,再根据平行四边形的性质可得,且,即,即可证明,即可得到结论.【详解】证明:∵,∴,∴,∵四边形为平行四边形,∴,且,∴,在和中,2=⨯=(32=+1=-ABCD E F BD BE DF =AF CE AF CE =BE DF =ED FB =AB DC =AB DC =EDC FBA ∠∠()SAS DEC BFA ≌BE DF =BE BD DF BD +=+ED FB =ABCD AB DC =AB DC =EDC FBA ∠∠DEC BFA V,∴,∴.19. 已知,求的值.【答案】11【解析】【分析】本题考查了已知式子的值求代数式的值,平方差公式,先整理,再代入计算,即可作答.【详解】解:依题意,20. 如图,在中,点D 是线段的中点.求作:线段,使得点E 在线段上,且.作法:①连接,②以点A 为圆心,长为半径作弧,再以C 为圆心,长为半径作弧,两弧相交于点M ;③连接,交于点E ;所以线段即为所求的线段.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明:证明:连接∵,,∴四边形是平行四边形.(①)(填推理的依据)∵交于点E ,∴,即点E 是的中点.(② )(填推理的依据)DE BF EDC FBA DC AB =⎧⎪∠=∠⎨⎪=⎩()SAS DEC BFA ≌AF CE=1x =-227x x ++()22727x x x x ++=++()))2272711751711x x x x ++=++=⨯++=-+=ABC AB DE AC 12DE BC =CD CD AD DM AC DE AM CM ,,AM CD =AD CM =ADCM AC DM ,AE CE =AC∵点D 是AB 的中点,∴.(③ )(填推理的依据)【答案】见详解【解析】【分析】本题考查了作图复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.(1)根据几何语言画出对应的几何图形即可;(2)先证明四边形是平行四边形,得出点E 是的中点,再结合然后点D 是的中点,即三角形中位线性质得到.【详解】解:(1)如图,;(2)证明:连接AM ,CM ,∵,,∴四边形是平行四边形.(①两组对边分别相等的四边形是平行四边形)(填推理的依据)∵AC ,DM 交于点E ,∴,即点E 是中点.(②平行四边形的对角线互相平分)(填推理的依据)∵点D 是的中点,∴(③中位线的性质).故答案为:两组对边分别相等的四边形是平行四边形;平行四边形的对角线互相平分;中位线的性质.21. 如图,四边形中,,,.的12DE BC =-ADCM AC AB 12DE BC =AM CD =AD CM =ADCM AE CE =AC AB 12DE BC =ABCD 90BAD ∠=︒AB AD ==4BC =CD =(1)求的度数;(2)求四边形的面积.【答案】(1)(2)5【解析】【分析】(1)由题意得,,由勾股定理得,,由,可得是直角三角形,且,根据,计算求解即可;(2)根据,计算求解即可.【小问1详解】解:∵,∴,由勾股定理得,,∵,∴,∴是直角三角形,且,∴,∴的度数为;【小问2详解】解:由题意知,,∴四边形的面积为5.【点睛】本题考查了三角形内角和定理,等边对等角,勾股定理,勾股定理逆定理等知识.熟练掌握三角形内角和定理,等边对等角,勾股定理,勾股定理逆定理是解题的关键.ABC ∠ABCD 135︒1802BADABD ADB ︒-∠∠=∠=2BD =222BD BC CD +=BCD △90CBD ∠=︒ABC ABD CBD ∠=∠+∠1122ABD BCD ABCD S S S AB AD BC BD =+=⨯+⨯ 四边形90BAD ∠=︒AB AD ==180452BAD ABD ADB ︒-∠∠=∠==︒2BD ==(2222420+==222BD BC CD +=BCD △90CBD ∠=︒135ABC ABD CBD ∠=∠+∠=︒ABC ∠135︒11522ABD BCD ABCD S S S AB AD BC BD =+=⨯+⨯= 四边形ABCD22. 在中,,点D 是边上的一个动点,连接.作,,连接.(1)如图1,当时,求证:;(2)当四边形是菱形时,①在图2中画出四边形,并回答:点D 的位置为 .②若,,则四边形的面积为 .【答案】(1)见解析,(2)①见解析,为的中点;②【解析】【分析】(1)由,,可证四边形是平行四边形,由,可证四边形是矩形,进而结论得证;(2)①由题意作图如图2,由四边形是菱形,可得,则,由,可得,则,,即为的中点;②如图2,记的交点为,则,,,由勾股定理求,则,根据,计算求解即可.【小问1详解】证明:∵,,∴四边形是平行四边形,∵,∴,∴四边形是矩形,∴;【小问2详解】①解:如图2,Rt ABC △90ACB ∠=︒AB CD AE DC ∥CE AB ∥DE CD AB ⊥AC DE =ADCE ADCE 10AB =8DE =ADCE D AB 24AE DC ∥CE AB ∥AECD 90CDA ∠=︒AECD ADCE AD CD =DAC DCA ∠=∠18090B ACB DAC DCB DCA ∠=︒-∠-∠∠=︒-∠,B DCB ∠=∠CD BD =AD BD =D AB AC DE 、O 5AD =142DO DE ==AC DE ⊥3AO =26AC AO ==12ADCE S AC DE =⨯四边形AE DC ∥CE AB ∥AECD CD AB ⊥90CDA ∠=︒AECD AC DE =∵四边形是菱形,∴,∴,∵,∴,∴,∴,∴为的中点;②解:如图2,记的交点为,∵四边形是菱形,为的中点,,,∴,,,由勾股定理得,,∴,∴,故答案为:.【点睛】本题考查了矩形的判定与性质,等边对等角,三角形内角和定理,菱形的性质,勾股定理等知识.熟练掌握矩形的判定与性质,等边对等角,三角形内角和定理,菱形的性质,勾股定理是解题的关键.23. 如图,四边形中,,,对角线平分,过点A 作的垂线,分别交,于点E ,O ,连接.(1)求证:四边形菱形;(2)连接,若,,求的长.是ADCE AD CD =DAC DCA ∠=∠18090B ACB DAC DCB DCA ∠=︒-∠-∠∠=︒-∠,B DCB ∠=∠CD BD =AD BD =D AB AC DE 、O ADCE D AB 10AB =8DE =5AD =142DO DE ==AC DE⊥3==AO 26AC AO ==1242ADCE S AC DE =⨯=四边形24ABCD AD BC ∥90BCD ∠=︒BD ABC ∠BD AE BC BD DE ABED CO 3AB =2CE =CO【答案】(1)见解析(2)【解析】【分析】(1)先证明,再由等腰三角形的性质得,然后证,得,则四边形是平行四边形,然后由菱形的判定即可得出结论;(2)由勾股定理得,根据直角三角形斜边上的中线等于斜边的一半,即可得出【小问1详解】证明:∵,∴,∵平分,∴,∴,∴,∵,∴,∵,在和中,,,,四边形是平行四边形,又,平行四边形为菱形;【小问2详解】解:∵四边形为菱形,∴,,CO =AB AD =OB OD =()ASA OBE ODA ≌OE OA =ABED CD =BD =CO =AD BC ∥ADB DBE ∠=∠BD ABC ∠ABD DBE ∠=∠ABD ADB ∠=∠AB AD =AE BD ⊥BO DO =AD BC ∥OBE △ODA V DBE ADB OB ODBOE DOA ∠=∠⎧⎪=⎨⎪∠=∠⎩()ASA OBE ODA ∴ ≌OE OA ∴=∴ABED AB AD = ∴ABED ABED 3BE DE AB ===BO DO =∵,,,∴在中,根据勾股定理得:,∵,为直角三角形,∴.【点睛】本题考查了菱形的判定与性质、全等三角形的判定与性质、等腰三角形的性质以及勾股定理、直角三角形斜边上的中线等于斜边的一半,二次根式的混合运算等知识,熟练掌握菱形的判定与性质是解题的关键.24. 在中,,,点D 为射线上一动点(不与点B 、C 重合),点B 关于直线的对称点为E ,作射线,过点C 作的平行线,与射线交于点F .连接(1)如图1,当点E 恰好在线段上时,用等式表示与的数量关系,并证明;(2)如图2,当点D 在线段的延长线上时,①依题意补全图形;②用等式表示和的数量关系,并证明.【答案】(1),证明见详解(2)①见详解②,证明见详解【解析】【分析】本题考查了全等三角形的判定与性质、正方形的性质与判定,矩形的性质,轴对称性质,正确掌握相关性质内容是解题的关键.(1)先由轴对称性质,得出再证明,因为,得出得证即可作答.90BCD ∠=︒CD =∴=325BC BE CE =+=+=Rt BCDBD ===BO DO =BCD△12CO BD ==ABC 90ABC ∠=︒AB BC =BC AD DE AB DE AE AF ,.AC DF BD BC ADB ∠AFE ∠2DF BD =45ADB AFE ∠+︒=∠AB AE BD ED ==,,()SSS ADE ADB ≌CF AB ∥45ECD ECF ∠=∠=︒,()ASA CED CEF ≌,(2)①根据题意的描述作图即可;②易得,过点作于点,四边形是正方形,证明,则,再通过角的运算,即可作答.【小问1详解】解:,证明如下:如图:当点E 恰好在线段上时,∵在中,∴,∵点B 关于直线的对称点为E ,∴在和中,∴,∴,∴,,∵,∴在和中,∴ADE ADB ≌A AG CF ⊥G ABCG ()Rt Rt HL AFG AFE ≌FAG FAE EAG ∠==∠2DF BD =AC ABC 90ABC AB BC∠=︒=,45BAC ACB ∠=∠=︒AD AB AE BD ED ==,,ADE V ADB AE AB ED BD AD AD =⎧⎪=⎨⎪=⎩,()SSS ADE ADB ≌90AED ABD ∠=∠=︒AC DF ⊥90CED CEF ∠=∠=︒CF AB ∥45ECF BAC ∠=∠=︒,45ECD ECF ∴∠=∠=︒,CED △CEF △CED CEF CE CEECD ECF ∠=∠⎧⎪=⎨⎪∠=∠⎩()ASA CED CEF ≌,∴ ∴,即有;【小问2详解】解:当点在线段的延长线上时①依题意补全图形如下②用等式表示和的数量关系是,证明如下∵点关于直线的对称点为E ,∴,∴,过点作于点,如上图,则,∵,∴∴四边形是矩形,∵,∴四边形是正方形,∴,在和中,∴,∴,即有,12DE EF DF ==,12BD DE DF ==2DF BD =D BC ADB ∠AFE ∠45ADB AFE ∠+︒=∠B AD ADE ADB ≌90AE AB AEF ABC =∠=∠=︒,12EAD BAD BAE ∠=∠=∠,A AG CF ⊥G 90AGF AGC ∠=∠=︒CF AB ∥90BAG AGF ABC AGC∠=∠=︒=∠=∠ABCG AB BC =ABCG AG AB AE ==Rt AFG △Rt AFE AG AE AF AF=⎧⎨=⎩()Rt Rt HL AFG AFE ≌FAG FAE EAG ∠==∠2EAG FAE ∠=∠∵∴,∴,∴∴在中,,∴∴.人大附中2023~2024学年度第二学期初二年级数学期中练习附加题说明:1.附加题共4页,共两道大题,9道小题,满分40分,考试时间30分钟.2.试题答案一律填涂或书写在答题卡上,在试卷、草稿纸上作答无效.3.在答题卡上,作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答.一、填空题(共15分,第1题4分,第2-4题,每题3分,第5题2分)25. 矩形中,,,点E 是边上一点,连接,将沿折叠,使点B 落在点处,连接.(1)如图1,当时,的长为___________.(2)如图2,当点恰好在矩形的对角线上,则的长为___________.【答案】①. 4 ②. 【解析】【分析】(1)由矩形性质得,由折叠得:,,由平行线的性质得:,,进而得出:,,即;90AFE FAE ∠+∠=︒90FAE AFE ∠=︒-∠21802EAG FAE AFE ∠=∠=︒-∠2702BAE BAG EAG AFE∠=∠+∠=︒-∠135.BAD BAE AFE ∠=∠=︒-∠Rt △ABD 90ADB BAD ∠+∠=︒13590ADB AFE ∠+︒-∠=︒45ADB AFE ∠+︒=∠ABCD 6AB =8BC =BC AE ABE AE B 'CB 'CB AE '∥BE B 'ABCD ACAE 90ABE ∠=︒B E BE '=AEB AEB '∠=∠AEB ECB '∠=∠AEB EB C ''∠=∠ECB EB C ''∠=∠B E EC '=142BE EC BC ===(2)利用勾股定理可得,由折叠得:,,,设,则,,利用勾股定理建立方程求解即可;本题是矩形综合题,考查了矩形的性质,折叠变换的性质,勾股定理等,熟练掌握相关知识,学会添加辅助线是解题关键.【详解】解:(1)四边形是矩形,,由折叠得:,,,,,,,,,,故答案为:4;(2)如图,点恰好在矩形的对角线上,四边形是矩形,,,,,由折叠得:,,,,,设,则,,在中,,10AC ===AB AB '=B E BE '=90AB E ABE '∠=∠=︒BE x =B E x '=8CE x =- ABCD 90ABE ∴∠=︒B E BE '=AEB AEB '∠=∠CB AE ' AEB ECB '∴∠=∠AEB EB C ''∠=∠ECB EB C ''∴∠=∠B E EC '∴=12BE EC BC ∴==8BC = 4BE ∴=B 'ABCD AC ABCD 90ABC ∴∠=︒=6AB 8BC=10AC ∴===AB AB '=B E BE '=90AB E ABE '∠=∠=︒1064B C AC AB ''∴=-=-=18090CB E AB E ''∠=︒-∠=︒BE x =B E x '=8CE x =-Rt CB E '△222B E B C CE ''+=,解得:,,在中,;故答案为:4,26. 如图,四边形中, ,的平分线交于点E ,连接.在以下条件:①平分;②E 为中点;③中选取两个作为题设,另外一个作为结论,组成一个命题.(1)请写出一个真命题:题设为___________,结论为___________.(填序号)(2)可以组成真命题的个数为___________.【答案】①. ②, ②. ③, ③. 6【解析】【分析】(1)根据挑选题设为②,结论为③,结合,的平分线交这个两个条件,先证明,再进行边的等量代换,即可作答.(2)注意分类讨论以及逐个分析,不管取哪个作为条件都可以证明,从而利用全等三角形的性质进行边的等量代换或者角的等量代换,即可作答.【详解】解:(1)题设为②,结论为③;理由如下:延长交的延长线于点,∵∴,()22248x x ∴+=-3x =3BE ∴=Rt ABEAE ===ABCD AD BC ∥BAD ∠CD BE BE ABC ∠CD AD BC AB +=AD BC ∥BAD ∠CD ()AAS AED FEC ≌AED FEC △≌△AE BC F AD BC∥DAE F ∠=∠∵E 为中点,∴,在和中,∴,∴,,∵的平分线交于点E ,∴,∴∴∴(2)由(1)知,题设为②,结论为③是真命题,同理:题设为③,结论为②是真命题,过程如下:延长交的延长线于点,∵的平分线交于点E∴,∵∴∴∵∴∴∵CD DE CE =AED △FEC DAE F DEA CEFDE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS AED FEC ≌CF AD =AD BC CF BC BF +=+=BAD ∠CD DAE BAD ∠=∠BAD F∠=∠AB BF=AD BC AB+=AE BC F BAD ∠CD DAE BAD ∠=∠AD BC∥BAD DAE F∠=∠=∠AB BF=AD BC AB+=AD BC AB BF+==AD CF=AD BC∥∴∵∴∴即E 为中点;当题设为①,结论为②是真命题,过程如下:延长交的延长线于点,∵的平分线交于点E∴,∵∴∴∵平分∴∵∴∴即E 为中点;同理:当题设为②,结论①为是真命题,同理,∴,,∵的平分线交于点E ,∴,∴∴∴DAE F∠=∠DEA CEF∠=∠ ≌DEA CEFDE CE=CD AE BC F BAD ∠CD DAE BAD ∠=∠AD BC∥BAD DAE F∠=∠=∠AB BF=BE ABC∠EB AF AE EF⊥=,DEA CEF DAE F∠=∠∠=∠, ≌DEA CEFDE CE=CD CF AD =AD BC CF BC BF +=+=BAD ∠CD DAE BAD ∠=∠BAD F∠=∠AB BF=AD BC AB+=则当题设为①,结论为③是真命题,同理:当题设为③,结论为②是真命题,综上共有6个命题:分别是题设为②,结论为③;题设为③,结论为②;题设为①,结论为②;题设为②,结论①;题设为①,结论为③,题设为③,结论为②.【点睛】本题考查了全等三角形的判定与性质、真命题,等腰三角形的判定与性质,角平分线的定义,正确掌握相关性质内容是解题的关键.27. 如图,在正方形中,,点E 为对角线上的动点(不与A ,C 重合),以为边向外作正方形,点P 是的中点,连接,则的取值范围为___________.【解析】【分析】先取的中点O,结合正方形的性质,得证,当时,有最小值,在中,,计算即可作答.【详解】解:如图,取的中点O ,连接,∵四边形、是正方形,∴,,∴,则在和中ABCD 4AB =AC DE DEFG CD PG PG PG ≤<AD ()SAS ODE PDG ≌OEAC ⊥OE Rt AOE △2224OE AE AO +==AD OE DEFG ABCD 90ODE EDC ︒∠+∠=90PDG EDC ∠+∠=︒ODE PDG ∠=∠ODE PDG △OD OP ODE PDGDE DG =⎧⎪∠=∠⎨⎪=⎩,∴,当时,有最小值,此时为等腰直角三角形,,∵,∴,在中,,即,解得,∴.当点运动到点的时候,如图:此时即为点H 的位置,此时正方形的边长最大且为则的值最大,此时∴则.【点睛】本题考查了正方形性质,全等三角形的判定与性质,垂线段最短,勾股定理等知识,正确掌握相关性质内容是解题的关键.28.如图,正方形ABCD 边长为2,点E 是射线AC 上一动点(不与A ,C 重合),点F 在正方形ABCD 的外角平分线CM 上,且CF=AE ,连接BE , EF , BF 下列说法:①的值不随点E 的运动而改变的()SAS ODE PDG ∴ ≌OE PG =OE AC ⊥OE AOE △OE AE =4AD AB ==122AO AB ==Rt AOE △2224OE AE AO +==224OE =OE =OE E C G DEFG 4CD AD ==PH PH ===PG PG ≤<PG ≤<②当B ,E , F 三点共线时,∠CBE=22.5°;③当△BEF 是直角三角形时,∠CBE=67.5°;④点E 在线段AC 上运动时,点C 到直线EF 的距离的最大值为1;其中正确的是__________(填序号).【答案】①②④【解析】【分析】连接、,由正方形的对称性可知,,,证明,得出,,证出,证出是等腰直角三角形得出,因此,得出①正确;当,,三点共线时,证出,,,四点共圆,由圆周角定理得出,证出,得出,求出,②正确;当是直角三角形时,证出,得出,,③不正确;当点在线段上运动时,过点作于,则,最大时,与重合,即,证出是的中位线,得出,④正确;即可得出结论.【详解】解:连接、,如图1所示:由正方形的对称性可知,,四边形是正方形,,,点是正方形外角平分线上一点,,,在和中,,,,,ED DF BE DE =CBE CDE ∠=∠()ABE CDF SAS ∆≅∆BE DF =ABE CDF ∠=∠DE DF =EDF∆EF=EF B E F E C F D BFC CDE ∠=∠CDE CBE =∠∠CBF CFB ∠=∠22.5CBF ∠=︒BEF ∆9045135BED ∠=︒+︒=︒1(36013590)67.52CBE ∠=︒-︒-︒=︒67.5CBF ∠<︒E AC C CQ EF ⊥Q CQ CH …CQ CQ CH CD EF ⊥QE ACD ∆112CQ DQ CD ===ED DF BE DE =CBE CDE∠=∠ ABCD AB CD ∴=45BAC ∠=︒ F ABCD CM 45DCF ∴∠=︒BAC DCF ∴∠=∠ABE ∆CDF ∆AB CD BAC DCF AE CF =⎧⎪∠=∠⎨⎪=⎩()ABE CDF SAS ∴∆≅∆BE DF ∴=ABE CDF ∠=∠,,,即,是等腰直角三角形,,的值不随点的运动而改变,①正确;当,,三点共线时,如图2所示:,,,,四点共圆,,,,,,,,②正确;当是直角三角形时,如图3所示:是等腰直角三角形,,DE DF ∴=90ABE CBE ∠+∠=︒ 90CDF CDE ∴∠+∠=︒90EDF ∠=︒EDF∴∆EF ∴=EF ∴=∴EF BEE B EF 90ECF EDF ∠=∠=︒ E ∴C F D BFC CDE ∴∠=∠ABE ADE ∠=∠ 90ABC ADC ∠=∠=︒CDE CBE ∴∠=∠CBF CFB ∴∠=∠45FCG CBF CFB ∠=∠+∠=︒ 22.5CBF ∴∠=︒BEF ∆EDF ∆ 9045135BED ∴∠=︒+︒=︒,,③不正确;当点在线段上运动时,如图4所示:过点作于,则,最大时,与重合,即,当时,,,是的中位线,,④正确;综上所述,①②④正确;故答案为:①②④.【点睛】本题考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、四点共圆、圆周角定理等知识;本题综合性强,有一定难度.29. 如图,在平行四边形中,,,,在线段上取一点E ,使,连接,点M ,N 分别是线段上的动点,连接,则的最小值为___________.1(36013590)67.52CBE ∴∠=︒-︒-︒=︒67.5CBF ∴∠<︒E AC C CQ EF ⊥Q CQ CH …CQ ∴CQ CH CD EF ⊥CD EF ⊥//EF AD CF CE AE ==QE ∴ACD ∆112CQ DQ CD ∴=== ABCD 3AB =4BC =60ABC ∠=︒AD 1DE =BE AE BE ,MN 12MN BN +【解析】【分析】如图,作于,于,于,则四边形是矩形,,由题意可求,,,则,,由,可知当三点共线且时,最小,为,求的长,进而可求最小值,【详解】解:如图,作于,于,于,则四边形是矩形,∴,∵平行四边形中,,,,,∴,,∴,∴,∴,∴,∴当三点共线且时,最小,为,∵,∴,由勾股定理得,,∴,【点睛】本题考查了平行四边形的性质,矩形的判定与性质,含的直角三角形,等边对等角,勾股定理NF BC ^F AH BC ⊥H MG BC ⊥G AHGM MG AH =3AE AB ==120BAC ∠=︒30ABE AEB ∠=∠=︒30EBC ∠=︒12NF BN =12MN BN MN NF +=+M N F 、、MF BC ⊥12MN BN +MG AH 12MN BN +NF BC ^F AH BC ⊥H MG BC ⊥G AHGM MG AH =ABCD 3AB =4BC =1DE =60ABC ∠=︒3AE AB ==120BAC ∠=︒30ABE AEB ∠=∠=︒30EBC ∠=︒12NF BN =12MN BN MN NF +=+M N F 、、MF BC ⊥12MN BN +MG =30BAH ∠︒1322BH AB ==AH ==12MN BN +30︒等知识.明确线段和最小的情况是解题的关键.二、解答题(共25分,第6题5分,第7题4分,第8-9题,每题8分)解答应写出文字说明、演算步骤或证明过程.30. 如图是由小正方形组成的网格,每个小正方形的边长为,其顶点称为格点,四边形的四个顶点都在格点上,请运用课本所学知识,仅用无刻度的直尺,在给定网格中按要求作图.(1)①线段的长为 个单位长度;②在图1中求作边的中点E ;(2)在图中求作边上一点,使平分.注:保留作图痕迹,同时标出必要的点;当你感觉方法比较复杂时,可用文字简要说明作法.【答案】(1)①;②作图见解析;(2)见解析.【解析】【分析】(1)①利用勾股定理即可求解;②取格点、,连接交于点,则点为所求;(2)取格点、,连接、相交于点,作射线交于点,则点为所求.【小问1详解】解:①,故答案为:;②如图,点为所求作图形,【小问2详解】解:如图,点为所求,87⨯1ABCD CD CD 2AB F CF BCD ∠5M N MN AC E E G H AQ DH Q CF AB FF 5CD ==5E F。

八年级数学上册期中精选试卷(Word版 含解析)

八年级数学上册期中精选试卷(Word版 含解析)

八年级数学上册期中精选试卷(Word版含解析)一、八年级数学全等三角形解答题压轴题(难)1.(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m, CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m 上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.【答案】(1)见解析(2)成立(3)△DEF为等边三角形【解析】解:(1)证明:∵BD⊥直线m,CE⊥直线m,∴∠BDA=∠CEA=900.∵∠BAC=900,∴∠BAD+∠CAE=900.∵∠BAD+∠ABD=900,∴∠CAE=∠ABD.又AB="AC" ,∴△ADB≌△CEA(AAS).∴AE=BD,AD=CE.∴DE="AE+AD=" BD+CE.(2)成立.证明如下:∵∠BDA =∠BAC=α,∴∠DBA+∠BAD=∠BAD +∠CAE=1800—α.∴∠DBA=∠CAE.∵∠BDA=∠AEC=α,AB=AC,∴△ADB≌△CEA(AAS).∴AE=BD,AD=CE.∴DE=AE+AD=BD+CE.(3)△DEF为等边三角形.理由如下:由(2)知,△ADB≌△CEA,BD=AE,∠DBA =∠CAE,∵△ABF和△ACF均为等边三角形,∴∠ABF=∠CAF=600.∴∠DBA+∠ABF=∠CAE+∠CAF.∴∠DBF=∠FAE.∵BF=AF,∴△DBF≌△EAF(AAS).∴DF=EF,∠BFD=∠AFE.∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=600.∴△DEF为等边三角形.(1)因为DE=DA+AE,故由AAS证△ADB≌△CEA,得出DA=EC,AE=BD,从而证得DE=BD+CE.(2)成立,仍然通过证明△ADB≌△CEA,得出BD=AE,AD=CE,所以DE=DA+AE=EC+BD.(3)由△ADB≌△CEA得BD=AE,∠DBA =∠CAE,由△ABF和△ACF均等边三角形,得∠ABF=∠CAF=600,FB=FA,所以∠DBA+∠ABF=∠CAE+∠CAF,即∠DBF=∠FAE,所以△DBF≌△EAF,所以FD=FE,∠BFD=∠AFE,再根据∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=600得到△DEF是等边三角形.2.已知4AB cm=,3AC BD cm==.点P在AB上以1/cm s的速度由点A向点B运动,同时点Q在BD上由点B向点D运动,它们运动的时间为()t s.(1)如图①,AC AB⊥,BD AB⊥,若点Q的运动速度与点P的运动速度相等,当1t=时,ACP△与BPQ是否全等,请说明理由,并判断此时线段PC和线段PQ的位置关系;(2)如图②,将图①中的“AC AB⊥,BD AB⊥”为改“60CAB DBA∠=∠=︒”,其他条件不变.设点Q的运动速度为/xcm s,是否存在实数x,使得ACP△与BPQ 全等?若存在,求出相应的x、t的值;若不存在,请说明理由.【答案】(1)全等,PC与PQ垂直;(2)存在,11tx=⎧⎨=⎩或232tx=⎧⎪⎨=⎪⎩【解析】【分析】(1)利用SAS证得△ACP≌△BPQ,得出∠ACP=∠BPQ,进一步得出∠APC+∠BPQ=∠APC+∠ACP=90°得出结论即可;(2)由△ACP≌△BPQ,分两种情况:①AC=BP,AP=BQ,②AC=BQ,AP=BP,建立方程组求得答案即可.【详解】解:(1)当t=1时,AP=BQ=1,BP=AC=3,又∠A=∠B=90°,在△ACP和△BPQ中,AP BQA BAC BP=⎧⎪∠=∠⎨⎪=⎩,∴△ACP≌△BPQ(SAS).∴∠ACP=∠BPQ,∴∠APC+∠BPQ=∠APC+∠ACP=90°.∴∠CPQ=90°,即线段PC与线段PQ垂直.(2)①若△ACP≌△BPQ,则AC=BP,AP=BQ,34tt xt=-⎧⎨=⎩,解得11tx=⎧⎨=⎩,②若△ACP≌△BQP,则AC=BQ,AP=BP,34xtt t=⎧⎨=-⎩,解得232tx=⎧⎪⎨=⎪⎩,综上所述,存在11tx=⎧⎨=⎩或232tx=⎧⎪⎨=⎪⎩使得△ACP与△BPQ全等.【点睛】本题考查全等三角形的判定与性质,在解题时注意分类讨论思想的运用.3.综合实践如图①,90,,,ACB AC BC AD CE BE CE∠=︒=⊥⊥,垂足分别为点D E、,2.5, 1.7AD cm DE cm==.(1)求BE的长;(2)将CE所在直线旋转到ABC∆的外部,如图②,猜想AD DE BE、、之间的数量关系,直接写出结论,不需证明;(3)如图③,将图①中的条件改为:在ABC∆中,,AC BC D C E=、、三点在同一直线上,并且BEC ADC BCAα∠=∠=∠=,其中α为任意钝角.猜想AD DE BE、、之间的数量关系,并证明你的结论.【答案】(1)0.8cm;(2)DE=AD+BE;(3)DE=AD+BE ,证明见解析.【解析】【分析】(1)本小题只要先证明ACD CBE ≅,得到AD CE =,CD BE =,再根据2.5, 1.7AD cm DE cm ==,CD CE DE =-,易求出BE 的值;(2)先证明ACD CBE ≅,得到AD CE =,CD BE =,由图②ED=EC+CD ,等量代换易得到AD DE BE 、、之间的关系;(3)本题先证明EBC DCA ∠=∠,然后运用“AAS”定理判定BEC CDA ≅,从而得到,BE CD EC AD ==,再结合图③中线段ED 的特点易找到AD DE BE 、、之间的数量关系.【详解】解:(1)∵,AD CD BE CE ⊥⊥∴90ADC E ︒∠=∠=∴90ACD DAC ︒∠+∠=∵90ACB ︒∠=∴90ACD BCE ︒∠+∠=∴ACD BCE ∠=∠在ACD 与CBE △中,90ADC E ACD BCEAC BC ︒⎧∠=∠=⎪∠=∠⎨⎪=⎩∴ACD CBE ≅∴,AD CE CD BE ==又∵ 2.5, 1.7AD cm DE cm ==, 2.5 1.70.8()CD CE DE AD DE cm =-=-=-= ∴0.8BE cm =(2)∵,AD CD BE CE ⊥⊥∴90ADC E ︒∠=∠=∴90ACD DAC ︒∠+∠=∴90ACB ︒∠=∴90ACD BCE ︒∠+∠=∴ACD BCE ∠=∠在ACD 与CBE △中,90ADC E ACD BCE AC BC ︒⎧∠=∠=⎪∠=∠⎨⎪=⎩∴ACD CBE ≅∴,AD CE CD BE ==又∵ED EC CD=+∴ED AD BE=+(3)∵BEC ADC BCAα∠=∠=∠=∴180BCE ACD a︒∠+∠=-180BCE BCE a︒∠+∠=-∴ACD BCE∠=∠在ACD与CBE△中,ADC E aACD BCEAC BC∠=∠=⎧⎪∠=∠⎨⎪=⎩∴ACD CBE≅∴,AD CE CD BE==又∵ED EC CD=+∴ED AD BE=+【点睛】本题考查的知识点是全等三角形的判定,确定一种判定定理,根据已知条件找到判定全等所需要的边相等或角相等的条件是解决这类题的关键.4.如图(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm,点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动,他们的运动时间为t(s).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,请说明理由(2)判断此时线段PC和线段PQ的关系,并说明理由。

2023-2024学年全国初中八年级下数学人教版期中考试试卷(含答案解析)

2023-2024学年全国初中八年级下数学人教版期中考试试卷(含答案解析)

20232024学年全国初中八年级下数学人教版期中考试试卷(含答案解析)(考试时间:90分钟,满分:100分)一、选择题(每题2分,共20分)1. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=62. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=63. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=64. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8D. 4x2y=65. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=66. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=67. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=68. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=69. 下列哪个选项是正确的?A. 3x+5y=10C. 5x+3y=15D. 4x2y=610. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=6二、填空题(每题2分,共20分)1. 2x+3y=6,求x的值。

2. 3x+5y=10,求y的值。

3. 4x2y=6,求x的值。

4. 5x+3y=15,求y的值。

5. 2x4y=8,求x的值。

6. 3x+5y=10,求y的值。

7. 4x2y=6,求x的值。

8. 5x+3y=15,求y的值。

9. 2x4y=8,求x的值。

10. 3x+5y=10,求y的值。

三、解答题(每题5分,共25分)1. 解方程组:2x+3y=63x+5y=102. 解方程组:5x+3y=153. 解方程组:2x4y=83x+5y=104. 解方程组:3x+5y=104x2y=65. 解方程组:5x+3y=152x4y=8四、计算题(每题10分,共30分)1. 计算:2x+3y=63x+5y=102. 计算:4x2y=65x+3y=153. 计算:2x4y=83x+5y=10五、应用题(每题10分,共20分)1. 应用题:2x+3y=62. 应用题: 4x2y=6 5x+3y=15答案解析:一、选择题1. A2. B3. C4. D5. A6. B7. C8. D9. A10. B二、填空题1. x=12. y=23. x=24. y=35. x=26. y=27. x=28. y=39. x=210. y=2三、解答题1. x=1, y=22. x=2, y=33. x=2, y=24. x=2, y=35. x=2, y=2四、计算题1. x=1, y=22. x=2, y=33. x=2, y=2五、应用题1. x=1, y=22. x=2, y=38. 简答题(每题5分,共25分)1. 简述一元二次方程的一般形式。

八年级上学期数学期中试卷(解析版)

八年级上学期数学期中试卷(解析版)

河北省邯郸市邯山区扬帆初中学校2022--2023学年八年级上学期数学期中试卷一、选择题(本题有14个小题,每题4分,共56分,每小题给出的四个选项中,只有一项是符合题目要求的)1.下列交通指示标志中,不是轴对称图形的是()A. B. C. D.【答案】D 【解析】【分析】根据轴对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,逐项分析判断即可求解.【详解】解:A .是轴对称图形,故该选项不符合题意;B .是轴对称图形,故该选项不符合题意;C .是轴对称图形,故该选项不符合题意;D .不是轴对称图形,故该选项符合题意;故选D【点睛】本题考查了轴对称图形的识别,掌握轴对称图形的定义是解题的关键.2.下列运算中,结果正确的是()A.426a a aB.246()a a C.246a a a D.44(2)8a a 【答案】C 【解析】【分析】直接利用同底数幂的乘法法则,幂的乘方法则,积的乘方法则分别计算进行判断即可.【详解】解:A.42a a 不能合并,故此项错误,不合题意;B .248()a a ,故此项错误,不合题意;C.246a a a 故此项正确,符合题意;D.44(2)16a a 故此项错误,不合题意;故选:C .【点睛】本题主要考查了同底数幂的乘法运算,幂的乘方运算,积的乘方运算,解题的关键是掌握相关的运算法则.3.如图,在A B C 中,90C ,30B ,6A B .则A C长度是()A.3B.3.5C.2.5D.2【答案】A 【解析】【分析】根据含30度角的直角三角形的性质即可求解.【详解】解:∵在A B C 中,90C ,30B ,6A B .∴132A C A B.故选:A .【点睛】本题考查了含30度角的直角三角形的性质,掌握直角三角形中30度角所对的直角边等于斜边的一半是解题的关键.4.如图,直线MN 是四边形AMBN 的对称轴,点P 是直线MN 上的点,下列判断错误的是()A.AM =BMB.AP =BNC.∠MAP =∠MBPD.∠ANM =∠BNM【答案】B 【解析】【分析】根据直线MN 是四边形AMBN 的对称轴,得到点A 与点B 对应,根据轴对称的性质即可得到结论.【详解】解:∵直线MN 是四边形AMBN 的对称轴,∴点A 与点B 对应,∴AM =BM ,AN =BN ,∠ANM =∠BNM ,∵点P 是直线MN 上的点,∴∠MAP =∠MBP ,∴A ,C ,D 正确,而B 错误,故选:B .【点睛】本题考查了轴对称的性质,熟练掌握轴对称的性质是解题的关键.5已知102,103x y ,则3210x y 等于()A.36B.72C.108D.24【答案】B 【解析】【分析】利用同底数幂的乘法法则及幂的乘方的法则对所求的式子进行整理,再代入相应的值进行运算.【详解】解:323210(10)(10)x yx y ,当102,103xy时,原式3223 8972 ;故选:B .【点睛】本题主要考查了幂的乘方,同底数幂的乘法,解题的关键是熟练掌握相关的运算法则.6.已知等腰三角形的周长为16,一边长为4,则此等腰三角形的底边长是()A.4B.6C.4或10D.4或6【答案】A 【解析】【分析】分4为腰和底两种情况进行分类讨论即可.【详解】解:当4为等腰三角形的腰时,则底边为16448 ,此时三边分别为4、4、8,不满足三角形的三边关系,则不能构成三角形;当4为等腰三角形的底边时,则腰为(164)26 ,此时三边分别为6、6、4,满足三角形的三边关系,能构成三角形;故选:A .【点睛】本题主要考查了等腰三角形的性质和三角形的三边关系,解题的关键是在题目没有明确已知边长的情况时,需进行分类讨论.7.下列各式,4n x 可以写成()A.4n x xB.3n n x xC.22n x D.4nx x 【答案】C 【解析】【分析】根据同底数幂的乘法以及幂的乘方解决此题.详解】解:A .44n n x x x ,那么A 不符合题意.B .34n n n x x x ,那么B 不符合题意.C .根据幂的乘方,224()n n x x ,那么C 符合题意.D .根据同底数幂的乘法,44n n x x x ,那么D 不符合题意.故选:C .【点睛】本题主要考查同底数幂的乘法、幂的乘方,熟练掌握同底数幂的乘法、幂的乘方解决此题.8.如图,在锐角A B C 中,边AB ,AC 的垂直平分线交于点P .连结BP ,CP .若100B P C ,则A ()A.40B.50C.60D.80【答案】B 【解析】【分析】连结AP 并延长到D ,先根据线段垂直平分线的性质可得P A P B P C ,从而利用等腰三角形的性质可得,A B P B A P C A P A C P,然后利用三角形的外角性质可得2,2B P D B A P C P D C A P ,最后根据已知可得100B P D C P D ,从而可得22100B A PC A P ,进行计算即可解答.【详解】解:连结A P 并延长到D ,∵边,A B A C 的垂直平分线交于点P ,∴P A P B P C ,∴,A B P B A P C A P A C P ,∴2,2B P D B A P A B P B A P C P D C A P A C P C A P ,∵100B P C ,∴100B P D C P D ,∴22100B A P C A P ,∴50B A P C A P ,∴50B A C ,故选:B .【点睛】本题考查了线段垂直平分线的性质,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.9.若计算22(321)(3)4x a x x x 的结果中不含有2x 项,则a 的值为()A.23B.0C.2D.32【答案】A 【解析】【分析】利用单项式乘多项式的法则进行求解,再结合不含2x 项,则其2x 项的系数为0,从而求解.【详解】解:22(321)(3)4x a x x x3229634x a x x x 329(64)3x a x x ,结果中不含有2x 项,640a ,解得23a ,故选:A .【点睛】本题主要考查了单项式乘多项式,合并同类项,解题的关机是熟练掌握相应的运算法则.10.尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确配对是()A.①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣ⅢB.①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣ⅠC.①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣ⅠD.①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ【答案】D 【解析】【分析】分别利用过直线外一点作这条直线的垂线作法以及线段垂直平分线的作法和过直线上一点作这条直线的垂线、角平分线的作法分别得出符合题意的答案.【详解】解:Ⅰ、过直线外一点作这条直线的垂线,观察可知图②符合;Ⅱ、作线段的垂直平分线,观察可知图③符合;Ⅲ、过直线上一点作这条直线的垂线,观察可知图④符合;Ⅳ、作角的平分线,观察可知图①符合,所以正确的配对是:①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ,故选:D .【点睛】本题主要考查了尺规作图,正确掌握基本作图方法是解题关键.11.若k 为正整数,则34()k 的意义为()A.4个3k 相加B.3个4k 相加C.4个3k 相乘D.7个k 相乘【答案】C【解析】【分析】根据幂的乘方的含义即可解答.【详解】解:根据幂的乘方的含义,可得34k表示4个3k相乘,()故选:C.【点睛】本题考查了幂的乘方,熟练掌握幂的乘方的含义是解题的关键.12.已知:如图,点P在线段AB外,且PA=PB,求证:点P在线段AB的垂直平分线上,在证明该结论时,需添加辅助线,则作法不正确的是()A.作∠APB的平分线PC交AB于点CB.过点P作PC⊥AB于点C且AC=BCC.取AB 中点C,连接PCD.过点P作PC⊥AB,垂足为C【答案】B【解析】【分析】利用判断三角形全等的方法判断即可得出结论.【详解】A.利用SAS判断出△PCA≌△PCB,∴CA=CB,∠PCA=∠PCB=90°,∴点P在线段AB的垂直平分线上,符合题意;B.过线段外一点作已知线段垂线,不能保证也平分此条线段,不符合题意;C.利用SSS判断出△PCA≌△PCB,∴CA=CB,∠PCA=∠PCB=90°,∴点P在线段AB的垂直平分线上,符合题意;D.利用HL判断出△PCA≌△PCB,∴CA=CB,∴点P在线段AB的垂直平分线上,符合题意,故选B.【点睛】本题主要考查了全等三角形的判定,线段垂直平分线的判定,熟练掌握全等三角形的判断方法是解本题的关键.,宽为a b 的长方形,需要B类卡13.用如图所示的正方形和长方形卡片若干张,拼成一个长为32a b片()张.A.3B.4C.5D.6【答案】C 【解析】【分析】根据长方形的面积公式22(32)()352S a b a b a ab b 即可得出结果.【详解】解:∵长方形长为32a b ,宽为a b ∴长方形的面积:22(32)()352S a b a b a ab b∴需要B 内卡片5张.故选C .【点睛】本题考查多项式的乘法,灵活运用多项式乘法法则和数形结合思想是解题的关键.14.如图,等边A B C 的边长为8,A D 是B C 边上的中线,F 是A D 边上的动点,E 是A C 边上一点,若4A E ,则当E F C F 取得最小值时,E C F 的度数为()A.22.5B.30C.45D.15【答案】B 【解析】【分析】根据对称性和等边三角形的性质,作B E A C 于点E ,交A D 于点F ,此时B F C F ,E F C F最小,进而求解.【详解】解:如图:过点B 作B EA C于点E ,交A D 于点F ,连接C F ,A B C 是等边三角形,边长为8,若4A E ,4A E E C ,A F F C ,F A C F C A ,A D 是等边ABC 的B C 边上的中线,30B A D C A D ,30E C F .故选:B .【点睛】本题考查了轴对称 最短路线问题、等边三角形的性质,解决本题的关键是准确找到点E 和F 的位置.二、填空题(本大题共3个小题,每空3分,共12分)15.平面直角坐标系中,与点 4,8 关于y 轴对称的点的坐标是_____.【答案】 4,8 【解析】【分析】根据“关于y 轴对称的点,纵坐标相同,横坐标互为相反数”解答即可.【详解】解:点 4,8 关于y 轴对称的点的坐标是 4,8 .故答案为:4,8 【点睛】解决本题的关键是掌握好对称点的坐标规律:(1)关于x 轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y 轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.16.若350x y ,求28x y _____.【答案】32【解析】【分析】由350xy 得到35x y ,再代入 3332822222yx y x x y x y 中即可求解答案.【详解】解:∵350x y ,∴35x y ,∴ 33352822222232yxyxx yx y ,故答案为:32【点睛】此题主要考查了幂的乘方的逆运算、同底数幂的乘法等知识,熟练掌握运算法则是解题的关键.17.如果一条线段将一个三角形分割成2个小等腰三角形,我们把这条线段叫做这个三角形的“好线”;如果两条线段将一个三角形分割成3个小等腰三角形,我们把这两条线段叫做这个三角形的“好好线”.(1)如图,在A B C 中,A B A C ,点D 在A C 边上,且A D B D B C ,则A _____度;(2)在A B C 中,33B A D ,和D E 是A B C 的“好好线”,点D 在B C 边上,点E 在A C 边上,且A D B D ,D E C E ,则C 的度数为____________.【答案】①.36②.22 或38 .【解析】【分析】(1)利用等边对等角得到三对角相等,设A A B D x ,表示出B D C 与C ,列出关于x 的方程,求出方程的解得到x 的值,即可确定出A 的度数;(2)设C x ,①当A D A E 时,利用三角形外角的性质得到23333x x ,解得22x ,②当A D D E 时,利用三角形内角和定理得到23803313x x ,解得38x .【详解】解:(1)A B A C ,A B C C ,B D BC A D,A AB D ,C BD C ,设A A B D x ,则2B D C x ,1802x C,即18022xx ,解得36x ,则36A ,故答案为:36;(2)设C x ,①当A D A E 时,如图:23333x x ,22x ;②当A D D E 时,如图:23333180x x ,38x ,所以C 的度数为22 或38 ;故答案为:22 或38 .【点睛】此题考查了等腰三角形的性质,三角形外角的性质以及三角形内角和定理,熟练掌握等腰三角形的性质是解题的关键.三、解答题(本大题共3个小题,共32分.解答应写出文字说明、证明过程或演算步骤)18.计算:(1)已知2528322n n ,求n 的值;(2)已知n 是正整数,且32n x ,求3223(3)(2)n n x x 的值.【答案】(1)3;(2)4.【解析】【分析】(1)由3535812528322(2)(2)22222n n n n n n n ,得到一元一次方程8125n ,即可求解;(2)把3223(3)(2)n n x x 变形为2323(3)8()n n x x ,再把32n x 代入计算即可.【小问1详解】解:35358125)(2)2832222222(2n n n n n n n ,8125n ,解得3n .【小问2详解】解:32233223(3)(2)()8)3(n n n n x x x x ,当32n x 时,原式22(32)82 36324 .【点睛】本题考查了幂的乘方与积的乘方,掌握幂的乘方与积的乘方的法则是解题的关键.19.如图,某市有一块长为(3)a b 米,宽为(2)a b 米的长方形地块,规划部门计划将阴影部分进行绿化,中间将修建一座雕像.(1)则绿化的面积是多少平方米?(用a ,b 的代数式表示)(2)若a ,b 满足2(1)(3)x x x ax b 时,求该绿化面积.【答案】(1) 253a ab 平方米(2)116平方米【解析】【分析】(1)用长方形的面积减去正方形的面积即可;(2)把等式的左边化简,求出a 和b 的值,代入(1)中结果计算.【小问1详解】解:长方形面积:(3)(2)a b a b ,正方形面积:()()a b a b ,∴绿化面积:(3)(2)()()a b a b a b a b22226322a ab ab b a ab b 22226322a ab ab b a ab b 253a ab答:绿化的面积是 253a ab 平方米.【小问2详解】解:∵2(1)(3)x x x ax b∴2243x x x a x b ,∴4,3a b 时,∴225354343a ab 8036116答:绿化的面积是116平方米,【点睛】本题考查了整式的混合运算,正确列出算式是解答(1)的关键,根据多项式乘以多项式求出a 和b 的值是解(2)的关键.20.如图,在A B C 中,B C ,过B C 的中点D 作D E A B ,D F A C ,垂足分别为点E 、F .(1)求证:D E D F ;(2)若55B D E ,求B A C 的度数.(3)若30B ,2A E ,则A B .【答案】(1)见解析(2)110(3)8【解析】【分析】(1)根据D E A B ,D F A C ,可得90B E D C F D ,由于B C ,D 是B C 的中点,根据全等三角形的判定和性质即可得出结论.(2)根据三角形的内角和定理求出35B ,根据三角形的内角和定理即可求解.(3)由等腰三角形的性质得到90A D B ,30B ,得到2A B A D ,再求得30A D E A D B B D E ,得到30A D E A D B B D E ,即可得到24A D A E ,即可得到答案.【小问1详解】∵D E A B ,D F A C ,∴90B E D C F D ,∵D 是B C 的中点,∴B D C D ,在B E D 与C F D ♀中,B E DC F DB C B D C D,∴B E D C F D A A S ≌(),∴D E D F ;【小问2详解】∵90B E D ,55,B D E ∴18035C B ED B DE ,∴=35B C ,∴1803535110B A C .【小问3详解】连接A D,∵B C ,∴A B C 是等腰三角形,∵D 是B C 的中点,∴A D B C ,∴90A D B ,∵30B ,∴2A B A D ,∵D E A B ,∴90B D E A E D ,∵90B E D ,55,B D E ∴18060B D E B E D B ,∴30A D E A D B B D E ,∴24A D A E ,∴28A B A D ,故答案为:8【点睛】此题主要考查了等腰三角形的判定和性质、全等三角形的判定与性质、直角三角形的性质等知识点的理解和掌握.。

上海市闵行区2022-2023学年八年级上学期期中考试数学试卷(解析版)

上海市闵行区2022-2023学年八年级上学期期中考试数学试卷(解析版)

2022学年第一学期期中考试八年级数学试卷(考试时间:90分钟,满分100分)一、选择题:(本大题共6题,每题3分,满分18分)1.下列各组二次根式中,属于同类二次根式的是()A.B. C.与3 D.【答案】B【解析】【分析】将各项先化为最简二次根式,再根据同类二次根式的定义逐项判断即可.【详解】A.,不是同类二次根式,故该选项不符合题意;B.=,是同类二次根式,故该选项符合题意;C.33=-和3,不是同类二次根式,故该选项不符合题意;D.==故选:B .【点睛】本题考查了同类二次根式的定义:化成最简二次根式后,被开方数相同,这样的二次根式叫做同类二次根式,掌握同类二次根式的定义是解题的关键.2.的一个有理化因式是()A. B. C. D.【答案】A【解析】【分析】根据有理化的定义以及二次根式的乘除法则解决此题.【详解】解:A m n =+,的一个有理化因式,故A 符合题意;B =+不是的一个有理化因式,故B 不符合题意;C =-的一个有理化因式,故C 不符合题意;D =,的一个有理化因式,故D 不符合题意;故选:A .【点睛】本题主要考查分母有理化,熟练掌握有理化的定义以及二次根式的乘除法则是解决本题的关键.3.下列选项中的数是一元二次方程28x x x +=-的根的是()A.2- B.5 C.4- D.4【答案】C【解析】【分析】利用因式分解法解出一元二次方程的解,再作出判断即可.【详解】解:28x x x +=-,移项得2280x x +-=,因式分解得(4)(2)0x x +-=,所以40x +=或20x -=,解得4x =-或2x =.故选:C .【点睛】本题考查了一元二次方程的解,掌握一元二次方程的解法并灵活运用是解题的关键.4.下列计算正确的是()A.+=B.=C.4=D.2=-【答案】C【解析】【分析】分别根据二次根式的加法,乘法,除法法则以及利用平方差公式进行分母有理化逐一判断即可.【详解】解:A 、与B 、6742=⨯=,故本选项不合题意;C 4==,故本选项符合题意;D 2=,故本选项不合题意.故选:C .【点睛】本题考查了二次根式的混合运算以及分母有理化,掌握相关运算法则是解答本题的关键.5.下列命题中,假命题的是()A.在同一平面内,垂直于同一条直线的两条直线平行B.面积相等的两个三角形全等C.等腰三角形的顶角平分线垂直于底边D.三角形的一个外角大于任何一个与它不相邻的内角【答案】B【解析】【分析】分别利用平行线的判定、三角形全等的判定方法、等腰三角形的性质以及三角形外角的性质逐一判断即可.【详解】A .在同一平面内,垂直于同一条直线的两条直线平行,是真命题,故选项A 不合题意;B .面积相等的两个三角形不一定全等,故选项B 是假命题,符合题意;C .等腰三角形的顶角平分线垂直于底边,是真命题,故选项C 不合题意;D .三角形的一个外角大于任何一个与它不相邻的内角,是真命题,故选项D 不合题意,故选:B【点睛】本题考查了命题的真假,熟练掌握已经学过的概念、性质、定理是解题的关键.6.已知a 、b 、c 是三角形三边的长,则关于x 的一元二次方程()220ax b c x a +-+=的实数根的情况是()A.有两个相等的实数根B.有两个不相等的实数根;C.没有实数根D.无法确定【答案】C【解析】【分析】根据三角形的三边关系可知Δ0<,可知一元二次方程根的情况.【详解】解:[]222()44()()b c a b c a b c a ∆=--=-+--,∵a 、b 、c 是三角形三边的长,∴00b c a b c a -+>--<,,∴4()()0b c a b c a ∆=-+--<,∴原方程没有实数根,故选:C.【点睛】本题考查了一元二次方程根的判别式,三角形的三边关系,熟练掌握根的判别式与根的情况的关系是解题的关键.二、填空题:(本大题共12题,每题2分,满分24分)7.分母有理化:=____________.【答案】【解析】【即可分母有理化.255==..【点睛】本题考查了二次根式的运算,解题的关键是掌握分母有理化.8.=____________.【答案】3π-【解析】【分析】根据二次根式的性质解答.【详解】∵π>3,∴π−3>0;=π−3.【点睛】本题考查二次根式的性质与化简,解题的关键是掌握二次根式的性质.9.设x x应满足的条件是____________.【答案】14 x≥【解析】【分析】根据二次根式有意义的条件进行求解即可.【详解】解:∵二次根式∴410x-≥,解得14x ≥,故答案为:14x ≥.【点睛】本题主要考查了二次根式有意义的条件,熟知二次根式有意义的条件是被开方数大于等于0是解题的关键.10.比较大小:-.(填“>”“<”“=”)【答案】>【解析】【分析】利用两个负数比较大小,绝对值大的反而小即可求解.【详解】解:∵=,-==∴-即-故答案为:>【点睛】本题考查了实数的大小比较,熟记两个负实数比较大小的方法是解题的关键.11.已知2410ax x +-=是关于x 的一元二次方程,那么a 的取值范围为___________.【答案】0a ≠【解析】【分析】根据一元二次方程的定义求解即可.【详解】解:因为2410ax x +-=是关于x 的一元二次方程,所以a 的取值范围为0a ≠.故答案为:0a ≠.【点睛】本题考查了一元二次方程的定义,解题的关键是掌握一元二次方程的定义:只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是20(0)ax bx c a ++=≠.特别要注意0a ≠的条件.12.不等式10->的解集是____________.【答案】66x <-【解析】【分析】直接按照解不等式的一般步骤求解即可.【详解】10->解:移项,得1>,不等式两边同除以66x <-,故答案为:6x <-【点睛】本题考查了一元一次不等式的解法,熟练掌握解一元一次不等式的解题步骤是解题的关键.13.方程()87x x -=-的根是____________.【答案】17x =,21x =【解析】【分析】把原方程化为一般形式后利用因式分解法解方程即可.【详解】解:∵()87x x -=-,∴2870x x -+=,∴()()710x x --=,∴70x -=或10x -=,解得17x =,21x =,故答案为:17x =,21x =【点睛】本题考查了因式分解法解一元二次方程,根据所给方程的特点选择适当的是解题的关键.14.一种型号的电视,原来每台售价7500元,经过两次降价后,现在每台售价为4800元,如果每次降价的百分率相同,设每次降价百分率为x ,那么根据题意可列出方程:______.【答案】()2750014800x -=【解析】【分析】设每次降价百分率为x ,根据原来每台售价为7500元,经过两次降价后,现在每台售价为4800元,可列出方程.【详解】解:每次降价百分率为x ,()2750014800x -=.故答案为:()2750014800x -=.【点睛】本题考查理一元二次方程的应用,是个增长率问题,根据两次降价前的结果,和现在的价格,列出方程是关键.15.在实数范围内分解因式:231x x --=_________.【答案】(22x x --##()(22x x --【解析】【分析】求出方程2310x x --=中的判别式的值,求出方程的两个解,代入212()()ax bx c a x x x x ++=--即可.【详解】设2310x x --=,∵2(3)41(1)13∆=--⨯⨯-=,∴3132x ±=∴1 2x =,2 2x =,∴231()()22x x x x --=--.故答案为:3133+13(22x x ---.【点睛】本题考查了在实数范围内分解因式和解一元二次方程,注意:若x 1和x 2是一元二次方程20ax bx c ++=的两个根,则212()()ax bx c a x x x x ++=--.16.已知关于x 的一元二次方程230x mx +-=的一个根是3,则该方程的另一个根是___________.【答案】1-【解析】【分析】根据一元二次方程根与系数的关系求解即可.【详解】解:∵关于x 的一元二次方程230x mx +-=的一个根是3,∴该方程的另一个根是313-=-,故答案为:1-.【点睛】本题主要考查了一元二次方程根与系数的关系,对于一元二次方程()200ax bx c a ++=≠,若其两根为12x x ,则1212bc a x x x x a+=-=,.17.已知:如图,AC AD =,要使ACB ADB ≌,还需添加一个条件,这个条件可以是__________.写出一个即可)【答案】BC BD =(答案不唯一)【解析】【分析】根据全等三角形的判定定理求解即可.【详解】解:这个条件可以是BC BD =,在ACB △和ADB 中,AC AD AB AB BC BD =⎧⎪=⎨⎪=⎩,∴(SSS)ACB ADB ≌△△,故答案为:BC BD =(答案不唯一).【点睛】此题考查了全等三角形的判定,熟记全等三角形的判定定理是解题的关键.18.阅读材料:在直角三角形中,斜边和两条直角边满足定理:两条直角边的平方和,等于斜边的平方,因此如果已知两条边的长,根据定理就能求出第三边的长,例如:在Rt ABC △中,已知90C ∠=︒,3AC =,4BC =,由定理得222AC BC AB +=,代入数据计算求得5AB =.请结合上述材料和已学几何知识解答以下问题:已知:如图,90C ∠=︒,AB CD ∥,5AB =,11CD =,8AC =,点E 是BD 的中点,那么AE 的长为____________.【答案】5【解析】【分析】延长AE 交CD 于点F ,如图所示,只要证得()ASA ABE FDE ≌,根据全等三角形的性质可得AE EF =,5AB DF ==,然后在Rt ACF 中,利用勾股定理求得10AF ===,最后可得152AE EF AF ===.【详解】解:延长AE 交CD 于点F,如图所示,∵AB CD ∥,∴B D ∠=∠,∵点E 是BD 的中点,∴BE DE =,在ABE 和FDE V 中B D BE DE AEB DEF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()ASA ABE FDE ≌,∴AE EF =,5AB DF ==,∵11CD =,∴1156CF DC DF =-=-=,又∵90C ∠=︒,8AC =,∴Rt ACF中,10AF ===,∴152AE EF AF ===,故答案为:5【点睛】本题考查了全等三角形的判定和性质,勾股定理的应用,根据题意作出适当的辅助线是解题的关键.三、简答题:(本大题共4题,满分32分)19.(1)计算:-+;(2(其中0x >).【答案】(1)3-;(2)3y x 【解析】【分析】(1)利用二次根式的性质及二次根式的加减混合运算计算即可;(2)利用二次根式的乘除混合运算法则计算即可.【详解】解:(1)-21224=-⨯+()2221122=---++3=-(2====3yx=【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式的性质及加减乘除混合运算的法则是解题的关键.20.(1)解方程:()()22131x x -=-;(2)用配方法解方程:23620x x +-=.【答案】(1)112x =-,21x =;(2)11513x =-+,21513x =--【解析】【分析】(1)把方程移项变形后,利用因式分解法解方程即可;(2)直接利用配方法解方程即可.【详解】解:(1)()()22131x x -=-解:移项,得()()202131x x -+-=因式分解得,()()2110x x +-=,∴210x +=或10x -=,解得112x =-,21x =;(2)23620x x +-=,解:方程两边同除以3,得22203x x +-=,移项,得2232x x +=,方程两边同加上一次项系数一半的平方,得221321x x +=++,即()2513x +=,∴1513x +=±,解得11513x =-+,21513x =--.【点睛】本题考查了一元二次方程的解法,熟练掌握一元二次方程的解法是解题的关键.21.已知:x =,求代数式221x x --的值.【答案】1【解析】【分析】先分母有理数求出1x =+,再根据完全平方公式进行变形,最后代入求出答案即可.【详解】解:∵1x ==,∴221x x --2(1)11x =---211)2=--32=-1=.【点睛】本题考查了二次根式的化简求值和分母有理化,能求出x 的值是解此题的关键.22.已知:a 、b 20b +=,求关于x 的一元二次方程2102ax bx ++=的根.【答案】12113x x ==,【解析】、b 的值,然后解一元二次方程即可.20b +=020b ≥+=≥,,∴30202a b -=+=,,∴322a b ==-,,∴原一元二次方程即为2312022x x -+=,整理得:23410x x -+=,∴()()3110x x --=,解得12113x x ==.【点睛】本题主要考查了非负数的性质,解一元二次方程,正确求出a 、b 的值是解题的关键.四、解答题:(本大题共2题,满分16分)23.如图,点D ,E 在ABC ∆的边BC 上,AD AE =,BD CE =,求证:B C ∠=∠.【答案】证明见解析【解析】【分析】利用全等三角形的性质证明即可.【详解】证明∵AD AE =,∴ADE AED ∠=∠,∵180ADE ADB AED AEC ∠+∠=∠+∠=︒,∴ADB AEC ∠=∠,在ABD ∆和ACE ∆中,AD AE ADB AEC BD EC =⎧⎪∠=∠⎨⎪=⎩,∴()ABD ACE SAS ∆≅∆,∴B C ∠=∠.【点睛】本题考查全等三角形的判定和性质,解题的关键是灵活运用所学知识解决问题.24.某小区为了美化环境,准备在一块长50米,宽42米的长方形场地上修筑内外宽度相等且互相垂直的道路,余下的部分作为草坪(图中阴影部分),若草坪的面积是1920平方米,求道路的宽度.【答案】道路的宽度为2米【解析】【分析】设道路的宽度为x 米,根据平移的性质可知草坪的面积可以看作一个长为()50x -米,宽为()42x -米的长方形面积,据此列出方程求解即可.【详解】解:设道路的宽度为x 米,由题意得()()50421920x x --=,∴2921800x x -+=,解得2x =或90x =(不符合题意,舍去)∴道路的宽度为2米.【点睛】本题主要考查了一元二次方程的应用,正确理解题意找到等量关系是解题的关键.五、综合题:(本大题共1题,满分10分)25.已知:如图,在Rt ABC △中,90BAC ∠=︒,ABC ∠的平分线交AD 于点E ,交AC 于点F ,AD BC ⊥,垂足为点D .(1)求证:AE AF =;(2)过点E 作EG D C ∥交AC 于点G ,过点F 作FH BC ⊥,垂足为点H .①请判断AF 与CG 的数量关系,并说明理由;②当AE BE =时,设BF x =,试用含有x 的式子表示GC 的长.【答案】(1)见解析(2)①AF CG =,理由见解析;②12CG x =.【解析】【分析】(1)根据90AEF BED CBF ∠=∠=︒-∠,90AFB ABF ∠=︒-∠,得AFE AEF ∠=∠,从而AE AF =;(2)①由角平分线的性质知AF FH =,由(1)知AF AE =,则AE FH =,再利用AAS 证明AEG FHC ≌△△,得AG CF =,即可证明;②由等腰三角形的性质可得BAE ABE ∠=∠,可证AE EF AF BE ===,可得结论.【小问1详解】证明:∵BF 平分ABC ∠,∴ABF CBF ∠=∠,∵AD BC ⊥,∴90ADB ∠=︒,∴90AEF BED CBF ∠=∠=︒-∠,∵90AFB ABF ∠=︒-∠,∴AFE AEF ∠=∠,∴AE AF =;【小问2详解】解:①AF CG =,理由如下:∵BF 平分ABC ∠,FA AB FH BC ⊥⊥,,∴AF FH =,由(1)知AF AE =,∴AE FH =,∵EG D C ∥,∴90AEG FHC ∠=∠=︒,AGE C ∠=∠,∴(AAS)AEG FHC ≌△△,∴AG CF =,∴AF CG =;②∵AE BE =,∴BAE ABE ∠=∠,∵90BAC ∠=︒,∴EAF EFA ∠=∠,∴AE EF =,∴AE EF AF BE ===,∴2BF AF =,∴12CG AF x ==.【点睛】本题考查了全等三角形的判定和性质,直角三角形的性质,角平分线的性质等知识,得到AEG FHC ≌△△是解题的关键.第16页/共16页。

河南省新乡市河南师范大学附属中学2023-2024学年八年级下学期期中数学试题(解析版)

河南省新乡市河南师范大学附属中学2023-2024学年八年级下学期期中数学试题(解析版)

2023—2024学年第二学期八年级《数学》期中考试试卷一、选择题(共10小题,每小题3分)1.在实数范围内有意义,则x 的取值范围是( )A. B. C. D. 【答案】B【解析】【分析】根据二次根式的性质,被开方数大于或等于0.解:依题意有,即时,二次根式有意义.故选:B .【点睛】本题主要考查了二次根式的意义和性质,二次根式中的被开方数必须是非负数,否则二次根式无意义,掌握二次根式的意义与性质是解题的关键.2. 下列各组线段,能组成直角三角形的是()A. ,,B. ,,C. ,,D. ,,【答案】D【解析】【分析】根据勾股定理逆定理分别计算并判断.此题考查了勾股定理的逆定理的应用,正确掌握勾股定理逆定理判断直角三角形的方法是解题的关键.解:A 、∵,∴不能组成直角三角形;B 、∵,∴不能组成直角三角形;C 、∵,∴不能组成直角三角形;D 、,∴能组成直角三角形;故选:D .3. 若,则表示实数的点会落在数轴的( )3x ≠-3x ≥-3x ≥0x ≥30x +≥3x ≥-1a =2b =2c=2a =3b =5c =2a =4b =5c =3a =4b =5c =222122+≠222235+≠222245+≠222345+=a =aA. 段①上B. 段②上C. 段③上D. 段④上【答案】B【解析】【分析】此题主要考查了二次根式的化简,减法运算及估算,先化简二次根式,计算出a 的值,再估算出a 范围,再结合数轴即可得出结果.解:,即,,,,即,故实数的点会落在数轴的段②上,故选:B .4. 如图所示的是由两个直角三角形和三个正方形组成的图形,其中阴影部分的面积是()A. B. C. D. 【答案】A【解析】【分析】根据勾股定理计算出大正方形边长的平方,即大正方形的面积,再根据勾股定理可得两个小正方形的边长的平方和等于斜边的平方,即两个小正方形的面积和等于大正方形的面积,从而得出答案.由勾股定理得,大正方形边长的平方==25,即大正方形面积为25,∵两个小正方形的边长的平方和等于斜边的平方,∴两个小正方形的面积和为25,∴阴影部分的面积为:25+25=50.故选:A .【点睛】本题考查了勾股定理,熟练掌握勾股定理是解题关键.5. 如图,中,平分交于E ,若,则度数为( )a +=a =-∴a ==-=<<12∴<<12a <<a 50162541221312-ABCD Y BE ABC ∠AD 56C ∠=︒BED ∠A. B. C. D. 【答案】B【解析】【分析】此题主要考查了平行四边形的性质以及角平分线的定义,关键是掌握平行四边形对边互相平行.首先根据平行四边形的性质可得,,根据平行线的性质可得,,先计算出,然后再计算出的度数,可得答案.解∶四边形是平行四边形.,,,,平分,,,,,故选∶B .6. 如图,长方形的边在数轴上,若点A 与数轴上表示数的点重合,点D 与数轴上表示数的点重合,,以点A 为圆心,对角线的长为半径作弧与数轴负半轴交于一点E ,则点E 表示的数为()A. B. C. D. 1【答案】A【解析】【分析】本题考查勾股定理与无理数,实数与数轴.勾股定理求出的长,进而求出点E 表示的数即可.112︒118︒119︒120︒AD BC ∥AB CD 180ABC C ∠+∠=︒180EBC BED ∠+∠=︒62EBC ∠=︒BED ∠ ABCD ∴AD BC ∥AB CD ∴180ABC C ∠+∠=︒∴180********ABC C ∠=︒-∠=︒-︒=︒ BE ABC ∠∴124262EBC ∠=︒÷=︒ AD BC ∥∴180EBC BED ∠+∠=︒∴180********BED EBC ∠=︒-∠=︒-︒=︒ABCD AD 1-4-1AB =AC 1--1-AC解:由题意,得:,,,∴,∴点表示的数为;故选A .7. 如图,是中位线,点F 在上,且,若,,则()A. 4B. 3C. 2.5D. 1.5【答案】D【解析】【分析】本题主要考查三角形中位线定理,直角三角形斜边中线的性质,根据三角形中位线定理求出,根据直角三角形的性质求出,结合图形计算,得到答案.解:∵是的中位线,∴,在三角形中,是的中点,∴,∴故选:D.8. 如图,O 为菱形ABCD 的对角线的交点,DE ∥AC ,CE ∥BD ,若AC =6,BD =8,则线段OE 的长为( )A. 3B. C. 5 D. 6【答案】C【解析】【分析】先证明四边形OCED 是平行四边形,再根据菱形的对角线互相垂直求出∠COD =90°,则四边形的90ADC ∠=︒()143AD =---=1CD AB ==AE AC ===E 1--DE ABC DE 90AFB ∠=︒7AB =10BC =EF =DE DF DE ABC 152DE BC ==AFB D AB 1 3.52DF AB == 1.5EF DE DF =-=OCED 为矩形,根据菱形的对角线互相平分求出OC 、OD ,再根据勾股定理求出CD ,然后根据矩形的对角线相等求解即可.∵DE ∥AC ,CE ∥BD ,∴四边形OCED 是平行四边形,∵四边形ABCD 是菱形,∴∠COD =90°,∴四边形OCED 是矩形,又∵AC =6,BD =8,∴OC =3,OD =4,∴,在矩形OCED 中,OE =CD =5,故选:C .【点睛】本题考查了菱形的性质,矩形的判定和性质,勾股定理的应用,熟记矩形的判定方法和菱形的性质是解题的关键.9. 如图,中,,,,在上取一点(不与、点重合),连接,当的长度为整数值时,符合条件的值共有()A. 2个B. 3个C. 4个D. 5个【答案】C【解析】【分析】本题考查的是勾股定理的应用,化为最简二次根式,无理数的估算,如图,过作于,先求解,,从而可得答案.解:如图,过作于,∵,,,5CD ===ABC 90BAC ∠=︒2AC =6AB =BC M B C AM AM AM A AD BC ⊥D BC AD 6AM ≤<A AD BC ⊥D 90BAC ∠=︒2AC =6AB =∴∴,,而,∴的整数值为,,,,故选C10. 如图,线段上有一动点从右向左运动,和分别是以和为边的等边三角形,连接两个等边三角形的顶点,为线段的中点;、为线段上两点,且满足,当点从点运动到点时,设点到直线的距离为,点的运动时间为,则与之间函数关系的大致图象是( )A. B.C. D.【答案】D【解析】【分析】分别延长交于点,则可证得四边形为平行四边形,利用平行四边形的性质:对角线相互平分,可得为的中点,也是的中点,所以的运动轨迹是三角形的中位线,所以点到直线的距离为是一个定值, 问题得解.BC ===AD ==6AM ≤<925<<AM 2345AB P AEP △PFB △AP PB EF G EF C D AB AC BD =P D C G AB y P x y x AE BF ,H EPFH G EF PH G HCD G AB y如图, 分别延长交于点,,,,,∴四边形为平行四边形,∴与互相平分,∴为的中点,∵的中点为,∴从点运动到点时,始终为的中点,∴运动的轨迹是三角形的中位线,又∵,∴到直线的距离为一定值,∴与点移动的时间之间函数关系的大致图象是一平行于轴的射线,故选:D .【点睛】本题考查了动点问题的函数图象,利用到的是三角形的中位线定理:三角形的中位线平行且等于第三边的一半.对于此类问题来说是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.用图象解决问题时,要理清图象的含义即会识图.二、填空题(共5小题,每小题3分)11.同类二次根式,则_______.【答案】是,AE BF H 60A FPB ∠=∠=︒ AH PF ∴ 60B EPA ∠=∠=︒ BH PE ∴ EPFH EF HP G HP EF G P C D G PH G HCD MN MN CD G AB y P x x ()0x ≥x =4【解析】【分析】本题考查最简二次根式,化为最简二次根式后,它们的被开方数相同,列出方程求解是解题的关键.,∴,解得:,故答案为:.12. 如图,平行四边形的活动框架,当时,面积为,将从扭动到,则四边形面积为_______.【答案】【解析】【分析】本题主要考查了矩形的性质,含有角的直角三角形的性质,根据题意可得,,作,交于点,则,从而即可得到.添加适当的辅助线构造直角三角形是解题的关键.解:当时,面积为,,将从扭动到,,作,交于点,如图所示,,,=13x -=4x =490ABC ∠=︒S ABC ∠90︒30︒D A BC ''12S 30︒S AB BC =⋅30A BC '∠=︒A E BC '⊥BC E 1122A E A B AB ''==111222A BCD S AE BC AB BC AB BC S '''=⋅=⋅=⋅=四边形 90ABC ∠=︒S S AB BC ∴=⋅ ABC ∠90︒30︒30A BC '∴∠=︒A E BC '⊥BC E ∴1122A E AB AB ''==111222A BCD S AE BC A B BC AB BC S '''∴=⋅=⋅=⋅=四边形故答案为:.13. 如图,网格中每个小正方形的边长均为1,以A 为圆心,为半径画弧,交最上方的网格线于点N ,则的长是______.【答案】【解析】【分析】连接,则,中,利用勾股定理求出即可得出答案.解:如图,连接,由题意知:,在中,由勾股定理得:,∴,故答案为:【点睛】本题主要考查了勾股定理,求出的长是解题的关键.14. 如图1,一个正方体铁块放置在圆柱形水槽内,现以一定的速度往水槽中注水,时注满水槽,水槽内水面的高度与注水时间之间的函数图像如图2所示.如果将正方体铁块取出,又经过____秒恰好将水槽注满.在12S AB MN 4AN 4AN AB ==Rt ACN △CN AN 4AN AB ==Rt ACN △CN ==4MN CM CN =-=-4CN 28s ()y cm ()x s【答案】4【解析】【分析】根据函数图像可得正方体的棱长为10cm ,同时可得水面上升从10cm 到20cm,所用的时间为16秒,结合前12秒由于立方体的存在,导致水面上升速度加快了4秒可得答案.解:由题意可得:12秒时,水槽内水面的高度为10cm,12秒后水槽内水面高度变化趋势改变,正方体的棱长为10cm ;没有立方体时,水面上升从10cm 到20cm,所用的时间为:28-12=16秒前12秒由于立方体的存在,导致水面上升速度加快了4秒将正方体铁块取出, 又经过4秒恰好将此水槽注满.故答案:4【点睛】本题主要考查一次函数的图像及应用,根据函数图像读懂信息是解题的关键.15. 在矩形中,,,若是射线上一个动点,连接,点关于直线的对称点为.连接,,当,,三点共线时,的长为______.【答案】1或9【解析】【分析】本题考查了矩形的性质,折叠的性质,勾股定理,分情况讨论,当点在线段上时,当点在的延长线时,根据折叠的性质和勾股定理即可得到结论.解:当点线段上时,如图,与关于直线对称,∴ ∴ABCD 3AB =5BC =P AD BP A BP M MP MC P M C AP P AD P AD P AD ABP MBP BP,,,,,,,设,,,,解得,;当点在的延长线时,如图,与关于直线对称,,,,,,,,,,,,,,综上所述,的长为1或9,故答案为:1或9.90BMP A ∴∠=∠=︒3BM AB ==AP PM =90BMC ∴∠=︒222BM CM BC += 22235CM ∴+=4CM ∴=AP PM x ==90D ∠=︒ 222DP CD CP ∴+=222(5)3(4)x x ∴-+=+1x =1AP ∴=P AD ABP MBP BP 90BMP A ∴∠=∠=︒3BM AB ==AP PM =APB MPB ∠=∠AP BC ∥APB CBP ∴∠=∠CPB CBP ∴∠=∠5CP BC ∴==90BMC ∠=︒ 222BM CM BC ∴+=22235CM ∴+=4CM ∴=549AP PM ∴==+=AP三、解答题(共8小题,共75分)16. 计算(1.(2).【答案】(1)(2)【解析】【分析】本题主要考查二次根式的混合运算,熟练掌握运算法则是解题关键.(1)先运算二次根式的乘除,然后合并解题;(2)先提取公因式,然后运算乘法解题即可.【小问1】【小问2】解:17. 某小区在社区管理人员及社区居民的共同努力之下,在临街的拐角建造了一块绿化地(阴影部分).如图,已知,,,.技术人员通过测量确定了.2++36-3=-+3=-2-+=+-⨯=6=-9m AB =12m BC =17m CD =8m AD =90ABC ∠=︒(1)小区内部分居民每天必须从点A 经过点B 再到点C 位置,为了方便居民出入,技术人员打算在绿地中开辟一条从点A 直通点C 的小路,请问如果方案落实施工完成,居民从点A 到点C 将少走多少路程?(2)这片绿地的面积是多少?【答案】(1)(2)【解析】【分析】(1)连接,利用勾股定理求出,问题随之得解;(2)先利用勾股定理逆定理证明是直角三角形,,再根据三角形的面积公式即可求解.【小问1】如图,连接,∵,,,∴,∴,答:居民从点A 到点C 将少走路程.【小问2】∵,.,∴,∴是直角三角形,,∴,,∴,答:这片绿地的面积是.【点睛】本题主要考查了勾股定理及其逆定理,掌握勾股定理及其逆定理是解答本题的关键.18. 已知:如图,在中,点,分别在,上,且平分.若,连结.求证:四边形是菱形.6m2114mAC ()15m AC ===ADC △90DAC ∠=︒AC 90ABC ∠=︒9m AB =12m BC=()15m AC ===912156m AB BC AC +-=+-=()6m 17m CD =8m AD =15m AC =222AD AC DC +=ADC △90DAC ∠=︒2112281560m DAC S AD AC ⋅=⨯⨯== ()21191254m 22ACB S AB BC =⋅=⨯⨯= ()26054114m ABCD S =+=四边形()2114m ABCD Y E F AD BC BE ABC ∠DE CF =EF ABFE【答案】见解析【解析】【分析】本题考查了菱形的判定,平行四边形的判定和性质.先证明四边形平行四边形,再利用等角对等边证明,即可证明四边形是菱形.证明:∵四边形平行四边形,∴,,又,,四边形平行四边形,平分,∴,∵,,,,∴四边形是菱形.19. 如图,点A 在的边上,于于于C .(1)求证:四边形是矩形;(2)若,求的长.【答案】(1)见(2)5【解析】【分析】此题考查了矩形的判定与性质以及勾股定理.注意利用勾股定理求线段的长是关键.ABFE AB AE =ABFE ABCD AD BC ∥AD BC =DE CF = AE BF ∴=∴ABFE BE ABC ∠ABE FBE ∠=∠AD BC ∥AEB EBF ∴∠=∠ABE AEB ∴∠=∠AB AE =∴ABFE MON ∠ON AB OM ⊥,,B AE OB DE ON =⊥,,E AD AO DC OM =⊥ABCD 3,9DE OE ==AD AD(1)根据全等三角形的判定和性质以及矩形的判定解答即可;(2)根据全等三角形的性质和勾股定理解答即可.【小问1】证明:于,于,.在与中,∴,..又,,.四边形是平行四边形,,四边形是矩形;【小问2】解:由(1)知,,设,则,.在中,由得:,解得..20. 如图,在Rt △ABC 中,∠BAC=90°,E ,F 分别是BC ,AC 的中点,延长BA 到点D ,使2AD=AB ,连接DE ,DF .(1)求证:四边形ADFE 平行四边形;(2)求证:∠DFA=∠C为⊥ AB OM B DE ON ⊥E 90∴∠=∠=︒ABO DEA Rt ABO △Rt DEA V AO AD OB AE=⎧⎨=⎩()Rt Rt HL ABO DEA ≌∴∠=∠AOB DAE AD BC ∴∥⊥ AB OM DC OM ⊥AB DC ∴ ∴ABCD 90ABC ∠=︒ ∴ABCD Rt Rt ABO DEA ≌3AB DE ∴==AD x =OA x =9AE OE OA x =-=-Rt DEA V 222AE DE AD +=222(9)3x x -+=5x =5AD ∴=【答案】(1)见解析;(2)见解析【解析】【分析】(1)根据点,分别为,的中点,可得,,根据 ,则有,可证四边形的平行四边形,(2)在中,根据为的中点,得,则有,再根据四边形是平行四边形 ,可得,即有.解(1)证明:点,分别为,的中点,,,四边形的平行四边形,(2)在中,为的中点,,四边形是平行四边形【点睛】本题考查了平行四边形的判定和性质,直角三角形的性质,三角形的中位线定理,熟练掌握平行四边形的判定和性质定理是解题的关键.21. 一张矩形纸ABCD ,将点B 翻折到对角线AC 上的点M 处,折痕CE 交AB 于点E .将点D 翻折到对角线AC 上的点H 处,折痕AF 交DC 于点F ,折叠出四边形AECF.E F BC AC //EF AD 2AB EF =2AB AD =EF AD =AEFD Rt ABC ∆E BC AE EC =EAF C ∠=∠AEFD DFA EAF ∠=∠DFA C Ð=Ð E F BC AC ∴//EF AD 2AB EF = 2AB AD=∴EF AD= //EF AD ∴AEFD Rt ABC ∆ E BC ∴12AE BC EC ==∴EAF C∠=∠ AEFD ∴//AE DF∴DFA EAF∠=∠∴DFA CÐ=Ð(1)求证:AF CE ;(2)当∠BAC = 度时,四边形AECF 是菱形?说明理由.【答案】(1)见解析;(2)30,理由见解析.【解析】【分析】(1)证出∠HAF =∠MCE ,即可得出AF CE ;(2)证出四边形AECF 是平行四边形,再证出AF =CF ,即可得出四边形AECF 是菱形.(1)证明:∵四边形ABCD 为矩形,∴AD BC ,∴∠DAC =∠BCA ,由翻折知,∠DAF =∠HAF=∠DAC ,∠BCE =∠MCE =∠BCA ,∴∠HAF =∠MCE ,∴AF CE ;(2)解:当∠BAC =30°时四边形AECF 为菱形,理由如下:∵四边形ABCD 是矩形,∴∠D =∠BAD =90°,AB CD ,由(1)得:AF CE ,∴四边形AECF 是平行四边形,∵∠BAC =30°,∴∠DAC =60°.∴∠ACD =30°,由折叠的性质得∠DAF =∠HAF =30°,∴∠HAF =∠ACD ,∴AF =CF ,∴四边形AECF 是菱形;故答案为:30.【点睛】本题考查矩形的性质、平行线的判定、平行四边形的判定与性质、菱形的判定等知识,是重要考//////1212//////点,难度较易,掌握相关知识是解题关键.22. 在中,,且.(1)当是锐角三角形时,小明猜想:.以下是他的证明过程:小明的证明过程如图①,过点作,垂足为.设.∵在中,,在中,①,∴①.化简得,.②.其中,①是______;②是______.(2)如图②,当是钝角三角形时,猜想与之间的关系并证明.【答案】(1),(2);证明见【解析】ABC ,,BC a AC b AB c ===c b a ≥≥ABC 222a b c +>A AD CB ⊥D CD x =Rt ADC 222AD b x =-Rt ADB 2AD =22b x -=2222a b c ax +-=0,0,a x >>∴ 0>2220.a b c ∴+->222.a b c ∴+>ABC 22a b +2c 22()c a x --2ax222a b c +<【分析】本题考查了勾股定理,熟练掌握勾股定理,正确添加辅助线是解题的关键.(1)在中根据勾股定理即可表示出,从而得出,然后进行判断即可;(2)过点作的延长线,垂足为,设,在和中分别根据勾股定理表示出,然后仿照(1)中的方法判断即可.【小问1】解:如图①,过点作,垂足为,设,在中,,在中,,,化简得,,,,,,.其中,①是;②是;故答案为:,;【小问2】;证明:如图,过点作的延长线,垂足为,设,在中,,在中,,Rt ADB 2AD 2222()b x c a x -=--A AD BC ⊥D CD x =Rt ADC Rt ADB 2AD A AD CB ⊥D CD x = Rt ADC 222AD b x =-Rt ADB 222()AD c a x =--2222()b x c a x ∴-=--2222a b c ax +-=0a > 0x >20ax ∴>2220a b c ∴+->222a b c ∴+>22()c a x --2ax 22()c a x --2ax 222a b c +<A AD BC ⊥D CD x = Rt ADC 222AD b x =-Rt ADB 222()AD c a x =-+,化简得,,,,,,.23. 如图,在正方形中,点在边上运动,连接,将绕点顺时针旋转得到.(1)如图1,作,垂足为,求证:;(2)如图2,点恰好落在边上,求的值;(3)若,,连接,求的面积.【答案】(1)见解析(2)(3)【解析】【分析】(1)由旋转的性质可知,,进而可得,证明,进而可证;(2)如图1,作于,由(1)可知,,则,证明,则,由,可得,由勾股定理得,,然后求解作答即可;(3)由勾股定理得,,2,作于2222()b x c a x ∴-=-+2222a b c ax +-=-0a > 0x >20ax ∴-<2220a b c ∴+-<222a b c ∴+<ABCD E CB AE AE A 45︒AF FM AC ⊥M AM AB =F CD CF DF4AB =5AE =CF ACF △CF DF=45AF AE EAF =∠=︒,MAF BAE ∠=∠()AAS AMF ABE ≌AM AB =FM AC ⊥M ()AAS AMF ABE ≌FM BE =()Rt Rt HL ADF ABE ≌DF BE FM ==45MFC MCF ∠=︒=∠CM FM DF ==CF ===3BE ==AC ==FM AC ⊥,连接,由(2)知,,根据,计算求解即可.【小问1】证明:∵正方形,∴,,由旋转的性质可知,,∴,即,∵,,,∴,∴;小问2】解:∵正方形,∴,如图1,作于,图1由(1)可知,,∴,∵,∴,∴,∵,∴,∴,由勾股定理得,,M CF 3FM BE ==12ACF S AC FM =⨯△ABCD 45BAC ∠=︒90B Ð=°45AF AE EAF =∠=︒,EAF EAC BAC EAC ∠-∠=∠-∠MAF BAE ∠=∠MAF BAE ∠=∠90AMF B ∠=︒=∠AF AE =()AAS AMF ABE ≌AM AB =ABCD 9045AD AB D B ACD =∠=∠=︒∠=︒,,FM AC ⊥M ()AAS AMF ABE ≌FM BE =AF AE AD AB ==,()Rt Rt HL ADF ABE ≌DF BE FM ==45ACD ∠=︒45MFC MCF ∠=︒=∠CM FM DF ==CF ===∴;【小问3】解:由勾股定理得,,如图2,作于,连接,图2由(2)知,,∴∴的面积为【点睛】本题考查了正方形的性质,旋转的性质,全等三角形的判定与性质,等腰三角形的判定与性质,勾股定理等知识.熟练掌握正方形的性质,旋转的性质,全等三角形的判定与性质,等腰三角形的判定与性质,勾股定理是解题的关键.CF DF=3BE ==AC ==FM AC ⊥M CF 3FM BE ==11322ACF S AC FM =⨯=⨯=△ACF △。

人教版八年级上册数学 期中精选试卷专题练习(解析版)

人教版八年级上册数学 期中精选试卷专题练习(解析版)

人教版八年级上册数学 期中精选试卷专题练习(解析版)一、八年级数学全等三角形解答题压轴题(难)1.如图,在ABC ∆中,90C ∠=︒,4cm AC BC ==,点D 是斜边AB 的中点.点E 从点B 出发以1cm/s 的速度向点C 运动,点F 同时从点C 出发以一定的速度沿射线CA 方向运动,规定当点E 到终点C 时停止运动.设运动的时间为x 秒,连接DE 、DF .(1)填空:ABC S ∆=______2cm ;(2)当1x =且点F 运动的速度也是1cm/s 时,求证:DE DF =;(3)若动点F 以3cm /s 的速度沿射线CA 方向运动,在点E 、点F 运动过程中,如果存在某个时间x ,使得ADF ∆的面积是BDE ∆面积的两倍,请你求出时间x 的值.【答案】(1)8;(2)见解析;(3)45或4. 【解析】【分析】(1)直接可求△ABC 的面积;(2)连接CD ,根据等腰直角三角形的性质可求:∠A=∠B=∠ACD=∠DCB=45°,即BD=CD ,且BE=CF ,即可证△CDF ≌△BDE ,可得DE=DF ;(3)分△ADF 的面积是△BDE 的面积的两倍和△BDE 与△ADF 的面积的2倍两种情况讨论,根据题意列出方程可求x 的值.【详解】解:(1)∵S △ABC =12⨯AC×BC ∴S △ABC =12×4×4=8(cm 2) 故答案为:8(2)如图:连接CD∵AC=BC ,D 是AB 中点∴CD 平分∠ACB又∵∠ACB=90°∴∠A=∠B=∠ACD=∠DCB=45°∴CD=BD依题意得:BE=CF∴在△CDF 与△BDE 中BE CF B DCA BD CD =⎧⎪∠=∠⎨⎪=⎩∴△CDF ≌△BDE (SAS )∴DE=DF(3)如图:过点D 作DM ⊥BC 于点M ,DN ⊥AC 于点N ,∵AD=BD ,∠A=∠B=45°,∠AND=∠DMB=90°∴△ADN ≌△BDM (AAS )∴DN=DM当S △ADF =2S △BDE .∴12×AF×DN=2×12×BE×DM ∴|4-3x|=2x ∴x 1=4,x 2=45综上所述:x=45或4 【点睛】本题考查了动点问题的函数图象,全等三角形的性质和判定,利用分类思想解决问题是本2.如图,Rt△ABC≌Rt△CED(∠ACB=∠CDE=90°),点D在BC上,AB与CE相交于点F(1) 如图1,直接写出AB与CE的位置关系(2) 如图2,连接AD交CE于点G,在BC的延长线上截取CH=DB,射线HG交AB于K,求证:HK=BK【答案】(1)AB⊥CE;(2)见解析.【解析】【分析】(1)由全等可得∠ECD=∠A,再由∠B+∠A=90°,可得∠B+ECD=90°,则AB⊥CE.(2)延长HK于DE交于H,易得△ACD为等腰直角三角形,∠ADC=45°,易得DH=DE,然后证明△DGH≌△DGE,所以∠H=∠E,则∠H=∠B,可得HK=BK.【详解】解:(1)∵Rt△ABC≌Rt△CED,∴∠ECD=∠A,∠B=∠E,BC=DE,AC=CD∵∠B+∠A=90°∴∠B+ECD=90°∴∠BFC=90°,∴AB⊥CE(2)在Rt△ACD中,AC=CD,∴∠ADC=45°,又∵∠CDE=90°,∴∠HDG=∠CDG=45°∵CH=DB,∴CH+CD=DB+CD,即HD=BC,∴DH=DE,在△DGH和△DGE中,DH=DEHDG=EDG=45DG=DG⎧⎪∠∠⎨⎪⎩∴△DGH≌△DGE(SAS)∴∠H=∠E又∵∠B=∠E∴∠H=∠B,∴HK=BK本题考查全等三角形的判定与性质,利用全等找出角相等,再利用等角对等边判定线段相等是本题的关键.3.已知4AB cm=,3AC BD cm==.点P在AB上以1/cm s的速度由点A向点B运动,同时点Q在BD上由点B向点D运动,它们运动的时间为()t s.(1)如图①,AC AB⊥,BD AB⊥,若点Q的运动速度与点P的运动速度相等,当1t=时,ACP△与BPQ是否全等,请说明理由,并判断此时线段PC和线段PQ的位置关系;(2)如图②,将图①中的“AC AB⊥,BD AB⊥”为改“60CAB DBA∠=∠=︒”,其他条件不变.设点Q的运动速度为/xcm s,是否存在实数x,使得ACP△与BPQ 全等?若存在,求出相应的x、t的值;若不存在,请说明理由.【答案】(1)全等,PC与PQ垂直;(2)存在,11tx=⎧⎨=⎩或232tx=⎧⎪⎨=⎪⎩【解析】【分析】(1)利用SAS证得△ACP≌△BPQ,得出∠ACP=∠BPQ,进一步得出∠APC+∠BPQ=∠APC+∠ACP=90°得出结论即可;(2)由△ACP≌△BPQ,分两种情况:①AC=BP,AP=BQ,②AC=BQ,AP=BP,建立方程组求得答案即可.【详解】解:(1)当t=1时,AP=BQ=1,BP=AC=3,又∠A=∠B=90°,在△ACP和△BPQ中,AP BQA BAC BP=⎧⎪∠=∠⎨⎪=⎩,∴△ACP≌△BPQ(SAS).∴∠ACP=∠BPQ,∴∠APC+∠BPQ=∠APC+∠ACP=90°.∴∠CPQ=90°,即线段PC 与线段PQ 垂直.(2)①若△ACP ≌△BPQ ,则AC=BP ,AP=BQ ,34t t xt =-⎧⎨=⎩, 解得11t x =⎧⎨=⎩, ②若△ACP ≌△BQP ,则AC=BQ ,AP=BP ,34xt t t =⎧⎨=-⎩, 解得232t x =⎧⎪⎨=⎪⎩, 综上所述,存在11t x =⎧⎨=⎩或232t x =⎧⎪⎨=⎪⎩使得△ACP 与△BPQ 全等. 【点睛】本题考查全等三角形的判定与性质,在解题时注意分类讨论思想的运用.4.如图(1),AB=4cm ,AC ⊥AB ,BD ⊥AB ,AC=BD=3cm ,点P 在线段AB 上以1cm/s 的速度由点A 向点B 运动,同时,点Q 在线段BD 上由点B 向点D 运动,他们的运动时间为t(s).(1)若点Q 的运动速度与点P 的运动速度相等,当t=1时,△ACP 与△BPQ 是否全等,请说明理由(2)判断此时线段PC 和线段PQ 的关系,并说明理由。

深圳实验学校初中部2024-2025学年上学期八年级期中考试数学试卷(解析版)

深圳实验学校初中部2024-2025学年上学期八年级期中考试数学试卷(解析版)

深圳实验学校初中部2024-2025学年第一学期八年级期中考试数学试卷一.选择题(每题3分,共30分)1. 【答案】B【详解】本题考查无理数的识别,解题的关键是掌握无理数的定义(无限不循环小数).据此进行判断即可.5=,是整数,,227,3π,0.1212212221…(两个1之间依次多一个2)5个数中,其中3π,0.1212212221…(两个1之间依次多一个2)3个.故选:B .2. 【答案】D【详解】解:A 33≠−,故该选项不符合题意;B 33≠±,故该选项不符合题意;C 33=−≠±,故该选项不符合题意;D 3=,故该选项符合题意;故选:D .3. 【答案】B【详解】解:=22a ∴+=,解得0a =.故选:B .4. 【答案】B【详解】解:∵点P 到x 轴的距离是3,到y 轴的距离是1,∴点P 的横坐标的绝对值为1,纵坐标的绝对值为3,又∵点P 在第二象限,∴点P 的坐标为()1,3−.故选:B .5. 【答案】B【详解】解:A 、222b c a −= ,222a c b ∴+=,∴ABC 是直角三角形,故选项A 不符合题意;B 、::3:4:5A BC ∠∠∠= ,∴最大角518075345C ∠=°×=°++, ∴ABC 不是直角三角形,故选项B 符合题意;C 、A B C ∠=∠−∠ ,A CB ∴∠+∠=∠,180A B C ∠+∠+∠=° ,90B ∴∠=°,∴ABC 是直角三角形,故选项C 不符合题意;D 、设8a k =,15b k =,17c k =,222(8)(15)(17)k k k += ,222a b c ∴+=, ∴ABC 是直角三角形,故选项D 不符合题意;故选:B .6. 【答案】B【详解】∵牡丹园的坐标是(2,2),南门的坐标是(0,3)−,∴中心广场的位置是原点,∴湖心亭的坐标为(3,1)−,故选:B .7. 【答案】B【详解】解:当点P 在AD 上时,△ABP 的底AB 不变,高增大,所以△ABP 的面积S 随着时间t 的增大而增大;当点P 在DE 上时,△ABP 的底AB 不变,高不变,所以△ABP 的面积S 不变;当点P 在EF 上时,△ABP 的底AB 不变,高减小,所以△ABP 的面积S 随着时间t 的减小而减小; 当点P 在FG 上时,△ABP 的底AB 不变,高不变,所以△ABP 的面积S 不变;当点P 在GB 上时,△ABP 的底AB 不变,高减小,所以△ABP 的面积S 随着时间t 的减小而减小; 故选B .8. 【答案】B【详解】解:将直线2y x =向上平移3个单位长度后得到直线23y x =+, A 、函数的图象与y 轴的交点坐标是()0,3,原说法错误,不符合题意;B 、函数图象经过第一、二、三象限,正确,符合题意;C 、当2x =−时,1y =−,所以点()21−−,不在函数23y x =+图象上,原说法错误,不符合题意; D 、直线23y x =+,y 随x 的增大而增大,若12x x <,则12y y <,原说法错误,不符合题意; 故选:B .9. 【答案】B【详解】解:由题意可知,中间小正方形的边长为m n −,∴()25m n −=,即2225m n mn +−=①,∵()221m n +=,∴22221m n mn ++=②,①+②得()22226m n +=, ∴大正方形的面积2213m n +=,故选:B .10. 【答案】D详解】A 、根据图象可知:点()5,1500指甲从A 开始出发,此选项正确,不符合题意;B 、根据题意乙的速度为()15005300m/min ÷=,设甲的原速度为m/min x , ∴()253002552500x ×−−=,解得:250x =,此选项正确,不符合题意; C 、∵乙骑行25分钟后,甲以原速度的85继续骑行, ∴此时甲的速度为()8250=400m/min 5×, 【∴()250040030025÷−=, 则甲与乙相遇时,甲出发了2525545+−=(分钟), 此选项正确,不符合题意;D 、当86x =时,甲到达B 地,此时乙距离B 地还有()250204008625300863600×+×−−×=(米),需要360030012÷=(分钟), ∴乙比甲晚12分钟到达B 地,此选项错误,符合题意; 故选:D .二.填空题11. 【答案】5a ≥∴50−≥a∴5a ≥.故答案为:5a ≥.12. 【答案】x =1【详解】解:由表格数据可知,直线l 1:y =-2x +a 和l 2:y =x +b 交于(1,-1)点, ∴方程-2x +a =x +b 的解是x =1,故答案为:x =1.13.【答案】6【详解】解:根据题意得:91016<<, ∴34<<, ∴的整数部分3a =,小数部分3b=−,∴)336a b −=−=−,故答案为:6−.14. 【答案】20cm【详解】如图1,∵AB=18cm ,BC=GF=12cm ,BF=10cm ,∴BM=18﹣6=12,BN=10+6=16,∴;如图2,∵AB=18cm ,BC=GF=12cm ,BF=10cm ,∴PM=18﹣6+6=18,NP=10,∴.∵20<∴蚂蚁沿长方体表面爬到米粒处的最短距离为20.故答案为20cm15. 【详解】如图过点A 作AQ BC ⊥于点Q ,当点P 与Q 重合时,在图2中F 点表示当12AB BQ +=时,点P 到达点Q ,此时当P 在BC 上运动时,AP 最小,∴7BC =,4,3BQ QC ==在Rt ABQ 中,8,4AB BQ ==∴AQ ∵1122ABC S AB CG AQ BC =×=× ,∴BC AQ CG AB ×==.三.解答题16.【答案】(1)2(2)3−【解析】【小问1详解】解:(201202132− ++−134=+++2=+;【小问2详解】解:(22−+,46=−−4665=−−+3=−17. 【答案】(1)13x y = = (2)3114x y = =【解析】【小问1详解】2147x y x y −=− +=①② 由①+②得66x =∴1x =将1x =代入①得21−=−y ∴3y =∴13x y = = 【小问2详解】3314312x y −−−=两边同时乘以12得()()33431x y −−−= ∴342x y −=− ∴414342x y x y += −=−①② ①+②得412x =∴3x =将3x =代入①得3414y +=∴114y = ∴3114x y = =.18. 【答案】(1)见解析,(4,1)−−;(2)ABC 是直角三角形,理由见解析;(3)见解析【详解】解:(1)如图,111A B C 即为所求作的图形,点1C ()4,1−−, 故答案为()4,1−−;(2)ABC 是直角三角形,理由如下:由勾股定理得220AB =,25BC =,225AC =,∴222AB BC AC +=,∴ABC 是直角三角形;(3)如图点D 即为所求,.19. 【答案】(1)2y x =+(2)3a =(3)()0,3或()0,7−【解析】【小问1详解】解:根据题意得:353k b k b += −+=−, 解得:12k b = =, ∴函数表达式为2y x =+;【小问2详解】解: 点()2,21C a a ++在该函数图象上,2122a a ∴+=++,3a ∴=;【小问3详解】解:设点()0,P m ,直线2y x =+与y 轴交于点C ,当0x =时,2y =∴交点C 的坐标为(0,2),()1215152ABP S m =+×−−= , |2|5m ∴+=,3m ∴=或−7,∴点P 坐标()0,3或()0,7−.20. 【答案】(1)1k =,6m =(2)见解析 (3)①1;②增大;③1b >【解析】【小问1详解】将()0,2代入1y x k =++得:012k ++=, 解得:1k =, ∴11y x =++,当4x =时,4116y =++=,∴6m =.【小问2详解】根据表格中的对应值在直角坐标系中描点、连线,如图为所求.【小问3详解】根据图象可得,①该函数的最小值为1; ②当1x >−时,函数值y 随自变量x 的增大而增大; ③∵关于x 的方程11x b +=−有两个不同的解, ∴由图象可得,b 的取值范围为1b >. 故答案为:1;增大;1b >. 21. 【答案】(1)①4 ②1 (2)1或5【解析】【小问1详解】解:①如图1,∵线段AB 上点B 到x 轴的距离最大, ∴4AB d ;②∵()1,3A −,()2,4B ,∴A ,B 关于直线2y =的对称点()1,1C −,()2,0D , 如图2,∵线段CD 上点C 到x 轴的距离最大,∴1CD d =;【小问2详解】解:∵()1,E m −,()2,2F m +,∴E ,F 关于直线2y =的对称点()1,4G m −−,()2,2H m −, 当42m m −≥−时,∵3GH d =, ∴43m −=, ∴1m =或7(舍去); 当42m m −<−时,∵3GH d =, ∴23m −=, ∴5m =或1−(舍去); 综上,1m =或5.22. 【答案】(1)1005t −(2)6 (3)203或152【解析】【小问1详解】解:如图1,作PR AO ⊥于点R ,四边形OABC 是矩形,且顶点A ,C 分别在x 轴和y 轴上,(20,10)B , 20AO BC ∴==,10CO AB ==,BC AO ∥,90OAB ∠=°, AB AO ∴⊥,10PR AB ∴==,20AQ AO OQ t =−=− ,11(20)10100522APQ S AQ PR t t ∴=⋅=×−×=− , 故答案为:1005t −;【小问2详解】解:如图2,作MN BC ⊥于点N ,由折叠得MP BP =,10CM AB ==,90CMP B ∠=∠=°, 222CM MP CP += ,且20MPBP CP ==−, ()2221020CP CP ∴+−=, 解得252CP =, 25152022MP ∴=−=, 1122PCM CP MN CM MP S ⋅=⋅= ,∴125115102222MN ×=××, ∴解得6MN =,∴此时M 到直线BC 的距离为6;【小问3详解】解:①如图3,当AP PQ =时,作PT AQ ⊥于点T ,则AT QT =,∴AB PT ∥,且AT AB ⊥,BP AB ⊥, ∴四边形ABPT 是矩形, AT BP t ∴==,20AQt =− ,且2AQ AT =, 202t t ∴−=, 解得203t =; ②当AP AQ =时,222AB BP AP += ,且10AB =,BP t =,20APAQ t ==−, 22210(20)t t ∴+−, 解得152t =, 综上所述,t 的值为203或152.。

天津市河东区2023-2024学年八年级下学期期中数学试题(解析版)

天津市河东区2023-2024学年八年级下学期期中数学试题(解析版)

2023-2024学年度第二学期八年级数学期中考试试卷一、选择题:本题共12小题,每小题3分,共36分.1. 下列各式一定是二次根式的是( )A. B. C. D. 【答案】B【解析】【分析】本题考查了二次根式的定义,关键是正确理解二次根式的定义.根据“一般地,我们把形如的式子叫做二次根式”判断即可.详解】解:A 、当无意义,故此选项不合题意;B是二次根式,故此选项符合题意;C 、,该代数式无意义,故此选项不合题意;D的根指数是3,不是二次根式,故此选项不合题意;故选:B.2. 下列二次根式中,是最简二次根式的是( )A. B.C. D. 【答案】D【解析】【分析】根据最简二次根式的定义判断即可.【详解】解:不是最简二次根式,不符合题意;不是最简二次根式,不符合题意;D.故选:D .【点睛】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不能含有开得尽方的因数或因式;熟练掌握最简二次根式必须满足的两个条件是解题的关键.3. 下列各数属于勾股数的是( )A. 、、B. 、、C. 、、D. ,,【)0a ≥0x <70-<2===1.52 2.568103465a 12a 13a【答案】B【解析】【分析】本题考查的是勾股数.根据勾股定理一一计算两个较小的数的平方和是否等于最大数的平方即可.【详解】解: A .因为不是整数,所以不是勾股数,故本选项不符合题意.B .,是勾股数,故本选项符合题意.C .,不是勾股数,故本选项不符合题意.D .因为不一定是整数,所以不一定是勾股数,故本选项不符合题意.故选:B .4. 如图,字母B 所代表的正方形的面积是( )A. 12B. 15C. 144D. 306【答案】C【解析】【分析】根据勾股定理求出字母B 所代表的正方形的边长,根据正方形的性质即可求出面积答案.【详解】解:如图,在中,由勾股定理得,,字母代表的正方形的边长为,字母B 所代表的正方形的面积为:.故选C .【点睛】本题考查的是勾股定理的应用、正方形的面积,熟知如果直角三角形的两条直角边长分别是和,斜边长为,那么是解决问题的关键.2226810+=222546+≠2cm 2cm 2cm 2cm Rt DEF△12EF cm ===∴B 12cm ∴22212144cm EF ==a b c 222+=a b c5. 在平行四边形中,,则( )A. B. C. D. 【答案】D【解析】【分析】本题主要考查了平行四边形的性质,根据平行四边形对边平行得到,再根据已知条件求出的度数即可得到答案.【详解】解;∵四边形是平行四边形,∴,∴,∵,∴,∴,故选:D .6. 如图,在四边形中,对角线、相交于点,下列条件不能判定四边形为平行四边形的是( )A. B. C. D. 【答案】B【解析】【分析】根据平行四边形的判定定理逐项分析判断即可求解.【详解】A、根据两组对边分别平行的四边形是平行四边形,可以判定,不符合题意;ABCD 23A B ∠∠=::D ∠=36︒60︒72︒108︒180A D A B +=+=︒∠∠∠∠A ∠ABCD AB CD AD BC ∥,∥180A D A B +=+=︒∠∠∠∠23A B ∠∠=::21807232A =︒⨯=︒+∠108D ∠=︒ABCD AC BD O ABCD ,AB CD AD BC∥∥,AD BC AB CD =∥,OA OC OB OD==,AB CD AD BC==B 、无法判定,四边形可能是等腰梯形,也可能是平行四边形,符合题意;C 、根据对角线互相平分的四边形是平行四边形,可以判定,不符合题意;D 、根据两组对边分别相等的四边形是平行四边形,可以判定,不符合题意;故选:B .【点睛】本题考查了平行四边形的判定,熟练掌握平行四边形的判定定理是解题的关键.7. 下列计算结果正确的是( )A. B. C. D. 【答案】B【解析】【分析】根据算术平方根的定义对A 进行判断;根据二次根式的乘法法则对B 、C 、D 进行判断.【详解】解:A,故错误;BC,故错误;D 、,故错误;故选:B .【点睛】本题考查了二次根式的乘法运算及算术平方根的定义,正确运用二次根式的乘法法则及识别平方根与算术平方根的区别是解题的关键.8. 如图,一棵大树在一次强台风中在距地面处折断,倒下后树顶着地点A 距树底B 的距离为,则这棵大树在折断前的高度为( )A. 10B. 17C. 18D. 20【答案】C【解析】【分析】根据大树的折断部分与未断部分、地面恰好构成直角三角形,再根据勾股定理求出AC 的长,进而可得出结论.【详解】解:∵树的折断部分与未断部分、地面恰好构成直角三角形,且BC =5m ,AB =12m ,5=±=16=26=5==4==212=5m 12m∴,∴这棵树原来的高度为:BC +AC =5+13=18(m ),即:这棵大树在折断前的高度为18m ,故C 正确.故选:C .【点睛】本题考查了勾股定理的应用,熟知直角三角形斜边的平方等于两直角边的平方和是解答此题的关键.9. 已知实数a 、b 在数轴上的位置如图所示,化简|a +bA. B. 2a C. 2b D. 【答案】A【解析】=|a|,再结合绝对值的性质去绝对值符号,再合并同类项即可.【详解】解:由数轴知b <0<a ,且|a|<|b|,则a+b <0,b-a <0,∴原式=-(a+b )+(b-a )=-a-b+b-a=-2a ,故选A .【点睛】此题主要考查了二次根式=|a|.10. 如图,矩形的对角线,相交于点,若,则四边形的周长为( )的()13m AC ===2a-2b-ABCD AC BD O ,CE BD DE AC ∥∥4AC =OCEDA. B. C. D. 【答案】C【解析】【分析】本题考查了菱形的判定和性质,矩形的性质.根据矩形的性质,判定四边形是菱形,故其周长为计算即可.【详解】因为,所以四边形是平行四边形.因为四边形是矩形,所以,所以四边形是菱形,所以周长为,故选:C .11. 如图,点E ,F ,G ,H 分别是四边形边,,,的中点.则下列说法:①若,则四边形为矩形;②若,则四边形菱形;③若四边形是平行四边形,则与互相平分;④若四边形是正方形,则与互相垂直且相等.其中正确的个数是( )A. 1B. 2C. 3D. 4【答案】A 为46810OCED 42OC AC =,CE BD DE AC ∥∥OCED ABCD OD CO =OCED 428OC AC ==ABCD AB BC CD DA AC BD =EFGH AC BD ⊥EFGH EFGH AC BD EFGH AC BD【解析】【分析】本题考查了三角形中位线定理,平行四边形的判定及性质,特殊四边形的判定及性质;由三角形中位线定理及平行四边形的判定方法得四边形是平行四边形,再根据特殊四边形的判定及性质逐一判断即可求解;掌握特殊四边形的判定方法及性质是解题的关键.【详解】解:点E ,F ,G ,H 分别是四边形边,,,的中点,,,,,四边形是平行四边形,①若,则四边形为菱形;结论错误,不符合题意;②若,则四边形为矩形;结论错误,不符合题意;③若四边形是平行四边形,则与不一定互相平分;结论错误,不符合题意;④若四边形是正方形,则与互相垂直且相等;结论正确,符合题意.故选:A .12. 如图,菱形,点、、、均在坐标轴上,,点,点是的中点,点是上的一动点,则的最小值是( )A. 3B. 5C.D. 【答案】A【解析】【分析】直线AC 上的动点P 到E 、D 两定点距离之和最小属“将军饮马”模型,由D 关于直线AC 的对称点B ,连接BE ,则线段BE 的长即是PD +PE 的最小值.【详解】如图:连接BE,EFGH ABCD AB BC CD DA EH BD FG ∴∥∥EF AC GH ∥∥12EH FG BD ==12EF GH AC ==∴EFGH AC BD =EFGH AC BD ⊥EFGH EFGH AC BD EFGH AC BD ABCD A B C D 120ABC ∠=︒()30A -,E CD P OC PD PE+,∵菱形ABCD ,∴B 、D 关于直线AC 对称,∵直线AC 上的动点P 到E 、D 两定点距离之和最小∴根据“将军饮马”模型可知BE 长度即是PD +PE 的最小值.,∵菱形ABCD ,,点,∴,,∴∴△CDB 是等边三角形∴∵点是的中点,∴且BE ⊥CD , ∴故选:A .【点睛】本题考查菱形性质及动点问题,解题关键是构造直角三角形用勾股定理求线段长.二、填空题:本题共6小题,每小题3分,共18分.13.有意义,则x 的取值范围为____________.【答案】x ≥8【解析】【分析】根据被开方数大于等于0列式计算即可得解.∴x ﹣8≥0,的120ABC ∠=︒()30A -,60,30CDB DAO ∠=︒∠=︒3OA =OD AD DC CB ====BD =E CD 12DE CD ==3BE ==解得:x≥8故答案为x≥8【点睛】此题主要考查了二次根式有意义的条件,正确把握二次根式的被开方数为非负数的性质是解题关键.14. 已知|a=0,则a +b =___.【答案】3【解析】【分析】根据非负性即可求出a ,b ,故可求解.【详解】根据题意得:a +2=0,b ﹣5=0,解得:a =﹣2,b =5,∴a +b =﹣2+5=3.故答案为:3.【点睛】此题主要考查代数式求值,解题的关键是熟知绝对值与二次根式的非负性.15. 菱形的两条对角线的长分别为6和8,则这个菱形的周长为_____.【答案】20【解析】【分析】根据菱形的对角线互相垂直平分的性质,利用对角线的一半,根据勾股定理求出菱形的边长,再根据菱形的四条边相等求出周长即可.【详解】解:如图,根据题意得AO=×8=4,BO=×6=3,∵四边形ABCD 是菱形,∴AB=BC=CD=DA ,AC ⊥BD .∴△AOB 是直角三角形.∴.∴此菱形的周长为:5×4=20故答案为:20.16. 如图,正方形ODB C 中,OC =1,OA =OB ,则数轴上点A 表示的数是____.12125AB ===【答案】【解析】,结合数轴即可求解.【详解】∵正方形ODBC 中,OC =1,∴BC =OC =1,∠BCO =90°.∵在Rt△BOC 中,根据勾股定理得,OB .∴OA =OB .∵点A 在数轴上原点的左边,∴点A 表示的数是.【点睛】本题考查了实数与数轴,勾股定理,数形结合是解题关键.17. 如图,点O 是矩形的对角线的中点,点E 是的中点,连接,.若,,则矩形的面积为_______【答案】【解析】【分析】利用直角三角形斜边上中线等于斜边的一半得到,利用中位线定理得到,利用勾股定理得到,即求得矩形的面积.【详解】解:∵四边形是矩形,∴,∵点O 是矩形的对角线的中点,的=ABCD BD BC OA OE 2OA =1OE =ABCD 4BD =22CD OE ==BC =ABCD ABCD 90,BAD BCD ∠=∠=︒AB CD =ABCD BD∴,∴,∵点E 是的中点,∴是的中位线,∴∵,∴,∴,∴矩形的面积为故答案为:【点睛】此题考查了矩形的性质、直角三角形的性质、勾股定理、三角形中位线定理等知识,熟练掌握直角三角形的性质和三角形中位线定理是解题的关键.18. 如图,矩形,,,点在轴正半轴上,点在轴正半轴上.当点在轴上运动时,点也随之在轴上运动,在这个运动过程中,点到原点的最大距离为 __.##【解析】【分析】取 的中点 ,连接, ,由勾股定理可求 的长,由直角三角形的性质可求 的长,由三角形的三边可求解.【详解】如图,取的中点,连接,,122AO BD ==4BD =BC OE BCD △12OE CD =1OE =22CD OE ==BC ===ABCD 2BC CD ⋅==ABCD 1AB =2BC =A x D y A x D y C O 1+1AD H CH OH CH OH AD H CH OH矩形,,,,,点是的中点,,,点是的中点,,在中,,当点在上时,,的最大值为,.【点睛】本题考查了矩形的性质,直角三角形的性质,三角形的三边形关系,勾股定理等知识,添加恰当辅助线构造三角形是解题的关键.三、计算题:本大题共1小题,共6分.19. 计算:(1;(2)【答案】(1)(2)【解析】【分析】(1)先化简二次根式,然后计算加减法.(2)先去利用完全平方公式和平方差公式去括号,然后计算加减法.ABCD1AB=2BC=1CD AB∴==2AD BC==H AD1AH DH∴==CH∴===90AOD∠=︒H AD112OH AD∴==OCH∆CO OH CH<+H OC CO OH CH=+CO∴1OH CH+=+123-+))2233-++5-【小问1详解】;【小问2详解】解:.【点睛】本题主要考查了二次根式的加减计算,二次根式的混合计算,乘法公式,正确计算是解题的关键.四、解答题:本题共5小题,共40分.解答应写出文字说明,证明过程或演算步骤.20. 某开发区有一空地,如图所示,现计划在空地上种草皮,经测量,,,,,,求(1)此四边形空地的面积.(2)若每种植平方米草皮需要元,问总共需要投入多少元?【答案】(1)36平方米(2)3600元【解析】【分析】本题考查了勾股定理,勾股定理逆定理:(1)如图,连接,由勾股定理得,,由,可得是直角三角形,且,根据,求面积即可;23-+(33=--+33=-++=))2233++5459=-++-5=-ABCD 90B Ð=°3m AB =4m BC =12m AD =13m CD =1100AC 5AC =22222251216913AC AD CD +=+===ACD 90CAD ∠=︒ABC ACD ABCD S S S =+四边形△△(2)根据,计算求解即可.【小问1详解】解:如图,连接,∵,,,∴由勾股定理得,,∵,,∴,∴是直角三角形,且,∴.【小问2详解】解:由(1)得共需要投入元,答:共需要投入元.21. 如图,在平行四边形中,对角线,交于点,过点任作直线分别交、于点、.(1)求证:;(2)若,,,求四边形的周长.【答案】(1)见解析(2)15【解析】【分析】此题考查了平行四边形的性质以及全等三角形的判定与性质.(1)根据平行四边形的性质得出,求出,根据推出,即可得出答案;100ABCD S ⨯四边形AC 90B Ð=°3m AB =4m BC=5m AC ==12m AD =13m CD =22222251216913AC AD CD +=+===ACD 90CAD ∠=︒()211113451236m 2222ABC ACD ABCD S S S AB BC AC AD =+=⨯⨯+⨯⨯=⨯⨯+⨯⨯= 四边形361003600⨯=3600ABCD AC BD O O AB CD E F OE OF =6CD =5AD =2OE =AEFD ,AB CD OA OC =∥EAO FCO ∠=∠ASA AEO CFO △△≌(2)由,可得,继而求得答案.【小问1详解】证明:四边形是平行四边形,,,,在和中,,,;【小问2详解】解:,∴,四边形的周长.22. 如图,矩形中,,,是边上一点,将沿直线折叠,点的对应点恰好落在边上,求的长.【答案】3【解析】【分析】本题主要考查了矩形与折叠问题,勾股定理与折叠问题,先由矩形的性质和折叠的性质得到,,,,再利用勾股定理求出,则,设,则,在中,由勾股定理得,解方程即可得到答案.【详解】解:四边形是矩形,将沿直线折叠,点的对应点恰好落在边上AEO CFO △△≌24,6EF OE DF AF AB ==+== ABCD AB CD ∴ OA OC =EAO FCO ∴∠=∠AEO △CFO △OAE OCF OA OCAOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩()ASA AEO CFO ∴ ≌OE OF ∴=OAE OCF △≌△AE CF=24,6EF OE DF AE DF FC CD ∴==+=+==∴AEFD 56415AD DF AE EF =+++=++=ABCD 8AB =10AD =E AB BCE CE B F AD AE 8AB CD ==10BC AD FC ===90D A ∠=∠=︒BE EF =6DF =4AF =AE x =8BE FE x ==-Rt AEF ()22248x x +=- ABCD BCE CE B F AD,,,,,,设,则,在中,由勾股定理得∴,解得,.23. 在中,,C 是的中点,过点D 作,且,连接交于F .(1)求证:四边形是菱形;(2)若,菱形的面积为40,求的长.【答案】(1)见解析;(2)10.【解析】【分析】(1)根据直角三角形斜边上的中线等于斜边的一半,得到,证明即可.(2)根据,计算即可.【小问1详解】证明:,且,∴四边形是平行四边形,∵,C 是的中点,∴,∴平行四边形是菱形.【小问2详解】解:∵四边形是菱形,8AB CD ∴==10BC AD FC ===90D A ∠=∠=︒BE EF=6DF ∴===1064AF ∴=-=AE x =8BE FE x ==-Rt AEF 222AE AF EF +=()22248x x +=-3x =3AE ∴=Rt BDE △90BDE ∠=︒BE AD BE AD BC =AE CD ABCD 8DB =ABCD DE DC BC =12BDE ABCD S S BD DE ==菱形AD BE AD BC =ABCD 90BDE ∠=︒BE DC CB CE ==ABCD ABCD∴,在和中,∵,∴,∴,∵,∴,∴,∴,∴,∴.【点睛】本题考查了平行四边形的判定,菱形的判定,直角三角形的性质,三角形全等的判定和性质,熟练掌握菱形的判定,直角三角形的性质是解题的关键.24. 如图,在矩形中,,,点从点出发向点运动,运动到点停止,同时,点从点出发向点运动,运动到点停止,点,的速度都是每秒个单位长度,连接,,设点,运动的时间为秒.(1)当为何值时,四边形是矩形?(2)当时,判断四边形的形状,并说明理由.(3)整个运动当中,线段扫过的面积是多少?【答案】(1)8(2)四边形为菱形,理由见解析(3)64AB BC CD DA ===ABD △CDB △AB CD AD CB BD DB =⎧⎪=⎨⎪=⎩()SSS ABD CDB ≌ABD CBD S S = BC CE =CDE CBD S S = ABD CBD CDE S S S == 12BDE ABCD S S BD DE == 菱形18402DE ⨯⨯=10DE =ABCD 8AB =16BC =P D A A Q B C C P Q 1PQ AQ .CP P Q t t ABQP 6t =AQCP PQ AQCP【解析】【分析】本题主要考查了矩形的性质与判定,勾股定理,菱形的判定:(1)先由矩形的性质得到,,根据题意可得,则,再由当时,四边形为矩形,得到,据此可得答案;(2)当时,,,再证明四边形是平行四边形,利用勾股定理推出,据此可得结论;(3)连接,,与相交于点,则整个运动当中,线段扫过的面积是的面积的面积,即为矩形的面积的一半,据此求解即可.【小问1详解】解:在矩形中,,,,.由已知可得,∴,在矩形中,,,∴当时,四边形为矩形,∴,解得,当时,四边形是矩形.【小问2详解】解:四边形为菱形,理由如下:当时,,,∵四边形是矩形,∴,∴四边形是平行四边形,在中,由勾股定理得,∴,16BC AD ==8AB CD ==BQ DP t ==16AP CQ t ==-BQ AP =ABQP 16t t =-6t =6BQ DP ==10AP CQ ==APCQ AP AQ =AC BD AC BD E PQ AED △BEC +△ABCD ABCD 8AB =16BC =16BC AD ∴==8AB CD ==BQ DP t ==16AP CQ t ==-ABCD 90B Ð=°AD BC ∥BQ AP =ABQP 16t t =-8t =∴8t =ABQP AQCP 6t =6BQ DP ==10AP CQ ==ABCD 90,B AD BC ∠=︒∥APCQ Rt ABQ10AQ ==AP AQ =∴四边形为菱形;【小问3详解】解:连接,,与相交于点,则整个运动当中,线段扫过的面积是的面积的面积,.,整个运动当中,线段扫过的面积.AQCPAC BD AC BD E PQ AED△BEC+△12AED BEC ABCDS S S+=△△矩形∴PQ118166422AB BC=⨯⨯=⨯⨯=。

洪山区2023-2024学年上学期期中八年级数学试题(解析版)

洪山区2023-2024学年上学期期中八年级数学试题(解析版)

洪山区2023-2024学年八年级(上)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.下列与武汉有关的图标中,是轴对称图形的是()A.B.C.D.【解答】解:A、B、C中的图形都不是轴对称图形,故A、B、C不符合题意;D中的图形是轴对称图形,故D符合题意.故选:D.2.如图,△AEC≌△ADB,若∠A=50°,∠ABD=38°,则图中∠AEC的度数是()A.88°B.92°C.95°D.102°【解答】解:在△ABD中,∠A=50°,∠ABD=38°,∴∠ADB=180°﹣∠A﹣∠92°,∵△AEC≌△ADB,∴∠AEC=∠ADB=92°,故选:B.3.已知一个三角形的两边分别为4cm,10cm,则它的第三边可能是()A.6cm B.10cm C.14cm D.18cm【解答】解:设第三边的长为x cm,根据三角形的三边关系,得10﹣4<x<10+4,即6<x<14.故选:B.4.在三角形内到三角形三边距离相等的点是三角形()A.三边的垂直平分线的交点B.三条高的交点C.三条角平分线的交点D.三条中线的交点【解答】解:∵OG⊥AB,OF⊥AC,OG=OF,∴O在∠A的平分线上,同理O在∠B的平分线上,O在∠C的平分线上,即O是三条角平分线的交点,故选:C.5.一个多边形的每个外角都等于40°,那么从这个多边形的一个顶点出发的对角线的条数是()A.9条B.8条C.7条D.6条【解答】解:多边形的边数:360°÷40°=9,从一个顶点出发可以引对角线的条数:9﹣3=6(条),故选:D.6.下列命题中,不正确的是()A.成轴对称的两个三角形一定全等B.等边三角形有3条对称轴C.角是轴对称图形D.等腰三角形一边上的高、中线及这边所对角的角平分线重合【解答】解:成轴对称的两个三角形一定全等,故A正确,不符合题意;等边三角形有3条对称轴,故B正确,不符合题意;角是轴对称图形,故C正确,不符合题意;等腰三角形底边上的高、中线及顶角的角平分线重合,故D错误,符合题意;故选:D.7如图,已知∠A=60°,则∠D+∠E+∠F+∠G的度数为()A.180°B.240°C.300°D.360°【解答】解:∵∠D+∠E=∠ABD,∠ACG=∠F+∠G,∴∠D+∠E+∠F+∠G=∠ABD+∠ACG.∵∠ABD=∠A+∠ACB,∠ACG=∠A+∠ABC,∴∠ABD+∠ACG=∠A+∠ABC+∠ACB+∠A=180°+∠A.∴∠D+∠E+∠F+∠G=180°+∠A=180°+60°=240°.故选:B.8.(3分)如图,在平面直角坐标系中,点A(0,3),B(1,0),以AB为边在第一象限作等腰直角△ABC,则满足条件的点C的个数为()A.1B.2C.3D.4【解答】解:分三种情况讨论:①如图所示:过点B作CB⊥AB,使BC=AB,过点C作CD⊥x轴于点D,∵∠AOB=∠ABC=90°,∴∠OAB+∠ABO=∠ABO+∠CBD=90°,∴∠OAB=∠CBD,∵A(3,0),B(1,0),O(0,0),∴OA=3,OB=1,在△AOB和△BDC中,,∴△AOB≌△BDC(AAS),∴OB=CD=1,OA=BD=3,∴OD=1+3=4,∴点C(4,1);②如图所示:过点A作CA⊥AB,使AC=AB,过点C作CE⊥y轴于点E,∴∠CEA=∠BAC=90°,∵A(3,0),B(1,0),O(0,0),∴OA=3,OB=1,∵∠AOB=∠CEA=90°,∴∠OAB+∠ABO=∠OAB+∠CAE=90°,∴∠ABO=∠CAE,在△AOB和△BDC中,,∴△AOB≌△CEA(AAS),∴OB=AE=1,OA=EC=3,∴OE=OA+AE=3+1=4,∴点C(3,4);③如图所示:过点B作BC''⊥AC',过点C''作C''M⊥OD,C''N⊥OA,∵A(3,0),B(1,0),O(0,0),∴OA=3,OB=1,∴AB=,∵△ABC'是等腰直角三角形,∴BC'=AB=,∴AC'=,∴C''是AC'的中点,∴BC''=AC''=,OM=,BC''⊥AC',C''M⊥OD,C''N⊥OA,∴∠C''MO=∠C''NO=∠AOB=90°,∴四边形OMC''N是矩形,∴NC''=OM=2,∴AN=,∴ON=OA﹣AN=3﹣1=2,∴C''的坐标为(2,2),综上可知:满足条件的点C的个数为3,故选:C.9.如图,在△ABC纸片中,AB=10,BC=8,沿过点B的直线折叠这个三角形,使点C落在AB边上的点E处,折痕为BD,若∠C=2∠BDE,则DE的长为()A.B.C.D.2【解答】解:由折叠的性质可得:∠ABD=∠CBD,BC=BE=8,∠C=∠DEB,∠BDE=∠BDC,CD=DE,如图,过点D作DM⊥AB于点M,作DN⊥BC于点N,则DN=DM,∵AB=10,:S△BCD=10:8=5:4,∴AE=2,S△ADB∵∠BCD=2∠BDE,∴∠EDC=∠BED,∴∠ADE=∠AED,∴AD=AE=2,:S△BCD=5:4,∵S△ADB∴AD:CD=5:4,∴CD==DE.故选:C.10.如图,长方形ABCD中,对角线BD=4,∠ABD=60°,将长方形ABCD沿BD折叠,得△BED,点M是线段BD上一动点.当BM+EM+CM的值最小时,DM的长为()A.1B.C.2D.3【解答】解:作EH⊥BC于点H,交BD于点I,作MF⊥BC于点F,则∠BHE=∠BFM=90°,∵四边形ABCD是矩形,BD=4,∠ABD=60°,∴∠BCD=90°,CD∥AB,∴∠BDC=∠ABD=60°,∴∠CBD=90°﹣∠BDC=30°,∴CD=BD=2,BM=2FM,由折叠得∠EBD=∠CBD=30°,∠BDE=∠BDC=60°,ED=CD=2,∴∠EBH=∠EBD+∠CBD=60°,∴∠BEH=90°﹣∠EBH=30°,∵∠BED=∠BCD=90°,∴∠DEH=∠BED﹣∠BEH=60°,∴∠EID=∠IDE=∠DEI=60°,∴△DIE是等边三角形,∴DI=ED=2,∵BE=BC===2,∴BH=BE=,∴EH===3,∵FM+EM≥EH,∴FM+EM≥3,∴2FM+2EM≥6,∵BM=2FM,EM=CM,∴BM+EM+CM=2FM+2EM,∴BM+EM+CM≥6,∴当点M于点I重合时,BM+EM+CM取得最小值,最小值为6,∴DM=DI=2,故选:C.二、填空题(共6小题,每小题3分,共18分)11.一个五边形的内角和是540°.180°×(5﹣2)=540°,故答案为:540°.12.等腰三角形的顶角为38°,它的一个底角的度数为71°.【解答】解:∵等腰三角形的顶角为38°,∴等腰三角形的底角=×(180°﹣38°)=71°.故答案为:71°.13.如图,△ABC中,DE是AB的垂直平分线,△AEC的周长为10cm,AD=3cm,则△ABC的周长为16cm.【解答】解:∵DE是AB的垂直平分线,△AEC的周长为8cm,AD=2cm,∴AE=BE,AD=BD=AB,∵AD=3cm,∴AB=6cm,∴AB+AC+BC=AB+(AC+AE+CE)=6+10=16cm.故答案为:16cm.14.如图,AD是△ABC的中线,AB=8,AC=4,则AD的取值范围是2<AD<6.【解答】解:如图,延长AD至H,使AD=DH,连接BH,∵AD是△ABC的中线,∴CD=BD,在△ADC和△HDB中,,∴△ADC≌△HDB(SAS),∴AC=BH=4,在△ABH中,AB﹣BH<AH<AB+BH,∴4<2AD<12,∴2<AD<6,故答案为:2<AD6.15.(3分)如图,△ABC中,AB=AC,∠A=90°,点M,N在底边BC上,若∠AMN=75°,∠MAN=45°,那么线段MN与CN之间的数量关系为MN=2CN.【解答】解:∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°,如图,将△ACN绕点A顺时针旋转90°,得到△ABH,∴△ACN≌△ABH,∠HAN=90°,∴BH=CN,AN=AH,∠ABH=∠C=45°,∴∠HBM=90°,∵∠MAN=45°,∴∠HAM=∠MAN,在△AMN和△AMH中,,∴△AMN≌△AMH(SAS),∴MN=MH,∠AMN=∠AMH=75°,∴∠BMH=30°,∴HM=2BH,∴MN=2CN,故答案为:MN=2CN.16.(3分)如图,△ABD与△ACE都是等边三角形,且AB≠AC,下列结论:①BE=CD;②∠BOD=60°;③∠BDO=∠CEO;④若∠BAC=90°,DA∥BC,则BC⊥EC.其中正确的是①②④(填序号).【解答】解:∵△ABD与△AEC都是等边三角形,∴AD=AB,AE=AC,∠ADB=∠ABD=60°,∠DAB=∠EAC=60°,∴∠DAB+∠BAC=∠EAC+∠BAC,∴∠DAC=∠BAE,在△DAC和△BAE中,,∴△DAC≌△BAE(SAS),∴BE=DC,∠ADC=∠ABE,∵∠BOD=180°﹣∠ODB﹣∠DBA﹣∠ABE=180°﹣∠ODB﹣60°﹣∠ADC=120°﹣(∠ODB+∠ADC)=120°﹣60°=60°,∴∠BOD=60°,∴①正确;②正确;∵△ABD与△AEC都是等边三角形,∴∠ADB=∠AEC=60°,但根据已知不能推出∠ADC=∠AEB,∴∠BDO=∠CEO错误,∴③错误;∵DA∥BC,∴∠DAB=∠ABC=60°,∵∠BAC=90°,∴∠ACB=30°,∵∠ACE=60°,∴∠ECB=90°,∴BC⊥CE,④正确,综上所述,①②④正确,故答案为:①②④.三、解答题(共8小题,共72分)17.(8分)在△ABC中,∠B=2∠A,∠C=∠B+40°.求△ABC的各内角度数.【解答】解:∵∠B=2∠A=∠B+40°,∠A+∠B+∠C=180°,∴∠A+2∠A+2∠A+40°=180°,解得:∠A=28°,∴∠B=2∠A=56°,∠C=∠B+40°=96°.18.(8分)如图,已知点B,E,C,F在同一条直线上,AB=DE,AC=DF,∠A=∠D.求证:BE=CF.【解答】证明:在△ABC和△DEF中,,∴△ABC≌△DEF(SAS).∴BC=EF,∴BE=CF.19.(8分)如图,在△ABC中,AD是高,AE,BF是角平分线,AE交BF于点O,∠BAC=80°,∠C=70°.(1)求∠AOB的大小;(2)若CD=2,AD=5,求△AEC的面积.【解答】(1)解:∵∠BAC=80°,∠C=70°,∴∠ABC=180°﹣80°﹣70°=30°,∵AE,BF是角平分线,∴∠BAO=∠BAC=40°,∠ABO=∠ABC=15°,∴∠AOB=180°﹣15°﹣40°=125°;(2)解:∵∠BAO=40°,∠ABC=30°,∴∠AEC=30°+40°=70°=∠C,∵AD是高,∴ED=DC=2,∴EC=2DC=4,∴△AEC的面积=.20.(8分)如图,在等边△ABC中,点D,E,F分别是AC,BC,AB上的点,且AF=BE,∠DFE=∠A,连接DE,FG平分∠DFE交DE于G.(1)求证:AD=BF;(2)若EG=2,求EF的长度.【解答】(1)证明:∵△ABC是等边三角形,∴∠A=∠B=60°,∵∠DFB=∠DFE+∠BFE=∠ADF+∠A,∴∠BFE=∠ADF,在△BFE和△ADF中,,∴△BFE≌△ADF(AAS),∴DA=BF;(2)解:∵△BFE≌△ADF,∴FD=FE,又∵∠DFE=60°,∴△DFE为等边三角形,又∵GF平分∠DFE,∴∠FGE=90°,∠EFG=30°,∴EF=2EG=4.21.(8分)如图,在下列带有坐标系的网格中,△ABC的顶点都在边长为1的小正方形的顶点上,A(﹣3,3),B(﹣4,﹣2),C(﹣1,﹣1).仅用无刻度的直尺,完成作图.(1)直接写出△ABC的面积为7;(2)已知点M为AC的中点,请作出点M关于y轴的对称点N,并写出点N的坐标(2,1);(3)作△ABC的高AH;(4)在线段AC上作点P,使得∠CBP=45°.【解答】解:(1)S△ABC=3×5﹣=7,故答案为:7;(2)如图所示,点N即为所求,N(2,1),故答案为:(2,1);(3)如图所示,高AH即为所求;(4)如图所示,点P即为所求.22.(10分)“白日登山望烽火,黄昏饮马傍交河”,这是唐代诗人李顾《古从军行》里的一句诗,由此却引申出一系列非常有趣的数学问题,通常称为“将军饮马”问题.(1)如图1,若点A和点B分别在直线l的两侧,请作出示意图,在直线l上找到点C,使得CA+CB有最小值,并说明作图依据:两点之间线段最短;(2)如图2,若点A和点B在直线l的同侧,请在直线l上作出点P,使得PA+PB有最小值;(3)如图3,已知∠AOB=30°,点Q在∠AOB内部,点M,N分别在射线OA,OB上,若OQ=6,请求出△QMN周长的最小值.【解答】解:(1)连接AB,与直线l相交于一点C,则CA+CB有最小值.作图依据是两点之间线段最短.故答案为:两点之间线段最短;(2)如图,点P即为所求.(3)如图2,作法:(Ⅰ)作Q关于OA的对称点C,(Ⅱ)作点Q关于OB的对称点D,(Ⅲ)连接CD,分别交OA于点M,交OB于N,则△QMN的周长最小,连接OC、OD,∵点C和点Q关于OA对称,∴OC=OQ=6,∠MOC=∠QOM,同理可得,OD=OQ=6,∠QON=∠NOD,∴OC=OD,∠MOC+∠QOM+∠QON+∠NOD=2∠QOM+2∠QON=2(∠QOM+∠QON)=2∠AOB=60°,∴△COD为等边三角形,∴CD=6,∴△QMN的周长=QM+MN+QN=CM+MN+DN=CD=6.23.(10分)在等边△ABC中,AB=4,点D和点E分别在边AB,BC上,以DE为边向右侧作等边△DEF,连接CF.(1)如图1,当点D和点A重合时,试求∠ACF的度数;(2)当点D是边AB的中点时,①如图2,判断线段FE与FC的数量关系并证明;②如图3,在点E从点B沿BC运动到点C的过程中,请直接写出点F的运动轨迹的长度.【解答】解:(1)如图1中,∵△ABC,△AEF都是等边三角形,∴∠ABC=∠BAC=∠EAF=60°,AB=AC,AE=AF,即∠BAE+∠EAC=∠EAC+∠CAF,∴∠BAE=∠CAF,在△BAE和△CAF中,,∴△BAE≌△CAF(SAS),∴∠ABC=∠ACF=60°;(2)①FE=FC,证明:如图2中,连接CD,取BC的中点T,连接DT,FT,∵BD=AD,BT=CT,AB=BC,∴BD=BT,∵∠B=60°,∴△BDT是等边三角形,∵△DEF是等边三角形,∴同(1)法可证,△BDE≌△TDF(SAS),∴BE=FT,∠B=∠DTF=60°,∵∠BTD=60°,∴∠FTC=∠B=60°,∵BD=TC,∠B=∠FTC,BE=TF,∴△BDE≌△TCF(SAS),∴DE=CF,∵EF=DE,∴FE=FC;②如图3中,连接CD,过A、D分别作AI⊥BC,DH⊥BC,其垂足分别为I、H,∵DF=EF=CF,∴点F在CD的垂直平分线上,∴当AF⊥FI时,AF的值最小,此时∠DAF=90°,点F的运动轨迹即为FI的长度,∵△ABC为等边三角形,AI⊥BC,∴AI垂直平分BC,∴BI=BC=2,∴AI=BI=2,∵∠ADF+60°+∠BDE=180°,∠BED+60°+∠BDE=180°,∴∠ADF=∠BED,在△ADF和H△DE中,,∴△ADF≌△HED(AAS),∴AF=DH,∵DH⊥BC,BD=AB=2,∠B=60°,∴∠BDH=30°,∴BH=BD=1,∴DH=BH=,∴AF=DH=,在Rt△AFI中,根据勾股定理得:FI===3,∴点F的运动轨迹的长度为3.24.(12分)如图,在平面直角坐标系中,已知三点A(0,a)(a>0),B(0,b)(b≤0),C(c,0)(c<0),且(a﹣b)2=c2.(1)试判断线段AB与OC的数量关系,并证明;(2)如图1,当b=0时,连接AC,点P是线段AC上一点,CQ⊥OP于Q,连接AQ.若∠AQP=45°,试探究CQ和OQ之间数量关系;(3)如图2,当b<0时,点D在x轴负半轴上,位于点C的左侧,且CD=OB,连接AD,射线BC交AD 于点E.当点B在y轴负半轴上运动时,∠CED的度数是否为定值?如果是,请求出∠CED的度数;如果不是,请说明理由.【解答】(1)解:AB=OC,理由如下:∵(a﹣b)2=c2,a>0,b≤0,c>0,∴a﹣b=c,∴AB=OC;(2)CQ=2OQ,证明:过点A作AH⊥OP于点H,∵CQ⊥OP,∴∠CQO=90°,∵∠AOB=∠AHO=90°,∴∠AOH+∠COQ=90°,∠COQ+∠OCQ=90°,∴∠AOH=∠OCQ,∵OC=AB,∴△COQ≌△OAH(AAS),∴AH=OQ,CQ=OH,∵∠AQP=45°,∴∠HQA=∠HAQ=45°,∴AH=HQ,∴OH=2OQ,∴CQ=2OQ;(3)∠CED=135°,为定值.理由:将线段AD沿AB方向平移至DF,则AD∥BF,AB∥DF,且AB=DF,∵CD=OB,∠COB=∠CDF=90°,CO=DF=AB,∴△CDF≌△BOC(SAS),∴CF=CB,∠DCF=∠CBO,∵∠OCB+∠CBO=90°,∴∠OCB+∠DCF=90°,∴∠FCB=90°,∴∠FBC=45°,∵AD∥BF,∴∠AEC=∠FBC=45°,∴∠CED=135°.。

精品解析:重庆市渝北区渝北区实验中学校2023-2024学年八年级上学期期中数学试题(解析版)

精品解析:重庆市渝北区渝北区实验中学校2023-2024学年八年级上学期期中数学试题(解析版)

渝北区实验中学校2025届2023—2024学年度第一学期半期考试数学试卷(满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试题卷上直接作答;2.作图(包括作辅助线)请一律用黑色2B 铅笔完成.一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A ,B ,C ,D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1. 以下列各组线段为边,能组成三角形的是( )A. 1,2,4B. 2,3,5C. 4,6,8D. 5,6,12【答案】C【解析】【分析】根据两条短边之和大于最长的边和两边之差小于第三边逐项进行判断即可.【详解】解:A 、,不能组成三角形,故本选项不符合题意;B 、,不能组成三角形,故本选项不符合题意;C 、,能组成三角形,故本选项符合题意;D 、,不能组成三角形,故本选项不符合题意.故选:C .【点睛】本题考查三角形的三边关系,熟记三角形任意两边之和大于第三边,任意两边之差小于第三边,是解题的关键.2. 下列标志中,是轴对称图形的是( )A. B. C. D.【答案】D【解析】【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.根据轴对称图形的定义判断即可.【详解】解:A、不是轴对称图形,不符合题意,选项错误;1234+=<235+=46108+=>561112+=<B 、不是轴对称图形,不符合题意,选项错误;C 、不是轴对称图形,不符合题意,选项错误;D 、是轴对称图形,符合题意,选项正确;故选:D .【点睛】本题考查了轴对称图形的识别,熟练掌握轴对称图形的定义是解题关键.3. 下列四个图形中,线段是的高的是( )A. B. C. D.【答案】C【解析】【分析】本题主要考查了三角形的高,三角形的高是指从三角形的一个顶点向对边作垂线,连接顶点与垂足之间的线段.根据三角形高的画法知,过点作边上的高,垂足为,其中线段是的高,再结合图形进行判断.【详解】解:线段是的高的图是;故选:C .4. 如图,已知图中的两个三角形全等,则度数是( )A. B. C. D. 【答案】A【解析】【分析】本题考查了全等三角形的性质,正确得出对应角是解题的关键.根据全等三角形对应角相等即可得出结论.【详解】解:∵图中的两个三角形全等,∴,BE ABC V B AC E BE ABC V BE ABC V α∠50︒58︒60︒72︒50α∠=︒5. 工人师傅常用角尺平分一个任意角,作法如下:如图所示,是一个任意角,在边,上分别取,移动角尺,使角尺两边相同刻度分别与,重合(),射线即是的角平分线;这种作法的理由是( )A. B. C. D. 【答案】A【解析】【分析】本题考查了全等三角形的判定及性质.由三边相等得,即由判定三角全等.【详解】解:由图可知,,又,在和中,,,,即是的平分线.故答案为:.故选:A.6. 如图,点B ,F ,C ,E 共线,∠B =∠E ,BF =EC ,添加一个条件,不能判断△ABC ≌△DEF 的是( )A. AB =DEB. ∠A =∠DC. AC =DFD. AC ∥FD的AOB ∠OA OB OM ON =M N CM CN =OC AOB ∠SSSSAS ASA AASCOM CON V V ≌SSS CM CN =OM ON = MCO V NCO V MO NO CO CO CM CN =⎧⎪=⎨⎪=⎩(SSS)COM CON ∴V V ≌AOC BOC ∴∠=∠OC AOB ∠SSS【解析】【分析】根据全等三角形的判定与性质逐一分析即可解题.【详解】解:BF =EC ,A. 添加一个条件AB =DE ,又故A 不符合题意;B. 添加一个条件∠A =∠D又故B 不符合题意;C. 添加一个条件AC =DF ,不能判断△ABC ≌△DEF ,故C 符合题意;D. 添加一个条件AC ∥FD又故D 不符合题意,故选:C .【点睛】本题考查添加条件使得三角形全等即全等三角形的判定,是重要考点,难度较易,掌握相关知识是解题关键.7. 等腰三角形的顶角是,则这个三角形的底角的大小是( )A. B. 或 C. D. 【答案】C【解析】【分析】根据等腰三角形的性质和三角形的内角和定理求解.【详解】解:等腰三角形的顶角是,则这个三角形的底角是;故选:C . BC EF∴=,BC EF B E=∠=∠ ()ABC DEF SAS ∴△≌△,BC EF B E=∠=∠ ()ABC DEF AAS ∴V V ≌ACB EFD∴∠=∠,BC EF B E=∠=∠ ()ABC DEF ASA ∴V V ≌50︒50︒65︒50︒65︒80︒50︒()118050652⨯︒-︒=︒【点睛】本题考查了等腰三角形的两个底角相等和三角形的内角和定理,熟练掌握上述基本知识是关键.8. 如果一个等腰三角形周长为17cm ,一边长为5cm ,那么腰长为( )A. 5cmB. 6cmC. 7cmD. 5cm 或6cm 【答案】D【解析】【分析】此题分为两种情况:5cm 是等腰三角形的底边长或5cm 是等腰三角形的腰长,然后进一步根据三角形的三边关系进行分析能否构成三角形.【详解】当5cm 是等腰三角形的底边时,则其腰长是(17−5)÷2=6(cm ),能够组成三角形;当5cm 是等腰三角形的腰时,则其底边是17−5×2=7(cm ),能够组成三角形.故该等腰三角形的腰长为:6cm 或5cm .故选:D .【点睛】此题考查了等腰三角形的两腰相等的定义,三角形的三边关系,熟练掌握等腰三角形的定义是解题的关键.9. 如图,在等腰直角中,点是边上的中点,点为边上的动点,连接,过点作,交于点,连接,,则下列结论错误的是( )A. B. C. D. 【答案】B【解析】【分析】本题考查全等三角形的判定与性质及等腰三角形三线合一,先证明出,再根据全等三角形的性质推出其他选项,即可得到答案.【详解】解:由题意:为等腰直角三角形,点是的中点,,平分,且,,,,,在和中,的ABC V D BC E AB ED D DF DE ⊥AC F EF AD DFA DEBV V ≌EF AD =45DEF ∠=︒12ABC AEDF S S =△四边形DFA DEB V V ≌ABC V D BC AD BD CD ∴==AD BAC ∠AD BC ⊥45DAF DAE DBE DCF ∴∠=∠=∠=∠=︒DF DE ⊥ BDE ADF ∴∠=∠ADE CDF ∠=DFA V DEB V,,A 正确,不符合题意;,,,C 正确,不符合题意;,,,,为等腰直角三角形,点是的中点,,D 正确,不符合题意;无法得出,B 错误,符合题意;故选:B .10. 对多项式任意加一个或者两个括号后仍然只含减法运算并将所得式子化简,称之为“加算操作”,例如:,,…,给出下列说法:①不存在任何“加算操作”,使其结果与原多项式相等;②不存在任何“加算操作”,使其结果与原多项式之和互为相反数;③所有的“加算操作”共有3种不同的结果.以上说法中正确的个数为( )A. 0B. 1C. 2D. 3【答案】B【解析】DAF DBE BD ADBDE ADF ∠=∠⎧⎪=⎨⎪∠=∠⎩()ASA DFA DEB ∴V V ≌∴DF DE ∴=DF DE ⊥ 45DEF ∴∠=︒∴DFA DEB V V ≌∴DFA DEB S S =V V ADE ADF AEDF S S S =+四边形V V ∴ADE DEB ABD AEDF S S S S =+=四边形V V V ABC V D BC ∴12ABD ABC AEDF S S S ==四边形V V ∴EF AD =∴x y z m ---()()x y z m x y z m ---=--+()x y z m x y z m ---=--+【分析】本题主要考查了整式的加减运算,原多项式为,“加算操作”后为:,①,存在“加算操作”后使其结果与原多项式相等,从而进行判断;②假设存在原多项式与“加算操作”后的原多项式互为相反数,得到,由此进行判断;③列举所有“加算操作“后的结果,从而进行判断即可.【详解】解:若原多项式为,“加算操作”后为:,①,存在“加算操作”,使其结果与原多项式相等,故①中的说法不正确;②若原多项式与“加算操作”后的原多项式互为相反数,添括号后的符号始终为正,不存在任何“加算操作”,使其结果与原多项式之和互为相反数,故②的说法正确;③所有的“加算操作”共有4种不同的结果:(1);(2);(3);(4)故③的说法不正确,综上可知:以上说法中正确的个数为1,故选:B .二、填空题:(本大题共8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上.11. 如图,在中,,则__________.【答案】##130度【解析】【分析】利用三角形的外角的性质,直接计算即可.x y z m ---()()x y z m ---()x y z m x y z m ---=---x y z m x y z m -+++≠--+x y z m ---()()x y z m x y z m ---=--+()x y z m x y z m ---=---∴x ∴()x y z m x y z m ---=--+()x y z m x y z m ---=-++()x y z m x y z m ---=-+-()x y z m x y z m---=---ABC V 70,60A B ∠=︒∠=︒ACD ∠=130︒【详解】解:由图可知:;故答案为:.【点睛】本题考查三角形的外角的性质.熟练掌握三角形的一个外角等于与它不相邻的两个内角的和,是解题的关键.12. 如图,是的中线,若,则________.【答案】【解析】【分析】本题考查了三角形中线的性质,根据三角形的中线的性质即可求解.【详解】解:∵是中线, ,∴,故答案为:.13. 如图所示,,,直线垂直平分线段,交于点,则的周长为________.【答案】【解析】【分析】本题考查的是线段的垂直平分线的性质,根据线段的垂直平分线的性质得到,利用三角形的周长公式计算即可.【详解】解:直线是的垂直平分线,,的周长的130ACD A B ∠=∠+∠=︒130︒AD ABC V 2ABC S =△ACD S =V 1AD ABC V 2ABC S =△ACD S =V 114cm AB AC ==3cm BC =a AB AC D BDC V cm 7DA DB = a AB DA DB ∴=BDC ∴V BD BC CD=++DA CD BC=++,故答案为:.14. 一个多边形的内角和是,这个多边形的边数是______.【答案】8【解析】【分析】本题主要考查多边形内角和,熟练掌握多边形内角和公式是解题的关键;因此此题可根据多边形内角和公式进行求解即可.【详解】解:由题意得:,∴;故答案为8.15. 如图,Rt △ABC 中,∠C =90°,AD 是∠BAC 的平分线,CD =3,AB =8,则△ABD 的面积等于_____.【答案】12【解析】【分析】过D 作DE ⊥AB 于E ,由角平分线的性质,即可求得DE 的长,继而求得三角形面积.【详解】解:如图,过D 作DE ⊥AB 于E ,∵AD 平分∠BAC ,∠C =90°,∴DE =DC =3,∵AB =8,∴△ABD 的面积=AB •DE =×8×3=12.故答案为:12.【点睛】本题考查了角平分线的性质,能根据角平分线性质得出DE =CD 是解题的关键,注意:角平分线上的点到这个角两边的距离相等.()7cm AC BC =+=71080︒()2180n -⨯︒()21801080n -⨯︒=︒8n =121216. 如图,在中,,和的角平分线分别交于点,,若,,.则的长为________.【答案】【解析】【分析】本题考查了等腰三角形的判定与性质,平行线的性质,根据角平分线的定义和平行线的性质可证和是等腰三角形,从而可得,,然后利用线段的和差关系进行计算,即可解答.【详解】解:平分,平分,,,,,,,,,,,,故答案为:.17. 如图,在中,,,,点Q 是边上的一个动点,点Q 从点B 开始沿方向运动,且速度为每秒,设出发的时间为t 秒.当点Q 在边CA 上运动时,出发________秒后,是以为腰的等腰三角形.【答案】或【解析】【分析】题考查了等腰三角形的性质,分两种情况:当时;当时;然后分别进行计算ABC V ED BC ∥ABC ∠ACB ∠ED G F 4BE =6CD =3FG =ED 7EBG V DFC V 4EB EG ==6DC DF ==BG ABC ∠CF ACB ∠ABG CBG ∴∠=∠ACF BCF ∠=∠ ED BC ∥EGB CBG ∴∠=∠DFC BCF ∠=∠ABG EGB ∴∠=∠ACF DFC ∠=∠4EB EG ∴==6DC DF ==3FG = 4637DE EG DF FG ∴=+-=+-=7ABC V 90B Ð=°16cm AB =12cm BC =20cm AC =ABC V B C A →→1cm BCQ △CQ 2224CQ CB =QC QB =即可解答.【详解】解:分两种情况:当时,如图:秒;当时,如图:,,,,,,,,秒;综上所述:当点在边上运动时,出发或秒后,是以为腰的等腰三角形,故答案为:或.18. 一个四位自然数M ,若各个数位上的数字均不为0,且满足百位上的数字与十位上的数字之和是千位CQ CB =12cm CB CQ == ,∴241CB CQ t +==()QC QB =QC QB = C CBQ ∠∠∴=90ABC ∠=︒ 90C A ∠∠∴+=︒90CBQ QBA ∠∠+=︒QBA A ∠∠∴=BQ QA ∴=()110cm 2CQ QA AC ∴===∴221CB CQ t +==()Q CA 2224BCQ V CQ 2224上的数字与个位上的数字之和的3倍,则称这个四位数M 为“三生数”.例如:,,是“三生数”;,,不是“三生数”.则最小的“三生数”是________;如果一个“三生数”M 的各数位上的数字之和为16,并且规定:将这个“三生数”M 的十位与百位交换得到记,且为正整数,则符合条件的最大的M 的值是________.【答案】①. ②. 【解析】【分析】本考查了二元一次方程的解;由题意得,百位上的数字+十位上的数字=3×(千位上的数字+个位上的数字),根据最小的“三生数”的千位上的数字和个位上的数字都取1,求得最小的“三生数”;设千位上的数字为,百位上的数字为,十位上的数字为,个位上的数字为,由题意得,,,根据的值最大,得出,,,,【详解】解:由题意得,百位上的数字十位上的数字千位上的数字个位上的数字,各个数位上的数字均不为,∴最小的“三生数”的千位上的数字和个位上的数字都取,则百位上的数字十位上的数字,百位上的数字取,十位上的数字取,,∴最小的“三生数”是,设千位上的数字为,百位上的数字为,十位上的数字为,个位上的数字为,由题意得,,,,,由于的值要最大,,,,,即,则,,符合题意,故最大的的值是,故答案为:,.三、解答题:(本大题共8个小题,19、20题每小题8分,26题12分,其余每小题101843M =()84313+=⨯+ 1843∴6312M =()31362+≠⨯+ 6312∴M '()270M M G M '-=()G M 11513931a b c d 16a b c d +++=()3b c a d +=⨯+M 3a =9b =3c =1d =+3(=⨯+) 01+6=∴15()15311+=⨯+ 1151a b c d 16a b c d +++=()3b c a d +=⨯+4a d ∴+=12b c +=M 3a ∴=9b =3c =1d =3931M =3391M '=()393133912270270M M GG M '--===M 393111513931分,共78分)解答时每小题都必须写出必要的演算过程或推理步骤,请将解答过程书写在答题卡中对应的位置上.19. 如图,在△ABC 中,BD 是∠ABC 的平分线,CE 是AB 边上的高,且∠ACB=60°,∠ADB=97°,求∠A 和∠ACE 的度数.【答案】∠A =46°, ∠ACE =44°【解析】【分析】先由三角形内角与外角的关系可求∠DBC ,再根据三角形的内角和可求∠A ,最后由直角三角形AEC 可求∠ACE .【详解】∵∠ADB=∠DBC+∠ACB ,∴∠DBC=∠ADB-∠ACB=97°-60°=37°.∵BD 是角平分线,∴∠ABC=74°,∴∠A=180°-∠ABC-∠ACB=46°.∵CE 是高,∴∠AEC=90°,∴∠ACE=90°-∠A=44°.【点睛】本题考查了三角形的内角和以及三角形内角与外角的关系,利用此可计算其它角的度数,是一道基础题.20. 如图,三个顶点的坐标分别为,,.ABC V ()1,1A ()4,2B ()3,4C(1)请画出关于轴成轴对称的图形,并写出、、的坐标;(2)求的面积.【答案】(1)画出图形见解析,、、的坐标为、、;(2)的面积为【解析】【分析】(1)根据题意画出图形,写出坐标即可;(2)利用割补法求面积即可求解.【详解】解:(1)画出图形如下:,ABC V x 111A B C △1A 1B 1C ABC V 1A 1B 1C ()11,1A -()14,2B -()13,4C -ABC V 72、、的坐标为、、;(2)的面积为.【点睛】本题考查平面直角坐标系中图形的对称、割补法求面积,根据轴对称的定义画出图形是解题的关键.21. 如图,在中,,,垂足为点,点在的延长线上.(1)尺规作图:作的平分线交于点(按要求完成作图,不写作法,保留作图痕迹);(2)填空:在(1)的条件下,若,试说明.证明:∵,,∴ ① , ② ,∵,∴ ③ ,又∵平分,∴2 ④ ,∴ ⑤ ,在和中,,∴,∴.【答案】(1)作图见解析1A 1B 1C ()11,1A -()14,2B -()13,4C -ABC V 1117332321132222⨯-⨯⨯-⨯⨯-⨯⨯=ABC V AB AC =AD BC ⊥D E AD ACB ∠AD F 2EBD ABC ∠=∠DE DF =AB AC =AD BC ⊥BD =ABC ∠=2EBD ABC ∠=∠2EBD ∠=CF ACB ∠ACB =∠EBD ∠=BED V CFD △EBD FCD BD CD BDE CDF ∠=∠⎧⎪=⎨⎪∠=∠⎩()ASA BED CFD ≅V V DE DF =(2),,,,【解析】【分析】对于(1),以点C 为圆心,以小于为半径画弧,交于点M ,交于点N ,再分别以点M ,N 为圆心,以大于为半径画弧,两弧交于点P ,作射线,交于点F ;对于(2),先根据等腰三角形的性质得,,结合已知条件得,再根据角平分线定义可得,然后根据“”证明≌,最后根据全等三角形的性质得出答案.【小问1详解】如图所示.【小问2详解】∵,,∴,.∵,∴.∵平分,∴,∴.在和中,,CD ACB ∠ACB ∠BCF ∠DCF∠BC BC AC 12MN CP AD BD CD =A ABC CB =∠∠2E B D A C B ∠=∠EBD DCF ∠=∠ASA BED V CFD △AB AC =AD BC ⊥BD CD =A ABC CB =∠∠2EBD ABC ∠=∠2E B D A C B ∠=∠CF ACB ∠2B C F A C B ∠=∠EBD DCF ∠=∠BED V CFD △EBD DCFBD CD BDE CDF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴≌(),∴.故答案为:,,,,.【点睛】本题主要考查了尺规作角平分线,等腰三角形的性质,全等三角形的性质和判定,角平分线的定义等,证明线段相等的常用方法是证明两个三角形全等.22. 如图,点、、、在一条直线上,,,.求证:.【答案】见解析【解析】【分析】此题考查全等三角形的判定与性质,证明它们所在的三角形全等即可.根据平行线的性质可得;由可得.运用证明与全等.【详解】证明:,.,.在与中,,,.23. (1)如图1,在中,,边上的垂直平分线交于点,交于点,连接,将分成两个角,且,求的度数.(2)如图2,中,、的三等分线交于点、,若,,求的度数.BED V CFD △ASA DE DF =CD ACB ∠ACB ∠BCF ∠DCF ∠B E C F AC DF ∥AC DF =BE CF =AB DE =ACB F ∠=∠BE CF =BC EF =SAS ABC V DEF V AC DF ∥ACB F ∴∠=∠BE CF = BC EF ∴=ABC V DEF V AC DF ACB F BC EF =⎧⎪∠=∠⎨⎪=⎩()SAS ABC DEF ∴V V ≌AB DE ∴=Rt ABC △90C ∠=︒AB DE BC D AB E AD AD CAB ∠1:21:2∠∠=ADC ∠ABC V ABC ∠ACB ∠E D 120BFC ∠=︒108BGC ∠=︒A ∠【答案】(1);(2)【解析】【分析】本题考查的是线段垂直平分线的性质、等边对等角,三角形的内角和定理;(1)根据线段垂直平分线的性质得到,根据等腰三角形的性质得到,根据直角三角形的两锐角互余列方程,解方程得到答案.(2)设,,在和中,根据三角形内角和定理列方程,相加可得:的值,即可求得的度数.【详解】解:(1)设,则,是边的垂直平分线,,,,,解得:,,则;(2)设,,在中,①,在中,②,解得:①②:,.24. 如图,点在线段上,点在线段上,,,,点,72︒48︒DA DB =B BAD ∠=∠GBC x ∠=DCB y ∠=BFC V BGC V 33x y +A ∠1x ∠=22x ∠=DE AB DA DB ∴=22B x ∴∠=∠=90C ∠=︒2290x x x ∴++=︒18x =︒118∴∠=︒90172ADC ∠=︒-∠=︒GBC x ∠=DCB y ∠=BFC V 218012060x y +=︒-︒=︒BGC V 218010872x y +=︒-︒=︒+33132x y +=︒()1803318013248A x y ∴∠=︒-+=︒-︒=︒B AC E BD ABD DBC ∠=∠EB BC =AE DC =M分别在线段,边上,且满足,猜测与的数量关系并说明理由.【答案】,理由见解析【解析】【分析】本题考查了全等三角形的性质与判定,先证明,进而证明,证明即可得证.【详解】解:,证明:∵点在线段上,,∴,在中,∴∴,又∵∴又,即在中,∴,∴.25. 在中,平分,交于点.N AE CD 90MBN ∠=︒BM BN BM BN =()Rt Rt HL ABE DBC V V ≌MAB NDB ∠=∠()ASA AMB DNB V V ≌BM BN =B AC ABD DBC ∠=∠90ABE DBC ∠=∠=︒Rt ,Rt ABE DBC V V AE DCEB BC=⎧⎨=⎩()Rt Rt HL ABE DBC V V ≌AB DB =EAB CDB∠=∠90MBN ∠=︒90ABM MBE DBN∠=︒-∠=∠EAB CDB ∠=∠MAB NDB∠=∠,AMB DNB V V ABM DBNAB DBMAB NDB∠=⎧⎪=⎨⎪∠=∠⎩()ASA AMB DNB V V ≌BM BN =ABC V AD BAC ∠BC D(1)如图1,点为线段上一点,点,分别为,边上点,连接,,且满足,若,求的长度;(2)如图2,延长至点,且满足,若,,求证:.【答案】(1)(2)见解析【解析】【分析】此题考查了全等三角形的判定与性质,角平分线的性质,等腰三角形的性质与判定;(1)过点作于点,于点,根据角平分线的性质得到,利用证明,根据全等三角形的性质即可得解;(2)在上截取,连接,利用三角形内角和定理求出,,利用证明,根据全等三角形的性质得出,,利用证明,根据全等三角形的性质得到,,根据线段的和差及等腰三角形的性质求解即可.【小问1详解】解:如图1,过点作于点,于点,平分,,,,,,,,在和中,的E AD M N AB AC EM EN 180AME ENA ∠+∠=︒6EM =EN AD H DH DB =40BAC ∠︒=100B ∠=︒AB CH AH +=6E EH AB ⊥H EG AC ⊥G EH EG =AAS MEH NEG V V ≌AC AM AB =DM 40BCA ∠=︒60BDA ∠=︒SAS ABD AMD V V ≌BD MD =60BDA MDA ∠=∠=︒SAS CDM CDH V V ≌CH CM =40MCD HCD ∠=∠=︒E EH AB ⊥H EG AC ⊥G AD BAC ∠EH AB ⊥EG AC ⊥EH EG ∴=90EHM EGN ∠=∠=︒180AME ENA ∠+∠=︒ 180AME EMH ∠+∠=︒EMH ENA ∴∠=∠MEH V NEG V,;【小问2详解】证明:如图2,在上截取,连接,,,,平分,,,,,在和中,,,,,,,,,,在和中,EM EN =⎩()AAS MEH NEG ∴V V ≌6EM EN ∴==AC AM AB =DM 40BAC ∠=︒ 100B ∠=︒40BCA ∴∠=︒AD BAC ∠40BAC ∠=︒20BAD MAD ∴∠=∠=︒18060BDA B BAD ∴∠=︒-∠-∠=︒180120ADC BDA ∴∠=︒-∠=︒ABD V AMD V AB AM BAD MAD AD AD =⎧⎪∠=∠⎨⎪=⎩()SAS ABD AMD ∴V V ≌BD MD ∴=60BDA MDA ∠=∠=︒60CDM ADC MDA BDA ∴∠=∠-∠=︒=∠CDH BDA ∠=∠ CDM CDH ∴∠=∠DH DB = MD DH ∴=CDM V CDH V,,,,,,,,,.26. 在中,,.点为内部一点,连接,,.(1)如图1,若,,求点到直线的距离;(2)如图2,以为直角边作等腰直角,,线段,交于点,若,求证:;(3)如图3,点在边上,且,点为直线上的一个动点,连接,过点作,且满足,连接,当最短时,请直接写出的度数.【答案】(1)(2)见解析(3)【解析】【分析】(1)过点作于,过点作于,可证得,得出,再由等腰三角形性质可得;(2)延长交于点,过点作于点,可证得,进而可证CD CD =⎩()SAS CDM CDH ∴V V ≌CH CM ∴=40MCD HCD ∠=∠=︒AC AM CM =+ AC AB CH ∴=+80ACH ∴∠=︒180208080H ∴∠=︒-︒-︒=︒AH AC ∴=AC AM CM =+ AB CH AH ∴+=Rt ABC △90ACB ∠=︒AC BC =D ABC V CD AD BD AD AC =8CD =B CD CD CDE V DE DC =EC AD F DCB ABD ∠=∠AF DF =Q AB AQ AC =M AC MQ Q NQ MQ ⊥NQ MQ =BN BN CMQ ∠467.5︒A AH CD ⊥H B BG CD ⊥G ()AAS ACH CBG V V ≌BG CH =142CH CD ==BD CE L A AS CE ⊥S ()AAS ACS CBL V V ≌,即可证得结论;(3)作点关于对称点,连接、,交于点,过点作交的延长线于点,连接,可证得,得出,即点在直线上运动,当且仅当时,最短,即点与点重合,作点关于的对称点,连接,则,即,再利用等腰三角形性质即可求得答案.【小问1详解】解:过点作于,过点作于,如图,则,,,,在和中,,,,,,,,即点到直线的距离为;【小问2详解】证明:延长交于点,过点作于点,则,的()AAS AFS DFL V V ≌C AB P AP CP CP AB O Q QW AB ⊥AC W AN ()SAS QWM QAN V V ≌45QAN W ∠∠==︒N AP BN AP ⊥BN N P C AB P CQ QP QC =QN QC =A AH CD ⊥H B BG CD ⊥G 190AHC CGB ∠∠==︒90ACH CAH ∠∠∴+=︒90ACH BCG ACB ∠∠∠+==︒ CAH BCG ∠∠∴=ACH V CBG V AHC CGB CAH BCG AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS ACH CBG ∴V V ≌BG CH ∴=AD AC = AH CD ⊥142CH DH CD ∴===4BG ∴=B CD 4BD CE L A AS CE ⊥S 90ASC ∠=︒是等腰直角三角形,,,,,,,,,,,,在和中,,,,,,,,,在和中,,,;CDE V DE DC =45DCE DEC ∠∠∴==︒45ABD CBD ABC ∠∠∠+==︒ DCB ABD ∠∠=45DCB CBD ∠∠∴+=︒90DCB CBD DCE ∠∠∠∴++=︒1809090BLC ∠∴=︒-︒=︒ASC BLC ∠∠∴=90ACS CAS ∠∠∴+=︒90ACS BCL ACB ∠∠∠+==︒ CAS BCL ∠∠∴=ACS V CBL V ASC BLC CAS BCL AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS ACS CBL ∴V V ≌AS CL ∴=45DCE ∠=︒ 90CLD ∠=︒904545CDL DCE ∠∠∴=︒-︒=︒=CL DL ∴=AS DL ∴=AFS V DFL V 90ASF DLF AFS DFLAS DL ∠=∠=︒⎧⎪∠=⎨⎪=⎩()AAS AFS DFL ∴V V ≌AF DF ∴=【小问3详解】解:如图,作点关于的对称点,连接、,交于点,过点作交的延长线于点,连接,则,,,,,,,,且满足,,,在和中,,,,即点在直线上运动,当且仅当时,最短,即点与点重合,3C AB P AP CP CP AB O Q QW AB ⊥AC W AN 90AQW ∠=︒BAP BAC ∠∠=90ACB ∠=︒ AC BC =45BAC ∠∴=︒904545W BAC ∠∠∴=︒-︒=︒=QA QW ∴=NQ MQ ⊥ NQ MQ =90AQM MQW AQM NQA ∠∠∠∠∴+=+=︒MQW NQA ∠∠∴=QWM V QAN V QW QA MQW NQA QM QN =⎧⎪∠=∠⎨⎪=⎩()SAS QWM QAN ∴V V ≌45QAN W ∠∠∴==︒N AP BN AP ⊥BN N P如图,连接,则,即,,,,,,.【点睛】本题考查了等腰直角三角形的性质,全等三角形的判定和性质,点到直线的距离垂线段最短,等腰三角形的性质,三角形内角和定理等知识,解题的关键是正确添加辅助线构造全等三角形.4CQ QP QC =QN QC =QM QN = QC QM ∴=AQ AC = ()11804567.52ACQ AQC ∠∠∴==︒-︒=︒QM QC = 67.5CMQ ACQ ∠∠∴==︒。

八年级上期中试卷--数学(解析版) (2)

八年级上期中试卷--数学(解析版) (2)

八年级(上)期中数学试卷一、选择题(每小题4分,共40分)1.(4分)下列实数中,属于无理数的是()A.﹣2 B.0 C.D.2.(4分)下列运算正确的是()A.4a2﹣2a2=2a2B.(a2)3=a5C.a2•a3=a6 D.a3+a2=a53.(4分)估计+1的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间4.(4分)下列从左边到右边的变形,属于因式分解的是()A.(x+1)(x﹣1)=x2﹣1 B.x2﹣2x+1=x(x﹣2)+1C.x2﹣4=(x+4)(x﹣4) D.x2+4x+4=(x+2)25.(4分)下列命题中,属于假命题的是()A.在同一平面内垂直于同一条直线的两直线平行B.等角的余角相等C.两直线平行,同位角相等D.相等的角是对顶角6.(4分)如图,△ACF≌△BDE,点A、B、C、D在同一条直线上,下列结论中错误的是()A.AF∥BE B.∠ACF=∠DBE C.AB=CD D.CF∥DE7.(4分)在运用提公因式法对多项式4ab﹣2a2b进行分解因式时,应提的公因式是()A.2a B.2b C.2ab D.4ab8.(4分)已知x2﹣kx+16是一个完全平方式,则k的值是()A.8 B.﹣8 C.16 D.8或﹣89.(4分)计算(25x2+15x3y﹣5x)÷5x()A.5x+3x2y B..5x+3x2y+1 C.5x+3x2y﹣1 D.5x+3x2﹣110.(4分)已知一个正数的两个平方根分别是2x+3和x﹣6,则这个正数的值为()A.5 B.﹣5 C.±5 D.25二、填空题(每小题4分,共24分)11.(4分)﹣27的立方根是.12.(4分)计算:3a4•(﹣2a)=.13.(4分)如图,已知AB=BC,要使△ABD≌△CBD,还需添加一个条件,你添加的条件是.(只需写一个,不添加辅助线)14.(4分)把命题“全等三角形的对应角相等”改写成“如果…,那么…”的形式..15.(4分)计算:=.16.(4分)已知x2﹣2x﹣1=0,则x3﹣5x+2017=.三、解答题(共86分)17.(8分)计算:(﹣2)2﹣+18.(8分)(﹣3x)(7x2+4x﹣2)19.(8分)分解因式:x3+6x2y+9xy220.(8分)先化简,再求值:(a+2)2﹣a(a﹣4),其中a=﹣321.(8分)如图,AB∥DC,AB=DC,AE=CF,求证:△ABF≌△CDE.22.(10分)已知x a•x b=x3,(x a)b=x(x≠0),求下列各式的值.(1)a2+b2;(2)a﹣b.23.(10分)我们知道某些代数恒等式可用一些卡片拼成的图形面积来解释,例如:可用图1来解释(a+b)2=a2+2ab+b2.(1)请你写出图2所表示的代数恒等式;(2)试在图3的方框中画出一个几何图形,使它的面积等于a2+4ab+3b2.24.(12分)仔细阅读下面例题,解答问题:例题:已知关于x的多项式x2﹣4x+m有一个因式是(x+3),求另一个因式以及m的值.解:设另一个因式为(x+n),得:x2﹣4x+m=(x+3)(x+n),则x2﹣4x+m=x2+(n+3)x+3n,∴,解得:n=﹣7,m=﹣21.∴另一个因式为(x﹣7),m的值为﹣21.问题:仿照以上方法解答下面问题:(1)已知关于x的多项式2x2+3x﹣k有一个因式是(x+4),求另一个因式以及k的值.(2)已知关于x的多项式2x3+5x2﹣x+b有一个因式为x+2,求b的值.25.(14分)在△ABC中,∠ACB=90°,AC=BC,直线MN经过C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时,求证:△ADC≌△CEB(2)当直线MN绕点C旋转到图2的位置时,写出线段DE、AD和BE的数量关系,并说明理由.(3)当直线MN绕点C旋转到图3的位置时,直接写出DE、AD和BE的数量关系(不用说明理由)2017-2018学年福建省泉州市惠安县八年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题4分,共40分)1.(4分)下列实数中,属于无理数的是()A.﹣2 B.0 C.D.【解答】解:A、﹣2是有理数,错误;B、0是有理数,错误;C、是无理数,正确;D、是有理数,错误.故选:C.2.(4分)下列运算正确的是()A.4a2﹣2a2=2a2B.(a2)3=a5C.a2•a3=a6 D.a3+a2=a5【解答】解:A、正确;B、(a2)3=a6故错误;C、a2•a3=a5故错误;D、a3+a2不能合并故错误;故选:A.3.(4分)估计+1的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间【解答】解:∵3<<4,∴4<+1<5,即+1在4和5之间,故选:C.4.(4分)下列从左边到右边的变形,属于因式分解的是()A.(x+1)(x﹣1)=x2﹣1 B.x2﹣2x+1=x(x﹣2)+1C.x2﹣4=(x+4)(x﹣4) D.x2+4x+4=(x+2)2【解答】解:A、不是因式分解,故本选项不符合题意;B、不是因式分解,故本选项不符合题意;C、不是因式分解,故本选项不符合题意;D、是因式分解,故本选项符合题意;故选:D.5.(4分)下列命题中,属于假命题的是()A.在同一平面内垂直于同一条直线的两直线平行B.等角的余角相等C.两直线平行,同位角相等D.相等的角是对顶角【解答】解:A、在同一平面内垂直于同一条直线的两直线平行是真命题,不符合题意;B、等角的余角相等是真命题,不符合题意;C、两直线平行,同位角相等是真命题,不符合题意;D、相等的角不一定是对顶角,是假命题,符合题意;故选:D.6.(4分)如图,△ACF≌△BDE,点A、B、C、D在同一条直线上,下列结论中错误的是()A.AF∥BE B.∠ACF=∠DBE C.AB=CD D.CF∥DE【解答】解:∵△ACF≌△BDE,∴∠A=∠EBD,∴AF∥BE,A正确,不符合题意;∴∠ACF=∠BDE,B错误,符合题意;∴AC=BD,∴AB=CD,C正确,不符合题意;∴∠D=∠FCA,∴CF∥DE,D正确,不符合题意;故选:B.7.(4分)在运用提公因式法对多项式4ab﹣2a2b进行分解因式时,应提的公因式是()A.2a B.2b C.2ab D.4ab【解答】解:4ab﹣2a2b=2ab(2﹣a),则对多项式4ab﹣2a2b进行分解因式时,应提的公因式是:2ab.故选:C.8.(4分)已知x2﹣kx+16是一个完全平方式,则k的值是()A.8 B.﹣8 C.16 D.8或﹣8【解答】解:∵x2﹣kx+16是一个完全平方式,∴k=±8,故选:D.9.(4分)计算(25x2+15x3y﹣5x)÷5x()A.5x+3x2y B..5x+3x2y+1 C.5x+3x2y﹣1 D.5x+3x2﹣1【解答】解:(25x2+15x3y﹣5x)÷5x=5x+3x2y﹣1.故选:C.10.(4分)已知一个正数的两个平方根分别是2x+3和x﹣6,则这个正数的值为()A.5 B.﹣5 C.±5 D.25【解答】解:根据题意知2x+3+x﹣6=0,解得:x=1,所以2x+3=5,所以这个正数为52=25,故选:D.二、填空题(每小题4分,共24分)11.(4分)﹣27的立方根是﹣3.【解答】解:∵(﹣3)3=﹣27,∴=﹣3故答案为:﹣3.12.(4分)计算:3a4•(﹣2a)=﹣6a5.【解答】解:3a4•(﹣2a)=﹣6a5.故答案为:﹣6a5.13.(4分)如图,已知AB=BC,要使△ABD≌△CBD,还需添加一个条件,你添加的条件是∠ABD=∠CBD或AD=CD..(只需写一个,不添加辅助线)【解答】解:答案不唯一.①∠ABD=∠CBD.在△ABD和△CBD中,∵,∴△ABD≌△CBD(SAS);②AD=CD.在△ABD和△CBD中,∵,∴△ABD≌△CBD(SSS).故答案为:∠ABD=∠CBD或AD=CD.14.(4分)把命题“全等三角形的对应角相等”改写成“如果…,那么…”的形式.如果两个三角形是全等三角形,那么它们的对应角相等.【解答】解:∵原命题的条件是:两个三角形是全等三角形,结论是:对应角相等,∴命题“全等三角形的对应角相等”改写成“如果…,那么…”的形式是如果两个三角形是全等三角形,那么它们的对应角相等,故答案为:如果两个三角形是全等三角形,那么它们的对应角相等.15.(4分)计算:=9.【解答】解:原式=[×(﹣3)]2016×(﹣3)2=1×9=9,故答案为:9.16.(4分)已知x2﹣2x﹣1=0,则x3﹣5x+2017=2019.【解答】解:∵x2﹣2x﹣1=0,∴x2=2x+1,x2﹣2x=1,则原式=x(2x+1)﹣5x+2017=2x2﹣4x+2017=2(x2﹣2x)+2017=2+2017=2019.故答案为:2019三、解答题(共86分)17.(8分)计算:(﹣2)2﹣+【解答】解:原式=4﹣8+2=﹣2.18.(8分)(﹣3x)(7x2+4x﹣2)【解答】解:原式═21x2﹣12x2+6x.19.(8分)分解因式:x3+6x2y+9xy2【解答】解:原式=x(x2+6xy+9y2)=x(x+3y)2.20.(8分)先化简,再求值:(a+2)2﹣a(a﹣4),其中a=﹣3【解答】解:(a+2)2﹣a(a﹣4)=a2+4a+4﹣a2+4a=8a+4,当a=﹣3时,原式=﹣24+4=﹣20.21.(8分)如图,AB∥DC,AB=DC,AE=CF,求证:△ABF≌△CDE.【解答】证明:∵AB∥DC,∴∠C=∠A,∵AE=CF,∴AE+EF=CF+EF,在△ABF和△CDE中,,∴△ABF≌△CDE(SAS).22.(10分)已知x a•x b=x3,(x a)b=x(x≠0),求下列各式的值.(1)a2+b2;(2)a﹣b.【解答】解:(1)∵x a•x b=x3,(x a)b=x,∴x a+b=x3,x ab=x,则a+b=3、ab=1,∴a2+b2=(a+b)2﹣2ab=32﹣2×1=7;(2)∵(a﹣b)2=(a+b)2﹣4ab=32﹣4=5,∴a﹣b=±.23.(10分)我们知道某些代数恒等式可用一些卡片拼成的图形面积来解释,例如:可用图1来解释(a+b)2=a2+2ab+b2.(1)请你写出图2所表示的代数恒等式;(2)试在图3的方框中画出一个几何图形,使它的面积等于a2+4ab+3b2.【解答】解:(1)图2所表示的代数恒等式为(a+2b)(2a+b)=2a2+5ab+2b2;(2)如图所示:a2+4ab+3b2=(a+b)(a+3b),24.(12分)仔细阅读下面例题,解答问题:例题:已知关于x的多项式x2﹣4x+m有一个因式是(x+3),求另一个因式以及m的值.解:设另一个因式为(x+n),得:x2﹣4x+m=(x+3)(x+n),则x2﹣4x+m=x2+(n+3)x+3n,∴,解得:n=﹣7,m=﹣21.∴另一个因式为(x﹣7),m的值为﹣21.问题:仿照以上方法解答下面问题:(1)已知关于x的多项式2x2+3x﹣k有一个因式是(x+4),求另一个因式以及k的值.(2)已知关于x的多项式2x3+5x2﹣x+b有一个因式为x+2,求b的值.【解答】解:(1)设另一个因式是(2x+b),则(x+4)(2x+b)=2x2+bx+8x+4b=2x2+(b+8)x+4b=2x2+3x﹣k,则,解得:.则另一个因式是:2x﹣5,k=20.(2)设另一个因式是(2x2+mx+n),则(x+2)(2x2+mx+n)=2x3+(m+4)x2+(2m+n)x+2n=2x3+5x2﹣x+b,则,解得.故b的值是﹣6.25.(14分)在△ABC中,∠ACB=90°,AC=BC,直线MN经过C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时,求证:△ADC≌△CEB(2)当直线MN绕点C旋转到图2的位置时,写出线段DE、AD和BE的数量关系,并说明理由.(3)当直线MN绕点C旋转到图3的位置时,直接写出DE、AD和BE的数量关系(不用说明理由)【解答】(1)证明:如图1,∵AD⊥DE,BE⊥DE,∴∠ADC=∠BEC=90°,∵∠ACB=90°,∴∠ACD+∠BCE=90°,∠DAC+∠ACD=90°,∴∠DAC=∠BCE,在△ADC和△CEB中,,∴△ADC≌△CEB(AAS).(2)解:结论:DE=AD﹣BE.理由:如图2,∵BE⊥EC,AD⊥CE,∴∠ADC=∠BEC=90°,∴∠EBC+∠ECB=90°,∵∠ACB=90°,∴∠ECB+∠ACE=90°,∴∠ACD=∠EBC,在△ADC和△CEB中,,∴△ADC≌△CEB(AAS),∴AD=CE,CD=BE,∴DE=EC﹣CD=AD﹣BE.(3)解:结论:DE=BE﹣AD.理由如下:如图3,∵∠ACB=90°,∴∠ACD+∠BCE=90°∵AD⊥MN,BE⊥MN,∴∠ADC=∠CED=90°,∴∠ACD+∠DAC=90°,∴∠DAC=∠ECB,在△ACD和△CBE中,,∴△ACD≌△CBE(AAS),∴AD=CE,CD=BE,∴DE=CD﹣CE=BE﹣AD.。

河南省实验中学2023-2024学年八年级上学期期中数学试题(解析版)

河南省实验中学2023-2024学年八年级上学期期中数学试题(解析版)

2023-2024学年河南省实验中学八年级(上)期中数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1. 下列实数中,属于无理数的是( )A.B. 0.5C.D.2. 下列各组数据中是勾股数的是( ) A. 6,8,10 B. 0.3,0.4,0.5C.,,D. 5,11,123. 已知是关于、的二元一次方程,则的值为( )A.B.C.D.4. 下列运算正确的是( )A. B. C. D.5. 函数图象上有两点,,则与的大小关系是( )A.B.C.D. 无法确定6. 剪纸艺术是最古老的中国民间艺术之一,很多剪纸作品体现了数学中的对称美.如图,蝴蝶剪纸是一幅轴对称图形,如果图中点E 的坐标为,其关于y 轴对称的点F 的坐标为,则的值为( )A. 1B.C.D. 07. 在同一平面直角坐标系中,函数和(为常数,)图象可能是( )A. B.C. D.8. 平面直角坐标系内轴,,点A的坐标为,则点B的坐标为( )A. B.C. 或D. 或9. 如图,一大楼的外墙面与地面垂直,点在墙面上,若米,点到的距离是6米,有一只蚂蚁要从点爬到点,它的最短行程是()米A. 16B.C. 15D. 1410. 如图,在直角坐标系中,矩形的边在轴上,在轴上,顶点的坐标为,将矩形沿对角线翻折,点落在点的位置,且交轴于点.那么点的坐标为()A. B. C. D.二、填空题(本大题共5小题,每小题3分,共15分)11. 比较两数的大小:2___3.(填“<”或“>”)12. 象棋在中国有着三千多年的历史,如图是一方的棋盘,如果“帅”的坐标是,“卒”的坐标为,那么“马”的坐标是________.13. 若关于x,y的方程组的解满足,则的值为________.14. 把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上.若AB=,则CD=_____.15. 如图,矩形中,,,点为射线上的一个动点,与关于直线对称,当为直角三角形时,的长为________.三、解答题(本大题共8小题,共75分)16. 计算:(1);(2).17. 下面是马小虎同学解二元一次方程组的过程,请认真阅读并完成相应的任务.解方程组:解:①×2,得……③第一步②-③,得第二步.第三步将代入①,得.第四步所以,原方程组的解为第五步(1)这种求解二元一次方程组的方法叫做法,以上求解步骤中,马小虎同学第步开始出现错误.(2)请写出此题正确的解答过程.18. 在平面直角坐标系中,点在轴上,点在第一象限,过点作轴的垂线,垂足为,已知点的坐标为,长为2.(1)求,的长.(2)请判断的形状,并说明理由.19. △ABC在平面直角坐标系中位置如图所示,三点在格点上.(1)作出关于y轴对称的;(2)的面积为;(3)在y轴上作点P,使得值最小,并求出点P的坐标.20. 勾股定理是人类早期发现并证明重要数学定理之一,是用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一,它不但因证明方法层出不穷吸引着人们,更因为应用广泛而使人入迷.(1)证明勾股定理据传当年毕达哥拉斯借助如图所示的两个图验证了勾股定理,请你说说其中的道理.(2)应用勾股定理①应用场景1——在数轴上画出表示无理数的点.如图1,在数轴上找出表示4的点,过点作直线垂直于,在上取点,使,以点为圆心,为半径作弧,则弧与数轴的交点表示的数是______.②应用场景2——解决实际问题.如图2,郑州某公园有一秋千,秋千静止时,踏板离地的垂直高度,将它往前推至处时,水平距离,踏板离地的垂直高度,它的绳索始终拉直,求绳索的长.21. 郑州市政府为民生办实事,将污染多年“贾鲁河”进行绿化改造,现需要购买大量的景观树.某苗木种植公司给出以下收费方案:方案一:购买一张会员卡,所有购买的树苗按七折优惠;方案二:不购买会员卡,所有购买的树苗按九折优惠.设该市购买的景观树树苗棵数为x棵,方案一所需费用y1=k1x+b1,方案二所需费用y2=k2x,其函数图象如图所示,请根据图象回答下列问题.(1)k1= ,b1= ;(2)求每棵树苗的原价;(3)求按照方案二购买所需费用的函数关系式y2=k2x,并说明k2的实际意义;(4)若该市需要购买景观树600棵,采用哪种方案购买所需费用更少?请说明理由.22. 如图,正比例函数的图象与一次函数的图象交于点一次函数图象经过点,与y轴交于点C,与x轴的交点为D.(1)求一次函数解析式;(2)一次函数的图象上是否存在一点P,使得?若存在,求出点P的坐标;若不存在,说明理由;(3)如果在y轴上存在一点Q,使是以为底边的等腰三角形,请直接写出点Q的坐标.23. 如图1,已知和为等腰直角三角形,按如图位置摆放,直角顶点C重合.(1)直接写出与的关系;(2)将按如图2的位置摆放,使点A、D、E在同一直线上,求证:;(3)将按如图3的位置摆放,使,,,求的长.2023-2024学年河南省实验中学八年级(上)期中数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1. 下列实数中,属于无理数的是()A. B. 0.5 C. D.【答案】A【解析】【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,进行判断即可.【详解】解:A、是无理数,符合题意;B、0.5是有理数,不符合题意;C、是分数,不符合题意;D、,是有理数,不符合题意;故选:A.【点睛】本题主要考查了无理数的定义.解题的关键是掌握无理数就是无限不循环小数,初中范围内学习的无理数有:含π的数,开方开不尽的数和无限不循环小数.2. 下列各组数据中是勾股数的是()A. 6,8,10B. 0.3,0.4,0.5C. ,,D. 5,11,12【答案】A【解析】【分析】要判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方,据此求解即可.【详解】解:∵,∴6,8,10是勾股数,故A符合题意;与,,均不是整数,不是勾股数,故B,C不符合题意;∵,∴不是勾股数,故D不符合题意故选:A.【点睛】此题主要考查了勾股数的定义,及勾股定理的逆定理,关键是掌握勾股数:满足的三个正整数,称为勾股数.3. 已知是关于、的二元一次方程,则的值为()A. B. C. D.【答案】A【解析】【分析】根据二元一次方程的定义进行求解即可.【详解】解:∵是关于、的二元一次方程,∴,∴,故选A.【点睛】本题主要考查了二元一次方程的定义,一般地,形如且a、b是常数的方程叫做二元一次方程.4. 下列运算正确是( )A. B. C. D.【答案】C【解析】【分析】本题考查的是二次根式的运算.根据二次根式的加减和除法法则、二次根式的性质与化简对各选项进行逐一分析即可.【详解】解:A、,本选项不符合题意;B、与不能计算,本选项不符合题意;C、,本选项符合题意;D、,本选项不符合题意.故选:C.5. 函数图象上有两点,,则与的大小关系是()A. B. C. D. 无法确定【答案】A【解析】【分析】根据得出函数值随的增大而减小,再根据,即可比较与的大小关系.【详解】解:,随的增大而减小,,,故选:A.【点睛】本题考查了一次函数图象上点的坐标特征,熟练掌握一次函数的增减性是解题的关键.6. 剪纸艺术是最古老的中国民间艺术之一,很多剪纸作品体现了数学中的对称美.如图,蝴蝶剪纸是一幅轴对称图形,如果图中点E的坐标为,其关于y轴对称的点F的坐标为,则的值为( )A. 1B.C.D. 0【答案】B【解析】【分析】本题考查坐标与图形对称变化,利用轴对称的性质,求出m,n可得答案.【详解】解:∵,关于y轴对称,∴,∴,故选:B.7. 在同一平面直角坐标系中,函数和(为常数,)的图象可能是( )A. B.C. D.【答案】D【解析】【分析】根据正比例函数和一次函数的性质,可以得到函数和的图象经过哪几个象限,本题得以解决.【详解】解:∵,∴函数是经过原点的直线,经过第二、四象限,函数是经过第一、三、四象限的直线,故选:D【点睛】本题考查正比例函数的图象、一次函数的图象,解答本题的关键是明确题意,利用正比例函数和一次函数的性质解答.8. 平面直角坐标系内轴,,点A的坐标为,则点B的坐标为( )A. B.C. 或D. 或【答案】D【解析】【分析】根据平行于横轴上的点纵坐标相等分析计算即可.【详解】∵轴,∴A点与B点纵坐标相同,横坐标之差等于其距离,B点横坐标,或,故B点坐标为:或.故选:D【点睛】本题考查平行于坐标轴的线上的点的坐标特征,能够掌握数形结合思想是解决本题的关键.9. 如图,一大楼的外墙面与地面垂直,点在墙面上,若米,点到的距离是6米,有一只蚂蚁要从点爬到点,它的最短行程是()米A. 16B.C. 15D. 14【答案】B【解析】【分析】可将教室的墙面与地面展开,连接,根据两点之间线段最短,利用勾股定理求解即可.【详解】解:如图,过P作于G,连接,∵米,米,∴米,∴(米),∴(米)∴这只蚂蚁的最短行程应该是米,故B正确.故选:B.【点睛】本题主要考查了平面展开-最短路径问题,立体图形中的最短距离,通常要转换为平面图形的两点间的线段长来进行解决.10. 如图,在直角坐标系中,矩形的边在轴上,在轴上,顶点的坐标为,将矩形沿对角线翻折,点落在点的位置,且交轴于点.那么点的坐标为()A. B. C. D.【答案】A【解析】【分析】先证明(设),根据勾股定理列出,求得,即可解决问题.【详解】解:设,∵矩形沿对角线翻折,∴,,∴,∴,∴,∵,∴,,∴,在中,,∴,解得:,∴,∴点的坐标为.故选:A.【点睛】本题考查翻折变换的性质及其应用问题.解题的关键是掌握翻折变换的性质,矩形的性质及勾股定理.二、填空题(本大题共5小题,每小题3分,共15分)11. 比较两数的大小:2___3.(填“<”或“>”)【答案】>【解析】【分析】将两个数平方,再根据两个正实数平方大的这个正实数也大比较即可.【详解】解:∵,,又∵,∴.故答案为:.【点睛】本题考查实数的大小比较.掌握比较实数大小的方法是解题关键.12. 象棋在中国有着三千多年的历史,如图是一方的棋盘,如果“帅”的坐标是,“卒”的坐标为,那么“马”的坐标是________.【答案】【解析】【分析】本题考查了平面直角坐标系位置确定,根据给定的坐标建立平面直角坐标系可得“马”的坐标.【详解】解:由“帅”的坐标是,“卒”的坐标为,那么“马”的坐标是,故答案为:.13. 若关于x,y的方程组的解满足,则的值为________.【答案】2022【解析】【分析】本题考查二元一次方程组的解,将原方程组中的两个方程相加可得,即,再将代入计算即可.【详解】解:,得,,即,又∵,∴,解得.故答案为:2022.14. 把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上.若AB=,则CD=_____.【答案】【解析】【分析】先利用等腰直角三角形的性质求出BC=2,BF=AF=1,再利用勾股定理求出DF,即可得出结论.【详解】如图,过点A作AF⊥BC于F,在Rt△ABC中,∠B=45°,∴BC=AB=2,BF=AF=AB=1,∵两个同样大小的含45°角的三角尺,∴AD=BC=2,在Rt△ADF中,根据勾股定理得,DF==∴CD=BF+DF-BC=1+-2=-1,故答案为-1.【点睛】此题主要考查了勾股定理,等腰直角三角形的性质,正确作出辅助线是解本题的关键.15. 如图,矩形中,,,点为射线上的一个动点,与关于直线对称,当为直角三角形时,的长为________.【答案】2或18【解析】【分析】分两种情况:①当E点在线段上时,②当E点在线段的延长线上时,利用全等三角形的判定和性质进行解答即可,熟练掌握三角形全等的判定和性质,活用勾股定理是解题的关键.【详解】解:分两种情况讨论:①当E点在线段上时,如图所示:∵矩形中,,,与关于直线对称,∴,,,∵,∴,∴三点共线,∵∴∵∴;②当E点在线段的延长线上,且经过点B时,如图所示:∵,∴,在和中,,∴,∴,∵∴;综上所知,的长为2或18,故答案为:2或18.三、解答题(本大题共8小题,共75分)16. 计算:(1);(2).【答案】(1)(2)【解析】【分析】本题结合完全平方公式和平方差公式,考查了二次根式的混合运算,(1)先进行乘方运算和去绝对值,然后把化简后合并即可;(2)先根据完全平方公式和平方差公式计算,然后合并即可.【小问1详解】解:原式;【小问2详解】原式17. 下面是马小虎同学解二元一次方程组的过程,请认真阅读并完成相应的任务.解方程组:解:①×2,得……③第一步②-③,得第二步.第三步将代入①,得.第四步所以,原方程组的解为第五步(1)这种求解二元一次方程组的方法叫做法,以上求解步骤中,马小虎同学第步开始出现错误.(2)请写出此题正确的解答过程.【答案】(1)加减消元法,第四步(2)见解析【解析】【分析】(1)根据解方程组的特点判断,注意系数化为1时的计算.(2)按照解方程组的步骤求解即可【小问1详解】根据解题步骤分析,这种求解方程组的方法是加减消元法,在第四步系数化为1时,出错,故答案为:加减消元法,第四步.【小问2详解】方程组:解:①×2,得……③,②-③,得,解得.将代入①,得3.解得x=.所以,原方程组的解为.【点睛】本题考查了二元一次方程组的解法,熟练掌握方程组的解法是解题的关键.18. 在平面直角坐标系中,点在轴上,点在第一象限,过点作轴的垂线,垂足为,已知点的坐标为,长为2.(1)求,的长.(2)请判断的形状,并说明理由.【答案】(1),(2)是直角三角形,理由见解析【解析】【分析】(1)由题意可得,,利用勾股定理即可求解;(2)由勾股定理可求得,利用勾股定理的逆定理进行判断即可.【小问1详解】解:点的坐标为,轴,,,,;【小问2详解】解:是直角三角形,理由如下:,,轴,,由(1)得,,,,,即,是直角三角形.【点睛】本题主要考查坐标与图形,解题的关键是对勾股定理及其逆定理的掌握与运用.19. △ABC在平面直角坐标系中的位置如图所示,三点在格点上.(1)作出关于y轴对称的;(2)的面积为;(3)在y轴上作点P,使得值最小,并求出点P的坐标.【答案】(1)见解析(2)(3)作图见解析,点P坐标为【解析】【分析】本题主要考查作图---轴对称变换,利用轴对称变换的定义和性质和待定系数法求一次函数解析式:(1)分别作出点A、B、C关于y轴的对称点,再首尾顺次连接即可;(2)用矩形的面积减去周围三个三角形的面积即可;(3)作点B关于y轴的对称点,连接,与y轴的交点即为所求,利用待定系数法求出所在直线解析式,然后求出时y的值即可得出点P的坐标,根据轴对称的性质和两点之间线段最短即可说明理由.【小问1详解】解:如图所示,即为所求.【小问2详解】△ABC的面积为,故答案为:;【小问3详解】如图所示,点P即为所求,点B关于y轴的对称点坐标为,设所在直线解析式为,则,解得,∴所在直线解析式为,当时,,∴点P坐标为,根据轴对称的性质知,由两点之间线段最短知最小,则最小.20. 勾股定理是人类早期发现并证明的重要数学定理之一,是用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一,它不但因证明方法层出不穷吸引着人们,更因为应用广泛而使人入迷.(1)证明勾股定理据传当年毕达哥拉斯借助如图所示的两个图验证了勾股定理,请你说说其中的道理.(2)应用勾股定理①应用场景1——在数轴上画出表示无理数的点.如图1,在数轴上找出表示4的点,过点作直线垂直于,在上取点,使,以点为圆心,为半径作弧,则弧与数轴的交点表示的数是______.②应用场景2——解决实际问题.如图2,郑州某公园有一秋千,秋千静止时,踏板离地的垂直高度,将它往前推至处时,水平距离,踏板离地的垂直高度,它的绳索始终拉直,求绳索的长.【答案】(1)见解析(2)①;②绳索的长为【解析】【分析】(1)用含、的式子表示2个图中空白部分的面积,即可得出结论;(2)①根据勾股定理求出,根据实数与数轴解答即可.②设秋千的绳索长为,根据题意可得,利用勾股定理可得,即可得到结论.【小问1详解】解:由左图可知:,即,由右图可知:,即...即在直角三角形中斜边的平方等于两直角边的平方和.【小问2详解】解:①在中,,,点表示的数是,故答案为:;②,,.设秋千的绳索长为,根据题意可得,利用勾股定理可得.解得:.答:绳索的长为.【点睛】本题主要考查了勾股定理的应用,正确理解题意,掌握直角三角形中两直角边的平方和等于斜边的平方是解题的关键.21. 郑州市政府为民生办实事,将污染多年的“贾鲁河”进行绿化改造,现需要购买大量的景观树.某苗木种植公司给出以下收费方案:方案一:购买一张会员卡,所有购买的树苗按七折优惠;方案二:不购买会员卡,所有购买的树苗按九折优惠.设该市购买的景观树树苗棵数为x棵,方案一所需费用y1=k1x+b1,方案二所需费用y2=k2x,其函数图象如图所示,请根据图象回答下列问题.(1)k1= ,b1= ;(2)求每棵树苗的原价;(3)求按照方案二购买所需费用的函数关系式y2=k2x,并说明k2的实际意义;(4)若该市需要购买景观树600棵,采用哪种方案购买所需费用更少?请说明理由.【答案】(1)21,3000;(2)每棵树苗的原价30元;(3)y2=27x,k2的实际意义是:每棵树苗打九折后的价格;(4)该市需要购买景观树600棵,采用方案一购买所需费用更少.理由见解析【解析】【分析】(1)根据题意和函数图象中的数据,可以得到k1和b1的值;(2)根据(1)中的结果和题意,可以计算出每棵树苗的原价;(3)根据函数图象中的数据和题意,可以得到函数关系式y2=k2x,并说明k2的实际意义;(4)将x=600代入y1和y2,然后比较大小,即可解答本题.【详解】解:(1)由图象可得,函数y1=k1x+b1,过点(0,3000),(200,7200),则,解得:,故答案为:21,3000;(2)由(1)可得,每棵树苗按七折优惠的价格是21元,∴每棵树苗的原价是21÷0.7=30(元),即每棵树苗的原价30元;(3)∵方案二中的树苗打九折优惠,∴按照方案二购买的每棵树苗的价格为30×0.9=27(元),∵方案二:不购买金卡,所有购买的树苗按九折优惠,当x=0时,y2=0,∴y2=27x,k2的实际意义是:每棵树苗打九折后的价格;(4)该市需要购买景观树600棵,采用方案一购买所需费用更少,理由:由(1)(3)可知,y1=21x+3000,y2=27x,当x=600时,y1=21×600+3000=15600,y2=27×600=16200,∵15600<16200,∴该市需要购买景观树600棵,采用方案一购买所需费用更少.【点睛】本题考查了一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.22. 如图,正比例函数的图象与一次函数的图象交于点一次函数图象经过点,与y轴交于点C,与x轴的交点为D.(1)求一次函数解析式;(2)一次函数的图象上是否存在一点P,使得?若存在,求出点P的坐标;若不存在,说明理由;(3)如果在y轴上存在一点Q,使是以为底边的等腰三角形,请直接写出点Q的坐标.【答案】(1)一次函数解析式为(2)存在,P点的坐标或(3)点Q的坐标为【解析】【分析】(1)由待定系数法即可求解;(2)由,即可求解;(3)由得:,即可求解.【小问1详解】解:∵正比例函数的图象与一次函数的图象交于点,∴可有,解得,∴A点的坐标;∵一次函数的图象过点和点则有,解得:,∴一次函数解析式为;【小问2详解】解:存在,理由如下:设点,对于一次函数,令,则有,解得,∴点,根据题意可知:,解得,当时,,当时,,∴P点坐标或;【小问3详解】解:设点,则,即,解得:,即点Q的坐标为:.【点睛】本题主要考查了正比例函数图象上点的坐标特征、待定系数法求函数解析式、一次函数图象与坐标轴交点以及一次函数几何问题等知识,解题关键是熟练掌握相关知识,并运用数形结合的思想分析问题.23. 如图1,已知和为等腰直角三角形,按如图的位置摆放,直角顶点C重合.(1)直接写出与的关系;(2)将按如图2的位置摆放,使点A、D、E在同一直线上,求证:;(3)将按如图3位置摆放,使,,,求的长.【答案】(1)且(2)见解析(3)【解析】【分析】对于(1),先证明≌即可得出数量关系,再根据角之间的关系得出位置关系;对于(2),设交于O,先证明,可得结论;对于(3),连接,首先证明,利用勾股定理求出线段,再证明≌推出,即可解决问题.【小问1详解】结论:且.理由:如图1中,延长交一点O.∵和为等腰直角三角形,∴,,∴,∴≌,∴,.∵,∴,∴.【小问2详解】如图2中,设交于O.由(1)可知≌,∴,.∵,∴,∴.∵,,∴,即,∴;【小问3详解】如图3中,连接,∵,,∴,.∵,∴.∵,,∴.∵,∴.∵,,∴≌,∴,∴.【点睛】本题主要考查了三角形综合题、等腰直角三角形的性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,正确寻找全等三角形解决问题,属于中考常考题型.。

人教版八年级上学期期中考试数学试卷及答案解析(共六套)

人教版八年级上学期期中考试数学试卷及答案解析(共六套)

人教版八年级上学期期中考试数学试卷(一)一、选择题(本题共30分,每小题3分,下列各题均有四个选项,其中只有一个是符合题意的)1.图中的两个三角形全等,则∠α=()A.72°B.60°C.58°D.50°2.下列条件中,不能判定三角形全等的是()A.三条边对应相等B.两边和其中一角对应相等C.两边和夹角对应相等D.两角和它们的夹边对应相等3.下列各式从左到右的变形中,是因式分解的为()A.x(a﹣b)=ax﹣bx B.x2﹣1+y2=(x﹣1)(x+1)+y2C.x2﹣1=(x+1)(x﹣1) D.ax+bx+c=x(a+b)+c4.下列各式中,正确的是()A.B.C. =D.5.若分式的值为0,则x应满足的条件是()A.x=﹣2 B.x=2 C.x≠﹣2 D.x=±26.下列各分式中,最简分式是()A.B.C.D.7.若x2﹣2(m﹣3)x+16是完全平方式,则m的值等于()A.﹣1 B.7 C.7或﹣7 D.7或﹣18.如图,P是∠BAC的平分线AD上一点,PE⊥AB于E,PF⊥AC于F,下列结论中不正确的是()A.PE=PF B.AE=AF C.△APE≌△APF D.AP=PE+PF9.已知:三角形的两边长分别为3和7,则第三边的中线长x的取值范围是()A.2<x<5 B.4<x<10 C.3<x<7 D.无法确定10.如图,在△ABC中,AD是它的角平分线,AB=8cm,AC=6cm,则S△ABD :S△ACD=()A.3:4 B.4:3 C.16:9 D.9:16二、填空题(本题共16分,每小题2分)11.计算:3﹣2= .12.若(x﹣2)0有意义,则x的取值范围是.13.分解因式:x2+x﹣2= .14.如图,亮亮书上的三角形被墨迹污染了一部分,他根据所学的知识很快就画出了一个与书上完全一样的三角形,那么亮亮画图的依据是.15.如图,AC、BD相交于点O,∠A=∠D,请你再补充一个条件,使得△AOB≌△DOC,你补充的条件是.16.在△ABC中,∠C=90°,BC=4cm,∠BAC的平分线交BC于D,且BD:DC=5:3,则D到AB的距离为 cm.17.若x2+4x+1=0,则x2+= .18.请同学们观察 22﹣2=2(2﹣1)=2,23﹣22=22(2﹣1)=22,24﹣23=23(2﹣1)=23…(1)写出表示一般规律的第n个等式;(2)根据所总结的规律计算210﹣29﹣28﹣…﹣22﹣2= .三、解答题(本题共54分)19.(5分)请你阅读下列计算过程,再回答所提出的问题:解:=(A)=(B)=x﹣3﹣3(x+1)(C)=﹣2x﹣6(D)(1)上述计算过程中,从哪一步开始出现错误:;(2)从B到C是否正确,若不正确,错误的原因是;(3)请你正确解答.20.(2分)尺规画图(不用写作法,要保留作图痕迹)如图1,在一次军事演习中,红方侦察员发现蓝方指挥部在A区内,到铁路与到公路的距离相等,且离铁路与公路交叉处B点400米,如果你是红方的指挥员,请你在图2所示的作战图上标出蓝方指挥部的位置点P.21.(6分)分解下列因式:(1)9a2﹣1(2)p3﹣16p2+64p.22.(7分)计算(1)﹣.(2)()﹣1+(﹣1)+(2﹣)0+|﹣3|.23.(5分)先化简,再求值:,其中x=5.24.(5分)解分式方程:.25.(4分)已知:如图,AB=AC,AD=AE,∠1=∠2.求证:△ABD≌△ACE.26.(4分)已知:如图,AB⊥BD,CD⊥BD,AD=BC.求证:(1)AB=DC.(2)AD∥BC.27.(4分)在△AFD和△BEC中,点A、E、F、C在同一直线上,有下面四个论断:(1)AD=CB;(2)AE=CF;(3)∠B=∠D;(4)AD∥BC.请用其中三个作为条件,余下一个作为结论,编一道数学问题,并写出证明过程.28.(4分)若x2+y2﹣4x+2y+5=0,求()2010+y2010的值.29.(4分)已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N.(1)如图1,当∠MAN绕点A旋转到BM=DN时,有BM+DN=MN.当∠MAN绕点A 旋转到BM≠DN时,如图2,请问图1中的结论还是否成立?如果成立,请给予证明,如果不成立,请说明理由;(2)当∠MAN绕点A旋转到如图3的位置时,线段BM,DN和MN之间有怎样的等量关系?请写出你的猜想,并证明.30.(4分)已知:在△ABC中,∠ABC=100°,∠C的平分线交AB边于点E,在AC边上取点D,使得∠CBD=20°,连结DE.求∠CED的度数.参考答案与试题解析一、选择题(本题共30分,每小题3分,下列各题均有四个选项,其中只有一个是符合题意的)1.图中的两个三角形全等,则∠α=()A.72°B.60°C.58°D.50°【考点】KA:全等三角形的性质.【分析】根据全等三角形对应角相等解答即可.【解答】解:∵两个三角形全等,∴α=58°.故选C.【点评】本题考查了全等三角形的性质,熟记性质并准确识图,确定出对应角是解题的关键.2.下列条件中,不能判定三角形全等的是()A.三条边对应相等B.两边和其中一角对应相等C.两边和夹角对应相等D.两角和它们的夹边对应相等【考点】KB:全等三角形的判定.【分析】根据全等三角形的判定定理逐个判断即可.【解答】解:A、符合全等三角形的判定定理SSS,能推出两三角形全等,故本选项不符合题意;B、不符合全等三角形的判定定理,不能推出两三角形全等,故本选项符合题意;C、符合全等三角形的判定定理SAS,能推出两三角形全等,故本选项不符合题意;D、符合全等三角形的判定定理ASA,能推出两三角形全等,故本选项不符合;故选B.【点评】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.3.下列各式从左到右的变形中,是因式分解的为()A.x(a﹣b)=ax﹣bx B.x2﹣1+y2=(x﹣1)(x+1)+y2C.x2﹣1=(x+1)(x﹣1) D.ax+bx+c=x(a+b)+c【考点】51:因式分解的意义.【分析】根据因式分解的定义作答.把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.【解答】解:A、是整式的乘法运算,故选项错误;B、结果不是积的形式,故选项错误;C、x2﹣1=(x+1)(x﹣1),正确;D、结果不是积的形式,故选项错误.故选:C.【点评】熟练地掌握因式分解的定义,明确因式分解的结果应是整式的积的形式.4.下列各式中,正确的是()A.B.C. =D.【考点】65:分式的基本性质.【分析】利用分式的基本性质对各式进行化简即可.【解答】解:A、已经是最简分式,故本选项错误;B、,故本选项错误;C、=,故本选项错误;D、利用分式的基本性质在分式的分子与分母上同时乘以x+y即可得到,故本选项正确;故选D.【点评】本题考查了分式的基本性质,解题的关键是在进行分式的运算时要同时乘除.5.若分式的值为0,则x应满足的条件是()A.x=﹣2 B.x=2 C.x≠﹣2 D.x=±2【考点】63:分式的值为零的条件.【分析】根据分式值为0的条件可得x2﹣4=0且x+2≠0,再解出x的值即可.【解答】解:由题意得:x2﹣4=0且x+2≠0,解得:x=2.故选:B.【点评】此题主要考查了分式的值为零的条件,分式值为零的条件是分子等于零且分母不等于零.6.下列各分式中,最简分式是()A.B.C.D.【考点】68:最简分式.【分析】最简分式是指分子和分母没有公因式.【解答】解:(A)原式=,故A不是最简分式;(B)原式==,故B不是最简分式;(C)原式=,故C是最简分式;(D)原式==,故D不是最简分式;故选(C)【点评】本题考查考查最简分式,要注意将分子分母先分解后,约去公因式.7.若x2﹣2(m﹣3)x+16是完全平方式,则m的值等于()A.﹣1 B.7 C.7或﹣7 D.7或﹣1【考点】4E:完全平方式.【分析】这里首末两项是x和4这两个数的平方,那么中间一项为加上或减去x 和4积的2倍.【解答】解:依题意,得m﹣3=±4,解得m=7或﹣1.故选D.【点评】本题是完全平方公式的应用;两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.8.如图,P是∠BAC的平分线AD上一点,PE⊥AB于E,PF⊥AC于F,下列结论中不正确的是()A.PE=PF B.AE=AF C.△APE≌△APF D.AP=PE+PF【考点】KF:角平分线的性质.【分析】题目的已知条件比较充分,满足了角平分线的性质要求的条件,可直接应用性质得到结论,与各选项进行比对,得出答案.【解答】解:∵P是∠BAC的平分线AD上一点,PE⊥AB于E,PF⊥AC于F,∴PE=PF,又有AD=AD∴△APE≌△APF(HL∴AE=AF故选D.【点评】本题主要考查平分线的性质,由已知证明△APE≌△APF是解题的关键.9.已知:三角形的两边长分别为3和7,则第三边的中线长x的取值范围是()A.2<x<5 B.4<x<10 C.3<x<7 D.无法确定【考点】K6:三角形三边关系;K2:三角形的角平分线、中线和高.【分析】根据三角形的三边关系:两边之和大于第三边,两边之差小于第三边.倍长中线,构造一个新的三角形.根据三角形的三边关系就可以求解.【解答】解:7﹣3<2x<7+3,即2<x<5.故选A.【点评】本题主要考查了三角形的三边关系,注意此题构造了一条常见的辅助线:倍长中线.10.如图,在△ABC中,AD是它的角平分线,AB=8cm,AC=6cm,则S△ABD :S△ACD=()A.3:4 B.4:3 C.16:9 D.9:16【考点】K3:三角形的面积.【分析】利用角平分线的性质,可得出△ABD的边AB上的高与△ACD的AC上的高相等,估计三角形的面积公式,即可得出△ABD与△ACD的面积之比等于对应边之比.【解答】解:∵AD是△ABC的角平分线,∴设△ABD的边AB上的高与△ACD的AC上的高分别为h1,h2,∴h1=h2,∴△ABD与△ACD的面积之比=AB:AC=8:6=4:3,故选:B.【点评】本题考查了角平分线的性质,以及三角形的面积公式,熟练掌握三角形角平分线的性质是解题的关键.二、填空题(本题共16分,每小题2分)11.计算:3﹣2= .【考点】6F:负整数指数幂.【分析】根据负整数指数为正整数指数的倒数计算.【解答】解:3﹣2=.故答案为.【点评】本题主要考查了负指数幂的运算,比较简单.12.若(x﹣2)0有意义,则x的取值范围是x≠2 .【考点】6E:零指数幂.【分析】根据非零的零次幂等于1,可得答案.【解答】解:由题意,得x﹣2≠0,解得x≠2,故答案为:x≠2.【点评】本题考查了零指数幂,利用非零的零次幂等于1是解题关键.13.分解因式:x2+x﹣2= (x﹣1)(x+2).【考点】57:因式分解﹣十字相乘法等.【分析】因为(﹣1)×2=﹣2,2﹣1=1,所以利用十字相乘法分解因式即可.【解答】解:∵(﹣1)×2=﹣2,2﹣1=1,∴x2+x﹣2=(x﹣1)(x+2).故答案为:(x﹣1)(x+2).【点评】本题考查的是十字相乘法分解因式,运用十字相乘法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程.14.如图,亮亮书上的三角形被墨迹污染了一部分,他根据所学的知识很快就画出了一个与书上完全一样的三角形,那么亮亮画图的依据是两角和它们的夹边分别相等的两个三角形全等.【考点】KE:全等三角形的应用.【分析】根据图象,三角形有两角和它们的夹边是完整的,所以可以根据“角边角”画出即可.【解答】解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故答案为:两角和它们的夹边分别相等的两个三角形全等.【点评】本题考查了三角形全等的判定的实际运用,熟练掌握判定定理:两角及其夹边分别对应相等的两个三角形全等是解题的关键.15.如图,AC、BD相交于点O,∠A=∠D,请你再补充一个条件,使得△AOB≌△DOC,你补充的条件是AO=DO或AB=DC或BO=CO .【考点】KB:全等三角形的判定.【分析】本题要判定△AOB≌△DOC,已知∠A=∠D,∠AOB=∠DOC,则可以添加AO=DO或AB=DC或BO=CO从而利用ASA或AAS判定其全等.【解答】解:添加AO=DO或AB=DC或BO=CO后可分别根据ASA、AAS、AAS判定△AOB≌△DOC.故填AO=DO或AB=DC或BO=CO.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.16.在△ABC中,∠C=90°,BC=4cm,∠BAC的平分线交BC于D,且BD:DC=5:3,则D到AB的距离为 1.5 cm.【考点】KF:角平分线的性质.【分析】作出图形,过点D作DE⊥AB于E,先求出CD的长,再根据角平分线上的点到角的两边的距离相等可得DE=CD解答.【解答】解:如图,过点D作DE⊥AB于E,∵BC=4cm,BD:DC=5:3,∴CD=×4=1.5cm,∵AD是∠BAC的平分线,∴DE=CD=1.5cm.故答案为:1.5.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质是解题的关键,作出图形更形象直观.17.若x2+4x+1=0,则x2+= 14 .【考点】4C:完全平方公式.【分析】由x2+4x+1=0可得x≠0,两边除以x可得到x+=﹣4,再两边平方,根据完全平方公式展开即可得到x2+的值.【解答】解:∵x2+4x+1=0,∴x+4+=0,即x+=﹣4,∴(x+)2=(﹣4)2,∴x2+2+=16,∴x2+=14.故答案为14.【点评】本题考查了完全平方公式:(a±b)2=a2±2ab+b2.也考查了代数式的变形能力.18.请同学们观察 22﹣2=2(2﹣1)=2,23﹣22=22(2﹣1)=22,24﹣23=23(2﹣1)=23…(1)写出表示一般规律的第n个等式2n+1﹣2n=2n;(2)根据所总结的规律计算210﹣29﹣28﹣…﹣22﹣2= 2 .【考点】37:规律型:数字的变化类.【分析】(1)根据等式的变化找出变化规律“第n个等式为2n+1﹣2n=2n”,此题得解;(2)根据2n=2n+1﹣2n将算式210﹣29﹣28﹣…﹣22﹣2进行拆项,合并同类项即可得出结论.【解答】解:(1)观察,发现规律:22﹣2=2(2﹣1)=2,23﹣22=22(2﹣1)=22,24﹣23=23(2﹣1)=23,…,∴第n个等式为2n+1﹣2n=2n.故答案为:2n+1﹣2n=2n.(2)∵2n=2n+1﹣2n,∴210﹣29﹣28﹣…﹣22﹣2=210﹣210+29﹣29+28﹣28+27﹣…﹣23+22﹣2=22﹣2=2.故答案为:2.【点评】本题考查了规律型中数字的变化类,根据等式的变化找出变化规律是解题的关键.三、解答题(本题共54分)19.请你阅读下列计算过程,再回答所提出的问题:解:=(A)=(B)=x﹣3﹣3(x+1)(C)=﹣2x﹣6(D)(1)上述计算过程中,从哪一步开始出现错误: A ;(2)从B到C是否正确,若不正确,错误的原因是不能去分母;(3)请你正确解答.【考点】6B:分式的加减法.【分析】异分母分式相加减,先化为同分母分式,再加减.【解答】解:===,(1)故可知从A开始出现错误;(2)不正确,不能去分母;(3)===.【点评】本题考查异分母分式相加减.应先通分,化为同分母分式,再加减.本题需注意应先把能因式分解的分母因式分解,在计算过程中,分母不变,只把分子相加减.20.尺规画图(不用写作法,要保留作图痕迹)如图1,在一次军事演习中,红方侦察员发现蓝方指挥部在A区内,到铁路与到公路的距离相等,且离铁路与公路交叉处B点400米,如果你是红方的指挥员,请你在图2所示的作战图上标出蓝方指挥部的位置点P.【考点】N4:作图—应用与设计作图;KF:角平分线的性质.【分析】作出角平分线,进而截取PB=400进而得出答案.【解答】解:如图所示:P点即为所求.【点评】此题主要考查了应用设计与作图,正确掌握角平分线的性质是解题关键.21.分解下列因式:(1)9a2﹣1(2)p3﹣16p2+64p.【考点】55:提公因式法与公式法的综合运用.【分析】(1)原式利用平方差公式分解即可;(2)原式提取公因式,再利用完全平方公式分解即可.【解答】解:(1)原式=(3a+1)(3a﹣1);(2)原式=p(p2﹣16p+64)=p(p﹣8)2.【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.22.计算(1)﹣.(2)()﹣1+(﹣1)+(2﹣)0+|﹣3|.【考点】6B:分式的加减法;2C:实数的运算;6E:零指数幂;6F:负整数指数幂.【分析】(1)直接利用分式加减运算法则化简求出答案;(2)直接利用负指数幂的性质以及零指数幂的性质以及绝对值的性质分别化简求出答案.【解答】解:(1)原式===;(2)原式=2﹣1+1+3=5.【点评】此题主要考查了分式得加减运算以及实数运算,正确掌握运算法则是解题关键.23.先化简,再求值:,其中x=5.【考点】6D:分式的化简求值.【分析】把原式的第二项被除式分母及除式分母都分解因式,然后利用除以一个数等于乘以这个数的倒数把除法运算化为乘法运算,约分后,再与第一项通分,利用同分母分式的减法运算计算,可化为最简,最后把x的值代入化简的式子中即可求出值.【解答】解:==﹣=﹣===,(4分)当x=5时,原式==.(5分)【点评】此题考查了分式的化简求值,分式的化简求值时,加减的关键是通分,通分的关键是找出各分母的最简公分母,分式的乘除关键是约分,约分的关键是找出公因式,本题属于化简求值题,解答此类题要先将原式化为最简,再代值,同时注意有时计算后还能约分,比如本题倒数第二步约去公因式x+1.24.解分式方程:.【考点】B3:解分式方程;86:解一元一次方程.【分析】方程的两边都乘以5(x+1),把分式方程转化成整式方程,求出方程的解,再代入方程进行检验即可.【解答】解:方程的两边都乘以5(x+1)、去分母得:5x=2x+5x+5,移项、合并同类项得:2x=﹣5,∴系数化成1得:x=﹣,经检验x=﹣是原方程的解,∴原方程的解是x=﹣.【点评】本题考查了分式方程的解法,关键是把分式方程转化成整式方程,注意一定要检验.25.已知:如图,AB=AC,AD=AE,∠1=∠2.求证:△ABD≌△ACE.【考点】KB:全等三角形的判定.【分析】首先得出∠EAC=∠BAD,进而利用全等三角形的判定方法(SAS)得出即可.【解答】证明:∵∠1=∠2,∴∠EAC=∠BAD,在△DAB和△EAC中,∴△ABD≌△ACE(SAS)【点评】此题主要考查了全等三角形的判定,正确应用全等三角形的判定方法是解题关键.26.已知:如图,AB⊥BD,CD⊥BD,AD=BC.求证:(1)AB=DC.(2)AD∥BC.【考点】KD:全等三角形的判定与性质.【分析】(1)易证△ABD≌△CDB,根据全等三角形的对应边相等知AB=DC;(2)因为△ABD≌△CDB,所以全等三角形的对应角∠ADB=∠CBD.然后由平行线的判定定理知AD∥BC.【解答】证明:(1)∵AB⊥BD,CD⊥BD,∴∠ABD=∠CDB=90°,∴在Rt△ABD和Rt△CDB中,,∴Rt△ABD≌Rt△CDB(HL),∴AB=DC(全等三角形的对应边相等);(2)∵Rt△ABD≌Rt△CDB[由(1)知],∴∠ADB=∠CBD(全等三角形的对应角相等),∴AD∥BC(内错角相等,两直线平行).【点评】本题考查了全等三角形的判定与性质.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.以及三角形全等的性质:全等三角形的对应边、对应角相等.27.在△AFD和△BEC中,点A、E、F、C在同一直线上,有下面四个论断:(1)AD=CB;(2)AE=CF;(3)∠B=∠D;(4)AD∥BC.请用其中三个作为条件,余下一个作为结论,编一道数学问题,并写出证明过程.【考点】KD:全等三角形的判定与性质.【分析】只要以其中三个作为条件,能够得出另一个结论正确即可,下边以(1)、(2)、(4)为条件,(3)为结论为例.【解答】解:以(1)、(2)、(4)为条件,(3)为结论.证明:∵AE=CF,∴AF=CE,∵AD∥BC,∴∠A=∠C,又AD=BC,∴△ADF≌△CBE(SAS),∴∠B=∠D.【点评】本题与命题联系在一起,归根到底主要还是考查了全等三角形的判定及性质问题,应熟练掌握.28.若x2+y2﹣4x+2y+5=0,求()2010+y2010的值.【考点】AE:配方法的应用;1F:非负数的性质:偶次方.【分析】根据x2+y2﹣4x+2y+5=0,可以求得x、y的值,从而可以求得所求式子的值.【解答】解:∵x2+y2﹣4x+2y+5=0,∴x2﹣4x+4+y2+2y+1=0,∴(x﹣2)2+(y+1)2=0,∴x﹣2=0,y+1=0,解得,x=2,y=﹣1,∴()2010+y2010==1+1=2.【点评】本题考查配方法的应用、非负数的性质,解题的关键是明确题意,找出所求问题需要的条件.29.已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N.(1)如图1,当∠MAN绕点A旋转到BM=DN时,有BM+DN=MN.当∠MAN绕点A旋转到BM≠DN时,如图2,请问图1中的结论还是否成立?如果成立,请给予证明,如果不成立,请说明理由;(2)当∠MAN绕点A旋转到如图3的位置时,线段BM,DN和MN之间有怎样的等量关系?请写出你的猜想,并证明.【考点】LE:正方形的性质;KD:全等三角形的判定与性质;R2:旋转的性质.【分析】(1)在MB的延长线上截取BE=DN,连接AE,根据正方形性质得出AD=AB,∠D=∠DAB=∠ABC=∠ABE=90°,证△ABE≌△ADN推出AE=AN;∠EAB=∠NAD,求出∠EAM=∠MAN,根据SAS证△AEM≌△ANM,推出ME=MN即可;(2)在DN上截取DE=MB,连接AE,证△ABM≌△ADE,推出AM=AE;∠MAB=∠EAD,求出∠EAN=∠MAN,根据SAS证△AMN≌△AEN,推出MN=EN即可.【解答】解:(1)图1中的结论仍然成立,即BM+DN=MN,理由为:如图2,在MB的延长线上截取BE=DN,连接AE,∵四边形ABCD是正方形,∴AD=AB,∠D=∠DAB=∠ABC=∠ABE=90°,∵在△ABE和△ADN中,∴△ABE≌△ADN(SAS).∴AE=AN;∠EAB=∠NAD,∵∠DAB=90°,∠MAN=45°,∴∠DAN+∠BAM=45°,∴∠EAM=∠BAM+∠EAB=45°=∠MAN,∵在△AEM和△ANM中,∴△AEM≌△ANM(SAS),∴ME=MN,∴MN=ME=BE+BM=DN+BM,即DN+BM=MN;(2)猜想:线段BM,DN和MN之间的等量关系为:DN﹣BM=MN.证明:如图3,在DN上截取DE=MB,连接AE,∵由(1)知:AD=AB,∠D=∠ABM=90°,BM=DE,∴△ABM≌△ADE(SAS).∴AM=AE;∠MAB=∠EAD,∵∠MAN=45°=∠MAB+∠BAN,∴∠DAE+∠BAN=45°,∴∠EAN=90°﹣45°=45°=∠MAN,∵在△AMN和△AEN中,∴△AMN≌△AEN(SAS),∴MN=EN,∵DN﹣DE=EN,∴DN﹣BM=MN.【点评】本题考查了正方形性质和全等三角形的性质和判定的应用,题目具有一定的代表性,是一道比较好的题目,证明过程类似,培养了学生的猜想能力和分析归纳能力.30.已知:在△ABC中,∠ABC=100°,∠C的平分线交AB边于点E,在AC边上取点D,使得∠CBD=20°,连结DE.求∠CED的度数.【考点】KD:全等三角形的判定与性质;KF:角平分线的性质.【分析】分别作EF⊥CB的延长线于F,EH⊥AC于H,EG⊥BD于G.利用CE是角平分线,角平分线的性质定理,得EF=EH,再证明∠ABD=∠EBF,同理可证:EF=EG,根据HL证明Rt△EDH≌Rt△EDG,根据全等三角形的性质和角的和差关系可求∠CED.【解答】解:分别作EF⊥CB的延长线于F,EH⊥AC于H,EG⊥BD于G.∵CE是角平分线,∴EF=EH.∠ABC=100°,∠DBC=20°,∴∠ABD=80°,又∵∠EBF=80°,∴∠ABD=∠EBF,∴EF=EG,∴EH=EG,在Rt△EDH与Rt△EDG中,,∴Rt△EDH≌Rt△EDG(HL),∴∠EDH=∠EDG,∴∠CED=∠EDH﹣∠ECD=(∠BDH﹣∠BCA)=×20°=10°.【点评】本题考查了全等三角形的判定与性质,角的平分线的性质定理和逆定理,本题的关键是作出辅助线,以及角的平分线性质定理的应用.人教版八年级上学期期中考试数学试卷(二)一、精心选一选(每小题3分,共30分)1.计算(﹣)﹣3的结果是()A.﹣B.﹣C.﹣343 D.﹣212.将,(﹣2)0,(﹣3)2这三个数按从小到大的顺序排列,正确的结果是()A.(﹣2)0<<(﹣3)2B.<(﹣2)0<(﹣3)2C.(﹣3)2<(﹣2)0<D.(﹣2)0<(﹣3)2<3.下列各式中,从左到右的变形是因式分解的是()A.a2﹣4ab+4b2=(a﹣2b)2 B.x2﹣xy2﹣1=xy(x﹣y)﹣1C.(x+2y)(x﹣2y)=x2﹣4y2D.ax+ay+a=a(x+y)4.如图所示,AB=AC,要说明△ADC≌△AEB,需添加的条件不能是()A.∠B=∠C B.AD=AE C.∠ADC=∠AEB D.DC=BE5.在下列图案中,不是轴对称图形的是()A.B.C.D.6.如图,若OP平分∠AOB,PC⊥OA,PD⊥OB,垂足分别是C、D,则下列结论中错误的是()A.PC=PD B.OC=PC C.∠CPO=∠DPO D.OC=OD7.下列等式成立的是()A.B.C.D.8.如图,△ABC≌△BAD,点A和点B,点C和点D是对应点,如果AB=6cm,BD=5cm,AD=4cm,那么BC的长是()A.4 B.5 C.6 D.无法确定9.如图,正方形ABCD的边长为4,将一个足够大的直角三角板的直角顶点放于点A处,该三角形板的两条直角边与CD交于点F,与CB延长线交于点E,四边形AECF的面积是()A.16 B.12 C.8 D.410.如图,将一张正方形纸片经两次对折,并剪出一个菱形小洞后展开铺平,得到的图形是()A.B.C.D.二.细心填一填(每小题2分,共20分)11.一种细菌的半径为0.000407m,用科学记数法表示为m.12.当x= 时,分式没有意义;当x= 时,分式的值为0.13.计算(﹣)3÷(﹣)2的结果是.14.计算+的结果是.15.若x2+mx+16是完全平方式,则m= .16.如图,在△ABC和△DEF 中,AB=DE,AC=DF.请再添加一个条件,使△ABC 和△DFE全等.添加的条件是(填写一个即可):,理由是.17.如图,把△ABC绕C点顺时针旋转30°,得到△A′B′C,A′B′交AC于点D,若∠A′DC=80°,则∠A=°.18.如图,在△ABC中,∠C=90°,AD平分∠CAB,BC=8cm,BD=5cm,那么点D 到线段AB的距离是cm.19.如图,△ABC中,AB=AC,AB的垂直平分线交AC于P点.(1)若∠A=35°,则∠BPC=;(2)若AB=5cm,BC=3cm,则△PBC的周长= .20.探究:观察下列各式,,,…请你根据以上式子的规律填写: = ;= .三.精心解一解:(21,22每小题2分,23,24,25每小题2分,共16分)21.因式分解:2mx2﹣4mx+2m= .22.因式分解:x2y﹣9y= .23.化简:﹣+.24.先化简,再求值:(1﹣)÷,其中x=2.25.解分式方程:四.耐心想一想:(本小题4分)26.四川5.12特大地震受灾地区急需大量赈灾帐篷,某帐篷生产企业接到生产任务后,加大生产投入,提高生产效率,实际每天生产帐篷比原计划多200顶,已知现在生产3000顶帐篷所用的时间与原计划生产2000顶的时间相同.现在该企业每天能生产多少顶帐篷?五.精确作一作:作图题(本小题4分)27.某地区要在区域S内(即∠COD内部)建一个超市M,如图所示,按照要求,超市M到两个新建的居民小区A,B的距离相等,到两条公路OC,OD的距离也相等.这个超市应该建在何处?(要求:尺规作图,不写作法,保留作图痕迹)六.耐心看一看(每小题6分)28.如图,△ABC中A(﹣2,3),B(﹣31),C(﹣1,2).(1)画出△ABC关于x轴对称的△A1B1C1;并写出△A1B1C1三个顶点坐标:,,.(2)画出△ABC关于y轴对称的△A2B2C2;并写出△A2B2C2三个顶点坐标:,,.七.严密推一推(每小题4分,共20分)29.已知:如图,AB=DE,AC=DF,BE=CF.求证:∠A=∠D.30.如图,已知AB=AD,AC=AE,∠1=∠2,求证:BC=DE.31.已知:AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:(1)BC=AD;(2)AO=BO.32.如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.33.已知:如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,点E在AC上,CE=BC,过E点作AC的垂线,交CD的延长线于点F.求证:AB=FC.八.挑战自我(选做本题4分)34.如图,在四边形ABCD中,对角线AC平分∠BAD,AB>AD,试判断AB﹣AD 与CD﹣CB的大小关系,并证明你的结论.解:结论:证明:参考答案与试题解析一、精心选一选(每小题3分,共30分)1.计算(﹣)﹣3的结果是()A.﹣B.﹣C.﹣343 D.﹣21【考点】负整数指数幂.【分析】根据负整数指数为正整数指数的倒数进行计算即可.【解答】解:原式=(﹣7)3=﹣343.故选:C.【点评】此题主要考查了负整数指数幂、乘方,关键是掌握负整数指数为正整数指数的倒数.2.将,(﹣2)0,(﹣3)2这三个数按从小到大的顺序排列,正确的结果是()A.(﹣2)0<<(﹣3)2B.<(﹣2)0<(﹣3)2 C.(﹣3)2<(﹣2)0<D.(﹣2)0<(﹣3)2<【考点】负整数指数幂;有理数的乘方;零指数幂.【分析】分别根据零指数幂,负整数指数幂和平方的运法则进行计算,再比较大小即可.【解答】解:∵=6,(﹣2)0=1,(﹣3)2=9,又∵1<6<9,∴(﹣2)0<<(﹣3)2.故选A.【点评】主要考查了零指数幂,负整数指数幂和平方的运算.负整数指数幂为相应的正整数指数幂的倒数;任何非0数的0次幂等于1.3.下列各式中,从左到右的变形是因式分解的是()A.a2﹣4ab+4b2=(a﹣2b)2 B.x2﹣xy2﹣1=xy(x﹣y)﹣1C.(x+2y)(x﹣2y)=x2﹣4y2D.ax+ay+a=a(x+y)【考点】因式分解的意义.【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【解答】解:A、把一个多项式转化成几个整式积的形式,故A正确;B、每把一个多项式转化成几个整式积的形式,故B错误;C、是整式的乘法,故C错误;D、把一个多项式转化成几个整式积的形式,故D正确;故选:D.【点评】本题考查了因式分解的意义,利用了因式分解的意义.4.如图所示,AB=AC,要说明△ADC≌△AEB,需添加的条件不能是()A.∠B=∠C B.AD=AE C.∠ADC=∠AEB D.DC=BE【考点】全等三角形的判定.【分析】△ADC和△AEB中,已知的条件有AB=AC,∠A=∠A;要判定两三角形全等只需条件:一组对应角相等,或AD=AE即可.可据此进行判断,两边及一边的对角相等是不能判定两个三角形全等的.【解答】解:A、当∠B=∠C时,符合ASA的判定条件,故A正确;B、当AD=AE时,符合SAS的判定条件,故B正确;C、当∠ADC=∠AEB时,符合AAS的判定条件,故C正确;D、当DC=BE时,给出的条件是SSA,不能判定两个三角形全等,故D错误;故选:D.【点评】本题主要考查的是全等三角形的判定方法,需注意的是SSA和AAA不能作为判定两个三角形全等的依据.5.在下列图案中,不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A、B、C都是轴对称图形,D不是轴对称图形,故选:D.【点评】此题主要考查了轴对称图形,关键是正确找出对称轴的位置.6.如图,若OP平分∠AOB,PC⊥OA,PD⊥OB,垂足分别是C、D,则下列结论中错误的是()A.PC=PD B.OC=PC C.∠CPO=∠DPO D.OC=OD【考点】角平分线的性质.。

数学八年级上册 期中精选试卷(Word版 含解析)

数学八年级上册 期中精选试卷(Word版 含解析)

数学八年级上册期中精选试卷(Word版含解析)一、八年级数学全等三角形解答题压轴题(难)1.如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.(1)求证:△ABC≌△ADE;(2)求∠FAE的度数;(3)求证:CD=2BF+DE.【答案】(1)证明见解析;(2)∠FAE=135°;(3)证明见解析.【解析】【分析】(1)根据已知条件易证∠BAC=∠DAE,再由AB=AD,AE=AC,根据SAS即可证得△ABC≌△ADE;(2)已知∠CAE=90°,AC=AE,根据等腰三角形的性质及三角形的内角和定理可得∠E=45°,由(1)知△BAC≌△DAE,根据全等三角形的性质可得∠BCA=∠E=45°,再求得∠CAF=45°,由∠FAE=∠FAC+∠CAE即可得∠FAE的度数;(3)延长BF到G,使得FG=FB,易证△AFB≌△AFG,根据全等三角形的性质可得AB=AG,∠ABF=∠G,再由△BAC≌△DAE,可得AB=AD,∠CBA=∠EDA,CB=ED,所以AG=AD,∠ABF=∠CDA,即可得∠G=∠CDA,利用AAS证得△CGA≌△CDA,由全等三角形的性质可得CG=CD,所以CG=CB+BF+FG=CB+2BF=DE+2BF.【详解】(1)∵∠BAD=∠CAE=90°,∴∠BAC+∠CAD=90°,∠CAD+∠DAE=90°,∴∠BAC=∠DAE,在△BAC和△DAE中,AB ADBAC DAEAC AE=⎧⎪∠=∠⎨⎪=⎩,∴△BAC≌△DAE(SAS);(2)∵∠CAE=90°,AC=AE,∴∠E=45°,由(1)知△BAC≌△DAE,∴∠BCA=∠E=45°,∵AF ⊥BC ,∴∠CFA=90°,∴∠CAF=45°,∴∠FAE=∠FAC+∠CAE=45°+90°=135°;(3)延长BF 到G ,使得FG=FB ,∵AF ⊥BG ,∴∠AFG=∠AFB=90°,在△AFB 和△AFG 中,BF F AFB AFG AF AF G =⎧⎪∠=∠⎨⎪=⎩, ∴△AFB ≌△AFG (SAS ),∴AB=AG ,∠ABF=∠G ,∵△BAC ≌△DAE ,∴AB=AD ,∠CBA=∠EDA ,CB=ED ,∴AG=AD ,∠ABF=∠CDA ,∴∠G=∠CDA ,在△CGA 和△CDA 中,GCA DCA CGA CDA AG AD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△CGA ≌△CDA ,∴CG=CD ,∵CG=CB+BF+FG=CB+2BF=DE+2BF ,∴CD=2BF+DE .【点睛】本题考查全等三角形的判定与性质,解决第3问需作辅助线,延长BF 到G ,使得FG=FB ,证得△CGA ≌△CDA 是解题的关键.2.如图1,在ABC ∆中,90ACB ∠=,AC BC =,直线MN 经过点C ,且AD MN ⊥于点D ,BE MN ⊥于点E .易得DE AD BE =+(不需要证明).(1)当直线MN绕点C旋转到图2的位置时,其余条件不变,你认为上述结论是否成立?若成立,写出证明过程;若不成立,请写出此时DE AD BE、、之间的数量关系,并说明理由;(2)当直线MN绕点C旋转到图3的位置时,其余条件不变,请直接写出此时DE AD BE、、之间的数量关系(不需要证明).【答案】(1) 不成立,DE=AD-BE,理由见解析;(2) DE=BE-AD【解析】【分析】(1)DE、AD、BE之间的数量关系是DE=AD-BE.由垂直的性质可得到∠CAD=∠BCE,证得△ACD≌△CBE,得到AD=CE,CD=BE,即有DE=AD-BE;(2)DE、AD、BE之间的关系是DE=BE-AD.证明的方法与(1)一样.【详解】(1)不成立.DE、AD、BE之间的数量关系是DE=AD-BE,理由如下:如图,∵∠ACB=90°,BE⊥CE,AD⊥CE,AC CB=,∴∠ACD+∠CAD=90°,又∠ACD+∠BCE=90°,∴∠CAD=∠BCE,在△ACD和△CBE中,90ADC CEBCAD BCEAC CB∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△ACD≌△CBE(AAS),∴AD=CE,CD=BE,∴DE=CE-CD=AD-BE;(2)结论:DE=BE-AD.∵∠ACB=90°,BE⊥CE,AD⊥CE,AC CB=,∴∠ACD+∠CAD=90°,又∠ACD+∠BCE=90°,∴∠CAD=∠BCE,在△ACD和△CBE中,90ADC CEBCAD BCEAC CB∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△ADC≌△CEB(AAS),∴AD=CE,DC=BE,∴DE=CD-CE=BE-AD.【点睛】本题考查了旋转的性质、直角三角形全等的判定与性质,旋转前后两图形全等,对应点到旋转中心的距离相等,对应点与旋转中心的连线段所夹的角等于旋转角.3.如图1,Rt△ABC中,∠A=90°,AB=AC,点D是BC边的中点连接AD,则易证AD=BD=CD,即AD=12BC;如图2,若将题中AB=AC这个条件删去,此时AD仍然等于12BC.理由如下:延长AD到H,使得AH=2AD,连接CH,先证得△ABD≌△CHD,此时若能证得△ABC≌△CHA,即可证得AH=BC,此时AD=12BC,由此可见倍长过中点的线段是我们三角形证明中常用的方法.(1)请你先证明△ABC≌△CHA,并用一句话总结题中的结论;(2)现将图1中△ABC折叠(如图3),点A与点D重合,折痕为EF,此时不难看出△BDE和△CDF都是等腰直角三角形.BE=DE,CF=DF.由勾股定理可知DE2+DF2=EF2,因此BE2+CF2=EF2,若图2中△ABC也进行这样的折叠(如图4),此时线段BE、CF、EF还有这样的关系式吗?若有,请证明;若没有,请举反例.(3)在(2)的条件下,将图3中的△DEF绕着点D旋转(如图5),射线DE、DF分别交AB、AC于点E、F,此时(2)中结论还成立吗?请说明理由.图4中的△DEF也这样旋转(如图6),直接写出上面的关系式是否成立.【答案】(1)详见解析;(2)有这样分关系式;(3)EF2=BE2+CF2.【解析】【分析】(1)想办法证明AB∥CH,推出∠BAC=∠ACH,再利用SAS证明△ABC≌△CHA即可.(2)有这样分关系式.如图4中,延长ED到H山顶DH=DE.证明△EDB≌△HD (SAS),推出∠B=∠HCD,BE=CH,∠FCH=90°,利用勾股定理,线段的垂直平分线的性质即可解决问题.(3)图5,图6中,上面的关系式仍然成立.【详解】(1)证明:如图2中,∵BD=DC,∠ADB=∠HDC,AD=HD,∴△ADB≌△HDC(SAS),∴∠B=∠HCD,AB=CH,∴AB∥CH,∴∠BAC+∠ACH=180°,∵∠BAC=90°,∴∠ACH=∠BAC=90°,∵AC=CA,∴△BAC≌△HCA(SAS),∴AH =BC ,∴AD =DH =BD =DC ,∴AD =12BC . 结论:直角三角形斜边上的中线等于斜边的一半.(2)解:有这样分关系式.理由:如图4中,延长ED 到H 山顶DH =DE .∵ED =DH ,∠EDB =∠HDC ,DB =DC ,∴△EDB ≌△HDC (SAS ),∴∠B =∠HCD ,BE =CH ,∵∠B +∠ACB =90°,∴∠ACB +∠HCD =90°,∴∠FCH =90°,∴FH 2=CF 2+CH 2,∵DF ⊥EH ,ED =DH ,∴EF =FH ,∴EF 2=BE 2+CF 2.(3)图5,图6中,上面的关系式仍然成立.结论:EF 2=BE 2+CF 2.证明方法类似(2).【点睛】本题属于几何变换综合题,考查了旋转变换,翻折变换,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.4.(1)问题发现:如图(1),已知:在三角形ABC ∆中,90BAC ︒∠=,AB AC =,直线l 经过点A ,BD ⊥直线l ,CE ⊥直线l ,垂足分别为点,D E ,试写出线段,BD DE 和CE 之间的数量关系为_________________.(2)思考探究:如图(2),将图(1)中的条件改为:在ABC ∆中, ,,,AB AC D A E =三点都在直线l 上,并且BDA AEC BAC α∠=∠=∠=,其中α为任意锐角或钝角.请问(1)中结论还是否成立?若成立,请给出证明;若不成立,请说明理由.(3)拓展应用:如图(3),,D E 是,,D A E 三点所在直线m 上的两动点,(,,D A E 三点互不重合),点F 为BAC ∠平分线上的一点,且ABF ∆与ACF ∆均为等边三角形,连接,BD CE ,若BDA AEC BAC ∠=∠=∠,试判断DEF ∆的形状并说明理由.【答案】(1)DE=CE+BD;(2)成立,理由见解析;(3)△DEF为等边三角形,理由见解析.【解析】【分析】(1)利用已知得出∠CAE=∠ABD,进而根据AAS证明△ABD与△CAE全等,然后进一步求解即可;∠=∠=∠=,得出∠CAE=∠ABD,在△ADB与△CEA中,根(2)根据BDA AEC BACα据AAS证明二者全等从而得出AE=BD,AD=CE,然后进一步证明即可;(3)结合之前的结论可得△ADB与△CEA全等,从而得出BD=AE,∠DBA=∠CAE,再根据等边三角形性质得出∠ABF=∠CAF=60°,然后进一步证明△DBF与△EAF全等,在此基础上进一步证明求解即可.【详解】(1)∵BD⊥直线l,CE⊥直线l,∴∠BDA=∠AEC=90°,∴∠BAD+∠ABD=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°,∴∠CAE=∠ABD,在△ABD与△CAE中,∵∠ABD=∠CAE,∠BDA=∠AEC,AB=AC,∴△ABD≌△CAE(AAS),∴BD=AE,AD=CE,∵DE=AD+AE,∴DE=CE+BD,故答案为:DE=CE+BD;(2)(1)中结论还仍然成立,理由如下:∠=∠=∠=,∵BDA AEC BACα∴∠DBA+∠BAD=∠BAD+∠CAE=180°−α,∴∠CAE=∠ABD,在△ADB与△CEA中,∵∠ABD=∠CAE,∠ADB=∠CEA,AB=AC,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴BD+CE=AE+AD=DE,即:DE=CE+BD,∆为等边三角形,理由如下:(3)DEF由(2)可知:△ADB≌△CEA,∴BD=EA,∠DBA=∠CAE,∵△ABF与△ACF均为等边三角形,∴∠ABF=∠CAF=60°,BF=AF,∴∠DBA+∠ABF=∠CAE+CAF,∴∠DBF=∠FAE,在△DBF与△EAF中,∵FB=FA,∠FDB=∠FAE,BD=AE,∴△DBF≌△EAF(SAS),∴DF=EF,∠BFD=∠AFE,∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°,∴△DEF为等边三角形.【点睛】本题主要考查了全等三角形性质与判定的综合运用,熟练掌握相关概念是解题关键.5.如图,A(0,4)是直角坐标系y轴上一点,动点P从原点O出发,沿x轴正半轴运动,速度为每秒1个单位长度,以P为直角顶点在第一象限内作等腰Rt△APB.设P点的运动时间为t秒.(1)若AB∥x轴,如图1,求t的值;(2)设点A关于x轴的对称点为A′,连接A′B,在点P运动的过程中,∠OA′B的度数是否会发生变化,若不变,请求出∠OA′B的度数,若改变,请说明理由.(3)如图2,当t=3时,坐标平面内有一点M(不与A重合)使得以M、P、B为顶点的三角形和△ABP全等,请直接写出点M的坐标.【答案】(1)4;(2)∠OA′B的度数不变,∠OA′B=45︒,理由见解析;(3)点M的坐标为(6,﹣4),(4,7),(10,﹣1)【解析】【分析】(1)利用等腰直角三角形的性质以及平行线的性质,可证明△AOP为等腰直角三角形,从而求得答案;(2)根据对称的性质得:PA =PA '=PB ,由∠PAB +∠PBA =90°,结合三角形内角和定理即可求得∠OA 'B =45°;(3)分类讨论:分别讨论当△ABP ≌△MBP 、△ABP ≌△MPB 、△ABP ≌△MPB 时,点M 的坐标的情况;过点M 作x 轴的垂线、过点B 作y 轴的垂线,利用等腰直角三角形的性质及全等三角形的判定和性质求得点M 的坐标即可.【详解】(1)∵AB ∥x 轴,△APB 为等腰直角三角形,∴∠PAB =∠PBA =∠APO =45°,∴△AOP 为等腰直角三角形,∴OA =OP =4.∴t =4÷1=4(秒),故t 的值为4.(2)如图2,∠OA ′B 的度数不变,∠OA ′B =45°,∵点A 关于x 轴的对称点为A ′,∴PA =PA ',又AP =PB ,∴PA =PA '=PB ,∴∠PAA '=∠PA 'A ,∠PBA '=∠PA 'B ,又∵∠PAB +∠PBA =90°,∴∠PAA '+∠PA 'A +∠PA 'B +∠PBA '=180()PAB PBA ∠∠︒-+180=︒-90°=90°,∴∠AA 'B =45°,即∠OA 'B =45°;(3)当t =3时,M 、P 、B 为顶点的三角形和△ABP 全等,①如图3,若△ABP ≌△MBP ,则AP =PM ,过点M 作MD ⊥OP 于点D ,∵∠AOP =∠PDM ,∠APO =∠DPM ,∴△AOP ≌△MDP (AAS ),∴OA =DM =4,OP =PD =3,∴M 的坐标为:(6,-4).②如图4,若△ABP ≌△MPB ,则AB PM =,过点M 作M E ⊥x 轴于点E ,过点B 作BG ⊥x 轴于点G ,过点B 作BF ⊥y 轴于点F ,∵△APB 为等腰直角三角形,则△MPB 也为等腰直角三角形, ∴∠BAP =∠MPB=45︒,PA PB =∵139023∠+∠=︒=∠+∠,∴12∠=∠∴Rt AOP Rt PGB ≅∴34BG OP PG AO ====,∵BG ⊥x 轴BF ,⊥y 轴∴四边形BGOF 为矩形,∴3OP BG ==,则431AF OA OF =-=-=347BF OG OP PG ==+=+=在Rt ABF 和Rt PME 中∠BAF =45︒+1∠,∠MPE =45︒+2∠,∴∠BAF =∠MPE ∵AB PM =∴Rt ABF Rt PME ≅∴71ME BF PE AF ====,∴M 的坐标为:(4,7),③如图5,若△ABP ≌△MPB ,则AB PM =,过点M 作M E ⊥x 轴于点D ,过点B 作BG ⊥x 轴于点E ,过点B 作BF ⊥y 轴于点F ,∵△APB 为等腰直角三角形,则△MPB 也为等腰直角三角形,∴∠BAP =∠MPB=45︒,PA PB =∵139023∠+∠=︒=∠+∠,∴12∠=∠∴Rt AOP Rt PEB ≅∴34BE OP PE AO ====,∵BE ⊥x 轴BF ,⊥y 轴∴四边形BEOF 为矩形,∴3OP BG ==,则431AF OA OF =-=-=347BF OE OP PE ==+=+=在Rt ABF 和Rt PMD 中∵BF ⊥y 轴∴42∠=∠∵42ABF PMD ∠∠∠+=∠+∴ABF PMD ∠∠=∵AB PM =∴Rt ABF Rt PMD ≅∴17MD AF PD BF ====,∴M 的坐标为:(10,﹣1).综合以上可得点M 的坐标为:(6,﹣4),(4,7),(10,﹣1).【点睛】本题考查了等腰三角形的性质,全等三角形的判定和性质,矩形的判定和性质,第(3)小题要注意分类讨论,作此类型的题要结合图形,构建适当的辅助线,寻找相等的量才能得出结论.二、八年级数学 轴对称解答题压轴题(难)6.在梯形ABCD 中,//AD BC ,90B ∠=︒,45C ∠=︒,8AB =,14BC =,点E 、F 分别在边AB 、CD 上,//EF AD ,点P 与AD 在直线EF 的两侧,90EPF ∠=︒,PE PF =,射线EP 、FP 与边BC 分别相交于点M 、N ,设AE x =,MN y =.(1)求边AD 的长;(2)如图,当点P 在梯形ABCD 内部时,求关于x 的函数解析式,并写出定义域; (3)如果MN 的长为2,求梯形AEFD 的面积.【答案】(1)6;(2)y=-3x+10(1≤x <103);(2)1769或32 【解析】【分析】(1)如下图,利用等腰直角三角形DHC 可得到HC 的长度,从而得出HB 的长,进而得出AD 的长;(2)如下图,利用等腰直角三角形的性质,可得PQ 、PR 的长,然后利用EB=PQ+PR 得去x 、y 的函数关系,最后根据图形特点得出取值范围;(3)存在2种情况,一种是点P 在梯形内,一种是在梯形外,分别根y 的值求出x 的值,然后根据梯形面积求解即可.【详解】(1)如下图,过点D 作BC 的垂线,交BC 于点H∵∠C=45°,DH ⊥BC∴△DHC 是等腰直角三角形∵四边形ABCD 是梯形,∠B=90°∴四边形ABHD 是矩形,∴DH=AB=8∴HC=8∴BH=BC -HC=6∴AD=6(2)如下图,过点P 作EF 的垂线,交EF 于点Q ,反向延长交BC 于点R ,DH 与EF 交于点G∵EF ∥AD,∴EF ∥BC∴∠EFP=∠C=45°∵EP ⊥PF∴△EPF 是等腰直角三角形同理,还可得△NPM 和△DGF 也是等腰直角三角形∵AE=x∴DG=x=GF,∴EF=AD+GF=6+x∵PQ ⊥EF,∴PQ=QE=QF ∴PQ=()162x + 同理,PR=12y ∵AB=8,∴EB=8-x∵EB=QR∴8-x=()11622x y ++ 化简得:y=-3x+10 ∵y >0,∴x <103当点N 与点B 重合时,x 可取得最小值则BC=NM+MC=NM+EF=-3x+10+614x +=,解得x=1∴1≤x <103(3)情况一:点P 在梯形ABCD 内,即(2)中的图形 ∵MN=2,即y=2,代入(2)中的关系式可得:x=83=AE∴188176662339ABCD S ⎛⎫=⨯++⨯= ⎪⎝⎭梯形 情况二:点P 在梯形ABCD 外,图形如下:与(2)相同,可得y=3x -10则当y=2时,x=4,即AE=4∴()16644322ABCD S =⨯++⨯=梯形 【点睛】本题考查了等腰直角三角形、矩形的性质,难点在于第(2)问中确定x 的取值范围,需要一定的空间想象能力.7.如图,在ABC ∆中,CE 为三角形的角平分线,AD CE ⊥于点F 交BC 于点D (1)若9628BAC B ︒︒∠=∠=,,直接写出BAD ∠= 度(2)若2ACB B ∠=∠,①求证:2AB CF =②若 ,CF a EF b ==,直接写出BD CD= (用含 ,a b 的式子表示)【答案】(1)34;(2)①见详解;②2b a b- 【解析】【分析】(1)由三角形内角和定理和角平分线定义即可得出答案;(2)①证明B BCE ∠=∠,得出BE=CE ,过点A 作//AH BC 交CE 与点H ,则,H BCE ACE EAH B ∠=∠=∠∠=∠,得出AH=AC ,H EAH ∠=∠,得出AE=HE ,由等腰三角形的性质可得出HF=CF ,即可得出结论;②证明AHF DCF ≅,得出AH=DC ,求出HF=CF=a ,HE=HF-EF=a-b ,CE=a+b ,由 //AH BC 得出AH AE a b BC BE a b-==+,进而得出结论. 【详解】 解:(1)∵9628BAC B ︒︒∠=∠=,,∴180962856ACB ∠=︒-︒-︒=︒,∵CE 为三角形的角平分线,∴1282ACE ACB ∠=∠=︒, ∵AD CE ⊥,∴902862CAF ∠=︒-︒=︒,∴966234BAD ∠=︒-︒=︒.故答案为:34;(2)①证明:∵22ACB B BCE ∠=∠=∠∴B BCE ∠=∠∴BE CE =过点A 作//AH BC 交CE 与点H ,如图所示:则,H BCE ACE EAH B ∠=∠=∠∠=∠∴AH=AC ,H EAH ∠=∠∴AE=HE∵AD CE ⊥∴HF=CF∴AB=HC=2CF ;②在AHF △和DCF 中,H DCF HF CF AFH DFC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴AHF DCF ≅∴AH=DC∵,CF a EF b == ∴ HF CF a ==,由①得 AE HE HF EF a b ==-=-, BE CE a b ==+∵ //AH BC∴AH AE a b BC BE a b -==+ ∴CD a b BC a b -=+ ∴2BD b CD a b=-. 故答案为:2b a b -. 【点睛】本题考查的知识点是全等三角形的判定及其性质、等腰三角形的判定及其性质、三角形的内角和定理、三角形的角平分线定理等,掌握以上知识点是解此题的关键.8.已知△ABC .(1)在图①中用直尺和圆规作出B 的平分线和BC 边的垂直平分线交于点O (保留作图痕迹,不写作法).(2)在(1)的条件下,若点D 、E 分别是边BC 和AB 上的点,且CD BE =,连接OD OE 、求证:OD OE =;(3)如图②,在(1)的条件下,点E 、F 分别是AB 、BC 边上的点,且△BEF 的周长等于BC 边的长,试探究ABC ∠与EOF ∠的数量关系,并说明理由.【答案】(1)见解析;(2)见解析;(3)ABC ∠与EOF ∠的数量关系是2180ABC EOF ∠+∠=,理由见解析.【解析】【分析】(1)利用基本作图作∠ABC 的平分线;利用基本作图作BC 的垂直平分线,即可完成;(2)如图,设BC 的垂直平分线交BC 于G ,作OH ⊥AB 于H ,用角平分线的性质证明OH=OG ,BH=BG ,继而证明EH =DG ,然后可证明OEH ODG ∆≅∆,于是可得到OE=OD ;(3)作OH ⊥AB 于H ,OG ⊥CB 于G ,在CB 上取CD=BE ,利用(2)得到 CD=BE ,OEH ODG ∆≅∆,OE=OD ,EOH DOG ∠=∠,180ABC HOG ∠+∠=,可证明EOD HOG ∠=∠,故有180ABC EOD ∠+∠=,由△BEF 的周长=BC 可得到DF=EF,于是可证明OEF OGF ∆≅∆,所以有EOF DOF ∠=∠,然后可得到ABC ∠与EOF ∠的数量关系.【详解】解:(1)如图,就是所要求作的图形;(2)如图,设BC 的垂直平分线交BC 于G ,作OH ⊥AB 于H ,∵BO 平分∠ABC ,OH ⊥AB ,OG 垂直平分BC ,∴OH=OG ,CG=BG ,∵OB=OB,∴OBH OBG ∆≅∆,∴BH=BG ,∵BE=CD ,∴EH=BH-BE=BG-CD=CG-CD=DG ,在OEH ∆和ODG ∆中,90OH OG OHE OGD EH DG =⎧⎪∠=∠=⎨⎪=⎩, ∴OEH ODG ∆≅∆,∴OE=OD .(3)ABC∠与EOF∠的数量关系是2180ABC EOF∠+∠=,理由如下;如图 ,作OH⊥AB于H ,OG⊥CB于G,在CB上取CD=BE,由(2)可知,因为 CD=BE,所以OEH ODG∆≅∆且OE=OD,∴EOH DOG∠=∠,180ABC HOG∠+∠=,∴EOD EOG DOG EOG EOH HOG∠=∠+∠=∠+∠=∠,∴180ABC EOD∠+∠=,∵△BEF的周长=BE+BF+EF=CD+BF+EF=BC∴DF=EF,在△OEF和△OGF中,OE ODEF FDOF OF=⎧⎪=⎨⎪=⎩,∴OEF OGF∆≅∆,∴EOF DOF∠=∠,∴2EOD EOF∠=∠,∴2180ABC EOF∠+∠=.【点睛】本题考查了角平分线的性质、垂直平分线的性质及全等三角形的判定与性质,还考查了基本作图.熟练掌握相关性质作出辅助线是解题关键,属综合性较强的题目,有一定的难度,需要有较强的解题能力.9.如图,在等边三角形ABC的外侧作直线AP,点C关于直线AP的对称点为点D,连接AD,BD,其中BD交直线AP于点E.(1)依题意补全图形;(2)若∠PAC=20°,求∠AEB的度数;(3)连结CE,写出AE,BE,CE之间的数量关系,并证明你的结论.【答案】(1)补图见解析;(2)60°;(3)CE +AE =BE .【解析】【分析】(1)根据题意补全图形即可;(2)根据轴对称的性质可得AC =AD ,∠PAC =∠PAD=20°,根据等边三角形的性质可得AC =AB ,∠BAC =60°,即可得AB =AD ,在△ABD 中,根据等腰三角形的性质和三角形的内角和定理求得∠D 的度数,再由三角形外角的性质即可求得∠AEB 的度数;(3)CE +AE =BE ,如图,在BE 上取点M 使ME =AE ,连接AM ,设∠EAC =∠DAE =x ,类比(2)的方法求得∠AEB =60°,从而得到△AME 为等边三角形,根据等边三角形的性质和SAS 即可判定△AEC ≌△AMB ,根据全等三角形的性质可得CE =BM ,由此即可证得CE +AE =BE .【详解】(1)如图:(2)在等边△ABC 中,AC =AB ,∠BAC =60°由对称可知:AC =AD ,∠PAC =∠PAD ,∴AB =AD∴∠ABD =∠D∵∠PAC =20°∴∠PAD =20°∴∠BAD =∠BAC+∠PAC +∠PAD =100°()1180402D BAD ︒︒∴∠=-∠=. ∴∠AEB =∠D +∠PAD =60°(3)CE +AE =BE . 在BE 上取点M 使ME =AE ,连接AM ,在等边△ABC中,AC=AB,∠BAC=60°由对称可知:AC=AD,∠EAC=∠EAD,设∠EAC=∠DAE=x.∵AD=AC=AB,∴()11802602D BAC x x︒︒∠=-∠-=-∴∠AEB=60-x+x=60°.∴△AME为等边三角形.∴AM=AE,∠MAE=60°,∴∠BAC=∠MAE=60°,即可得∠BAM=∠CAE.在△AMB和△AEC中,AB ACBAM CAEAM AE=⎧⎪∠=∠⎨⎪=⎩,∴△AMB≌△AEC.∴CE=BM.∴CE+AE=BE.【点睛】本题是三角形综合题,主要考查了轴对称的性质、三角形的内角和定理、等边三角形的性质及全等三角形的判定与性质等知识点,解决第三问时,通过做辅助线,把AE转化到BE 上,再证明CE=BM即可得结论.10.如图,在等边三角形ABC右侧作射线CP,∠ACP=α(0°<α<60°),点A关于射线CP 的对称点为点D,BD交CP于点E,连接AD,AE.(1)求∠DBC的大小(用含α的代数式表示);(2)在α(0°<α<60°)的变化过程中,∠AEB的大小是否发生变化?如果发生变化,请直接写出变化的范围;如果不发生变化,请直接写出∠AEB的大小;(3)用等式表示线段AE,BD,CE之间的数量关系,并证明.【答案】(1)∠DBC60α=︒-;(2)∠AEB的大小不会发生变化,且∠AEB=60°;(3)BD=2AE+CE,证明见解析.【解析】【分析】(1)如图1,连接CD,由轴对称的性质可得AC=DC,∠DCP=∠ACP=α,由△ABC是等边三角形可得AC=BC,∠ACB=60°,进一步即得∠BCD=602α︒+,BC=DC,然后利用三角形的内角和定理即可求出结果;(2)设AC、BD相交于点H,如图2,由轴对称的性质可证明△ACE≌△DCE,可得∠CAE=∠CDE,进而得∠DBC=∠CAE,然后根据三角形的内角和可得∠AEB=∠BCA,即可作出判断;(3)如图3,在BD上取一点M,使得CM=CE,先利用三角形的外角性质得出∠BEC60=︒,进而得△CME是等边三角形,可得∠MCE=60°,ME=CE,然后利用角的和差关系可得∠BCM=∠DCE,再根据SAS证明△BCM≌△DCE,于是BM=DE,进一步即可得出线段AE,BD,CE之间的数量关系.【详解】解:(1)如图1,连接CD,∵点A关于射线CP的对称点为点D,∴AC=DC,∠DCP=∠ACP=α,∵△ABC是等边三角形,∴AC=BC,∠ACB=60°,∴∠BCD=602α︒+,BC=DC,∴∠DBC=∠BDC()1806021806022BCDαα︒-︒+︒-∠===︒-;(2)∠AEB的大小不会发生变化,且∠AEB=60°.理由:设AC、BD相交于点H,如图2,∵点A关于射线CP的对称点为点D,∴AC=DC,AE=DE,又∵CE=CE,∴△ACE≌△DCE(SSS),∴∠CAE=∠CDE,∵∠DBC=∠BDC,∴∠DBC=∠CAE,又∵∠BHC=∠AHE,∴∠AEB=∠BCA=60°,即∠AEB的大小不会发生变化,且∠AEB=60°;(3)AE ,BD ,CE 之间的数量关系是:BD =2AE +CE .证明:如图3,在BD 上取一点M ,使得CM=CE ,∵∠BEC =∠BDC +∠DCE =6060αα︒-+=︒,∴△CME 是等边三角形,∴∠MCE =60°,ME=CE ,∴60260BCM BCD MCE DCE ααα∠=∠-∠-∠=︒+-︒-=,∴∠BCM =∠DCE ,又∵BC=DC ,CM=CE ,∴△BCM ≌△DCE (SAS ),∴BM=DE ,∵AE=DE ,∴BD=BM+ME+DE =2DE+ME =2AE+CE .【点睛】本题考查了等边三角形的判定和性质、全等三角形的判定和性质、三角形的内角和定理和轴对称的性质等知识,熟练掌握并运用上述知识解题的关键.三、八年级数学整式的乘法与因式分解解答题压轴题(难)11.阅读以下材料,并按要求完成相应的任务.在初中数学课本中重点介绍了提公因式法和运用公式法两种因式分解的方法,其中运用公式法即运用平方差公式:22()()a b a b a b -=+-和完全平方公式:222)2(a ab b a b ±+=±进行分解因式,能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍.当一个二次三项式不能直接能运用完全平方公式分解因式时,可应用下面方法分解因式,先将多项式2ax bx c ++(0)a ≠变形为2()a x m n ++的形式,我们把这样的变形方法叫做多项式2ax bx c ++的配方法.再运用多项式的配方法及平方差公式能对一些多项式进行分解因式.例如:21124x x ++2221111112422x x ⎛⎫⎛⎫=++-+ ⎪ ⎪⎝⎭⎝⎭ 2112524x ⎛⎫=+- ⎪⎝⎭ 1151152222x x ⎛⎫⎛⎫=+++- ⎪⎪⎝⎭⎝⎭ (8)(3)x x =++.根据以上材料,完成相应的任务:(1)利用“多项式的配方法”将268x x -+化成2()a x m n ++的形式为_______; (2)请你利用上述方法因式分解:①223x x +-; ②24127x x +-.【答案】(1)2(3)1x --;(2)①(3)(1)x x +-;②(27)(21)x x +-【解析】【分析】(1)将多项式2233+-即可完成配方;(2)①将多项式+1-1后即可用配方法再根据平方差公式分解因式进行解答;②将多项式2233+-即可完成配方,再根据平方差公式分解因式,整理后即可得到结果.【详解】解:(1)268x x -+=2226338x x -+-+=2(3)1x --,故答案为:2(3)1x --;(2)①223x x +-22113x x =++--2(1)4x =+-(12)(12)x x =+++-(3)(1)x x =+-.②24127x x +-222(2)12337x x =++--2(23)16x =+-(234)(234)x x =+++-(27)(21)x x =+-.【点睛】此题考查多项式的配方法,多项式的分解因式,正确理解题中的配方法的解题方法是关键.12.观察下列各式:()()2111,x x x -+=-()()23 111,x x x x -++=-()()324 111,x x x x x -+++=-()()4325 1 11,x x x x x x -++++=-······()1根据规律()()122 1 ...1n n x x x x x ---+++++=(其中n 为正整数) ;()()3029282(51)5555251-+++++()3计算:201920182017321(2)(2)(2)(2)(2)(2)1-+-+-++-+--++ 【答案】(1)1n x -;(2)311-5;(3)2020213-- 【解析】【分析】(1)归纳总结得到一般性规律,即可得到结果;(2)根据一般性结果,将n=31,x=5代入(1)中即可;(3)将代数式适当变形为(1)的形式,根据前面总结的规律即可计算出结果.【详解】(1)根据上述规律可得()()122 1 ...1n n x x x x x ---+++++=1n x -,故填:1n x -;(2)由(1)可知()3029282(51)555551-+++++=311-5()3 201920182017321(2)(2)(2)(2)(2)(2)1-+-+-+⋅+-+-+-+ =201920182011732[(2)1](2)(2)(2)(2)(2)(2)13⎡⎤---+-+-+⋯+-+--+⎣⎦-+ =2020(2)13--- =2020213-- 【点睛】本题考查整式的乘法,能根据题例归纳总结出一般性规律是解题关键,(3)中能对整式适当变形是解题关键,但需注意变形时要为等量变形.13.阅读理解题:定义:如果一个数的平方等于﹣1,记为i 2=﹣1,这个数i 叫做虚数单位.那么形如a+bi(a ,b 为实数)的数就叫做复数,a 叫这个复数的实部,b 叫做这个复数的虚部,它的加,减,乘法运算与整式的加,减,乘法运算类似.例如计算:(2+i )+(3﹣4i )=5﹣3i .(1)填空:i 3= ,2i 4= ;(2)计算:①(2+i )(2﹣i );②(2+i )2;(3)若两个复数相等,则它们的实部和虚部必须分别相等,完成下列问题:已知:(x+3y )+3i=(1﹣x )﹣yi ,(x ,y 为实数),求x ,y 的值.(4)试一试:请你参照i 2=﹣1这一知识点,将m 2+25(m 为实数)因式分解成两个复数的积.【答案】(1)i ;2(2)①5②3+4i (3)x=5,y=﹣3(4)m 2+25=(m+5i )(m ﹣5i )【解析】【分析】(1)根据同底数幂的乘法法则及2i 的概念直接运算;(2)利用平方差、完全平方公式把原式展开,根据21i =-计算即可;(3)根据虚数定义得出方程组,解方程组即可;(4)根据21i =- 将25转化为2(-5)i ,再利用平方差公式进行因式分解即可。

人教八年级上册期中提升精选30题(重点突围)(解析版)

人教八年级上册期中提升精选30题(重点突围)(解析版)

人教版八年级期数学上学期中提升精选30题一、选择题(共8小题)1.(2022·山东·滨州市滨城区教学研究室八年级期中)下列所给的各组线段,能组成三角形的是:() A.2,11,13B.5,12,7C.5,5,11D.5,12,13【答案】D【分析】根据三角形三边关系定理,判断选择即可.【详解】∵2+11=13,∴A不符合题意;∵5+7=12,∴B不符合题意;∵5+5=10<11,∴C不符合题意;∵5+12=17>13,∴D符合题意;故选D.【点睛】本题考查了构成三角形的条件,熟练掌握三角形三边关系是解题的关键.2.(2021·重庆市璧山中学校八年级期中)下列四幅图案中,不是轴对称图形的是()A.B.C.D.【答案】D【分析】根据轴对称图形的定义逐项判断即可.【详解】解:A.是轴对称图形,故本选项不合题意;B.是轴对称图形,故本选项不合题意;C.是轴对称图形,故本选项不合题意;D.不是轴对称图形,故本选项符合题意.故本题选:D.【点睛】本题主要考查了轴对称图形的识别.掌握轴对称图形的定义是解答本题的关键.轴对称:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形.3.(2022·黑龙江双鸭山·七年级阶段练习)在下列长度的四根木棒中,能与5cm、9cm长的两根木棒钉成一个三角形的是()A.3cm B.4cm C.5cm D.14cm【答案】C【分析】直接根据“三角形第三边大于两边之差小于两边之和”判断即可.【详解】解:设三角形的第三边长为acm,5+9=14,9-5=4,则4<a<14,故选C【点睛】本题考查了三角形三边的关系,解题的关键是熟记“三角形第三边大于两边之差小于两边之和”.4.(2022·江苏扬州·七年级期末)在数学课上,同学们在练习过点B作线段AC所在直线的垂线段时,有一部分同学画出下列四种图形,请你数一数,错误的个数为()A.1个B.2个C.3个D.4个【答案】C【分析】根据三角形的高的概念,从三角形的一个顶点向对边作垂线,垂足与顶点之间的线段叫做三角形的高,判断即可.【详解】解:在四个图形中,只有第一个图形是过点B作线段AC所在直线的垂线段,其它三个都不是,故选:C.【点睛】本题考查的是三角形的高的概念,读懂题意是解题的关键.5.(2021·重庆·巴川初级中学校八年级期中)如图,在△ABC中,已知点D,E,F分别为边BC,AD,CE 中点,且△ABC的面积等于4cm2,则阴影部分图形面积等于().A.三边的垂直平分线的交点上C.三条高线的交点上【点睛】本题考查了角平分线性质的实际应用,角平分线上的点到角的两边的距离相等的性质,是基础题,熟记性质是解题的关键.7.(2022·四川·渠县第二中学七年级阶段练习)如图,AD 是△ABC 的角平分线,DE ⊥AC ,垂足为 E , //BF AC 交 ED 的延长线于点 F ,若 BC 恰好平分∠ABF .下 列结论:①DE =DF ;②DB =DC ;③AD ⊥BC ,其中正确的是( )A .①②B .①③C .②③D .①②③【答案】D 【分析】证明△ABC 为等腰三角形,根据等腰三角形的三线合一判断②③,证明△CDE ≌△BDF ,根据全等三角形的性质判断①.【详解】解:∵BC 平分∠ABF ,∴∠ABC =∠FBC ,∵BF AC ∥,∴∠ACB =∠FBC ,∴∠ABC =∠ACB ,∴AB =AC ,∵AD 是△ABC 的角平分线,∴DB =DC ,AD ⊥BC ,②、③结论正确;在△CDE 和△BDF 中,C DBF DC DBCDE BDF Ð=Ðìï=íïÐ=Ðî,∴△CDE ≌△BDF (ASA ),∴DE =DF ,①结论正确;故①②③均正确,【分析】先求出这个多边形的每一个外角的度数,再用360°除以外角即可得到边数【详解】解:∵多边形的每一个内角都等于160°∴ 多边形的每一个外角都等于180°-160°=20°∴ 边数n =360°÷20°=18故答案为:18【点睛】本题主要考查了多边形的内角与外角关系,求出每一个外角的度数是解题关键.10.(2022·黑龙江·兰西县红星乡第一中学校七年级期中)如图所示的手机支架.把手机放在上面就可以方便地使用手机,这是利用了三角形的___________.【答案】稳定性【分析】利用三角形的稳定性的性质直接回答即可.【详解】解:把手机放在上面就可以方便地使用手机,这是利用了三角形的稳定性,故答案为:稳定性.【点睛】本题考查了三角形的稳定性,解题的关键是掌握三角形具有稳定性.11.(2020·北京·垂杨柳中学八年级期中)已知点()2x , 和点()3y ,关于y 轴对称,则()2011x y + =________.【答案】1【分析】根据关于y 轴对称的点的特征:横坐标互为相反数,纵坐标相同,进行求解即可.【详解】解:∵点()2x ,和点()3y ,关于y 轴对称,∴y =﹣2,x =3,∴x +y =1,∴()20111x y += .故答案为:1.【点睛】本题考查已知字母的值,求代数式的值.熟练掌握关于y轴对称的点的特征是解题的关键.12.(2022·山东泰安·七年级期末)如图,AD为∠BAC的平分线,请你添加一个适当的条件______,使得△≌△.ABD ACD【答案】AB=AC(答案不唯一)【分析】根据角平分线定义推出∠BAD=∠CAD,进而利用全等三角形的判定解答即可.【详解】解:∵AD平分∠BAC,∴∠BAD=∠CAD,∵AD=AD,添加AB=AC,利用SAS可得△ABD≌△ACD;添加∠B=∠C,利用AAS可得△ABD≌△ACD;添加∠ADB=∠ADC,利用ASA可得△ABD≌△ACD;故答案为:AB=AC(答案不唯一).【点睛】本题考查了全等三角形的判定,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.13.(2022·黑龙江大庆·七年级期末)琪琪画了一个等腰三角形,量得两条边长分别为12cm和5cm,那么它的周长为______.【答案】29cm##29厘米【分析】因为三角形为等腰三角形,应分两种情况:①12cm是底边时;②5cm是底边时分别求解.【详解】解:应分两种情况:当12cm是底边,5cm是腰时,此时等腰三角形的三边长分别为:12cm,5cm,5cm,∵5512+<,∴此时不能构成三角形;当5cm 是底边,12cm 是腰时,等腰三角形的三边长分别为:12cm ,12cm ,5cm ,此时51212+>,满足三角形的任意两边之和大于第三边,能构成三角形,∴三角形的周长为:12cm +12cm +5cm =29cm ,综上可得三角形的周长为29cm .故答案为:29cm .【点睛】本题考查了三角形的三边之间的关系,等腰三角形的定义及分类讨论的思想,熟记三角形任意两边之和大于第三边是解题的关键.14.(2022·辽宁·丹东市第十九中学八年级期末)如图,在△ABC 中,边AB 的垂直平分线OM 与边AC 的垂直平分线ON 交于点O ,这两条垂直平分线分别交BC 于点D 、E .已知△ADE 的周长为13cm .分别连接OA 、OB 、OC ,若△OBC 的周长为27cm ,则OA 的长为______cm .【答案】7【分析】根据线段垂直平分线的性质得DA DB =,EA EC =,OA OB OC ==,从而可得求出13BC =cm ,然后根据OBC V 的周长为27cm ,即可求出解.【详解】解:连接OB ,OC ,∵OM 是线段AB 的垂直平分线,∴DA DB =,OA OB =,∵ON 是AC 的垂直平分线,∴EA EC =,OA OC = ,∴OA OB OC ==.∵ADE V 的周长13cm ,∴13AD DE EA ++=cm ,∴13BC DB DE EC AD DE EA =++=++=cm .∵OBC V 的周长为27cm ,∴2714OB OC BC +=-=cm ,∴7OB OC ==cm ,∴7OA OC ==cm .故答案为:7.【点睛】本题主要考查了垂直平分线的性质,熟记线段垂直平分线上的点到线段两端点的距离相等是解决问题的关键.15.(2022·河南·漯河市第三中学八年级期末)如图,在△ABC 中,P ,Q 分别是BC ,AC 上的点,PR ⊥AB ,PS ⊥AC ,垂足分别是R ,S ,若AQ =PQ ,PR =PS ,那么下面四个结论:①AS =AR :②QP ∥AR ;③△BRP ≌△QSP :④BR =QS ,其中一定正确的是(填写编号)________.【答案】①②##②①【分析】通过证明△APR ≌△APS ,可得AS =AR ,∠BAP =∠PAS ,可证QP ∥AR ,可求解.【详解】解:如图,连接AP ,①∵PR ⊥AB ,PS ⊥AC ,PR =PS ,∴点P 在∠BAC 的平分线上,∠ARP =∠ASP =90°,∴∠SAP =∠RAP ,又AP =AP ,∠ARP =∠ASP =90°,【答案】见解析【分析】根据轴对称图形的概念作图即可.【详解】解:如图所示:.【点睛】此题主要考查了利用轴对称设计图案,关键是掌握轴对称图形沿某条直线折叠,直线两旁的部分能完全重合.20.(2022·河南·上蔡县第一初级中学七年级阶段练习)如图,在△ABC 中,点D 是BC 边上的一点,∠B =50°,∠BAD =30°,将△ABD 沿AD 折叠得到△AED ,AE 与BC 交于点F .(1)填空:∠AFC =______度;(2)求∠EDF 的度数.【答案】(1)110(2)∠EDF 的度数为20°【分析】(1)根据折叠求出BAD DAF Ð=Ð,根据三角形外角性质求出即可;(2)根据三角形内角和定理求出ADB Ð,求出ADE Ð,根据三角形外角性质求出ADF Ð,即可求出答案.(1)解:∵ABD △沿AD 折叠得到AED V ,∴30BAD DAF Ð=Ð=°,∵50B Ð=°,30BAD Ð=°,∴110AFC B BAD DAF Ð=Ð+Ð+Ð=° .故答案为:110.(2)解:∵50B Ð=°,30BAD Ð=°,∴1805030100ADB Ð=°-°-°=°,503080ADC Ð=°+°=°,∵ABD △沿AD 折叠得到AED V ,∴100ADE ADB Ð=Ð=°,∴1008020EDF ADE ADC Ð=Ð-Ð=°-°=°.【点睛】本题考查了三角形内角和定理,三角形外角性质和折叠的性质,能根据定理求出各个角的度数,是解此题的关键.21.(2022·河南·金明中小学九年级阶段练习)如图,在平面直角坐标系中,已知△ABC 的顶点坐标分别是()5,2A -,()2,4B -,()1,1C -.(1)在图中作出111A B C △,使111A B C △和△ABC 关于x 轴对称,并写出点1A 的坐标;(2)在x 轴上求作一点P ,使得△APC 的周长最小.(不写作法,请保留作图痕迹)【答案】(1)见解析,()15,2A --(2)见解析【分析】(1)找出ABC V 各顶点关于x 轴的对称点111A B C 、、,再顺次连接即可.根据关于x 轴对称的点的坐标横坐标不变,纵坐标互为相反数即得出1A 点坐标;(2)连接1AC ,1AC 与x 轴的交点即为P 点.(1)如图,111A B C △为所求,()152A --,.(2)如图,点P 为所求.【点睛】本题考查作图—轴对称,轴对称的性质,两点之间线段最短.利用数形结合的思想是解题的关键.22.(2022·全国·八年级期中)如图,△ABC 中,AD ⊥BC ,EF 垂直平分AC ,交AC 于点F ,交BC 于点E ,且BD =DE .(1)若3x y ==,经过1秒后,此时(2)若x y ¹,当3x =,y (3)是否存在点P ,使BPD △【答案】(1)见解析(2)154,理由见解析(3)解:存在点P ,使BPD △ABC Q V 中,AB AC =,180472B C °-°\Ð=Ð==①当66.5B BPD Ð=Ð=(1)运动 秒时,AE =13DC (2)运动多少秒时,△ABD ≌△DCE (3)若△ABD ≌△DCE ,∠BAC =α27.(2021·甘肃·甘州区思源实验学校七年级期末)如图1,点P、Q分别是等边△ABC边AB、BC上的动点(端点除外),点P从顶点A、点Q从顶点B同时出发,且它们的运动速度相同,连接AQ、CP交于点M.(1)求证:△ABQ≌△CAP;(2)当点P、Q分别在AB、BC边上运动时,∠QMC变化吗?若变化,请说明理由;若不变,求出它的度数.(3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠QMC变化吗?若变化,请说明理由;若不变,则求出它的度数.【答案】(1)证明见解析(2)点P、Q在运动的过程中,∠QMC不变.∠QMC=60°(3)点P、Q在运动到终点后继续在射线AB、BC上运动时,∠QMC不变.∠QMC=120°【分析】(1)根据等边三角形的性质,利用SAS证明△ABQ≌△CAP;(2)由△ABQ≌△CAP根据全等三角形的性质可得∠BAQ=∠ACP,从而得到∠QMC=60°;(3)由△ABQ≌△CAP根据全等三角形的性质可得∠BAQ=∠ACP,从而得到∠QMC=120°.(1)证明:∵△ABC是等边三角形∴∠ABQ=∠CAP,AB=CA,又∵点P、Q运动速度相同,∴AP=BQ,在△ABQ与△CAP中,∵AB CAABQ CAPAP BQ=ìïÐ=Ðíï=î,(1)发现问题如图①当点D在边BC上时.①请写出BD和CE之间的数量关系为,位置关系为;②求证:CE+CD=BC;(2)尝试探究如图②,当点D在边BC的延长线上且其他条件不变时,(1)中BC、CE、立?若成立,请证明:若不成立,请写出新的数量关系,说明理由;(3)拓展延伸如图③,当点D 在边CB 的延长线上且其他条件不变时,若BC =6,CE =2,求线段CD 的长.【答案】(1)①BD =CE ,BD ⊥CE ;②见解析(2)不成立,存在的数量关系为CE =BC +CD ,理由见解析(3)8【分析】(1)①根据条件AB =AC ,∠ABC =∠ACB =45°,AD =AE ,∠ADE =∠AED =45°,判定△ABD ≌△ACE (SAS ),即可得出BD 和CE 之间的关系;②根据全等三角形的性质,即可得到CE +CD =BC ;(2)根据已知条件,判定△ABD ≌△ACE (SAS ),得出BD =CE ,再根据BD =BC +CD ,即可得到CE =BC +CD ;(3)根据条件判定△ABD ≌△ACE (SAS ),得出BD =CE ,进而得到CD =BC +BD =BC +CE ,最后根据BC =6,CE =2,即可求得线段CD 的长.(1)①如图1,∵AB =AC ,∠ABC =∠ACB =45°,AD =AE ,∠ADE =∠AED =45°,∴∠BAC =∠DAE =90°,∴∠BAD =∠CAE ,在△ABD 和△ACE 中,AB AC BAD CAE AD AE =ìïÐ=Ðíï=î,∴△ABD ≌△ACE (SAS ),∴BD =CE ,∠B =∠ACE =45°,∴∠BCE =90°,即BD ⊥CE ;故答案为:BD =CE ,BD ⊥CE ;②由①得△ABD ≌△ACE (SAS ),∴BD =CE ,∴BC =BD +CD =CE +CD ;(2)不成立,存在的数量关系为CE =BC +CD .理由:如图2,由(1)同理可得,【答案】证明见解析,证明见解析,5【分析】(1)根据图②,求出∠BDA=∠AFC=90°,∠ABD=∠CAF,根据AAS证两三角形全等即可;(2)根据图③,运用三角形外角性质求出∠ABE=∠CAF,∠BAE=∠FCA,根据ASA证两三角形全等即可;(3)根据图④,由CD=2BD,△ABC的面积为15,可求出△ABD的面积为5,根据△ABE≌△CAF,得出△ACF与△BDE的面积之和等于△ABD的面积,据此即可得出答案.【详解】解:特例探究:∵CF⊥AE,BD⊥AE,∠MAN=90°,∴∠BDA=∠AFC=90°,∴∠ABD+∠BAD=90°,∠BAD+∠CAF=90°,∴∠ABD=∠CAF,在△ABD和△CAF中,∵ADB CFAABD CAFAB CAÐ=ÐìïÐ=Ðíï=î,∴△ABD≌△CAF(AAS);归纳证明:∵∠1=∠2=∠BAC,∠1=∠BAE+∠ABE,∠BAC=∠BAE+∠CAF,∠2=∠FCA+∠CAF,∴∠ABE=∠CAF,∠BAE=∠FCA,在△ABE和△CAF中,∵ABE CAFAB CABAE ACFÐ=Ðìï=íïÐ=Ðî,∴△ABE≌△CAF(ASA);拓展应用:性质等知识点的综合应用,判断出两三角形全等是解本题的关键.小敏与同桌小聪讨论后,进行了如下解答:(1)特殊情况,归纳猜想:当点E为AB的中点时,如图1,确定线段AE与AE DB(填“>”,“<”或“=”).论:_____(2)特例启发,演绎证明:如图2,当点E为AB边上任意一点时,线段AE与∥,交AC于点F,请帮助小敏和小聪完成接下来的证(填“>”,“<”或“=”),小敏和小聪过点E作EF BC则CEF ECD Ð=Ð,AEF ÐAEF AFE A \Ð=Ð=Ð,AEF \D 是等边三角形,AE EF AF \==,F ,同(2)得:EBD EFC D D ≌32BD CF AE \===,31CD BD BC \=-=-=同(2)得:(EBD CFE AAS D D ≌。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学期中精选试卷专题练习(解析版)一、八年级数学全等三角形解答题压轴题(难)1.在四边形ABCD 中,E 为BC 边中点.(Ⅰ)已知:如图,若AE 平分∠BAD,∠AED=90°,点F 为AD 上一点,AF=AB.求证:(1)△ABE≌AFE;(2)AD=AB+CD(Ⅱ)已知:如图,若AE 平分∠BAD,DE 平分∠ADC,∠AED=120°,点F,G 均为AD上的点,AF=AB,GD=CD.求证:(1)△GEF 为等边三角形;(2)AD=AB+12BC+CD.【答案】(Ⅰ)(1)证明见解析;(2)证明见解析;(Ⅱ)(1)证明见解析;(2)证明见解析.【解析】【分析】(Ⅰ)(1)运用SAS证明△ABE≌AFE即可;(2)由(1)得出∠AEB=∠AEF,BE=EF,再证明△DEF≌△DEC(SAS),得出DF=DC,即可得出结论;(Ⅱ)(1)同(Ⅰ)(1)得△ABE≌△AFE(SAS),△DGE≌△DCE(SAS),由全等三角形的性质得出BE=FE,∠AEB=∠AEF,CE=GE,∠CED=∠GED,进而证明△EFG是等边三角形;(2)由△EFG 是等边三角形得出GF=EE=BE=12BC ,即可得出结论. 【详解】(Ⅰ)(1)∵AE 平分∠BAD ,∴∠BAE=∠FAE ,在△ABE 和△AFE 中, AB AF BAE FAE AE AE ⎪∠⎪⎩∠⎧⎨===,∴△ABE ≌△AFE (SAS ),(2)∵△ABE ≌△AFE ,∴∠AEB=∠AEF ,BE=EF ,∵E 为BC 的中点,∴BE=CE ,∴FE=CE ,∵∠AED=∠AEF+∠DEF=90°,∴∠AEB+∠DEC=90°,∴∠DEF=∠DEC ,在△DEF 和△DEC 中,FE CE DEF DEC DE DE ⎪∠⎪⎩∠⎧⎨===,∴△DEF ≌△DEC (SAS ),∴DF=DC ,∵AD=AF+DF ,∴AD=AB+CD ;(Ⅱ)(1)∵E 为BC 的中点,∴BE=CE=12BC , 同(Ⅰ)(1)得:△ABE ≌△AFE (SAS ),△DEG ≌△DEC (SAS ),∴BE=FE ,∠AEB=∠AEF ,CE=GE ,∠CED=∠GED ,∵BE=CE ,∴FE=GE ,∵∠AED=120°,∠AEB+∠CED=180°-120°=60°,∴∠AEF+∠GED=60°,∴∠GEF=60°,∴△EFG 是等边三角形,(2)∵△EFG是等边三角形,∴GF=EF=BE=12 BC,∵AD=AF+FG+GD,∴AD=AB+CD+12 BC.【点睛】本题考查了全等三角形的判定与性质、等边三角形的判定与性质等知识;熟练掌握等边三角形的判定与性质,证明三角形全等是解题的关键.2.如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.(1)求证:△ABC≌△ADE;(2)求∠FAE的度数;(3)求证:CD=2BF+DE.【答案】(1)证明见解析;(2)∠FAE=135°;(3)证明见解析.【解析】【分析】(1)根据已知条件易证∠BAC=∠DAE,再由AB=AD,AE=AC,根据SAS即可证得△ABC≌△ADE;(2)已知∠CAE=90°,AC=AE,根据等腰三角形的性质及三角形的内角和定理可得∠E=45°,由(1)知△BAC≌△DAE,根据全等三角形的性质可得∠BCA=∠E=45°,再求得∠CAF=45°,由∠FAE=∠FAC+∠CAE即可得∠FAE的度数;(3)延长BF到G,使得FG=FB,易证△AFB≌△AFG,根据全等三角形的性质可得AB=AG,∠ABF=∠G,再由△BAC≌△DAE,可得AB=AD,∠CBA=∠EDA,CB=ED,所以AG=AD,∠ABF=∠CDA,即可得∠G=∠CDA,利用AAS证得△CGA≌△CDA,由全等三角形的性质可得CG=CD,所以CG=CB+BF+FG=CB+2BF=DE+2BF.【详解】(1)∵∠BAD=∠CAE=90°,∴∠BAC+∠CAD=90°,∠CAD+∠DAE=90°,∴∠BAC=∠DAE,在△BAC和△DAE中,AB AD BAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩, ∴△BAC ≌△DAE (SAS );(2)∵∠CAE=90°,AC=AE ,∴∠E=45°,由(1)知△BAC ≌△DAE ,∴∠BCA=∠E=45°,∵AF ⊥BC ,∴∠CFA=90°,∴∠CAF=45°,∴∠FAE=∠FAC+∠CAE=45°+90°=135°;(3)延长BF 到G ,使得FG=FB ,∵AF ⊥BG ,∴∠AFG=∠AFB=90°,在△AFB 和△AFG 中,BF F AFB AFG AF AF G =⎧⎪∠=∠⎨⎪=⎩, ∴△AFB ≌△AFG (SAS ),∴AB=AG ,∠ABF=∠G ,∵△BAC ≌△DAE ,∴AB=AD ,∠CBA=∠EDA ,CB=ED ,∴AG=AD ,∠ABF=∠CDA ,∴∠G=∠CDA ,在△CGA 和△CDA 中,GCA DCA CGA CDA AG AD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△CGA ≌△CDA ,∴CG=CD ,∵CG=CB+BF+FG=CB+2BF=DE+2BF ,∴CD=2BF+DE .【点睛】本题考查全等三角形的判定与性质,解决第3问需作辅助线,延长BF 到G ,使得FG=FB ,证得△CGA ≌△CDA 是解题的关键.3.如图1,在等边△ABC 中,E 、D 两点分别在边AB 、BC 上,BE =CD ,AD 、CE 相交于点F .(1)求∠AFE 的度数;(2)过点A 作AH ⊥CE 于H ,求证:2FH +FD =CE ;(3)如图2,延长CE 至点P ,连接BP ,∠BPC =30°,且CF =29CP ,求PF AF的值. (提示:可以过点A 作∠KAF =60°,AK 交PC 于点K ,连接KB ) 【答案】(1)∠AFE =60°;(2)见解析;(3)75【解析】【分析】(1)通过证明 BCE CAD ≌ 得到对应角相等,等量代换推导出60AFE ∠=︒;(2)由(1)得到60AFE ∠=︒,CE AD = 则在Rt AHF △ 中利用30°所对的直角边等于斜边的一半,等量代换可得;(3)通过在PF 上取一点K 使得KF =AF ,作辅助线证明ABK 和ACF 全等,利用对应边相等,等量代换得到比值.(通过将ACF 顺时针旋转60°也是一种思路.)【详解】(1)解:如图1中.∵ABC 为等边三角形,∴AC =BC ,∠BAC =∠ABC =∠ACB =60°, 在BCE 和CAD 中,60BE CD CBE ACD BC CA =⎧⎪∠=∠=︒⎨⎪=⎩,∴ BCE CAD ≌(SAS ),∴∠BCE =∠DAC ,∵∠BCE +∠ACE =60°,∴∠DAC +∠ACE =60°,∴∠AFE =60°.(2)证明:如图1中,∵AH ⊥EC ,∴∠AHF =90°,在Rt △AFH 中,∵∠AFH =60°,∴∠FAH =30°,∴AF =2FH ,∵ EBC DCA ≌,∴EC =AD ,∵AD =AF +DF =2FH +DF ,∴2FH +DF =EC .(3)解:在PF 上取一点K 使得KF =AF ,连接AK 、BK ,∵∠AFK =60°,AF =KF ,∴△AFK 为等边三角形,∴∠KAF =60°,∴∠KAB =∠FAC ,在ABK和ACF中,AB ACKAB ACFAK AF=⎧⎪∠=∠⎨⎪=⎩,∴ABK ACF≌(SAS),BK CF=∴∠AKB=∠AFC=120°,∴∠BKE=120°﹣60°=60°,∵∠BPC=30°,∴∠PBK=30°,∴29BK CF PK CP===,∴79PF CP CF CP=-=,∵45()99AF KF CP CF PK CP CP CP==-+=-=∴779559CPPFAF CP== .【点睛】掌握等边三角形、直角三角形的性质,及三角形全等的判定通过一定等量代换为本题的关键.4.(1)在等边三角形ABC中,①如图①,D,E分别是边AC,AB上的点,且AE CD=,BD与EC交于点F,则BFE∠的度数是___________度;②如图②,D,E分别是边AC,BA延长线上的点,且AE CD=,BD与EC的延长线交于点F,此时BFE∠的度数是____________度;(2)如图③,在ABC∆中,AC BC=,ACB∠是锐角,点O是AC边的垂直平分线与BC的交点,点D,E分别在AC,OA的延长线上,且AE CD=,BD与EC的延长线交于点F,若ACBα∠=,求BFE∠的大小(用含法α的代数式表示).∠=【答案】(1)60;(2)60;(3)BFEα【解析】【分析】(1)①只要证明△ACE≌△CBD,可得∠ACE=∠CBD,推出∠BFE=∠CBD+∠BCF=∠ACE+∠BCF=∠BCA=60°;②只要证明△ACE≌△CBD,可得∠ACE=∠CBD=∠DCF,即可推出∠BFE=∠D+∠DCF=∠D+∠CBD=∠BCA=60°;(2)只要证明△AEC≌△CDB,可得∠E=∠D,即可推出∠BFE=∠D+∠DCF=∠E+∠ECA=∠OAC=α.【详解】解:(1)①如图①中,∵△ABC是等边三角形,∴AC=CB,∠A=∠BCD=60°,∵AE=CD,∴△ACE≌△CBD,∴∠ACE=∠CBD,∴∠BFE=∠CBD+∠BCF=∠ACE+∠BCF=∠BCA=60°.故答案为60;②如图②,∵△ABC是等边三角形,∴AC=CB,∠A=∠BCD=60°,∴∠CAE=∠BCD=′120°∵AE=CD,∴△ACE≌△CBD,∴∠ACE=∠CBD=∠DCF,∴∠BFE=∠D+∠DCF=∠D+∠CBD=∠BCA=60°.故答案为60;(2)如图③中,图③点O是AC边的垂直平分线与BC的交点,∴=,OC OAOAC ACOα∴∠=∠==-,∴∠=∠︒180EAC DCBα=,AE CDAC BC=,AEC CDB∴∆≅∆,∴∠=∠,E DBFE D DCF E ECA OACα∴∠=∠+∠=∠+∠=∠=.【点睛】本题考查全等三角形的判定和性质和等腰三角形的性质和判定以及等边三角形的性质、线段的垂直平分线的性质等知识,解题的关键是正确寻找全等三角形解决问题.5.如图1,已知CF是△ABC的外角∠ACE的角平分线,D为CF上一点,且DA=DB.(1)求证:∠ACB=∠ADB;(2)求证:AC+BC<2BD;(3)如图2,若∠ECF=60°,证明:AC=BC+CD.【答案】(1)详见解析;(2)详见解析;(3)详见解析.【解析】【分析】(1)过点D分别作AC,CE的垂线,垂足分别为M,N,证明Rt△DAM≌Rt△DBN,得出∠DAM=∠DBN,则结论得证;(2)证明Rt△DMC≌Rt△DNC,可得CM=CN,得出AC+BC=2BN,又BN<BD,则结论得证;(3)在AC 上取一点P ,使CP=CD ,连接DP ,可证明△ADP ≌△BDC ,得出AP=BC ,则结论可得出.【详解】(1)证明:过点D 分别作AC ,CE 的垂线,垂足分别为M ,N ,∵CF 是△ABC 的外角∠ACE 的角平分线,∴DM =DN ,在Rt △DAM 和Rt △DBN 中,DA DB DM DN=⎧⎨=⎩ , ∴Rt △DAM ≌Rt △DBN (HL ),∴∠DAM =∠DBN ,∴∠ACB =∠ADB ;(2)证明:由(1)知DM =DN ,在Rt △DMC 和Rt △DNC 中,DC DC DM DN =⎧⎨=⎩, ∴Rt △DMC ≌Rt △DNC (HL ),∴CM =CN ,∴AC +BC =AM +CM +BC =AM +CN +BC =AM +BN ,又∵AM =BN ,∴AC +BC =2BN ,∵BN <BD ,∴AC +BC <2BD .(3)由(1)知∠CAD =∠CBD ,在AC 上取一点P ,使CP =CD ,连接DP ,∵∠ECF =60°,∠ACF =60°,∴△CDP 为等边三角形,∴DP =DC ,∠DPC =60°,∴∠APD =120°,∵∠ECF =60°,∴∠BCD =120°,在△ADP 和△BDC 中,APD BCD PAD CBD DA DB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ADP ≌△BDC (AAS ),∴AP =BC ,∵AC =AP +CP ,∴AC =BC +CP ,∴AC =BC +CD .【点睛】本题是三角形综合题,考查了等边三角形的判定与性质,全等三角形的判定与性质,角平分线的性质等知识,解题的关键是灵活运用所学知识解决问题.二、八年级数学 轴对称解答题压轴题(难)6.(1)如图①,D 是等边△ABC 的边BA 上一动点(点D 与点B 不重合),连接DC ,以DC 为边,在BC 上方作等边△DCF ,连接AF ,你能发现AF 与BD 之间的数量关系吗?并证明你发现的结论;(2)如图②,当动点D 运动至等边△ABC 边BA 的延长线时,其他作法与(1)相同,猜想AF 与BD 在(1)中的结论是否仍然成立?若成立,请证明;(3)Ⅰ.如图③,当动点D 在等边△ABC 边BA 上运动时(点D 与B 不重合),连接DC ,以DC 为边在BC 上方和下方分别作等边△DCF 和等边△DCF ′,连接AF ,BF ′,探究AF ,BF ′与AB 有何数量关系?并证明你的探究的结论;Ⅱ.如图④,当动点D 在等边△ABC 的边BA 的延长线上运动时,其他作法与图③相同,Ⅰ中的结论是否成立?若不成立,是否有新的结论?并证明你得出的结论.【答案】(1)AF=BD,理由见解析;(2)AF与BD在(1)中的结论成立,理由见解析;(3)Ⅰ. AF+BF′=AB,理由见解析,Ⅱ.Ⅰ中的结论不成立,新的结论是AF=AB+BF′,理由见解析.【解析】【分析】(1)由等边三角形的性质得BC=AC,∠BCA=60°,DC=CF,∠DCF=60°,从而得∠BCD=∠ACF,根据SAS证明△BCD≌△ACF,进而即可得到结论;(2)根据SAS证明△BCD≌△ACF,进而即可得到结论;(3)Ⅰ.易证△BCD≌△ACF(SAS),△BCF′≌△ACD(SAS),进而即可得到结论;Ⅱ.证明△BCF′≌△ACD,结合AF=BD,即可得到结论.【详解】(1)结论:AF=BD,理由如下:如图1中,∵△ABC是等边三角形,∴BC=AC,∠BCA=60°,同理知,DC=CF,∠DCF=60°,∴∠BCA-∠DCA=∠DCF-∠DCA,即:∠BCD=∠ACF,在△BCD和△ACF中,∵BC ACBCD ACF DC FC=∠=∠=⎧⎪⎨⎪⎩,∴△BCD≌△ACF(SAS),∴BD=AF;(2)AF与BD在(1)中的结论成立,理由如下:如图2中,∵△ABC是等边三角形,∴BC=AC,∠BCA=60°,同理知,DC=CF,∠DCF=60°,∴∠BCA+∠DCA=∠DCF+∠DCA,即∠BCD=∠ACF,在△BCD和△ACF中,∵BC ACBCD ACF DC FC=∠=∠=⎧⎪⎨⎪⎩,∴△BCD≌△ACF(SAS),∴BD=AF;(3)Ⅰ.AF+BF′=AB,理由如下:由(1)知,△BCD≌△ACF(SAS),则BD=AF;同理:△BCF′≌△ACD(SAS),则BF′=AD,∴AF+BF′=BD+AD=AB;Ⅱ.Ⅰ中的结论不成立,新的结论是AF=AB+BF′,理由如下:同理可得:BCF ACD∠=∠′,F C DC=′,在△BCF′和△ACD中,BC ACBCF ACDF C DC=∠⎧⎪=∠=⎪⎨⎩′′,∴△BCF′≌△ACD(SAS),∴BF′=AD,又由(2)知,AF=BD,∴AF=BD=AB+AD=AB+BF′,即AF=AB+BF′.【点睛】本题主要考查等边三角形的性质定理,三角形全等的判定和性质定理,熟练掌握三角形全等的判定和性质定理,是解题的关键.7.如图,ABC中,AABC CB=∠∠,点D在BC所在的直线上,点E在射线AC 上,且AD AE=,连接DE.(1)如图①,若35B C∠=∠=︒,80BAD∠=︒,求CDE∠的度数;(2)如图②,若75ABC ACB∠=∠=︒,18CDE∠=︒,求BAD∠的度数;(3)当点D在直线BC上(不与点B、C重合)运动时,试探究BAD∠与CDE∠的数量关系,并说明理由.【答案】(1)40°;(2)36°;(3)∠BAD与∠CDE的数量关系是2∠CDE=∠BAD.【解析】【分析】(1)根据等腰三角形的性质得到∠BAC=110°,根据等腰三角形的性质和三角形的外角的性质即可得到结论;(2)根据三角形的外角的性质得到∠E=75°-18°=57°,根据等腰三角形的性质和三角形的外角的性质即可得到结论;(3)设∠ABC=∠ACB=y°,∠ADE=∠AED=x°,∠CDE=α,∠BAD=β,分3种情况:①如图1,当点D在点B的左侧时,∠ADC=x°-α,②如图2,当点D在线段BC上时,∠ADC=y°+α,③如图3,当点D在点C右侧时,∠ADC=y°-α,根据这3种情况分别列方程组即,解方程组即可得到结论.【详解】(1)∵∠B=∠C=35°,∴∠BAC=110°,∵∠BAD=80°,∴∠DAE=30°,∵AD=AE,∴∠ADE=∠AED=75°,∴∠CDE=∠AED-∠C=75°−35°=40°;(2)∵∠ACB=75°,∠CDE=18°,∴∠E=75°−18°=57°,∴∠ADE=∠AED=57°,∴∠ADC=39°,∵∠ABC=∠ADB+∠DAB=75°,∴∠BAD=36°.(3)设∠ABC=∠ACB=y°,∠ADE=∠AED=x°,∠CDE=α,∠BAD=β①如图1,当点D在点B的左侧时,∠ADC=x°﹣α∴y x ay x aβ⎧=+⎨=-+⎩①②,①-②得,2α﹣β=0,∴2α=β;②如图2,当点D在线段BC上时,∠ADC=y°+α∴y x ay a xβ⎧=+⎨+=+⎩①②,②-①得,α=β﹣α,∴2α=β;③如图3,当点D在点C右侧时,∠ADC=y°﹣α∴180180y a xx y aβ︒︒⎧-++=⎨++=⎩①②,②-①得,2α﹣β=0,∴2α=β.综上所述,∠BAD与∠CDE的数量关系是2∠CDE=∠BAD.【点睛】考核知识点:等腰三角形性质综合运用.熟练运用等腰三角形性质和三角形外角性质,分类讨论分析问题是关键.8.(1)问题发现:如图1, ABC 和ADE 均为等边三角形,点B D E 、、在同一直线上,连接.CE①求证: BD CE =; ②求BEC ∠的度数.(2)拓展探究:如图2, AB C 和ADE 均为等腰直角三角形,90BAC DAE ∠=∠=︒,点B D E 、、在同一直线上AF ,为ADE 中DE 边上的高,连接.CE①求BEC ∠的度数:②判断线段AF BE CE 、、之间的数量关系(直接写出结果即可).()3解决问题:如图3,AB 和ADE 均为等腰三角形,BAC DAE n ∠=∠=,点B D E 、、在同一直线上,连接CE .求AEC ∠的度数(用含n 的代数式表示,直接写出结果即可).【答案】(1)①证明见解析;②60°;(2)①90°;②BE =CE+2AF ;(3)∠AEC =90°+12n ︒. 【解析】【分析】(1)根据等边三角形的性质得AB=AC,AD=AE, ∠DAE=∠BAC=60°,根据SAS 进一步证明△BAD ≌△CAE,依据其性质可得 BD CE =,再根据对应角相等求出BEC ∠的度数;(2)根据等腰直角三角形的性质得AB=AC,AD=AE, ∠DAE=∠BAC=90°,根据SAS进一步证∠的度数;因为DE=2AF,BD=EC,结合线段的和明△BAD≌△CAE,根据对应角相等求出BEC差关系得出结论;(3)根据等腰三角形的性质得AB=AC,AD=AE, ∠DAE=∠BAC=n°,根据SAS进一步证明∠的度数,结合内角和用n表示△BAD≌△CAE,根据对应角相等求出得出∠ADB=BEC∠ADE的度数,即可得出结论.【详解】(1)①∵△ABC和△ADE均为等边三角形(如图1),∴ AB=AC,AD=AE,∠BAC=∠DAE=60°,∴∠BAC-∠DAC=∠DAE-∠DAC,∴∠BAD=∠CAE.∴△BAD≌△CAE(SAS)∴ BD=CE.②由△CAE≌△BAD,∴∠AEC=∠ADB=180°-∠ADE=120°.∴∠BEC=∠AEC-∠AED=120°-60°=60°.(2)①∵△ABC和△ADE均为等腰直角三角形(如图2),∴ AB=AC,AD=AE,∠ADE=∠AED=45°,∵∠BAC=∠DAE=90°,∴∠BAC-∠DAC=∠DAE-∠DAC,∴∠BAD=∠CAE.∴△BAD≌△CAE(SAS).∴ BD=CE,∠AEC=∠ADB=180°-∠ADE=135°.∴∠BEC=∠AEC-∠AED=135°-45°=90°.② BE=CE+2AF.(3)如图3:∠AEC=90°+12n︒,理由如下,∵△ABC和△ADE均为等腰直角三角形,∴ AB=AC,AD=AE,∠ADE=∠AED=n°,∴∠BAC-∠DAC=∠DAE-∠DAC,∴∠BAD=∠CAE.∴△BAD≌△CAE(SAS).∴∠AEC=∠ADB=180°-∠ADE=180°-1801809022n n.∴∠AEC=90°+12n︒.【点睛】本题考查等边三角形、等腰直角三角形的性质及旋转型三角形全等,掌握全等常见模型及由特殊到一般找出解题规律是解答此题的关键.9.定义:如果两条线段将一个三角形分成3个等腰三角形,我们把这两条线段....叫做这个三角形的三分线.(1)图①是顶角为36︒的等腰三角形,这个三角形的三分线已经画出,请你在图②中用不同于图①的方法画出顶角为36︒的等腰三角形的三分线,并标注每个等腰三角形顶角的度数(若两种方法分得的三角形成3对全等三角形,则视为同一种);(2)图③是顶角为45︒的等腰三角形,请你在图③中画出顶角为45︒的等腰三角形的三分线,并标注每个等腰三角形顶角的度数.(3)ABC 中,30B ∠=︒,AD 和DE 是ABC 的三分线,点D 在BC 边上,点E 在AC 边上,且AD BD =,DE CE =,设c x ∠=︒,则x 所有可能的值为_________.【答案】(1)见详解;(2)见详解;(3)20或40.【解析】【分析】(1)作底角的平分线,再作底边的平行线,即可得到三分线;(2)过底角定点作对边的高,形成一个等腰直角三角形和一个直角三角形,然后再构造一个等腰直角三角形,即可.(3)根据题意,先确定30°角然后确定一边为BA ,一边为BC ,再固定BA 的长,进而确定D 点,分别考虑AD 为等腰三角形的腰和底边,画出示意图,列出关于x 的方程,即可得到答案.【详解】(1)如图所示:(2)如图所示:(3)①当AD=AE 时,如图4,∵DE CE =,c x ∠=︒,∴∠EDB=x °,∴∠ADE=∠AED=2x °,∵AD BD =,∴∠BAD=∠B=30°,∴30+30=2x+x ,解得:x=20;②当AD=DE 时,如图5,∵DE CE =,c x ∠=︒,∴∠EDB=x °,∴∠DAE=∠AED=2x °,∵AD BD =,∴∠BAD=∠B=30°,∴30+30+2x+x=180,解得:x=40.③当AE=DE 时,则∠EAD=∠EDA=1802(90)2x x -=-, ∴∠ADC=∠EDA+∠EDC=(90-x)+x=90°又∵∠ADC=30+30=60°,∴这种情况不存在.∴x 所有可能的值为20或40.故答案是:20或40图4 图5【点睛】本题主要考查等腰三角形的判定和性质定理的综合应用,分类讨论,画出图形,是解题的关键.10.已知ABC 为等边三角形,E 为射线AC 上一点,D 为射线CB 上一点,AD DE =. (1)如图1,当点E 在AC 的延长线上且CD CE =时,AD 是ABC 的中线吗?请说明理由;(2)如图2,当点E 在AC 的延长线上时,写出,,AB BD AE 之间的数量关系,请说明理由;(3)如图3,当点D 在线段CB 的延长线上,点E 在线段AC 上时,请直接写出,,AB BD AE的数量关系.+=,理由详见【答案】(1)AD是ABC的中线,理由详见解析;(2)AB BD AE=+.解析;(3)AB AE BD【解析】【分析】(1)利用△ABC是等边三角形及CD=CE可得∠CDE=∠E=30°,利用AD=DE,证明∠CAD=∠E =30°,即可解决问题.(2)在AB上取BH=BD,连接DH,证明AHD≌△DCE得出DH=CE,得出AE=AB+BD,(3)在AB上取AF=AE,连接DF,利用△AFD≌△EFD得出角的关系,得出△BDF是等腰三角形,根据边的关系得出结论AB=BD+AE.【详解】(1)解:如图1,结论:AD是△ABC的中线.理由如下:∵△ABC是等边三角形,∴AB=AC,∠BAC=∠B=∠ACB=60°,∵CD=CE,∴∠CDE=∠E,∵∠ACD=∠CDE+∠E=60°,∴∠E=30°,∵DA=DE,∴∠DAC=∠E=30°,∵∠BAC=60°,∴∠DAB=∠CAD,∵AB=AC,∴BD=DC,∴AD是△ABC的中线.(2)结论:AB+BD=AE,理由如下:如图2,在AB上取BH=BD,连接DH,∵BH=BD ,∠B=60°,∴△BDH 为等边三角形,AB-BH=BC-BD ,∴∠BHD=60°,BD=DH ,AH=DC ,∵AD=DE ,∴∠E=∠CAD ,∴∠BAC-∠CAD=∠ACB-∠E∴∠BAD=∠CDE ,∵∠BHD=60°,∠ACB=60°,∴180°-∠BHD=180°-∠ACB,∴∠AHD=∠DCE ,∴在△AHD 和△DCE ,BAD CDE AHD DCE AD DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AHD ≌△DCE (AAS ),∴DH=CE ,∴BD=CE ,∴AE=AC+CE=AB+BD .(3)结论:AB=BD+AE ,理由如下:如图3,在AB 上取AF=AE ,连接DF ,∵△ABC 为等边三角形,∴∠BAC=∠ABC=60°,∴△AFE 是等边三角形,∴∠FAE=∠FEA=∠AFE=60°,∴EF ∥BC ,∴∠EDB=∠DEF ,∵AD=DE ,∴∠DEA=∠DAE ,∴∠DEF=∠DAF ,∵DF=DF ,AF=EF ,在△AFD 和△EFD 中,AD DE DF DF AF EF =⎧⎪=⎨⎪=⎩, ∴△AFD ≌△EFD (SSS )∴∠ADF=∠EDF ,∠DAF=∠DEF ,∴∠FDB=∠EDF+∠EDB ,∠DFB=∠DAF+∠ADF ,∵∠EDB=∠DEF ,∴∠FDB=∠DFB ,∴DB=BF ,∵AB=AF+FB ,∴AB=BD+AE .【点睛】本题属于三角形综合题,考查了全等三角形的判定与性质及等边三角形的判定与性质,解题的关键是正确作出辅助线,运用三角形全等找出对应的线段.三、八年级数学整式的乘法与因式分解解答题压轴题(难)11.阅读材料:若m 2﹣2mn+2n 2﹣8n+16=0,求m 、n 的值.解:∵m 2﹣2mn+2n 2﹣8n+16=0,∴(m 2﹣2mn+n 2)+(n 2﹣8n+16)=0∴(m ﹣n )2+(n ﹣4)2=0,∴(m ﹣n )2=0,(n ﹣4)2=0,∴n=4,m=4.根据你的观察,探究下面的问题:(1)已知x 2﹣2xy+2y 2+6y+9=0,求xy 的值;(2)已知△ABC 的三边长a 、b 、c 都是正整数,且满足a 2+b 2﹣10a ﹣12b+61=0,求△ABC 的最大边c 的值;(3)已知a ﹣b=8,ab+c 2﹣16c+80=0,求a+b+c 的值.【答案】(1)9;(2)△ABC 的最大边c 的值可能是6、7、8、9、10;(3)8.【解析】试题分析:(1)直接利用配方法得出关于x ,y 的值即可求出答案;(2)直接利用配方法得出关于a ,b 的值即可求出答案;(3)利用已知将原式变形,进而配方得出答案.试题解析:(1)∵x 2﹣2xy+2y 2+6y+9=0,∴(x 2﹣2xy+y 2)+(y 2+6y+9)=0,∴(x ﹣y )2+(y+3)2=0,∴x ﹣y=0,y+3=0,∴x=﹣3,y=﹣3,∴xy=(﹣3)×(﹣3)=9,即xy 的值是9.(2)∵a 2+b 2﹣10a ﹣12b+61=0,∴(a 2﹣10a+25)+(b 2﹣12b+36)=0,∴(a ﹣5)2+(b ﹣6)2=0,∴a ﹣5=0,b ﹣6=0,∴a=5,b=6,∵6﹣5<c <6+5,c≥6,∴6≤c <11,∴△ABC 的最大边c 的值可能是6、7、8、9、10.(3)∵a ﹣b=8,ab+c 2﹣16c+80=0,∴a (a ﹣8)+16+(c ﹣8)2=0,∴(a ﹣4)2+(c ﹣8)2=0,∴a ﹣4=0,c ﹣8=0,∴a=4,c=8,b=a ﹣8=4﹣8=﹣4,∴a+b+c=4﹣4+8=8,即a+b+c 的值是8.12.在我国南宋数学家杨辉(约13世纪)所著的《详解九章算术》(1261年)一书中,用下图的三角形解释二项和的乘方规律.杨辉在注释中提到,在他之前北宋数学家贾宪(1050年左右)也用过上述方法,因此我们称这个三角形为“杨辉三角”或“贾宪三角”.杨辉三角两腰上的数都是1,其余每一个数为它上方(左右)两数的和.事实上,这个三角形给出了()n a b +(1,2,3,4,5,6)n =的展开式(按a 的次数由大到小的顺序)的系数规律.例如,此三角形中第三行的3个数1,2,1,恰好对应着222()2a b a ab b +=++展开式中的各项系数,第四行的4个数1,3,3,1,恰好对应着+=+++33223()33a b a a b ab b 展开式中的各项系数,等等.请依据上面介绍的数学知识,解决下列问题:(1)写出4()a b +的展开式;(2)利用整式的乘法验证你的结论.【答案】(1)++++432234a 4a b 6a b 4ab b ;(2)见解析【解析】【分析】(1)运用材料所提供的结论即可写出;(2)利用整式的乘法求解验证即可.【详解】(1)4322344()464a b a a b a b ab b +=++++,(2)方法一:()()()43a b a b a b +=+•+=()()322333a b a a b ab b ++++4322332234=33+33a a b a b ab a b a b ab b ++++++432234464a a b a b ab b =++++方法二:()()()422a b a b a b +=+•+=2222(2)(2)a ab b a ab b ++++=43223223223422422a a b a b a b a b ab a b ab b ++++++++= ++++432234a 4a b 6a b 4ab b .【点睛】解决阅读题的关键是读懂题目所给材料并理解,应用题目中给出的信息解决问题.13.若一个整数能表示成22a b +(a ,b 是整数)的形式,则称这个数为“完美数”.例如,5是“完美数”,因为22521=+.再如,()222222M x xy y x y y =++=++(x ,y 是整数),所以M 也是“完美数”. (1)请你再写一个小于10的“完美数”,并判断29是否为“完美数”;(2)已知224412S x y x y k =++-+(x ,y 是整数,是常数),要使S 为“完美数”,试求出符合条件的一个2200-0=值,并说明理由.(3)如果数m ,n 都是“完美数”,试说明mn 也是“完美数”..【答案】(1)8、29是完美数(2)S 是完美数(3)mn 是完美数【解析】【分析】(1)利用“完美数”的定义可得;(2)利用配方法,将S 配成完美数,可求k 的值(3)根据完全平方公式,可证明mn 是“完美数”;【详解】(1) 22228,8+=∴是完美数;222925,29=+∴是完美数 (2) ()222)2313S x y k =++-+-( 13.k S ∴=当时,是完美数(3) 2222,m a b n c d 设=+=+,则()()()()222222mn a bc d ac bd ad bc =++=++- 即mn 也是完美数.【点睛】本题考查了因式分解的应用,完全平方公式的运用,阅读理解题目表述的意思是本题的关键.14.(1)填空:()()a b a b -+= ;22()()a b a ab b -++= ;3223()()a b a a b ab b -+++= .(2)猜想:1221()(...)n n n n a b a a b ab b -----++++= (其中n 为正整数,且2n ≥).(3)利用(2)猜想的结论计算:98732222...222-+-+-+.【答案】(1)22a b -,33a b -,44a b -;(2)n n a b -;(3)342.【解析】试题分析:(1)根据平方差公式与多项式乘以多项式的运算法则运算即可;(2)根据(1)的规律可得结果;(3)原式变形后,利用(2)得出的规律计算即可得到结果.试题解析:(1)()()a b a b -+=22a b -;3223()()a b a a b ab b -+++=33a b -;3223()()a b a a b ab b -+++=44a b -;故答案为22a b -,33a b -,44a b -;(2)由(1)的规律可得:原式=n n a b -,故答案为n n a b -;(3)令98732222...222S =-+-+-+,∴987321222...2221S -=-+-+-+-=98732[2(1)](222...2221)3---+-+-+-÷=10(21)3(10241)3341-÷=-÷=,∴S=342.考点:1.平方差公式;2.规律型.15.探究题:观察下列式子:(x 2-1)÷(x -1)=x +1;(x 3-1)÷(x -1)=x 2+x +1;(x 4-1)÷(x -1)=x 3+x 2+x +1;(x 5-1)÷(x -1)=x 4+x 3+x 2+x +1;(1)你能得到一般情况下(1)(1)n x x -÷-的结果吗?(n 为正整数)(2)根据(1)的结果计算:1+2+22+23+24+…+262+263.【答案】(1)12n n x x --++…+1;(2)6421-. 【解析】【分析】(1)根据已知的式子可得到的式子是关于x 的一个式子,最高次数是n-1,共有n 项; (2)把2当作x ,即可把所求的式子看成是两个二项式的商的形式,逆用(1)的结果即可求解.【详解】由题意可得:(1)()()1211n n n x x x x ---÷-=++ (1)(2)()()234626364641222222212121+++++⋯++=-÷-=-. 【点睛】 考查了多项式与多项式的除法,观察所给式子,发现运算规律是解题的关键.四、八年级数学分式解答题压轴题(难)16.某一项工程,在工程招标时,接到甲、乙两个工程队的投标书,施工一天,需付甲工程队工程款1.5万元,乙工程队工程款1.1万元,工程领导小组根据甲乙两队的投标书测算,可有三种施工方案:(1)甲队单独完成这项工程刚好如期完成;(2)乙队单独完成这项工程要比规定日期多用5天;(3)若甲、乙两队合作4天,余下的工程由乙队单独也正好如期完成.据上述条件解决下列问题:①规定期限是多少天?写出解答过程;②在不耽误工期的情况下,你觉得那一种施工方案最节省工程款?【答案】规定期限20天;方案(3)最节省【解析】【分析】设这项工程的工期是x 天,根据甲队单独完成这项工程刚好如期完成,乙队单独完成这项工程要比规定日期多用5天,若甲、乙两队合做4天,余下的工程由乙队单独做也正好如期完成以及工作量=工作时间×工作效率可列方程求解.再看费用情况:方案(1)、(3)不耽误工期,符合要求,可以求费用,方案(2)显然不符合要求.【详解】解:设规定期限x 天完成,则有:415x x x +=+, 解得x=20.经检验得出x=20是原方程的解;答:规定期限20天.方案(1):20×1.5=30(万元)方案(2):25×1.1=27.5(万元 ),方案(3):4×1.5+1.1×20=28(万元).所以在不耽误工期的前提下,选第三种施工方案最节省工程款.所以方案(3)最节省.点睛:本题主要考查分式方程的应用,解题的关键是熟练掌握列分式方程解应用题的一般步骤,即①根据题意找出等量关系②列出方程③解出分式方程④检验⑤作答.注意:分式方程的解必须检验.17.小明和小强两名运动爱好者周末相约到滨江大道进行跑步锻炼.(1)周六早上6点,小明和小强同时从家出发,分别骑自行车和步行到离家距离分别为4500米和1200米的滨江大道入口汇合,结果同时到达.若小明每分钟比小强多行220米,求小明和小强的速度分别是多少米/分?(2)两人到达滨江大道后约定先跑1000米再休息.小强的跑步速度是小明跑步速度的m 倍,两人在同起点,同时出发,结果小强先到目的地n 分钟.①当3m =,6n =时,求小强跑了多少分钟?②小明的跑步速度为_______米/分(直接用含m n ,的式子表示).【答案】(1)小强的速度为80米/分,小明的速度为300米/分;(2)①小强跑的时间为3分;②1000(1)m mn-. 【解析】【分析】 (1)设小强的速度为x 米/分,则小明的速度为(x+220)米/分,根据路程除以速度等于时间得到方程,解方程即可得到答案;(2)①设小明的速度为y 米/分,由m =3,n =6,根据小明的时间-小强的时间=6列方程解答;②根据路程一定,时间与速度成反比,可求小强的时间进而求出小明的时间,再根据速度=路程除以时间得到答案.【详解】(1)设小强的速度为x 米/分,则小明的速度为(x+220)米/分, 根据题意得:1200x =4500220x +. 解得:x =80. 经检验,x =80是原方程的根,且符合题意.∴x+220=300.答:小强的速度为80米/分,小明的速度为300米/分.(2)①设小明的速度为y 米/分,∵m =3,n =6, ∴1000100063y y -=,解之得10009y =. 经检验,10009y =是原方程的解,且符合题意, ∴小强跑的时间为:10001000(3)39÷⨯=(分)②小强跑的时间:1n m -分钟,小明跑的时间:11n mn n m m +=--分钟, 小明的跑步速度为: 1000(1)10001mn m m mn -÷=-分. 故答案为:1000(1)m mn-. 【点睛】 此题考查分式方程的应用,正确理解题意根据路程、时间、速度三者的关系列方程解答是解题的关键.18.某小麦改良品种后平均每公顷增加产量a 吨,原来产m 吨小麦的一块土地,现在小麦的总产量增加了20吨.(1)当a =0.8,m =100时,原来和现在小麦的平均每公顷产量各是多少?(2)请直接接写出原来小麦的平均每公顷产量是 吨,现在小麦的平均每公顷产量是 吨;(用含a 、m 的式于表示)(3)在这块土地上,小麦的改良品种成熟后,甲组收割完需n 小时,乙组比甲组少用0.5小时就能收割完,求两组一起收割完这块麦田需要多少小时?【答案】(1)原来和现在小麦的平均每公顷产量各是4吨,4.8吨;(2)20ma ,+2020ma a ;(3)两组一起收割完这块麦田需要2241n n n --小时. 【解析】【分析】(1)设原来小麦平均每公顷产量是x 吨,根据题意列出分式方程求解并验根即可;(2)设原来小麦平均每公顷产量是y 吨,根据题意列出分式方程求解并验根即可;(3)由题意得知,工作总量为m+20,甲的工作效率为:20m n +,乙的工作效率为:200.5m n +-,再由工作总量除以甲乙的工作效率和即可得出工作时间. 【详解】解:(1)设原来平均每公顷产量是x 吨,则现在平均每公顷产量是(x +0.8)吨, 根据题意可得:100100200.8x x +=+ 解得:x =4,检验:当x =4时,x (x +0.8)≠0,∴原分式方程的解为x =4,∴现在平均每公顷产量是4.8吨,答:原来和现在小麦的平均每公顷产量各是4吨,4.8吨.(2)设原来小麦平均每公顷产量是y 吨,则现在玉米平均每公顷产量是(y +a )吨,根据题意得:20m m y y a +=+ 解得;y =20ma , 经检验:y =20ma 是原方程的解, 则现在小麦的平均每公顷产量是:202020ma ma a a ++= 故答案为:20ma ,2020ma a +; (3)根据题意得:()20.5202202020.5410.5n n m n n m m n n n n -+-==++--+- 答:两组一起收割完这块麦田需要2241n n n --小时. 【点睛】本题考查的知识点主要是根据题意列分式方程并求解,找出题目中的等量关系式是解题的关键.19.水蜜桃是无锡市阳山的特色水果,水蜜桃一上市,水果店的老板用2000元购进一批水密桃,很快售完;老板又用3300元购进第二批水蜜桃,所购件数是第一批的32倍,但进价比第一批每件多了5元.(1)第一批水蜜桃每件进价是多少元?(2)老板以每件65元的价格销售第二批水蜜桃,售出80%后,为了尽快售完,剩下的决定打折促销.要使得第二批水密桃的销售利润不少于288元,剩余的仙桃每件售价最多打几折?(利润=售价-进价)【答案】(1)50;(2)6折.【解析】【分析】(1)根据题意设第一批水蜜桃每件进价是x 元,利用第二批水密桃进价建立方程求解即可;(2)根据题意设剩余的仙桃每件售价最多打m 折,并建立不等式,求出其解集即可得出剩余的仙桃每件售价最多打几折.【详解】解:(1)设第一批水蜜桃每件进价是x 元,则有: 20003(5)33002x x ⨯⨯+=,解得50x =, 所以第一批水蜜桃每件进价是50元.(2)由(1)得出第二批水密桃的进价为:55元,数量为:33006055=件, 设剩余的仙桃每件售价最多打m 折,则有: 6580606065(180)3300288m ⨯⨯+⨯⨯--≥%%,解得0.6m ≥,即最多打6折.【点睛】本题考查分式方程的实际应用以及不等式的实际应用,理解题意并根据题意建立方程和不等式是解题的关键.20.某一工程,在工程招标时,接到甲、乙两个工程队的投标书.施工一天,需付甲工程队工程款2.4万元,乙工程队工程款1万元.工程领导小组根据甲,乙两队的投标书测算,有如下方案:(1)甲队单独完成这项工程刚好如期完成;(2)乙队单独完成这项工程要比规定日期多用12天;(3)若甲,乙两队合做6天,余下的工程由乙队单独做也正好如期完成.试问:在不耽误工期的前提下,你觉得哪一种施工方案最节省工程款?请说明理由.【答案】在不耽误工期的前提下,选第三种施工方案最节省工程款.【解析】【分析】关键描述语为:“甲,乙两队合做3天,余下的工程由乙队单独做也正好如期完成”;说明甲队实际工作了3天,乙队工作了x 天完成任务,工作量=工作时间×工作效率等量关系为:甲3天的工作量+乙规定日期的工作量=1列方程.再看费用情况:方案(1)、(3)不耽误工期,符合要求,可以求费用,方案(2)显然不符合要求.【详解】解:设规定日期为x 天.由题意得66611212x x x x -++=++, ∴6112x x x +=+, ∴2267212x x x x ++=+,∴12x =;经检验:x=12是原方程的根.方案(1):2.4×12=28.8(万元);方案(2)比规定日期多用12天,显然不符合要求;方案(3):2.4×6+1×12=26.4(万元).∵28.8>26.4,∴在不耽误工期的前提下,选第三种施工方案最节省工程款.【点睛】本题考查了分式方程的应用,找到合适的等量关系是解决问题的关键.在既有工程任务,。

相关文档
最新文档