ANSYS网格划分简介

合集下载

ANSYS网格划分方式总结

ANSYS网格划分方式总结

(1) 网格划分概念:实体模型是无法直接用来进行有限元计算得,故需对它进行网格划分以生成有限元模型。

有限元模型是实际结构和物质的数学表示方式。

在ANSYS中,能够用单元来对实体模型进行划分,以产生有限元模型,那个进程称作实体模型的网格化。

本质上对实体模型进行网格划分也确实是用一个个单元将实体模型划分成众多子区域。

这些子区域(单元),是有属性的,也确实是前面设置的单元属性。

另外也能够直接利用单元和节点生成有限元模型。

实体模型进行网格划分确实是用一个个单元将实体模型划分成众多子区域(单元)。

(2)什么缘故我选用plane55那个四边形单元后,仍能够把实体模型划分成三角形区域集合???答案:ansys为面模型的划分只提供三角形单元和四边形单元,为体单元只提供四面体单元和六面体单元。

不管你选择的单元是多少个节点,只若是2D单元,确信组成一个四边形或是三角形,绝对没有五、六边形等特殊形状。

网格划分也确实是用所选单元将实体模型划分成众多三角形单元和四边形子区域。

见下面的plane77/78/55都是节点数量大于4的,但都是通过各类插值或是归并的方式形成一个四边形或三角形。

因此不管你选择什么单元,只若是对面的划分,meshtool上的划分类型设置就只有tri和quad两种选择。

若是那个单元只组成三角形,例如plane35,那么不管你在meshtool上划分设置时tri 仍是quad,划分出的结果都是三角形。

因此在选用plane55单元,而划分的是采纳tri划分时,就会把两个点归并为一个点。

如上图的plane55,下面是plane单元的节点组成,可见每一个单元上都有两个节点标号相同,说明两个节点是重合的。

一样在采纳plane77 单元,进行tri划分时,会有三个节点重合。

那个地址再也不一一列出。

(3)如何利用在线帮忙:点击对话框中的help,例如你想了解plane35的相关属性,你能够点击上右图中的help,亦能够,点击help—>help topic弹出下面的对话康,点击索引按钮,输入你想查询的关键词。

Ansys网格划分功能简介

Ansys网格划分功能简介

Ansys⽹格划分功能简介Ansys⽹格划分功能简介第⼀讲1、⾸先确定单元形状:Mshape,key,dimensionDimension:2D or 3D,对与2D(3D)来说,key=0,四边形(六⾯体)单元,key=1,三⾓形(四⾯体)单元。

2、确定单元的划分⽅式(free or mapped)Mshkey, value,其中value=1,mapped划分⽅式,value=0,free,value=2,尽量mapped,如果不可以,进⾏free.3、中节点的设置:mshmid对与mapped的划分⽅式是⼤家最喜欢的,优点不⽐多说。

⾸先说⼀下(area)的mapped的划分⽅式:●基本条件:(1)⾯有三条或四条线组成(2)对边划分相等的等份,或者符合过度模式(transition pattern).(3)若是三条线组成的⾯,所有边必须等份。

满⾜三者之⼀,可以采⽤mapped⽅式,进⾏area⽹格划分。

若⾯有多余四条的线组成:可以采⽤:lcomb(推荐⾸先采⽤)或lccat变成四条。

对于线、⾯、体上的keypoint,ansys在划分⽹格时,将有节点设置。

●Transition pattern(过度模式)对于⾯来说,有两种过度模式可选(以有四条线组成的⾯为例):第⼀种:满⾜条件:对边的等分份数之差必须相等。

第⼆种:满⾜条件:⼀组对边等分份数相等,另⼀组对边等分份数之差为偶数(even number)其次,体(volume)的mapped⽅式划分⽅法(单元形状只能采⽤六⾯体形状):●基本条件:(1)体必须有六个⾯、五个⾯、或者四个⾯构成(2)若是六个⾯,必须是对边等分份数相等(3)五⾯体的边(edge)必须等分,上下底⾯的边必须偶数等分(4)四⾯体上所有的边必须偶数等分。

若不满⾜上述条件,可以采⽤aadd或accat将⾯连接,若有线需要连接,先对⾯进⾏,然后对线进⾏lccat.●体的过渡模式主要把⾯的过度模式理解清楚,可以很容易的理解体的过度模式。

ansys_workbench_15.0_网格划分讲解

ansys_workbench_15.0_网格划分讲解

Advanced Contact & Fasteners
基于网格相关度控 制网格密度的方法 ,设置的单元尺寸 对于网格密度有着 重要的影响!
3.网格控制-总体尺寸控制-高级尺寸函数
Training Manual
Advanced Contact & Fasteners
Advanced Sizing Functions (ASF) -该项功能用于控制接近表面区域和具有高曲 率区域的网格生长和分布 高级尺寸函数有五个选项: -关闭高级尺寸函数(off) -Proximity and Curvature -Curvature -Proximity -Fixed
Training Manual
Advanced Contact & Fasteners
1. Meshing网格划分概述
Training Manual
Advanced Contact & Fasteners
Workbench中的Meshing应用程序的目标是提供通用的网 格划分格局。网格划分工具可以在任何分析类型中使用:
Training Manual
Advanced Contact & Fasteners
3.网格控制-总体尺寸控制-高级尺寸函数
Training Manual
Advanced Contact & Fasteners
3.网格控制-总体尺寸控制-高级尺寸函数
Curvature尺寸控制函数
-该函数基于模型中的曲率信息控制网格,主要 作用于模型中的孔,洞和缺陷处。 该函数有5个控制参数: Curvature Normal Angle-曲率法向角度 Min Size-总体最小尺寸 Max Face –面上最大尺寸 Max Size-总体最大尺寸 Growth Rate-网格生长率

ansys如何划分网格

ansys如何划分网格

January 30, 2001 Inventory #001441 11-11
3.网格划分控制——指定网格划分类型
多媒体教程
ANSYS 划分网格专题讲座
对边必须划分相等的份数
棱柱边上必须划分相等的份数 面内边上必须划分相等的份数
所有对边必须划分相等的份数
January 30, 2001 Inventory #001441 11-12
January 30, 2001 Inventory #001441 11-2
1.网格类型
多媒体教程
ANSYS 划分网格专题讲座
自由网格
映射网格
January 30, 2001 Inventory #001441 11-3
2. 定义单元类型
多媒体教程
ANSYS 划分网格专题讲座
在有限元分析过程中,对于不同的问 题,需要应用不同特性的单元,单元选择 不当,直接影响到计算能否进行和结果的 精度。ANSYS的单元库中提供了200多种 单元类型,每个单元都有唯一的编号,如 LINK1、PLANE2、BEAM3和SOLID45 等,几乎能解决大部分常见问题。
January 30, 2001 Inventory #001441 11-7
3.网格划分控制——单元尺寸和形状的控制
多媒体教程
ANSYS 划分网格专题讲座
如图所示为网格划分工具提供的单元尺寸控 制选项,可以对面、线、层和关键点的单元大小 进行设置,还可以对全局单元尺寸进行设置。同 一个网格区域的面单元可以是三角形或四边形, 体单元可以是六面体或四面体形状。
January 30, 2001 Inventory #001441 11-13
划分网格实例1——2D问题

ansys如何划分网格

ansys如何划分网格

自由划分网格( 自由划分网格(Free meshing)和映射网格划分(Mapped )和映射网格划分( meshing)。 )。 • 自由划分网格主要用于划分边界形状不规则的区域,它 自由划分网格主要用于划分边界形状不规则的区域, 生成的网格相互之间呈不规则的排列。 生成的网格相互之间呈不规则的排列。常用于复杂形状 的边界选择自由划分网格。 的边界选择自由划分网格。自由网格缺点是分析精度不 够高。 够高。 • 映射网格划分用于单元形状有限制,并要符合一定的网 映射网格划分用于单元形状有限制, 格模式。映射面网格只包含四边形或三角形单元, 格模式。映射面网格只包含四边形或三角形单元,映射 体网格只包含六面体单元。 体网格只包含六面体单元。映射网格的特点是具有规则 的形状,单元明显地成行排列。 的形状,单元明显地成行排列。
January 30, 2001 Inventory #001441 11-2
多媒体教程
划分网格专题讲座 划分网格专题讲座 划分网格专题讲座 划分网格专题讲座 划分网格专题讲座 划分网格专题讲座 划分网格专题讲座 划分网格专题讲座 划分网格专题讲座 划分网格专题讲座 划分网格专题讲座 划分网格专题讲座 划分网格专题讲座 划分网格专题讲座 ANSYS 划分网格专题讲座 ANSYS 划分网格专题讲座
• 映射网格划分要求面或者体有规则的形状,即必须满足一定的准则。 映射网格划分要求面或者体有规则的形状,即必须满足一定的准则。 同时SmartSizing不支持映射网格划分。 不支持映射网格划分。 同时 不支持映射网格划分 • 面映射网格包括全部是四边形单元或者全部是三角形单元。面接受映 面映射网格包括全部是四边形单元或者全部是三角形单元。 射网格划分,必须满足以下条件: 射网格划分,必须满足以下条件: • ① 该面必须是三条边或四条边。 该面必须是三条边或四条边。 • ② 如果是四条边,对边必须划分为相同数目的单元,或者是划分一 如果是四条边,对边必须划分为相同数目的单元, 过渡型网格。 过渡型网格。 • ③ 如果是三条边,则各边设置的单元划分数必须为偶数且相等,否 如果是三条边,则各边设置的单元划分数必须为偶数且相等, 软件会自动决定单元划分数。 则ANSYS软件会自动决定单元划分数。 软件会自动决定单元划分数 • ④ 网格划分必须设置为映射网格。 网格划分必须设置为映射网格。 • 如果一个面多于四条边,则不能直接用映射网格划分,但可以使某些 如果一个面多于四条边,则不能直接用映射网格划分, 线相连接,使总线数减小到4条之后再用映射网格划分 条之后再用映射网格划分。 线相连接,使总线数减小到 条之后再用映射网格划分。

ansys第3章网格划分技术及技巧(完全版)

ansys第3章网格划分技术及技巧(完全版)

ANSYS 入门教程 (5) - 网格划分技术及技巧之网格划分技术及技巧、网格划分控制及网格划分高级技术第 3 章网格划分技术及技巧定义单元属性单元类型 / 实常数 / 材料属性 / 梁截面 / 设置几何模型的单元属性网格划分控制单元形状控制及网格类型选择 / 单元尺寸控制 / 内部网格划分控制 / 划分网格网格划分高级技术面映射网格划分 / 体映射网格划分 / 扫掠生成体网格 / 单元有效性检查 / 网格修改网格划分实例基本模型的网格划分 / 复杂面模型的网格划分 / 复杂体模型的网格划分创建几何模型后,必须生成有限元模型才能分析计算,生成有限元模型的方法就是对几何模型进行网格划分,网格划分主要过程包括三个步骤:⑴定义单元属性单元属性包括:单元类型、实常数、材料特性、单元坐标系和截面号等。

⑵定义网格控制选项★对几何图素边界划分网格的大小和数目进行设置;★没有固定的网格密度可供参考;★可通过评估结果来评价网格的密度是否合理。

⑶生成网格★执行网格划分,生成有限元模型;★可清除已经生成的网格并重新划分;★局部进行细化。

定义单元属性一、定义单元类型1. 定义单元类型命令:ET, ITYPE, Ename, KOP1, KOP2, KOP3, KOP4, KOP5, KOP6, INOPR ITYPE - 用户定义的单元类型的参考号。

Ename - ANSYS 单元库中给定的单元名或编号,它由一个类别前缀和惟一的编号组成,类别前缀可以省略,而仅使用单元编号。

KOP1~KOP6 - 单元描述选项,此值在单元库中有明确的定义,可参考单元手册。

也可通过命令KEYOPT进行设置。

INOPR - 如果此值为 1 则不输出该类单元的所有结果。

例如:et,1,link8 ! 定义 LINK8 单元,其参考号为 1;也可用 ET,1,8 定义et,3,beam4 ! 定义 BEAM4 单元,其参考号为 3;也可用 ET,3,4 定义2. 单元类型的 KEYOPT命令:KEYOPT, ITYPE, KNUM, VALUEITYPE - 由ET命令定义的单元类型参考号。

ANSYS网格划分详细介绍

ANSYS网格划分详细介绍

ANSYS网格划分详细介绍众所周知,对于有限元分析来说,网格划分是其中最关键的一个步骤,网格划分的好坏直接影响到解算的精度和速度。

在ANSYS中,大家知道,网格划分有三个步骤:定义单元属性(包括实常数)、在几何模型上定义网格属性、划分网格。

在这里,我们仅对网格划分这个步骤所涉及到的一些问题,尤其是与复杂模型相关的一些问题作简要阐述。

一、自由网格划分自由网格划分是自动化程度最高的网格划分技术之一,它在面上(平面、曲面)可以自动生成三角形或四边形网格,在体上自动生成四面体网格。

通常情况下,可利用ANSYS 的智能尺寸控制技术(SMARTSIZE命令)来自动控制网格的大小和疏密分布,也可进行人工设置网格的大小(AESIZE、LESIZE、KESIZE、ESIZE等系列命令)并控制疏密分布以及选择分网算法等(MOPT命令)。

对于复杂几何模型而言,这种分网方法省时省力,但缺点是单元数量通常会很大,计算效率降低。

同时,由于这种方法对于三维复杂模型只能生成四面体单元,为了获得较好的计算精度,建议采用二次四面体单元(92号单元)。

如果选用的是六面体单元,则此方法自动将六面体单元退化为阶次一致的四面体单元,因此,最好不要选用线性的六面体单元(没有中间节点,比如45号单元),因为该单元退化后为线性的四面体单元,具有过刚的刚度,计算精度较差;如果选用二次的六面体单元(比如95号单元),由于其是退化形式,节点数与其六面体原型单元一致,只是有多个节点在同一位置而已,因此,可以利用TCHG命令将模型中的退化形式的四面体单元变化为非退化的四面体单元,减少每个单元的节点数量,提高求解效率。

在有些情况下,必须要用六面体单元的退化形式来进行自由网格划分,比如,在进行混合网格划分(后面详述)时,只有用六面体单元才能形成金字塔过渡单元。

对于计算流体力学和考虑集肤效应的电磁场分析而言,自由网格划分中的层网格功能(由LESIZE命令的LAYER1和LAYER2域控制)是非常有用的。

ANSYS Workbench局部网格划分方法介绍

ANSYS Workbench局部网格划分方法介绍

ANSYS Workbench局部网格划分方法介绍网格是计算机辅助工程(CAE)模拟过程中不可分割的一部分。

网格直接影响到求解精度、求解收敛性和求解速度。

此外,建立网格模型所花费的时间往往是取得 CAE 解决方案所耗费时间中的一个重要部分。

因此,一个越好的自动化网格工具,越能得到好的解决方案。

本文重点介绍ANSYS Workbench局部网格划分方法。

1.ANSYSMesh模块创建将workbench界面左侧工具栏中的“Mesh”拖入至右侧空白区域松开鼠标创建一个网格划分模块,然后右击“Mesh”模块下的“Geometry”导入几何文件,如图1所示。

图1 ANSYS Mesh模块创建2.ANSYS Mesh网格划分方法右击“Mesh”后,插入网格划分方法,如图2所示。

图2插入网格划分方法ANSYS Mesh网格划分方法包括自动划分、四面体、六面体主导、扫略和多区五种网格划分方法,如图3所示。

图3 网格划分方法其中扫略的网格划分方法适用于规则的几何体(源面和目标面拓扑结构一致),可生成高质量的六面体单元或六面体与棱柱体组合单元;六面体为主导的网格划分方法适用于形状较为复杂的体,体表面以六面体划分,内部不能使用六面体划分的区域用四面体填充;四面体的网格划分方法适用于形状特别复杂的体;多区的网格划分方法,程序自动把复杂的几何体切割若干规则的几何体,然后再使用扫略划分方法。

图4列出了采用不同网格划分方法的得到的有限元模型。

(a)自动网格划分(b)四面体网格划分(c)六面体主导网格划分(d)多区网格划分图4采用不同网格划分方法得到的有限元模型3.可消除细小特征的网格划分方法导入至Workbench的几何模型在某一面上存在细小特征(9个圆圈),如图5所示。

若直接进行网格划分,会在圆圈附近加密网格,,这样会使网格数量大大增加,从而延长计算时间。

通常的做法是在ANSYS几何处理模块(Spaceclaim或DesignModeler)中将这些圆圈事先删除,然后再进行网格划分。

ANSYS-Workbench-网格划分

ANSYS-Workbench-网格划分
a) Off:在此项时先从边开始划分网格,再在曲率较大处细化边网格,接 下来再产生面网格,最后才产生体网格。
b) Curvature:是由曲率法确定、细化边和曲面处的网格大小
c) Proximity:是控制模型邻近区网格生成,主适用于窄、薄处网格的 生成。
确定全局网格的设置
d. Proximity and curvature:具有proximity和curvature二者的特点, 但所消耗的时间也多。
• 设置合适的全局网格参数可以减小后面具体网格参数的设置工作量, 对于结构场,其详细栏见上个PPT的mechanical,下面以结构分析为 例对其展开描述。Mechanical中的尺寸函数(sizing)下参数项是高 级尺寸函数(advanced sizing function,简称ASF),这主要是控制 曲线、面在曲率较大的地方的网格。具体选项有:
Hex-Dominant网格
多域扫掠型
• 多域扫掠型(Multizone Sweep Meshing)主要用来划分六面体网格。 其特点就是具有几何体自动分解的功能,从而产生六面体网格。如下 图所示左边的几何体,若以常规的方式想划分成全六面体网格,则需 要先将几何体切分成四个规则体后,再扫掠成六面体网格。然而在 workbench中,只要直接使用多域扫掠法,程序就能自动处理划分成 六面体网格。
认识网格划分平台
网格文件具体地说主要有两类:有限元分析网格和计算流体力学 的网格。
认识网格划分平台
• 对于三维几何体,ANSYS共有下面六种不同的划分网格法
认识网格划分平台
• 对于二维几何体ANSYS有以下几种不同的划分网格法。
典型网格划分法
• 主要内容
四面体网格
• 在三维网格中,相对而言四面体网格划分是最简单的。在workbench 中,四面体网格的生成主要基于两种方法:RGRID算法和ICEM CFD tetra算法,具体如下:

ANSYS网格划分要点

ANSYS网格划分要点

ANSYS网格划分要点ANSYS网格划分要点在划分网格前,用户首先需要对模型中将要用到的单元属性进行定义。

单元属性主要包括:单元类型、实常数、材料常数。

典型的实常数包括:厚度、横截面面积、高度、梁的惯性矩等。

材料属性包括:弹性模量、泊松比、密度、热膨胀系数等。

ANSYS为用户提供了两种网格划分类型:自由和映射所谓“自由”,体现在没有特定的准则,对单元形状无限制,生成的单元不规则,基本适用于所有的模型。

自由网格生成的内部节点位置比较随意,用户无法控制。

操作方式是打开Mesh Tool工具条上的Free选项。

所用单元形状依赖于是格划分。

对于面,自由网格可以只由四边形单元组成,也可以只由三角形单元组成,或两者混合。

对于体,自由网格一般限制为四面体单元。

映射网格划分要求面或体形状满足一定规则,且映射面网格只包括三角形单元或四边形单元,映射体网格只包括六面体单元,它生成的单元形状比较规则,适用于形状规则的面和体。

对于映射网格划分,生成的单元尺寸依赖于当前DSIZE、ESIZE、KESIZE、LESIZE和ASIZE的设置。

Smartsize不能用于映射网格划分。

当使用硬点时,不支持映射网格划分。

面映射网格划分:包括全部是四边形单元或者全部是三角形单元。

此面必须由3或4条线围成,在对边上必须有相等的单元划分数。

如果此面由3条线围成,则三条边上的单元划分数必须相等且必须是偶数。

对边网格数之差相等,或者一对对边网格数相等,另一对网格数之差为偶数,也可以进行映射网格划分。

如果一个面由多于4条的线围成,则它不能直接采用映射网格进行划分,然而,为了将总的线数减少到4,其中的某些线可以被加起来(add)或连接起来(concatenated,一种进行网格划分时的操作)。

代替进行连接操作(concatenation),可以用拾取一个面的3个或4个角点来进行面映射网格划分,这种简化的映射网格划分方法将两个关键点之间的多条线内部连接起来。

ANSYS各种网格划分方法

ANSYS各种网格划分方法

ANSYS各种网格划分方法1. 三角剖分法(Triangular Meshing):三角剖分法是一种常见的二维网格划分方法,它将几何体分割成一系列的三角形单元。

在ANSYS中,可以使用自动网格划分工具或手动方式进行三角剖分。

自动网格划分工具会根据所选几何体的复杂程度自动生成合适的三角形网格。

手动方式允许用户通过在几何体上添加特定的边界条件和限制条件来控制网格划分过程。

2. 四边形网格法(Quadrilateral Meshing):四边形网格法是一种常用的二维网格划分方法,它将几何体划分成一系列的四边形单元。

与三角形网格相比,四边形网格具有更好的数值特性和简化后处理的优势。

在ANSYS中,使用四边形网格法可以通过自动网格划分工具或手动方式进行划分。

3. 符号表示(Sweeping):符号表示是一种常用的三维网格划分方法,它通过将二维几何体沿特定方向移动来创建三维几何体的网格。

在ANSYS中,可以使用自动网格划分工具或手动方式进行符号表示。

自动网格划分工具可以根据选择的几何体自动生成符号表示网格。

手动方式允许用户根据需要指定几何体的边界条件和限制条件。

4. 细化网格法(Refinement):细化网格法是一种常用的网格划分方法,它通过逐步细化初步生成的网格来提高网格质量和分析精度。

在ANSYS中,用户可以通过自动细化工具或手动方式进行网格细化。

自动细化工具会根据预设的条件和几何体特征进行自动细化。

手动方式允许用户根据需要在特定区域添加额外的网格细化操作。

5. 自适应网格法(Adaptive Meshing):自适应网格法是一种根据分析需求自动调整网格划分的方法。

在ANSYS中,自适应网格法可以根据解的梯度、误差估计或特定的物理现象进行自动网格调整。

该方法可以显著减少有限元计算中的计算量,提高求解效率和准确性。

总结:ANSYS提供了多种网格划分方法,包括三角剖分法、四边形网格法、符号表示、细化网格法和自适应网格法。

ansys网格划分方法

ansys网格划分方法

ANSYS程序提供了使用便捷、高质量的对几何模型进行网格划分的功能。

主要包括4种网格划分方法:自由网格划分、映射网格划分、延伸网格划分和自适应网格划分。

(1)自由网格划分ANSYS程序的自由网格划分功能十分强大,这种网格划分方法没有单元形状的限制,网格也不遵循任何模式,因此适合于对复杂形状的面和体进行网格划分,这就避免了用户对模型各个部分分别划分网格后进行组装时各部分网格不匹配带来的麻烦。

对面进行网格划分,自由网格可以只有四边形单元组成,或者只有三角形单元组成,或者二者混合。

对体进行自由网格划分,一般指定网格为四面体单元、六面体单元作为过渡,也可以加入到四面体网格中。

若要严格定义单元形状,可通过以下方法实现。

Command:MSHAPE、MSHKEYGUI:Main Menu︱Preprocessor︱Meshing︱Mesher Opts(2)映射网格划映射网格划分允许用户将几何模型分解成简单的几部分,然后选择合适的单元属性和网格控制,生成映射网格,映射网格划分主要适合于规则的面和体,单元成行并具有明显的规则形状,仅适用于四边形单元(对面)和六面体(对体)。

图2.7所示为映射网格划分结果显示。

(3)延伸网格划分延伸网格划分可将一个二维网格延伸成一个三维网格,主要是利用体扫掠,从体的某一边界面扫掠贯穿整个体而生成体单元。

如果需扫掠的面由三角形网格组成,体将生成四面体单元,如果面网格由四边形网格组成,体将生成六面体单元,如果面由三角形和四边形单元共同组成,则体将由四面体和六面体单元共同填充。

(4)自适应网格划分自适应网格划分是在生成了具有边界条件的实体模型以后,用户指示程序自动地生成有限元网格,分析、估计网格的离散误差,然后重新定义网格大小,再次分析计算、估计网格的离散误差,直至误差低于用户定义的值或达到用户定义的求解次数。

Ansys_workbench网格划分相关

Ansys_workbench网格划分相关

Ansys_workbench网格划分相关Mesh 网格划分方法—四面体(Patch Conforming和Patch Independent)、扫掠、自动、多区、CFX划分1.四面体网格优点—适用于任意体、快速自动生成、关键区域使用曲度和近似尺寸功能细化网格、可使用边界层膨胀细化实体边界。

缺点—在近似网格密度下,单元和节点数高于六面体网格、不可能使网格在一个方向排列、由于几何和单元性能的非均质性,不适用于薄实体或环形体常用参数—最小和最大尺寸、面和体的尺寸、Advanced尺寸功能、增长比(Growth—对CFD逐渐变化,避免突变)、平滑(smooth—有助于获得更加均匀尺寸的网格)、统计学(Statistics)、Mesh MetricsPathch Conforming—默认考虑几何面和体生成表面网格,会考虑小的边和面,然后基于TGRID Tetra算法由表面网格生成体网格。

作用—多体部件可混合使用Patch Conforming四面体和扫掠方法共同生成网格,可联合Pinch Control 功能有助于移除短边,基于最小尺寸具有内在网格缺陷Patch Independent—基于ICEM CFD T etra算法,先生成体网格并映射到表面产生表面网格。

如果没有载荷或命名,就不考虑面和边界(顶点和边),此法容许质量差的CAD几何。

作用—可修补碎面、短边、差的面差数,如果面上没有载荷或者命名,就不考虑面和边了,直接将网格跟其它面作一体划。

如果有命名则要单独划分该区域网格体膨胀—直接选择要膨胀的面,就可使面向内径向生成边界层面膨胀—选择要膨胀的面,在选择面的边,就可以向面内膨胀2.扫掠网格体须是可扫掠的、膨胀可产生纯六面体或棱柱网格,手动设置源和目标面,通常一对一,薄壁模型(Src/Trg选择Manual Thin)可自动划分多个面,在厚度方向上划分多个单元。

3.自动化分网格—应该划分成四面体,其与扫掠取决于体是否可扫掠,同一部件的体有一致网格,可程序化控制膨胀4.多区扫掠网格划分—基于ICEM CFD六面体模块,多区划分完后,可给多区添加膨胀5.CFX网格—使用四面体和棱柱网格对循环对称或旋转对称几何划分网格,不考虑网格尺寸或没有网格应用尺寸可使用CFX网格全局网格控制1.Physics Preference 物理设置包括力学(Mechanical)、CFD、电磁(Electromagnetic)、显示(Explicit)分析2.结构分析—使用哪个高阶单元划分较为粗糙的网格。

ANSYS-Multizone网格划分

ANSYS-Multizone网格划分

实体网格划分在机械结构静力、动力学分析中,会遇到大量的实体结构,如活塞曲柄、汽车轮毂、齿轮等。

对实体划分网格,常用四面体网格和六面体网格。

四面体网格可以快速、自动地生成,用户不用太多干预并且网格划分成功率高,适合于复杂几何形状。

相较于六面体网格,在获得同等结果精度条件下,四面体网格需要更多的单元节点数,因而将耗费更长的CPU计算时间和更多的数据存储空间。

另外,动力学分析(如模态、谐响应分析)需要均匀尺寸的网格,六面体网格仍然是首选,甚至有些显示有限元求解器只接受六面体网格。

通常情况下,CAE工程师遇到的几何体都不会很规整,想要得到高质量的六面体网格,除了要对几何进行简化,如去掉不影响结果的倒角、细孔等特征,还需要耗费大量的时间和精力对几何体进行切割。

Multizone网格划分Multizone(多区)网格划分是ANSYS Workbench中的一种网格划分方法,其基于ICEM CFD Hexa程序块,能将目标区域自动分解成多个可以扫掠或是自由划分的区域,再生成高质量的网格。

对于一些比较规整的单体部件,传统扫掠方法仍然难以直接扫掠得到六面体网格,而MMultizone网格划分只需要简单的指定源面、设置网格控制参数等,即可对零件进行自动分区进行得到高质量的网格,大大提高网格划分效率。

螺栓网格划分实例如图所示的螺栓模型,如果想划分规则的六面体网格,按照传统方法,需要先对螺栓进行体切割,再分段扫掠生成六面体网格。

现在我们采用Multizone网格划分方法,只需要进行简单的设定,如指定源面、边的分段等,如下图。

不用分割体,Multizone网格划分生成的六面体单元如下图。

小结相较于传统的分割、扫掠生成六面体单元的网格划分方法,Multizone网格划分方法省略了分割步骤,适当参数设置即可生成高质量六面体网格,方便快捷、大大提高前处理建模效率。

ansys workbench meshing网格划分总结

ansys workbench meshing网格划分总结

ansys workbench meshing网格划分总结ansysworkbenchmeshing网格划分总结BasePoint和Delta创建的点在重合时无法看到大部分可划分为四面体网格,但六面体网格仍是首选,四面体网格是最后的选择,使用复杂结构。

六面体(梯形)在中心质量较差,四面体在边界层质量较差,在边界层使用棱镜栅格棱镜。

棱锥为四面体和六面体之间的过渡棱柱由四面体网格被拉伸时生成3d扫描网格:只有一个源曲面和目标曲面,扩展层可以生成纯六面体或棱镜网格multizone多域扫掠网格:对象是多个简单的规则体组成时(六面体)――mappedmeshtype映射网格类型:包括hexa、hexa/prism--自由网格类型:包括不允许的、四角、六角、六角(六面体)――src/trgselection源面/目标面选择,包括automatic、manualsource手动源面选择补丁一致性:考虑一些小细节(四面体),包括CFD扩展层或边界层的识别。

面片相关:忽略一些小细节,例如倒角、小孔等(四面体),包括CFD膨胀层或边界层的识别――maxelementsize最大网格尺寸--approxnumberofelements基于网格的近似网格数定义清晰的网格特征――defeaturingtolerance设置某一数值时,程序会根据大小和角度过滤掉几何边useadvancedsizefunction高级尺寸功能――曲率曲率:如果曲率发生变化,网格将自动加密,例如作用于边和面上的螺孔。

――proximity[pr?k's?m?t?]邻近:窄薄处、狭长的几何体处网格自动加密,如薄壁,但花费时间较多,网格数量增加较多,配合minsize使用。

控制面网格尺寸可起到相同细化效果。

六面体主导:形成一个四边形主导网格,然后得到六面体,然后根据需要填充金字塔和四面体元素。

――此方法对于不可扫掠的体,要得到六面体网格时推荐――对内部容积大的体有用-它对于体积和表面积比较小的复杂薄体是无用的——它对于CFD无界层识别是有用的——它主要用于FEA分析automatic自动网格:在四面体网格(patchconforming考虑细节)和扫掠网格(sweep)之间自动切换。

ANSYS网格划分总结大全

ANSYS网格划分总结大全

有限元分析中的网格划分好坏直接关系到模型计算的准确性.本文简述了网格划分应用的基本理论,并以ANSYS限元分析中的网格划分为实例对象,详细讲述了网格划分基本理论及其在工程中的实际应用,具有一定的指导意义。

1 引言ANSYS有限元网格划分是进行数值模拟分析至关重要的一步,它直接影响着后续数值计算分析结果的精确性。

网格划分涉及单元的形状及其拓扑类型、单元类型、网格生成器的选择、网格的密度、单元的编号以及几何体素.从几何表达上讲,梁和杆是相同的,从物理和数值求解上讲则是有区别的.同理,平面应力和平面应变情况设计的单元求解方程也不相同。

在有限元数值求解中,单元的等效节点力、刚度矩阵、质量矩阵等均用数值积分生成,连续体单元以及壳、板、梁单元的面内均采用高斯(Gauss)积分,而壳、板、梁单元的厚度方向采用辛普生(Simpson)积分.辛普生积分点的间隔是一定的,沿厚度分成奇数积分点.由于不同单元的刚度矩阵不同,采用数值积分的求解方式不同,因此实际应用中,一定要采用合理的单元来模拟求解。

2 ANSYS网格划分的指导思想ANSYS网格划分的指导思想是首先进行总体模型规划,包括物理模型的构造、单元类型的选择、网格密度的确定等多方面的内容。

在网格划分和初步求解时,做到先简单后复杂,先粗后精,2D单元和3D单元合理搭配使用。

为提高求解的效率要充分利用重复与对称等特征,由于工程结构一般具有重复对称或轴对称、镜象对称等特点,采用子结构或对称模型可以提高求解的效率和精度。

利用轴对称或子结构时要注意场合,如在进行模态分析、屈曲分析整体求解时,则应采用整体模型,同时选择合理的起点并设置合理的坐标系,可以提高求解的精度和效率,例如,轴对称场合多采用柱坐标系。

有限元分析的精度和效率与单元的密度和几何形状有着密切的关系,按照相应的误差准则和网格疏密程度,避免网格的畸形。

在网格重划分过程中常采用曲率控制、单元尺寸与数量控制、穿透控制等控制准则.在选用单元时要注意剪力自锁、沙漏和网格扭曲、不可压缩材料的体积自锁等问题ANSYS软件平台提供了网格映射划分和自由适应划分的策略。

ANSYS网格划分详细介绍

ANSYS网格划分详细介绍

ANSYS网格划分详细介绍ANSYS网格划分详细介绍众所周知,对于有限元分析来说,网格划分是其中最关键的一个步骤,网格划分的好坏直接影响到解算的精度和速度。

在ANSYS中,大家知道,网格划分有三个步骤:定义单元属性(包括实常数)、在几何模型上定义网格属性、划分网格。

在这里,我们仅对网格划分这个步骤所涉及到的一些问题,尤其是与复杂模型相关的一些问题作简要阐述。

一、自由网格划分自由网格划分是自动化程度最高的网格划分技术之一,它在面上(平面、曲面)可以自动生成三角形或四边形网格,在体上自动生成四面体网格。

通常情况下,可利用ANSYS 的智能尺寸控制技术(SMARTSIZE命令)来自动控制网格的大小和疏密分布,也可进行人工设置网格的大小(AESIZE、LESIZE、KESIZE、ESIZE等系列命令)并控制疏密分布以及选择分网算法等(MOPT命令)。

对于复杂几何模型而言,这种分网方法省时省力,但缺点是单元数量通常会很大,计算效率降低。

同时,由于这种方法对于三维复杂模型只能生成四面体单元,为了获得较好的计算精度,建议采用二次四面体单元(92号单元)。

如果选用的是六面体单元,则此方法自动将六面体单元退化为阶次一致的四面体单元,因此,最好不要选用线性的六面体单元(没有中间节点,比如45号单元),因为该单元退化后为线性的四面体单元,具有过刚的刚度,计算精度较差;如果选用二次的六面体单元(比如95号单元),由于其是退化形式,节点数与其六面体原型单元一致,只是有多个节点在同一位置而已,因此,可以利用TCHG命令将模型中的退化形式的四面体单元变化为非退化的四面体单元,减少每个单元的节点数量,提高求解效率。

在有些情况下,必须要用六面体单元的退化形式来进行自由网格划分,比如,在进行混合网格划分(后面详述)时,只有用六面体单元才能形成金字塔过渡单元。

对于计算流体力学和考虑集肤效应的电磁场分析而言,自由网格划分中的层网格功能(由LESIZE命令的LAYER1和LAYER2域控制)是非常有用的。

ANSYS-网格划分方法总结

ANSYS-网格划分方法总结

(1) 网格划分定义:实体模型是无法直接用来进行有限元计算得,故需对它进行网格划分以生成有限元模型。

有限元模型是实际结构和物质的数学表示方法。

在ANSYS中,可以用单元来对实体模型进行划分,以产生有限元模型,这个过程称作实体模型的网格化。

本质上对实体模型进行网格划分也就是用一个个单元将实体模型划分成众多子区域。

这些子区域(单元),是有属性的,也就是前面设置的单元属性。

另外也可以直接利用单元和节点生成有限元模型。

实体模型进行网格划分就是用一个个单元将实体模型划分成众多子区域(单元)。

(2)为什么我选用plane55这个四边形单元后,仍可以把实体模型划分成三角形区域集合???答案:ansys为面模型的划分只提供三角形单元和四边形单元,为体单元只提供四面体单元和六面体单元。

不管你选择的单元是多少个节点,只要是2D单元,肯定构成一个四边形或者是三角形,绝对没有五、六边形等特殊形状。

网格划分也就是用所选单元将实体模型划分成众多三角形单元和四边形子区域。

见下面的plane77/78/55都是节点数目大于4的,但都是通过各种插值或者是合并的方式形成一个四边形或者三角形。

所以不管你选择什么单元,只要是对面的划分,meshtool上的划分类型设置就只有tri和quad两种选择。

如果这个单元只构成三角形,例如plane35,则无论你在meshtool上划分设置时tri 还是quad,划分出的结果都是三角形。

所以在选用plane55单元,而划分的是采用tri划分时,就会把两个点合并为一个点。

如上图的plane55,下面是plane单元的节点组成,可见每一个单元上都有两个节点标号相同,表明两个节点是重合的。

同样在采用plane77 单元,进行tri划分时,会有三个节点重合。

这里不再一一列出。

(3)如何使用在线帮助:点击对话框中的help,例如你想了解plane35的相关属性,你可以点击上右图中的help,亦可以,点击help—>help topic弹出下面的对话康,点击索引按钮,输入你想查询的关键词。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• Patch Conforming • Patch Independent
– (ICEM CFD Tetra algorithm)
– 扫掠划分 – 多区 – 六面体支配的 – CFX-网格
2-12
Training Manual
Introduction to the ANSYS Meshing Application
0.50-0.80 good
0.80-0.95 acceptable
0.95-0.98 0.98-1.00
bad
Unacceptable
*更多检查网格的信息在培训讲稿的附录文件中。
2-5
IApplication
CFD网格划分问题
• CFD网格
ANSYS网格划分简介
2-1
Introduction to the ANSYS Meshing Application
ANSYS网格划分应用程序概述
Training Manual
• Workbench中ANSYS Meshing应用程序的目标是提供通用的 网格划分格局。网格划分工具可以在任何分析类型中使用:
2-8
Introduction to the ANSYS Meshing Application
网格划分程序
Training Manual
1. 为方便使用创建命名选项 2. 设置目标物理环境 (结构, CFD, 等)。自动生成相关物理环境的
网格 (如 FLUENT, CFX, 或 Mechanical) 3. 设定网格划分方法 4. 定义网格设置 (尺寸, 控制, 膨胀, 等.) 5. 预览网格并进行必要调整 6. 生成网格 7. 检查网格质量 8. 准备分析的网格
2-9
Introduction to the ANSYS Meshing Application
ANSYS网格划分应用程序流程
• ANSYS网格划分应用程序使用‘分割’ 的方法 • 几何体的各个部件可以使用不同的网格划分方法
– 不同部件的体的网格可以不匹配或不一致 – 单个部件的体的网格匹配或一致
Training Manual
• 如果输入一个由面体组成的几何,需要在ANSYS网格划分应用程序中生成 3D网格,就需要额外的步骤将其转换为3D 实体 (尽管表面体可以由表面网 格划分法来划分)
2-14
Introduction to the ANSYS Meshing Application
四面体网格
–FEA Simulations
• 结构动力学分析 • 显示动力学分析
– AUTODYN – ANSYS LS DYNA
• 电磁分析
–CFD 分析
• ANSYS CFX • ANSYS FLUENT
2-2
Introduction to the ANSYS Meshing Application
网格详述
– 细化网格来捕捉关心的梯度
• 例如. 速度, 压力,温度, 等.
– 网格的质量和平滑度对结果的精确度至关重要
• 这导致较大的网格数量, 经常数百万的单元
– 大部分可划分为四面体网格, 但六面体单元仍 然是首选的
– CFD网格的四面体单元通常是一阶的(单元边 上不包含中节点)
Training Manual
Training Manual
目的
– 对 CFD (流体) 和FEA (结构) 模型实现离散化。
– 划分网格的目的是把求解域分解成可得到精确解的适当数量的单元. – 3D网格的基本形状有 :
四面体 (非结构化网格)
六面体
棱锥 (四面体和六面体
(通常为结构化网格)
之间的过渡)
棱柱 (四面体网格被拉伸 时形成)
• 优点
– 任意体总可以用四面体网格 – 可以快速, 自动生成, 并适用于复杂几何 – 在关键区域容易使用曲度和近似尺寸功能自动细化网格 – 可使用膨胀细化实体边界附近的网格 (边界层识别)
2-6
Introduction to the ANSYS Meshing Application
网格类型
• 四面体网格和四面体/棱柱混合网格
Training Manual
2-7
Introduction to the ANSYS Meshing Application
网格类型 • 六面体网格
Training Manual
– 有很多方法来检查单元网格质量 (mesh metrics*)。例如 ,一个重要的度量是单元畸变度 ( Skewness )。畸变度是单元相对其理想形状的相对扭曲的度量,是一个值在0 (极好 的) 到1 (无法接受的)之间的比例因子.
0-0.25 Excellent
0.25-0.50 very good
• 所有网格将写入共同的中心数据库 • 3D 和2D 几何存在很多不同的网格划分方法
Training Manual
2-10
网格划分方法
2-11
Introduction to the ANSYS Meshing Application
3D 几何网格划分方法
• 3D 几何有六种不同网格划分方法:
– 自动划分 – 四面体
2D几何网格划分方法
• 面体或壳2D几何有四种不同网格划分方法:
– 自动的 (四边形支配)
– 三角形 – 均匀四边形和三角形 – 均匀四边形
Training Manual
2-13
Introduction to the ANSYS Meshing Application
几何要求
• 所有的3D 网格划分方法要求 组成的几何为实体
Training Manual
有必要划分这里 的网格吗?
在螺栓孔附近进行网 格细化
2-4
流体边界层的网格
Introduction to the ANSYS Meshing Application
网格详述
Training Manual
• 质量
– 复杂几何区域的网格单元会变扭曲。劣质的单元会导致劣质的结果,或者在某些情况无 结果!
集流管例子 : 热应力气流分析的外部铸件和内部流体的网格划分 2-3
Introduction to the ANSYS Meshing Application
网格详述 需考虑的事项
• 细节:
– 多少几何细节是和物理分析有关的 – 不必要的细节会大大增加分析需求
• 细化
– 哪些是复杂应力梯度区域?这些区 域需要高密度的网格.
相关文档
最新文档