专题06 动点折叠类问题中图形存在性问题(解析版)
2021年中考数学压轴题:折叠产生的矩形存在性问题
中考数学压轴题分析:折叠产生的矩形存在性问题
【分析】
题(1)求解析式代入点坐标即可。
题(2)是30°角的问题,本题比较特殊,求坐标可以发现OB=AB=OA,说明三角形ABO是等边三角形。
因为本题的解析式种包含√3,所以需要注意到这个特殊性。
说明点D在∠AOB的平分线上,设点D的坐标,然后作x轴的垂线,根据tan∠AOD=√3/3即可求出坐标(注意,需要舍去上方的一种情况)。
题(3)本质是折叠产生的直角三角形存在性问题,只需令三角形GEF为直角三角形即可。
因为三角形EFG是重叠部分,说明了点G只能在三角形BOE的边上运动。
那么只有∠EGF与∠EFG为90度这两种情况,当然,点G还可能在OE上,所以需要分3种情况讨论。
确定了这三点之后,利用平行四边形的性质即可得到点H的坐标。
折叠专题(二)——存在性问题(讲义及答案)
折叠专题(二)——存在性问题(讲义)➢知识点睛1.存在性问题的处理思路:①分析不变特征分析背景图形中的定点,定线,定角等不变特征.②分类、画图结合图形形成因素(判定,定义等)考虑分类,画出符合题意的图形.通常先尝试画出其中一种情形,分析解决后,再类比解决其他情形.③求解、验证围绕不变特征,画图依据来设计方案进行求解;验证时,要回归点的运动范围,画图或推理,判断是否符合题意.注:处理复杂背景下的存在性问题前,往往需要先研究背景图形.几何背景往往研究点,线,角;函数背景研究点坐标,表达式等.2.等腰三角形的存在性:①两定一动连接两个定点得定线段,由等腰三角形定义出发考虑可能的分类后转化为作图(两圆一线),通常借助腰相等或者“三线合一”进行求解.②夹角固定、两点动由等腰三角形定义出发考虑可能的分类,通常借助等腰三角形腰相等或者“三线合一”进行求解;若固定的夹角为锐角,则固定的角可作等腰三角形的顶角或底角进行分类;若固定的夹角为钝角,则只能作为等腰三角形的顶角.③三动点三边两两相等或者三个角两两相等分类,表达线段或者角度,借助等腰三角形性质进行求解.3.直角三角形的存在性:由定义出发,考虑三角形的三个顶点分别作为直角顶点进行分类(往往存在不变特征,分析排除不可能为直角顶点的情况),通常借助三等角模型,k1·k2=-1或勾股定理等进行求解.➢ 精讲精练1. (19驻马店一模)如图,矩形ABCD 中,AB =10,AD =12,点E 是线段BC 上一动点,连接AE ,将△ABE 沿直线AE 折叠,点B 落到F 处,连接CF ,BF ,当△BFC 为等腰三角形时,BE 的长为__________.ABCDEF2. (15河南)如图,正方形ABCD 的边长是16,点E 在边AB 上,AE =3,点F是边BC 上不与点B ,C 重合的一个动点,把△EBF 沿EF 折叠,点B 落在B′处,若△CDB′恰为等腰三角形,则DB′的长为____________.B'CB A DEF3. (17焦作二模)如图,Rt △ABC 中,∠C =90°,AC =BC =3,将△ABC 折叠,使点A 落在BC 边上的点F 处(点F 不与点C 重合),折痕为DE ,当重叠部分△DEF 为等腰三角形时,线段CF 的长为____________.FEDCBA4. (19许昌二模)如图,已知□ABCD 中,AB =16,AD =10,sin A =35,点M 为AB 边上一动点,过点M 作MN ⊥AB ,交AD 边于点N ,将∠A 沿直线MN 翻折,点A 落在线段AB 上的点E 处,当△CDE 为直角三角形时,AM 的长为_________.ABCD EMN5. (19三门峡一模)如图,已知Rt △ABC 中,∠B =90°,∠A =60°,AC=4.点M ,N 分别在线段AC ,AB 上,将△ANM 沿直线MN 折叠,使点A 的对应点D 恰好落在线段BC 上,当△DCM 为直角三角形时,折痕MN 的长为_________.ABCDMN6. (18河南)如图,∠MAN =90°,点C 在边AM 上,AC =4,点B 为边AN 上一动点,连接BC ,△A′BC 与△ABC 关于BC 所在直线对称.D ,E 分别为AC ,BC 的中点,连接DE 并延长交A′B 所在直线于点F ,连接A′E .当△A′EF 为直角三角形时,AB 的长为____________.NM F EAA′BC D NM F EAA′BC D7. (19郑州二模)在矩形ABCD 中,AB =6,AD =3,E 是AB 边上一点,AE =2,F是直线CD 上一动点,将△AEF 沿直线EF 折叠,点A 的对应点为点A′,当点E ,A′,C 三点在一条直线上时,DF 的长度为__________.A BCD E F8. (19三门峡二模)在矩形ABCD 中,AB =6,BC =12,点E 在边BC 上,且BE =2CE ,将矩形沿过点E 的直线折叠,点C ,D 的对应点分别为C′,D′,折痕与边AD 交于点F ,当点B ,C′,D′恰好在同一直线上时,AF 的长为__________.D′C′ABCDEF9. (19安阳二模)如图,在△ABC 中,∠C =90°,AB =5,BC =4.点D 是边AC的中点,点E 在边AB 上,将△ADE 沿DE 翻折,使点A 落在点A′处,当线段AE 的长为__________时,A′E ∥BC .A′ABCDE【参考答案】1.103,152或122.16或3.3或34.4或85.或4 36.4或7.1或118.8-或8+9.12或92。
中考数学复习折叠类问题破解策略(模型解读+例题解析+真题反馈)(共20张PPT)
课堂练习
8.如图,正方形ABCD的边长是16,点E在边AB上,AE=3,
点F是边BC上不与点 B、C重合的一个动点,把△EBF沿EF
折叠,点B落在B′处,若△CDB′恰为等腰三角形,则DB′的
长为
.
2020/11/12
课堂练习
9.如图,在矩形ABCD中,AB=8,BC=12,点E是BC的中 点,连接AE,将△ABE 沿AE折叠,点B落在点F处,连接 FC,则sin∠ECF =( )
点B落在点K处,HK过A点,若∠DFE=52°,可求出
哪些角的度数?
DF
C
2020/11/12
E
H
A
GB
K
活动三:聚合信息,选择模型
如图,矩形ABCD沿对角线AC折叠,点B落在点E处,AE与 CD交于F点。
(1)图中除直角三角形外,
E
还有其他特殊三角形吗?
D
C
(2)若AB=3,CB=2,你能
F
求出图中哪些线段的长度呢?
(1)如图(1),折痕为AE; (2)如图(2),P,Q分别为AB,CD的中点,折痕为 AE; (3)如图(3),折痕为EF。
2020/11/12
(1)
(2) 第3题
(3)
课堂练习
4.如图,矩形纸片ABCD中,AD=4cm,把纸片沿直线AC折 叠,点B落在E处,AE交DC于点O,若AO=5cm,则AB的 长为( ) A.6cm B.7cm C.8cm D.9 cm
A
B
2020/11/12
活动四:运用方法,自我建构
如图,矩形ABCD 中,AB=3,CB=2,点E为AB边中点,
将矩形ABCD沿CE折叠,点B落在F点位置。
初中数学——折叠中几何图形的存在性问题》
(变式1)如图,矩形ABCD 中,AB =3,BC =4,点E 是BC 边上一点,连接AE ,把∠B 沿AE 折叠,使点B 落在点B ′处,当△CEB ′为直角三角形时,BE 的长为_________.(变式2)如图,正方形ABCD 的边长是16,点E 在边AB 上,AE =3,点F 是边BC 上不与点B 、C 重合的一个动点,把△EBF 沿EF 折叠,点B 落在B ′处,若△CDB ′恰为等腰三角形,则DB ′的长为 .EF CDB A B ′(变式3)如图,点E是矩形ABCD的边AB上一点,将△BEC沿CE折叠,使点B落在AD边上的点F处.若△AEF∽△FEC∽△DFC,则ABBC的值是.(变式4)如图,四边形ABCD是菱形,AB=2,∠ABC=30°,点E是线段DA上一动点,把△CDE沿CE折叠,其中点D的对应点为F,连接FB,若使△FBC为等边三角形,则DE=题根根据题意得:∠EFB=∠B=30°,DF=BD,EF=EB,∵DE⊥BC,∴∠FED=90°-∠EFD=60°,∠BEF=2∠FED=120°,∴∠AEF=180°-∠BEF=60°,∵在Rt△ABC中,∠ACB=90°,∠B=30°,BC=3,∴AC=BC•tan∠B=333⨯=3如图①若∠AFE=90°,∵在Rt△ABC中,∠ACB=90°,∴∠EFD+∠AFC=∠FAC+∠AFC=90°,∴∠FAC=∠EFD=30°,∴CF=AC•tan∠FAC=33=13⨯∴BD=DF=31=122BC CF--=如图②若∠EAF=90°,则∠FAC=90°-∠BAC=30°,∴CF=AC •tan ∠FAC=33=13⨯∴BD=DF=31=222BC CF ++=∴△AEF 为直角三角形时,BD 的长为:1或2.(变式1)当△CEB ′为直角三角形时,有两种情况:①当点B ′落在矩形内部时,如答图1所示.连结AC ,在Rt △ABC 中,AB=3,BC=4,∴AC=5∵∠B 沿AE 折叠,使点B 落在点B ′处,∴∠AB ′E=∠B=90°, 当△CEB ′为直角三角形时,只能得到∠EB ′C=90°,∴点A 、B ′、C 共线,即∠B 沿AE 折叠,使点B 落在对角线AC 上的点B ′处, ∴EB=EB ′,AB=AB ′=3,∴CB ′=5-3=2,设BE=x ,则EB ′=x ,CE=4-x ,在Rt △CEB ′中,∵EB ′2+CB ′2=CE 2,∴x 2+22=(4-x )2,解得x=32∴BE=32;②当点B ′落在AD 边上时,如答图2所示.此时ABEB ′为正方形,∴BE=AB=3.综上所述,BE 的长为32或3.(变式2) 试题分析:(1)当B′D=B′C 时,过B′点作GH ∥AD ,则∠B′GE=90°,当B′C=B′D 时,AG=DH=12DC=8,由AE=3,AB=16,得BE=13.由翻折的性质,得B′E=BE=13,∴EG=AG ﹣AE=8﹣3=5,∴B′G=22'B E EG -=22135-=12,∴B′H=GH﹣B′G=16﹣12=4,∴DB′=22'B H DH +=2248+=45;(2)当DB′=CD 时,则DB′=16(易知点F 在BC 上且不与点C 、B 重合);(3)当CB′=CD 时,∵EB=EB′,CB=CB′,∴点E 、C 在BB′的垂直平分线上,∴EC 垂直平分BB′,由折叠可知点F 与点C 重合,不符合题意,舍去. 综上所述,DB′的长为16或45.故答案为:16或45.(变式3)解:由折叠的性质得:△FEC≌△BEC,∴BC=FC,∠BEC=∠FEC,∵四边形ABCD是矩形,∴DC=AB,∵△AEF∽△FEC∽△DFC,∴∠AEF=∠DFC=∠FEC,∴∠AEF=∠FEC=∠BEC,∴∠DFC=60°,在Rt△CDF中,sin∠DFC=32DC ABFC BC==;故答案为:32.(变式4)解:∵四边形ABCD是菱形,AB=2,∠ABC=30°,∴CD=AB=2,∠D=∠B=30°,∠BCD=150°∵△FBC为等边三角形,∴∠BCF=60°,∴∠DCF=90°,∵△CDE沿CE折叠,得到△CFE,∴△CDE≌△CFE,∴∠DCE=12∠DCF=45°,过点E作EH⊥CD,垂足为H,则∠CHE=90°,∴∠CEH=∠DCE=45°,∴CH=EH,在Rt△DEH中,∠D=30°,∴EH=12DE设EH=x,则DE=2x,CH=x,由勾股定理得:HD=3x,∵CH+HD=CD=2,∴32x x+=,31x=-,∴DE=2x=232-。
专题06 二次函数中三角形存在性问题(解析版)--2023 年中考数学压轴真题汇编
挑战2023年中考数学解答题压轴真题汇编专题06二次函数中三角形存在性问题一.相似三角形的存在性1.(2022•陕西)已知抛物线y=ax2+bx﹣4经过点A(﹣2,0),B(4,0),与y 轴的交点为C.(1)求该抛物线的函数表达式;(2)若点P是该抛物线上一点,且位于其对称轴l的右侧,过点P分别作l,x轴的垂线,垂足分别为M,N,连接MN.若△PMN和△OBC相似,求点P 的坐标.【解答】解:(1)把A(﹣2,0),B(4,0)代入y=ax2+bx﹣4得:,解得,∴抛物线的函数表达式为y=x2﹣x﹣4;(2)如图:∵y=x2﹣x﹣4=(x﹣1)2﹣,∴抛物线y=x2﹣x﹣4的对称轴是直线x=1,在y=x2﹣x﹣4中,令x=0得y=﹣4,∴C(0,﹣4),∴OB=OC=4,∴△BOC是等腰直角三角形,∵△PMN和△OBC相似,∴△PMN是等腰直角三角形,∵PM⊥直线x=1,PN⊥x轴,∴∠MPN=90°,PM=PN,设P(m,m2﹣m﹣4),∴|m﹣1|=|m2﹣m﹣4|,∴m﹣1=m2﹣m﹣4或m﹣1=﹣m2+m+4,解得m=+2或m=﹣+2或m=或m=﹣,∵点P是该抛物线上一点,且位于其对称轴直线x=1的右侧,∴P的坐标为(+2,+1)或(,1﹣).2.(2022•绵阳)如图,抛物线y=ax2+bx+c交x轴于A(﹣1,0),B两点,交y轴于点C(0,3),顶点D的横坐标为1.(1)求抛物线的解析式;(2)在y轴的负半轴上是否存在点P使∠APB+∠ACB=180°,若存在,求出点P的坐标,若不存在,请说明理由;(3)过点C作直线l与y轴垂直,与抛物线的另一个交点为E,连接AD,AE,DE,在直线l下方的抛物线上是否存在一点M,过点M作MF⊥l,垂足为F,使以M,F,E三点为顶点的三角形与△ADE相似?若存在,请求出M点的坐标,若不存在,请说明理由.【解答】解:(1)∵顶点D的横坐标为1,∴抛物线的对称轴为直线x=1,∵A(﹣1,0),∴B(3,0),∴设抛物线的解析式为:y=a(x+1)(x﹣3),将C(0,3)代入抛物线的解析式,则﹣3a=3,解得a=﹣1,∴抛物线的解析式为:y=﹣(x+1)(x﹣3)=﹣x2+2x+3.(2)存在,P(0,﹣1),理由如下:∵∠APB+∠ACB=180°,∴∠CAP+∠CBP=180°,∴点A,C,B,P四点共圆,如图所示,由(1)知,OB=OC=3,∴∠OCB=∠OBC=45°,∴∠APC=∠ABC=45°,∴△AOP是等腰直角三角形,∴OP=OA=1,∴P(0,﹣1).(3)存在,理由如下:由(1)知抛物线的解析式为:y=﹣x2+2x+3,∴D(1,4),由抛物线的对称性可知,E(2,3),∵A(﹣1,0),∴AD=2,DE=,AE=3.∴AD2=DE2+AE2,∴△ADE是直角三角形,且∠AED=90°,DE:AE=1:3.∵点M在直线l下方的抛物线上,∴设M(t,﹣t2+2t+3),则t>2或t<0.∴EF=|t﹣2|,MF=3﹣(﹣t2+2t+3)=t2﹣2t,若△MEF与△ADE相似,则EF:MF=1:3或MF:EF=1:3,∴|t﹣2|:(t2﹣2t)=1:3或(t2﹣2t):|t﹣2|=1:3,解得t=2(舍)或t=3或﹣3或(舍)或﹣,∴M的坐标为(3,0)或(﹣3,﹣12)或(﹣,).综上,存在点M,使以M,F,E三点为顶点的三角形与△ADE相似,此时点M的坐标为(3,0)或(﹣3,﹣12)或(﹣,).3.(2022•恩施州)在平面直角坐标系中,O为坐标原点,抛物线y=﹣x2+c与y 轴交于点P(0,4).(1)直接写出抛物线的解析式.(2)如图,将抛物线y=﹣x2+c向左平移1个单位长度,记平移后的抛物线顶点为Q,平移后的抛物线与x轴交于A、B两点(点A在点B的右侧),与y轴交于点C.判断以B、C、Q三点为顶点的三角形是否为直角三角形,并说明理由.(3)直线BC与抛物线y=﹣x2+c交于M、N两点(点N在点M的右侧),请探究在x轴上是否存在点T,使得以B、N、T三点为顶点的三角形与△ABC 相似,若存在,请求出点T的坐标;若不存在,请说明理由.(4)若将抛物线y=﹣x2+c进行适当的平移,当平移后的抛物线与直线BC 最多只有一个公共点时,请直接写出抛物线y=﹣x2+c平移的最短距离并求出此时抛物线的顶点坐标.【解答】解:(1)∵抛物线y=﹣x2+c与y轴交于点P(0,4),∴c=4,∴抛物线的解析式为y=﹣x2+4;(2)△BCQ是直角三角形.理由如下:将抛物线y=﹣x2+4向左平移1个单位长度,得新抛物线y=﹣(x+1)2+4,∴平移后的抛物线顶点为Q(﹣1,4),令x=0,得y=﹣1+4=3,∴C(0,3),令y=0,得﹣(x+1)2+4=0,解得:x1=1,x2=﹣3,∴B(﹣3,0),A(1,0),如图1,连接BQ,CQ,PQ,∵P(0,4),Q(﹣1,4),∴PQ⊥y轴,PQ=1,∵CP=4﹣3=1,∴PQ=CP,∠CPQ=90°,∴△CPQ是等腰直角三角形,∴∠PCQ=45°,∵OB=OC=3,∠BOC=90°,∴△BOC是等腰直角三角形,∴∠BCO=45°,∴∠BCQ=180°﹣45°﹣45°=90°,∴△BCQ是直角三角形.(3)在x轴上存在点T,使得以B、N、T三点为顶点的三角形与△ABC相似.∵△ABC是锐角三角形,∠ABC=45°,∴以B、N、T三点为顶点的三角形与△ABC相似,必须∠NBT=∠ABC=45°,即点T在y轴的右侧,设T(x,0),且x>0,则BT=x+3,∵B(﹣3,0),A(1,0),C(0,3),∴∠ABC=45°,AB=4,BC=3,设直线BC的解析式为y=kx+b,则,解得:,∴直线BC的解析式为y=x+3,由,解得:,,∴M(﹣,),N(,),∴BN=×=,①当△NBT∽△CBA时,则=,∴=,解得:x=,∴T(,0);②当△NBT∽△ABC时,则=,∴=,解得:x=,∴T(,0);综上所述,点T的坐标T(,0)或(,0).(4)抛物线y=﹣x2+4的顶点为P(0,4),∵直线BC的解析式为y=x+3,∴直线BC与y轴的夹角为45°,当抛物线沿着垂直直线BC的方向平移到只有1个公共点时,平移距离最小,此时向右和向下平移距离相等,设平移后的抛物线的顶点为P′(t,4﹣t),则平移后的抛物线为y=﹣(x﹣t)2+4﹣t,由﹣(x﹣t)2+4﹣t=x+3,整理得:x2+(1﹣2t)x+t2+t﹣1=0,∵平移后的抛物线与直线BC最多只有一个公共点,∴Δ=(1﹣2t)2﹣4(t2+t﹣1)=0,解得:t=,∴平移后的抛物线的顶点为P′(,),平移的最短距离为.二.直角三角形的存在性4.(2022•广安)如图,在平面直角坐标系中,抛物线y=ax2+x+m(a≠0)的图象与x轴交于A、C两点,与y轴交于点B,其中点B坐标为(0,﹣4),点C坐标为(2,0).(1)求此抛物线的函数解析式.(2)点D是直线AB下方抛物线上一个动点,连接AD、BD,探究是否存在点D,使得△ABD的面积最大?若存在,请求出点D的坐标;若不存在,请说明理由.(3)点P为该抛物线对称轴上的动点,使得△PAB为直角三角形,请求出点P的坐标.【解答】解:(1)∵抛物线y=ax2+x+m(a≠0)的图象经过点B(0,﹣4),点C(2,0),∴,解得,∴抛物线的解析式为y=x2+x﹣4;(2)存在.理由:如图1中,设D(t,t2+t﹣4),连接OD.令y=0,则x2+x﹣4=0,解得x=﹣4或2,∴A(﹣4,0),C(2,0),∵B(0,﹣4),∴OA=OB=4,=S△AOD+S△OBD﹣S△AOB=×4×(﹣﹣t+4)+×4×(﹣t)﹣×∵S△ABD4×4=﹣t2﹣4t=﹣(t+2)2+4,∵﹣1<0,∴t=﹣2时,△ABD的面积最大,最大值为4,此时D(﹣2,﹣4);(3)如图2中,设抛物线的对称轴交x轴于点N,过点B作BM⊥抛物线的对称轴于点M.则N(﹣1.0).M(﹣1,﹣4);∵OA=OB=4,∠AOB=90°,∴∠OAB=∠OBA=45°,当∠P1AB=90°时,△ANP1是等腰直角三角形,∴AN=NP1=3,∴P1(﹣1,3),当∠ABP2=90°时,△BMP2是等腰直角三角形,可得P2(﹣1,﹣5),当∠APB=90°时,设P(﹣1,n),设AB的中点为J,连接PJ,则J(﹣2,﹣2),∴PJ=AB=2,∴12+(n+2)2=(2)2,解得n=﹣2或﹣﹣2,∴P3(﹣1,﹣2),P4(﹣1,﹣﹣2),综上所述,满足条件的点P的坐标为(﹣1,3)或(﹣1,﹣5)或(﹣1,﹣2)或(﹣1,﹣﹣2).5.(2022•辽宁)如图,抛物线y=ax2﹣3x+c与x轴交于A(﹣4,0),B两点,与y轴交于点C(0,4),点D为x轴上方抛物线上的动点,射线OD交直线AC于点E,将射线OD绕点O逆时针旋转45°得到射线OP,OP交直线AC 于点F,连接DF.(1)求抛物线的解析式;(2)当点D在第二象限且=时,求点D的坐标;(3)当△ODF为直角三角形时,请直接写出点D的坐标.【解答】解:(1)将点A(﹣4,0),C(0,4)代入y=ax2﹣3x+c,∴,解得,∴y=﹣x2﹣3x+4;(2)过点D作DG⊥AB交于G,交AC于点H,设直线AC的解析式为y=kx+b,∴,解得,∴y=x+4,设D(n,﹣n2﹣3n+4),H(n,n+4),∴DH=﹣n2﹣4n,∵DH∥OC,∴==,∵OC=4,∴DH=3,∴﹣n2﹣4n=3,解得n=﹣1或n=﹣3,∴D(﹣1,6)或(﹣3,4);(3)设F(t,t+4),当∠FDO=90°时,过点D作MN⊥y轴交于点N,过点F作FM⊥MN交于点M,∵∠DOF=45°,∴DF=DO,∵∠MDF+∠NDO=90°,∠MDF+∠MFD=90°,∴∠NDO=∠MFD,∴△MDF≌△NOD(AAS),∴DM=ON,MF=DN,∴DN+ON=﹣t,DN=ON+(﹣t﹣4),∴DN=﹣t﹣2,ON=2,∴D点纵坐标为2,∴﹣x2﹣3x+4=2,解得x=或x=,∴D点坐标为(,2)或(,2);当∠DFO=90°时,过点F作KL⊥x轴交于L点,过点D作DK⊥KL交于点K,∵∠KFD+∠LFO=90°,∠KFD+∠KDF=90°,∴∠LFO=∠KDF,∵DF=FO,∴△KDF≌△LFO(AAS),∴KD=FL,KF=LO,∴KL=t+4﹣t=4,∴D点纵坐标为4,∴﹣x2﹣3x+4=4,解得x=0或x=﹣3,∴D(0,4)或(﹣3,4);综上所述:D点坐标为(,2)或(,2)或(0,4)或(﹣3,4).三.等腰三角形的存在性6.(2022•百色)已知抛物线经过A(﹣1,0)、B(0,3)、C(3,0)三点,O 为坐标原点,抛物线交正方形OBDC的边BD于点E,点M为射线BD上一动点,连接OM,交BC于点F.(1)求抛物线的表达式;(2)求证:∠BOF=∠BDF;(3)是否存在点M,使△MDF为等腰三角形?若不存在,请说明理由;若存在,求ME的长.【解答】(1)解:设抛物线的表达式为y=ax2+bx+c,把A(﹣1,0)、B(0,3)、C(3,0)代入得:,解得,∴抛物线的表达式为:y=﹣x2+2x+3;(2)证明:∵正方形OBDC,∴∠OBC=∠DBC,BD=OB,∵BF=BF,∴△BOF≌△BDF,∴∠BOF=∠BDF;(3)解:∵抛物线交正方形OBDC的边BD于点E,∴令y=3,则3=﹣x2+2x+3,解得:x1=0,x2=2,∴E(2,3),①如图,当M在线段BD的延长线上时,∠BDF为锐角,∴∠FDM为钝角,∵△MDF为等腰三角形,∴DF=DM,∴∠M=∠DFM,∴∠BDF=∠M+∠DFM=2∠M,∵BM∥OC,∴∠M=∠MOC,由(2)得∠BOF=∠BDF,∴∠BDF+∠MOC=3∠M=90°,∴∠M=30°,在Rt△BOM中,BM=,∴ME=BM﹣BE=3﹣2;②如图,当M在线段BD上时,∠DMF为钝角,∵△MDF为等腰三角形,∴MF=DM,∴∠BDF=∠MFD,∴∠BMO=∠BDF+∠MFD=2∠BDF,由(2)得∠BOF=∠BDF,∴∠BMO=2∠BOM,∴∠BOM+∠BMO=3∠BOM=90°,∴∠BOM=30°,在Rt△BOM中,BM=,∴ME=BE﹣BM=2﹣,综上所述,ME的值为:3﹣2或2﹣.7.(2022•山西)综合与探究如图,二次函数y=﹣x2+x+4的图象与x轴交于A,B两点(点A在点B 的左侧),与y轴交于点C.点P是第一象限内二次函数图象上的一个动点,设点P的横坐标为m.过点P作直线PD⊥x轴于点D,作直线BC交PD于点E.(1)求A,B,C三点的坐标,并直接写出直线BC的函数表达式;(2)当△CEP是以PE为底边的等腰三角形时,求点P的坐标;(3)连接AC,过点P作直线l∥AC,交y轴于点F,连接DF.试探究:在点P运动的过程中,是否存在点P,使得CE=FD,若存在,请直接写出m的值;若不存在,请说明理由.【解答】解:(1)在y=﹣x2+x+4中,令x=0得y=4,令y=0得x=8或x=﹣2,∴A(﹣2,0),B(8,0),C(0,4),设直线BC解析式为y=kx+4,将B(8,0)代入得:8k+4=0,解得k=﹣,∴直线BC解析式为y=﹣x+4;(2)过C作CG⊥PD于G,如图:设P(m,﹣m2+m+4),∴PD=﹣m2+m+4,∵∠COD=∠PDO=∠CGD=90°,∴四边形CODG是矩形,∴DG=OC=4,CG=OD=m,∴PG=PD﹣DG=﹣m2+m+4﹣4=﹣m2+m,∵CP=CE,CG⊥PD,∴GE=PG=﹣m2+m,∵∠GCE=∠OBC,∠CGE=90°=∠BOC,∴△CGE∽△BOC,∴=,即=,解得m=0(舍去)或m=4,∴P(4,6);(3)存在点P,使得CE=FD,理由如下:过C作CH⊥PD于H,如图:设P(m,﹣m2+m+4),由A(﹣2,0),C(0,4)可得直线AC解析式为y=2x+4,根据PF∥AC,设直线PF解析式为y=2x+b,将P(m,﹣m2+m+4)代入得:﹣m2+m+4=2m+b,∴b=﹣m2﹣m+4,∴直线PF解析式为y=2x﹣m2﹣m+4,令x=0得y=﹣m2﹣m+4,∴F(0,﹣m2﹣m+4),∴OF=|﹣m2﹣m+4|,同(2)可得四边形CODH是矩形,∴CH=OD,∵CE=FD,∴Rt△CHE≌Rt△DOF(HL),∴∠HCE=∠FDO,∵∠HCE=∠CBO,∴∠FDO=∠CBO,∴tan∠FDO=tan∠CBO,∴=,即=,∴﹣m2﹣m+4=m或﹣m2﹣m+4=﹣m,解得m=2﹣2或m=﹣2﹣2或m=4或m=﹣4,∵P在第一象限,∴m=2﹣2或m=4.8.(2022•东营)如图,抛物线y=ax2+bx﹣3(a≠0)与x轴交于点A(﹣1,0),点B(3,0),与y轴交于点C.(1)求抛物线的表达式;(2)在对称轴上找一点Q,使△ACQ的周长最小,求点Q的坐标;(3)点P是抛物线对称轴上的一点,点M是对称轴左侧抛物线上的一点,当△PMB是以PB为腰的等腰直角三角形时,请直接写出所有点M的坐标.【解答】解:(1)将点A(﹣1,0),点B(3,0)代入y=ax2+bx﹣3,∴,解得,∴y=x2﹣2x﹣3;(2)连接CB交对称轴于点Q,∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线的对称轴为直线x=1,∵A、B关于对称轴x=1对称,∴AQ=BQ,∴AC+AQ+CQ=AC+CQ+BQ≥AC+BC,当C、B、Q三点共线时,△ACQ的周长最小,∵C(0,﹣3),B(3,0),设直线BC的解析式为y=kx+b,∴,解得,∴y=x﹣3,∴Q(1,﹣2);(3)当∠BPM=90°时,PM=PB,∴M点与A点重合,∴M(﹣1,0);当∠PBM=90°时,PB=BM,如图1,当P点在M点上方时,过点B作x轴的垂线GH,过点P作PH⊥GH 交于H,过点M作MG⊥HG交于G,∵∠PBM=90°,∴∠PBH+∠MBG=90°,∵∠PBH+∠BPH=90°,∴∠MBG=∠BPH,∵BP=BM,∴△BPH≌△MBG(AAS),∴BH=MG,PH=BG=2,设P(1,t),则M(3﹣t,﹣2),∴﹣2=(3﹣t)2﹣2(3﹣t)﹣3,解得t=2+或t=2﹣,∴M(1﹣,﹣2)或(1+,﹣2),∵M点在对称轴的左侧,∴M点坐标为(1﹣,﹣2);如图2,当P点在M点下方时,同理可得M(3+t,2),∴2=(3+t)2﹣2(3+t)﹣3,解得t=﹣2+(舍)或t=﹣2﹣,∴M(1﹣,2);综上所述:M点的坐标为(1﹣,﹣2)或(1﹣,2)或(﹣1,0).9.(2022•枣庄)如图①,已知抛物线L:y=x2+bx+c经过点A(0,3),B(1,0),过点A作AC∥x轴交抛物线于点C,∠AOB的平分线交线段AC于点E,点P是抛物线上的一个动点.(1)求抛物线的关系式;(2)若动点P在直线OE下方的抛物线上,连结PE、PO,当△OPE面积最大时,求出P点坐标;(3)将抛物线L向上平移h个单位长度,使平移后所得抛物线的顶点落在△OAE内(包括△OAE的边界),求h的取值范围;(4)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P,使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.【解答】解:(1)∵抛物线L:y=x2+bx+c经过点A(0,3),B(1,0),∴,解得,∴抛物线的解析式为:y=x2﹣4x+3;(2)如图,过P作PG∥y轴,交OE于点G,设P(m,m2﹣4m+3),∵OE平分∠AOB,∠AOB=90°,∴∠AOE=45°,∴△AOE是等腰直角三角形,∴AE=OA=3,∴E(3,3),∴直线OE的解析式为:y=x,∴G(m,m),∴PG=m﹣(m2﹣4m+3)=﹣m2+5m﹣3,=S△OPG+S△EPG∴S△OPE=PG•AE=×3×(﹣m2+5m﹣3)=﹣(m2﹣5m+3)=﹣(m﹣)2+,∵﹣<0,∴当m=时,△OPE面积最大,此时,P点坐标为(,﹣);(3)由y=x2﹣4x+3=(x﹣2)2﹣1,得抛物线l的对称轴为直线x=2,顶点为(2,﹣1),抛物线L向上平移h个单位长度后顶点为F(2,﹣1+h).设直线x=2交OE于点M,交AE于点N,则E(3,3),∵直线OE的解析式为:y=x,∴M(2,2),∵点F在△OAE内(包括△OAE的边界),∴2≤﹣1+h≤3,解得3≤h≤4;(4)设P(m,m2﹣4m+3),分四种情况:①当P在对称轴的左边,且在x轴下方时,如图,过P作MN⊥y轴,交y 轴于M,交l于N,∴∠OMP=∠PNF=90°,∵△OPF是等腰直角三角形,∴OP=PF,∠OPF=90°,∴∠OPM+∠NPF=∠PFN+∠NPF=90°,∴∠OPM=∠PFN,∴△OMP≌△PNF(AAS),∴OM=PN,∵P(m,m2﹣4m+3),则﹣m2+4m﹣3=2﹣m,解得:m=(舍)或,∴P的坐标为(,);②当P在对称轴的左边,且在x轴上方时,同理得:2﹣m=m2﹣4m+3,解得:m1=(舍)或m2=,∴P的坐标为(,);③当P在对称轴的右边,且在x轴下方时,如图,过P作MN⊥x轴于N,过F作FM⊥MN于M,同理得△ONP≌△PMF,∴PN=FM,则﹣m2+4m﹣3=m﹣2,解得:m1=或m2=(舍);P的坐标为(,);④当P在对称轴的右边,且在x轴上方时,如图,同理得m2﹣4m+3=m﹣2,解得:m=或(舍),P的坐标为:(,);综上所述,点P的坐标是:(,)或(,)或(,)或(,).方法二:作直线DE:y=x﹣2,E(1,﹣1)是D点(2,0)绕O点顺时针旋转45°并且OD缩小倍得到,易知直线DE即为对称轴上的点绕O点顺时针旋转45°,且到O点距离缩小倍的轨迹,联立直线DE和抛物线解析式得x2﹣4x+3=x﹣2,解得x1=,x2=,同理可得x3=或x4=;综上所述,点P的坐标是:(,)或(,)或(,)或(,).10.(2023•澄城县一模)如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)、B,与y轴交于点C(0,3),直线l是抛物线的对称轴.(1)求抛物线的函数解析式;(2)在对称轴l上是否存在点M,使△MAC为等腰三角形,若存在,求出所有符合条件的点M的坐标;若不存在,请说明理由.【解答】解:(1)把点A(﹣1,0)、点C(0,3)分别代入y=﹣x2+bx+c,得.解得.故该抛物线解析式为:y=﹣x2+2x+3;(2)由(1)知,该抛物线解析式为:y=﹣x2+2x+3.则该抛物线的对称轴为直线x=﹣=1.故设M(1,m).∵A(﹣1,0)、点C(0,3),∴AC2=10,AM2=4+m2,CM2=1+(m﹣3)2.①若AC=AM时,10=4+m2,解得m=±.∴点M的坐标为(1,)或(1,﹣);②若AC=CM时,10=1+(m﹣3)2,解得m=0或m=6,∴点M的坐标为(1,0)或(1,6).当点M的坐标为(1,6)时,点A、C、M共线,∴点M的坐标为(1,0);③当AM=CM时,4+m2=1+(m﹣3)2,解得m=1,∴点M的坐标为(1,1).综上所述,符合条件的点M的坐标为(1,)或(1,﹣)或(1,0)或(1,1).11.(2023•碑林区校级一模)二次函数y=ax2+bx+2的图象交x轴于A(﹣1,0),B(4,0)两点,交y轴于点C,动点M从点A出发,以每秒2个单位长度的速度沿AB方向运动,过点M作MN⊥x轴交直线BC于点N,交抛物线于点D,连接AC,设运动的时间为t秒.(1)求二次函数y=ax2+bx+2的表达式;(2)在直线MN上存在一点P,当△PBC是以∠BPC为直角的等腰直角三角形时,求此时点D的坐标.【解答】解:(1)将点(﹣1,0),B(4,0)代入y=ax2+bx+2,∴a=﹣,b=,∴y=﹣x2+x+2;(2)∵BM=5﹣2t,∴M(2t﹣1,0),设P(2t﹣1,m),∵PC2=(2t﹣1)2+(m﹣2)2,PB2=(2t﹣5)2+m2,∵PB=PC,∴(2t﹣1)2+(m﹣2)2=(2t﹣5)2+m2,∴m=4t﹣5,∴P(2t﹣1,4t﹣5),∵PC⊥PB,∴×=﹣1,∴t=1或t=2,∴M(1,0)或M(3,0),∴D(1,3)或D(3,2).12.(2023•东洲区模拟)抛物线y=ax2+bx+3经过A(﹣1,0),B(3,0)两点,与y轴正半轴交于点C.(1)求此抛物线解析式;(2)如图①,连接BC,点P为抛物线第一象限上一点,设点P的横坐标为m,△PBC的面积为S,求S与m的函数关系式,并求S最大时P点坐标;(3)如图②,连接AC,在抛物线的对称轴上是否存在点M,使△MAC为等腰三角形?若存在,请直接写出符合条件的点M的坐标;若不存在,请说明理由.【解答】解:(1)∵抛物线y=ax2+bx+3经过A(﹣1,0),B(3,0)两点,∴,解得:,∴抛物线解析式为y=﹣x2+2x+3;(2)点P作PF⊥x轴于点F,交BC于点E,设BC直线解析式为:y=kx+b,∵B(3,0),C(0,3),∴,解得,∴y=﹣x+3,由题意可知P(m,﹣m2+2m+3),E(m,﹣m+3),S=S△PBE+S△PCE,S=PE•OB=(﹣m2+2m+3+m﹣3)×3,,∵,∴当时,S有最大值,此时P点坐标为;(3)存在,M 1(1,0),,,M4(1,1),①当AC=AM时,如图,设对称轴l与AB交于点E,则,∵AM2=AE2+EM2,∴,解得:,∴M点的坐标为或,②当AC=MC时,则OC为AM的垂直平分线.因此M与E重合,因此,M点的坐标为(1,0),③当AM=CM时,如图,设M点的坐标为(1,n),则AM2=22+n2=4+n2,CM2=12+(3﹣n)2,∴4+n2=12+(3﹣n)2,解得:n=1,∴M点的坐标为(1,1),综上可知,潢足条件的M点共四个,其坐标为M1(1,0),,,M 4(1,1).13.(2023•三亚一模)如图,抛物线y =ax 2+3x +c (a ≠0)与x 轴交于点A (﹣2,0)和点B ,与y 轴交于点C (0,8),顶点为D ,连接AC ,CD ,DB ,直线BC 与抛物线的对称轴l 交于点E .(1)求抛物线的解析式和直线BC 的解析式;(2)求四边形ABDC 的面积;(3)P 是第一象限内抛物线上的动点,连接PB ,PC ,当S △PBC =S △ABC 时,求点P 的坐标;(4)在抛物线的对称轴l 上是否存在点M ,使得△BEM 为等腰三角形?若存在,请直接写出点M 的坐标;若不存在,请说明理由.【解答】解:(1)∵抛物线y =ax 2+3x +c (a ≠0)过点A (﹣2,0)和C (0,8),∴,解得,∴抛物线的解析式为y =﹣x 2+3x +8.令y =0,得.解得x 1=﹣2,x 2=8.∴点B 的坐标为(8,0).设直线BC 的解析式为y =kx +b .把点B (8,0),C (0,8)分别代入y =kx +b ,得,解得,∴直线BC 的解析式为y =﹣x +8.(2)如图1,设抛物线的对称轴l 与x 轴交于点H .∵抛物线的解析式为,∴顶点D 的坐标为.∴S 四边形ABDC =S △AOC +S 梯形OCDH +S △BDH ===70.(3)∵.∴.如图2,过点P作PG⊥x轴,交x轴于点G,交BC于点F.设点.∵点F在直线BC上,∴F(t,﹣t+8).∴.∴.∴.解得t1=2,t2=6.∴点P的坐标为(2,12)或P(6,8).(4)存在.∵△BEM为等腰三角形,∴BM=EM或BE=BM或BE=EM,设M(3,m),∵B(8,0),E(3,5),∴BE==5,EM=|m﹣5|,BM==,当BM=EM时,=|m﹣5|,∴m2+25=(m﹣5)2,解得:m=0,∴M(3,0);当BE=BM时,5=,∴m2+25=50,解得:m=﹣5或m=5(舍去),∴M(3,﹣5);当BE=EM时,5=|m﹣5|,解得:m=5+5或m=5﹣5,∴M(3,5+5)或(3,5﹣5),综上所述,点M的坐标为(3,0)或(3,﹣5)或(3,5+5)或(3,5﹣5).14.(2023•南海区一模)如图,在平面直角坐标系中,抛物线y=ax2+bx﹣3(a >0)与x轴交于A(﹣1,0)、B(3,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)点P为直线BC下方抛物线上的一动点,PM⊥BC于点M,PN∥y轴交BC于点N.求线段PM的最大值和此时点P的坐标;(3)点E为x轴上一动点,点Q为抛物线上一动点,是否存在以CQ为斜边的等腰直角三角形CEQ?若存在,请直接写出点E的坐标;若不存在,请说明理由.【解答】解:(1)将A(﹣1,0),B(3,0)代入函数y=ax2+bx﹣3(a>0)中,得,解得,∴解析式为y=x2﹣2x﹣3,故抛物线解析式为y=x2﹣2x﹣3;(2)当x=0时,y=3,∴C(0,﹣3),∵B(3,0),∴∠OCB=∠OBC=45°,∵PN∥y轴,∴∠MNP=45°,∵PM⊥BC,∴PM=PN,则当PN最大时,PM也最大,设BC的解析式为y=mx+n,∴,解得,∴BC解析式为y=x﹣3,设P(x,x2﹣2x﹣3),N(x,x﹣3),∴PN=x﹣3﹣(x2﹣2x﹣3)=﹣(x﹣)2+,当x=时,PN最大,则PM=PN=×=,∴P(,),故PM最大值为,P点坐标为(,﹣);(3)存在,点E的坐标为(﹣5,0),(,0),(0,0),(,0).∵CEQ是以CQ为斜边的等腰直角三角形,∴设Q(x,x2﹣2x﹣3),①如图,过点E作x轴的垂线l,再分别过点C和点Q作垂线l的垂线,分别交于点M和点N,∵∠CEQ=90°,∴∠QEM+∠CEN=90°,∵∠QEM+∠MQE=90°,∴∠EQM=∠CEN,∵∠CNE=∠QME=90°,EC=EQ,∴△EMQ≌△CNE(AAS),∴CN=EM=x2﹣2x﹣3,MQ=EN=3,∴|x Q|+MQ=CN,﹣x+3=x2﹣2x﹣3,解得x=﹣2,x=3(舍去),∴OE=CM=2+3=5,E(﹣5,0),②如图,过点E作x轴的垂线l,再分别过点C和点Q作垂线l的垂线,分别交于点M和点N,同理:△EMC≌△QNE(AAS),CM=EN=x2﹣2x﹣3,NQ=EM=3,∴﹣x+x2﹣2x﹣3=3,解得x=,x=(舍去),∴OE=CM=,E(,0),③如图,点E和点O重合,点Q和点B重合,此时E(0,0),④如图,过点E作x轴的垂线l,再分别过点C和点Q作垂线l的垂线,分别交于点M和点N,同理:△EMC≌△QNE(AAS),CM=EN=x2﹣2x﹣3,NQ=EM=3,∴x+3=x2﹣2x﹣3,解得x=,x=(舍去),∴OE=CM=,E(,0),综上所述,点E的坐标为(﹣5,0),(,0),(0,0),(,0).41。
中考复习折叠问题(全国通用)(解析版)
专题08 折叠问题平面直角坐标系中的折叠问题,蕴含了丰富的数形结合思想和转化思想.解决这类问题的关键,是利用对称性将问题转化到直角三角形中,然后用勾股定理或相似三角形的知识求解.平面直角坐标系中的折叠问题是正在悄然兴起的一个中考热点,因为在平面直角坐标系中,几何图形的位置和大小都可以用"数"来表示,折叠问题又涉及全等变换和轴对称问题.而对于折叠问题,学生并不陌生,但在直角坐标系中,必然涉及直线的解析式和点的坐标,难度加大了,综合性增强了,数形结合思想更加显现,因而更加受到中考出题者的青睐。
本专题主要从折叠入手,经过学生的强化训练受到更多的启发。
一、单选题1.如图,在平面直角坐标系中,OABC是正方形,点A的坐标是(4,0),点P为边AB 上一点,∠CPB=60°,沿CP折叠正方形,折叠后,点B落在平面内点B’处,则B’点的坐标为().A.(2,)B.(,)C.(2,)D.(,)【答案】C【解析】试题分析:过点B′作B′D⊥OC,由折叠可得CB′=OC=OA=4,⊥⊥CPB=60°,⊥⊥B′CD=30°,B′D=2根据勾股定理得DC=2⊥OD=4-2,即B′点的坐标为(2,4-2)故选C.考点:1.正方形的性质;2.图形折叠的性质;3.点的坐标.2.如图,在平面直角坐标系中,四边形OABC是正方形,点A的坐标是(4,0),点P为边AB上一点,∠CPB=60°,沿CP折叠正方形,折叠后,点B落在平面内点处,则点的坐标为()A.(2,2)B.(,3)C.(2,)D.(,)【答案】C【解析】过B′作BD⊥y轴于D,由折叠的性质可得∠B′CP=∠BCP=30°,CB′=BC=4,根据正方形的性质可求出∠OCB′=30°,根据含30°角的直角三角形的性质可得BD′的长,利用勾股定理可求出CD的长,即可求出OD的长,即可得点B′的坐标.【详解】过B′作B′D⊥y轴于D,∵四边形OABC是正方形,∠CPB=60°,∴∠BCP=30°,∵沿CP折叠正方形,折叠后,点B落在平面内点处,∴∠B′CP=∠BCP=30°,B′C=BC =4,∴∠OCB′=30°,∵B′D⊥y轴,∴B′D=B′C=2,∴CD==,∴OD=OC-CD=4-,∴点B′的坐标为(2,4-).故选C.【点拨】本题考查了折叠的性质、正方形的性质及含30°角的直角三角形的性质,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;30°角所对的直角边,等于斜边的一半;熟练掌握折叠的性质是解题关键.3.在平面直角坐标系中,将点P(-2,0)沿直线折叠得到点Q,则点Q的坐标为( ) A.(2,0)B.(0,2)C.(-2,-2)D.(0,-2)【答案】D【解析】设点P(3,2)关于直线y=x的对称点Q(m,n),由P Q的中点在直线y=x上且直线P Q与直线y=x垂直得到关于m、n的方程组,解之可得答案.详解:设点P(-2,0)关于直线y=x的对称点Q(m,n),∴PQ的中点坐标为(, ),则中点(,)在直线y=x上,∴=①,由直线PQ与直线y=x垂直,得②,联立①②,得:,则点P(-2,0)关于直线y=x的对称点P′坐标为(0,-2),故选:D.点拨:本题考查了坐标与图形变化-平移.4.如图,把长方形纸片放入平面直角坐标系中,使,分别落在轴、轴上,连接,将纸片沿折叠,使点落在点的位置,与轴交于点,若,则的长为()A.B.C.D.【答案】B【解析】由四边形OABC是矩形与折叠的性质,易证得△AEC是等腰三角形,然后在Rt△AEO中,利用勾股定理求得AE,OE的长.【详解】∵四边形OABC是矩形,∴OC∥AB,∴∠ECA=∠CAB,根据题意得:∠CAB=∠CAD,∠CDA=∠B=90°,∴∠ECA=∠EAC,∴EC=EA,∵B(1,2),∴AD=AB=2,设OE=x,则AE=EC=OC-OE=2-x,在Rt△AOE中,AE2=OE2+OA2,即(2-x)2=x2+1,解得:x= ,∴OE= ,故选:B.【点拨】此题考查了折叠的性质,矩形的性质,解题的关键是方程思想与数形结合思想的应用.二、填空题5.如图,在平面直角坐标系中,将矩形AOCD沿直线AE折叠(点E在边DC上),折叠后顶点D恰好落在边OC上的点F处.若点D的坐标为(10,8),则点E的坐标为.【答案】(10,3)【解析】根据折叠的性质得到AF=AD,所以在直角⊥AOF中,利用勾股定理求得OF=6,然后设EC=x,则EF=DE=8-x,CF=10-6=4,根据勾股定理列方程求出EC可得点E的坐标.【详解】∵四边形AOCD为矩形,D的坐标为(10,8), ∴AD=BC=10,DC=AB=8,∵矩形沿AE折叠,使D落在BC上的点F处,∴AD=AF=10,DE=EF,在Rt⊥AOF中,OF==6,∴FC=10−6=4,设EC=x,则DE=EF=8−x,在Rt⊥CEF中,EF2=EC2+FC2,即(8−x)2=x2+42,解得x=3,即EC的长为3. ∴点E的坐标为(10,3).6.如图,在平面直角坐标系中,将矩形AOCD沿直线AE折叠(点E在边DC上),折叠后顶点D恰好落在边OC上的点F处,已知AD=3,当点F为线段OC的三等分点时,点E的坐标为_____.【答案】(3,)或(3,).【解析】本题首先设点E的坐标为(3,m),然后根据△AOF和△EFC相似求出m的值,本题中还需要分OF=OC,OF=OC两种情况来进行讨论,分别求出m的值.7.如图,在平面直角坐标系中,长方形各顶点的坐标分别为,,.将长方形沿折叠,使点落在轴上处,则点的坐标为__________.【答案】【解析】在中,根据勾股定理得出OB',进而得出B'A,再利用翻折的性质和勾股定理解答即可.【详解】∵长方形各顶点的坐标分别为,,,∴,,∴将长方形沿折叠,使点落在轴上处,∴,在中,,∴,设为,则,在中,,即,解得:,所以点的坐标为.故答案为:.【点拨】本题主要考查了图形翻折的性质,结合勾股定理解答问题.8.如图,在平面直角坐标系中,矩形ABCO的边CO、OA分别在x轴、y轴上,点E在边BC上,将该矩形沿AE折叠,点B恰好落在边OC上的F处.若OA=8,CF=4,则点E 的坐标是_____.【答案】(-10,3)【解析】试题分析:根据题意可知△CEF∽△OFA,可根据相似三角形的性质对应边成比例,可求得OF=2CE,设CE=x,则BE=8-x,然后根据折叠的性质,可得EF=8-x,根据勾股定理可得,解得x=3,则OF=6,所以OC=10,由此可得点E的坐标为(-10,3).故答案为:(-10,3)9.如图,在平面直角坐标系中,矩形的边、分别在轴、轴上,点在边上,将该矩形沿折叠,点恰好落在边上的处.若,,则点的坐标是__________.【答案】【解析】由勾股定理可以得到CE、OF的长度,根据点E在第二象限,从而可以得到点E 的坐标.【详解】设CE=a,则BE=8-a,由题意可得,EF=BE=8-a,∵∠ECF=90°,CF=4,∴a2+42=(8-a)2,解得,a=3,设OF=b,则OC=b+4,由题意可得,AF=AB=OC= b+4,∵∠AOF=90°,OA=8,∴b2+82=(b+4)2,解得,b=6,∴CO=CF+OF=10,∴点E的坐标为(-10,3),故答案为(-10,3).【点拨】本题考查勾股定理的应用,矩形的性质、翻折变化、坐标与图形变化-对称,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.10.如图,把矩形纸片OABC放入平面直角坐标系中,使OA、OC分别落在x、y轴上,连接AC,将纸片OABC沿AC折叠,使点B落在点D的位置.若点B的坐标为(2,4),则点D的横坐标是___________.【答案】【解析】首先过点D作DF⊥OA于F,过D作DG⊥y轴于G.由四边形OABC是矩形与折叠的性质,易证得△AEC是等腰三角形,然后在Rt⊥AEO中,利用勾股定理求得AE,OE 的长,从而得到DE、EC的长.在Rt⊥EDC中,利用三角形面积公式求得DG的长,即可得点D的横坐标.【详解】过点D作DF⊥OA于F,过D作DG⊥y轴于G.∵四边形OABC是矩形,⊥OC⊥AB,⊥⊥ECA=⊥CAB,根据题意得:⊥CAB=⊥CAD,⊥CDA =⊥B=90°,⊥⊥ECA=⊥EAC,⊥EC=EA.⊥B(2,4),⊥AD=AB=4,DC=CB=2.设OE=x,则AE=EC=OC﹣OE=4﹣x.在Rt⊥AOE 中,AE2=OE2+OA2,即(4﹣x)2=x2+4,解得:x,⊥OE,EC=AE,⊥DE=DA-AE=4-=.在Rt⊥EDC中,∵DE•DC=DG•EC,⊥DG===,∴点D的横坐标为:.【点拨】本题考查了折叠的性质,矩形的性质,等腰三角形的判定与性质等知识.此题综合性较强,解题的关键是方程思想与数形结合思想的应用.11.如图平面直角坐标系中,O(0,0),A(4,4),B(8,0).将⊥OAB沿直线CD 折叠,使点A恰好落在线段OB上的点E处,若OE=,则CE:DE的值是.【答案】.【解析】如图,过A作AF⊥OB于F,∵A(4,4),B(8,0),∴AF=4,OF=4,OB=8,∴BF=8﹣4=4,∴OF=BF,∴AO=AB,∵tan∠AOB==,∴∠AOB=60°,∴△AOB是等边三角形,∴∠AOB=∠ABO=60°,∵将△OAB沿直线线CD折叠,使点A恰好落在线段OB上的点E处,∴∠CED=∠OAB=60°,∴∠OCE=∠DEB,∴△CEO∽△DBE,∴,设CE=a,则CA=a,CO=8﹣a,ED=b,则AD=b,DB=8﹣b,∴,∴32b=88a﹣11ab ①,,∴56a=88b﹣11ab ②,②﹣①得:56a﹣32b=88b﹣88a,∴,即CE:DE=.故答案为:.12.把一张两边长分别为、的矩形纸片放入平面直角坐标系中,使、分别落在轴、轴正半轴上,将纸片沿对角线折叠,使点落在的位置上,则点的坐标为_______.【答案】或【解析】分两种情况讨论:当时,如图1,设交OC于点M,作于,由折叠的性质、平行线的性质和等腰三角形的判定可得MB=MO,设,则在中,根据勾股定理即可构建方程求出x,然后根据三角形的面积和勾股定理即可求出和OP的长,从而可得点的坐标;第二种情况:当时,如图2,同情况1的方法解答即可.【详解】分两种情况讨论:当时,如图1,设交OC于点M,作于,由题意得,,,,∵OC⊥AB,⊥,∴,∴MB=MO,设,则,则在中,根据勾股定理得,即,解得,∴,,根据三角形的面积可得,即,∴,所以的坐标为;第二种情况:当时,如图2,设交BC于点M,作于,由题意得,,,,∵BC⊥AO,⊥,∴,∴MB=MO,设,则,则在中,根据勾股定理得,即,解得,∴,,根据三角形的面积可得,即,∴,∴,所以的坐标为;故答案为:或.【点拨】本题考查了矩形的性质、折叠的性质、平行线的性质、等腰三角形的判定、勾股定理以及三角形的面积等知识,属于常考题型,熟练掌握上述知识、灵活应用方程思想是解题的关键.13.如图,将矩形纸片ABCD放入以BC所在直线为x轴,BC边上一点O为坐标原点的直角坐标系中,连结OD,将纸片ABCD沿OD折叠,使得点C落在AB边上点处,若,,则点C的坐标为______.【答案】【解析】依据折叠的性质以及勾股定理,即可得出的长,进而得到,再根据勾股定理可得,中,列方程求解即可得到,进而得出点C的坐标.【详解】矩形纸片ABCD中,,,,中,设,则中,,解得,,又点C在x轴上,点C的坐标为,故答案为.【点拨】本题主要考查了矩形的性质,折叠的性质以及勾股定理的运用;解决问题的关键是运用勾股定理计算有关线段的长解题时注意方程思想的运用.14.如图,有一矩形纸片OABC放在直角坐标系中,O为原点,C在x轴上,OA=6,OC =10,如图,在OA上取一点E,将△EOC沿EC折叠,使O点落在AB边上的D点处,则点E的坐标为_______。
中考数学折叠问题专项突破4--折叠中直角三角形存在性问题
中考数学折叠问题专项突破4--折叠中直角三角形存在性问题模块四 图形折叠中的直角三角形存在性问题【典例1】如图例3-1,在Rt △ABC 中,∠ACB =90°,∠B =30°,BC =3,点D 是BC 边上一动点(不与点B 、C 重合),过点D 作DE ⊥BC 交AB 边于点E ,将∠B 沿直线DE 翻折,点B 落在射线BC 上的点F 处,当△AEF 为直角三角形时,BD 的长为图例3-1图例3-2图例3-3【解析】从题目所给的“当△AEF 为直角三角形时”条件出发,以直角顶点所在位置进行分类讨论. 通过观察及分析可知∠BED =∠DEF =60°,所以∠AEF =180-120°=60°. 即点E 不可能为直角顶点. 分两种情况考虑:①当∠EAF =90°时,如图例3-2所示.∵∠B =30°,BC =3,∴30AC tan BC =︒⨯=⨯2AB AC =,∵∠EAF =90°∴∠AFC =60°,∠CAF =30°在Rt △ACF 中,有:cos AF AC CAF =÷∠÷,24BF AF == 由折叠性质可得:∠B =∠DFE =30°,122BD DF BF === ②当∠AFE =90°时,如图例3-3所示.由折叠性质得:∠B =∠DFE =30°,122BD DF BF ===∴∠AFC =60°,∠F AC =30°∴tan 1CF FAC AC =∠⨯==,所以,BF =2,112BD DF BF ===,综上所述,BD 的长为2或1. 【小结】本题难度适中,要求学生具备分类讨论思想及数形结合解决问题的能力,另外还需要熟练运用勾股定理及相似三角形知识. 通过此题,可总结出:①遇到直角三角形存在性问题时,分类讨论的出发点在于直角顶点的位置;②解决直角三角形存在性问题的方法是数形结合,先作出符合题意的图形,再用勾股定理或相似三角形、三角函数性质解题.【典例2】如图例4-1,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处.当△CEB′为直角三角形时,BE的长为.图例4-1 图例4-2 图例4-3【解析】此题以“当△CEB′为直角三角形时”为突破口,分析可能是直角顶点的点,得出存在两种情况,即点B′及点E分别为直角顶点.分两种情况考虑:①当∠CEB′=90°时,如图例4-2所示.由折叠性质得:AB=AB′,四边形ABE B′是矩形.所以四边形ABE B′是正方形.此时,BE=AB=3.②当∠CB′E=90°时,如图例4-3所示.由折叠性质知,∠AB′C=90°,所以∠AB′C+∠CB′E=180°.∴点A、B′、C共线在Rt△ABC中,由勾股定理得AC=5由折叠得:AB= AB′=3所以B′C=2设BE=x,则B′E=x,EC=4-x在Rt△ABC中,由勾股定理得:EC2=B′E2+B′C2即:(4-x)2=x2+22 解得:x=1.5.综上所述,BE的值为3或1.5.【小结】本题解题关键在准确对问题进行分类讨论且作出相应图形,要求学生掌握三点共线的理由,折叠的性质及勾股定理的应用.【典例3】如图例5-1,在Rt ABC ∆中,90A ∠=︒,AB AC =,1BC =+,点M ,N 分别是边BC ,AB 上的动点,沿MN 所在的直线折叠B ∠,使点B 的对应点'B 始终落在边AC 上.若'MB C ∆为直角三角形,则BM 的长为 .图例5-1图例5-2图例5-3【解析】通过观察及分析可知,C 点不可能为直角顶点,分两种情况讨论. ①当∠CM B ′=90°时,如图例5-2所示.由折叠知:∠BMN =∠B ′MB =45°,又因为∠B =45°,所以∠BNM =90°,∠MNB ′=90° 即∠BNM +∠MN B ′=180°,所以B 、N 、B ′三点共线,此时B ′与点A 重合.所以,12BM BC == ①当∠CB ′M =90°时,如图例5-3所示.由折叠知∠B =∠B ′=45°,因为∠C =45°,可得∠B ′MC =45°,所以△B ′MC 是等腰直角三角形设BM = B ′M =x ,B ′C =x ,则MC =因为BC ,所以x x +1 解得:x =1,即BM =1.综上所述,BM 或1. 【小结】根据题意判断C 点不可能为直角顶点,分两种情况讨论,利用等腰直角三角形三边关系求解.【典例4】如图例6-1,在∠MAN =90°,点C 在边AM 上,AC =4,点B 为边AN 上一动点,连接BC ,△A’BC 与△ABC 关于BC 所在直线对称. D 、E 分别为AC 、BC 的中点,连接DE 并延长交A’B 所在直线于点F ,连接A’E . 当△A’EF 为直角三角形时,AB 的长为.图例6-1图例6-2图例6-3【解析】分两种情况讨论.①当∠A’FE=90°时,如图例6-2所示.∵D、E分别为AC、BC的中点,∴DE是三角形ABC的中位线,即DE∥BA∴∠A’BA=90°,∴四边形AB A’C为矩形由折叠得AC=A’C,∴四边形AB A’C为正方形,即AB=AC=4.②当∠A’EF=90°时,如图例6-3所示.∵∠A’EF=∠CDE=90°,∴A’E∥CD,∴∠DCE=∠CEA’由折叠知:∠DCE=∠A’CE,∴∠CEA’=∠A’CE,∴A’C=A’E=4又∵E是BC中点,即A’E是Rt△A’BC的中线,∴BC=2A’E=8在Rt△A’BC中,由勾股定理得,A’B=由折叠性质得:AB= A’B=.综上所述,AB的长为4或.【小结】利用中位线性质(三角形的中位线平行于第三边)及正方形判定,用勾股定理求解.1、矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处,当△CEB′为直角三角形时,BE的长为【分析】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如图1所示.连结AC,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=3,可计算出CB′=2,设BE=x,则EB′=x,CE=4-x,然后在R t△CEB′中运用勾股定理可计算出x.②当点B′落在AD边上时,如图2.此时ABEB′为正方形.【解析】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如图1所示.连结AC,在R t△ABC中,AB=3,BC=4,∴AC,∵∠B沿AE折叠,使点B落在点B′处,∴∠AB′E=∠B=90°,当△CEB′为直角三角形时,只能得到∠EB′C=90°,∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,∴EB=EB′,AB=AB′=3,∴CB′=5-3=2,设BE=x,则EB′=x,CE=4-x,在R t△CEB′中,∵EB′2+CB′2=CE2,∴x2+22=(4-x)2,解得x=32,∴BE=32;②当点B′落在AD边上时,如图2所示.此时ABEB′为正方形,∴BE=AB=3.综上BE长为32或3【小结】本题考查了折叠问题:折叠前后两图形全等,即对应线段相等;对应角相等.也考查了矩形的性质以及勾股定理.注意本题有两种情况,需要分类讨论,避免漏解.2、如图,矩形纸片ABCD,AB=4,BC=3,点P在BC边上,将△CDP沿DP折叠,点C落在点E处,PE、DE分别交AB于点O、F,且OP=OF,则ADDF的值为A .1113B .1315C .1517D .1719【分析】根据折叠的性质可得出DC =DE 、CP =EP ,由∠EOF =∠BOP 、∠B =∠E 、OP =OF 可得出△OEF ≌△OBP (AA S ),根据全等三角形的性质可得出OE =OB 、EF =BP ,设EF =x ,则BP =x 、DF =4﹣x 、BF =PC =3﹣x ,进而可得出AF =1+x .在R t △DAF 中,利用勾股定理可求出x 的值,即可得出答案. 【解析】根据折叠,可知:△DCP ≌△DEP ,∴DC =DE =4,CP =EP .在△OEF 和△OBP 中,∵90EOF BOP B E OP OF ∠∠∠∠=⎧⎪==︒⎨⎪=⎩,∴△OEF ≌△OBP (AA S ),∴OE =OB ,EF =BP .设EF =x ,则BP =x ,DF =DE ﹣EF =4﹣x .又∵BF =OB +OF =OE +OP =PE =PC ,PC =BC ﹣BP =3﹣x ,∴AF =AB ﹣BF =1+x .在R t △DAF 中,AF 2+AD 2=DF 2,即(1+x )2+32=(4﹣x )2,解得:x =0.6,∴DF =4﹣x =3.4,∴1517AD DF =.故选C . 【小结】本题考查了全等三角形的判定与性质、勾股定理以及解直角三角形,利用勾股定理结合AF =1+x ,求出AF 的长度是解题的关键.3、如图,已知正方形ABCD的边长为3,E是BC上一点,BE Q是CD上一动点,将△CEQ沿直线EQ折叠后,点C落在点P处,连接P A.点Q从点C出发,沿线段CD向点D运动,当P A的长度最小时,CQ的长为()A.3B.3C.32D.3【解析】如图所示:在R t△ABE中,AE=.∵BC=3,BE=,∴EC=3-.由翻折的性质可知:PE=CE=3-.∵AP+PE≥AE,∴AP≥AE-PE.∴当点A、P、E一条直线上时,AP有最小值.∴AP=AE-PE=2-(3-)=3-3.故选A.4、如图,矩形ABCD 中,3AB =,4BC =,点E 是BC 边上一点,连接AE ,把矩形沿AE 折叠,使点B 落在点B '处.当CEB '∆为直角三角形时,BE 的长为____________.【分析】当△CEB ′为直角三角形时,有两种情况: ①当点B ′落在矩形内部时,如答图1所示.连结AC ,先利用勾股定理计算出AC =10,根据折叠的性质得∠AB ′E =∠B =90°,而当△CEB ′为直角三角形时,只能得到∠EB ′C =90°,所以点A 、B ′、C 共线,即∠B 沿AE 折叠,使点B 落在对角线AC 上的点B ′处,则EB =EB ′,AB =AB ′=6,可计算出CB ′=4,设BE =x ,则EB ′=x ,CE =8-x ,然后在R t △CEB ′中运用勾股定理可计算出x .②当点B ′落在AD 边上时,如答图2所示.此时四边形ABEB ′为正方形. 【解析】由题意知,需分两种情况讨论:①当90CB E ︒'∠=时,如图1,由折叠得,90AB E B ︒'∠=∠=,AB AB '=, ∴180AB C ︒'∠=,∴,,A B C '三点共线.在矩形ABCD 中,3AB =,4BC =, ∴5AC =.∵AB AB 3'==,∴2B C AC AB ''=-=. 设BE x =,则4CE BC BE x =-=-,B E x '=,在Rt B CE '∆中,222B E B C CE ''+=,即2222(4)x x +=-,解得32x =. ②当90B EC ︒'∠=时,如图2,由折叠可知ABE AB E '∆∆≌, ∴BE B E '=,90B AB E ︒'∠=∠=,∴四边形ABEB '是正方形,∴3BE AB ==.综上,当CEB '∆为直角三角形时,BE 的长为32或3. 【小结】考查了折叠问题:折叠前后两图形全等,即对应线段相等;对应角相等.也考查了矩形的性质以及勾股定理.注意本题有两种情况,需要分类讨论,避免漏解.5、如图,在矩形ABCD中,AB=6,AD=,E是AB边上一点,AE=2,F是直线CD上一动点,将△AEF沿直线EF折叠,点A的对应点为点A′,当点E,A′,C三点在一条直线上时,DF的长为_____.【分析】利用勾股定理求出CE,再证明CF=CE即可解决问题.(注意有两种情形)【解析】如图,由翻折可知,∠FEA=∠FEA′,∵CD∥AB,∴∠CFE=∠AEF,∴∠CFE=∠CEF,∴CE=CF,在R t△BCE中,EC==∴CF=CE=,∵AB=CD=6,∴DF=CD﹣CF=6﹣当点F在DC的延长线上时,易知EF⊥EF′,CF=CF′=,∴DF=CD+CF′=【小结】本题考查翻折变换、矩形的性质、勾股定理等知识,本题的突破点是证明△CFE的等腰三角形,属于中考常考题型.6、如图,在菱形ABCD 中,∠DAB =45°,AB =4,点P 为线段AB 上一动点,过点P 作PE ⊥AB 交直线AD 于点E ,将∠A 沿PE 折叠,点A 落在F 处,连接DF ,CF ,当△CDF 为直角三角形时,线段AP 的长为__________.【分析】分两种情形讨论:①如图1,当DF ⊥AB 时,△CDF 是直角三角形;②如图2,当CF ⊥AB 时,△DCF 是直角三角形,分别求出即可.【解析】分两种情况讨论:①如图1,当DF ⊥AB 时,△CDF 是直角三角形.∵在菱形ABCD 中,AB =4,∴CD =AD =AB =4.在R t △ADF 中,∵AD =4,∠DAB =45,DF =AF,∴AP 12=AF = ②如图2,当CF ⊥AB 时,△DCF 是直角三角形.在R t △CBF 中,∵∠CFB =90°,∠CBF =∠A =45°,BC =4,∴BF =CF,∴AFAP 12=AF=2AP2【小结】本题考查了菱形的性质,等腰直角三角形的性质,折叠的性质,熟练掌握折叠的性质是解题的关键,正确画出图象,注意分类讨论的思想,属于中考常考题型.。
存在性问题——折叠作图 图形的存在性1
存在性问题——折叠作图+图形的存在性1
1.已知:Rt△ABC中,∠A=30°,BC=6,M是AB中点,D是线段AC上任意
一点(D不与A,C重合),沿直线MD把∠A翻折,使点A落在A′处,当△A′BC为等腰三角形时,AD的长是__________.
2.如图,在矩形ABCD中,AB=6,BC=4,点E是边BC上一动点,把△DCE
沿DE折叠得△DFE,射线DF交直线CB于点P,当△AFD为等腰三角形时,DP的长为____________.
3.如图,在△ABC中,∠ACB=90°,AC=2,BC=4,E为边AB的中点,点D
是BC边上的动点,把△ACD沿AD翻折,点C落在C′处,若△AC′E是直角三角形,则CD的长是______________.
4.如图,正方形ABCD的边长为8,E为BC上一定点,BE=6,F为AB上一动
点,把△BEF沿EF折叠,点B落在点B′处,当△AFB′恰好为直角三角形时,B′D的长为___________.
5.如图,在Rt△ABC中,∠ACB=90°,AB=5,AC=3,点D是BC上一动点,
连接AD,将△ACD沿AD折叠,点C落在点E处,连接DE交AB于点F,当△DEB是直角三角形时,DF的长为____________.
6.如图,在Rt△ABC中,∠A=90°,AC=2,∠B=30°,点D是AB的中点,点
E是边BC上一动点,沿DE所在直线把△BDE翻折到△B′DE的位置,B′D 交BC于点F.若△CB′F为直角三角形,则CB′的长为__________.。
解析版初中数学中的折叠问题讲解
初中数学中的折叠问题监利县第一初级中学刘光杰折叠问题(对称问题)是近几年来中考出现频率较高的一类题型,学生往往由于对折叠的实质理解不够透彻,导致对这类中档问题失分严重。
本文试图通过对在初中数学中经常涉及到的几种折叠的典型问题的剖析,从中抽象出基本图形的基本规律,找到解决这类问题的常规方法。
其实对于折叠问题,我们要明白:1、折叠问题(翻折变换)实质上就是轴对称变换.2、折叠是一种对称变换,它属于轴对称.对称轴是对应点的连线的垂直平分线,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.3、对于折叠较为复杂的问题可以实际操作图形的折叠,在画图时,画出折叠前后的图形,这样便于找到图形之间的数量关系和位置关系.4、在矩形(纸片)折叠问题中,重合部分一般会是一个以折痕为底边的等腰三角形5、利用折叠所得到的直角和相等的边或角,设要求的线段长为x,然后根据轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求解.一、矩形中的折叠1.将一张长方形纸片按如图的方式折叠,其中BC,BD为折痕,折叠后BG和BH在同一条直线上,∠CBD= 度.BC、BD是折痕,所以有∠ABC = ∠GBC,∠EBD = ∠HBD则∠CBD = 90°折叠前后的对应角相等2.如图所示,一张矩形纸片沿BC折叠,顶点A落在点A′处,再过点A′折叠使折痕DE∥BC,若AB=4,AC=3,则△ADE的面积是.沿BC折叠,顶点落在点A’处,根据对称的性质得到BC垂直平分AA’,即AF = 12AA’,又DE∥BC,得到△ABC ∽△ADE,再根据相似三角形的面积比等于相似比的平方即可求出三角形ADE的面积= 24对称轴垂直平分对应点的连线3.如图,矩形纸片ABCD 中,AB=4,AD=3,折叠纸片使AD 边与对角线BD 重合,得折痕DG ,求AG 的长.由勾股定理可得BD = 5,由对称的性质得△ADG ≌ △A ’DG ,由A ’D = AD = 3,AG ’ = AG ,则A ’B = 5 – 3 = 2,在Rt △A ’BG 中根据勾股定理,列方程可以求出AG 的值根据对称的性质得到相等的对应边和对应角,再在直角三角形中根据勾股定理列方程求解即可4.把矩形纸片ABCD 沿BE 折叠,使得BA 边与BC 重合,然后再沿着BF 折叠,使得折痕BE 也与BC 边重合,展开后如图所示,则∠DFB 等于( )根据对称的性质得到∠ABE=∠CBE ,∠EBF=∠CBF ,据此即可求出∠FBC 的度数,又知道∠C=90°,根据三角形外角的定义即可求出∠DFB = 112.5°注意折叠前后角的对应关系5.如图,沿矩形ABCD 的对角线BD 折叠,点C 落在点E 的位置,已知BC=8cm ,AB=6cm ,求折叠后重合部分的面积. ∵点C 与点E 关于直线BD 对称,∴∠1 = ∠2 ∵AD ∥BC ,∴∠1 = ∠3∴∠2 = ∠3 ∴FB = FD设FD = x ,则FB = x ,FA = 8 – x在Rt △BAF 中,BA 2 + AF 2 = BF 2∴62 + (8 - x)2 = x 2 解得x = 254所以,阴影部分的面积S △FBD = 12 FD ×AB = 12 ×254 ×6 = 754cm2重合部分是以折痕为底边的等腰三角形6.将一张矩形纸条ABCD 按如图所示折叠,若折叠角∠FEC=64°,则∠1= 度;△EFG 的形状 三角形.∵四边形CDFE 与四边形C ’D ’FE 关于直线EF 对称∴∠2 = ∠3 = 64°321F E D C B A1G D‘FC‘DAGA'CA B D∴∠4 = 180°- 2 ×64°= 52°∵AD∥BC∴∠1 = ∠4 = 52°∠2 = ∠5又∵∠2 = ∠3∴∠3 = ∠5∴GE = GF∴△EFG是等腰三角形对折前后图形的位置变化,但形状、大小不变,注意一般情况下要画出对折前后的图形,便于寻找对折前后图形之间的关系,注意以折痕为底边的等腰△GEF7.如图,将矩形纸片ABCD按如下的顺序进行折叠:对折,展平,得折痕EF(如图①);延CG折叠,使点B落在EF上的点B′处,(如图②);展平,得折痕GC(如图③);沿GH折叠,使点C落在DH上的点C′处,(如图④);沿GC′折叠(如图⑤);展平,得折痕GC′,GH(如图⑥).(1)求图②中∠BCB′的大小;(2)图⑥中的△GCC′是正三角形吗?请说明理由.(1)由对称的性质可知:B’C=BC,然后在Rt△B′FC中,求得cos∠B’CF= 12,利用特殊角的三角函数值的知识即可求得∠BCB’= 60°;(2)首先根据题意得:GC平分∠BCB’,即可求得∠GCC’= 60°,然后由对称的性质知:GH是线段CC’的对称轴,可得GC’= GC,即可得△GCC’是正三角形.理清在每一个折叠过程中的变与不变8.如图,正方形纸片ABCD的边长为8,将其沿EF折叠,则图中①②③④四个三角形的周长之和为四边形BCFE与四边形B′C′FE关于直线EF对称,则①②③④这四个三角形的周长之和等于正方形ABCD的周长折叠前后对应边相等9.如图,将边长为4的正方形ABCD沿着折痕EF折叠,使点B落在边AD的中点G处,求四边形BCFE的面积设AE = x,则BE = GE = 4 - x,在Rt△AEG中,根据勾股定理有:AE2 + AG2 = GE2即:x2 + 4 = (4 - x)2解得x = 1.5,BE = EG = 4 – 1.5 = 2.5∵∠1 + ∠2 = 90°,∠2 + ∠3 = 90°∴∠1 = ∠3又∵∠A = ∠D = 90°∴△AEG ∽△DGP∴AEDG=EGGP,则1.52=2.5GP,解得GP =103PH = GH – GP = 4 - 103=23∵∠3 = ∠4,tan∠3 = tan∠1 = 3 4∴tan∠4 = 34,FHPH=34,FH =34×PH =34×23=12∴CF = FH = 1 2∴S梯形BCFE = 12(12+52)×4 = 6注意折叠过程中的变与不变,图形的形状和大小不变,对应边与对应角相等10.如图,将一个边长为1的正方形纸片ABCD折叠,使点B落在边AD上不与A、D 重合.MN为折痕,折叠后B’C’与DN交于P.(1)连接BB’,那么BB’与MN的长度相等吗?为什么?(2)设BM=y,AB’=x,求y与x的函数关系式;(3)猜想当B点落在什么位置上时,折叠起来的梯形MNC’B’面积最小?并验证你的猜想.(1)BB’ = MN过点N作NH∥BC交AB于点H),证△ABB’≌△HNM(2)MB’ = MB = y,AM = 1 – y,AB’ = x在Rt△ABB’中BB’ = AB2 + AB'2= 1 + x2因为点B与点B’关于MN对称,所以BQ = B’Q,则BQ = 12 1 + x2由△BMQ∽△BB’A得BM×BA = BQ×BB’∴y = 12 1 + x2× 1 + x2=12(1 + x2)(3) 梯形MNC′B′的面积与梯形MNCB的面积相等PC'NB CA DMB'QPA DMB'由(1)可知,HM = AB’ = x,BH = BM – HM = y – x,则CN = y - x ∴梯形MNCB的面积为:12(y – x + y) ×1 = 12(2y - x)= 12(2×12(1 + x2) – x)= 12(x -12)2 +38当x = 12时,即B点落在AD的中点时,梯形MNC’B’的面积有最小值,且最小值是38二、纸片中的折叠11.如图,有一条直的宽纸带,按图折叠,则∠α的度数等于()∵∠α= ∠1,∠2 = ∠1∴∠α= ∠2∴2∠α+∠ABE=180°,即2∠α+30°=180°,解得∠α=75°.题考查的是平行线的性质,同位角相等,及对称的性质,折叠的角与其对应角相等,和平角为180度的性质,注意△EAB是以折痕AB为底的等腰三角形12.如图,将一宽为2cm的纸条,沿BC,使∠CAB=45°,则后重合部分的面积为作CD⊥AB,∵CE∥AB,∴∠1=∠2,根据翻折不变性,∠1=∠BCA,故∠2=∠BCA.∴AB=AC.又∵∠CAB=45°,∴在Rt△ADC中,AC = 2 2 ,AB = 2 2S△ABC=12AB×CD = 2 2a2130°BEFACD在折叠问题中,一般要注意折叠前后图形之间的联系,将图形补充完整,对于矩形(纸片)折叠,折叠后会形成“平行线+角平分线”的基本结构,即重叠部分是一个以折痕为底边的等腰三角形ABC13.将宽2cm 的长方形纸条成如图所示的形状,那么折痕PQ 的长是如图,作QH ⊥PA ,垂足为H ,则QH=2cm , 由平行线的性质,得∠DPA=∠PAQ=60° 由折叠的性质,得∠DPA =∠PAQ , ∴∠APQ=60°,又∵∠PAQ=∠APQ=60°, ∴△APQ 为等边三角形, 在Rt △PQH 中,sin ∠HPQ = HQPQ∴32 = 2PQ ,则PQ = 433注意掌握折叠前后图形的对应关系.在矩形(纸片)折叠问题中,会出现“平行线+角平分线”的基本结构图形,即有以折痕为底边的等腰三角形APQ14.如图a 是长方形纸带,∠DEF=20°,将纸带沿EF 折叠成图b ,再沿BF 折叠成图c ,则图c 中的∠CFE 的度数是( )图c 图b图aCDGFEAC GDFEAFDBCAEBB∵AD ∥BC ,∴∠DEF=∠EFB=20°,在图b 中,GE = GF ,∠GFC=180°-2∠EFG=140°, 在图c 中∠CFE=∠GFC-∠EFG=120°,本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.由题意知∠DEF=∠EFB=20°图b ∠GFC=140°,图c 中的∠CFE=∠GFC-∠EFG15.将一张长为70 cm 的长方形纸片ABCD ,沿对称轴EF 折叠成如图的形状,若折叠后,AB 与CD 间的距离为60cm ,则原纸片的宽AB 是( )设AB=xcm .右图中,AF = CE = 35,EF = x根据轴对称图形的性质,得AE=CF=35-x (cm ). 则有2(35-x )+x=60, x=10.16.一根30cm 、宽3cm 的长方形纸条,将其按照图示的过程折叠(阴影部分表示纸条的反面),为了美观,希望折叠完成后纸条两端超出点P 的长度相等,则最初折叠时,求MA 的长将折叠这条展开如图,根据折叠的性质可知,两个梯形的上底等于纸条宽,即3cm , 下底等于纸条宽的2倍,即6cm , 两个三角形都为等腰直角三角形, 斜边为纸条宽的2倍,即6cm ,故超出点P 的长度为(30-15)÷2=7.5, AM=7.5+6=13.5GEFD AE FD B C A B C 60cm三、三角形中的折叠17.如图,把Rt △ABC (∠C=90°),使A ,B 两点重合,得到折痕ED ,再沿BE 折叠,C 点恰好与D 点重合,则CE :AE=18.在△ABC 中,已知AB=2a ,∠A=30°,CD 是AB 边的中线,若将△ABC 沿CD 对折起来,折叠后两个小△ACD 与△BCD 重叠部分的面积恰好等于折叠前△ABC 的面积的14 .(1)当中线CD 等于a 时,重叠部分的面积等于 ;(2)有如下结论(不在“CD 等于a ”的限制条件下):①AC 边的长可以等于a ;②折叠前的△ABC 的面积可以等于32a 2;③折叠后,以A 、B 为端点的线段AB 与中线CD 平行且相等.其中, 结论正确(把你认为正确结论的代号都填上,若认为都不正确填“无”). (1)∵CD = 12 AB∴∠ACB = 90°∵AB = 2a ,BC = a ,∴AC = 3a ∴S △ABC = 12 ×AC ×BC = 32a 2∴重叠部分的面积为:14×32a 2 = 38a 2(2)若AC = a ,如右图∵AD = a ,∴∠2 = 180°- 30°2 = 75°∠BDC = 180°- 75°= 105° ∴∠B'DC = 105°∴∠3 = 105°- 75°= 30° ∴∠1 = ∠3 ∴AC ∥B'D∴四边形AB'DC 是平行四边形∴重叠部分△CDE 的面积等于△ABC的面积的14若折叠前△ABC 的面积等于32a 2 过点C 作CH ⊥AB 于点H ,则 12 ×AB ×CH = 32a 2 B'CDAB231EB'CDBACH =32a 又tan ∠1 =CH AH∴AH = 32a∴BH = 12a则tan ∠B =CHBH,得∠B = 60° ∴△CBD 是等边三角形 ∴∠2 = ∠4∴∠3 = ∠4,AD ∥CB 2又CB 2 = BC = BD = a ,∴CB 2 = AD ∴四边形ADCB 2是平行四边形则重叠部分△CDE 的面积是△ABC 面积的14(3)如右图,由对称的性质得,∠3 = ∠4,DA = DB 3 ∴∠1 = ∠2又∵∠3 + ∠4 = ∠1 +∠2 ∴∠4 = ∠1 ∴AB 3∥CD注意“角平分线+等腰三角形”的基本构图,折叠前后图形之间的对比,找出相等的对应角和对应边19.在△ABC 中,已知∠A=80°,∠C=30°,现把△CDE 沿DE 进行不同的折叠得△C ′DE ,对折叠后产生的夹角进行探究:(1)如图(1)把△CDE 沿DE 折叠在四边形ADEB 内,则求∠1+∠2的和; (2)如图(2)把△CDE 沿DE 折叠覆盖∠A ,则求∠1+∠2的和;(3)如图(3)把△CDE 沿DE 斜向上折叠,探求∠1、∠2、∠C 的关系.(1)根据折叠前后的图象全等可知,∠1=180°-2∠CDE ,∠2=180°-2∠CED ,再根据三角形内角和定理比可求出答案;(2)连接DG ,将∠ADG+∠AGD 作为一个整体,根据三角形内角和定理来求;3241EHB 2DABC3412B 3DA BC(3)将∠2看作180°-2∠CED ,∠1看作2∠CDE-180°,再根据三角形内角和定理来求. 解:(1)如图(1)∠1+∠2=180°- 2∠CDE +180°- 2∠CED =360°- 2(∠CDE+∠CED ) =360°-2(180°- ∠C ) =2∠C =60°;(2)如图(2) 连接DG ,∠1+∠2=180°- ∠C ′-(∠ADG +∠AGD ) =180°-30°-(180°-80°) =50°;(3)如图(3)∠2-∠1=180°- 2∠CED -(2∠CDE - 180°) =360°- 2(∠CDE + ∠CED ) =360°- 2(180°- ∠C ) =2∠C所以:∠2 - ∠1=2∠C .由于等腰三角形是轴对称图形,所以在折叠三角形时常常会出现等腰三角形20.观察与发现:将三角形纸片ABC (AB >AC )沿过点A 的直线折叠,使得AC 落在AB 边上,折痕为AD ,展开纸片(如图①);在第一次折叠的基础上第二次折叠该三角形纸片,使点A 和点D 重合,折痕为EF ,展平纸片后得到△AEF (如图②).小明认为△AEF 是等腰三角形,你同意吗?请说明理由. 实践与运用:(1)将矩形纸片ABCD 沿过点B 的直线折叠,使点A 落在BC 边上的点F 处,折痕为BE (如图③);再沿过点E 的直线折叠,使点D 落在BE 上的点D ’处,折痕为EG (如图④);再展平纸片(如图⑤).求图⑤中∠α的大小.21图(1)C'ACBD E12图(3)C'ABCDE21图(2)GC'A BCDE在第一次折叠中可得到∠EAD = ∠FAD在第二次折叠中可得到EF是AD的垂直平分线,则AD⊥EF∴∠AEF = ∠AFE∴△AEF是等腰三角形(1)由折叠可知∠AEB = ∠FEB,∠DEG = ∠BEG而∠BEG = 45°+ ∠α因为∠AEB + ∠BEG + ∠DEG = 180°所以 45°+ 2(45°+∠α)= 180°∠α = 22.5°由于角平分线所在的直线是角的对称轴,所以在三角形中的折叠通常都与角平分线有关。
中考数学专题复习学案:折叠类题目中的动点问题含答案
专题:折叠类题目中的动点问题折叠问题是中考的热门也是难点问题,平时与动点问题联合起来,这种问题的题设平时是将某个图形按必定的条件折叠,经过分析折叠前后图形的变换,借助轴对称性质、勾股定理、全等三角形性质、相似三角形性质、三角函数等知识进行解答。
此类问题立意新奇,充满着变化,要解决此类问题,除了能依据轴对称图形的性质作出要求的图形外,还要能综合利用相关数学模型及方法来解答。
种类一、求折叠中动点运动距离或线段长度的最值例 1.着手操作:在矩形纸片ABCD 中, AB=3,AD =5.如图例1-1所示,折叠纸片,使点 A 落在 BC 边上的 A’处,折痕为PQ ,当点在BC边上挪动时,折痕的端点、也随之挪动 . 若限制点、分别在、边上挪动,则点A’A ’P Q P Q AB AD在 BC 边上可挪动的最大距离为.图例 1-1【答案】 2.【分析】此题依据题目要求正确判断出点A'的最左端和最右端地点.当点Q与点D重合时,A '的地点处于最左端,当点P 与点 B 重合时,点 A'的地点处于最右端. 依据分析结果,作出图形,利用折叠性质分别求出两种状况下的BA'或 CA'的长度,两者之差即为所求.①当点 Q 与点 D 重合时, A '的地点处于最左端,如图例1-2 所示 .确立点 A'的地点方法:由于在折叠过程中, A 'Q= AQ ,因此以点 Q 为圆心,以 AQ 长为半径画弧,与BC 的交点即为点A '.再作出∠ A' QA 的角均分线,与AB 的交点即为点P.图例 1-2图例1-3由折叠性质可知,AD = A' D=5,在 Rt△A' CD 中,由勾股定理得,A'C A' D2CD252324②当点 P 与点 B 重合时,点A'的地点处于最右端,如图例1-3 所示 .确立点 A'的地点方法:由于在折叠过程中, A 'P= AP,因此以点P 为圆心,以AP 长为半径画弧,与BC 的交点即为点A '.再作出∠ A' PA 的角均分线,与AD 的交点即为点Q.由折叠性质可知,AB= A' B=3,因此四边形AB A' Q 为正方形.因此 A'C= BC-A'B=5-3=2.综上所述,点 A 挪动的最大距离为4-2=2.故答案为: 2.【点睛】此类问题难度较大,主要观察学生的分析能力,作图能力。
2020年中考数学热点冲刺6 图形折叠问题(含解析)
热点专题6图形折叠问题考向1矩形的折叠1. (2019 江苏省连云港市)如图,在矩形ABCD中,AD=2AB.将矩形ABCD对折,得到折痕MN;沿着CM折叠,点D的对应点为E,ME与BC的交点为F;再沿着MP折叠,使得AM与EM重合,折痕为MP,此时点B的对应点为G.下列结论:①①CMP是直角三角形;①点C、E、G不在同一条直线上;①PC=MP;①BP=AB;①点F是①CMP外接圆的圆心,其中正确的个数为()A.2个B.3个C.4个D.5个【解析】①沿着CM折叠,点D的对应点为E,①①DMC=①EMC,①再沿着MP折叠,使得AM与EM重合,折痕为MP,①①AMP=①EMP,①①AMD=180°,①①PME+①CME=180°=90°,①①CMP是直角三角形;故①正确;①沿着CM折叠,点D的对应点为E,①①D=①MEC=90°,①再沿着MP折叠,使得AM与EM重合,折痕为MP,①①MEG=①A=90°,①①GEC=180°,①点C、E、G在同一条直线上,故①错误;①AD=2AB,①设AB=x,则AD=2x,①将矩形ABCD对折,得到折痕MN;①DM=AD=x,①CM==x,①①PMC=90°,MN①PC,①CM2=CN•CP,①CP==x,①PN=CP﹣CN=x,①PM==x,①==,①PC=MP,故①错误;①PC=x,①PB=2x﹣x=x,①=,①PB=AB,故①,①CD=CE,EG=AB,AB=CD,①CE=EG,①①CEM=①G=90°,①FE①PG,①CF=PF,①①PMC=90°,①CF=PF=MF,①点F是①CMP外接圆的圆心,故①正确;故选:B.2. (2019 江苏省淮安市)如图,在矩形ABCD中,AB=3,BC=2,H是AB的中点,将①CBH 沿CH折叠,点B落在矩形内点P处,连接AP,则tan①HAP=.【解析】如图,连接PB,交CH于E,由折叠可得,CH垂直平分BP,BH=PH,又①H为AB的中点,①AH=BH,①AH=PH=BH,①①HAP=①HP A,①HBP=①HPB,又①①HAP+①HP A+①HBP+①HPB=180°,①①APB=90°,①①APB=①HEB=90°,①AP①HE,①①BAP=①BHE,又①Rt①BCH中,tan①BHC==,①tan①HAP=,故答案为:.3. (2019 江苏省扬州市)将一个矩形纸片折叠成如图所示的图形,若①ABC=26°,则①ACD =°.【解析】延长DC,由题意可得:①ABC=①BCE=①BCA=26°,则①ACD=180°﹣26°﹣26°=128°.故答案为:128.4.(2019 江苏省盐城市)如图①是一张矩形纸片,按以下步骤进行操作:(①)将矩形纸片沿DF折叠,使点A落在CD边上点E处,如图①;(①)在第一次折叠的基础上,过点C再次折叠,使得点B落在边CD上点B′处,如图①,两次折痕交于点O;(①)展开纸片,分别连接OB、OE、OC、FD,如图①.探究(1)证明:①OBC①①OED;(2)若AB=8,设BC为x,OB2为y,求y关于x的关系式.【解析】(1)证明:由折叠可知,AD=ED,①BCO=①DCO=①ADO=①CDO=45°①BC=DE,①COD=90°,OC=OD,在①OBC①①OED中,,①①OBC①①OED(SAS);(2)过点O作OH①CD于点H.由(1)①OBC①①OED,OE=OB,①BC=x,则AD=DE=x,①CE=8﹣x,①OC=OD,①COD=90°①CH=CD=AB==4,OH=CD=4,①EH=CH﹣CE=4﹣(8﹣x)=x﹣4在Rt①OHE中,由勾股定理得OE2=OH2+EH2,即OB2=42+(x﹣4)2,①y关于x的关系式:y=x2﹣8x+32.考向2平行四边形的折叠1. (2019 江苏省常州市)如图,把平行四边形纸片ABCD沿BD折叠,点C落在点C′处,BC′与AD相交于点E.(1)连接AC′,则AC′与BD的位置关系是;(2)EB与ED相等吗?证明你的结论.【解析】(1)连接AC′,则AC′与BD的位置关系是AC′①BD,故答案为:AC′①BD;(2)EB与ED相等.由折叠可得,①CBD=①C'BD,①AD①BC,①①ADB=①CBD,①①EDB=①EBD,①BE=DE.2. (2019 江苏省徐州市)如图,将平行四边形纸片ABCD沿一条直线折叠,使点A与点C重合,点D落在点G处,折痕为EF.求证:(1)ECB FCG∠=∠;(2)EBC FGC∆≅∆.【解析】证明:(1)Q四边形ABCD是平行四边形,∴∠=∠,A BCD由折叠可得,A ECG∠=∠,∴∠=∠,BCD ECG∴∠-∠=∠-∠,BCD ECF ECG ECF∴∠=∠;ECB FCG(2)Q四边形ABCD是平行四边形,∴∠=∠,AD BCD B=,由折叠可得,D G=,∠=∠,AD CG=,B G∴∠=∠,BC CG又ECB FCG∠=∠Q,∴∆≅∆.EBC FGC ASA()考向3正方形的折叠1.(2019 江苏省连云港市)问题情境:如图1,在正方形ABCD中,E为边BC上一点(不与点B、C重合),垂直于AE的一条直线MN分别交AB、AE、CD于点M、P、N.判断线段DN、MB、EC之间的数量关系,并说明理由.问题探究:在“问题情境”的基础上.(1)如图2,若垂足P恰好为AE的中点,连接BD,交MN于点Q,连接EQ,并延长交边AD于点F.求①AEF的度数;(2)如图3,当垂足P在正方形ABCD的对角线BD上时,连接AN,将①APN沿着AN翻折,点P落在点P'处,若正方形ABCD的边长为4,AD的中点为S,求P'S的最小值.问题拓展:如图4,在边长为4的正方形ABCD中,点M、N分别为边AB、CD上的点,将正方形ABCD沿着MN翻折,使得BC的对应边B'C'恰好经过点A,C'N交AD于点F.分别过点A、F作AG①MN,FH①MN,垂足分别为G、H.若AG=,请直接写出FH的长.【解析】线段DN、MB、EC之间的数量关系为:DN+MB=EC;理由如下:①四边形ABCD是正方形,①①ABE=①BCD=90°,AB=BC=CD,AB①CD,过点B作BF①MN分别交AE、CD于点G、F,如图1所示:①四边形MBFN为平行四边形,①NF=MB,①BF①AE,①①BGE=90°,①①CBF+①AEB=90°,①①BAE+①AEB=90°,①①CBF=①BAE,在①ABE和①BCF中,,①①ABE①①BCF(ASA),①BE=CF,①DN+NF+CF=BE+EC,①DN+MB=EC;问题探究:解:(1)连接AQ,过点Q作HI①AB,分别交AD、BC于点H、I,如图2所示:①四边形ABCD是正方形,①四边形ABIH为矩形,①HI①AD,HI①BC,HI=AB=AD,①BD是正方形ABCD的对角线,①①BDA=45°,①①DHQ是等腰直角三角形,HD=HQ,AH=QI,①MN是AE的垂直平分线,①AQ=QE,在Rt①AHQ和Rt①QIE中,,①Rt①AHQ①Rt①QIE(HL),①①AQH=①QEI,①①AQH+①EQI=90°,①①AQE=90°,①①AQE是等腰直角三角形,①①EAQ=①AEQ=45°,即①AEF=45°;(2)连接AC交BD于点O,如图3所示:则①APN的直角顶点P在OB上运动,设点P与点B重合时,则点P′与点D重合;设点P与点O重合时,则点P′的落点为O′,①AO=OD,①AOD=90°,①①ODA=①ADO′=45°,当点P在线段BO上运动时,过点P作PG①CD于点G,过点P′作P′H①CD交CD延长线于点H,连接PC,①点P在BD上,①AP=PC,在①APB和①CPB中,,①①APB①①CPB(SSS),①①BAP=①BCP,①①BCD=①MP A=90°,①①PCN=①AMP,①AB①CD,①①AMP=①PNC,①①PCN=①PNC,①PC=PN,①AP=PN,①①PNA=45°,①①PNP′=90°,①①P′NH+PNG=90°,①①P′NH+①NP′H=90°,①PNG+①NPG=90°,①①NPG=①P′NH,①PNG=①NP′H,由翻折性质得:PN=P′N,在①PGN和①NHP'中,,①①PGN①①NHP'(ASA),①PG=NH,GN=P'H,①BD是正方形ABCD的对角线,①①PDG=45°,易得PG=GD,①GN=DH,①DH=P'H,①①P'DH=45°,故①P'DA=45°,①点P'在线段DO'上运动;过点S作SK①DO',垂足为K,①点S为AD的中点,①DS=2,则P'S的最小值为;问题拓展:解:延长AG交BC于E,交DC的延长线于Q,延长FH交CD于P,如图4:则EG=AG=,PH=FH,①AE=5,在Rt①ABE中,BE==3,①CE=BC﹣BE=1,①①B=①ECQ=90°,①AEB=①QEC,①①ABE①①QCE,①==3,①QE=AE=,①AQ=AE+QE=,①AG①MN,①①AGM=90°=①B,①①MAG=①EAB,①①AGM①①ABE,①=,即=,解得:AM=,由折叠的性质得:AB'=EB=3,①B'=①B=90°,①C'=①BCD=90°,①B'M==,AC'=1,①①BAD=90°,①①B'AM=①C'F A,①①AFC'①①MAB',①==,解得:AF=,①DF=4﹣=,①AG①MN,FH①MN,①AG①FH,①AQ①FP,①①DFP①①DAQ,①=,即=,解得:FP=,①FH=FP=.考向4三角形的折叠(2019 江苏省扬州市)如图,已知等边①ABC的边长为8,点P是AB边上的一个动点(与点A、B不重合).直线1是经过点P的一条直线,把①ABC沿直线1折叠,点B的对应点是点B′.(1)如图1,当PB=4时,若点B′恰好在AC边上,则AB′的长度为;(2)如图2,当PB=5时,若直线1①AC,则BB′的长度为;(3)如图3,点P在AB边上运动过程中,若直线1始终垂直于AC,①ACB′的面积是否变化?若变化,说明理由;若不变化,求出面积;(4)当PB=6时,在直线1变化过程中,求①ACB′面积的最大值.【解析】(1)如图1中,①①ABC是等边三角形,①①A=60°,AB=BC=AC=8,①PB=4,①PB′=PB=P A=4,①①A=60°,①①APB′是等边三角形,①AB′=AP=4.故答案为4.(2)如图2中,设直线l交BC于点E.连接BB′交PE于O.①PE①AC,①①BPE=①A=60°,①BEP=①C=60°,①①PEB是等边三角形,①PB=5,①①B,B′关于PE对称,①BB′①PE,BB′=2OB①OB=PB•sin60°=,①BB′=5.故答案为5.(3)如图3中,结论:面积不变.①B,B′关于直线l对称,①BB′①直线l,①直线l①AC,①AC①BB′,①S①ACB′=S①ACB=•82=16.(4)如图4中,当B′P①AC时,①ACB′的面积最大,设直线PB′交AC于E,在Rt①APE中,①P A=2,①P AE=60°,①PE=P A•sin60°=,①B′E=6+,①S①ACB′的最大值=×8×(6+)=4+24.。
八年级数学期末专题复习-四:“动点”、“翻折”、“重叠”问题例谈(Word版-含解析、点评和练习)
八数下期期末专题四:“动点”、“翻折”、“重叠”问题例谈 第 1页(共 16页) 第 2页 (共 16页)2017-2018下学期八年级数学专题复习 四:“动点”、“翻折”、“重叠”问题例谈编写: 赵化中学 郑宗平八年级数学下册中的含“动点”、“翻折"以及“重叠”的题型主要集中在《勾股定理》、《平行四边形》和《一次函数》的三个章节中,且常常是这三个章节综合起来的题型比较多;含“动点"、“翻折"以及“重叠”的题型一直统考和中考的热点题型,下面我精选一部分典型题分专题进行分析、解答、点评并附有少量追踪练习,希望同学们能从中悟出一些道理,总结破题的思路,同时感受到这类题型所蕴含的数学魅力。
题目一.“动点”问题例谈一.在动点中求最小值例.如图,在正方形ABCD 中,E 为AB 上的一点,BE 2AE 3BE ==,; P 是AC 上一动点,则PB PE +的最小值是多少?分析: 如分析图所示,过B 作关于AC 的对称点,根据正方形的性质其对称点恰好在D 点处,连结ED 交AC 于点'P ,根据轴对称的性质、三角形三边之间的关系以及连接D E 、两点之间线段最短,可以知道此时的''P B P E +值最小。
(这里我有个“将军饮马”的故事与同学们分享.)略解:过B 作关于AC 的对称点,根据正方形的性质其对称点恰好在D 点处,连结ED 交AC 于点'P ,连接'P B ∵BE 2AE 3BE ==, ∴AE 6= ∴AB 8=.根据正方形的性质的性质可知:AD AB 8DAB 90==∠=,. 在Rt △DAE 中勾股定理易求2222ED AE AD 6810=+=+=。
∵B 和D 关于AC 对称,根据轴对称的性质可知:''P B P D =,∴''P B P E +=''P D P E DE 10+==.变式。
专题 图形折叠中的等腰三角形存在性问题
专题06图形折叠中的等腰三角形存在性问题【题型演练】一、解答题1.对于面积为S 的三角形和直线l ,将该三角形沿直线l 折叠,重合部分的图形面积记为0S ,定义00S S S -为该三角形关于直线l 的对称度.如图,将面积为S 的ABC 沿直线l 折叠,重合部分的图形为C DE ',将C DE '的面积记为0S ,则称00S S S -为ABC 关于直线l的对称度.在平面直角坐标系xOy 中,点A(0,3),B(-3,0),C(3,0).(1)过点M(m ,0)作垂直于x 轴的直线1l ,①当1m =时,ABC 关于直线1l 的对称度的值是:②若ABC 关于直线1l 的对称度为1,则m 的值是.(2)过点N(0,n)作垂直于y 轴的直线2l ,求△ABC 关于直线2l 的对称度的最大值.(3)点P(-4,0)满足5AP =,点Q 的坐标为(t ,0),若存在直线,使得APQ 关于该直线的对称度为1,写出所有满足题意的整数t 的值.2.如图1,在ABC 中,90C ∠=︒,40A ∠=︒,D 为AC 的中点,E 为边AB 上一动点,连接DE ,将ADE V 沿DE 翻折,点A 落在AC 上方点F 处,连接EF ,CF .(1)判断∠1与∠2是否相等并说明理由;(2)若DEF 与以点C ,D ,F 为顶点的三角形全等,求出ADE ∠的度数:(3)翻折后,当DEF 和ABC 的重叠部分为等腰三角形时,直接写出ADE ∠的度数.3.数学兴趣小组开展实践探究活动,将三角形ABC纸片沿某条直线折叠,使其中一个角的顶点落在一边上.在△ABC中,AB=9,BC=6.(1)如图1,若∠ACB=90°,将△ABC沿CM折叠,使点B与边AB上的点N重合,求BM的长(2)如图2,若∠ACB=2∠A,将△ABC沿CM折叠,使点B与边AC上的点N重合,①求AC的长;②若O是AC的中点,P为线段ON上的一个动点,将△APM沿PM折叠得到△A′PM,A M与AC相交于点F,则PFFM的取值范围为.4.在△ABC中,∠ACB=90°,AC=4,BC=3.(1)如图1,D为线段BC上一点,点C关于AD的对称点C恰好落在AB边上,求CD的长;(2)如图2,E为线段AB上一点,沿CE翻折△CBE得到△CEB′,若EB′∥AC,求证:AE=AC;(3)如图3,D为线段BC上一点,点C关于AD的对称为点C′,是否存在异于图1的情况的C′、B、D为顶点的三角形为直角三角形,若存在,请直接写出BC′长;若不存在,请说明理由.5.如图1,已知直线y=﹣2x+4与x轴、y轴分别交于点A、C,以OA、OC为边在第一象限内作长方形OABC.(1)求点A、C的坐标;(2)将△ABC对折,使得点A的与点C重合,折痕交AB于点D,求直线CD的解析式(图2);△是等腰三角形,若存在,请求出所有符合条件的点P的(3)在y轴上是否存在一点P(不与C重合),使得CDP坐标;若不存在,请说明理由.折纸是一种将纸张折成各种不同形状的艺术活动,折纸大约起源于公元1世纪或者2世纪时的中国,6世纪时传入日本,再经由日本传到全世界,折纸与自然科学结合在一起,不仅成为建筑学院的教具,还发展出了折纸几何学,成为现代几何学的一个分支.今天折纸被应用于世界各地,其中比较著名的是日本筑波大学的芳贺和夫发现的折纸几何三定理,它已成为折纸几何学的基本定理.芳贺折纸第一定理的操作过程及内容如下:第一步:如图1,将正方形纸片ABCD 对折,使点A 与点D 重合,点B 与点C 重合.再将正方形ABCD 展开,得到折痕EF ;第二步:将正方形纸片的右下角向上翻折,使点C 与点E 重合,边BC 翻折至B E '的位置,得到折痕MN ,B E '与AB 交于点P .则点P 为AB 的三等分点,即:2:1AP PB =.问题解决如图1,若正方形ABCD 的边长是2.(1)CM 的长为______;(2)请通过计算AP 的长度,说明点P 是AB 的三等分点.类比探究(3)将长方形纸片()ABCD AB BC >按问题背景中的操作过程进行折叠,如图2,若折出的点P 也为AB 的三等分点,请直接写出AB AC 的值.在数学综合实践课上,老师让同学们探究等腰直角三角形中的折叠问题.问题情境:如图,在ABC 中,6AB AC ==,90A ∠=︒,点D 在边AB 上运动,点E 在边BC 上运动.探究发现:(1)如图2,当沿DE 折叠,点B 落在边AC 的点B '处,且DB BC '∥时,发现四边形BEB D '是菱形.请证明;探究拓广:(2)如图3,奇异小组同学的折叠方法是沿DE 折叠,点B 落在点B '处,延长DB '交AC 于点F ,DF BC ∥,点G 在边BC 上运动,沿FG 折叠使点C 落在线段DB '的中点C '处,求线段DF 的长;探究应用:(3)沿DE 折叠,点B 的对应点B '恰好落在边AC 的三等分点处,请借助图1探究,并直接写出BD 的长.8.在平面直角坐标系中,O 为坐标原点,在四边形OABC 中,顶点A (0,2),)C ,)B n ,且点B 在第一象限,△OAB 是等边三角形.(1)如图①,求点B 的坐标;(2)如图②,将四边形OABC 沿直线EF 折叠,使点A 与点C 重合,求点E ,F 的坐标;(3)如图③,若将四边形OABC 沿直线EF 折叠,使EF OB ∥,设点A 对折后所对应的点为A ',△AEF 与四边形EOBF 的重叠面积为S ,设点E 的坐标为(0,m )(0<m <1),请直接写出S 与m 的函数关系式.9.如图,Rt△AOB中,∠AOB=90°,OA=OB=4,点P在直线OA上运动,连接PB,将△OBP沿直线BP 折叠,点O的对应点记为O′.(1)若AP=AB,则点P到直线AB的距离是;(2)若点O′恰好落在直线AB上,求△OBP的面积;(3)将线段PB绕点P顺时针旋转45°得到线段PC,直线PC与直线AB的交点为Q,在点P的运动过程中,是否存在某一位置,使得△PBQ为等腰三角形?若存在,请直接写出OP的长;若不存在,请说明理由.10.定义:若a,b,c是△ABC的三边,且a2+b2=2c2,则称△ABC为“方倍三角形”.(1)对于①等边三角形②直角三角形,下列说法一定正确的是.A.①一定是“方倍三角形”B.②一定是“方倍三角形”C.①②都一定是“方倍三角形”D.①②都一定不是“方倍三角形”,则该三角形的面积为;(2)若Rt△ABC是“方倍三角形”,且斜边AB(3)如图,△ABC中,∠ABC=120°,∠ACB=45°,P为AC边上一点,将△ABP沿直线BP进行折叠,点A落在点D处,连接CD,AD.若△ABD为“方倍三角形”,且AP PDC的面积.11.如图1,在ABC 中,5cm AB AC ==,6cm BC =,AE 为BC 边上的中线.(1)求AE 的长;(2)动点P 的速度为2cm /s ,运动时间为t 秒.①如图2,当点P 从点B 开始沿BC 边向点C 移动时,若ABP 是以BP 为腰的等腰三角形,请你求出所有满足条件的t 的值.②如图3,当点P 从点C 开始沿AC 边向点A 移动时,将CPE △沿直线PE 对折,点C 的对称点为C ',当C PE '△与AEP △重叠部分为直角三角形时,请直接写出t 的值为_________12.如图,在平面直角坐标系中,已知点A(5,0),以原点O为圆心、3为半径作⊙O,⊙O与x轴交于点B、C.点P从点O出发,以每秒1个单位的速度沿y轴正半轴运动,运动时间为t(s).连结AP,将△OAP沿AP 翻折,得到△APQ.(1)当△OAQ为等边三角形时,请直接写出P点坐标;(2)若△ABQ为直角三角形时,请求出t的值;(3)求△APQ有一边所在直线与⊙O相切时,请直接写出t的值.13.(1)操作发现:如图①,在Rt ABC中,∠C=2∠B=90°,点D是BC上一点,沿AD折叠ADC,使得点C恰好落在AB上的点E处,请写出AB、AC、CD之间的关系?并说明理由.(2)问题解决:如图②,若(1)中∠C≠90°,其他条件不变,请猜想AB、AC、CD之间的关系,并证明你的结论;(3)类比探究:如图③,在四边形ABCD中,∠B=120°,∠D=90°,AB=BC,AD=BC,连接AC,点E是CD上一点,沿AE折叠,使得点D正好落在AC上的点F处,若BC=3,求出DE的长.14.我们知道平行四边形有很多性质,现在如果我们把平行四边形沿着它的一条对角线翻折,会发现这其中还有更多的结论.【发现与证明】ABCD Y 中,AB BC ≠,将ABC 沿AC 翻折至AB C 'V ,连结B D '.结论1:AB C 'V 与ABCD Y 重叠部分的图形是等腰三角形.结论2://B D AC ';……(1)请利用图1证明结论1或结论2;【应用与探究】在ABCD Y 中,已知30B ∠=︒,将ABC 沿AC 翻折至AB C 'V ,连结B D '.(2)如图,若AB =75AB D '∠=︒,则ACB =∠_____︒,BC =_____;(3)已知AB =BC 长为多少时,AB D 'V 是直角三角形?请直接写出答案15.如图,在平行四边形纸片ABCD中,AD=6cm,将纸片沿对角线BD对折,边AB的对应边BF与CD边交于点E,此时△BCE恰为等边三角形.(1)求AB的长度;(2)重叠部分的面积为;(3)将线段BC沿射线BA方向移动,平移后的线段记作B'C',请直接写出B'F+C'F的最小值.16.定义:有三个角相等的四边形叫做三等角四边形.(1)在三等角四边形ABCD 中,A B C ∠=∠=∠,则A ∠的取值范围为_______;(2)如图1,折叠平行四边形DEBF ,使得顶点,E F 分别落在边,BE BF 上的点,A C 处,折痕为DG DH 、.求证:四边形ABCD 为三等角四边形;(3)如图2,在三等角四边形ABCD 中,A B C ∠=∠=∠,若5AB =,AD =7DC =,则BC 的长度为_______.17.综合与实践,问题情境:数学活动课上,老师出示了一个问题:如图①,在ABCD Y 中,BE AD ⊥,垂足为E ,F 为CD 的中点,连接EF ,BF ,试猜想EF 与BF 的数量关系,并加以证明;独立思考:(1)请解答老师提出的问题;实践探究:(2)希望小组受此问题的启发,将ABCD Y 沿着BF (F 为CD 的中点)所在直线折叠,如图②,点C 的对应点为'C ,连接'DC 并延长交AB 于点G ,请判断AG 与BG 的数量关系,并加以证明;问题解决:(3)智慧小组突发奇想,将ABCD Y 沿过点B 的直线折叠,如图③,点A 的对应点为'A ,使'A B CD ⊥于点H ,折痕交AD 于点M ,连接'A M ,交CD 于点N .该小组提出一个问题:若此ABCD Y 的面积为20,边长5AB =,BC =,求图中阴影部分(四边形BHNM )的面积.请你思考此问题,直接写出结果.18.综合与实践在一次综合实践活动课上,数学王老师给每位同学各发了一张正方形纸片,要求同学们仅通过折纸的方法来确定该正方形一边上的一个三等分点.“启航”小组的同学在经过一番思考和讨论交流后,进行了如下的操作:第一步:如图1,将正方形纸片ABCD的一条边AD对折,使点A和点D重合,得到AD的中点E,然后展开铺平;第二步:如图2,将CD边沿CE翻折到CF的位置;第三步:如图3,再将BC沿过点C的直线翻折,使点B和点F重合,折痕与AB边交于点G.他们认为:该点G就是AB边的一个三等分点.(1)试证明上面的结论:(2)“奋进”小组的同学是这样操作的:第一步:先将正方形纸片ABCD的一条边AD对折,使点A和点D重合,找到AD的中点E;第二步:再折出正方形纸片ABCD的对角线AC,以及点B和点E的连线BE,这两条折痕相交于点F;第三步:最后,过点F折出AB的平行线GN,分别与AD,BC交于点G和点N.①请根据上面的描述,在图4中画出所有的折痕,确定点G和点N的位置;②请结合①中所画的图形,判断点G是否为AD边的三等分点,并说明理由.。
空间几何中的折叠问题例题和知识点总结
空间几何中的折叠问题例题和知识点总结在空间几何的学习中,折叠问题是一个重要且具有一定难度的考点。
通过折叠,可以将平面图形转化为空间图形,从而增加了问题的复杂性和抽象性。
下面,我们将通过一些例题来深入探讨空间几何中的折叠问题,并对相关知识点进行总结。
一、折叠问题的基本概念折叠问题通常是指将一个平面图形沿着某条直线或折线进行折叠,使其成为一个空间几何体。
在这个过程中,图形的某些元素(如线段的长度、角度的大小等)保持不变,而有些元素则会发生变化。
例如,将一个矩形沿着其中一条边折叠,可以得到一个三棱柱;将一个直角三角形沿着斜边折叠,可以得到一个三棱锥。
二、折叠问题的关键知识点1、不变量在折叠过程中,有些量是不变的。
例如,折叠前后对应线段的长度不变,对应角度的大小不变。
2、垂直关系折叠前后,原来垂直的线段和平面在折叠后仍然垂直。
3、距离和角度的变化折叠后,某些线段之间的距离和角度会发生变化,需要根据折叠的方式和几何关系进行重新计算。
三、例题分析例 1:已知矩形 ABCD 中,AB = 3,BC = 4。
现将矩形沿着对角线 AC 折叠,求折叠后点 B 到平面 ACD 的距离。
解:首先,通过勾股定理求出 AC 的长度:AC =√(AB²+ BC²) = 5设点 B 折叠后对应的点为 B',由于折叠前后三角形 ABC 的面积不变。
三角形 ABC 的面积= 1/2 × AB × BC = 1/2 × AC × h (h 为点 B 到平面 ACD 的距离)所以 h =(AB × BC) / AC =(3 × 4) / 5 = 12 / 5例 2:如图,在直角三角形 ABC 中,∠ACB = 90°,AC = 2,BC = 1,将三角形 ABC 沿斜边 AB 折叠,得到三棱锥 C ABD。
求证:平面 CAD ⊥平面 BAD。
专题06 立体几何中的动点及最值范围问题(解析版)
专题06 立体几何中动点及最值范围问题题型一、角度、长度最值范围问题(多选)1、设动点P 在正方体1111ABCD A B C D -的对角线1BD 上,记11D P D B λ=当APC ∠为钝角时,则实数可能的取值是( ) A .12B .23C .13D .1【答案】AB【分析】首先以D 为原点,DA ,DC ,1DD 分别为x ,y ,z 轴建立空间直角坐标系,根据题意得到0PA PC ⋅<,再解不等式即可得到答案.【解析】以D 为原点,DA ,DC ,1DD 分别为x ,y ,z 轴建立空间直角坐标系,如图所示:设正方体的边长为1,则()1,0,0A ,()1,1,0B ,()0,1,0C ,()10,0,1D ,()11,0,1D A =-,()10,1,1D C =-,()11,1,1D B =-,所以()11,,D P D B λλλλ==-. 又因为()()()11,,1,0,11,,1PA PD D A λλλλλλ=+=--+-=---,()()()11,,0,1,1,1,1PC PD DC λλλλλλ=+=--+-=---, 因为APC ∠为钝角,所以0PA PC ⋅<,即()()()()()()()2111=1310λλλλλλλ--+--+---<,解得113λ<<.故选AB【名师点睛】本题主要考查空间向量的数量积运算,属于简单题.2、如图,正方体1111ABCD A B C D -,点P 在1AB 上运动(不含端点),点E 是AC 上一点(不含端点),设EP 与平面1ACD 所成角为θ,则cosθ的最小值为( )A .13B .33C .53D .63答案: A 解析:由已知求出AC 的中点1E 与1B 的连线与平面1ACD 所成角的余弦值,在1AB 上(不含端点)任取一点P ,在平面1AB E 内过P 作11//PE B E ,则EP 与平面1ACD 所成角11OE B θ=∠,可得1cos 3θ=,结合选项即可得答案.详解:解:如图,由正方体的性质,可得1B D ⊥平面1AD C ,且1B 在平面1AD C 上的射影O 为△1AD C 的外心.设正方体的棱长为1,则△1AD C 的边长为2, 当1E 为AC 的中点时,11162326OE =-=, 1116122B E =+=,此时11616cos 362OE B ==. 在1AB 上(不含端点)任取一点P ,在平面1AB E 内过P 作11//PE B E ,则EP 与平面1ACD 所成角11OE B θ=∠,可得1cos 3θ=.结合选项可知,cos θ的最小值为13.故选:A .3、三棱柱111ABC A B C -的侧棱与底面垂直,11AA AB AC ===,AB AC ⊥,N 是BC 的中点,点P 在11A B 上,且满足111A P A B λ=,当直线PN 与平面ABC 所成的角取最大值时,λ的值为( )A .12B .22C .32D .255【答案】A【分析】建立空间直角坐标系,利用向量的夹角公式,求出直线PN 与平面ABC 所成的角,即可求得结论.【解析】如图,以AB ,AC ,1AA 分别为x ,y ,z 轴,建立空间直角坐标系A xyz -,则(,P λ0,1),11,,122PN λ⎛⎫=-- ⎪⎝⎭,平面ABC 的一个法向量为(0,n =0,1)设直线PN 与平面ABC 所成的角为θ,21sin 15()24PN nPN nθλ⋅∴==⋅-+, ∴当12λ=时,25(sin )5max θ=,此时角θ最大.故选A . 【名师点睛】本题考查了向量法求线面角的求法,考查了函数最值的求法,是基础题,解题时要认真审题,注意向量法的合理运用.4、如图所示,在正方体1111ABCD A B C D -中,点E 为线段AB 的中点,点F 在线段AD 上移动,异面直线1B C 与EF 所成角最小时,其余弦值为( )A .0B .12C .105D .1116【答案】C【分析】以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系,利用向量法能求出异面直线1B C 与EF 的夹角的余弦值,根据夹角最小即可求得结果.【解析】以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系,在正方体1111ABCD A B C D -中, 点E 为线段AB 的中点,设正方体棱长为2, 则1(0,0,0),(2,1,0),(2,2,2),(0,2,0)D E B C ,1(2,0,2)B C =--,设(),0,0F m ()02m ≤≤,(2,1,0)EF m =--,设异面直线1B C 与EF 的夹角为θ,则1212|||2(2)|cos ||||122(2)1211(2)EF B C m EF B C m m θ⋅-⨯-===⋅⋅-+⋅+-, 异面直线1B C 与EF 所成角最小时,则cos θ最大,即0m =时,210cos 51102141θ===⋅+.故选C .【名师点睛】本题考查异面直线及其所成的角的余弦值,解题方法是建立空间直角坐标系,用空间向量法表示距离、求角,属于中档题.5、如图,已知正方体1111ABCD A B C D -的棱长为1,,E F 分别是棱11,AD B C 上的中点.若点P 为侧面正方形11ADD A 内(含边)动点,且存在,x y R ∈使1B P xBE yBF =+成立,则点P 的轨迹长度为A .12B .1C 5D .2π 【答案】C【分析】根据向量共面判断出1//B P 平面BEF ,由面面平行得到P 点的轨迹,在直角三角形中求出边长即可.【解析】因为1B P xBE yBF =+成立,所以1B P BE BF 、、共面,即1//B P 平面BEF , 如图,取11A D 中点Q ,连接1B Q 、1B A 、AQ , 根据正方体的性质得,1//B Q BE ,1//B A FE , 且111=B QB A B ,=FEBE E ,所以平面1//B AQ 平面BEF ,所以点P 在AQ 上运动,点P 的轨迹为线段AQ ,因为11A A =,112AQ =, 由勾股定理得151+=42QA =,故选C .题型二、动点问题(多选)1、如图,棱长为1的正方体1111ABCD A B C D -中,P 为线段1A B 上的动点(不含端点),则下列结论正确的是A .平面11D A P ⊥平面1A APB .//BC 平面11AD PC .三棱锥1D CDP -的体积为定值 D .直线1D P 与AC 所成的角可能是6π【答案】AC【解析】对于A 中,在正方体1111ABCD A B C D -中,可得1111,A D AA A D AB ⊥⊥,又由1AA AB A =,所以11A D ⊥平面1A AP ,因为11A D ⊂平面11D A P ,所以平面11D A P ⊥平面1A AP ,所以A 正确; 对于B 中,在正方体1111ABCD A B C D -中,可得11//BC A D , 所以11,,,B C A D 四点共面,所以B 不正确; 对于C 中,因为1111122CDD S=⨯⨯=,点P 到平面1CDD 的距离为1BC =, 所以三棱锥1D CDP -的体积为定值,所以C 正确;对于D 中,以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系,可得1(0,0,1),(1,0,0),(0,1,0)D A C ,设(1,,)(01,01)P a b a b <<<<, 则1(1,,1),(1,1,0)D P a b AC =-=-, 则11221cos ,01(1)2D P AC D P AC D P ACa b ⋅==<⋅++-⋅,当1a =时,1,2D P AC π=;当0,1a b ==时,13,4D P AC π=, 所以直线1D P 与AC 所成的角的范围是(,)42ππ,所以D 不正确.故选AC【名师点睛】此类问题解答中熟记正方体的几何结构特征,熟练应用转化顶点,利用等体积法求解三棱锥的体积,以及合理利用空间向量的夹角公式求解异面直线所成的角是解答的关键.(多选)2、如图,在三棱柱111ABC A B C -中,侧棱1AA ⊥底面111A B C ,90BAC ︒∠=,11AB AC AA ===,D 是棱1CC 的中点,P 是AD 的延长线与11A C 的延长线的交点.若点Q 在直线1B P 上,则下列结论错误的是( ).A .当Q 为线段1B P 的中点时,DQ ⊥平面1A BD B .当Q 为线段1B P 的三等分点时,DQ ⊥平面1A BDC .在线段1B P 的延长线上,存在一点Q ,使得DQ ⊥平面1A BD D .不存在点Q ,使DQ 与平面1A BD 垂直 【答案】ABC【分析】以1A 为坐标原点,11A B ,11A C ,1A A 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,求得平面1A BD 的一个法向量(,,)n x y z =,假设DQ ⊥平面1A BD ,且11B Q B P λ=,得到11DQ DB BQ =+=11,12,2λλ⎛⎫--+- ⎪⎝⎭,则(2,1,2)n =-与11,12,2DQ λλ⎛⎫=--+- ⎪⎝⎭共线,研究1112122124λλ---+===-是否有解即可. 【解析】以1A 为坐标原点,11A B ,11A C ,1A A 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,则由1(0,0,0)A ,1(1,0,0)B ,1(0,1,0)C ,(1,0,1)B ,10,1,2D ⎛⎫ ⎪⎝⎭,(0,2,0)P ,所以1(1,0,1)A B =,110,1,2A D ⎛⎫= ⎪⎝⎭,1(1,2,0)B P =-,111,1,2DB ⎛⎫=-- ⎪⎝⎭.设平面1A BD 的一个法向量为(,,)n x y z =,则11012n A B x z n A D y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩, 取2z =-,则2x =,1y =,所以平面1A BD 的一个法向量为(2,1,2)n =-.假设DQ ⊥平面1A BD ,且11(1,2,0)(,2,0)BQ B P λλλλ==-=-, 则11DQ DB BQ =+=11,12,2λλ⎛⎫--+- ⎪⎝⎭. 因为DQ 也是平面1A BD 的法向量,所以(2,1,2)n =-与11,12,2DQ λλ⎛⎫=--+- ⎪⎝⎭共线,所以1112122124λλ---+===-成立,但此方程关于λ无解. 因此不存在点Q ,使DQ 与平面1A BD 垂直,故选ABC .(多选)3、在长方体1111ABCD A B C D -中,23AB =12AD AA ==,,,P Q R 分别是11,,AB BB AC 上的动点,下列结论正确的是 A .对于任意给定的点P ,存在点Q 使得1D P CQ ⊥ B .对于任意给定的点Q ,存在点R 使得1D R CQ ⊥ C .当1AR A C ⊥时,1AR D R ⊥D .当113AC A R =时,1//D R 平面1BDC 【答案】ABD【分析】如图所示建立空间直角坐标系,计算142D P CQ b ⋅=-,()12222D R CQ b λλ⋅=--,134AR D R ⋅=-,10D R n ⋅=,得到答案.【解析】如图所示,建立空间直角坐标系,设()2,,0P a ,0,23a ⎡⎤∈⎣⎦,()2,23,Q b ,[]0,2b ∈,设11A R AC λ=,得到()22,23,22R λλλ--,[]0,1λ∈. ()12,,2P a D -=,()2,0,CQ b =,142D P CQ b ⋅=-,当2b =时,1D P CQ ⊥,A 正确;()122,23,2D R λλλ=--,()12222D R CQ b λλ⋅=--,取22bλ=+时,1D R CQ ⊥,B 正确;1AR A C⊥,则()()12,23,222,23,2212440AR AC λλλλλλ⋅=--⋅--=-+-+=, 14λ=,此时11333313,,,,02222224AR D R ⎛⎫⎛⎫⋅=-⋅-=-≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,C 错误; 113AC A R =,则4234,,333R ⎛⎫ ⎪ ⎪⎝⎭,14232,,333D R ⎛⎫=- ⎪ ⎪⎝⎭,设平面1BDC 的法向量为(),,n x y z =,则10n BD n DC ⎧⋅=⎪⎨⋅=⎪⎩,解得()3,1,3n =-,故10D R n ⋅=,故1//D R 平面1BDC ,D 正确. 故选ABD .【点睛】本题考查了空间中的线线垂直,线面平行,意在考查学生的计算能力和空间想象能力,推断能力. 题型三、确定点的位置1、如图,在三棱柱111ABC A B C -中,四边形11AAC C 是边长为3的正方形,1CC BC ⊥,1BC =,2AB =.(1)证明:平面1A BC ⊥平面1ABC ;(2)在线段1A B 上是否存在点M ,使得1CM BC ⊥,若存在,求1BMBA 的值;若不存在,请说明理由.【答案】(1)证明见解析;(2)14. 【解析】(1)在ABC 中,3AC =1BC =,2AB =,满足222AC BC AB +=,所以AC BC ⊥,又1CC BC ⊥,1CC AC C =,所以BC ⊥面11ACC A ,又1AC ⊂面11ACC A ,所以1BC A C ⊥,又四边形11AAC C 是边长为3的正方形,所以11AC AC ⊥,又1BCAC C =,所以1AC ⊥面1A CB ,又1AC ⊂平面1ABC ,所以平面1A BC ⊥平面1ABC ;(2)在线段1A B 上存在点M ,使得1CM BC ⊥,且114BM BA =, 理由如下:由(1)得,以点C 为原点,1,,CA CB CC 所在直线分别为,,x y z 轴建立空间直角坐标系,如图所示,则()3,0,0A,()0,0,0C ,()0,1,0B ,13,0,3A ,(13C ,设(),,M x y z ,1BM BA λ=,所以(),1,3,3x y z λ-=-,解得3x λ=,1y λ=-,3z λ=,所以()3,13CM λλλ=-,(10,1,3C B =-,要使1CM BC ⊥,则需10CM BC ⋅=,即130λλ--=,解得14λ=,故114BM BA =.2、如图,在多面体ABCDP 中,ABC 是边长为4的等边三角形,PA AC =,22BD CD ==,42PC PB ==,点E 为BC 的中点,平面BDC ⊥平面ABC .(1)求证://DE 平面PAC(2)线段BC 上是否存在一点T ,使得二面角T DA B --为直二面角?若存在,试指出点T 的位置;若不存在,请说明理由.【答案】(1)证明见解析;(2)存在,T 为线段BC 上靠近点C 的八等分点. 【分析】(1)根据题目条件证明DE ⊥平面ACE ,从而得到DE //PA ,得出DE //平面PAC ;(2)建立空间直角坐标系,假设存在点(),0,0T λ,计算平面TDA 和平面BDA 的法向量,使法向量数量积为零,然后求解λ,根据λ的值确定点T 的位置. 【解析】(1)因为22BD CD ==ABC 是边长为4的等边三角形, 所以((2222222216BD CD BC +=+==,所以BDC 是等腰直角三角形,90BDC ∠=︒.又点E 为BC 的中点,所以DE BC ⊥.因为平面BDC ⊥平面ABC ,平面BDC ⋂平面ABC BC =,所以DE ⊥平面ABC . 因为42PC PB ==,4PA AC AB ===,所以222224432PA AC PC +=+==,222224432PA AB PB +=+==,所以PAB △与PAC 都是直角三角形,故PA AC ⊥,PA AB ⊥. 又AC AB A ⋂=,所以PA ⊥平面ABC ,所以DE PA ∥. 因为PA ⊂平面PAC ,DE ⊄平面PAC ,所以DE 平面PAC .(2)连接AE ,以E 为原点,EC ,EA ,ED 所在直线分别为x ,y ,z 轴,建立如图所示的空间直角坐标系,则()0,23,0A ,()2,0,0B -,()2,0,0C ,()0,0,2D ,设存在(),0,0T λ,使得二面角T DA B --为直二面角,易知22λ-≤≤,且0λ≠. 设平面BAD 的法向量为()1111,,n x y z =,则由()2,0,2BD =,()0,23,2AD =-,得1111030x z y z +=⎧⎪⎨-+=⎪⎩,令11z =,得111x x =-,133y =,故131,,13n ⎛⎫=- ⎪ ⎪⎝⎭.设平面TAD 的法向量为()2222,,n x y z =,则由(),0,2DT λ=-,(),23,0AT λ=-,得222220,230x z x y λλ-=⎧⎪⎨-=⎪⎩,令21z =,得22x λ=,233y =,故223,,13n λ⎛⎫= ⎪ ⎪⎝⎭. 由122233133cos ,074433n n λλ-+⨯+==⨯+,得12103λ-+=,故32λ=. 所以当T 为线段BC 上靠近点C 的八等分点时,二面角T DA B --为直二面角.3、如图,三棱柱111ABC A B C -中,AB ⊥侧面11BB C C ,已知13BCC π∠=,1BC =,12AB C C ==,点E 是棱1C C 的中点.(1)求证:1C B ⊥平面ABC ; (2)求二面角11A EB A --的余弦值;(3)在棱CA 上是否存在一点M ,使得EM 与平面11A B E 所成角的正弦值为21111,若存在,求出CM CA 的值;若不存在,请说明理由.【答案】(1)证明见解析(225(3)存在,13CM CA =或523CM CA =.【解析】(1)由题意,因为1BC =,12CC =,13BCC π∠=,所以13BC又所以22211BC BC CC +=,所以1BC BC ⊥,因为AB ⊥侧面11BB C C ,所以1AB BC ⊥.又因为AB BC B ⋂=,AB ,BC ⊂平面ABC ,所以直线1C B ⊥平面ABC . (2)以B 为原点,分别以BC ,1BC 和BA 的方向为x ,y 和z 轴的正方向建立如图所示的空间直角坐标系,则()0,0,2A ,()13,0B -,132E ⎛⎫⎪ ⎪⎝⎭,()13,2A -,设平面1AB E 的一个法向量为()111,,n x y z =,()13,2AB =--,13,,222AE ⎛⎫=- ⎪ ⎪⎝⎭因为100n AB n AE ⎧⋅=⎨⋅=⎩,所以11111132013202x z x y z ⎧--=⎪⎨-=⎪⎩,令13y =,则11x =,所以()1,3,1n =设平面11A B E 的一个法向量为(),,m x y z =,()110,0,2A B =-,133,,222A E ⎛⎫=-- ⎪ ⎪⎝⎭, 因为11100m A B m A E ⎧⋅=⎪⎨⋅=⎪⎩,所以20332022z x y z -=⎧⎪⎨--=⎪⎩,令3y =,则1x =,所以()1,3,0m =,2m =,5n =,4m n ⋅=,所以425cos ,525m n m n m n⋅===.设二面角11A EB A --为α,则25cos cos ,5m n α==. 所以设二面角11A EB A --的余弦值为255. (3)假设存在点M ,设(),,M x y z ,因为CM CA λ=,[]0,1λ∈,所以()()1,,1,0,2x y z λ-=-,所以()1,0,2M λλ-所以13,,222EM λλ⎛⎫=-- ⎪ ⎪⎝⎭设平面11A B E 的一个法向量为()1,3,0m =,所以22132112211132424λλλ--=⎛⎫-++ ⎪⎝⎭,得2693850λλ-+=.即()()312350λλ--=,所以13λ=或523λ=,所以13CM CA =或523CM CA =.【名师点睛】本题考查了线面平行的判定与证明,以及空间角的求解问题,意在考查学生的空间想象能力和逻辑推理能力,解答中熟记线面位置关系的判定定理和性质定理,通过严密推理是线面位置关系判定的关键,同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解. 强化训练(多选)1、如图所示,正方体1111ABCD A B C D -中,1AB =,点P 在侧面11BCC B 及其边界上运动,并且总是保持1AP BD ⊥,则以下四个结论正确的是A .113P AA D V -=B .点P 必在线段1BC 上 C .1AP BC ⊥D .//AP 平面11AC D【答案】BD【分析】根据三棱锥体积公式求得116P AA D V -=,知A 错误;以D 为坐标原点建立空间直角坐标系,利用空间向量法可得到1CP x B C →→=-,11AP BC →→⋅=,AP →垂直于平面11AC D 的法向量n →,由此可确定,,B C D 的正误.【解析】对于A ,P 在平面11BCC B 上,平面11//BCC B 平面1AA D ,P ∴到平面1AA D 即为C 到平面1AA D 的距离,即为正方体棱长,1111111113326P AA D AA D V S CD -∴=⋅=⨯⨯⨯⨯=△,A 错误;对于B ,以D 为坐标原点可建立如下图所示的空间直角坐标系:则()1,0,0A ,(),1,P x z ,()1,1,0B ,()10,0,1D ,()11,1,1B ,()0,1,0C()1,1,AP x z →∴=-,()11,1,1BD →=--,()11,0,1B C →=--,1AP BD ⊥,1110AP BD x z →→∴⋅=--+=,x z ∴=,即(),1,P x x ,(),0,CP x x →∴=,1CP x B C →→∴=-,即1,,B P C 三点共线,P ∴必在线段1B C 上,B 正确;对于C ,()1,1,AP x x →=-,()11,0,1BC →=-,111AP BC x x →→∴⋅=-+=,AP ∴与1BC 不垂直,C 错误;对于D ,()11,0,1A ,()10,1,1C ,()0,0,0D ,()11,0,1DA →∴=,()10,1,1DC →=, 设平面11AC D 的法向量(),,n x y z →=,1100n DA x z n DC y z ⎧⋅=+=⎪∴⎨⋅=+=⎪⎩,令1x =,则1z =-,1y =,()1,1,1n →∴=-, 110AP n x x →→∴⋅=-+-=,即AP n →→⊥,//AP ∴平面11ACD ,D 正确. 故选BD .【点睛】本题考查立体几何中动点问题相关命题的辨析,涉及到三棱锥体积公式、动点轨迹、线线垂直关系和线面平行关系等知识;解题关键是熟练应用空间向量法来验证相关结论.2、如图,在边长为2的正方体1111ABCD A B C D -中,E 为BC 的中点,点P 在底面ABCD 上移动,且满足11B P D E ⊥,则线段1B P 的长度的最大值为( )A .45B .2C .2D .3【答案】D【分析】以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立空间直角坐标系,设点(),,0P x y ,根据110B P D E ⋅=得出x 、y 满足的关系式,并求出y 的取值范围,利用二次函数的基本性质求得1B P 的最大值.【解析】如下图所示,以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立空间直角坐标系D xyz -,则点()12,2,2B 、()10,0,2D 、()1,2,0E ,设点()(),,002,02P x y x y ≤≤≤≤,()11,2,2D E =-,()12,2,2B P x y =---,11D E B P ⊥,()112224220B P D E x y x y ∴⋅=-+-+=+-=,得22x y =-,由0202x y ≤≤⎧⎨≤≤⎩,得022202y y ≤-≤⎧⎨≤≤⎩,得01y ≤≤, ()()2221224548B P x y y y ∴=-+-+=-+01y ≤≤,当1y =时,1B P 取得最大值3.故选D .3、在长方体1111ABCD A B C D -中,已知底面ABCD 为正方形,P 为11A D 的中点,2AD =,13AA =,点Q 为正方形ABCD 所在平面内的一个动点,且满足2QC QP =.则线段BQ 的长度的最大值是( )A .2B .4C .6D .前三个答案都不对【答案】C【分析】先以D 点为坐标原点,分别以DA ,DC ,1DD 所在方向为x 轴,y 轴,z 轴正方向,建立空间直角坐标系,由题意得到(0,2,0)C ,()1,0,3P ,(2,2,0)B ,设(,,0)Q x y ,由2QC QP =,得到22(2)(2)4-++=x y ,再由圆上的点与定点距离的问题,即可求出结果.【解析】以D 点为坐标原点,分别以DA ,DC ,1DD 所在方向为x 轴,y 轴,z 轴正方向,建立如图所示的空间直角坐标系,因为在长方体1111ABCD A B C D -中,已知底面ABCD 为正方形,P 为11A D 的中点,2AD =,13AA =(0,2,0)C ,(1,3P ,(2,2,0)B ,因为点Q 为正方形ABCD 所在平面内的一个动点,设(,,0)Q x y , 因为2QC QP =,所以()2222(2)213+-=⋅-++x y x y ,整理得:22(2)(2)4-++=x y ,即点Q 可看作圆22(2)(2)4-++=x y 上的点, 又22(2)(2)=-+-BQ x y ,所以BQ 表示圆22(2)(2)4-++=x y 上的点与定点(2,2)之间的距离, 因此22max (22)(22)426=-+--+=+=BQ r (其中r表示圆22(2)(2)4-++=x y 的半径.)故选C . 【名师点睛】本题主要考查立体几何中的轨迹问题,涉及圆上的点到定点距离的最值,灵活运用转化与化归的思想即可,属于常考题型.4、如图,已知正方体ABCD -A 1B 1C 1D 1棱长为8,点H 在棱AA 1上,且HA 1=2,在侧面BCC 1B 1内作边长为2的正方形EFGC 1,P 是侧面BCC 1B 1内一动点,且点P 到平面CDD 1C 1距离等于线段PF 的长,则当点P 在侧面BCC 1B 1运动时,2HP 的最小值是( )A .87B .88C .89D .90【答案】B【分析】建立空间直角坐标系,过点H 作1HM BB ⊥,垂足为M ,连接MP ,得出222HP HM MP =+,当MP 最小时,2HP 最小,利用空间直角坐标系求2HP 的最小值.【解析】如图,建立空间直角坐标系,过点H 作1HM BB ⊥,垂足为M ,连接MP ,则HM PM ⊥,所以222HP HM MP =+,当MP 最小时,2HP 最小, 过P 作1PN CC ⊥,垂足为N ,设(,8,)P x z ,则(2,8,6),(8,8,6),(0,8,)F M N z ,且08,08x z ≤≤≤≤,因为PN PF =,所以22(2)(6)x z x -+-=,化简得244(6)x z -=-,所以222222(8)(6)(8)441260(6)2424MP x z x x x x x =-+-=-+-=-+=-+≥, 当6x =时,2MP 取得最小值24,此时222282488HP HM MP =+=+=, 所以2HP 的最小值为88,故选B .5、如图,在棱长为2的正方体1111ABCD A B C D -中,E 为BC 的中点,点P 在底面ABCD 上(包括边界....)移动,且满足11B P D E ⊥,则线段1B P 的长度的最大值为A .55B .25C .2D .3【答案】D【分析】以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系,利用向量法能求出线段1B P 的长度的最大值.【解析】以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系,设P (a ,b ,0),则1D (0,0,2),E (1,2,0),1B (2,2,2),1B P =(a −2,b −2,−2),1D E =(1,2,−2), 因为1B P ⊥1D E ,()1122240B P D E a b ∴⋅=-+-+=, 所以a +2b −2=0,01b ≤≤,所以点P 的轨迹是一条线段,()()()()2222221224224548a b b B P b b b -+-+==+-+=-+, 由二次函数的性质可得当1b =时,2548b b -+可取到最大值9, 所以线段1B P 的长度的最大值为3.故选D .6、如图所示,在正方体1111ABCD A B C D -中,点P 是底面1111D C B A 内(含边界)的一点,且//AP 平面1DBC ,则异面直线1A P 与BD 所成角的取值范围为A .3,44ππ⎡⎤⎢⎥⎣⎦B .,42ππ⎡⎤⎢⎥⎣⎦C .,32ππ⎡⎤⎢⎥⎣⎦D .2,33ππ⎡⎤⎢⎥⎣⎦【答案】C【分析】连接111,,AB AD B D ,则点P 在线段11B D 上,以D 为坐标原点建立坐标系,利用向量方法可求出范围. 【解析】过A 作平面α平面1DBC ,点P 是底面1111D C B A 内(含边界)的一点,且//AP 平面1DBC ,则P ∈平面α,即P 在α与平面1111D C B A 的交线上,连接111,,AB AD B D ,11DD BB =,则四边形11BDD B 是平行四边形,11B D BD ∴,11B D ∴平面1DBC ,同理可证1AB ∥平面1DBC ,∴平面11AB D ∥平面1DBC ,则平面11AB D 即为α,点P 在线段11B D 上,以D 为坐标原点,1,,DA DC DD 建立如图坐标系,设正方体棱长为1,则()0,0,0D ,()1,1,0B ,()1,0,0A ,设(),,1P λλ,[]0,1λ∈,()1,1,0DB ∴=,()1,,1AP λλ=-,21DB AP λ∴⋅=-,2DB =,2222AP λλ=-+,设1A P 与BD 所成角为θ,则()22221211cos 2121DB APDB AP λλθλλλλ⋅--===-+⋅-+ 221313442121324λλλ=-=--+⎛⎫-+ ⎪⎝⎭,当12λ=时,cos θ取得最小值为0, 当0λ=或1时,cos θ取得最大值为12,10cos 2θ∴≤≤,则32ππθ≤≤.故选C .7、如图,三棱锥V ABC -的侧棱长都相等,底面ABC 与侧面VAC 都是以AC 为斜边的等腰直角三角形,E 为线段AC 的中点,F 为直线AB 上的动点,若平面VEF 与平面VBC 所成锐二面角的平面角为θ,则cos θ的最大值是A .33 B .23C 5D 6【答案】D【分析】连接BE ,以E 为原点,EB 为x 轴,EC 为y 轴,EV 为z 轴,建立空间直角坐标系,求出平面VBC 的一个法向量m ,平面VEF 的一个法向量n ,利用cos m n m nθ⋅=即可求解.【解析】底面ABC 与侧面VAC 都是以AC 为斜边的等腰直角三角形, 则Rt ABC Rt VAC ≅,所以VA VC BA BC === 设2VA VC BA BC VB =====,由E 为线段AC 的中点,则2VE BV ==, 由222VE BE VB +=,所以VE EB ⊥,以E 为原点,EB 为x 轴,EC 为y 轴,EV 为z 轴, 建立空间直角坐标系,如图所示:则()2,0C ,)2,0,0B,(2V ,设(),2,0F x x -,(0,2,2VC =-,(2,0,2VB =-,(2EV =,(,2,2VF x x =,设平面VBC 的一个法向量()111,,m x y z =,则00m VC m VB ⎧⋅=⎨⋅=⎩,即1111220220z x ⎧+=⎪⎨-=⎪⎩,令11x =,则11y =,11z =,所以()1,1,1m =. 设平面VEF 的一个法向量()222,,n x y z =,则00n EV n VF ⎧⋅=⎨⋅=⎩,即(222220220z x x x y z ⎧=⎪⋅+-⋅+=⎪⎩,解得20z =,令21y =,则221x x =-, 所以21,1,0n x ⎛⎫=- ⎪ ⎪⎝⎭, 平面VEF 与平面VBC 所成锐二面角的平面角为θ,则22cos 22232m n x m n x xθ⋅==-+,将分子、分母同除以1x,可得=令()2266632f x x x ⎛=-+=-+ ⎝⎭,当2x =时,()min 3f x =,则cos θ3=. 故选D【点睛】本题考查了空间向量法求二面角、考查了基本运算求解能力,解题的关键是建立恰当的空间直角坐标系,属于中档题.8、已知MN 是正方体内切球的一条直径,点P 在正方体表面上运动,正方体的棱长是2,则PM PN →→⋅的取值范围为 A .[]0,4 B .[]0,2C .[]1,4D .[]1,2【答案】B【分析】利用向量的线性运算和数量积运算律可将所求数量积化为21PO →-,根据正方体的特点可确定PO →的最大值和最小值,代入即可得到所求范围. 【解析】设正方体内切球的球心为O ,则1OM ON ==,2PM PN PO OM PO ON PO PO OM ON OM ON →→→→→→→→→→→→⎛⎫⎛⎫⎛⎫⋅=+⋅+=+⋅++⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,MN 为球O 的直径,0OM ON →→∴+=,1OM ON →→⋅=-,21PM PN PO →→→∴⋅=-,又P 在正方体表面上移动,∴当P 为正方体顶点时,PO →最大,最大值为;当P 为内切球与正方体的切点时,PO →最小,最小值为1,[]210,2PO →∴-∈,即PM PN →→⋅的取值范围为[]0,2.故选B .【点睛】本题考查向量数量积的取值范围的求解问题,关键是能够通过向量的线性运算将问题转化为向量模长的取值范围的求解问题.7、在正四面体D ABC -(所有棱长均相等的三棱锥)中,点E 在棱AB 上,满足2AE EB =,点F 为线段AC 上的动点.设直线DE 与平面DBF 所成的角为α,则A .存在某个位置,使得DE BF ⊥B .存在某个位置,使得4FDB π∠=C .存在某个位置,使得平面DEF ⊥平面DACD .存在某个位置,使得6πα=【答案】C【分析】设正四面体D ABC -的底面中心为点O ,连接DO ,则DO ⊥平面ABC ,以点O 为坐标原点,OB 、OD 所在直线分别为x 、z 轴建立空间直角坐标系,设正四面体D ABC -的棱长为2,然后利用空间向量法逐一分析求解可得结果. 【解析】如下图所示,设正四面体D ABC -的底面中心为点O ,连接DO ,则DO ⊥平面ABC ,以点O 为坐标原点,OB 、OD 所在直线分别为x 、z 轴建立空间直角坐标系, 设正四面体D ABC -的棱长为2,则31,0A ⎛⎫- ⎪ ⎪⎝⎭、23B ⎫⎪⎪⎝⎭、3C ⎛⎫ ⎪ ⎪⎝⎭、26D ⎛ ⎝⎭、31,03E ⎫-⎪⎪⎝⎭,设,03F λ⎛⎫- ⎪ ⎪⎝⎭,其中11λ-≤≤, 对于A 选项,若存在某个位置使得DE BF ⊥,31,333DE ⎛⎫=-- ⎪ ⎪⎝⎭,(),0BF λ=-,1103DE BF λ∴⋅=--=,解得3λ=-,不合乎题意,A 选项错误;对于B 选项,若存在某个位置使得4FDB π∠=,,33DF λ⎛=-- ⎝⎭,23DB ⎛=⎝⎭,cos ,DF DB DF DB DF DBλ⋅<>====⋅B选项错误;对于C 选项,设平面DAC 的一个法向量为()111,,m x y z =,1,DA ⎛=-- ⎝⎭,DC ⎛=-⎝⎭,由1111113033303m DA x y z m DC x y z ⎧⋅=---=⎪⎪⎨⎪⋅=-+-=⎪⎩,取11z =-,得()22,0,1m =-,设平面DEF 的一个法向量为()222,,n x y z =,31,3DE ⎛=- ⎝⎭,,DF λ⎛=- ⎝⎭, 由22222231033333n DE x y z n DF x y z λ⎧⋅=--=⎪⎪⎨⎪⋅=-+=⎪⎩,取y =,则()221n λ=+-,若存在某个位置,使得平面DEF ⊥平面DAC ,则2190m n λ⋅=+=,解得[]31,17λ=-∈-,合乎题意,C 选项正确;对于D 选项,设平面DBF 的一个法向量为()333,,u x y z =,2326,0,33DB ⎛⎫=- ⎪ ⎪⎝⎭,326,,33DF λ⎛⎫=-- ⎪ ⎪⎝⎭, 由333332326033326033u DB x z u DF x y z λ⎧⋅=-=⎪⎪⎨⎪⋅=-+-=⎪⎩,令z λ=,则()2,6,u λλ=,若存在某个位置,使得6πα=,即()()22612131sin cos ,6227272363u DE u DE u DEλλπλλ++⋅==<>===⋅⨯++⨯,整理得254120λλ-+=,162400∆=-<,该方程无解,D 选项错误. 故选C.【点评】本题考查利用空间向量法求解空间角以及利用空间向量法处理动点问题,计算量大,属于难题.10、如图,直三棱柱111ABC A B C -的底面是边长为6的等边三角形,侧棱长为2,E 是棱BC 上的动点,F 是棱11B C 上靠近1C 点的三分点,M 是棱1CC 上的动点,则二面角A FM E --的正切值不可能...是A .3155B .2155C .6D .5【答案】B【分析】建立空间直角坐标系,求得二面角A FM E --的余弦值,进而求得二面角A FM E --的正切值,求得正切值的最小值,由此判断出正确选项.【解析】取BC 的中点O ,连接OA ,根据等边三角形的性质可知OA BC ⊥,根据直三棱柱的性质,以O 为原点建立如图所示的空间直角坐标系.则()()0,33,0,1,0,2A F ,设()()3,0,02M t t ≤≤. 则()()1,33,2,2,0,2AF FM t =-=-. 设平面AMF 的一个法向量为(),,m x y z =,则()3320220m AF x z m FM x t z ⎧⋅=-+=⎪⎨⋅=+-=⎪⎩,令1y =,得633363,1,66t m t t ⎛= --⎝⎭. 平面FME 的一个法向量是()0,1,0n =,所以222cos ,28120252633363166m n m n m nt t t t t ⋅===⋅-+⎛⎫⎛⎫-++ ⎪ ⎪--⎝⎭⎝⎭,所以2sin ,1cos ,m n m n =-222710821628120252t t t t -+=-+所以二面角A FM E--的正切值为()sin ,27 cos,m nf tm n===因为02t≤≤,所以111466t-≤≤--,216125405-=-⨯结合二次函数的性质可知当1165t=--时,()f t5=;当1166t=--时,()f t=,所以()f t∈⎣,所以二面角A FM E--.故选B.【点睛】本小题主要考查二面角的求法,考查数形结合的数学思想方法,属于难题.11、直四棱柱ABCD﹣A1B1C1D1中,侧棱长为6,底面是边长为8的菱形,且∠ABC =120°,点E在边BC上,且满足BE=3EC,动点M在该四棱柱的表面上运动,并且总保持ME⊥BD1,则动点M的轨迹围成的图形的面积为_____;当MC与平面ABCD所成角最大时,异面直线MC1与AC所成角的余弦值为_____.【答案】,17【分析】由题意可知M的轨迹为过E且与直线1BD垂直的平面与直四棱柱的截面的边界,根据直棱柱的结构特征和底面棱形的性质,由线面垂直的定义可得截面与下底面的截线是与AC平行的,进而确定截面与与AB的交点F,建立空间直角坐标系,利用坐标方法求得截面与1BB的交点G,进而得到所求面积,根据线面角的定义可得M与G重合时MC与平面ABCD所成角最大,利用空间向量可求异面直线所成角的余弦值.【解析】如图,在直四棱柱1111ABCD A B C D-中,因为底面是菱形,侧棱垂直底面,所以AC ⊥平面11BDD B ,所以1BD AC ⊥.在AB 上取F ,使得3BF FA =,连接EF ,则//EF AC ,1⊥BD EF .记AC 与BD 的交点为O ,以O 为坐标原点,建立如图所示的空间直角坐标系O xyz -,则()4,0,0B ,()14,0,6D -,()1,33,0E .在1BB 上取一点G ,记为()4,0,G t ,于是()18,0,6BD =-,()3,33,EG t =-. 由12460BD EG t ⋅=-+=,得4t =,即12BG GB =, 所以EFG 的边为点M 的运动轨迹. 由题意得22213FG BF BG =+=33836344EF AC ==⨯= 动点M 的轨迹围成的图形的面积为()()22163213331532⨯-=显然当M 与G 重合时,MC 与平面ABCD 所成角最大. 因为()4,0,4M ,()10,43,6C ,所以()14,43,2MC =-. 因为AC 的一个方向向量为()0,1,0n =,所以1251cos ,17MC n =即异面直线1MC 与AC 251. 【点睛】本题考查点、线、面的位置关系,考查空间动点的轨迹,涉及线面垂直的判定与性质,异面直线所成的角,线面角,利用空间直角坐标系和空间向量确定点的位置和求异面直线所成的角,考查直观想象与数学运算的核心素养.属中档题,难度较大.12、如图,在直三棱柱111ABC A B C -中,已知90ABC ∠=︒,P 为侧棱1CC 上任意一点,Q 为棱AB 上任意一点,PQ 与AB 所成角为α,PQ 与平面ABC 所成的角为β,则α与β的大小关系为( )A .αβ=B .αβ<C .αβ>D .不能确定【答案】C【分析】建立空间直角坐标系设()()(),0,,0,,00,0,0P x z Q y x y z >≥≥,利用空间向量法分别求得cos ,cos αβ,然后根据(0,],0,22ππαβ⎡⎤∈∈⎢⎥⎣⎦,利用余弦函数的单调性求解.【解析】建立如图所示空间直角坐标系:设()()(),0,,0,,00,0,0P x z Q y x y z >≥≥,则()(),,,0,,0QP x y z QB y =-=-,所以2222,,QP QB y QP x y z QB y ⋅==++=,所以222cos QP QB y QP QBx y zα⋅==⋅++,又(0,],0,22ππαβ⎡⎤∈∈⎢⎥⎣⎦,222sin QP CP z QPx y zβ⋅==++,所以22222cos x y x y zβ+=++,所以cos cos βα>,因为cos y x = 在0,2π⎛⎫⎪⎝⎭上递减,所以αβ>,故选C 13、如图,在四棱柱1111ABCD A B C D -中,底面ABCD 为正方形,侧棱1AA ⊥底面ABCD ,3AB =,14AA =,P 是侧面11BCC B 内的动点,且1AP BD ⊥,记AP 与平面11BCC B 所成的角为θ,则tan θ的最大值为( )A .43B .53C .2D .259【答案】B【分析】建立空间直角坐标系,利用向量法能求出线面角的正切值的最大值. 【解析】以1,,DA DC DD 所在直线分别为,,x y z 轴,建立空间直角坐标系, 设(,3,)P x z ,则1(3,3,),(3,3,4)AP x z BD =-=--,11,0AP BD AP BD ⊥∴⋅=,33(3)3340,4x z z x ∴---⨯+=∴=, 22225||(3)6916BP x z x x ∴=-+=-+225488191625255x ⎛⎫=-+ ⎪⎝⎭, ||5tan ||3AB BP θ∴=,tan θ∴的最大值为53.故选B .14、如图,在棱长都相等的正三棱柱111ABC A B C -中,D 是棱1CC 的中点,E 是棱1AA 上的动点.设AE x =,随着x 增大,平面BDE 与底面ABC 所成锐二面角的平面角是( )A .增大B .先增大再减小C .减小D .先减小再增大【答案】D【解析】设正三棱柱111ABC A B C -棱长为2,,02AE x x =≤≤, 设平面BDE 与底面ABC 所成锐二面角为α,以A 为坐标原点,过点A 在底面ABC 内与AC 垂直的直线为x 轴,1,AC AA 所在的直线分别为,y z 轴建立空间直角坐标系,则3,1,0),(0,2,1),(0,0,),(3,1,1),(0,2,1)B D E x BD ED x =-=-,设平面BDE 的法向量(,,)m s t k =,则m BDm ED⎧⊥⎨⊥⎩,即302(1)0s t k t x k ⎧-++=⎪⎨+-=⎪⎩,令3k =33,1t x s x =-=+,所以平面BDE 的一个法向量(1,33,23)m x x =+-, 底面ABC 的一个法向量为(0,0,1)n =,222233cos |cos ,|115(1)3(1)12()24m n x x x α=<>==++-+-+当1(0,)2x ∈,cos α随着x 增大而增大,则α随着x 的增大而减小,当1(,2)2x ∈,cos α随着x 增大而减小,则α随着x 的增大而增大.故选D .【点睛】本题考查空间向量法求二面角,应用函数思想讨论二面角的大小,考查直观想象、数学计算能力,素养中档题.15、如图所示,在正方体1111ABCD A B C D -中,点P 是底面1111D C B A 内(含边界)的一点,且//AP 平面1DBC ,则异面直线1A P 与BD 所成角的取值范围为( )A .3,44ππ⎡⎤⎢⎥⎣⎦B .,42ππ⎡⎤⎢⎥⎣⎦C .,32ππ⎡⎤⎢⎥⎣⎦D .2,33ππ⎡⎤⎢⎥⎣⎦【答案】C【解析】过A 作平面α平面1DBC ,点P 是底面1111D C B A 内(含边界)的一点,且//AP 平面1DBC ,则P ∈平面α,即P 在α与平面1111D C B A 的交线上,连接111,,AB AD B D ,11DD BB =,则四边形11BDD B 是平行四边形,11B D BD ∴,11B D ∴平面1DBC ,同理可证1AB ∥平面1DBC ,∴平面11AB D ∥平面1DBC ,则平面11AB D 即为α,点P 在线段11B D 上,以D 为坐标原点,1,,DA DC DD 建立如图坐标系,设正方体棱长为1,则()0,0,0D ,()1,1,0B ,()1,0,0A ,设(),,1P λλ,[]0,1λ∈,()1,1,0DB ∴=,()1,,1AP λλ=-,21DB AP λ∴⋅=-,2DB =,2222AP λλ=-+,设1A P 与BD 所成角为θ,则()22221211cos 2121DB APDB AP λλθλλλλ⋅--===-+⋅-+221313442121324λλλ=-=--+⎛⎫-+⎪⎝⎭12λ=时,cos θ取得最小值为0, 当0λ=或1时,cos θ取得最大值为12,10cos 2θ∴≤≤,则32ππθ≤≤.故选C .16、如图,矩形ABCD 中,222AB AD ==E 为边AB 的中点,将ADE 沿直线DE 翻折成1A DE △.在翻折过程中,直线1A C 与平面ABCD 所成角的正弦值最大为( )A .1024- B .66C .514-D .55【答案】A【解析】分别取DE ,DC 的中点O ,F ,则点A 的轨迹是以AF 为直径的圆, 以,OA OE 为,x y 轴,过O 与平面AOE 垂直的直线为z 轴建立坐标系,则()2,1,0C -,平面ABCD 的其中一个法向量为n = (0,0.1), 由11A O =,设()1cos ,0,sin A αα,则()1cos 2,1,sin CA αα=+-, 记直线1A C与平面ABCD 所成角为θ,则211|sin 1cos sin 4cos 64cos 6||CA nCA n αθαα⋅-===++⋅,设3153535102cos ,,sin 222416444t t t αθ-⎡⎤⎛⎫=+∈=-+≤-=⎪⎢⎥⎣⎦⎝⎭ 所以直线1A C 与平面ABCD 所成角的正弦值最大为1024-,故选A . (多选)17、在正方体1111ABCD A B C D -中,若棱长为1,点,E F 分别为线段11B D 、1BC 上的动点,则下列结论正确结论的是( )A .1DB ⊥面1ACD B .面11//AC B 面1ACDC .点F 到面1ACD 的距离为定值33D .直线AE 与面11BB D D 所成角的正弦值为定值13【答案】ABC【分析】以A 为坐标原点建立空间直角坐标系,利用共线向量可表示出动点,E F 的坐标,利用空间向量判断线面垂直、面面平行、求解点到面的距离和直线与平面所成角的方法依次验证各个选项即可得到结果.【解析】以A 为坐标原点可建立如下图所示的空间直角坐标系:由题意知:()0,0,0A ,()1,0,0B ,()1,1,0C ,()0,1,0D ,()10,0,1A ,()11,0,1B ,()11,1,1C ,()10,1,1D ,设(),,1E x y ,111B E B D λ→→=,即()()1,,0,,0x y λλ-=-,()1,,1E λλ∴-, 设()1,,F y z '',1BF BC μ→→=,即()()0,,0,,y z μμ''=,()1,,F μμ∴. 对于A ,()11,1,1DB →=-,()1,1,0AC →=,()10,1,1AD →=,11100DB AC DB AD ⎧⋅=⎪∴⎨⋅=⎪⎩,1DB AC ∴⊥,11DB AD ⊥, 又1,AC AD ⊂平面1ACD ,1AC AD A =,1DB ∴⊥平面1ACD ,A 正确;对于B ,1DB ⊥平面1ACD ,()11,1,1DB →∴=-为平面1ACD 的一个法向量,()111,1,0A C →=,()11,0,1A B →=-,111110DB A C DB A B ⎧⋅=⎪∴⎨⋅=⎪⎩,111DB AC ∴⊥,11DB A B ⊥, 又111,A C A B ⊂平面11A C B ,1111AC A B A =,1DB ∴⊥平面11A C B ,∴平面11//AC B平面1ACD ,B 正确;对于C ,()1,,AF μμ→=,∴点F 到面1ACD 的距离111333AF DB d DB →→→⋅===,为定值,C 正确;对于D ,几何体为正方体,AC ∴⊥平面11BB D D ,()1,1,0AC →∴=是平面11BB D D 的一个法向量,又()1,,1AE λλ→=-,设直线AE 与平面11BB D D 所成角为θ,则21sin 2222AC AEAC AEθλλ→→→→⋅==⋅-+⋅,不是定值,D 错误.故选ABC .(多选)18、如图所示,正方体1111ABCD A B C D -中,1AB =,点P 在侧面11BCC B 及其边界上运动,并且总是保持1AP BD ⊥,则以下四个结论正确的是( )A .113P AA D V -=B .点P 必在线段1BC 上 C .1AP BC ⊥D .//AP 平面11AC D【答案】BD【分析】根据三棱锥体积公式求得116P AA D V -=,知A 错误;以D 为坐标原点建立空间直角坐标系,利用空间向量法可得到1CP x B C →→=-,11AP BC →→⋅=,AP →垂直于平面11AC D 的法向量n →,由此可确定,,B C D 的正误.【解析】对于A ,P 在平面11BCC B 上,平面11//BCC B 平面1AA D ,P ∴到平面1AA D 即为C 到平面1AA D 的距离,即为正方体棱长,1111111113326P AA D AA D V S CD -∴=⋅=⨯⨯⨯⨯=△,A 错误;对于B ,以D 为坐标原点可建立如下图所示的空间直角坐标系:则()1,0,0A ,(),1,P x z ,()1,1,0B ,()10,0,1D ,()11,1,1B ,()0,1,0C()1,1,AP x z →∴=-,()11,1,1BD →=--,()11,0,1B C →=--,1AP BD ⊥,1110AP BD x z →→∴⋅=--+=,x z ∴=,即(),1,P x x ,(),0,CP x x →∴=,1CP x B C →→∴=-,即1,,B P C 三点共线,P ∴必在线段1B C 上,B 正确; 对于C ,()1,1,AP x x →=-,()11,0,1BC →=-,111AP BC x x →→∴⋅=-+=,AP ∴与1BC 不垂直,C 错误;对于D ,()11,0,1A ,()10,1,1C ,()0,0,0D ,()11,0,1DA →∴=,()10,1,1DC →=,设平面11AC D 的法向量(),,n x y z →=,1100n DA x z n DC y z ⎧⋅=+=⎪∴⎨⋅=+=⎪⎩,令1x =,则1z =-,1y =,()1,1,1n →∴=-, 110AP n x x →→∴⋅=-+-=,即AP n →→⊥,//AP ∴平面11ACD ,D 正确.故选BD . (多选)19、如图所示,棱长为1的正方体1111ABCD A B C D -中,P 为线段1A B 上的动点(不含端点),则下列结论正确的是( )。
中考数学复习动点折叠类问题函数图象中动点折叠问题解析版
例6.(2019·湖州)如图1,已知在平面直角坐标系xOy 中,四边形OABC 是矩形,点A 、C 分别在x 轴和y 轴的正半轴上,连接AC ,OA =3,tan ∠OAC D 是BC 的中点. (1)求OC 的长和点D 的坐标;(2)如图2,M 是线段OC 上的点,OM =23OC ,点P 是线段OM 上的一个动点,经过P 、D 、B 三点的抛物线交x 轴的正半轴于点E ,连接DE 交AB 于点F .①将△DBF 沿DE 所在的直线翻折,若点B 恰好落在AC 上,求此时BF 的长和点E 的坐标;②以线段DF 为边,在DF 所在直线的右上方作等边△DFG ,当动点P 从点O 运动到点M 时,点G 也随之运动,请直接写出点G 运动路径的长.【答案】见解析【解析】解:(1)∵OA =3,tan ∠OAC =3,在Rt △AOC 中,tan ∠OAC =OC OA∴OC∵ABCD 是矩形,∴BC =OA =3,又D 是BC 的中点,∴CD =32,即D 的坐标为(32 (2)①由tan∠OAC=3,知:∠OAC=30°,∴∠ACB=∠OAC=30°,若△DBF折叠后,B的落点为B’由折叠性质,知:DB’=DB=DC,∠BDF=∠B’DF,∴∠DB’C=∠ACB=30°,∴∠BDB’=60°,∠BDF=30°,在Rt△BDF中,BF=BD·tan30°=2∵AB∴AF=BF=2,在△BFD和△AFE中,∠BFD=∠EF A,∠B=∠F AE=90°,AF=BF,∴△BFD≌△AFE,∴AE=BD=3 2即OE=OA+AE=92,故E点坐标为(92,0)②由题意知:F点横坐标不变为3,而∠DFB=60°,即G点与F点的连线与y轴平行,即G点横坐标不变,所以G点运动轨迹为一条线段,求出P点从O点至M点运动过程中,G点的纵坐标的差即为G点运动路径的长.y=ax2+bx,将点D(32, B(3934293a ba b⎧+=⎪⎨⎪+=⎩解得:ab⎧=⎪⎨⎪=⎩,即抛物线解析式为:2y=令y=0,得1292x x==,,即E(92,0),设直线DE的解析式为:y=kx+b,将D(32、E(92,0)代入得:y x=+令x=3,得y=2,即F(3,2),由BF=BG得,G(3,2).y =ax 2+bx +c ,将点D (32, B (3,M (0 934293a b c a b c c ⎧++=⎪⎪⎪++=⎨⎪⎪=⎪⎩,抛物线解析式为:22733y x x =-++ 令y =0,得12362x x =-=,,即E (6,0),设直线DE 的解析式为:y =kx +b ,将D (32、E (6,0)代入得: y x =+ 令x =3,得y 即F (3, 3),由BF =BG 得,G (3,3) 即G 点由(3,2)运动至(3,3),运动路径长为:2-3=6.。
2020数学中考备考-专题06 动点折叠类问题中图形存在性问题
专题06 动点折叠类问题中图形存在性问题一、基础知识点综述要求学生具备:运动观点;方程思想;数形结合思想;分类讨论思想;转化思想等等.存在性问题主要有等腰三角形存在性、直角三角形存在性、特殊落点存在性等问题,常用的数学解题模型有“一线三直角”等模型,作图方法是借助圆规化动为静找落点.解题思路:分析题目→依据落点定折痕→建立模型→设出未知数列方程求解→得到结论.解题核心知识点:折叠性质;①折叠前后图形大小、形状不变;②折痕是折叠前后对应点连线的垂直平分线;勾股定理;相似图形的性质、三角函数等.★等腰三角形存在性问题解题思路:依据圆规等先确定落点,再确定折痕;★直角三角形存在性问题解题思路:依据不同直角顶点位置分类讨论,作出图形求解.二、精品例题解析题型一:折叠问题中等腰三角形存在性问题例1.(2019金水区校级模拟)如图,∠AOB=90°,点P为∠AOB内部一点,作射线OP,点M在射线OB上,且OM= ,点M与点M’关于射线OP对称,且直线MM’与射线OA交于点N,当△ONM’为等腰三角形时,ON的长为.【解析】解:由△ONM’为等腰三角形,分以下三种情况讨论:①当M’落在线段ON的垂直平分线上时,即M’N=M’O,如图1所示,设∠ONM’=x°,则∠OM’M=∠OMM’ =2x°,∵∠AOB=90°,∴x+2x=90,解得x=30,在Rt △NOM 中,ON =°=3tan 30OM;②当M ’N =ON 时,如图2所示,由①知:∠NOM ’=30°,过M ’作M ’H ⊥OA 于H ,∴HM’=12在Rt △HNM ’中,NM ’=°'=1cos30HM ,即ON =1;③当M ’O =ON =OM此时M 、M ’、N 点不在一条直线上,与题意不符,此种情况不存在.ON 的长为1或3.A NHNHN图1 图2 图3例2.如图所示,△ABC 中,∠ACB =90°,AC≤BC ,将△ABC 沿EF 折叠,使点A 落在直角边BC 上的D 点,设EF 与AB 、AC 分别交于点E 、点F ,如果折叠后△CDF 与△BDE 均为等腰三角形,则∠B =.【解析】由题意知,△CDF 是等腰三角形,则CD =CF ,∠CDF =∠CFD =45°,∴∠FDB =135°,△BDE 是等腰三角形时,分以下三种情况讨论:①当DE =BD 时,如图1,设∠B =x °,则∠DEB =x ,∠EDB =180°-2x , 由折叠知:∠A =∠FDE =90°-x ,∴180-2x +90-x =135,解得x =45,即∠B =45°;②当BD =BE 时,如图2所示,设∠B =x °,则∠EDB =°1802x -,由折叠,知∠A =∠FDE =90°-x ,∴1802x-+90-x =135,解得x =30,即∠B =30°;③当BE =DE 时,得∠B =∠EDB ,∴∠FDB =∠FDE +∠EDB =∠A +∠B =90°∠FDB +∠CDF =135°≠180°,此时C 、D 、B 点不在一条直线上,与题意不符,此种情况不存在.∠B =45°或30°.AA图1 图2 题型二:折叠问题中直角三角形存在性问题例3.在矩形纸片ABCD 中,AD =8,AB =6,E 是边BC 上的点,将纸片沿AE 折叠,使点B 落在点F 处,连接FC ,当△EFC 为直角三角形时,BE 的长为 .【解析】∵AD =8,AB =6,四边形ABCD 为矩形,∴BC =AD =8,∠B =90°,根据勾股定理得:AC =10. 由分析知,△EFC 为直角三角形分下面两种情况:①当∠EFC =90°时,如图1所示,由折叠性质知:∠AFE =∠B =90°,∠EFC =90°,AF =AB =6,∴A 、F 、C 三点共线,又AE 平分∠BAC ,∴CF =AC -AF =4,设BE =x ,则EF =x ,EC =8-x ,在Rt △EFC 中,由勾股定理得:()22248x x +=-,解得x =3,即BE =3;②当∠FEC =90°时,如下图所示.由题意知:∠FEC =90°,∠FEB =90°,∴∠AEF =∠BEA =45°,∴四边形ABEF 为正方形,∴BE =AB =6.综上所述:BE 的长为3或6.图1 图2例4.(2019唐河县三模)矩形ABCD 中,AB =4,AD =6,点E 为AD 的中点,点P 为线段AB 上一个动点,连接EP ,将△APE 沿PE 折叠得到△FPE ,连接CE ,CF ,当△CEF 为直角三角形时,AP 的长为.【解析】分以下两种情况讨论:(1)∠EFC =90°,如图1所示,由折叠性质知:∠A =∠PFE =90°,AP =PF 所以点P 、F 、C 在一条直线上,∵EF =ED =3,∴Rt △CEF ≌Rt △CED ,由勾股定理,得CE =5,∴CD =CF =4, 设AP =x ,则PF =x ,PC =x +4,BP =4-x ,在Rt △BCP 中,由勾股定理,得()()222446x x +=-+,解得x =94,即AP =94;(2)∠FEC =90°,如图2所示,过F 作FH ⊥AD 于H ,过P 作PG ⊥FH 于G ,易知∠EFH =∠ECD ,∴FH DE EF CE =,∴335FH =,即FH =95, ∴EH =125,AH =PG =35,由∠FPG =∠HFE ,∴cos∠FPG = cos ∠HFE ,即PG FH PF EF =,39553PF =,解得PF =1;所以PF 的长为94或1.图1 图2例5.(2019许昌二模)如图,已知平行四边形ABCD 中,AB =16, AD =10,sinA =35, 点M 为AB 边上一动点,过点M 作MN ⊥AB 交AD 边于点N ,将∠A 沿直线MN 翻折,点A 落在线段AB 上的点E 处. 当△CDE 为直角三角形时,AM 的长为.【解析】当△CDE 为直角三角形时,①当∠CDE =90°,如图1所示,在平行四边形ABCD 中,AB ∥CD , ∴DE ⊥AB ,由折叠知:MN ⊥AB ,AM =EM ,∴MN ∥DE ,∴AN =DN =12AD =5,由sinA =MN AN =35, ∴MN =3,AM =4;②当∠DEC =90°,如图2所示,过D 作DH ⊥AB 于H ,由题意知:∠HDC =90°, ∴∠HDC +∠CDE =∠CDE +∠DCE =90°,∴∠HDE =∠DCE ,∴△DHE ∽△CED ,∴D E C DE H D E,∵sinA=35,AD =10,∴DH =6,AH =8,设EH =x ,∴DE =DH 2+HE 2=DE 2,62+x 2=16x ,解得:x =8﹣,x =(不合题意舍去),∴AE =AH +HE =16﹣,∴AM =8,所以AM 的长为4或8.例6.如图,在Rt △ABC 中,AB =3,BC =4,点P 为AC 上一点,过点P 作PD ⊥BC 于点D ,将△PCD 沿PD 折叠,得到△PED ,连接AE .若△APE 为直角三角形,则PC =___________.【解析】当∠AEP =90°时,设PC =x ,在Rt △PDC 中,sinC =35,cosC =45,所以PD =35x ,CD =45x .由折叠,知DE =CD =45x .∴BE =BC ﹣CE =125x .在△ABE 和△EDP 中,∠B =∠PDE ,∠BAE +∠AEB=90°,∠PED+∠AEB=90°,∴∠BAE=∠PED.∴△ABE∽△EPD.∴BE DPAB DE=,即123534x=,解得x=15 16.例7.如图,在Rt△ABC中,AC=8,BC=6,点D为斜边AB上一点,DE⊥AB交AC于点E,将△AED沿DE翻折,点A的对应点为点F.如果△EFC是直角三角形,那么AD的长为.【解析】由勾股定理得:AB=10,(1)若∠CFE=90°,在Rt△ABC中,∠ACB=90°,∴∠1+∠2=∠B+∠A=90°,由折叠知:∠A=∠2,AE=EF,∴∠1=∠B,即CF=BC=6,在Rt△CEF中,由勾股定理得:CE2=EF2+CF2,CE2=(8﹣CE)2+62,∴CE=254,∴AE=74,由△ADE∽△ACB,得:AE AD AB AC=∴AD=75;(2)当∠ECF=90°时,点F与B重合,AD=5;(3)当∠CEF=90°时,则EF∥BC,∠AFE=∠B,∵∠A=∠AFE,∴∠A=∠B,∴AC=BC(与题设矛盾),∴这种情况不存在,例8.(2019河南模拟)在矩形ABCD 中,AB =3,BC =4,点E ,F 分别为BC ,AC 上的两个动点,将△CEF 沿EF 折叠,点C 的对应点为G ,若点G 落在射线AB 上,且△AGF 恰为直角三角形,则线段CF 的长为 【解析】(1)当∠AFG =90°时,如图所示, 设CF =y可得△AFG ∽△ABC∴AF GFAB BC =即534y y -=解得x =207;(2)当∠AGF =90°时,如图, 设CF =x在Rt △ABC 中,AB =3,BC =4, 由勾股定理得AC =5 由折叠知:GF =FC . ∵∠AGF =∠ABC =90° ∴GF ∥EC ∴△AGF ∽△ABC∴AF GFAC BC =即554x x -=解得x =209。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题06 动点折叠类问题中图形存在性问题一、基础知识点综述动点型问题是指题设中的图形中存在一个或多个动点,它们在线段、射线、直线、抛物线、双曲线、弧线等上运动的一类非常具有开放性的题目. 而从其中延伸出的折叠问题,更能体现其解题核心——动中求静,灵活运用相关数学知识进行解答,有时需要借助或构造一些数学模型来解答.实行新课标以来,各省(市)的中考数学试卷都会有此类题目,这些题目往往出现在选择、填空题的压轴部分,题型繁多,题意新颖,具有创新力. 其主要考查的是学生的分析问题及解决问题的能力.要求学生具备:运动观点;方程思想;数形结合思想;分类讨论思想;转化思想等等.存在性问题主要有等腰三角形存在性、直角三角形存在性、特殊落点存在性等问题,常用的数学解题模型有“一线三直角”等模型,作图方法是借助圆规化动为静找落点.解题思路:分析题目→依据落点定折痕→建立模型→设出未知数列方程求解→得到结论.解题核心知识点:折叠性质;①折叠前后图形大小、形状不变;②折痕是折叠前后对应点连线的垂直平分线;勾股定理;相似图形的性质、三角函数等.★等腰三角形存在性问题解题思路:依据圆规等先确定落点,再确定折痕;★直角三角形存在性问题解题思路:依据不同直角顶点位置分类讨论,作出图形求解.二、精品例题解析题型一:折叠问题中等腰三角形存在性问题例1.(2019·金水区校级模拟)如图,∠AOB=90°,点P为∠AOB内部一点,作射线OP,点M在射线OB上,且OM= ,点M与点M’关于射线OP对称,且直线MM’与射线OA交于点N,当△ONM’为等腰三角形时,ON的长为.【分析】分三种情况讨论:①当M ’落在线段ON 的垂直平分线上时,即M ’N =M ’O ,设∠ONM =x °,通过三角形外角定理及三角形内角和定理求得x =30°,进而利用三角函数求得ON 的长; ②当M ’N =ON 时,作出图形,得到∠ONM ’度数,利用三角函数求解;③当M ’O =ON =OMM 、M ’、N 点不在一条直线上,与题意不符,此种情况不存在.【答案】1或3.【解析】解:由△ONM ’为等腰三角形,分以下三种情况讨论:①当M ’落在线段ON 的垂直平分线上时,即M ’N =M ’O ,如图所示,设∠ONM ’=x °,则∠OM ’M =∠OMM ’ =2x °,∵∠AOB =90°,∴x +2x =90,解得:x =30,在Rt △NOM 中,ON =°=3tan 30OM ; ②当M ’N =ON 时,如下图所示,ANH由①知:∠NOM ’=30°,过M ’作M ’H ⊥OA 于H ,∴HM’=1OM'=22, 在Rt △HNM ’中,NM ’=°'=1cos30HM , 即ON =1;③当M ’O =ON =OM此时M 、M ’、N 点不在一条直线上,与题意不符,此种情况不存在.故答案为:1或3.例2.(2017·蜀山区期末)如图所示,△ABC 中,∠ACB =90°,AC ≤BC ,将△ABC 沿EF 折叠,使点A 落在直角边BC 上的D 点,设EF 与AB 、AC 分别交于点E 、点F ,如果折叠后△CDF 与△BDE 均为等腰三角形,则∠B = .【分析】由题意知,△CDF 是等腰三角形,则CD =CF ,△BDE 是等腰三角形时,分三种情况讨论:①当DE =BD 时,设∠B =x °,通过翻折性质及三角形内角和定理求得x =45;②当BD =BE 时,作出图形,设∠B =x °,通过翻折性质及三角形内角和定理求得x =30;NHN③当BE=DE时,得∠FDB=90°,∠FDB+∠CDF=135°≠180°,此时C、D、B点不在一条直线上,与题意不符,此种情况不存在.【答案】45°或30°.【解析】解:由题意知,△CDF是等腰三角形,则CD=CF,∠CDF=∠CFD=45°,∴∠FDB=135°,△BDE是等腰三角形时,分以下三种情况讨论:①当DE=BD时,见下图,设∠B=x°,则∠DEB=x,∠EDB=180°-2x,由折叠知:∠A=∠FDE=90°-x,∴180-2x+90-x =135,解得:x=45,即∠B=45°;②当BD=BE时,如下图所示,设∠B=x°,则∠EDB=°1802x-,由折叠知:∠A=∠FDE=90°-x,∴1802x-+90-x =135,解得:x=30,AA即∠B=30°;③当BE=DE时,得∠B=∠EDB,∴∠FDB=∠FDE+∠EDB=∠A+∠B=90°,∠FDB+∠CDF=135°≠180°,此时C、D、B点不在一条直线上,与题意不符,此种情况不存在.故答案为:45°或30°.题型二:折叠问题中直角三角形存在性问题例3.(2017·营口)在矩形纸片ABCD中,AD=8,AB=6,E是边BC上的点,将纸片沿AE折叠,使点B落在点F处,连接FC,当△EFC为直角三角形时,BE的长为.【分析】根据题意作出图形,通过分析可知:点E、F均可为直角顶点,因此分两种情况讨论,作出图形后,根据勾股定理等知识求得结果.【答案】3或6.【解析】解:∵AD=8,AB=6,四边形ABCD为矩形,∴BC=AD=8,∠B=90°,根据勾股定理得:AC=10.由分析知,△EFC为直角三角形分下面两种情况:①当∠EFC=90°时,如下图所示,由折叠性质知:∠AFE=∠B=90°,∠EFC=90°,AF=AB=6,∴A、F、C三点共线,又AE平分∠BAC,∴CF=AC-AF=4,设BE=x,则EF=x,EC=8-x,在Rt△EFC中,由勾股定理得:()222+=-,x x48解得:x=3,即BE=3;②当∠FEC=90°时,如下图所示.由题意知:∠FEC=90°,∠FEB=90°,∴∠AEF=∠BEA=45°,∴四边形ABEF为正方形,∴BE=AB=6.综上所述:BE的长为3或6.故答案为:3或6.例4.(2019·唐河县三模)矩形ABCD中,AB=4,AD=6,点E为AD的中点,点P为线段AB上一个动点,连接EP,将△APE沿PE折叠得到△FPE,连接CE,CF,当△CEF为直角三角形时,AP的长为.【分析】当△CEF为直角三角形时,通过分析知:∠FCE<90°,不可能为直角顶点,故分两种情况讨论:∠EFC=90°或∠FEC=90°,作出图形求解;【答案】94或1.【解析】解:分以下两种情况讨论:(1)∠EFC=90°,如下图所示,由折叠性质知:∠A=∠PFE=90°,AP=PF所以点P 、F 、C 在一条直线上,∵EF =ED =3,∴Rt △CEF ≌Rt △CED ,由勾股定理得:CE =5,∴CD =CF =4,设AP =x ,则PF =x ,PC =x +4,BP =4-x ,在Rt △BCP 中,由勾股定理得:()()222446x x +=-+,解得:x =94,即AP =94;(2)∠FEC =90°,如下图所示,过F 作FH ⊥AD 于H ,过P 作PG ⊥FH 于G ,易知∠EFH =∠ECD , ∴FH DEEF CE =, ∴335FH=,即FH =95, ∴EH =125,AH =PG =35,由∠FPG =∠HFE ,∴cos ∠FPG = cos ∠HFE , 即PGFHPF EF =,39553PF =,解得:PF =1;故答案为:94或1.例5.(2019·许昌二模)如图,已知平行四边形ABCD中,AB=16, AD=10,sinA=35, 点M为AB边上一动点,过点M作MN⊥AB交AD边于点N,将∠A沿直线MN翻折,点A落在线段AB上的点E处. 当△CDE为直角三角形时,AM的长为.【分析】分两种情况讨论:当∠CDE=90°,根据折叠的性质及勾股定理求解;当∠DEC=90°,过D 作DH⊥AB于H,根据相似三角形的性质:得到DH=6,AH=8,设EH=x,根据勾股定理得到x=8﹣,x=(舍去),得AE=AH+HE=16﹣,于是得到AM=8.【答案】4或8.【解析】解:当△CDE为直角三角形时,①当∠CDE=90°,如下图所示,在平行四边形ABCD中,AB∥CD,∴DE⊥AB,由折叠知:MN⊥AB,AM=EM,∴MN∥DE,∴AN=DN=12AD=5,由sinA=MNAN=35,∴MN=3,AM=4;②当∠DEC=90°,如下图所示,过D作DH⊥AB于H,由题意知:∠HDC=90°,∴∠HDC+∠CDE=∠CDE+∠DCE=90°,∴∠HDE=∠DCE,∴△DHE∽△CED,∴DE CD EH DE,∵sinA=35,AD=10,∴DH=6,AH=8,设EH=x,∴DE=由勾股定理得:DH2+HE2=DE2,62+x2=16x,解得:x=8﹣,x=(不合题意舍去),∴AE=AH+HE=16﹣,∴AM=8,故答案为:4或8.例6.(2019·金水区校级一模)如图,在Rt△ABC中,AB=3,BC=4,点P为AC上一点,过点P作PD⊥BC于点D,将△PCD沿PD折叠,得到△PED,连接AE.若△APE为直角三角形,则PC=.【答案】15 16.【解析】解:当∠AEP=90°时,设PC=x,在Rt△PDC中,sinC=35,cosC=45,所以PD =35x ,CD =45x . 由折叠知:DE =CD =45x . ∴BE =BC ﹣CE =125x . 在△ABE 和△EDP 中,∠B =∠PDE ,∠BAE +∠AEB =90°,∠PED +∠AEB =90°,∴∠BAE =∠PED .∴△ABE ∽△EPD . ∴BE DP AB DE =,即123534x =,解得x =1516. 故答案为:1516. 例7.(2019·卧龙区一模)如图,在Rt △ABC 中,AC =8,BC =6,点D 为斜边AB 上一点,DE ⊥AB交AC 于点E ,将△AED 沿DE 翻折,点A 的对应点为点F .如果△EFC 是直角三角形,那么AD 的长为 .【分析】根据勾股定理得到AB =10,分三种情况讨论:∠CFE =90°,∠ECF =90°,∠CEF =90°时,得到结论. 【答案】75或5. 【解析】解:在Rt △ABC 中,AC =8,BC =6,由勾股定理得:AB =10,(1)若∠CFE =90°,在Rt △ABC 中,∠ACB =90°,∴∠1+∠2=∠B+∠A=90°,由折叠知:∠A=∠2,AE=EF,∴∠1=∠B,即CF=BC=6,在Rt△CEF中,由勾股定理得:CE2=EF2+CF2,CE2=(8﹣CE)2+62,∴CE=254,∴AE=74,由△ADE△△ACB,得:AE AD AB AC∴AD=75;(2)当∠ECF=90°时,点F与B重合,AD=5;(3)当∠CEF=90°时,则EF∥BC,∠AFE=∠B,∵∠A=∠AFE,∴∠A=∠B,∴AC=BC(与题设矛盾),∴这种情况不存在,故答案为:75或5.例8.(2019·河南模拟)在矩形ABCD中,AB=3,BC=4,点E,F分别为BC,AC上的两个动点,将△CEF沿EF折叠,点C的对应点为G,若点G落在射线AB上,且△AGF恰为直角三角形,则线段CF 的长为【答案】2020 79或.【解析】解:(1)当∠AFG=90°时,如下图所示,设CF=y可得:△AFG∽△ABC∴AF GF AB BC=即534y y -=解得:x=207;(2)当∠AGF=90°时,如下图,设CF=x在Rt△ABC中,AB=3,BC=4,由勾股定理得:AC=5由折叠知:GF=FC.∵∠AGF=∠ABC=90°∴GF∥EC∴△AGF∽△ABC∴AF GF AC BC=即554x x -=解得:x=209;故答案为:2020 79或.。