立体几何中的动点轨迹问题讲解

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

立体几何中的动点轨迹问题讲解

这类问题在高考中并不常见,或者说在高考中出现得并不明显,但在用空间向量求二面角时偶尔会遇到一种题目,即需要用到的点并不是一个确定的点,而是在一个面上的动点,且这个点还满足一些特定的值或平面几何关系,此时需要根据条件确定出动点所在的轨迹,在每年高考前的模拟题中也会遇到这种题目,若在选填中,则一般位于压轴或次压轴位置,求几何体中动点的轨迹或者与轨迹求值相关的问题,在解析几何中满足条件的动点都会有特定的轨迹,动点绝不是乱点,在几何体中依旧如此。

这种题目做法和平面几何求轨迹方程类似,因为点在面内(非平面),所求的轨迹一般有四种,即线段型,平面型,二次曲线型,球型,这四种情况没有过于明显的界限,知道就好,下列题目中就不再分门别类的去叙述了。

立体几何中与动点轨迹有关的题目归根到底还是对点线面关系的认知,其中更多涉及了平行和垂直的一些证明方法,在此类问题中要么很容易的看出动点符合什么样的轨迹(定义),要么通过计算(建系)求出具体的轨迹表达式,和解析几何中的轨迹问题并没有太大区别。

题目中可以找到与AM垂直且包含OP的平面,这样动点P的轨迹就知道了,从O点向底面作垂线,垂足为O',连接BO',可知AM⊥平面OO'B,即可得知P的轨迹。

但题目是在规则的正方体中,直线OP和AM为异面直线,两者成90°的特殊角度,根据射影法求异面直线的夹角方法,我们只需确定出OP在底面上的投影位置即可。

与上题类似,需要找到一个与BD1垂直且包含AP的平面,根据三垂线定理可知BD1⊥AC,BD1⊥AB1,所以BD1⊥平面ACB1,平面ACB1与有侧面的交线为B1C,所以点P的轨迹为线段B1C

与上两题不同,本题目有两个动点,求双动点中点的轨迹方程,这种题目在之前的解析几何中出现过。

此类问题的处理方法是把双动点中的一个看做定点,分别来求,本题目也是这样,先把P,Q两点中的一个当做是特殊定点,例如先把P看做定点,Q为动点,若点P为B点,此时Q 点在A1C1运动,PB的中点轨迹即为三角形BA1C1的中位线,中位线的两个端点分别位于平面A1B和平面BC1上,当点P为D点,此时的轨迹为三角形DA1C1的中位线,同理当点P为动点,Q为定点时也是如此,综上点M的轨迹图形为菱形,即上图中红线和蓝线所围成的菱形,面积为24,过程不再给出。

题目是十几年前的老题,考查的是空间几何中最基础的点线面的关系,求几何体内动点的轨迹转化到其中一个面上来,点P到C1D1的距离即点P到C1的距离,因此题目为动点P到定点C1的距离等于动点P到直线BC的距离,可知点P的轨迹为抛物线,但并不是完整的一个抛物线,而是其中的一小段。

如上图所示,建系设点即可,点P所在的曲线为双曲线,题目很简单,过程就不再给出,在题目中与动点有关的几何体通常都是规则几何体,可以通过建系来处理。

这种题目可变形之后出在立体几何大题的第一问中,问是否存在这样的点F使得满足线面平行,若直接证明线面平行,在平面D1AE中找不到与A1F平行的线,因此线面平行可转化为面面平行,将A1F置于一个平面内,使这个平面与D1AE平行即可,难度不大,但很有代表性。

题目和第五题类似,线线垂直转化为线面垂直,把PE放到一个面内证明定直线AC与之垂直,本题目中的解法是先找到一个明显与AC垂直的平面SBD,再找一个过PE且与平面SBD平行的平面,间接来证,其实也没有必要,AC与BD垂直,因此需要找CD的中点可得到AC⊥EG,再根据三垂线定理确定出SC的中点即可。

本题目用到了上次推送中正四面体的常用性质,这也是解题的关键,根据角度求出由动点P引发的两条线段长度比值为定值,根据定值的大小可判断出符合椭圆的定理(第二定义)。

与上题类似,本题目中也要用到正四面体中的常用结论,若正四面体的棱长为a,则对棱中点的连线即为对棱的公垂线,且长度为a/√2,本题目用到的思想和最后一个题目有关,若x,y轴上各有一动点,且两动点长度为定值,则两动点中点的轨迹为以中点为圆心,以两动点长度的一半为半径的圆,把两条互相垂直且相等的对棱放到正方体中,公垂线和动直线EF的长度为定值,找出中点,利用中位线可得到OP所在的直角三角形,接下来只需确定OP的长度为定值即可,题目很不错。

本题目中提到了线面角,首先根据垂直关系找出线面角的平面角,这两个平面角恰好在两个直角三角形中,利用角度相等可得到动点M和两个定点B,C之间线段的比例关系,根据阿波罗尼斯圆可确定出轨迹为一个圆,建系设点后可得出点M的轨迹方程,进而求得圆弧的长度。

M,Q为直线和平面内的两动点,但始终满足MD⊥DQ,且知道MQ的长度为2,因此在直角三角形MDQ中,DP=1,因此点P位于以D为球心,1为半径的球面上,若题目加一个问题,求动点P的轨迹与以D为顶点的正方体三个面所围成的几何体的体积,此时围成的几何体为八分之一的球体,可联想成把西瓜分成两半之后再横竖各一刀,就会出现三个两两垂直的面。

总的来说,与几何体有关的动点轨迹问题还是常见于高二同步课中,在高考中出现的频率很低,处理此类问题的关键是熟练掌握立体几何中的点线面垂直平行异面的关系,找到与包含未知点的量和已知量之间的等量关系或不等关系即可,总体来说难度不大,如果找不出,直接建系来处理即可。

相关文档
最新文档