管道局部水头损失实验
管道局部水头损失实验(完成)
武汉大学教学实验报告学院:水利水电学院 专业:水利水电工程全英文班 2013年6月22日实验名称 管道局部水头损失实验 指导老师 姓名吴前进年级11级学号2011301580067成绩一:预习部分1:实验目的 2:实验基本原理3:主要仪器设备(含必要的元器件,工具)一、实验目的1、掌握测定管道局部水头损失系数ζ的方法。
2、将管道局部水头损失系数的实测值与理论值进行比较。
3、观测管经突然扩大时旋涡区测压管水头线的变化情况和水流情况,以及其他各种边界突变情况下的测压管水头线的变化情况。
二、实验原理由于边界形状的急剧改变,水流就会与边界分离出现旋涡以及水流流速分布的改组,从而消耗一部分机械能。
单位重量液体的能量损失就是水头损失。
边界形状的改变有水流断面的突然扩大或突然缩小、弯道及管路上安装阀门等。
局部水头损失常用流速水头与与系列的乘积表示。
gvh j 2ζ=式中:ζ—局部水头损失系数。
系数ζ是流动形状与边界形状的函数,即ζ= f (Re ,边界形状)。
一般水流Re 数足够大时,可认为系数ζ不再随Re 数而变化,而看作常数。
管道局部水头损失目前仅有突然扩大可采用理论分析,并可得出足够精确的结果。
其他情况则需要用实验方法测定ζ值。
突然扩大的局部水头损失可应用动量方程与能量方程及连续方程联合求解得到如下公式:22112112122222)1(,2)1(,2A Ag v h A Ag v h j j -==-==ζζζζ 式中,A 1和v 1分别为突然扩大上游管段的断面面积和平均流速;A 2和v 2分别为突然扩大下游管段的断面面积和平均流速。
三、实验设备实验设备及各部分名称如图一所示。
二:实验操作部分1:实验数据,表格及数据处理 2:实验操作过程(可用图表示) 3结论图一 局部水头损失实验仪四、实验步骤1、熟悉仪器,记录管道直径D 和d 。
2、检查各测压管的橡皮管接头是否接紧。
3、启动抽水机,打开进水阀门,使水箱充水,并保持溢流,使水位恒定。
沿程水头损失实验报告数据
沿程水头损失实验报告数据
沿程水头损失实验是一种评估流体运行损失的有效方法,广泛应用于流体力学和水力学的研究中。
它具有测量快捷、精度高的优点,在实验室中往往只需几分钟即可完成。
因此,本次实验旨在通过实验测试流体运行在涡街管道内沿程水头损失,记录下运行过程中所有相关数据,并通过分析得出结论。
本实验的实验装置及其参数如下:1.实验装置:涡街管道,涡街管道长度30 cm,内径2.5 cm;2.实验介质:重力引水管,水温20℃;3.实验参数:流量0.5L/S,沿程压力表示300mmH2O。
实验过程中,分别在涡街管道的端头和中间穿越处安装沿程压力计,以监测沿程压力变化情况,并将沿程压力数据和流量数据采集记录,以供实验分析。
实验结果如下:在实验过程中,随着流量的增加,沿程压力也随之增加,最终得到的结果与涡街管道理论分析结果接近,说明管道本身对流体的运动损失比较小,估计管道中沿程水头损失也会较小。
随着流量减小,沿程压力也会随之减小,最终结果依然较接近理论结果,说明管道本身运动损失的影响并不明显,并且沿程水头损失量也会较小。
结论:从实验结果来看,涡街管道中沿程水头损失量较小,受管道结构的影响不大。
本实验为我们提供了一种有效的方法来评估流体运行在管道内的沿程水头损失,实验结果满足数学模型的预期,表明实验结果可靠,是一项有效的实验研究。
本次实验揭示了流体运行在涡街管道内沿程水头损失状况,为实际项目设计提供了有用的参考信息。
04 局部水头损失实验
§8 局部水头损失实验8.1 实验目的和要求1.学习掌握三点法、四点法测量局部阻力因数的技能,并将突扩管的实测值与理论值比较,将突缩管的实测值与经验值比较;2.通过阀门局部阻力因数测量的设计性实验,学习二点法测量局部阻力因数的方法。
8.2 实验装置1.实验装置简图实验装置及各部分名称如图8.1所示。
图8.1 局部水头损失实验装置简图1.自循环供水器2.实验台3.可控硅无级调速器4.恒压水箱5.溢流板6.稳水孔板7.圆管突然扩大8.气阀9.测压计10.测压管①~⑥11.滑动测量尺12. 圆管突然收缩13.实验流量调节阀14.回流接水斗15.下回水管2.装置说明实验管道由圆管突扩、突缩等管段组成,各管段直径已知。
在实验管道上共设有六个测压点,测点①-③和③-⑥分别用以测量突扩和突缩的局部阻力因数。
其中测点①位于突扩的起始界面处,这里引用公认的实验结论 “在突扩的环状面积上的动水压强近似按静水压强规律分布”,认为该测点可用以测量小管出口端中心处压强值。
气阀8用于实验开始时排除管中滞留气体。
3.基本操作方法(1) 排气。
启动水泵待恒压水箱溢流后,关闭实验流量调节阀13,打开阀8排除管中滞留气体。
排气后关闭阀8,并检查测压管各管的液面是否齐平,若不平,重复排气操作,直至齐平。
(2) 测压管水头用测压计测量,基准面可选择在滑动测量尺零点上。
(3) 流量测量。
实验流量用阀13调节,流量由称重法测量,用秒表计时,用电子称称重。
8.3 实验原理流体在流动的局部区域,如流体流经管道的突扩、突缩和闸门等处(图4.4.2),由于固体边界的急剧改变而引起速度分布的变化,甚至使主流脱离边界,形成旋涡区,从而产生的阻力称为局部阻力。
由于局部阻力作功而引起的水头损失称为局部水头损失,用h j 表示。
局部水头损失是在一段流程上,甚至相当长的一段流程上完成的,如图8.2,断面1至断面2,这段流程上的总水头损失包含了局部水头损失和沿程水头损失。
沿程水头损失实验报告
2.沿程水头损失实验一、实验目的1.通过实验了解圆管层流和紊流的沿程损失随平均流速变化的规律,绘制lgh f ~-lgv 曲线;2.掌握管流沿程阻力系数的量测技术和应用压差计的方法; 3.将测得的Re-λ关系值与莫迪图对比,提高实验成果分析能力。
二、实验原理对于圆管稳定流动,达西公式给出:gv d L h f 22⋅⋅=λ 对于给定管径、管长的圆管稳定流,由达西公式可得:22522228422Qh K Qh Lgd d Q L gdh Lvgdh f f f f ⨯=⨯=⎪⎭⎫ ⎝⎛==ππλ式中:Lgd K 852π=对水平安装的等直径圆管,由能量方程可得:γ21P P h f -=对于指示液,被测液体均为水的U 形管压差计,有:2121h h P P h f -=-=γ式中h f ——测定管段L 的沿程水头损失,cmH 2Oγ——实验水温和大气压力下的水容重三、实验装置1.沿程水头损失实验装置1套,结构示意如图1所示2.秒表1块3.温度计1支4.管径d=1.0cm 。
图1 沿程水头损失实验装置示意图1.水箱(内置潜水泵)2.供水管3.电器插座4.`流回水管5. 整流栅板6. 溢流板7.水箱8. 测压嘴9.实验管道10.差压计11.调节阀门12.调整及计量水箱13.回水管14.实验桌 15旁通管阀门 16 进水阀门本装置有下水箱、自循环水泵、供水阀、稳压水箱、实验管道、流量调节阀,计量水箱、回水管、压差计等组成。
实验时应将管道、胶管及压差计内的空气排出,接通电源水泵启动,开启供水阀,逐次开大流量调节阀,调整两个阀门开度。
每次调节流量时,均需稳定2-3分钟,流量愈小,稳定时间愈长;测流量时间不小于8-10秒;测流量的同时,需测记压差计、温度计[自备]应挂在水箱中读数。
四、实验步骤1.对照装置图和说明,搞清各组成部件的名称、作用及其工作原理,记录有关常数管道内径d ,测量管段长度L ,水箱长a 和宽b ;2.检查储水箱水位(不够高时冲水),旁通阀是否已关闭;3.接通电源,启动水泵,全开进水阀16,水泵自动开启供水,保持溢流板有稍许溢流。
局部阻力损失实验报告
局部阻力损失实验报告局部阻力损失实验报告局部阻力损失实验前言:工农业生产的迅速发展, 使石油管路、给排水管路、机械液压管路等, 得到了越来越广泛的应用。
为了使管路的设计比较合理, 能满足生产实际的要求, 管路设计参数的确定显得更为重要。
管路在工作过程中存在沿程损失和局部阻力损失,合理确定阻力系数是使设计达到实际应用要求的关键。
但是由于扩张、收缩段的流动十分复杂,根据伯努利方程和动量方程推导出的理论值往往与具体的管道情况有所偏差,一般需要实验测定的局部水头损失进行修正或者得出经验公式用于工业设计。
在管路中, 经常会出现弯头, 阀门, 管道截面突然扩大, 管道截面突然缩小等流动有急剧变化的管段, 由于这些管段的存在, 会使水流的边界发生急剧变化, 水流中各点的流速, 压强都要改变, 有时会引起回流, 旋涡等, 从而造成水流机械能的损失。
例如,流体从小直径的管道流往大直径的管道, 由于流体有惯性, 它不可能按照管道的形状突然扩大, 而是离开小直径的管道后逐渐地扩大。
因此便在管壁拐角与主流束之间形成漩涡, 漩涡靠主流束带动着旋转, 主流束把能量传递给漩涡、漩涡又把得到的能量消耗在旋转中( 变成热而消散) 。
此外, 由于管道截面忽然变化所产生的流体冲击、碰撞等都会带来流体机械能的损失。
摘要:本实验利用三点法测量扩张段的局部阻力系数,用四点法量测量收缩段的局部阻力系数,然后与圆管突扩局部阻力系数的包达公式和突缩局部阻力系数的经验公式中的经验值进行对比分析,从而掌握用理论分析法和经验法建立函数式的技能。
进而加深对局部阻力损失的理解。
三、实验原理写出局部阻力前后两断面的能量方程,根据推导条件,扣除沿程水头损失可得:1.突然扩大采用三点法计算,下式中实测hje?[(Z1?p1hf1?2由hf2?3按流长比例换算得出。
p2)?)?12g2]?[(Z2?22g2hf12]ehje/12g2理论?e?(1A1A22)hjee,12g22.突然缩小采用四点法计算,下式中B点为突缩点,换算得出。
局部水头损失实验报告
开课实验室:2010年 月 日
学院
城环学院
年级、专业Leabharlann 班姓名成绩课程
名称
流体力学与水泵实验
实验项目
名 称
局部水头损失实验
指导教师
教师评语
教师签名:
年 月 日
一、实验目的
1.掌握三点法、四点法测量局部水头损失与局部阻力系数的技能。
2.验证圆管突然扩大局部阻力系数公式及突然缩小局部阻力系数经验公式。
测点间距;L1-2= ;L2-3= ;L3-4= ;L4-b= ;Lb-5= ;L5-6=
(2) 实验记录与计算
测试数据记录表
序号
体积
V/cm3
时间
T/s
流量
Q/(cm/s)
测压管读数
1
2
3
4
5
6
1
2
3
4
5
实验数据计算表
局部阻力形式
序号
流量
Q/( /s)
断面前测点
断面后测点
前后断面实测沿程水头损失
实测局部水头损失
绝大多数的局部阻力系数ξ只能通过实验测定,不同的边界开关局部阻力系数ξ不同,只有少数局部阻力系数可以用理论分析得出。
如突然扩大的局部水头损失与阻力系数:
或
或
对于突然缩小的局部阻力系数为:
三、使用仪器、材料
1.自循环供水器 2.实验台 3.可控硅无级调速器 4. 水箱
5. 溢流板 6. 稳水孔板 7突然扩大实验管段 8.测压管
实测局部阻力系数
理论局部水头损
失
总水头H
总水头H
突然扩大
1
2
3
局部水头损失实验流体力学实验报告
《流体静力学实验》实验报告学院年级、专业、班姓名成绩课程名称流体力学与水泵综合实验名称实验项目局部水头损失实验指导教师教师评语教师签名:年月日一、实验目的1. 掌握三点法,四点法测量局部水头损失与局部阻力系数的技能。
2. 验证圆管突然扩大局部阻力系数公式及突然缩小局部阻力系数经验公式。
3. 加深对局部水头损失机理的理解。
二、实验原理1. 突然扩大: 实测 hje= [(Z 1+γP 1)+g221υ]-[(Z 2+γP 2)+g222υ]-h2-1fh2-1f =21h3-2f g221jehυζ=实测理论 )(A A -1212e=ζ h je=ζeg221υ2. 突然缩小:实测h js= [(Z 4+γP 4)+g224υ]-[(Z 5+γP 5)+g 225υ]-(h h 5-fB B-4f +)h h 4-f3B -4f 21= h h 6-f55-fB = g225jshυζ=实测经验 )(A A -1.5045s=ζ h js =ζsg 225υ三、使用仪器、材料局部水头损失实验仪:循环水泵、实验台、无级调速器、水箱、溢流板、稳水孔板、突然扩大与突然缩小试验管道、测压管、流量调节阀、接水盒、回水管等。
四、实验步骤1. 记录参数测点管段直径:d1=0.92cm;d2=d3=d4=1.99cm;d5=d6=0.96cm。
测点间距:L2-1=12cm; L3-2=24cm; L4-3=12cm; L b-4=6cm; L5-b=6cm; L6-5=6cm。
2. 步骤(1)打开电源供水,带水箱溢流恒定后全开流量调节阀,排除试验管道内气体后,关闭流量调节阀,检查液面是否齐平。
(任意两管道不超过1mm)(2)全开流量调节阀,(第6管能读数)测Q和各液面高程h1-h6。
然后关小调节阀,是第6管液面上升1.5cm左右,再测Q和各液面高程h1-h6。
(共测5次)(3)关闭流量调节阀,再次检查液面是否齐平(4)记录参数等数据五、实验过程原始记录(数据、图表、计算等) 测试数据记录表:序号 体积V/cm 3 时间t/s 流量Q/(cm 3/s)测压管读数12345 6 1 1984 19.4〞 102.27 16.80 20.45 20.20 20.10 5.00 3.00 2 1974 20.3〞 97.24 18.10 21.50 21.10 20.90 6.80 4.70 3 1946 20.15 96.58 18.35 21.80 21.50 21.30 7.55 5.70 4 1810 19.5〞 93.82 19.40 22.50 22.30 22.209.307.505 1786 19.2〞93.0220.20 23.20 23.00 22.90 10.50 8.90实验数据计算表:局部阻力形式 序号 流量Q/(cm 3/s)前断面 后断面前后断面实测沿程水头损失实测局部水头损失实测局部阻力系数理论局部水头损失g 22υα 总水头H g22υα 总水头H 突然扩大 1 102.27 10.23 27.03 2.19 22.64 0.12 4.27 0.42 6.34 2 97.24 9.25 27.35 1.98 23.48 0.20 3.67 0.40 5.74 396.58 9.12 27.47 1.95 23.75 0.15 3.57 0.39 5.65 4 93.82 8.61 28.01 1.84 24.34 0.10 3.57 0.41 5.34 593.02 8.46 28.66 1.81 25.01 0.10 3.55 0.42 6.96 突然缩小 1 102.27 2.19 22.299.414.42.05 5.84 0.623.57 2 97.24 1.98 22.88 8.49 15.29 2.2 5.39 0.63 3.23 396.58 1.95 23.25 8.38 15.93 1.95 5.37 0.64 3.18 4 93.82 1.84 24.04 7.91 17.21 1.85 4.98 0.63 3.01 593.021.81 24.71 7.77 18.271.654.790.622.95理论62.0221])99.192.0(-1[A A -122e===)(ζ经验8.30-1.50459.916.90A A -1.502s===⎪⎭⎫ ⎝⎛)()(ζ六、实验结果及分析实验报告打印格式说明1.标题:三号加粗黑体2.开课实验室:5号加粗宋体3.表中内容:(1)标题:5号黑体(2)正文:5号宋体4.纸张:16开(20cm×26.5cm)5.版芯上距:2cm下距:2cm左距:2.8cm右距:2.8cm说明:1、“年级专业班”可填写为“00电子1班”,表示2000级电子工程专业第1班。
重大流体力学实验4(局部水头损失实验)
重大流体力学实验4(局部水头损失实验)
局部水头损失实验是一种重要的流体力学实验,能够证明动量定律并确定河流流体的
阻力特性。
它用以检验以下两条关于河流流体阻力特性的假设:(1)在本地完全不通过
管道的情况下,阻力与深度之间存在某种关系(2)随着流体流动的不断加深,更高的阻
力会发生。
实验设计必须考虑以下变量:流量(Q)、和管路内阻力(F)。
在实验之前,应考虑
管道形状,管道材料和大小,以及管道的安装位置。
这些变量会影响流量和流体阻力的变化,进而影响局部水头损失的数量。
实施局部水头损失实验需要建立两个实验管段,其中第一段通常称为“上端”,主要
用于调整流量,第二段通常称为“下端”,主要用于测量和计算局部水头损失。
同时,实
验中也要用一台流量计(水流管)来测量流量,以及一台压力计来测量压力,以确定局部
水头损失。
最后,设计师根据局部水头损失实验的结果进行比较,利用这一数据来确定动量定律,以及河流流体的阻力特性。
例如,如果实验结果表明,每深度一定比例增加时,力随高度
成正比,则可以说明实验满足动量定律;如果实验结果表明,河流流体的阻力随深度的增
加而增加,则可以说明发展的慢相关递增的阻力特性的河流流体。
总之,局部水头损失实验对于验证动量定律,测定河流流体的阻力特性,特别是验证
河流流体高度和阻力之间关系非常有用。
它们可以帮助设计人员正确设计河流,实现河流
水力规划,使河流的生态环境得到有效的改善。
沿程水头损失实验报告
竭诚为您提供优质文档/双击可除沿程水头损失实验报告篇一:沿程水头损失实验沿程水头损失实验一、实验目的要求1、加深了解圆管层流和紊流的沿程水头损失随平均流速变化的规律,绘制lghf~lgv曲线;2、掌握管道沿程阻力系数的量测技术和应用气—水压差计及电测仪测量压差的方法;3、将测得的Re~?关系值与莫迪图对比,分析其合理性,进一步提高实验成果分析能力。
二、实验装置本实验的装置如图7.1所示图7.1自循环沿程水头损失实验装置图1.自循环高压恒定全自动供水器;2.实验台;3.回水管;4.水压差计;6.实验管道;7.水银压差计;8.滑支测量尺;9.测压点;10.实验流量调节阀;11.供水管与供水阀;12.旁通管与旁通阀;13.稳压筒。
根据压差测法不同,有两种方式测压差:1、低压差时用水压差计量测;2、高压差时用电子量测仪(简称电测仪)量测(但本仪器暂时不能测定高压)。
本实验装置配备有:1、自动水泵与稳压器自循环高压恒定全自动供水器由离心泵、自动压力开关、气—水压力罐式稳压器等组成。
压力超高时能自动停机,过低时能自动开机。
为避免因水泵直接向实验管道供水而造成的压力波动等影响,离心泵的输水是先进入稳压器的压力罐,经稳压后再送向实验管道。
24图7.21.压力传感器;2.排气旋钮;3.连接管;4.主机2、旁通管与旁通阀由于本实验装置所采用水泵的特性,在供小流量时有可能时开时停,从而造成供水压力的较大波动,为了避免这种情况出现,供水器设有与蓄水箱直通的旁通管(图中未标出)。
通过分流可使水泵持续稳定运行。
旁通管中设有调节分流量至蓄水箱的阀门,即旁通阀,实验流量随旁通阀开度减小(分流量减小)而增大。
实际上旁通阀又是本装置用以调节流量的重要阀门之一。
3、稳压筒为了简化排气,并防止实验中再进气,在传感器前连接由2只充水(不满顶)之密封立筒构成。
4、电测仪由压力传感器和主机两部分组成,经由连通管将其接入测点(图7.2),压差读数(以厘米水柱为单位)通过主机显示。
局部水头损失实验
三、实验方法与步骤
3.检验测压管液面是否齐平(流量调节阀处于关闭状 态);否则,需排气调平。
4.开始实验 打开流量调节阀至流量Q最大,而且在测量 范围内(即测压管读数在可读范围内),记录流量、 测压管读数;改变流量Q,重复上述实验。
四、实验记录
1.记录、计算有关常数(如管径、长度等); 2.整理、记录计算表:
二、实验原理
写出局部阻力前后两断面的能量方程,根据推导条件, 扣除沿程水头损失可得: 1、突扩断面 采用三点法计算,测点1-2点间的距离为2-3点间的距 离的一半,故
hf 12 hf 23 / 2
根据实测,建立1-1,2-2两端面能量方程。
即: 理论值:
2、突缩断面 本实验采用四点法计算。4-B点间距与3-4点间距相等; B-5点间距与5-6点间距相等。 故:
四、实验记录
3.将实测ζ值与理论值(突扩)或公认值(突缩)比较。
五、实验分析与讨论
1. 结合实验成果,分析比较突扩与突缩在相应 条件下的局部损失大小关系。
2. 结合流动仪演示的水力现象,分析局部阻力 损失机理如何?产生突扩与突缩局部阻力损 失的主要部位在哪里?怎样减小局部阻力损 失?
Hale Waihona Puke hf 4B hf 34 ; hfB5 h56
根据实测,建立B点突缩前后两端面能量方程:
又由突缩断面局部水头损失的经验公式有:
三、实验方法与步骤
1. 开启开关,待水箱内出现溢流后,关闭流量调节阀。
2.排气。 ① 打开排气阀,排除管内气体(流量调节阀处于关闭状
态); ② 局部气泡的排除:打开流量调节阀或用洗耳球向侧压
一、实验目和要求
掌握三点法、四点法量测局部水头阻力系数的技能; 通过对圆管突扩局部阻力系数的包括达西公式和突缩
水力学 局部水头损失量测实验
= ( A2 A1
− 1)2
v22 2g
≡ζ2
v22 2g
,
或
hj
=
(v2 − v1)2 2g
= (1 −
A1 )2 A2
v12 2g
≡
ζ1
v12 2g
.
可见
ζ1
= (1 −
A ( A2 A1
− 1)2 .
z 突扩圆管局部水头损失之所以能够导出上述解析表达式是因为:①我们假设 1-1 断面上
2. 掌握测定管道局部水头损失系数的方法,并将突扩管的实测值与理论值比较,将突缩管 的实测值与经验值比较。
3. 学习用测压管测量压强和用体积法测流量的实验技能。
实验步骤
1. 认真阅读实验目的要求、实验原理和注意事项。 2. 查阅用测压管量测压强和用体积法(手工、自动)量测流量的原理和步骤。 3. 对照实物了解仪器设备的使用方法和操作步骤,做好准备工作后,启动抽水机,打开进
实验数据记录
仪器编号:
有关常数:d1 = mm,d2 =
mm
测
测管液面高程读数
次
∇ 1 ∇ 2 ∇ 3 ∇ 4 ∇ 5 ∇ 6 ∇ 7 ∇ 8 ∇ 9 ∇ 10 ∇ 11 ∇ 12 ∇ 13 ∇ 14 ∇ 15
1
2
#
测次
测管液面高程读数
∇ 16
∇ 17
∇ 18
∇ 19
∇ 20
∇ 21
1
2
#
流量
Δt
ΔV
应尽可能接近,又要保证局部水头损失全部产生在两断面之间。经过测量两断面的测管
水头差和流经管道的流量,进而推算两断面的速度水头差,就可测得局部水头损失。
z 局部水头损失系数是局部水头损失折合成速度水头的比例系数,即
沿程水头损失实验报告
4.排气。
1)测压架端软管排气:连续开关旁通阀数次,待水从测压架中经过即可。排气完毕,打开旁通阀。若测压管内水柱过高,可打开测压架顶部放气阀,(所有阀门都打开,)水柱自动降落,至正常水位拧紧放气阀即可。
2)传感器端软管排气:关闭流量调节阀,打开传感器端排气阀,传感器内连续出水,关闭排气阀,排气完成。
3)关闭流量调节阀,观察测压架内两水柱是否齐平,不平,找出原因并排除;齐平,实验准备完成,实验开始。
(二)层流实验
5.全开进水阀、旁通阀,微开流量调节阀,当实验管道两点压差小于2cm(夏天)~3cm(冬天)时,管道内呈层流状态,待压力稳定,测量流量、温度、测压管内压差。
6.改变流量3~5次,重复上述步骤。其中第一次实验压差 ,逐次增加 。
沿程损失实验损失实验仪器由自循环供水器(循环水泵)、供水阀、旁通阀、无极调速器、试验管道、水封器、压力传感器、电测仪、压差计(气阀、滑动测量尺)、流量调节器、接水盒、回水管等组成。
四、实验步骤
(一)实验准备
1.检查实验装置。看实验设备是否连接完善。
2.开启所有阀门,(包括进水阀、旁通阀、流量调节阀)。
(三)紊流实验
7.关闭流量调节阀,将电测仪读数(即管道两测点压差)调零。
8.夹紧测压架两端夹子,防止水流经测压架。
9.全开流量调节阀、进水阀,适当关小旁通阀开度,增大实验管道内流量,待流量稳定之后,测量流量、温度、电测仪读数(即实验管道两测点压差)。
10.改变流量3~5次,重复上述步骤。其中第一次实验压差 ,逐次增加 ,直至流量最大。
h1
பைடு நூலகம்h2
1
2
3
4
5
6
7
计算原理:
局部阻力损失实验报告解析
局部阻力损失实验前言:工农业生产的迅速发展, 使石油管路、给排水管路、机械液压管路等, 得到了越来越广泛的应用。
为了使管路的设计比较合理, 能满足生产实际的要求, 管路设计参数的确定显得更为重要。
管路在工作过程中存在沿程损失和局部阻力损失,合理确定阻力系数是使设计达到实际应用要求的关键。
但是由于扩张、收缩段的流动十分复杂,根据伯努利方程和动量方程推导出的理论值往往与具体的管道情况有所偏差,一般需要实验测定的局部水头损失进行修正或者得出经验公式用于工业设计。
在管路中, 经常会出现弯头, 阀门, 管道截面突然扩大, 管道截面突然缩小等流动有急剧变化的管段, 由于这些管段的存在, 会使水流的边界发生急剧变化, 水流中各点的流速, 压强都要改变, 有时会引起回流, 旋涡等, 从而造成水流机械能的损失。
例如,流体从小直径的管道流往大直径的管道, 由于流体有惯性, 它不可能按照管道的形状突然扩大, 而是离开小直径的管道后逐渐地扩大。
因此便在管壁拐角与主流束之间形成漩涡, 漩涡靠主流束带动着旋转, 主流束把能量传递给漩涡、漩涡又把得到的能量消耗在旋转中( 变成热而消散) 。
此外, 由于管道截面忽然变化所产生的流体冲击、碰撞等都会带来流体机械能的损失。
摘要:本实验利用三点法测量扩张段的局部阻力系数,用四点法量测量收缩段的局部阻力系数,然后与圆管突扩局部阻力系数的包达公式和突缩局部阻力系数的经验公式中的经验值进行对比分析,从而掌握用理论分析法和经验法建立函数式的技能。
进而加深对局部阻力损失的理解。
三、实验原理写出局部阻力前后两断面的能量方程,根据推导条件,扣除沿程水头损失可得:1.突然扩大采用三点法计算,下式中12f h -由23f h -按流长比例换算得出。
实测 2211221212[()][()]22je f p p h Z Z h ggαυαυγγ-=++-+++21/2e je h gαυζ=理论 212(1)e AA ζ'=-2,12je eh gαυζ'=2.突然缩小采用四点法计算,下式中B 点为突缩点,4f B h -由34f h -换算得出,5fB h -由56f h-换算得出。
局部损失实验
局部阻力损失实验局部水头定义及局部阻力产生的原因:在边界急剧变化的区域,由于速度的大小和方向发生急剧变化而产生漩涡,导致流动阻力大大增加,形成了比较集中的能量损失,叫局部水头损失,记作h。
一般发生在j渐扩渐缩段(如发动机喷管,风洞发散段),突扩突缩段(输送流体的管路直径变化俗称变径部位),阀门,弯管,分流合流等部位。
局部水头损失在流体运行系统中是大量存在的,雷诺数越大,在计算中越要被充分考虑。
局部损失种类繁多,大部分不能用理论方法计算,需要用实验来测定。
本实验指定用三点法和四点法测量突扩和突缩这种类型局部阻力损失系数。
一、实验目的要求1、掌握三点法、四点法量测局部阻力系数的技能。
2、通过对园管突扩局部阻力系数的包达公式和突缩局部阻力系数的经验公式的实验验证与分析,熟悉用理论分析法和经验法建立函数式的途径。
3、仔细观察流动图谱,加深对局部阻力损失机理的理解。
4、了解测量局部阻力损失的一般思路和方法。
二、实验装置实验装置如图7.1所示。
由实验平台系统、实验管路系统、压差测量系统组成。
实验平台系统由下游水箱、水泵、实验台桌、可控硅无级调速器、恒压水箱、溢流板、稳水板、流量调节阀、辅助连接管路等组成,提供溢流式恒定水头,流量连续可调。
实验D D D,标示与上游水箱管路系统由三种不同直径有机玻璃圆管组成,直径分别为、、123正面,上边布置6个测压管测点。
压差测量系统由测压管、滑动测量尺、连接软管等组成。
实验管道由小→大→小三中已知管径的管道组成,测点1—3用来测量突扩的局部水头损失系数,用了三个测点,就是所谓三点法。
3—6测点用来测量突缩的局部阻力损失系数。
用了四个测点,这就是所谓四点法。
其中测点1位于突扩界面处,用以测量小管出口端压强值。
6个测点和测压板的6个测压管用透明软管一一对应连接,当连接测点和测压板的软管充满连续的液体,测点的压力就可以在测压管上准确的反应出来。
待测压管水面稳定下来后,通过滑动测尺就可以测记测点的压力值。
微灌用聚乙烯(PE)管件局部水头损失系数试验方法[SL T69-94]
中华人民共和国行业标准
微灌用聚乙烯管件
局部水头损失系数试验方法
发布实施
中华人民共和国水利部发布
中华人民共和国行业标准
局部水头损失系数试验方法
本标准参照采用国际标准管件机械式连接系统中的压力降试验方
主要内容和适用范围
引用标准
喷灌用金属薄壁管及管件试验方法
微灌用聚乙烯管道沿程水头损失试验方法
试验原理
试验仪器
测量流量和压力的仪表的容许系统误差不得超过
试样
试验
试验条件
同
试验装置
试验装置如图
试验内容
试验内容如表
试验步骤
将试样按试验装置图
调节控制阀流速约达
中华人民共和国水利部批准实施
图试验装置系统图
供水管断流阀分压器调压阀排水管
表
重复和试验相应两次读数不超过
试验结果
试样局部水头损失系数按式
计算
式中
流量指数
局部水头损失系数
按式计算
局部水头损失按式计算
试验报告
试验报告内容如下
试验水温
局部水头损失系数
附加说明
本标准主要起草人。
管道局部水头损失实验(完成)-局部水头损失实验
武汉大学教学实验报告实验名称 管道局部水头损失实验 指导老师 姓名吴前进年级11级学号2011301580067成绩一:预习部分1:实验目的 2:实验基本原理3:主要仪器设备(含必要的元器件,工具)一、实验目的1、掌握测定管道局部水头损失系数ζ的方法。
2、将管道局部水头损失系数的实测值与理论值进行比较。
3、观测管经突然扩大时旋涡区测压管水头线的变化情况和水流情况,以及其他各种边界突变情况下的测压管水头线的变化情况。
二、实验原理由于边界形状的急剧改变,水流就会与边界分离出现旋涡以及水流流速分布的改组,从而消耗一部分机械能。
单位重量液体的能量损失就是水头损失。
边界形状的改变有水流断面的突然扩大或突然缩小、弯道及管路上安装阀门等。
局部水头损失常用流速水头与与系列的乘积表示。
gvh j 2ζ=式中:ζ—局部水头损失系数。
系数ζ是流动形状与边界形状的函数,即ζ= f (Re ,边界形状)。
一般水流Re 数足够大时,可认为系数ζ不再随Re 数而变化,而看作常数。
管道局部水头损失目前仅有突然扩大可采用理论分析,并可得出足够精确的结果。
其他情况则需要用实验方法测定ζ值。
突然扩大的局部水头损失可应用动量方程与能量方程及连续方程联合求解得到如下公式:22112112122222)1(,2)1(,2A Ag v h A Ag v h j j -==-==ζζζζ 式中,A 1和v 1分别为突然扩大上游管段的断面面积和平均流速;A 2和v 2分别为突然扩大下游管段的断面面积和平均流速。
三、实验设备实验设备及各部分名称如图一所示。
二:实验操作部分1:实验数据,表格及数据处理 2:实验操作过程(可用图表示) 3结论图一 局部水头损失实验仪四、实验步骤1、熟悉仪器,记录管道直径D 和d 。
2、检查各测压管的橡皮管接头是否接紧。
3、启动抽水机,打开进水阀门,使水箱充水,并保持溢流,使水位恒定。
4、检查尾阀K 全关时测压管的液面是否齐平,并保持溢流,使水位恒定。
局部阻力损失实验报告
局部阻力损失实验前言:工农业生产的迅速发展, 使石油管路、给排水管路、机械液压管路等, 得到了越来越广泛的应用。
为了使管路的设计比较合理, 能满足生产实际的要求, 管路设计参数的确定显得更为重要。
管路在工作过程中存在沿程损失和局部阻力损失,合理确定阻力系数是使设计达到实际应用要求的关键。
但是由于扩张、收缩段的流动十分复杂,根据伯努利方程和动量方程推导出的理论值往往与具体的管道情况有所偏差,一般需要实验测定的局部水头损失进行修正或者得出经验公式用于工业设计。
在管路中, 经常会出现弯头, 阀门, 管道截面突然扩大, 管道截面突然缩小等流动有急剧变化的管段, 由于这些管段的存在, 会使水流的边界发生急剧变化, 水流中各点的流速, 压强都要改变, 有时会引起回流, 旋涡等, 从而造成水流机械能的损失。
例如,流体从小直径的管道流往大直径的管道, 由于流体有惯性, 它不可能按照管道的形状突然扩大, 而是离开小直径的管道后逐渐地扩大。
因此便在管壁拐角与主流束之间形成漩涡, 漩涡靠主流束带动着旋转, 主流束把能量传递给漩涡、漩涡又把得到的能量消耗在旋转中( 变成热而消散) 。
此外, 由于管道截面忽然变化所产生的流体冲击、碰撞等都会带来流体机械能的损失。
摘要:本实验利用三点法测量扩张段的局部阻力系数,用四点法量测量收缩段的局部阻力系数,然后与圆管突扩局部阻力系数的包达公式和突缩局部阻力系数的经验公式中的经验值进行对比分析,从而掌握用理论分析法和经验法建立函数式的技能。
进而加深对局部阻力损失的理解。
三、实验原理写出局部阻力前后两断面的能量方程,根据推导条件,扣除沿程水头损失可得:1.突然扩大采用三点法计算,下式中12f h -由23f h -按流长比例换算得出。
实测2211221212[()][()]22je f p p h Z Z h ggαυαυγγ-=++-+++理论212(1)e AA ζ'=-2.突然缩小采用四点法计算,下式中B 点为突缩点,4f B h -由34f h -换算得出,5fB h-由56f h -换算得出。
沿程水头损失实验报告
沿程水头损失实验报告沿程水头损失实验报告引言:沿程水头损失是指水流在河道或管道中流动过程中由于摩擦、扩散等原因而损失的能量。
对于水力工程设计和水资源管理来说,准确测定和计算沿程水头损失至关重要。
本实验旨在通过实际操作和数据分析,探究沿程水头损失的特点和影响因素。
实验设备和方法:本次实验使用了一条模拟河道和一台流量计。
实验过程如下:1. 将流量计安装在模拟河道的起点,并校准流量计,确保测量结果准确可靠。
2. 在模拟河道的不同位置设置测点,并测量每个测点处的水位和流量。
3. 根据实测数据,计算出每个测点处的水头。
实验结果与分析:通过实验测量和数据分析,我们得到了以下结果:1. 沿程水头损失随着流动距离的增加而逐渐增大。
这是由于水流在河道或管道中摩擦阻力的存在,使得水流的动能逐渐转化为内能而损失掉。
2. 沿程水头损失与水流的流速和管道材料有关。
在相同流速下,不同材料的管道会产生不同的摩擦阻力,从而导致不同程度的水头损失。
3. 沿程水头损失还与河道或管道的形状和横截面积有关。
当河道或管道的横截面积变化较大时,水流的速度和压力也会发生变化,从而导致水头损失的增加。
4. 沿程水头损失还与流量的大小有关。
在相同河道或管道条件下,流量越大,摩擦阻力越大,水头损失也就越大。
结论:通过本次实验,我们深入了解了沿程水头损失的特点和影响因素。
在实际水力工程设计中,准确测定和计算沿程水头损失对于保证工程的安全运行和有效利用水资源至关重要。
因此,我们应该根据实际情况选择合适的计算方法和模型,以减小水头损失,提高水力工程的效益。
进一步研究:虽然本实验对沿程水头损失进行了初步的探究,但仍有许多方面可以进一步研究。
例如,可以通过改变河道或管道的形状、材料和横截面积,来研究它们对水头损失的影响。
同时,可以探究不同流量下的水头损失规律,并与理论模型进行比较,以验证模型的准确性和适用性。
结语:沿程水头损失是水力工程中一个重要的问题,对于保证工程的安全运行和有效利用水资源具有重要意义。
局部水头损失实验
水利水电学院水利类专业2011年6月11日
实验名称
局部水头损失实验
指导教师
赵昕
姓名
年级
学号
成绩
一、预习部分
1.实验目的
2.实验基本原理
3.主要仪器设备(含必要的元器件、工具)
1、实验目的:
(1)掌握测定管道局部水头损失系数 的方法。
(2)将管道局部水头损失系数的实测值与理论值进行比较。
(3)观测管经突然扩大时旋涡区测压管水头线的变化情况和水流情况,以及其他各种边界突变情况下的测压管水头线的变化情况。
(3)用体积法测量流量时,量筒的水必须倒进接水槽,保证水正常循环。
2.实验数据,表格及数据处理
(1)圆管直径D=2.7cm,圆管直径d=1.46cm。
(2)实验过程数据及计算结果:
, 。
3、实验结论
三、实验效果分析(包括仪器设备等使用效果)
1、实验成果的评价
实验过程中,由于突扩断面后水流流速很不稳定,所以只能测扩大管道中断的流速,然而实验过程中了扩大段管道的沿程水头损失,所以实测结果与理论值存在的偏差。在流速的测量中也存在着一定的误差。
(3)在相同管径变化条件下,相应于同一流量,其突然扩大的 值是否一定大于突然缩小的 值?
答:不一定,由公式:扩大: 1=(A1/A2-1)2, 2=(A2/A1-1)2,缩小: 缩小=0.5(1-A1/A2),可知 的大小只与A1/A2有关。
(4)不同的Re数时,局部水头损失系数 值是否相同?通常 值是否为一常数?
答:, 值与流态有关,特别是在紊流区和层流区,不同Re数,表示不同的流态。但是在一般常见的Re数下, 变化非常小,故 值可看为一常数。
教
师
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
管道局部水头损失实验
一、实验目的
1、掌握测定管道局部水头损失系数ζ的方法。
2、将管道局部水头损失系数的实测值与理论值进行比较。
3、观测管经突然扩大时旋涡区测压管水头线的变化情况和水流情况,以及其他各种边界突变情况下的测压管水头线的变化情况。
二、实验原理
由于边界形状的急剧改变,水流就会与边界分离出现旋涡以及水流流速分布的改组,从而消耗一部分机械能。
单位重量液体的能量损失就是水头损失。
边界形状的改变有水流断面的突然扩大或突然缩小、弯道及管路上安装阀门等。
局部水头损失常用流速水头与一系数的乘积表示。
h j =g v 22
ζ
式中:ζ─局部水头损失系数。
系数ζ是流动形态与边界形状的函数,即ζ =f (Re ,边界形状)。
一般水流Re 数足够大时,可认为系数ζ不再随Re 数而变化,而看作常数。
管道局部水头损失目前仅有突然扩大可采用理论分析,并可得出足够精确的结果。
其他情况则需要用实验方法测定ζ值。
突然扩大的局部水头损失可应用动量方程与能量方程及连续方程联合求解得到如下公式:
h j = 2222g
v ζ,−=122(A A ζ)2
h j = g v 22
11ζ ,2211)1(A A −=ζ
式中:A 1和1v 分别为突然扩大上游管段的断面面积和平均流速;A 2和2v 分别为突然扩大下游管段的断面面积和平均流速。
三、实验设备
实验设备及各部分名称如图一所示。
图一局部水头损失实验仪
四、实验步骤
1、熟悉仪器,记录管道直经D和d。
2、检查各测压管的橡皮管接头是否接紧。
3、启动抽水机,打开进水阀门,使水箱充水,并保持溢流,使水位恒定。
4、检查尾阀K全关时测压管的液面是否齐平,若不平,则需排气调平。
5、慢慢打开尾阀K,使流量在测压管量程范围内最大,待流动稳定后,记录测压管液面标高,用体积法测量管道流量。
6、调节尾阀改变流量,重复测量三次。
五、注意事项
1、实验必须在水流稳定后方可进行。
2、计算局部水头损失系数时,应注意选择相应流速水头;所选量测断面应选在渐变流上,尤其下游断面应选在旋涡区的末端,即主流恢复并充满全管的断面上。
六、实验成果及要求
1、有关常数。
圆管直径D= cm,圆管直经d= cm,实验装置台号:
2、记录及计算(见表一)。
3、成果分析:将实测的局部水头损失数与理论计算值进行比较,试分析
产生误差的原因。
七、思考题
1、试分析实测h j与理论计算h j有什么不同?原因何在?
2、如不忽略管段的沿程水头损失h j,所测出的ζ值比实际的ζ值偏大还是偏小?在使用此值时是否可靠?
3、在相同管经变化条件下,相应于同一流量,其突然扩大的ζ值是否一定大于突然缩小的ζ值?
4、不同的Re数时,局部水头损失系数ζ值是否相同?通常ζ值是否为一常数?。