高等数学:第十二章函数无穷级数(高等教育出版社)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

g
t 2知
t

2s g
设 tk 表示第 k 次小球落地的时间, 则小球运动的时间为
T t1 2t2 2t3

2 g

1

2

1 2
(
1 2)2




(此式计算用到 后面的例1)
2 1 2 2 1 2.63 ( s )
g
目录 上页 下页 返回 结束
目录 上页 下页 返回 结束
三、级数收敛的必要条件
设收敛级数
则必有
证: un Sn Sn1

lim
n
un

lim
n
S
n

lim
n
Sn1

S
S

0
可见: 若级数的一般项不趋于0 , 则级数必发散 .
例如,
其一般项为
不趋于0, 因此这个级数发散.
目录 上页 下页 返回 结束
注意:
n1
目录 上页 下页 返回 结束
说明:
(1) 性质2 表明收敛级数可逐项相加或相减 .

(2) 若两级数中一个收敛一个发散 , 则 ( un vn )
必发散 . (用反证法可证)
n1
但若二级数都发散 ,
不一定发散.
例如, 取 un (1)2n , vn (1)2n1,
目录 上页 下页 返回 结束
性质1. 若级数

收敛于 S , 即 S un , 则各项
n1
乘以常数 c 所得级数
也收敛 , 其和为 c S .
说明: 级数各项乘以非零常数后其敛散性不变 .
性质2. 设有两个收敛级数


S un,
vn
n1
n1

则级数 (un vn )也收敛, 其和为 S .
因此级数发散 ;
因此
Sn


a, 0,
n 为奇数 n 为偶数
从而
不存在 , 因此级数发散.
综合 1)、2)可知, q 1 时, 等比级数收敛 ;
q 1 时, 等比级数发散 .
目录 上页 下页 返回 结束
例2. 判别下列级数的敛散性:
解: (1)
Sn

ln 2 1
ln 3 2
ln 4 3
定义:给定一个数列 u1 , u2 , u3 , , un , 将各项依

次相加, 简记为 un , 即
n1
称上式为无穷级数,其中第 n 项 un 叫做级数的一般项,
级数的前 n 项和
称为级数的部分和. 收敛 , 并称 S 为级数的和, 记作
则称无穷级数
目录 上页 下页 返回 结束
则称无穷级数发散 . 当级数收敛时, 称差值 为级数的余项. 显然
目录 上页 下页 返回 结束
例1. 讨论等比级数 (又称几何级数)
( q 称为公比 ) 的敛散性.
解: 1) 若
则部分和
因此级数收敛
,
其和为
a 1q
;
因此级数发散 .

aa qn 1q
从而 lim Sn
n

a 1q
从而
lim
n
Sn


,
目录 上页 下页 返回 结束
2). 若
则 级数成为
lim
n
un

0
并非级数收敛的充分条件.
例如, 调和级数
虽然
但此级数发散 .
事实上 , 假设调和级数收敛于 S , 则

S2n Sn
1 1 1 1
n1 n 2 n3
2n
n 2n
1 2
矛盾! 所以假设不真 .
目录 上页 下页 返回 结束
例3.判断级数的敛散性: 解: 考虑加括号后的级数
依次作圆内接正 内接正三角形面积, ak 表示边数 增加时增加的面积, 则圆内接正
边形,设 a0 表示

这个和逼近于圆的面积 A . 即
目录 上页 下页 返回 结束
引例2. 小球从 1 m 高处自由落下, 每次跳起的高度减
少一半,wenku.baidu.com小球是否会在某时刻停止运动? 说明道理.
由自由落体运动方程
s

1 2
ln n 1 n
(ln 2 ln1) (ln3 ln 2) ln(n 1) ln n
ln(n 1) ( n )
所以级数 (1) 发散 ;
技巧:
利用 “拆项” 求 和
目录 上页 下页 返回 结束
(2)
Sn

1 1 2

1 23

1 34
性质3. 加上、去掉或改变有限项, 级数的敛散性不变。 性质4. 对收敛级数任意加括弧,仍收敛于原级数的和
(由数列与其子列的关系可证)
用反证法可证
推论: 若加括弧后的级数发散, 则原级数必发散.
注意: 收敛级数去括弧后所成的级数不一定收敛.
例如,(11) (11) 0 , 但
发散.
第十二章 无穷级数
数项级数 无穷级数 幂级数
傅里叶级数 表示函数
无穷级数是研究函数的工具 研究性质 数值计算
第一节
第十二章
常数项级数的概念和性质
一、常数项级数的概念 二、无穷级数的基本性质 三、级数收敛的必要条件 *四、柯西审敛原理
目录 上页 下页 返回 结束
一、常数项级数的概念
引例1. 用圆内接正多边形面积逼近圆面积.
发散 , 从而原级数发散 .
目录 上页 下页 返回 结束
*四、柯西审敛原理
定理.
的充要条件是: 0, N N ,
当n N 时,对任意 p N , 有
证: 设所给级数部分和数列为 Sn (n 1, 2,), 因为
所以利用数列 Sn (n 1, 2,) 的柯西审敛原理(第一章
第六节上册55页) , 即得本定理的结论.
目录 上页 下页 返回 结束
例4. 利用柯西审敛原理判别级数
解: 对任意 p N , 有
目录 上页 下页 返回 结束
都有
当 n﹥N 时, 对任意 p N ,
由柯西审敛原理可知, 级数
第二节 目录 上页 下页 返回 结束

n
1 (n 1)

1

1 2



1 2

1 3



1 3

1 4



1 n

n
1
1
1 1 1 ( n ) n 1
所以级数 (2) 收敛, 其和为 1 .
技巧:
利用 “拆项” 求 和
目录 上页 下页 返回 结束
二、无穷级数的基本性质
相关文档
最新文档