电磁感应中的综合问题

合集下载

电磁感应规律的综合应用(解析版)-2023年高考物理压轴题专项训练(新高考专用)

电磁感应规律的综合应用(解析版)-2023年高考物理压轴题专项训练(新高考专用)

压轴题07电磁感应规律的综合应用目录一,考向分析 (1)二.题型及要领归纳 (2)热点题型一以动生电动势为基综合考查导体棒运动的问题 (2)热点题型二以感生电动势为基综合考查导体棒运动的问题 (9)热点题型三以等间距双导体棒模型考动量能量问题 (16)热点题型四以不等间距双导体棒模型考动量定理与电磁规律的综合问题 (21)热点题型五以棒+电容器模型考查力电综合问题 (27)三.压轴题速练 (33)一,考向分析1.本专题是运动学、动力学、恒定电流、电磁感应和能量等知识的综合应用,高考既以选择题的形式命题,也以计算题的形式命题。

2.学好本专题,可以极大地培养同学们数形结合的推理能力和电路分析能力,针对性的专题强化,可以提升同学们解决数形结合、利用动力学和功能关系解决电磁感应问题的信心。

3.用到的知识有:左手定则、安培定则、右手定则、楞次定律、法拉第电磁感应定律、闭合电路欧姆定律、平衡条件、牛顿运动定律、函数图像、动能定理和能量守恒定律等。

电磁感应综合试题往往与导轨滑杆等模型结合,考查内容主要集中在电磁感应与力学中力的平衡、力与运动、动量与能量的关系上,有时也能与电磁感应的相关图像问题相结合。

通常还与电路等知识综合成难度较大的试题,与现代科技结合密切,对理论联系实际的能力要求较高。

4.电磁感应现象中的电源与电路(1)产生感应电动势的那部分导体相当于电源。

(2)在电源内部电流由负极流向正极。

(3)电源两端的电压为路端电压。

5.电荷量的求解电荷量q=IΔt,其中I必须是电流的平均值。

由E=n ΔΦΔt、I=ER总、q=IΔt联立可得q=n ΔΦR总,与时间无关。

6.求解焦耳热Q的三种方法(1)焦耳定律:Q=I2Rt,适用于电流、电阻不变。

(2)功能关系:Q=W克服安培力,电流变不变都适用。

(3)能量转化:Q=ΔE(其他能的减少量),电流变不变都适用。

7.用到的物理规律匀变速直线运动的规律、牛顿运动定律、动能定理、能量守恒定律等。

电磁感应问题的综合分析

电磁感应问题的综合分析
a下c 四表达个c图旳象加速中度正,确Ekd旳表是达(d 旳动)能,xc、
图 4-1-1
解析:开始时 c 的加速度为 g,c 刚进入磁场即匀速运动, 加速度为 0,在 d 下落 h 的过程中,h=12gt2,c 匀速下降了 xc=gt·t=2h,d 进入磁场后,c、d 又只在重力作用下运动, 加速度为 g,一起运动了 h,c 出磁场,这时 c 的加速度仍为 g,因此 A 错误,B 正确;c 出磁场后,d 这时受到重力和向 上的安培力,并且合力向上,开始做减速运动,当运动了 2h 后,d 出磁场,又做加速运动,所以 C 错误,D 正确.
(2)由 I=qt 得在 0~t1 时间内通过 R1 的电量为 q=It1=nπ3BR0tr022t1 由焦耳定律得在 0~t1 时间内 R1 产生的热量为 Q=I2R1t1=2n2π92RBt2020r42t1.
从近三年广东高考来看,电磁感应不是出目前选择题就是 出目前计算题,为高考必考内容,而近两年只在选择题出现, 所以来年在计算题出现可能性更大,我们要做好这方面准备.
(1)经过计算分析 4 s 内导体棒旳运动情况; (2)计算 4 s 内回路中电流旳大小,并判断电流方向; (3)计算 4 s 内回路产生旳焦耳热.
图 4-1-6
[答题规范]解:(1)导体棒先在无磁场区域做匀减速运动, 有
-μmg=ma,vt=v0+at,x=v0t+12at2 代入数据解得:t=1 s,x=0.5 m,导体棒没有进入磁场区 域. 导体棒在 1 s 末已经停止运动,以后一直保持静止,离左 端位置仍为 x=0.5 m.
本类题旳最大旳特点是电磁学与力学知 识相结合.注意:
(1)受力分析,如重力、支持力、摩擦力、安培力等;找 出关键信息,如“静止”、“匀速”、“匀加速”等,建立 方程.

电磁感应综合力学问题

电磁感应综合力学问题
kg,斜面上ef线 ef∥gh∥ab) M=2 kg,斜面上ef线(ef∥gh∥ab)的右方有垂直斜面向上的匀强 α 斜面上ef 磁场,磁感应强度B T.如果线框从静止开始运动 如果线框从静止开始运动, 磁场,磁感应强度B=0.5 T.如果线框从静止开始运动,进入磁场
最初一段时间是匀速的, 线和gh线的距离s gh线的距离 m(取 最初一段时间是匀速的,ef 线和gh线的距离s=11.4 m(取g=10 ).求 m/s2).求: (1)线框进入磁场时匀速运动的速度 线框进入磁场时匀速运动的速度v (1)线框进入磁场时匀速运动的速度v. (2)ab边由静止开始运动到gh线所用的时间t (2)ab边由静止开始运动到gh线所用的时间t. ab边由静止开始运动到gh线所用的时间 线框的运动可分为进入磁场前、 思路点拨 线框的运动可分为进入磁场前、 进入磁场中、完全进入磁场后三个阶段 分 进入磁场中、完全进入磁场后三个阶段,分 析每个阶段的受力,确定运动情况 确定运动情况. 析每个阶段的受力 确定运动情况
(1)导体处于平衡态 导体处于平衡态——静止或匀速直线运动状态. 静止或匀速直线运动状态. 导体处于平衡态 静止或匀速直线运动状态 处理方法:根据平衡条件 合外力等于零列式分析. 处理方法:根据平衡条件——合外力等于零列式分析. 合外力等于零列式分析 (2)导体处于非平衡态 导体处于非平衡态——加速度不等于零. 加速度不等于零. 导体处于非平衡态 加速度不等于零 处理方法:根据牛顿第二定律进行动态分析,或结合功能关系析. 处理方法:根据牛顿第二定律进行动态分析,或结合功能关系析.
M R P a N
m r
b
B
F Q
②感应电流的大小和方向
③使金属棒匀速运动所需的拉力 ④感应电流的功率 ⑤拉力的功率

电磁感应问题的综合分析 (1)

电磁感应问题的综合分析 (1)
答案 AD
以题说法 1.应用“感应电流的磁场总是阻碍原磁场的磁 通量的变化”分析问题时,首先要明确原磁场的方向和磁 通量的变化. 2.E=ΔΔBt S中的S是磁场穿过的有效面积.
针对训练 1 两磁感应强度为 B 的匀强磁场区域Ⅰ、Ⅲ,方 向如图 3 所示,两区域中间是宽为 s 的无磁场区域Ⅱ,有 一边长为 L(L>s)、电阻为 R 的均匀正方形金属线框 abcd 置于Ⅰ区域,ab 边与磁场边界平行,现拉着金属框以速 度 v 向右匀速运动,则 ()
方向匀速穿过两磁场区域,以逆时针方向为电流的正方向,
在下图中感应电流 i 与线框移动距离 x 的关系图象正确的

()
图5
解析 在 0~a 距离内,有效切割长度 l 均匀增大,即 l=vttan 30° = 33vt,感应电流 i= 33RBv2t,且最大值 I0=BRav,电流方向为 逆时针方向;在 a~2a 距离内,线框处在两个磁场中,在两个 磁场中有效切割长度相同,感应电流方向相同,且感应电流最 大值为 Imax=2I0,方向为顺时针方向;2a~3a 距离内,感应电 流为逆时针方向,且最大感应电流的值为 I0,C 正确.
答案 C
题型 3 电磁感应过程的动力学分析 例 3 (12 分)如图 6 所示,两根足够长的光滑直金属导轨 MN、
PQ 平行固定在倾角 θ=37°的绝缘斜面上,两导轨间距 L =1 m,导轨的电阻可忽略.M、P 两点间接有阻值为 R 的电阻.一根质量 m=1 kg、电阻 r=0.2 Ω 的均匀直金属 杆 ab 放在两导轨上,与导轨垂直且接触良好.整套装置 处于磁感应强度 B=0.5 T 的匀强磁场中,磁场方向垂直斜 面向下.自图示位置起,杆 ab 受到大小为 F=0.5v+2(式 中 v 为杆 ab 运动的速度,力 F 的单位为 N)、方向平行导 轨沿斜面向下的拉力作用,由静止开始运动,测得通过电 阻 R 的电流随时间均匀增大.g 取 10 m/s2,sin 37°=0.6.

高考物理电磁感应现象压轴题综合题

高考物理电磁感应现象压轴题综合题

高考物理电磁感应现象压轴题综合题一、高中物理解题方法:电磁感应现象的两类情况1.如图所示,两根竖直固定的足够长的金属导轨ad 和bc ,相距为L=10cm ;另外两根水平金属杆MN 和EF 可沿导轨无摩擦地滑动,MN 棒的质量均为m=0.2kg ,EF 棒的质量M =0.5kg ,在两导轨之间两棒的总电阻为R=0.2Ω(竖直金属导轨的电阻不计);空间存在着垂直于导轨平面的匀强磁场,磁感应强度为B=5T ,磁场区域足够大;开始时MN 与EF 叠放在一起放置在水平绝缘平台上,现用一竖直向上的牵引力使MN 杆由静止开始匀加速上升,加速度大小为a =1m/s 2,试求:(1)前2s 时间内流过MN 杆的电量(设EF 杆还未离开水平绝缘平台); (2)至少共经多长时间EF 杆能离开平台。

【答案】(1)5C ;(2)4s 【解析】 【分析】 【详解】解:(1)t=2s 内MN 杆上升的距离为21 2h at = 此段时间内MN 、EF 与导轨形成的回路内,磁通量的变化量为BLh ∆Φ=产生的平均感应电动势为E t ∆Φ=产生的平均电流为E I R=流过MN 杆的电量q It =代入数据解得25C 2BLat q R==(2)EF 杆刚要离开平台时有BIL Mg =此时回路中的电流为E I R=MN 杆切割磁场产生的电动势为E BLv =MN 杆运动的时间为v t a=代入数据解得224s MgRt B L a==2.如图所示,处于匀强磁场中的两根足够长、电阻不计的平行金属导轨相距1 m ,导轨平面与水平面成θ = 37°角,下端连接阻值为R =2Ω的电阻.磁场方向垂直导轨平面向上,磁感应强度为0.4T .质量为0.2kg 、电阻不计的金属棒放在两导轨上,棒与导轨垂直并保持良好接触,它们之间的动摩擦因数为0.25.金属棒沿导轨由静止开始下滑.(g=10m/s 2,sin37°=0.6,cos37°=0.8)(1)判断金属棒下滑过程中产生的感应电流方向; (2)求金属棒下滑速度达到5m/s 时的加速度大小; (3)当金属棒下滑速度达到稳定时,求电阻R 消耗的功率. 【答案】(1)由a 到b (2)22/a m s =(3)8P W = 【解析】 【分析】 【详解】(1)由右手定则判断金属棒中的感应电流方向为由a 到b .(2)金属棒下滑速度达到5/m s 时产生的感应电动势为0.4152E BLv V V ==⨯⨯= 感应电流为1EI A R==,金属棒受到的安培力为0.4110.4?F BIL N N ==⨯⨯= 由牛顿第二定律得:mgsin mgcos F ma θμθ--=,解得:22/a m s =. (3)设金属棒运动达到稳定时,所受安培力为F ',棒在沿导轨方向受力平衡mgsin mgcos F θμθ=+',解得:0.8F N '=,又:F BI L '=',0.820.41F I A A BL ''===⨯电阻R 消耗的功率:28P I R W ='=. 【点睛】该题考查右手定则的应用和导体棒沿着斜面切割磁感线的运动,该类题型综合考查电磁感应中的受力分析与法拉第电磁感应定律的应用,要求的解题的思路要规范,解题的能力要求较高.3.如图(a)所示,平行长直金属导轨水平放置,间距L =0.4 m .导轨右端接有阻值R =1 Ω的电阻,导体棒垂直放置在导轨上,且接触良好.导体棒及导轨的电阻均不计,导轨间正方形区域abcd 内有方向竖直向下的匀强磁场,bd 连线与导轨垂直,长度也为L .从0时刻开始,磁感应强度B 的大小随时间t 变化,规律如图(b)所示;同一时刻,棒从导轨左端开始向右匀速运动,1 s 后刚好进入磁场.若使棒在导轨上始终以速度v =1 m/s 做直线运动,求:(1)棒进入磁场前,回路中的电动势E 大小;(2)棒在运动过程中受到的最大安培力F ,以及棒通过三角形abd 区域时电流I 与时间t 的关系式.【答案】(1)0.04 V ; (2)0.04 N , I =22Bv tR;【解析】 【分析】 【详解】⑴在棒进入磁场前,由于正方形区域abcd 内磁场磁感应强度B 的变化,使回路中产生感应电动势和感应电流,根据法拉第电磁感应定律可知,在棒进入磁场前回路中的电动势为E ==0.04V⑵当棒进入磁场时,磁场磁感应强度B =0.5T 恒定不变,此时由于导体棒做切割磁感线运动,使回路中产生感应电动势和感应电流,根据法拉第电磁感应定律可知,回路中的电动势为:e =Blv ,当棒与bd 重合时,切割有效长度l =L ,达到最大,即感应电动势也达到最大e m =BLv =0.2V >E =0.04V根据闭合电路欧姆定律可知,回路中的感应电流最大为:i m ==0.2A根据安培力大小计算公式可知,棒在运动过程中受到的最大安培力为:F m =i m LB =0.04N 在棒通过三角形abd 区域时,切割有效长度l =2v (t -1)(其中,1s≤t≤+1s ) 综合上述分析可知,回路中的感应电流为:i ==(其中,1s≤t≤+1s )即:i =t -1(其中,1s≤t≤1.2s ) 【点睛】注意区分感生电动势与动生电动势的不同计算方法,充分理解B-t 图象的含义.4.如图所示,将边长为a 、质量为m 、电阻为R 的正方形导线框竖直向上抛出,穿过宽度为b 、磁感应强度为B 的匀强磁场区域,磁场的方向垂直纸面向里,线框向上离开磁场时的速度刚好是进入磁场时速度的一半,线框离开磁场后继续上升一段高度,然后落下并匀速进入磁场.整个运动过程中始终存在着大小恒定的空气阻力f ,且线框不发生转动.求:(1)线框在下落阶段匀速进入磁场时的速度v 2; (2)线框在上升阶段刚离开磁场时的速度v 1; (3)线框在上升阶段通过磁场过程中产生的焦耳热Q . 【答案】(1)22mg fR B a - (2)()22122Rv mg f B a =-(3)()()()2224432mR Q mg f mg f a b B a ⎡⎤=--++⎣⎦ 【解析】 【分析】(1)下落阶段匀速进入磁场说明线框所受力:重力、空气阻力及向上的安培力的合力为零.(2)对比线框离开磁场后继续上升一段高度(设为h ),然后下落相同高度h 到匀速进入磁场时两个阶段受力情况不同,合力做功不同,由动能定理:线框从离开磁场至上升到最高点的过程.(3)求解焦耳热Q ,需要特别注意的是线框向上穿过磁场是位移是a+b 而不是b ,这是易错的地方 【详解】(1)线框在下落阶段匀速进入磁场瞬间,由平衡知识有:222B a v mg f R=+解得:222()mg f Rv B a -=(2)线框从离开磁场至上升到最高点的过程,由动能定理:2110()02mg f h mv -+=- 线圈从最高点落至进入磁场瞬间:211()2mg f h mv -= 联立解得:221222()mg f Rv v mg f mg f B a+==-- (3)线框在向上通过磁场过程中,由能量守恒定律有:220111()()22Q mg f a b mv mv +++=- 而012v v =解得:222443[()]()()2mR Q mg f mg f a b B a=--++ 即线框在上升阶段通过磁场过程中产生的焦耳热为222443[()]()()2mR Q mg f mg f a b B a=--++ 【点睛】此类问题的关键是明确所研究物体运动各个阶段的受力情况,做功情况及能量转化情况,选择利用牛顿运动定律、动能定理或能的转化与守恒定律解决针对性的问题,由于过程分析不明而易出现错误.5.如图所示,宽度L =0.5 m 的光滑金属框架MNPQ 固定于水平面内,并处在磁感应强度大小B =0.4 T ,方向竖直向下的匀强磁场中,框架的电阻非均匀分布.将质量m =0.1 kg ,电阻可忽略的金属棒ab 放置在框架上,并与框架接触良好.以P 为坐标原点,PQ 方向为x 轴正方向建立坐标.金属棒从0x 1?m =处以0v 2?m /s =的初速度,沿x 轴负方向做2a 2?m /s =的匀减速直线运动,运动中金属棒仅受安培力作用.求:(1)金属棒ab 运动0.5 m ,框架产生的焦耳热Q ;(2)框架中aNPb 部分的电阻R 随金属棒ab 的位置x 变化的函数关系;(3)为求金属棒ab 沿x 轴负方向运动0.4 s 过程中通过ab 的电荷量q ,某同学解法为:先算出经过0.4 s 金属棒的运动距离x ,以及0.4 s 时回路内的电阻R ,然后代入BLxq R R∆Φ==求解.指出该同学解法的错误之处,并用正确的方法解出结果. 【答案】(1)0.1 J (2)R x =(3)0.4C 【解析】【分析】 【详解】(1)金属棒仅受安培力作用,其大小0.120.2?F ma N ⨯===金属棒运动0.5 m ,框架中产生的焦耳热等于克服安培力做的功所以0.20.50.1?Q Fx J ===⨯. (2)金属棒所受安培力为F BIL =E BLv I R R ==所以22B L RF ma v==由于棒做匀减速直线运动v所以R ===(3)错误之处是把0.4 s 时回路内的电阻R 代入BLxq R=进行计算. 正确的解法是q It = 因为F BIL ma == 所以ma 0.12q t 0.40.4?C BL 0.40.5⨯⨯⨯=== 【点睛】电磁感应中的功能关系是通过安培力做功量度外界的能量转化成电能.找两个物理量之间的关系是通过物理规律一步一步实现的.用公式进行计算时,如果计算的是过程量,我们要看这个量有没有发生改变.6.如图甲所示。

电磁感应现象习题综合题附答案

电磁感应现象习题综合题附答案

电磁感应现象习题综合题附答案一、高中物理解题方法:电磁感应现象的两类情况1.如图所示,光滑的长平行金属导轨宽度d=50cm ,导轨所在的平面与水平面夹角θ=37°,导轨上端电阻R=0.8Ω,其他电阻不计.导轨放在竖直向上的匀强磁场中,磁感应强度B=0.4T .金属棒ab 从上端由静止开始下滑,金属棒ab 的质量m=0.1kg .(sin37°=0.6,g=10m/s 2)(1)求导体棒下滑的最大速度;(2)求当速度达到5m/s 时导体棒的加速度;(3)若经过时间t ,导体棒下滑的垂直距离为s ,速度为v .若在同一时间内,电阻产生的热与一恒定电流I 0在该电阻上产生的热相同,求恒定电流I 0的表达式(各物理量全部用字母表示).【答案】(1)18.75m/s (2)a=4.4m/s 2(3222mgs mv Rt【解析】【分析】根据感应电动势大小与安培力大小表达式,结合闭合电路欧姆定律与受力平衡方程,即可求解;根据牛顿第二定律,由受力分析,列出方程,即可求解;根据能量守恒求解;解:(1)当物体达到平衡时,导体棒有最大速度,有:sin cos mg F θθ= , 根据安培力公式有: F BIL =, 根据欧姆定律有: cos E BLv I R Rθ==, 解得: 222sin 18.75cos mgR v B L θθ==; (2)由牛顿第二定律有:sin cos mg F ma θθ-= ,cos 1BLv I A Rθ==, 0.2F BIL N ==, 24.4/a m s =;(3)根据能量守恒有:22012mgs mv I Rt =+ , 解得: 202mgs mv I Rt -=2.如图甲所示,MN 、PQ 两条平行的光滑金属轨道与水平面成θ = 30°角固定,M 、P 之间接电阻箱R ,导轨所在空间存在匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度为B = 1T .质量为m 的金属杆ab 水平放置在轨道上,其接入电路的电阻值为r ,现从静止释放杆ab ,测得最大速度为v m .改变电阻箱的阻值R ,得到v m 与R 的关系如图乙所示.已知轨距为L = 2m ,重力加速度g 取l0m/s 2,轨道足够长且电阻不计.求:(1)杆ab 下滑过程中流过R 的感应电流的方向及R =0时最大感应电动势E 的大小; (2)金属杆的质量m 和阻值r ;(3)当R =4Ω时,求回路瞬时电功率每增加2W 的过程中合外力对杆做的功W . 【答案】(1)电流方向从M 流到P ,E =4V (2)m =0.8kg ,r =2Ω (3)W =1.2J 【解析】本题考查电磁感应中的单棒问题,涉及动生电动势、闭合电路欧姆定律、动能定理等知识.(1)由右手定则可得,流过R 的电流方向从M 流到P 据乙图可得,R=0时,最大速度为2m/s ,则E m = BLv = 4V (2)设最大速度为v ,杆切割磁感线产生的感应电动势 E = BLv 由闭合电路的欧姆定律EI R r=+ 杆达到最大速度时0mgsin BIL θ-= 得 2222sin sin B L mg mg v R r B Lθθ=+ 结合函数图像解得:m = 0.8kg 、r = 2Ω(3)由题意:由感应电动势E = BLv 和功率关系2E P R r =+得222B L V P R r=+则22222221B L V B L V P R r R r∆=-++ 再由动能定理22211122W mV mV =- 得22()1.22m R r W P J B L +=∆=3.图中装置在水平面内且处于竖直向下的匀强磁场中,足够长的光滑导轨固定不动。

电磁感应图像综合问题 【完整版】

电磁感应图像综合问题 【完整版】

1.如图所示,虚线右侧存在匀强磁场,磁场方向垂直纸面向外,正方形金属框电阻为R,边长是L,自线框从左边界进入磁场时开始计时,在水平向右的外力作用下由静止开始,以垂直于磁场边界的恒定加速度a进人磁场区域,t1时刻线框全部进入磁场.规定顺时针方向为感应电流I的正方向.外力大小为F,线框中电功率的瞬时值为P,通过导体横截面的电荷量为q,其中p—t 图像为抛物线,则这些量随时间的变化关系正确的是()2.如图甲所示,有一个等腰直角三角形的匀强磁场区域,其直角边长为L,磁场方向垂直纸面向外,磁感应强度大小为B。

一边长为L总电阻为R的正方形导线框abcd,从图示位置开始沿x 轴正方向以速度v匀速穿过磁场区域。

取沿a→b→c→d→a的感应电流为正,则图乙中表示线框中电流i随bC边的位置坐标x 变化的图象正确的是3.如图所示,两个垂直纸面的匀强磁场方向相反。

磁感应强度的大小均为B,磁场区域的宽度为a,一正三角形(高度为a)导线框ABC从图示位置沿图示方向匀速穿过两磁场区域,以逆时针方向为电流的正方向,在下图中感应电流I与线框移动距离x 的关系图是4.如图所示,一闭合直角三角形线框以速度v匀速穿过匀强磁场区域.从BC边进入磁场区开始计时,到A点离开磁场区止的过程中,线框内感应电流的情况(以逆时针方向为电流的正方向)是如图所示中的5.如图所示的区域内有垂直于纸面向里的匀强磁场,磁感应强度为B。

一个电阻为R、单径为L、圆心角为450的扇形闭合导线框绕垂直于纸面的O轴匀速转动(O轴位于磁场边界),周期为T则线框内产生的感应电流的图象为(规定电流顺时针方向为正)6.在竖直方向的匀强磁场中,水平放置一圆形导体环。

规定如图1所示的电流i及磁场B方向为正方向。

当用磁场传感器测得磁感应强度随时间变化如图2所示时,导体环中感应电流随时间变化的情况是7.如图所示为一宽度为L=40cm,磁感应强度B=1T的匀强磁场区域,边长为20cm的正方形导线框abcd,每边电阻相等,4个边总电阻为R=Ω,沿垂直于磁场方向以速度υ=0.2m/s匀速通过磁场。

素养培优6 电磁感应中动力学、能量和动量的综合-2025版二轮复习物理

素养培优6 电磁感应中动力学、能量和动量的综合-2025版二轮复习物理

素养培优6电磁感应中动力学、能量和动量的综合动力学与能量观点在电磁感应中的应用1.电磁感应综合问题的解题思路2.求解焦耳热Q 的三种方法(1)焦耳定律:Q =I 2Rt ,适用于电流恒定的情况;(2)功能关系:Q =W 克安(W 克安为克服安培力做的功);(3)能量转化:Q =ΔE (其他能的减少量)。

【典例1】(多选)(2024·吉林高考9题)如图,两条“”形的光滑平行金属导轨固定在绝缘水平面上,间距为L ,左、右两导轨面与水平面夹角均为30°,均处于竖直向上的匀强磁场中,磁感应强度大小分别为2B 和B 。

将有一定阻值的导体棒ab 、cd 放置在导轨上,同时由静止释放,两棒在下滑过程中始终与导轨垂直并接触良好。

ab 、cd 的质量分别为2m 和m ,长度均为L 。

导轨足够长且电阻不计,重力加速度大小为g ,两棒在下滑过程中()A .回路中的电流方向为abcdaB .abC .ab 与cd 加速度大小之比始终为2∶1D .两棒产生的电动势始终相等尝试解答【典例2】(2024·江苏震泽中学模拟)如图所示的是水平平行光滑导轨M 、N 和P 、Q ,M 、N 的间距为L ,P 、Q 的间距为2L 。

M 、N 上放有一导体棒ab ,ab 与导轨垂直,质量为m ,电阻为R 。

P 、Q 上放有一导体棒cd ,cd 也与导轨垂直,质量为2m ,电阻为2R 。

导轨电阻不计。

匀强磁场竖直穿过导轨平面,磁感应强度大小为B 。

初始两导体棒静止,设在极短时间内给ab 一个水平向左的速度v 0,使ab 向左运动,最后ab 和cd 的运动都达到稳定状态。

求:(1)刚开始运动的瞬间,ab 和cd 的加速度大小和方向;(2)稳定后ab 和cd 的速度大小;(3)整个过程中ab 产生的热量。

尝试解答动量观点在电磁感应中的应用角度1动量定理在电磁感应中的应用在导体单杆切割磁感线做变加速运动时,若运用牛顿运动定律和能量观点不能解决问题,可运用动量定理巧妙解决问题。

考前三个月专项练习练习12电磁感应中的综合问题

考前三个月专项练习练习12电磁感应中的综合问题

考前三个月专项练习练习12电磁感应中的综合问题训练12电磁感应中的综合问题【一】单项选择题1.(2018·福建理综·18)如图1所示,一圆形闭合铜环由高处从静止开始下落,穿过一根竖直悬挂的条形磁铁,铜环的中心轴线与条形磁铁的中轴线始终保持重合、假设取磁铁中心O为坐标原点,建立竖直向下为正方向的x轴,那么下图中最能正确反映环中感应电流i随环心位置坐标x变化的关系图象是()图12、(2018·北京市海淀区5月模拟练习19题)某学生设计了一个验证法拉第电磁感应定律的实验,实验装置如图2甲所示、在大线圈Ⅰ中放置一个小线圈Ⅱ,大线圈Ⅰ与多功能电源连接、多功能电源输入到大线圈Ⅰ的电流i1的周期为T,且按图乙所示的规律变化,电流i1将在大线圈Ⅰ的内部产生变化的磁场,该磁场磁感应强度B与线圈中电流i的关系为B=ki1(其中k为常数)、小线圈Ⅱ与电流传感器连接,并可通过计算机处理数据后绘制出小线圈Ⅱ中感应电流i2随时间t变化的图象、假设仅将多功能电源输出电流变化的频率适当增大,那么以下四图所示图象中可能正确反映i2-t图象变化的是(四图中分别以实线和虚线表示调整前、后的i2-t图象) ()图23、(2018·山东潍坊市第一次模拟)如图3所示,水平地面上方矩形虚线区域内有垂直纸面向里的匀强磁场,两个闭合线圈Ⅰ和Ⅱ分别用同种导线绕制而成,其中Ⅰ是边长为L 的正方形,Ⅱ是长2L 、宽L 的矩形,将两线圈从图示位置同时由静止释放、线圈下边进入磁场时,Ⅰ马上做一段时间的匀速运动、两线圈在整个运动过程中,下边始终平行于磁场上边界,不计空气阻力,那么 ()图3A 、下边进入磁场时,Ⅱ也马上做一段时间的匀速运动B 、从下边进入磁场开始的一段时间内,线圈Ⅱ做加速度不断减小的加速运动C 、从下边进入磁场开始的一段时间内,线圈Ⅱ做加速度不断减小的减速运动D 、线圈Ⅱ先到达地面【二】双项选择题4、(2018·山东理综·20)如图4所示,相距为L 的两条足够长的光滑平行金属导轨与水平面的夹角为θ,上端接有定值电阻R ,匀强磁场垂直于导轨平面,磁感应强度为B .将质量为m 的导体棒由静止释放,当速度达到v 时开始匀速运动,如今对导体棒施加一平行于导轨向下的拉力,并保持拉力的功率恒为P ,导体棒最终以2v 的速度匀速运动、导体棒始终与导轨垂直且接触良好,不计导轨和导体棒的电阻,重力加速度为g .以下选项正确的选项是 ()图4A 、P =2mgv sin θB 、P =3mgv sin θC 、当导体棒速度达到v 2时加速度大小为g 2sin θD 、在速度达到2v 以后匀速运动的过程中,R 上产生的焦耳热等于拉力所做的功5、(2018·湖北襄阳市调研)如图5甲所示,在竖直方向上有四条间距相等的水平虚线L 1、L 2、L 3、L 4,在L 1L 2之间、L 3L 4之间存在匀强磁场,大小均为1T ,方向垂直于虚线所在平面、现有一矩形线圈abcd ,宽度cd =L =0.5m ,质量为0.1kg ,电阻为2Ω,将其从图示位置由静止释放(cd 边与L 1重合),速度随时间的变化关系如图乙所示,t 1时刻cd 边与L 2重合,t 2时刻ab 边与L 3重合,t 3时刻ab 边与L 4重合,t 1~t 2的时间间隔为0.6s ,整个运动过程中线圈平面始终处于竖直方向、(重力加速度g 取10m/s 2)那么 ()图5A 、在0~t 1时间内,通过线圈的电荷量为0.25CB 、线圈匀速运动的速度大小为8m/sC 、线圈的长度为1mD 、0~t 3时间内,线圈产生的热量为4.2J6、(2018·甘肃省第一次模拟)在光滑的水平地面上方,有两个磁感应强度大小均为B ,方向相反的水平匀强磁场,如图6所示的PQ 为两个磁场的边界,磁场范围足够大、用单位长度电阻为R 的均匀金属丝制成一个直径为a 、质量为m 的金属圆环,使其以垂直于磁场方向的水平速度v 从图中实线所示位置开始运动,且圆环平面始终垂直于磁场,当圆环运动到直径刚好与边界线PQ 重合时,圆环的速度为v 2,那么以下说法正确的选项是()图6A 、如今圆环中的电功率为4B 2a 2v2R B 、如今圆环的加速度为B 2avπmRC 、此过程中通过金属丝横截面积的电荷量为Ba4RD 、此过程中回路产生的焦耳热为0.75mv 2【三】简答题7、(2018·山东威海市第一次模拟12题)如图7所示,正方形导线框abcd ,每边长为L ,ab边的质量为m ,且质量分布均匀,其它边质量不计,导线框的总电阻为R ,cd 边与光滑固定转轴OO ′相连,线框可绕OO ′轴自由转动,整个装置处在磁感应强度大小为B 、方向竖直向下的匀强磁场中、现将线框拉至水平位置,由静止开始释放,经时间t ,ab 边到达最低点,如今ab 边的角速度为ω.不计空气阻力、求:图7(1)在t 时间内通过导线横截面的电荷量q 为多少;(2)在最低点时ab 边受到的安培力大小和方向;(3)在最低点时ab 边受到ca 边的拉力大小;(4)在t 时间内线框中产生的热量、8、(2018·辽宁省实验中学、东北师大附中、哈师大附中第二次联考25题)如图8所示,倾角为30°、足够长的光滑平行金属导轨MN 、PQ 相距L 1=0.4m ,B 1=5T 的匀强磁场垂直导轨平面向上、一质量m =1.6kg 的金属棒ab 垂直于MN 、PQ 放置在导轨上,且始终与导轨接触良好,其电阻r=1Ω.金属导轨上端连接右侧电路,R1=1Ω,R2=1.5Ω.R2两端通过细导线连接质量M=0.6kg的正方形金属框cdef,正方形边长L2=0.2m,每条边电阻r0为1Ω,金属框处在一方向垂直纸面向里、B2=3T的匀强磁场中、现将金属棒由静止释放,不计其他电阻及滑轮摩擦,g取10m/s2.(1)假设将电键S断开,求棒下滑过程中的最大速度、(2)假设电键S闭合,每根细导线能承受的最大拉力为3.6N,求细导线刚好被拉断时棒的速度、(3)假设电键S闭合后,从棒释放到细导线被拉断的过程中,棒上产生的电热为2J,求此过程中棒下滑的高度(结果保留一位有效数字)、图89、(2018·陕西省五校第二次模拟25题)如图9所示,两根相距为L的金属轨道固定于水平面上,导轨电阻不计、一根质量为m、长为L、电阻为R的金属棒两端放于导轨上,导轨与金属棒间的动摩擦因数为μ,棒与导轨的接触电阻不计、导轨左端连有阻值为2R 的电阻,在电阻两端接有电压传感器并与计算机相连、轨道平面上有n段竖直向下的宽度为a、间距为b的匀强磁场(a>b),磁感应强度为B.金属棒初始时位于OO′处,与第一段磁场相距2a.图9(1)假设金属棒有向右的初速度v0,为使金属棒保持v0的速度一直向右穿过各磁场,需对金属棒施加一个水平向右的拉力、求金属棒进入磁场前拉力F1的大小和进入磁场后拉力F2的大小、(2)在(1)的情况下,求金属棒从OO′开始运动到刚离开第n段磁场过程中,拉力所做的功、(3)假设金属棒初速度为零,现对其施以水平向右的恒定拉力F,使棒穿过各段磁场,发明计算机显示出的电压随时间以固定的周期做周期性变化、请在图10给定的坐标系中定性地画出计算机显示的图象(从金属棒进入第一段磁场计时)、图10(4)在(3)的情况下,求金属棒从OO′处开始运动到刚离开第n段磁场整个过程中导轨左端电阻上产生的热量,以及金属棒从第n段磁场穿出时的速度、10、(2017·全国·24)如图11,两根足够长的金属导轨ab、cd竖直放置,导轨间距离为L,电阻不计、在导轨上端并接两个额定功率均为P、电阻均为R的小灯泡、整个系统置于匀强磁场中,磁感应强度方向与导轨所在平面垂直、现将一质量为m、电阻能够忽略的金属棒MN从图示位置由静止开始释放、金属棒下落过程中保持水平,且与导轨接触良好、某时刻后两灯泡保持正常发光、重力加速度为g.求:图11(1)磁感应强度的大小;(2)灯泡正常发光时导体棒的运动速率、11、两根光滑的长直金属导轨MN 、M ′N ′平行置于同一水平面内,导轨间距为l ,电阻不计,M 、M ′处接有如图12所示的电路,电路中各电阻的阻值均为R ,电容器的电容为C .长度也为l 、阻值同为R 的金属棒ab 垂直于导轨放置,导轨处于磁感应强度为B 、方向竖直向下的匀强磁场中、ab 在外力作用下向右匀速运动且与导轨保持良好接触,在ab 运动距离为x 的过程中,整个回路中产生的焦耳热为Q .求:图12(1)ab 运动速度v 的大小、(2)电容器所带的电荷量q .答案1、B2、D3、C4、AC5、AB6、BC7、(1)BL 2/R (2)B 2L 3ωR 方向水平向右(3)12(mg +m ω2L )(4)mgL -m ω2L 2/28、(1)7m/s(2)3.75m/s(3)1m9、(1)μmg μmg +B 2L 2v 03R (2)μmg [(n +2)a +(n -1)b ]+nB 2L 2v 0a 3R (3)见解析图(4)23n (F -μmg )(a +b )2m F -μmg2a -b 10、(1)mg 2L R P (2)2Pmg11、(1)4QR B 2l 2x (2)CQRBlx。

浅谈电磁感应中的综合问题

浅谈电磁感应中的综合问题
受到的安培力 F= I 1 B L,g F - "" I — V I LB 5

力 学部 分 思 路 :分 析 通 电导 体 的 受 力 情 况及 力的 效 果 ,应 用 牛 顿 定 律 、动 量 定 理 、动 量 守 恒 、 动 能 定 理 、 能 量 守 恒 等 规 律理顺 力学量之 间的关 系。
电动 机 对 a b棒 施加 一 个牵 引力 F,方 向 水
R 爻_ f× ] / , 厂 ^ J 且
\ I ∞\ 2
Dl l
平 向左 ,使其从静止开始沿导轨做加速运
动 ,此 过 程 中棒 始 终 保 持 与导 轨 垂 直 且 接 触 良好 。图4 是 捧 的 v t 乙 图像 , 中 O 其 A 段 是 直 线 ,AC段 是 曲线 ,D E段 是 曲线 图 象 的 渐近 线 。 型 电 动机 在 1s 小 2 末达 到 额 定
所以 I =妄



R一
R 一

然 后抓住 “ 电磁 感应 ” 及 “ 磁场 对
电 流的 作 用 ” 这 两 条 将 电学 量 与 力 学 量 相
由于 R +R =R 为 定 值 , 当 R =R、 . 时 ,R并有最大值 ,此最大值为 R/ 。所 4 以 I 最 小值 为 的 , 当 R =0或 R 0
1g k 的导 体棒 。 零 时 刻 开始 , 过 一 小 型 从 通
镰g o
由以 上 各式 得 _ . R .( - 2 04 0
阻分别与杆 的端点 O及环边连接 , A在 杆O
垂 直 于 环 面 向里 的磁 感 应 强 度 为 B的 匀 强
()0 2 3 ~1s内,导 体棒匀加 速运 动的

电磁感应中动力学、能量转化综合问题[论文]

电磁感应中动力学、能量转化综合问题[论文]

电磁感应中动力学、能量转化的综合问题摘要:电磁感应过程实质是不同形式的能量转化的过程,弄清楚物体的受力情况和运动状态情况,对解决这类问题至关重要。

本文主要通过几道典型性的例题来说明这个问题。

关键词:导体切割;能量与做功;问题解答定西市教育科学规划课题研究成果(课题编号dx﹝2012﹞ghb94)在电磁感应中由于导体切割磁感线,闭合回路中就会产生的感应电流i,i在磁场中就会受到安培力f的作用,因此,力学知识和运动学知识对解决这类电磁感应问题是很重要的。

所以学好力学知识对电磁学问题的解决很有帮助。

具体主要有以下两种情况。

一、电磁感应现象中的动态分析要把力学知识应用在电磁感应现象中,我们的具体思路是:电源→电路→受力情况→功、能问题。

例1.有一个间距为l的导轨,是金属制成的,固定在地面上,金属导轨接有一个电阻,它的阻值是r。

有一个匀强磁场,其磁感强度的大小是b,方向与导轨垂直,有一个导体棒质量大小是m,在其左侧连有一个弹簧,刚开始,弹簧没有伸长也没有缩短,它以v0的速度朝右滑动,这个导体棒一会儿朝右运动,一会儿朝左运动,但它们的接触很好。

求:1.刚开始时导体棒由于产生电流而在磁场中受到的力。

2.导体棒在运动的过程中,有一时刻速度为零,设这时它的势能为ep,在这一过程中,由于导体中有了电流,故而做功,求它的功w1和产生的热量q1各是多少?3.这个棒来回运动,它最后还是要停下来,问它将停在什么地方?在整个过程中,产生了多少的热量q?【解题分析】这个题考查电磁感应中的有关能量的问题,解答本题的关键是:1.受力分析→确定安培力的大小和方向→确定电流的方向;2.两个棒受到安培力的关系→受力分析→力f的大小;3.产生的热量→电动势→速度→位移。

【解析】1.在刚开始时由于棒切割磁感线,故产生了一个电动势,由于这个电动势而回路中有了电流,对棒分析,可知它受到一个磁场力,对以上各式解方程可得:,由右手定则和左手定则判断可知,安培力方向向左。

专项四电磁感应综合问题

专项四电磁感应综合问题

专项四电磁感应综合问题电磁感应综合问题,涉及力学知识〔如牛顿运动定律、功、动能定理、动量和能量守恒定律等〕、电学知识〔如电磁感应定律、楞次定律、直流电路知识、磁场知识等〕等多个知识点,其具体应用可分为以下两个方面:〔1〕受力情况、运动情况的动态分析。

思考方向是:导体受力运动产生感应电动势→感应电流→通电导体受安培力→合外力变化→加速度变化→速度变化→感应电动势变化→……,周而复始,循环结束时,加速度等于零,导体达到稳定运动状态。

要画好受力图,抓住a =0时,速度v 达最大值的特点。

〔2〕功能分析,电磁感应过程往往涉及多种能量形势的转化。

例如:如下图中的金属棒ab 沿导轨由静止下滑时,重力势能减小,一部分用来克服安培力做功转化为感应电流的电能,最终在R 上转转化为焦耳热,另一部分转化为金属棒的动能、假设导轨足够长,棒最终达到稳定状态为匀速运动时,重力势能用来克服安培力做功转化为感应电流的电能,因此,从功和能的观点人手,分析清晰电磁感应过程中能量转化的关系,往往是解决电磁感应问题的重要途径、【例1】如图1所示,矩形裸导线框长边的长度为2l ,短边的长度为l ,在两个短边上均接有电阻R ,其余部分电阻不计,导线框一长边与x 轴重合,左边的坐标x=0,线框内有一垂直于线框平面的磁场,磁场的感应强度满足关系)sin(l xB B 20π=。

一光滑导体棒AB 与短边平行且与长边接触良好,电阻也是R ,开始时导体棒处于x=0处,从t=0时刻起,导体棒AB 在沿x 方向的力F 作用下做速度为v 的匀速运动,求:〔1〕导体棒AB 从x=0到x=2l 的过程中力F 随时间t 变化的规律;〔2〕导体棒AB 从x=0到x=2l 的过程中回路产生的热量。

答案:〔1〕)()(sin v l t R l vtv l B F 203222220≤≤=π 〔2〕Rv l B Q 32320= 【例2】如图2所示,两条互相平行的光滑金属导轨位于水平面内,它们之间的距离为l =0.2m ,在导轨的一端接有阻值为R=0.5Ω的电阻,在x ≥0处有一与水平面垂直的均匀磁场,磁感强度B=0.5T 。

电磁感应综合问题分析

电磁感应综合问题分析

电磁感应综合问题分析一、电磁感应中的电路和图像问题1.粗细均匀的电阻丝围成的正方形线框置于有界匀强磁场中,磁场方向垂直于线框平面,其边界与正方形线框的边平行.现使线框以同样大小的速度沿四个不同方向平移出磁场,如图所示,则在移出过程中线框一边a 、b 两点间的电势差绝对值最大的是( )2.如图所示,MN 、PQ 是间距为L 的平行金属导轨,置于磁感应强度为B 、方向垂直导轨所在平面向里的匀强磁场中,M 、P 间接有一阻值为R 的电阻.一根与导轨接触良好、有效阻值为R 2的金属导线ab 垂直导轨放置,并在水平外力F 的作用下以速度v 向右匀速运动,则(不计导轨电阻) ( )A .通过电阻R 的电流方向为P →R →MB .a 、b 两点间的电压为BL vC .a 端电势比b 端电势高D .外力F 做的功等于电阻R 上产生的焦耳热3.一矩形线圈abcd 位于一随时间变化的匀强磁场内,磁场方向垂直线圈所在的平面向里(如图甲所示),磁感应强度B 随时间t 变化的规律如图乙所示.以I 表示线圈中的感应电流(图甲中线圈上箭头方向为电流的正方向),则下列选项中能正确表示线圈中电流I 随时间t 变化规律的是( )4.如图所示,两个相邻的有界匀强磁场区域,方向相反,且垂直纸面,磁感应强度的大小均为B ,以磁场区左边界为y 轴建立坐标系,磁场区域在y 轴方向足够长,在x 轴方向宽度均为a .矩形导线框ABCD 的CD 边与y 轴重合,AD 边长为a .线框从图示位置水平向右匀速穿过两磁场区域,且线框平面始终保持与磁场垂直,线框中感应电流i 与线框移动距离x 的关系图象正确的是(以逆时针方向为电流的正方向)( )5.如图所示,两根足够长的光滑金属导轨水平平行放置,间距为l=1 m,cd间、de间、cf 间分别接阻值为R=10 Ω的电阻.一阻值为R=10 Ω的导体棒ab以速度v=4 m/s匀速向左运动,导体棒与导轨接触良好;导轨所在平面存在磁感应强度大小为B=0.5 T、方向竖直向下的匀强磁场.下列说法中正确的是()A.导体棒ab中电流的流向为由b到aB.cd两端的电压为1 VC.de两端的电压为1 VD.fe两端的电压为1 V6.如图甲所示,圆形导线框固定在匀强磁场中,磁感线的方向与导线框所在平面垂直.规定磁场的正方向垂直纸面向里,磁感应强度B随时间变化的规律如图乙所示.若规定顺时针方向为感应电流i的正方向,下列各图中正确的是()7.如图甲所示,水平面上的两光滑金属导轨平行固定放置,间距d=0.5 m,电阻不计,左端通过导线与阻值R=2 Ω的电阻连接,右端通过导线与阻值R L=4 Ω的小灯泡L连接.在CDFE矩形区域内有竖直向上的匀强磁场,CE长l=2 m,有一阻值r=2 Ω的金属棒PQ放置在靠近磁场边界CD处.CDFE区域内磁场的磁感应强度B随时间变化规律如图乙所示.在t=0至t=4 s内,金属棒PQ保持静止,在t=4 s时使金属棒PQ以某一速度进入磁场区域并保持匀速运动.已知从t=0开始到金属棒运动到磁场边界EF处的整个过程中,小灯泡的亮度没有发生变化.求:(1)通过小灯泡的电流;(2)金属棒PQ在磁场区域中运动的速度大小.二、电磁感应中的动力学和能量问题8.如图所示,两足够长平行金属导轨固定在水平面上,匀强磁场方向垂直导轨平面向下,金属棒ab 、cd 与导轨构成闭合回路且都可沿导轨无摩擦滑动,两金属棒ab 、cd 的质量之比为2∶1.用一沿导轨方向的恒力F 水平向右拉金属棒cd ,经过足够长时间以后( )A .金属棒ab 、cd 都做匀速运动B .金属棒ab 上的电流方向是由b 向aC .金属棒cd 所受安培力的大小等于2F/3D .两金属棒间距离保持不变9.如图所示电路,两根光滑金属导轨平行放置在倾角为θ的斜面上,导轨下端接有电阻R ,导轨电阻不计,斜面处在竖直向上的匀强磁场中,电阻可忽略不计的金属棒ab 质量为m ,受到沿斜面向上且与金属棒垂直的恒力F 的作用.金属棒沿导轨匀速下滑,则它在下滑高度h 的过程中,以下说法正确的是( )A .作用在金属棒上各力的合力做功为零B .重力做的功等于系统产生的电能C .金属棒克服安培力做的功等于电阻R 上产生的焦耳热D .金属棒克服恒力F 做的功等于电阻R 上产生的焦耳热10.如图所示,相距为L 的两条足够长的光滑平行金属导轨与水平面的夹角为θ,上端接有定值电阻R ,匀强磁场垂直于导轨平面,磁感应强度为B .将质量为m 的导体棒由静止释放,当速度达到v 时开始匀速运动,此时对导体棒施加一平行于导轨向下的拉力,并保持拉力的功率恒为P ,导体棒最终以2v 的速度匀速运动.导体棒始终与导轨垂直且接触良好不计导轨和导体棒的电阻,重力加速度为g .下列选项正确的是( )A .P =2mg v sin θB .P =3mg v sin θC .当导体棒速度达到v 2时加速度大小为g 2sin θ D .在速度达到2v 以后匀速运动的过程中,R 上产生的焦耳热等于拉力所做的功11.如图,两根足够长光滑平行金属导轨PP ′、QQ ′倾斜放置,匀强磁场垂直于导轨平面,导轨的上端与水平放置的两金属板M 、N 相连,板间距离足够大,板间有一带电微粒,金属棒ab 水平跨放在导轨上,下滑过程中与导轨接触良好,现同时由静止释放带电微粒和金属棒ab ,则( )A .金属棒ab 最终可能匀速下滑B .金属棒ab 一直加速下滑C .金属棒ab 下滑过程中M 板电势高于N 板电势D .带电微粒不可能先向N 板运动后向M 板运动12.如图甲所示,足够长的光滑平行金属导轨MN 、PQ 竖直放置,其宽度L =1 m ,一匀强磁场垂直穿过导轨平面,导轨的上端M 与P 之间连接阻值为R =0.40 Ω的电阻,质量为m =0.01 kg 、电阻为r =0.30 Ω的金属棒ab 紧贴在导轨上.现使金属棒ab 由静止开始下滑,下滑过程中ab 始终保持水平,且与导轨接触良好,其下滑距离x 与时间t 的关系如图乙所示,图象中的OA段为曲线,AB段为直线,导轨电阻不计,g=10 m/s2(忽略ab棒运动过程中对原磁场的影响),求:甲乙(1)磁感应强度B的大小;(2)金属棒ab在开始运动的1.5 s内,通过电阻R的电荷量;(3)金属棒ab在开始运动的1.5 s内,电阻R上产生的热量.。

电磁感应综合问题(解析版)

电磁感应综合问题(解析版)

构建知识网络:考情分析:楞次定律、法拉第电磁感应定律是电磁学部分的重点,也是高考的重要考点。

高考常以选择题的形式考查电磁感应中的图像问题和能量转化问题,以计算题形式考查导体棒、导线框在磁场中的运动、电路知识的相关应用、牛顿运动定律和能量守恒定律在导体运动过程中的应用等。

备考时我们需要重点关注,特别是导体棒的运动过程分析和能量转化分析。

重点知识梳理:一、感应电流1.产生条件闭合电路的部分导体在磁场内做切割磁感线运动穿过闭合电路的磁通量发生变化2.方向判断右手定则:常用于切割类楞次定律:常用于闭合电路磁通量变化类3.“阻碍”的表现阻碍磁通量的变化增反减同阻碍物体间的相对运动来拒去留阻碍原电流的变化自感现象二、电动势大小的计算适用过程表达公式备注n匝线圈内的磁通量发生变化E=nΔΦΔt(1)当S不变时,E=nSΔBΔt;(2)当B不变时,E=nBΔSΔt导体做切割磁感线的运E=Blv (1)E=Blv的适用条件:动v⊥l,v⊥B;(2)当v与B平行时:E=0导体棒在磁场中以其中一端为圆心转动垂直切割磁感线三、电磁感应问题中安培力、电荷量、热量的计算1.导体切割磁感线运动,导体棒中有感应电流,受安培力作用,根据E=Blv,I=ER,F=BIl,可得F=B2l2v/R.2.闭合电路中磁通量发生变化产生感应电动势,电荷量的计算方法是根据E=ΔΦΔt,I=ER,q=IΔt则q=ΔΦ/R,若线圈匝数为n,则q=nΔΦ/R.3.电磁感应电路中产生的焦耳热,当电路中电流恒定时,可以用焦耳定律计算,当电路中电流发生变化时,则应用功能关系或能量守恒定律计算.四、自感现象与涡流自感电动势与导体中的电流变化率成正比,比例系数称为导体的自感系数L。

线圈的自感系数L 与线圈的形状、长短、匝数等因数有关系。

线圈的横截面积越大,匝数越多,它的自感系数就越大。

带有铁芯的线圈其自感系数比没有铁芯的大得多。

【名师提醒】典型例题剖析:考点一:楞次定律和法拉第电磁感应定律【典型例题1】(2016·浙江高考)如图所示,a、b两个闭合正方形线圈用同样的导线制成,匝数均为10匝,边长l a=3l b,图示区域内有垂直纸面向里的匀强磁场,且磁感应强度随时间均匀增大,不考虑线圈之间的相互影响,则()A.两线圈内产生顺时针方向的感应电流B.a、b线圈中感应电动势之比为9∶1C.a、b线圈中感应电流之比为3∶4D .a 、b 线圈中电功率之比为3∶1【答案】B【变式训练1】(2015·江苏高考)做磁共振(MRI)检查时,对人体施加的磁场发生变化时会在肌肉组织中产生感应电流.某同学为了估算该感应电流对肌肉组织的影响,将包裹在骨骼上的一圈肌肉组织等效成单匝线圈,线圈的半径r =5.0 cm ,线圈导线的截面积A =0.80 cm 2,电阻率ρ=1.5 Ω·m.如图所示,匀强磁场方向与线圈平面垂直,若磁感应强度B 在0.3 s 内从 1.5 T 均匀地减为零,求:(计算结果保留一位有效数字)(1)该圈肌肉组织的电阻R ;(2)该圈肌肉组织中的感应电动势E ;(3)0.3 s 内该圈肌肉组织中产生的热量Q. 【答案】:(1)6×103Ω(2)4×10-2V(3)8×10-8J【解析】:(1)由电阻定律R =ρ2πrA ,代入数据解得R =6×103Ω(2)感应电动势E =ΔB Δt πr 2,代入数据解得E =4×10-2V(3)由焦耳定律得Q =E2RΔt ,代入数据解得Q =8×10-8J【名师提醒】1.灵活应用楞次定律中“阻碍”的推广含义:(1)阻碍原磁通量的变化——“增反减同”;(2)阻碍相对运动——“来拒去留”;(3)阻碍原电流的变化(自感现象)——“增反减同”;(4)使线圈平面有扩大或缩小的趋势——“增缩减扩”。

电磁感应综合问题

电磁感应综合问题

[电磁感应] 电磁感应综合问题包含次级知识点:电路问题、图像问题、动力学问题、能量问题【知识点总结】本部分内容包含:电磁感应中的动力学问题、电磁感应中的能量问题、电磁感应中的图像问题,电磁感应的电路问题,在利用能的转化和守恒定律解决电磁感应的问题时,要注意分析安培力做功的情况,因为安培力做的功是电能和其他形式的能之间相互转化的“桥梁”。

考点1. 电磁感应中的动力学问题1.电磁感应中产生的感应电流在磁场中将受到安培力的作用,因此,电磁感应问题往往跟力学问题联系在一起,解决这类电磁感应中的力学问题,不仅要应用电磁学中的有关规律,如楞次定律、法拉第电磁感应定律、左右手定则、安培力的计算公式等,还要应用力学中的有关规律,如牛顿运动定律、动量定理、动能定理、动量守恒定律、机械能守恒定律等。

要将电磁学和力学的知识综合起来应用。

2.电磁感应与动力学、运动学结合的动态分析,思考方法是:电磁感应现象中感应电动势→感应电流→通电导线受安培力→合外力变化→加速度变化→速度变化→感应电动势变化→……周而复始地循环,循环结束时,加速度等于零,导体达到稳定状态.考点2.带电粒子在复合场中的运动实例1.在电磁感应现象中,切割磁感线的导体或磁通量发生变化的回路将产生感应电动势,该导体或回路就相当于电源,将它们接上电阻等用电器,便可对用电器供电,在回路中形成电流;将它们接上电容器,便可使电容器充电,因此电磁感应问题又往往跟电路问题联系在一起。

解决这类问题,不仅要考虑电磁感应中的有关规律,如右手定则、楞次定律和法拉第电磁感应定律等,还要应用电路中的有关规律,如欧姆定律、串联、并联电路电路的性质等。

2. 解决电磁感应中的电路问题,必须按题意画出等效电路图,将感应电动势等效于电源电动势,产生感应电动势的导体的电阻等效于内电阻,求电动势要用电磁感应定律,其余问题为电路分析及闭合电路欧姆定律的应用。

3. 一般解此类问题的基本思路是:①明确哪一部分电路产生感应电动势,则这部分电路就是等效电源②正确分析电路的结构,画出等效电路图③结合有关的电路规律建立方程求解.考点3.电磁感应中的能量问题1. 产生和维持感应电流的存在的过程就是其它形式的能量转化为感应电流电能的过程。

电磁感应综合问题(解析版)--2024年高考物理大题突破优选全文

电磁感应综合问题(解析版)--2024年高考物理大题突破优选全文

电磁感应综合问题1.掌握应用动量定理处理电磁感应问题的思路。

2.掌握应用动量守恒定律处理电磁感应问题的方法。

3.熟练应用楞次定律与法拉第电磁感应定律解决问题。

4.会分析电磁感应中的图像问题。

5.会分析电磁感应中的动力学与能量问题。

电磁感应中的动力学与能量问题1(2024·河北·模拟预测)如图甲所示,水平粗糙导轨左侧接有定值电阻R =3Ω,导轨处于垂直纸面向外的匀强磁场中,磁感应强度B =1T ,导轨间距L =1m 。

一质量m =1kg ,阻值r =1Ω的金属棒在水平向右拉力F 作用下由静止开始从CD 处运动,金属棒与导轨间动摩擦因数μ=0.25,金属棒的v -x 图像如图乙所示,取g =10m/s 2,求:(1)x =1m 时,安培力的大小;(2)从起点到发生x =1m 位移的过程中,金属棒产生的焦耳热;(3)从起点到发生x =1m 位移的过程中,拉力F 做的功。

【答案】(1)0.5N ;(2)116J ;(3)4.75J 【详解】(1)由图乙可知,x =1m 时,v =2m/s ,回路中电流为I =E R +r =BLv R +r=0.5A安培力的大小为F 安=IBL =0.5N (2)由图乙可得v =2x金属棒受到的安培力为F A =IBL =B 2L 2v R +r=x2(N )回路中产生的焦耳热等于克服安培力做的功,从起点到发生x =1m 位移的过程中,回路中产生的焦耳热为Q =W 安=F A x =0+0.52×1J =0.25J金属棒产生的焦耳热为Q 棒=r R +rQ =116J(3)从起点到发生x =1m 位移的过程中,根据动能定理有W F -W 安-μmgx =12mv 2解得拉力F 做的功为W F =4.75J1.电磁感应综合问题的解题思路2.求解焦耳热Q 的三种方法(1)焦耳定律:Q =I 2Rt ,适用于电流恒定的情况;(2)功能关系:Q =W 克安(W 克安为克服安培力做的功);(3)能量转化:Q =ΔE (其他能的减少量)。

速解电磁感应综合问题

速解电磁感应综合问题

() 4 使金属棒做匀速 运动的拉力 。
解析 : 电路 分 析 ) 属棒 ( 金 向左匀速运 动时 切割磁 感线 产 生 电动势 , 它相 当于 电源 , 等效
电路 如 图 2 示 。在 闭 合 回 路 所
求学生有更强的处理问题的能力 , 也就成为学生学 习
中的难点。其实 , 在分析这类 问题时 , 可先将整个物理 过程分解为电路问题 和力学问题 , 然后重点做好 以下
间 的关 系 。
( ) 动力 学分析 ) 电 导体棒 在磁 场 中受到 安 4( 通 培力 作用 , 故使棒 匀速 运动 的外力 与安 培力 是一 对 平衡力 , 向向左 , 方 大小 为 F=F 寄=lB=0 4× . h . 01
×0. = 0. N 5N 02
值得 注意的是 : 割磁感 线 的导 体是 连接 电路 切 问题和力学 问题 的桥梁 , 在电路中相 当于 电源 , 它 所 产生 的电动势相 当 于电源 的电动 势 ; 在力 学 问题 中
两个 方 面 的工作 就 能化 难为 易 , 求解 。 快速 好 电磁 感 应 中的 电路 分 析
中, 属棒 的 部分相 当于 电 金 源, 内阻 r =h , c d r 电动 势
Bh v。
在电磁感应 中 , 切割 磁感 线 的导体 或磁 通量 发

图2
生变化的 回路将产 生感 应 电动 势 , 则该 导体 或 回路 就相 当于电源 , 应用楞次定律 、 先 法拉第 电磁感应 定
分析
() 1根据 欧姆定律 , R中的电流强度 为 :
, Td—R + ^ :o A, 向 从 ’经 R到 Q 一R+ a : : . 4 方 。 ,一 V‘ ’ ’ ∥、Ⅳ 。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电磁感应中的综合问题教学目标通过电磁感应综合题目的分析与解答,深化学生对电磁感应规律的理解与应用,使学生在建立力、电、磁三部分知识联系的同时,再次复习力与运动、动量与能量、电路计算、安培力做功等知识,进而提高学生的综合分析能力.教学重点、难点分析1.电磁感应的综合问题中,往往运用牛顿第二定律、动量守恒定律、功能关系、闭合电路计算等物理规律及基本方法,而这些规律及方法又都是中学物理学中的重点知识,因此进行与此相关的训练,有助于学生对这些知识的回顾和应用,建立各部分知识的联系.但是另一方面,也因其综合性强,要求学生有更强的处理问题的能力,也就成为学生学习中的难点.2.楞次定律、法拉第电磁感应定律也是能量守恒定律在电磁感应中的体现,因此,在研究电磁感应问题时,从能量的观点去认识问题,往往更能深入问题的本质,处理方法也更简捷,“物理”的思维更突出,对学生提高理解能力有较大帮助,因而应成为复习的重点.教学过程设计一、力、电、磁综合题分析〈投影片一〉[例1] 如图3-9-1所示,AB、CD是两根足够长的固定平行金属导轨,两导轨间的距离为l,导轨平面与水平面的夹角为θ,在整个导轨平面内都有垂直于导轨平面斜向上方的匀强磁场,磁感强度为B,在导轨的A、D端连接一个阻值为R 的电阻.一根垂直于导轨放置的金属棒ab,其质量为m,从静止开始沿导轨下滑.求:ab棒下滑的最大速度.(要求画出ab棒的受力图,已知ab与导轨间的动摩擦因数为μ,导轨和金属棒的电阻都不计)教师:(让学生审题,随后请一位学生说题.)题目中表达的是什么物理现象?ab棒将经历什么运动过程?——动态分析.学生:ab棒沿导轨下滑会切割磁感线,产生感应电动势,进而在闭合电路中产生感应电流.这是电磁感应现象.ab棒在下滑过程中因所受的安培力逐渐增大而使加速度逐渐减小,因此做加速度越来越小的加速下滑.教师:(肯定学生的答案)你能否按题目要求画出ab棒在运动中的受力图?学生画图(图3-9-2).教师指出:本题要求解的是金属棒的最大速度,就要求我们去分析金属棒怎样达到最大速度,最大速度状态下应满足什么物理条件.本质上,仍然是要回答出力学的基本问题:物体受什么力,做什么运动,力与运动建立什么关系式?在电磁现象中,除了分析重力、弹力、摩擦力之外,需考虑是否受磁场力(安培力)作用.提问:金属棒在速度达到最大值时的力学条件是什么?要点:金属棒沿斜面加速下滑,随v↑→感应电动势=Blv↑→感力F=BIl↑→合力↓→a↓.当合力为零时,a=0,v达最大v m,以后一直以v m匀速下滑.(让学生写出v达最大的平衡方程并解出v m.)板书:当v最大时,沿斜面方向的平衡方程为师:通过上述分析,你能说出何时金属棒的加速度最大?最大加速度为多少?生:金属棒做a减小的加速下滑,故最初刚开始下滑时,加速度a最大.由牛顿第二定律有:mgsinθ-μmgcosθ=ma m得 a m=g(sinθ-μcos θ)师设问:如果要求金属棒ab两端的电压U ab最终为多大,应该运用什么知识去思考?引导:求电路两端的电压应从金属棒所在电路的组成去分析,为此应先画出等效电路模型图.(学生画图.)板书:(将学生画出的正确电路图画在黑板上,见图3-9-3)师:根据电路图可知U ab指什么电压?(路端电压)(让学生自己推出U ab表达式及U ab的最大值.)板书:U ab=-Ir=Blv-Ir由于金属棒电阻不计,则r=0,故U ab=Blv随金属棒速度v↑→↑→U ab↑,最终提醒:若金属棒的电阻不能忽略,其电阻为r,则U ab结果又怎样?(有的学生会想当然,认为将上式中的R改为(R+r)即可.)师指出:仍然应用基本方法去分析,而不能简单从事,“一改了之”.应该用本题的方法考虑一遍:用力学方法确定最大速度,用电路分析方法确定路端电压题后语:由例1可知,解答电磁感应与力、电综合题,对于运动与力的分析用力学题的分析方法,只需增加对安培力的分析;而电路的电流、电压分析与电学分析方法一样,只是需要先明确电路的组成模型,画出等效电路图.这是力、电、磁综合题的典型解题方法.分析这类题要抓住“速度变化引起磁场力变化”的相互关联关系,从分析物体的受力情况与运动情况入手是解题的关键和解题的钥匙.〈投影片二〉[例2] 如图3-9-4所示,两根竖直放置在绝缘地面上的金属导轨的上端,接有一个电容为C的电容器,框架上有一质量为m、长为l的金属棒,平行于地面放置,与框架接触良好且无摩擦,棒离地面的高度为h,磁感强度为B的匀强磁场与框架平面垂直.开始时,电容器不带电.将金属棒由静止释放,问:棒落地时的速度为多大?(整个电路电阻不计)本题要抓几个要点:①电路中有无电流?②金属棒受不受安培力作用?若有电流,受安培力作用,它们怎样计算?③为了求出金属棒的速度,需要用力学的哪种解题途径:用牛顿运动定律?动量观点?能量观点?师:本题与例1的区别是,在分析金属棒受什么力时首先思维受阻:除了重力外,还受安培力吗?即电路中有电流吗?有的学生认为,虽然金属棒由于“切割”而产生感应电动势;但电容器使电路不闭合故而为了判断有无电流,本题应先进行电路的组成分析,画出等效电路图.(学生画图,见图3-9-5.)问:电路中有电流吗?(这一问题对大多数学生来说,根据画的电路图都能意识到有电容器充电电流,方向为逆时针.)再问:这一充电电流强度I应怎样计算?(运用什么物理概念或规律?)计”这一条件,因而思维又发生障碍.追问:这个电路是纯电阻电路吗?能否应用欧姆定律求电流强度?——让学生认清用欧姆定律根本就是“张冠李戴”的.引导:既然是给电容器充电形成电流,那么电流强度与给电容器极板上充上的电量Q有什么关系?师:让学生判断,分析确定金属棒受的合外力怎样变化时,要考虑安培力的变化情况,所需确定的是瞬时电流,还是平均电流?(瞬时电学生思维被引导到应考虑很短一段时间△t内电容极板上增加的电师:电容器极板上增加的电量与极板间的电压有何关系?因为Q=CU c,所以△Q=C△U c师:而电容两极板间的电压又根据电路怎样确定?生:因电路无电阻,故电源路端电压U= =Blv,而U=U c,所以△U c=BL△v.指出:本题中电流强度的确定是关键,是本题的难点,突破了这一难点,以后的问题即可迎刃而解.问题:下面面临的问题是金属棒在重力、安培力共同作用下运动了位移为h时的速度怎样求.用动量观点、能量观点,还是用牛顿第二定律?(学生经过分析已知条件,并进行比较,都会选择用牛顿第二定律.)指点:用牛顿第二定律求解加速度a,以便能进一步弄清金属棒的运动性质.板书:mg-B·I·l=ma②师:由同学们推出的结果,可知金属棒做什么性质的运动?生:从③式知a=恒量,所以金属棒做匀加速运动.师:让学生写出落地瞬时速度表达式.师:进一步分析金属棒下落中的能量转化,金属棒下落,重力势能减少,转化为什么能力?机械能守恒吗?学生:克服安培力做功,使金属棒的机械能减少,轻化为电能,储存在电容器里,故金属棒的机械能不守恒.金属棒下落中减少的重力势能一部分转化的电能,还有一部分转化为动能.师:对.只要电容器不被击穿,这种充电、储能过程就持续进行,小结:以上两例都是力、电、磁综合问题.例1是从分析物体受什么力、做什么运动的力学分析为突破口,进而确定最大速度的.例2则以分析电路中的电流、电压等电路状态为突破口,特别是它不符合欧姆定律这一点应引起重视.两题的突破点虽不同,但都离不开力学、电学、电磁感应、安培力等基本概念、基本规律、基本方法的运用.同学们平时在自己独立做题中,仍应在“知(基本知识)、法(基本方法)、路(基本思路)、审(认真审题)”四个字上下功夫,努力提高自己的分析能力、推理能力.衔接:力电综合题中除了上述的一个物体运动之外,还有所谓的“两体”问题.见例3.〈投影片三〉[例3] 如图3-9-6所示,质量为m1的金属棒P在离地h高处从静止开始沿弧形金属平行导轨MM′、NN′下滑.水平轨道所在的空间有竖直向上的匀强磁场,磁感强度为B.水平导轨上原来放有质量为m2的金属杆Q.已知两杆质量之比为3∶4,导轨足够长,不计摩擦,m1为已知.求:(1)两金属杆的最大速度分别为多少?(2)在两杆运动过程中释放出的最大电能是多少?师:第(1)问的思维方法与例1一样,先确定两杆分别受什么力,做什么运动,进而可知何时速度最大,最大速度怎样求.(让学生审题后互相讨论思考一会儿,然后叫一位学生代表表述分析的结果.)这一阶段Q棒仍静止.当P棒滑入水平轨道上并以v1开始切割磁感线后,产生,闭合电路中产生感应电流I,方向为逆时针.由左手定则知,P棒受到安培力向左,使P 棒减速.而Q棒受安培力向右,使Q棒加速.当两棒速度相等时,感应电流为零,安培力F安=BIl=0,加速度a=0,两棒以后以共同的速度匀速运动.此时的速度v2即为棒的最大速度,而v1则为P棒的最大速度.学生一边分析,教师一边在黑板上画示意图.见图3-9-7.师:分析得很好.进一步确定一下v2。

可用什么物理规律求出?而两者同速时,a=O,F安=BIL=0,I=0→=Blvp-Blv Q=O→v Q=v P=v2。

,但v2仍无法像例1那样求出.如果变上述的隔离法分析为整体法分析又怎样?即将两金属棒组成的系统为对象,分析它们所受的外力有什么特点吗?(学生思考后,可以告诉学生,在此过程中,两杆所受的安培力的冲量是等值反向的,因此两棒动量变化是等值反向的,则系统总动量守恒——这种讲法比直接说安培力合力为零,系统P守恒学生更易于接受.)板书:P、Q两金属棒总动量守恒,则有即为Q棒最大速度.提高要求:你能定性画出P、Q两棒在水平轨道上运动的v-t图像吗?试一试.(学生考虑后,让一位学生画在黑板上.见图8-9-8.)师:转过第二问.第二问涉及能量问题,需要用能量观点考虑.问题1:全过程释放出的电能,能否用W=UIt计算出来?或用W=I2Rt计算?生:不知道时间t,而且U、I均为变化的,R也不知,故条件不足,无法计算.师:无法直接计算电能就转换思维,间接用能量转化守恒关系计图3-9-8算.考虑一下全过程中什么能减小,什么能增加?(学生不可能都准确地说出来,要引导.)答:系统的机械能减少,电能增加.师:当两金属棒都以v2匀速运动后,系统的机械能不再减少,也就不再释放电能.故系统全过程中损失的全部机械能=释放的最大电能.列式为:类比:本题中的两棒运动的过程,类似于两同向运动物体的追赶问题:当两棒同速时二者间的距离最近,由导轨、两棒组成的闭合回路的面积最小,磁通最小.而“同速”以后回路面积不再改变、不变,故=0,I=0,F安=0,这是从“磁通变化”角度来看问题.另外,上述过程又类似于完全非弹性碰撞,系统动量守恒,而机械能损失的最多,故释放的电能最多.师:若题目条件改为不等宽的导轨,如图3-9-9所示(投影片四),且已知导轨宽为l1=2l2,金属棒电阻r1=r2=r,则最终两棒的运动关系仍是同速吗?(设宽、窄两部分轨道都足够长)(有的学生会用例3的结论套用到这里来仍然认为系统动量守恒,从而得出错误的结论.)提示:在全过程中,两棒的动量变化仍等值反向吗?生:安培力为F安=BIl,因两杆不一样长,故两杆所受的安培力不一样大,其冲量不相等,所以动量改变不相等.系统动量不守恒.师:仍然从基本方法出发,分析两棒各自做什么运动:P棒做a减小的减速运动,Q棒做a减小的加速运动.当v P=v Q时,电路中两个电动势之和为= P- Q=Bl1v P-Bl2v Q ≠0,故回路中仍然有逆时针的电流,各棒在安培力作用下继续运动,P棒继续减速,Q棒继续加速,最终当=Bl1v P-Bl2v Q=0时,I=0,F安=0,两棒才做匀速运动.因此,本题应满足的物理条件和规律是:最终匀速运动的条件:=0运动过程中的动量变化规律为:师:请同学们试画出两棒在水平轨道上运动的v-t图像.(定性)(学生画在黑板上,如图5-9-10.)师:从本题的分析可见,遇到物理问题应该养成仔细审清题目给的条件,分析物理过程,正确选用物理规律的习惯,而不要轻率地套用某些题目的某些结论.二、用能量观点分析电磁感应问题<投影片五>[例4] 有一种磁性加热装置,其关键部分由焊接在两个等大的金属圆环上的n根(n 较大)间距相等的平行金属条组成,呈“鼠笼”状,如图3-9-11所示.每根金属条的长度为l、电阻为R,金属环的直径为D,电阻不计.图中的虚线所示的空间范围内存在着磁感强度为B的匀强磁场,磁场的宽度恰好等于“鼠笼”金属条的间距,当金属笼以角速度ω绕通过两圆环的圆心的轴OO′旋转时,始终有一根金属条在垂直切割磁感线.“鼠笼”的转动由一台电动机带动,这套设备的效率为η,求:电动机输出的机械功率.(给学生审题时间.)师:首先要弄懂本题所述装置的用途,满足该用途所利用的物理原理.本装置是用来加热的,而“热”来源于哪儿?生:“鼠笼”转动时,总有一根金属条切割磁感线而产生感应电动势、感应电流,感应电流通过整个“鼠笼”的金属条时产生电热.师:对.这是利用电磁感应产生的感应电流的热效应来加热的装置.从能量转化的观点来看,“鼠笼”转动中,是将什么能转化为什么能?生:机械能转化为电能,电能又进一步转化为内能.师:“鼠笼”的机械能从何而来?生:电动机传输给“鼠笼”的.师:电动机输出的机械能全部传输给“鼠笼”吗?生:不是全部,而是按效率η传输的.师:对.以上几个关键问题审清了,即可着手解题.请同学们自己列出基本关系式,进而求解.(并请一位学生到黑板上写出解题过程.)板书要点:每一根金属条“切割”产生的感应电动势为整个“鼠笼”产生的电热功率为每根做“切割”运动的金属条就相当于电源,故内阻r=R,其余n-1根金属条并在两圆环之间相当于并联着的外电阻:此装置的传输效率为η=P热/P机④由①②③④可得电动机的输出功率为说明:本题计算电功率p电时用“鼠笼”克服安培力做多少功,就有多少机械能转化为电能考虑,也可得到正确结论.具体解法为:前一种解法注重能量转化的结果,后一种解法更注重能量转化的方式——克服安培力做功,不管哪种方法,都是建立在对物理过程的分析基础上.能量转化守恒定律贯穿在整个物理学中,电磁感应现象也不例外,因此,用能量观点来考虑问题,有时可使求解过程很简捷.三、电磁感应中的图像图像问题是同学们的薄弱环节,因而也是高考中的热点.下面见一例.<投影片六>[例5] 如图3-9-12甲所示,一个由导体做成的矩形线圈,以恒定速率v运动,从无磁场区进入匀强磁场区,然后出来.若取反时针方向为电流正方向,那么图乙中的哪一个图线能正确地表示电路中电流与时间的函数关系?生的感应电流i用什么方法判断?是什么方向?生:磁通量增加.用楞次定律(或用右手定则判断“切割”产生的i)可判知感应电流i为反时针流向,即本题规定的正方向.师:线圈“离开磁场”的过程中又怎样?生:↓→i为顺时针流向即负向.(分析到此,可排除C图、D图)师:进一步分析,“进入磁场”、“离开磁场”的过程中,感应电流i的大小随时间怎样变化?生:这两个过程中均为只有线框的一条边在磁场中做“切割”运动,也是恒定数值的量.可排除A图.肯定B图.师:大家还可变换条件去分析,若导体线框不是矩形,而是一个三角形的,如图3-9-13,正确的图又该是哪个?指点:若为三角形线框,则需考虑按有效切割长度l来确定感应电动势和感应电流(如3-9-14所示)进入磁场过程中,有效切割长度l均匀增大,离开磁场过程中有效切割长度l均匀减小,故i先正向均匀增大,后来i反向,均匀减小,正确选项为A图.说明:电磁感应问题中的图像问题,回路中的感应电动势e、感应电流i,磁感强度B的方向,在相应的e-t图、i-t图、B-t图中是用正、负值来反映的.而分析回路中的感应电动势e、感应电流i的大小及其变化规律,仍然要根据法拉第电磁感应定律、闭合电路欧姆定律来分析.同步练习一、选择题1.如图3-9-15所示,光滑导轨倾斜放置,其下端连接一个灯泡,匀强磁场垂直于导线所在平面,当ab棒下滑到稳定状态时,小灯泡获得的功率为P0,除灯泡外,其它电阻不计,要使灯泡的功率变为2P0,下列措施正确的是[ ]A.换一个电阻为原来一半的灯泡B.把磁感强度B增为原来的2倍2.竖直放置的平行光滑导轨,其电阻不计,磁场方向如图3-9-16所示,磁感强度B=0.5T,导体ab及cd长均为0.2m,电阻均为0.1Ω,重均为0.1N,现用力向上推动导体ab,使之匀速上升(与导轨接触良好),此时,cd恰好静止不动,那么ab上升时,下列说法正确的是 [ ]A.ab受到的推力大小为2NB.ab向上的速度为2m/sC.在2s内,推力做功转化的电能是0.4JD.在2s内,推力做功为0.6J3.如图3-9-17所示,MN和PQ为平行的水平放置的光滑金属导轨,导轨电阻不计,ab、cd为两根质量均为m的导体棒垂直于导轨,导体棒有一定电阻,整个装置处于竖直向下的匀强磁场中,原来两导体棒都静止.当ab棒受到瞬时冲量而向右以速度v0运动后,(设导轨足够长,磁场范围足够大,两棒不相碰) [ ]A.cd棒先向右做加速运动,然后做减速运动B.cd棒向右做匀加速运动C.ab棒和cd棒最终将以v0的速度匀速向右运动D.从开始到ab、cd都做匀速运动为止,在两棒的电阻上消耗4.如图3-9-18所示,A线圈接一灵敏电流计,B线框放在匀强磁场中,B线框的电阻不计,具有一定电阻的导体棒可沿线框无摩擦滑动.今用一恒力F向右拉CD由静止开始运动,B线框足够长,则通过电流计中的电流方向和大小变化是[ ]A.G中电流向上,强度逐渐增强B.G中电流向下,强度逐渐增强C.G中电流向上,强度逐渐减弱,最后为零D.G中电流向下,强度逐渐减弱,最后为零二、非选择题5.如图3-9-19所示,在磁感强度为B的匀强磁场中,有半径为r的光滑半圆形导体框架,OC为一能绕O在框架上滑动的导体棒,OC之间连一个电阻R,导体框架与导体电阻均不计,若要使OC能以角速度ω匀速转动,则外力做功的功率是______.6.图3-9-20所示是用金属导线制成一矩形框架abcd,其中ab=cd=2ad=2bc=2l=2m,框架放在水平面上,磁感强度为B=1T的匀强磁场垂直于框架平面竖直向下,用同样的金属导线MN垂直于ab和cd,从ad处开始以v0=0.5m/s的速度匀速向右运动,已知该金属导线每米电阻为0.1Ω,求在MN从ad向bc运动的过程中:(1) MN两点间最大的电势差.(2) MN运动过程中消耗的最大电功率P m.7.如图3-9-21所示,B1、B2垂直于纸面,且B1<B2,当闭合回路M以速度v匀速地穿过两个匀强磁场区时,画出回路中产生的感应电流随时间变化的图像.参考答案=0.3V,(2)P m=1.37W。

相关文档
最新文档