大学物理_动量和角动量习题思考题与答案

合集下载

大学物理习题及解答(运动学、动量及能量)

大学物理习题及解答(运动学、动量及能量)

1-1.质点在Oxy 平面内运动,其运动方程为j t i t r )219(22-+=。

求:(1)质点的轨迹方程;(2)s .t 01=时的速度及切向和法向加速度。

1-2.一质点具有恒定加速度j i a 46+=,在0=t 时,其速度为零,位置矢量i r 100=。

求:(1)在任意时刻的速度和位置矢量;(2)质点在oxy 平面上的轨迹方程,并画出轨迹的示意图。

1-3. 一质点在半径为m .r 100=的圆周上运动,其角位置为342t +=θ。

(1)求在s .t 02=时质点的法向加速度和切向加速度。

(2)当切向加速度的大小恰等于总加速度大小的一半时,θ值为多少?(3)t 为多少时,法向加速度和切向加速度的值相等?题3解: (1)由于342t +=θ,则角速度212t dt d ==θω,在t = 2 s 时,法向加速度和切向加速度的数值分别为 222s 2t n s m 1030.2-=⋅⨯==ωr a22s t t s m 80.4d d -=⋅==t r a ω(2)当2t 2n t 212a a a a +==时,有2n 2t 3a a=,即 22212)24(3)r t (tr = s 29.0s 321==t此时刻的角位置为 rad.t 153423=+=θ (3)要使t n a a =,则有2212)24()t (r tr =s .t 550=3-1如图所示,在水平地面上,有一横截面2m 20.0=S 的直角弯管,管中有流速为1s m 0.3-⋅=v 的水通过,求弯管所受力的大小和方向。

解:在t ∆时间内,从管一端流入(或流出)水的质量为t vS m ∆=∆ρ,弯曲部分AB 的水的动量的增量则为()()A B A B v v t vS v v m p -∆=-∆=∆ρ依据动量定理p I ∆=,得到管壁对这部分水的平均冲力()A B v v I F -=∆=Sv t ρ从而可得水流对管壁作用力的大小为N 105.2232⨯-=-=-='Sv F F ρ作用力的方向则沿直角平分线指向弯管外侧。

大学物理学第五章角动量角动量守恒定律习题

大学物理学第五章角动量角动量守恒定律习题

第5章角动量角动量守恒定律一、本章总结1.请总结角动量、角动量守恒定律一章的知识点。

2.请画出本章的知识脉络框图。

二、填空题1. 如图所示,圆盘绕着与盘面垂直且过圆心O 的轴旋转,轴固定且光滑,转动角速度为ω。

这时,一对力偶沿着盘面作用在圆盘上(每个力大小为F ),圆盘的角速度ω 。

(填增大、减小或不能确定)2. 一个立方体放在粗糙的水平地面上,其质量分布均匀,为50 kg ,边长为1m 。

现用一水平拉力F 作用于立方体的定边中点。

如果地面摩擦力足够大,立方体不会滑动,那么要使该立方体翻转90︒,拉力F 至少为 。

3.一长为L 、质量为M 的均匀细棒,放在水平面上。

通过棒的端点O 有一垂直于水平面的光滑固定转轴,如图所示。

一质量为m 、速率为v 的子弹在水平面内垂直射向细棒,随后以速率v 21穿出,这时细棒的角速度 。

4. 刚体角动量守恒的充分而必要的条件是 。

5. 气候变暖造成地球两极的冰山融化,海平面因此上升。

这种情况将使地球的转动惯量 ,自转角速度 ,角动量 ,自转动能 。

(填变大、变小或不变)三、推导题6.试推导质量为m ,半径为R 的实心球体的转动惯量?(答:252mR )四、计算和证明题7.如图所示,一个质量均匀分布的梯子靠墙放置,和地面成θ角,下端A 处连接一个弹性系数为k 的弹簧。

已知梯子的长度为l ,重量为W ,靠墙竖直放置时弹簧处于自然伸长,所有接触面均光滑。

如果梯子处于平衡状态,求地面、墙面对梯子的作用力,以及W 、k 、l 和θ满足的关系。

(答:W ;kl cos θ;OF Fω O v 21v 俯视图θsin 2kl W =)8. 半径为r = 1.5 m 的飞轮,初角速度ω0= 10 rad ⋅s -1,角加速度α= -5 rad ⋅s -2。

试问经过多长时间飞轮的角位移再次回到初始位置?此时飞轮边缘上的线速度为多少?(答:4s ;-15m ⋅s -1)9.质量分别为m 和2m 的两物体(都可视为质点),用一长为l 的刚性细杆(质量为M )相连,系统绕通过杆且与杆垂直的竖直固定轴O 转动。

《大学物理I》作业-No.03 角动量与角动量守恒-A-参考答案

《大学物理I》作业-No.03 角动量与角动量守恒-A-参考答案

《大学物理I 》作业 No.03 角动量 角动量守恒定律 (A 卷)班级 ________ 学号 ________ 姓名 _________ 成绩 _______一、选择题[ ]1、一质点沿直线做匀速率运动时,(A) 其动量一定守恒,角动量一定为零。

(B) 其动量一定守恒,角动量不一定为零。

(C) 其动量不一定守恒,角动量一定为零。

(D) 其动量不一定守恒,角动量不一定为零。

答案:B答案解析:质点作匀速直线运动,很显然运动过程中其速度不变,动量不变,即动量守恒;根据角动量的定义v m r L⨯=,质点的角动量因参考点(轴)而异。

本题中,只要参考点(轴)位于质点运动轨迹上,质点对其的角动量即为零,其余位置均不会为零。

故(B)是正确答案。

[ ]2. 两个均质圆盘A 和B 密度分别为A ρ和B ρ,若A ρ>B ρ,两圆盘质量与厚度相同,如两盘对通过盘心且垂直于盘面的轴的转动惯量各为A J 和B J ,则 (A) A J >B J(B) B J >A J(C) A J =B J(D) A J 、B J 哪个大,不能确定答案:B答案解析:设A 、B 联盘厚度为d ,半径分别为A R 和B R ,由题意,二者质量相等,即B B A A d R d R ρπρπ22=因为B A ρρ>,所以22B A R R <,由转动惯量221mR J =,则B A J J <。

[ ]3.对于绕定轴转动的刚体,如果它的角速度很大,则 (A) 作用在刚体上的力一定很大 (B) 作用在刚体上的外力矩一定很大(C) 作用在刚体上的力和力矩都很大 (D) 难以判断外力和力矩的大小答案:D 答案解析:由刚体质心运动定律和刚体定轴转动定律知:物体所受的合外力和合外力矩只影响物体运动的加速度和角加速度,因此无法通过刚体运动的角速度来判断外力矩的大小,正如无法通过速度来判断物体所受外力的大小一样。

动量定理及动量守恒定律(思考题)

动量定理及动量守恒定律(思考题)

第三章 动量定理及动量守恒定律(思考题)3.1试表述质量的操作型定义。

解答,kgv v m m 00 ∆∆=式中kg 1m 0=(标准物体质量) 0v∆:为m 与m 0碰撞m 0的速度改变 v∆:为m 与m 0碰撞m 的速度改变这样定义的质量,其大小反映了质点在相互作用的过程中速度改变的难易程度,或者说,其量值反映了质量惯性的大小。

这样定义的质量为操作型定义。

3.2如何从动量守恒得出牛顿第二、第三定律,何种情况下牛顿第三定律不成立? 解答,由动量守恒)p p (p p ,p p p p 22112121 -'-=-'+='+' ,p p 21 ∆-=∆ t p t p 21∆∆-=∆∆ 取极限dt p d dtp d 21-= 动量瞬时变化率是两质点间的相互作用力。

,a m )v m (dt d dt p d F 111111 === ,a m )v m (dt d dt p d F 222222 === 21F F -=对于运动电荷之间的电磁作用力,一般来说第三定律不成立。

(参见P 63最后一自然段)3.3在磅秤上称物体重量,磅秤读数给出物体的“视重”或“表现重量”。

现在电梯中测视重,何时视重小于重量(称作失重)?何时视重大于重量(称作超重)?在电梯中,视重可能等于零吗?能否指出另一种情况使视重等于零?解答,①电梯加速下降视重小于重量;②电梯加速上升视重大于重量;③当电梯下降的加速度为重力加速度g时,视重为零;④飞行员在铅直平面内的圆形轨道飞行,飞机飞到最高点时,gRv,0mgRvmN,NmgRvm22==-=+=飞行员的视重为零3.4一物体静止于固定斜面上。

(1)可将物体所受重力分解为沿斜面的下滑力和作用于斜面的正压力。

(2)因物体静止,故下滑力mg sinα与静摩擦力Nμ相等。

α表示斜面倾角,N为作用于斜面的正压力,0μ为静摩擦系数。

以上两段话确切否?解答,不确切。

大学物理04角动量守恒习题解答

大学物理04角动量守恒习题解答
在一水平放置的质量为m长度为l的均匀细杆上套着一个质量也为m的套管b可看作质点套管用细线拉住它到竖直的光滑固定轴oo的距离为2l杆和套管所组成的系统以角速度0绕oo轴转动如图所示
刚体力学-角动量习题
第1页
一、选择题
1. 已知地球的质量为m,太阳的质量为M,地心与日心的距离为R
,引力常数为G,则地球绕太阳作圆周运动的角动量为 [ A ]

m( l )2 2

0



ml 2 3

mx2


O
1l m m
2
第9页
三、计算题
1. 如图所示,一质量为M的均匀细棒,长为l,上端可绕水平轴O自 由转动,现有一质量为m的子弹,水平射入其下端A而不穿出,此 后棒摆到水平位置后又下落。棒的转动惯量J= Ml2/3 ,如不计空气 阻力并设 mM。求 (1)子弹射入棒前的速度v0; (2) 当棒转到与水平位置的夹角为30时,A点的速度及加速度。
(A) 只有(1)是正确的。 (B) (1)、(2)正确,(3)、(4)错误 (C) (1)、(2)、(3)都正确,(4)错误。 (D) (1)、(2)、(3)、(4)都正确。
解 对上述每一句话进行分析: (1)正确 √ (2)正确 √
(3)错误 × (4)错误 ×
第5页
一、选择题
5. 关于力矩有以下几种说法: (1) 对某个定轴而言,内力矩不会改变刚体的角动量。
所受的合外力矩的大小M =
大小β= 2g 3l 。
3 2
mgl
,此时该系统角加速度的
解 M 2mg l mg l 3 mgl
2 22
M J
2m
o
mg

大学物理学(清华C5版)分章配套精品题目及答案(第三章)

大学物理学(清华C5版)分章配套精品题目及答案(第三章)

第三章 动量和角动量【例题精讲】例3-1 一颗子弹在枪筒里前进时所受的合力大小为 t F 31044005⨯-= (SI) 子弹从枪口射出时的速率为 300 m/s .假设子弹离开枪口时合力刚好为零,则子弹在枪筒中所受力的冲量I = ;子弹的质量m = 。

0.6 N·s 2 g例3-2一质量为1 kg 的物体,置于水平地面上,物体与地面之间的静摩擦系数μ 0=0.20,滑动摩擦系数μ=0.16,现对物体施一水平拉力F =t+0.96(SI),则2秒末物体的速度大小v = 。

2秒末物体的加速度大小a = 。

0.89 m/s 1.39 m/s 2例3-3 质量分别为m A 和m B (m A >m B )、速度分别为A v ϖ和B v ϖ(v A > v B )的两质点A 和B ,受到相同的冲量作用,则 (A) A 的动量增量的绝对值比B 的小。

(B) A 的动量增量的绝对值比B 的大。

(C) A 、B 的动量增量相等。

(D) A 、B 的速度增量相等。

[ C ]例3-4 一人用恒力F ϖ推地上的木箱,经历时间∆ t 未能推动木箱,此推力的冲量等于多少?木箱既然受了力F ϖ 的冲量,为什么它的动量没有改变?【答】推力的冲量为t F ∆ϖ。

动量定理中的冲量为合外力的冲量,此时木箱除受力F ϖ外还受地面的静摩擦力等其它外力,木箱未动说明此时木箱的合外力为零,故合外力的冲量也为零,根据动量定理,木箱动量不发生变化。

例3-5 如图,用传送带A 输送煤粉,料斗口在A 上方高h =0.5 m 处,煤粉自料斗口自由落在A 上.设料斗口连续卸煤的流量为q m =40 kg/s ,A 以v=2.0 m/s 的水平速度匀速向右移动.求装煤的过程中,煤粉对A 的作用力的大小和方向。

(不计相对传送带静止的煤粉质重)【解】 煤粉自料斗口下落,接触传送带前具有竖直向下的速度gh 20=v 设煤粉与A 相互作用的∆t 时间内,落于传送带上的煤粉质量为 t q m m ∆=∆ 设A 对煤粉的平均作用力为f ϖ,由动量定理写分量式:0-∆=∆v m t f x )(00v m t f y ∆--=∆ 将 t q m m ∆=∆代入得 v m x q f =, 0v m y q f = ∴ 14922=+=y x f f f Nf ϖ与x 轴正向夹角为α = arctg (f x / f y ) = 57.4° 由牛顿第三定律煤粉对A 的作用力f ′= f = 149 N ,方向与图(b)中f ϖ相反。

4动量和角动量习题思考题

4动量和角动量习题思考题

习题4-1. 质量为m 的质点在Oxy 平面内运动,运动学方程为j i r t b t a ωωsin cos +=,求:(1)质点在任一时刻的动量;(2)从0=t 到ωπ/2=t 的时间内质点受到的冲量。

解:(1)根据动量的定义:P =m v =m ( -ωa sin ω t i +ωb cos ω t j )(2)从0=t 到ωπ/2=t 的时间内质点受到的冲量等于它在这段时间内动量的变化,因为动量没变,所以冲量为零。

4-2. 一静止的原子核经放射性衰变产生出一个电子和一个中微子,巳知电子的动量为m/s kg 102.122⋅⨯-,中微子的动量为m/s kg 101.623⋅⨯-,两动量方向彼此垂直。

(1)求核反冲动量的大小和方向;(2)已知衰变后原子核的质量为kg 108.526-⨯,求其反冲动能。

由碰撞时,动量守恒,分析示意图,可写成分量式:ααc o s s i n 21m m =ααsin cos 21m m P +=所以s m kg P /1044.122∙⨯=-9.151=-=απθ(2)反冲的动能为:J mP E 1821017.02-⨯==4-3. 中子的发现者查德威克于1932年通过快中子与氢核、氮核的对心弹性碰撞发现氢核的反冲速度为m/s 103.37⨯,氮核的反冲速度为m/s 107.46⨯,已知氢核的质量为u 1,氮核的质量为u 14,试推算中子的质量及其初速度。

解:根据弹性碰撞遵循的规律,可得到以下两个式子:H e H e H H m m m v v v +=02220212121He He H H v m v m mv += 代入已知量,可得:M=1.159u , m/s 1007.37⨯=v4-4. 一颗子弹在枪筒里前进时所受的合力大小为3/1044005t F ⨯-=,子弹从枪口射出时的速率为m/s 300。

设子弹离开枪口处合力刚好为零。

求:(1)子弹走完枪筒全长所用的时间t ;(2)子弹在枪筒中所受力的冲量I ;(3)子弹的质量。

大学物理(第四版)课后习题及答案 动量

大学物理(第四版)课后习题及答案 动量

题3.1:质量为m 的物体,由水平面上点O 以初速为0v 抛出,0v 与水平面成仰角α。

若不计空气阻力,求:(1)物体从发射点O 到最高点的过程中,重力的冲量;(2)物体从发射点到落回至同一水平面的过程中,重力的冲量。

题3.1分析:重力是恒力,因此,求其在一段时间内的冲量时,只需求出时间间隔即可。

由抛体运动规律可知,物体到达最高点的时间g v t αsin 01=∆,物体从出发到落回至同一水平面所需的时间是到达最高点时间的两倍。

这样,按冲量的定义即可求出结果。

另一种解的方法是根据过程的始、末动量,由动量定理求出。

解1:物体从出发到达最高点所需的时间为g v t αsin 01=∆ 则物体落回地面的时间为gv t t αsin 22012=∆=∆ 于是,在相应的过程中重力的冲量分别为 j j F I αsin d 0111mv t mg t t -=∆-==⎰∆j j F I αsin 2d 0222mv t mg t t -=∆-==⎰∆解2:根据动量定理,物体由发射点O 运动到A 、B 的过程中,重力的冲量分别为j j j I αsin 00y Ay 1mv mv mv -=-= j j j I αsin 200y By 2mv mv mv -=-=题3.2:高空作业时系安全带是必要的,假如质量为51.0kg 的人不慎从高空掉下来,由于安全带的保护,使他最终被悬挂起来。

已知此时人离原处的距离为2米,安全带的缓冲作用时间为0.50秒。

求安全带对人的平均冲力。

题3.2解1:以人为研究对象,在自由落体运动过程中,人跌落至2 m 处时的速度为ghv 21= (1)在缓冲过程中,人受重力和安全带冲力的作用,根据动量定理,有()12mv mv t -=∆+P F (2)由(1)式、(2)式可得安全带对人的平均冲力大小为 ()N 1014.123⨯=∆+=∆∆+=tgh m mg t mv mg F解2:从整个过程来讨论,根据动量定理有N 1014.1/23⨯=+∆=mg g h tmgF 题 3.3:如图所示,在水平地面上,有一横截面2m 20.0=S 的直角弯管,管中有流速为1s m 0.3-⋅=v 的水通过,求弯管所受力的大小和方向。

大学物理尹国盛杨毅习题思考题答案

大学物理尹国盛杨毅习题思考题答案

daan第1章 质点运动学和牛顿运动定律参考习题答案1-1 已知质点的运动学方程为x = R cos ωt , y = R sin ωt , z = hωt /(2π),其中R 、ω、h为常量.求:(1)质点的运动方程的矢量形式; (2)任一时刻质点的速度和加速度.解:k j ir ˆ)2/(ˆsin ˆcos πωωωt h t R t R ++= k j i r υˆ2/(ˆcos ˆsin )πωωωωωh t R t R dt d ++-==)ˆsin ˆ(cos ˆsin ˆcos 222j i j iυa t t R t R t R dt d ωωωωωωω+-=--== 1-3半径为R 的轮子沿y = 0的直线作无滑滚动时,轮边缘质点的轨迹为)sin (θθ-=R x )cos 1(θ-=R y求质点的速度;当d θ / d t = ω为常量时,求速度为0的点.解:)cos (dt d dt d R dt dx x θθθυ-==, dtd R dt dy y θθυsin == 即 ()d ˆˆ1c o s s i n d R tθθθ⎡⎤=-⎣⎦υi +j 当ωθ=dtd 为常数时,)cos 1(θωυ-==R dt dx x , θωυsin R dt dy y ==,速度为0 即 0)c o s 1(=-==θωυR dt dx x , 0sin ===θωυR dtdyy 故 ,2,1,0,2==k k πθ1-5一质点沿半径为R 的圆周按规律2012S t bt υ=-运动,其中0υ、b 都是常量.(1)求t 时刻质点的总加速度;(2)t 为何值时总加速度数值上等于b ?(3)当加速度达到b 时,质点已沿圆周运行了多少圈? 解:⑴ 速率bt dt dS -==0υυ, 切向加速度的大小b dtd a -==υτ, 法向加速度的大小Rbt R a n 202)(-==υυ,加速度n n e a ea a ˆˆ+=ττ加速度的大小()240222Rbt b a a a n-+=+=υτ(2)a = bb t bυ==,,(3) a = b 时, bb b b bt t S 2200020212121υυυυυ=⎪⎭⎫ ⎝⎛-⋅=-=转动圈数 bRR Sn πυπ4220== 1-7 在图1-16所示的装置中,两物体的质量为m 1和m 2,物体之间及物体与桌面间的摩擦系数都是μ,求在力F 的作用下两物体的加速度及绳内张力,不计滑轮和绳的质量及轴承摩擦,绳不可伸长.解:根据题意,由滑轮的关系可知绳内张力T = 2F ,设m 1受到m 2的摩擦力f 1,m 2受到地面的摩擦力为f 2,m 1受到的最大静摩擦力为μg m 1,受力如图所示。

03第三章 动量与角动量作业答案

03第三章  动量与角动量作业答案

第三次作业(第三章动量与角动量)一、选择题[A]1.(基础训练2)一质量为m0的斜面原来静止于水平光滑平面上,将一质量为m的木块轻轻放于斜面上,如图3-11(A) 保持静止.(B) 向右加速运动.(C) 向右匀速运动.(D) 向左加速运动.【提示】设m0相对于地面以V运动。

依题意,m静止于斜面上,跟着m0一起运动。

根据水平方向动量守恒,得:m V mV+=所以0V=,斜面保持静止。

[C]2.(基础训练3)如图3-12所示,圆锥摆的摆球质量为m,速率为v,圆半径为R,当摆球在轨道上运动半周时,摆球所受重力冲量的大小为(A) 2m v.(B) 22)/()2(vv Rmgmπ+(C) v/Rmgπ(D) 0.【提示】22TGTI mgdt mg==⨯⎰,而vRTπ2=[C ]3.(自测提高1)质量为m的质点,以不变速率v沿图3-16正三角形ABC的水平光滑轨道运动。

质点越过A点的冲量的大小为(A) m v.(B) .(C) .(D) 2m v.【提示】根据动量定理2121ttI fdt mv mv==-⎰,如图。

得:21I mv mv∴=-=[ B] 4.(自测提高2)质量为20 g的子弹,以400 m/s的速率沿图3-17所示的方向射入一原来静止的质量为980 g的摆球中,摆线长度不可伸缩。

子弹射入后开始与摆球一起运动的速率为(A) 2 m/s.(B) 4 m/s.(C) 7 m/s .(D) 8 m/s.【提示】相对于摆线顶部所在点,系统的角动量守恒:2sin30()mv l M m lV︒=+其中m为子弹质量,M为摆球质量,l为摆线长度。

解得:V=4 m/s(解法二:系统水平方向动量守恒:2sin30()mv M m V︒=+)图3-11图3-17二、填空题1、(基础训练7)设作用在质量为1 kg 的物体上的力F =6t +3(SI ).如果物体在这一力的作用下,由静止开始沿直线运动,在0到2.0 s 的时间间隔内,这个力作用在物体上的冲量大小I=18N s ⋅.【提示】2222(63)(33)18I Fdt t dt t t N s ==+=+=⋅⎰⎰2.(基础训练8)静水中停泊着两只质量皆为0m 的小船。

清华出版社《大学物理》专项练习及解析 03动量与角动量

清华出版社《大学物理》专项练习及解析  03动量与角动量

清华出版社专项练习动量与角动量一、选择题 1、(0063A15)质量为m 的质点,以不变速率v 沿图中正三角形ABC 的水平光滑轨道运动.质点越过A 角时,轨道作用于质点的冲量的大小为(A) m v . (B) 2m v . (C) 3m v . (D) 2m v . [ ] 2、(0067B30)两辆小车A 、B ,可在光滑平直轨道上运动.第一次实验,B 静止,A 以0.5 m/s 的速率向右与B 碰撞,其结果A以 0.1 m/s 的速率弹回,B 以0.3 m/s 的速率向右运动;第二次实验,B 仍静止,A 装上1 kg 的物体后仍以0.5 m/s的速率与B 碰撞,结果A 静止,B 以0.5 m/s 的速率向右运动,如图.则A 和B 的质量分别为(A) m A =2 kg , m B =1 kg (B) m A =1 kg , m B =2 kg (C) m A =3 kg , m B =4 kg (D) m A =4 kg, m B =3 kg [ ]3、(0367A10)质量为20 g 的子弹沿X 轴正向以 500 m/s 的速率射入一木块后,与木块一起仍沿X 轴正向以50 m/s 的速率前进,在此过程中木块所受冲量的大小为(A) 9 N·s . (B) -9 N·s .(C)10 N·s . (D) -10 N·s . [ ] 4、(0368A10) 质量分别为m A 和m B (m A >m B )、速度分别为A v 和B v (v A > v B )的两质点A 和B ,受到相同的冲量作用,则(A) A 的动量增量的绝对值比B 的小.(B) A 的动量增量的绝对值比B 的大.(C) A 、B 的动量增量相等.(D) A 、B 的速度增量相等. [ ] 5、(0384A20)质量为20 g 的子弹,以400 m/s 的速率沿图示方向射入一原来静止的质量为980 g 的摆球中,摆线长度不可伸缩.子弹射入后开始与摆球一起运动的速率为 (A) 2 m/s . (B) 4 m/s . (C) 7 m/s . (D) 8 m/s . [ ]6、(0385B25)一质量为M 的斜面原来静止于水平光滑平面上,将一质量为m 的木块轻轻放于斜面上,如图.如果此后木块能静止于斜面上,则斜面将(A) 保持静止. (B) 向右加速运动. (C) 向右匀速运动. (D) 向左加速运动.[ ] 7、(0386A20) A 、B 两木块质量分别为m A 和m B ,且m B =2m A ,两者用一轻弹簧连接后静止于光滑水平桌面上,如图所示.若用外力将两木块压近使弹簧被压缩,然后将外力撤去,则此后两木块运动动能之比E KA /E KB 为C(A) 21. (B) 2/2. (C) 2. (D) 2. [ ]8、(0629C45)用一根细线吊一重物,重物质量为5 kg ,重物下面再系一根同样的细线,细线只能经受70 N 的拉力.现在突然向下拉一下下面的线.设力最大值为50 N ,则(A)下面的线先断. (B)上面的线先断.(C)两根线一起断. (D)两根线都不断. [ ] 9、(0632A10)质量为m 的小球,沿水平方向以速率v 与固定的竖直壁作弹性碰撞,设指向壁内的方向为正方向,则由于此碰撞,小球的动量增量为(A) v m . (B) 0.(C) v m 2. (D) v m 2-. [ ] 10、(0633A20)机枪每分钟可射出质量为20 g 的子弹900颗,子弹射出的速率为800 m/s ,则射击时的平均反冲力大小为(A) 0.267 N . (B) 16 N .(C)240 N . (D) 14400 N . [ ] 11、(0659A15)一炮弹由于特殊原因在水平飞行过程中,突然炸裂成两块,其中一块作自由下落,则另一块着地点(飞行过程中阻力不计)(A) 比原来更远. (B) 比原来更近.(C) 仍和原来一样远. (D) 条件不足,不能判定. [ ] 12、(0702B25)如图所示,圆锥摆的摆球质量为m ,速率为v ,圆半径为当摆球在轨道上运动半周时,摆球所受重力冲量的大小为(A) 2m v . (B) 22)/()2(v v R mg m π+(C) v /Rmg π. (D) 0.[ ]13、(0703A15)如图所示,砂子从h =0.8 m 高处下落到以3 m /s 向右运动的传送带上.取重力加速度g =10 m /s 2落到传送带上的砂子的作用力的方向为(A) 与水平夹角53°向下.(B) 与水平夹角53°向上. (C) 与水平夹角37°向上. (D) 与水平夹角37°向下. [ ]14、(0706B30) 如图所示.一斜面固定在卡车上,一物块置于该斜面上.在卡车沿水平方向加速起动的过程中,物块在斜面上无相对滑动.此时斜面上摩擦力对物块的冲量的方向(A) 是水平向前的. (B) 只可能沿斜面向上. (C) 只可能沿斜面向下.(D) 沿斜面向上或向下均有可能. [ ]15、(5260A20)动能为E K 的A 物体与静止的B 物体碰撞,设A 物体的质量为B 物体的二倍,m A =2m B .若碰撞为完全非弹性的,则碰撞后两物体总动能为(A) E K (B)K E 32. (C) K E 21. (D) K E 31. [ ] 16、(0405A20)人造地球卫星,绕地球作椭圆轨道运动,地球在椭圆的一个焦点上,则卫星的(A)动量不守恒,动能守恒.(B)动量守恒,动能不守恒.(C)对地心的角动量守恒,动能不守恒.(D)对地心的角动量不守恒,动能守恒. [ ]17、(0406B30) 人造地球卫星绕地球作椭圆轨道运动,卫星轨道近地点和远地点分别为A 和B .用L 和E K 分别表示卫星对地心的角动量及其动能的瞬时值,则应有(A) L A >L B ,E KA >E kB . (B) L A =L B ,E KA <E KB .(C) L A =L B ,E KA >E KB . (D) L A <L B ,E KA <E KB . [ ]18、(0407C45) 体重、身高相同的甲乙两人,分别用双手握住跨过无摩擦轻滑轮的绳子各一端.他们从同一高度由初速为零向上爬,经过一定时间,甲相对绳子的速率是乙相对绳子速率的两倍,则到达顶点的情况是(A)甲先到达. (B)乙先到达.(C)同时到达. (D)谁先到达不能确定. [ ]19、(5636A15) 一质点作匀速率圆周运动时,(A) 它的动量不变,对圆心的角动量也不变.(B) 它的动量不变,对圆心的角动量不断改变.(C) 它的动量不断改变,对圆心的角动量不变.(D) 它的动量不断改变,对圆心的角动量也不断改变. [ ]二、填空题:1、(0055A20) 质量为m 的小球自高为y 0处沿水平方向以速率v 0抛出,与地面碰撞后跳起的最大高度为21y 0,水平速率为21v 0,则碰撞过程中 (1) 地面对小球的竖直冲量的大小为 ________________________;(2)2、(0056B40) 质量m =10 kg 的木箱放在地面上,在水平拉力F 的作用下由静止开始沿直线运动,其拉力随时间的变化关系如图所示.若已知木箱与地面间的摩擦系数μ=0.2,那么在t = 4 s 时,木箱的速度大小为______________;在t =7 s 时,木箱的速度大小为______________.(g 取10 m/s 23、(0060A10) 一质量为m 的物体,原来以速率v 向北运动,它突然受到外力打击,变为向西运动,速率仍为v ,则外力的冲量大小为________________________,方向为____________________.4、(0061A10) y 21y有两艘停在湖上的船,它们之间用一根很轻的绳子连接.设第一艘船和人的总质量为250 kg ,第二艘船的总质量为500 kg ,水的阻力不计.现在站在第一艘船上的人用F =50 N 的水平力来拉绳子,则 5 s 后第一艘船的速度大小为_________;第二艘船的速度大小为______.5、(0062B30) 两块并排的木块A 和B ,质量分别为m 1和m 2 ,静止地放置在光滑的水平面上,一子弹水平地穿过两木块,设子弹穿过两木块所用的时间分别为∆t 1 和∆t 2 ,木块对子弹的阻力为恒力F ,则子弹穿出后,木块A 的速度大小为_________________________________,木块B 的速度大小为______________________.6、(0066A20) 两个相互作用的物体A 和B ,无摩擦地在一条水平直线上运动.物体A 的动量是时间的函数,表达式为P A =P 0-bt ,式中P 0 、b 分别为正值常量,t 是时间.在下列两种情况下,写出物体B 的动量作为时间函数的表达式:(1) 开始时,若B 静止,则P B 1=______________________;(2) 开始时,若B 的动量为-P 0,则P B 2=_____________.7、(0068A15) 一质量为m 的小球A ,在距离地面某一高度处以速度v 水平抛出,触地后反跳.在抛出t 秒后小球A 跳回原高度,速度仍沿水平方向,速度大小也与抛出时相同,如图.则小球A 与地面碰撞过程中,地面给它的冲量的方向为________________,冲量的大小为____________________.8、(0184A15) 设作用在质量为1 kg 的物体上的力F =6t +3(SI).如果物体在这一力的作用下,由静止开始沿直线运动,在0到 2.0 s 的时间间隔内,这个力作用在物体上的冲量大小I =__________________.9、(0222A20) 一物体质量M =2 kg ,在合外力i t F )23(+= (SI)的作用下,从静止开始运动,式中i 为方向一定的单位矢量,则当t =1 s 时物体的速度1v =__________.10、(0371A20) 一颗子弹在枪筒里前进时所受的合力大小为t F 31044005⨯-= (SI)子弹从枪口射出时的速率为300 m/s .假设子弹离开枪口时合力刚好为零,则(1)子弹走完枪筒全长所用的时间t =____________,(2)子弹在枪筒中所受力的冲量I =________________,(3)子弹的质量m =__________________.11、(0372A15) 水流流过一个固定的涡轮叶片,如图所示.水流流过叶片曲面前后的速率都等于v ,每单位时间流向叶片的水的质量保持不变且等于Q ,则水作用于叶片的力大小为______________,方向为_________.12、(0374B40) 图示一圆锥摆,质量为m 的小球在水平面内以角速度ω匀速转动.在小球转动一周的过程中,(1) 小球动量增量的大小等于__________________.(2) 小球所受重力的冲量的大小等于________________.(3) 小球所受绳子拉力的冲量大小等于_______________. 13、(0387B25) 质量为1 kg 的球A 以5 m/s 的速率和另一静止的、质量也为1 kg 的球B 在光滑水平面上作弹性碰撞,碰撞后球B 以2.5 m/s 的速率,沿与A 原先运动的方向成60°v的方向运动,则球A 的速率为____________,方向为______________________.14、(0393B25) 两球质量分别为m 1=2.0 g ,m 2=5.0 g ,在光滑的水平桌面上运动.用直角坐标OXY 描述其运动,两者速度分别为i 101=v cm/s ,)0.50.3(2j i v += cm/s .若碰撞后两球合为一体,则碰撞后两球速度v 的大小v =_________,v 与x 轴的夹角α=__________.15、(0630A10) 一质量m =10 g 的子弹,以速率v 0=500 m/s 沿水平方向射穿一物体.穿出时,子弹的速率为v =30 m/s ,仍是水平方向.则子弹在穿透过程中所受的冲量的大小为________,方向为_________.16、(0631A15) 一物体质量为10 kg ,受到方向不变的力F =30+40t (SI)作用,在开始的两秒内,此力冲量的大小等于________________;若物体的初速度大小为10 m/s ,方向与力F 的方向相同,则在2s 末物体速度的大小等于___________________.17、(0707B25) 假设作用在一质量为10 kg 的物体上的力,在4秒内均匀地从零增加到50 N ,使物体沿力的方向由静止开始作直线运动.则物体最后的速率v =_______________.18、(0708B35) 一质量为1 kg 的物体,置于水平地面上,物体与地面之间的静摩擦系数μ 0=0.20,滑动摩擦系数μ=0.16,现对物体施一水平拉力F =t +0.96(SI),则2秒末物体的速度大小v =______________.19、(0709A15) 质量为1500 kg 的一辆吉普车静止在一艘驳船上.驳船在缆绳拉力(方向不变)的作用下沿缆绳方向起动,在5秒内速率增加至5 m/s ,则该吉普车作用于驳船的水平方向的平均力大小为______________.20、(0710B30) 一吊车底板上放一质量为10 kg 的物体,若吊车底板加速上升,加速度大小为a =3+5t (SI),则2秒内吊车底板给物体的冲量大小I =___________;2秒内物体动量的增量大小P ∆=__________________.21、(0711A20) 粒子B 的质量是粒子A 的质量的4倍,开始时粒子A 的速度j i 43+=0A v ,粒子B 的速度j i 72-=0B v ;在无外力作用的情况下两者发生碰撞,碰后粒子A 的速度变为j i 47-=A v ,则此时粒子B 的速度B v =______________.22、(0715B30)有一质量为M (含炮弹)的炮车,在一倾角为θ 的光滑斜面上下滑,当它滑到某处速率为v 0时,从炮内射出一质量为m 的炮弹沿水平方向. 欲使炮车在发射炮弹后的瞬时停止下滑,则炮弹射出时对地的速率v =__________.23、(0717A10) 如图所示,质量为m 的子弹以水平速度0v 射入静止的木 块并陷入木块内,设子弹入射过程中木块M 不反弹,则墙壁 对木块的冲量=____________________.24、(0718A15) 一质量为30 kg 的物体以10 m·s -1的速率水平向东运动,另一质量为20 kg 的物体以20m·s -1的速率水平向北运动。

力学答案 三章 动量定理 动量守恒定律(思考题

力学答案 三章 动量定理 动量守恒定律(思考题

第三章 动量定理及动量守恒定律(思考题)3.1试表述质量的操作型定义。

解答,kgv v m m 00 ∆∆=式中kg 1m 0=(标准物体质量) 0v∆:为m 与m 0碰撞m 0的速度改变 v∆:为m 与m 0碰撞m 的速度改变这样定义的质量,其大小反映了质点在相互作用的过程中速度改变的难易程度,或者说,其量值反映了质量惯性的大小。

这样定义的质量为操作型定义。

3.2如何从动量守恒得出牛顿第二、第三定律,何种情况下牛顿第三定律不成立? 解答,由动量守恒)p p (p p ,p p p p 22112121 -'-=-'+='+' ,p p 21 ∆-=∆ t p t p 21∆∆-=∆∆ 取极限dt p d dtp d 21-= 动量瞬时变化率是两质点间的相互作用力。

,a m )v m (dt d dt p d F 111111 === ,a m )v m (dt d dt p d F 222222 === 21F F -=对于运动电荷之间的电磁作用力,一般来说第三定律不成立。

(参见P 63最后一自然段)3.3在磅秤上称物体重量,磅秤读数给出物体的“视重”或“表现重量”。

现在电梯中测视重,何时视重小于重量(称作失重)?何时视重大于重量(称作超重)?在电梯中,视重可能等于零吗?能否指出另一种情况使视重等于零?解答,①电梯加速下降视重小于重量; ②电梯加速上升视重大于重量;③当电梯下降的加速度为重力加速度g 时,视重为零;④飞行员在铅直平面内的圆形轨道飞行,飞机飞到最高点时,gR v ,0mg R v m N ,N mg R v m 22==-=+=飞行员的视重为零3.4一物体静止于固定斜面上。

(1)可将物体所受重力分解为沿斜面的下滑力和作用于斜面的正压力。

(2)因物体静止,故下滑力mg sin α与静摩擦力N 0μ相等。

α表示斜面倾角,N 为作用于斜面的正压力,0μ为静摩擦系数。

大学物理学第五章角动量角动量守恒定律习题

大学物理学第五章角动量角动量守恒定律习题

第5章角动量角动量守恒定律一、本章总结1.请总结角动量、角动量守恒定律一章的知识点。

2.请画出本章的知识脉络框图。

二、填空题1. 如图所示,圆盘绕着与盘面垂直且过圆心O 的轴旋转,轴固定且光滑,转动角速度为ω。

这时,一对力偶沿着盘面作用在圆盘上(每个力大小为F ),圆盘的角速度ω 。

(填增大、减小或不能确定)2. 一个立方体放在粗糙的水平地面上,其质量分布均匀,为50 kg ,边长为1m 。

现用一水平拉力F 作用于立方体的定边中点。

如果地面摩擦力足够大,立方体不会滑动,那么要使该立方体翻转90︒,拉力F 至少为 。

3.一长为L 、质量为M 的均匀细棒,放在水平面上。

通过棒的端点O 有一垂直于水平面的光滑固定转轴,如图所示。

一质量为m 、速率为v 的子弹在水平面内垂直射向细棒,随后以速率v 21穿出,这时细棒的角速度 。

4. 刚体角动量守恒的充分而必要的条件是 。

5. 气候变暖造成地球两极的冰山融化,海平面因此上升。

这种情况将使地球的转动惯量 ,自转角速度 ,角动量 ,自转动能 。

(填变大、变小或不变)三、推导题6.试推导质量为m ,半径为R 的实心球体的转动惯量?(答:252mR )四、计算和证明题7.如图所示,一个质量均匀分布的梯子靠墙放置,和地面成θ角,下端A 处连接一个弹性系数为k 的弹簧。

已知梯子的长度为l ,重量为W ,靠墙竖直放置时弹簧处于自然伸长,所有接触面均光滑。

如果梯子处于平衡状态,求地面、墙面对梯子的作用力,以及W 、k 、l 和θ满足的关系。

(答:W ;kl cos θ;OF Fω O v 21v 俯视图θsin 2kl W =)8. 半径为r = 1.5 m 的飞轮,初角速度ω0= 10 rad ⋅s -1,角加速度α= -5 rad ⋅s -2。

试问经过多长时间飞轮的角位移再次回到初始位置?此时飞轮边缘上的线速度为多少?(答:4s ;-15m ⋅s -1)9.质量分别为m 和2m 的两物体(都可视为质点),用一长为l 的刚性细杆(质量为M )相连,系统绕通过杆且与杆垂直的竖直固定轴O 转动。

大学物理学 第4章 动量和角动量 习题解答 [王玉国 康山林 赵宝群]

大学物理学 第4章 动量和角动量 习题解答 [王玉国 康山林 赵宝群]

f 0 ,说明其方向竖直向上。
一斜抛运动的物体,在最高点炸裂为质量相等的两块,最高点距地面为19.6m ,
4-7
爆炸后1s ,第一块落到爆炸点正下方的地面,此处距抛出点的水平距离为1.0 10 2 m 。问 第二块落在距抛出点多远的地面上? 解 建立平面直角坐标系,抛出点为坐标原点,水平向前为 x 轴,竖直向上为 y 轴。爆 炸前,物体运动到最高点时,速度沿水平方向,其速率为
(或: t2 2 第二块落地时距抛出点的距离为
v2 y g
t1 4.0s )
x2 x1 v2 xt2 100 100 4 500m
一架以 3.0 102 m s 1 的速率水平飞行的飞机,与一只身长为 0.20m 、质量为
4-8
0.50kg 的飞鸟相碰。设碰撞后飞鸟的尸体与飞机具有相同速度,而原来飞鸟对于地面的速
y
v0 v2
v0
x
v1
题 4-2 解图
解 建立如图所示平面直角坐标系。由题知,从抛出到小球落地所经历的时间为
t 0.5 s 。设抛出时的速度为 v0 (水平方向) ,因小球为平抛运动,故小球落地的瞬时向下
的速度大小为 v1 y gt 0.5 g , 小球上跳速度的大小亦为 v2 y 0.5 g . 故小球落地前瞬时

A 船搬出重物后, 仍具有速度 v A 。 现将不计重物的 A 船与 B 船搬出而即将落入 A 船的 重物作为一个系统。因为在重物搬出或搬入时,作用于垂直于船的行进方向,所以对此系统 而言,在行进方向上的动量仍守恒,因此有
(mA m) v A mvB mA v A
式中,m 为重物的质量, v A 0 。由方程①、②可解得

大学物理_04角动量守恒习题解答

大学物理_04角动量守恒习题解答


L J
2
J m R2
2 F G M mR / G M an R 引 2 m m R

GM R3
L J m G M R
一、选择题 2. 均匀细棒OA可绕通过其一端O而与棒垂直的水平固定光滑轴转 动,如图所示。今使棒从水平位置由静止开始自由下落,在棒摆 动到竖直位置的过程中,下述说法哪一种是正确的 [ ] A A O (A)角速度从小到大,角加速度从大到小; (B)角速度从小到大,角加速度从小到大; (C)角速度从大到小,角加速度从大到小; (D)角速度从大到小,角加速度从小到大;
(A) JA>JB (B) JA<JB (C) JA=JB (D) 不能确定

m r d
2
1 2 1 m J m r m 2 2 d
J A B B J A
一、选择题 4. 有两个力作用在一个有固定转轴的刚体上: (1) 这两个力都平行于轴作用时,它们对轴的合力矩一定是零; √ (2) 这两个力都垂直于轴作用时,它们对轴的合力矩可能是零; √ (3) 当这两个力的合力为零时,它们对轴的合力矩也一定是零; × (4) 当这两个力对轴的合力矩为零时,它们的合力也一定是零。 × 在上述说法中[ B ] (A) 只有(1)是正确的。 (B) (1)、(2)正确,(3)、(4)错误 (C) (1)、(2)、(3)都正确,(4)错误。 (D) (1)、(2)、(3)、(4)都正确。
O 解 (1)碰撞过程中系统的角动量守恒。 摆动过程中机械能守恒。 2 2 m lv 0 M l 3 m l 0
3 0
1 2 l 2 2 M l 3 m l M g m g l 2 2 M gl v0 m 3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

)s 习题44-1.如图所示的圆锥摆,绳长为l ,绳子一端固定,另一端系一质量为m 的质点,以匀角速ω绕铅直线作圆周运动,绳子与铅直线的夹角为θ。

在质点旋转一周的过程中,试求:(1)质点所受合外力的冲量I v;(2)质点所受力T 的冲量T I v。

解:(1)设周期为τ,因质点转动一周的过程中,速度没有变化,12v v =v v ,由I mv =∆v v,∴旋转一周的冲量0I =v;(2)如图该质点受的外力有重力和拉力,且cos T mg θ=,∴力T 旋转一周的冲量:2cos T I T j mg j πθτω=⋅=⋅v v v所以拉力产生的冲量为2mgπω,方向竖直向上。

4-2.一物体在多个外力作用下作匀速直线运动,速度4/v m s =。

已知其中一力F v方向恒与运动方向一致,大小随时间变化关系曲线为半个椭圆,如图。

求:(1)力F v在1s 到3s 间所做的功;(2)其他力在1s 到3s 间所做的功。

解:(1)半椭圆面积⋅====⋅=⎰⎰⎰⎰v t F v t Fv x F x F A d d d d ρϖJ 6.12540201214==⨯⨯⨯=ππ(2)由动能定理可知,当物体速度不变时,外力做的总功为零,所以当该F v做的功为125.6J 时,其他的力 的功为-125.6J 。

4-3.质量为m 的质点在Oxy 平面运动,运动学方程为cos sin r a t i b t j ωω=+v v v,求:(1)质点在任一时刻的动量;(2)从0=t 到ωπ/2=t 的时间质点受到的冲量。

解:(1)根据动量的定义:P mv =v v,而d r v dt==v v sin cos a t i b t j ωωωω-+v v , ∴()(sin cos )P t m a t i b t j ωωω=--v v v ;(2)由2()(0)0I mv P P m b j m b j πωωω=∆=-=-=v v v v v v ,所以冲量为零。

4-4.质量为M =2.0kg 的物体(不考虑体积),用一根长为l =1.0m 的细绳悬挂在天花板上。

今有一质量为m =20g 的子弹以0v =600m/s 的水平速度射穿物体。

刚射出物体时子弹的速度大小v =30m/s ,设穿透时间极短。

求: (1)子弹刚穿出时绳中力的大小; (2)子弹在穿透过程中所受的冲量。

解:(1)解:由碰撞过程动量守恒可得:01mv mv M v =+∴01 5.7mv mvv M-==/m s 根据圆周运动的规律:21v T Mg M l -=,有:2184.6v T Mg M N l=+=;(2)根据冲量定理可得:00.0257011.4I mv mv N s =-=-⨯=-⋅。

4-5.一静止的原子核经放射性衰变产生出一个电子和一个中微子,巳知电子的动量为m /s kg 102.122⋅⨯-,中微子的动量为236.410kg m/s -⨯⋅,两动量方向彼此垂直。

(1)求核反冲动量的大小和方向;(2)已知衰变后原子核的质量为kg 108.526-⨯,求其反冲动能。

解:由碰撞时,动量守恒,分析示意图,有: (1)2210P -==核 221.3610/kgm s -=⨯又∵0.64tan 1.2P P α==中微子电子,∴028.1α= , 所以221.410/P kgm s -=⨯核 ,ο9.151=-=απθ ; (2)反冲的动能为:2180.17102k P E J m -==⨯核核。

4-6.一颗子弹在枪筒里前进时所受的合力大小为5440010()3F t N =-⨯,子弹从枪口射出时的速率为300/m s 。

设子弹离开枪口处合力刚好为零。

求:(1)子弹走完枪筒全长所用的时间t ;(2)子弹在枪筒中所受力的冲量I ; (3)子弹的质量。

解:(1)由于离开枪口处合力刚好为零,有:544001003t -⨯=, 得:3310t s -=⨯;(2)由冲量定义:0tI F dt =⎰有:0.0035520.003004240010(40010)0.633I t dt t t N s =-⨯=-⨯=⋅⎰() (3)再由Im v=,有:30.6/300210m kg -==⨯。

4-7.有质量为m 2的弹丸,从地面斜抛出去,它的落地点为c x 。

如果它在飞行到最高点处爆炸成质量相等的两碎片。

其中一碎片铅直自由下落,另一碎片水平抛出,它们同时落地。

问第二块碎片落在何处。

解:利用质心运动定理,在爆炸的前后,质心始终只受重力的作用,因此,质心的轨迹为一抛物线,它的落地点为c x 。

112212c m x m x x m m +=+,而12m m m ==, 12c x x =,水平方向质心不变,总质心仍为c x ,所以c c c x x m mx m x x 2322122=⇒+=4-8.两个质量分别为1m 和2m 的木块B A 、,用一劲度系数为k 的轻弹簧连接,放在光滑的水平面上。

A 紧靠墙。

今用力推B 块,使弹簧压缩0x 然后释放。

(已知m m =1,m m 32=)求:(1)释放后B A 、两滑块速度相等时的瞬时速度的大小;(2)弹簧的最大伸长量。

解:分析题意,首先在弹簧由压缩状态回到原长时,是弹簧的弹性势能转换为B 木块的动能,然后B 带动A 一起运动,此时动量守恒,两者具有相同的速度v 时,弹簧伸长最大,由机械能守恒可算出其量值。

(1) 222200220121122m v kx m v m m v==+() cx /2c x y O o o所以:200122343m x x k kv m m m m ==+; (2)22122022212121v m m kx v m )(++=那么计算可得:021x x =4-9.如图所示,质量为m A 的小球A 沿光滑的弧形轨道滑下,与放在轨道端点P 处(该处轨道的切线为水平的)的静止小球B 发生弹性正碰撞,小球B 的质量为m B ,A 、B 两小球碰撞后同时落在水平地面上.如果A 、B 两球的落地点距P 点正下方O 点的距离之比L A / L B =2/5,求:两小球的质量比m A /m B .解:A 、B 两球发生弹性正碰撞,由水平方向动量守恒与机械能守恒,得B B A A A A m m m v v v +=0 ①2220212121BB A A A A m m m v v v += ② 联立解出 0A B A B AA m m m m v v +-=, 02A BA AB m m m v v += 由于二球同时落地,∴ 0>A v ,B A m m >;且B B A A L L v v //= ∴52==B A B A L L v v , 522=-A B A m m m 解出 5/=B A m m答案:5/=B A m m 。

4-10.如图,光滑斜面与水平面的夹角为ο30=α,轻质弹簧上端固定.今在弹簧的另一端轻轻地挂上质量为 1.0M kg =的木块,木块沿斜面从静止开始向下滑动.当木块向下滑30x cm =时,恰好有一质量0.01m kg =的子弹,沿水平方向以速度200/v m s =射中木块并陷在其中。

设弹簧的劲度系数为25/k N m =。

求子弹打入木块后它们的共同速度。

解:由机械能守恒条件可得到碰撞前木块的速度,碰撞过程中子弹和木块沿斜面方向动量守恒,可得:22111sin 22Mv kx Mgx α+= 10.83/v m s ⇒= (碰撞前木块的速度) 再由沿斜面方向动量守恒定律,可得: 1cos Mv mv m M v α'-=+() 0.89/v m s '⇒=-。

4-11. 水平路面上有一质量15m kg =的无动力小车以匀速率02/v m s =运动。

小车由不可伸长的轻绳与另一质量为225m kg =的车厢连接,车厢前端有一质量为320m kg =的物体,物体与车厢间摩擦系数为2.0=μ。

开始时车厢静止,绳未拉紧。

求:(1)当小车、车厢、物体以共同速度运动时, 物体相对车厢的位移;(2)从绳绷紧到三者达到共同速度所需时间。

(车与路面间摩擦不计,取g =10m /s 2) 解:(1)由三者碰撞,动量守恒,可得:v m m m v m '++=)(32101 2.0='⇒v m s ,再将1m 与2m 看成一个系统,由动量守恒有:v m m v m )(2101+= s m v m m m v 31255250211=+⨯=+=,对3m ,由功能原理有:2231212311()22m gs m m v m m m v μ'=+-++()m g m v m m m v m m s 60121)(213321221='++-+=μ)( ; (2)由t g m μv m 33=',有:s g μv t 1.0102.02.0=⨯='=。

4-12.一质量为M 千克的木块,系在一固定于墙壁的弹簧的末端,静止在光滑水平面上,弹簧的劲度系数为k 。

一质量为m 的子弹射入木块后,弹簧长度被压缩了L 。

(1)求子弹的速度;(2)若子弹射入木块的深度为s ,求子弹所受的平均阻力。

解:分析,碰撞过程中子弹和木块动量守恒,碰撞结束后机械能守恒条件。

(1)相碰后,压缩前:v M m mv '+=)(0,压缩了L 时,有:222121kL v M m ='+)(, 计算得到:)(M m k mLv +=0, 0'mv Lv k m M m M m M==+++()(2)设子弹射入木快所受的阻力为f ,阻力做功使子弹动能减小,木块动能增加。

222201112222M k L f s mv mv Mv m ''=-=-∴22M k L f ms=4-13.质量为M 、长为l 的船浮在静止的水面上,船上有一质量为m 的人,开始时人与船也相对静止,然后人以相对于船的速度u 从船尾走到船头,当人走到船头后人就站在船头上,经长时间后,人与船又都静止下来了。

设船在运动过程中受到的阻力与船相对水的速度成正比,即f k v =-。

求在整个过程的位移x ∆。

分析:将题中过程分三段讨论。

(1)设船相对于静水的速度为()v t ,而人以相对于船的速度为u ,则人相对于静水的速度为()u v t +,开始时人和船作为一个系统动量之和为零。

由于水对船有阻力,当人从船尾走到船头时,系统动量之和等于阻力对船的冲量,有:1I =()[()]M v t m u v t ++,此时,()v t 方向u 方向相反,船有与人行进方向相反的位移1x ;(2)当人走到船头突然停下来,人和船在停下来前后动量守恒,有:()[()]()'M v t m u v t M m v ++=+,'v 为人停下来时船和人具有的共同速度,'v 方向应于原u 方向相同;(3)人就站在船头上,经长时间后,人与船又都静止下来,表明最后人和船作为一个系统动量之和又为零,则这个过程水阻力对船的冲量耗散了系统的动量,有:2()'I M m v =+v,船有与人行进方向相同的位移2x 。

相关文档
最新文档