信流图及梅逊公式1

合集下载

信号流 图与梅逊增益公式

信号流 图与梅逊增益公式

【例 2-17】已知某系统的信号流图如图所示,试求其传递函数。
【解】由图可知,此系统有两条前向通路,即 n 2 ,其增益各为 p1 abcd 和 p2 fd ;
有三个回路,即 L1 be ,L2 abcdg ,L3 fdg ,因此 La L1 L2 L3 。上述三个 回路中只有 L1 与 L3 互不接触,L2 与 L1 及 L3都接触,因此 LbLc L1L3 。由此得系统的
(1)源点:也称输入节点,指只有输出支路的节点,如图中的 x1 。它一般表 示系统的输入量。
(2)汇点:也称输出节点,指只有输入支路的节点,如图中的 x6 。它一般表
示系统的输出量。
(3)混合节点:既有输入支路又有输 出支路的节点称为混合节点,如图中
的 x2 ,x3 ,x4 。它一般表示系统的中间
变量。
数。由于信号流图和结构图之间存在相应的联系,因此梅逊增益公式同样也
适用于结构图。
梅逊增益公式给出了系统信号流图中任意输入节点与输出节点
之间的增益(即传递函数),其公式为
式中
P
1
n k 1
pk k
n ——从输入节点到输出节点的前向通路的总条数;
pk ——从输入节点到输出节点的第 k 条前向通路总增益;
(5)回路:单独回路的简称,即起点和终点在同一节点且信号通过每一个节点不多于
一次的闭合通路。从一个节点开始,只经过一条支路又回到该节点的回路,称为自回
路。回路中所有支路增益的乘积称为回路增益,用 La 表示。在图中共有三条回路,一 条是起始于节点 x2 ,经过节点 x3 最后回到节点 x2 的回路,其回路增益为 L1 bc ;第二 条是起始于节点 x,2 经过节点 x,3 ,x4 x最5 后又回到节点 x的2 回路,其回路增益 为 L2 cegh ;第三个是起始于节点 x4 并回到节点 x4的自回路,其回路增益为 L3 f 。

梅森公式-信号流图

梅森公式-信号流图

例4 已知系统信号流图, 解:三个回路
求传递函数 X4/X1及 X2/X1。
L
a
d eg bcg
c
有两个互不接触回路
L L
b
deg
f
则 1 d eg bcg deg
1. X 1 X 4 , p1 aef , p2 abcf 1 1 d , 2 1
x2
(g)
x2
x3
x5 L5 a23a35a52
a12 a23 a34 a45 (1 a44 )a12 a23 a35 P 1 (a23 a32 a23 a34 a42 a44 a23 a34 a52 a23 a35 a52 ) a23 a32 a44 a23 a35 a52 a44
2 1 a44
x3
a42 a12
a44 a34 x4 a35 a52 a45 x5
(a)
a23 x2 a32 x3
x1
(d)
x2
x3
互不接触
L1 a23a32
L12 a23a32a44 L2 a23a34a42
(e) (f)
x2
x4 x4 x5 L3 a44 互不接触 L22 a23a35a52a44 L4 a23a34a45a52
E(s)=
R(s)[ (1+G2H2) + (- G3G2H3) ] + (–G2H3) N(s)
1 - G1H1 + G2H2
+ G1G2H3 -G1H1G2 H2
信号流图
R(s) 1
e
g
a
f
b

信号流图梅森公式

信号流图梅森公式

回路传输(增益):回路上各支路传输的乘积称为回路传输或回
路增益。
2/5/2020
5
信号流图的等效变换
串联支路合并:
ab x1 x2 x3
并联支路的合并:
a
x1 b x2
ab
x1

x3
ab
x1
x2
回路的消除:
ab
x1
x2
x c
3
b
a 1 bc
x1 x2 x3
2/5/2020
6
信号流图的等效变换
P

1
n k1
Pkk
1 L a L b L c L d L e L f .(.正. 负号间隔)
式中: La 流图中所有不同回路的回路传输之和;
LbLc 所有互不接触回路中,每次取其中两个回
路传输乘积之和;
LdLeLf 所有互不接触回路中,每次取其中三个
18
梅逊公式||例2-15
例2-15:数数有几个回路和前向通道。
G6
R
G5
1
G2
1
G7
G3
G4
1
G1
1
H2
G8
H1
有四个回路,分别是:
1
C
G 2 H 2 , G 1 G 2 G 3 G 4 H 1 , G 1 G 2 G 7 G 4 H 1 , G 1 G 2 G 8 G 4 H 1
ug ue
u1
u2
ua

G f
[解]:前向通道有一条;ug ,P 1G 1G 2G 3G u
有一个回路; L a G 1 G 2 G 3 G u G f

信号流图与梅森公式

信号流图与梅森公式

2.5 信号流图与梅森公式2.5.1 信号流图信号流图是表示复杂的又一种图示方法.信号流图相对于结构图更简便明了,而且不必对图形进行简化,只要根据统一的公式,就能方便地求出系统的传递函数.1. 信号流图的组成及基本性质信号流图由节点和支路组成.一个节点代表系统中的一个变量,用小圆圈”Ο”表示;连接两个节点之间有箭头的定向线段为支路.支路相当于信号乘法器,乘法因子(或支路增益)表在支路上;信号只能沿箭头单方向传递,经支路传递的信号应乘以乘法因子;只有输出支路,无输入支路的节点称为输入节点,代表系统的输入变量;只有输入支路,无输出支路的节点称为输出节点,代表系统的输出变量;既有输入支路,也有输出支路的节点称为混合节点.信号流图的特征描述还需要以下专用术语:前向通路 信号从输入节点到输出节点传递时,对任何节点只通过一次的通路称为前向通路.而前向通路上各支路增益之积,为前向通路总增益.回路 如果信号传递通路的起点和终点在同一节点上,且通过任何一个节点不多于一次的闭合通路称为单独回路,简称回路.回路中各支炉增益的乘积称为回路增益.不接触回路 两个或两个以上回路之间没有任何公共节点,此种回路称为不接触回路. 由图2-31的信号流图可以说明以上的基本元素,即 74321X XX X X是节点;j h d c b a ,,,,, 为支路增益;4,1X X 为输入节点;7X 为输入节点;6532X X X X 为混合节点。

信号流图共有三条前向通道,第一条是765321XXXXXX →→→→→;第二条是76531X XXXX →→→→;第三条是765324X XXXXX→→→→→。

有两个单独回路,一个是565X X X →→,起点和终点是5X ;另一个起点、终点在3X 的自回路。

而且这两个回路无公共节点,是不接触回路。

图2-31 信号流图注意:对于确定的控制系统,其信号流图不是唯一的。

2.5.2 信号流图的绘制信号流图可以根据系统方框图的绘制,也可以根据数学表达式绘制。

系统的信号流图与梅森公式

系统的信号流图与梅森公式

6-5 系统的信号流图与梅森公式一、信号流图的定义由节点与有向支路构成的能表征系统功能与信号流动方向的图,称为系统的信号流图,简称信号流图或流图。

例如,图6-29(a)所示的系统框图,可用图6-29(b)来表示,图(b)即为图(a)的信号流图。

图(b)中的小圆圈“o”代表变量,有向支路代表一个子系统及信号传输(或流动)方向,支路上标注的H(s)代表支路(子系统)的传输函数。

这样,根据图6-29(b),同样可写出系统各变量之间的关系,即图6-29二、三种运算器的信号流图表示三种运算器:加法器、数乘器、积分器的信号流图表示如表6-3中所列。

由该表中看出:在信号流图中,节点“o”除代表变量外,它还对流入节点的信号具有相加(求和)的作用,如表中第一行中的节点Y(s)即是。

三、模拟图与信号流图的相互转换规则模拟图与信号流图都可用来表示系统,它们两者之间可以相互转换,其规则是:(1) 在转换中,信号流动的方向(即支路方向)及正、负号不能改变。

(2) 模拟图(或框图)中先是“和点”后是“分点”的地方,在信号流图中应画成一个“混合”节点,如图6-30所示。

根据此两图写出的各变量之间的关系式是相同的,即。

(3) 模拟图(或框图)中先是“分点”后是“和点”的地方,在信号流图中应在“分点”与“和点”之间,增加一条传输函数为1的支路,如图6-31所示。

(4) 模拟图(或框图)中的两个“和点”之间,在信号流图中有时要增加一条传输函数为1的支路(若不增加,就会出现环路的接触,此时就必须增加),但有时则不需增加(若不增加,也不会出现环路的接触,此时即可以不增加。

见例6-17)。

(5) 在模拟图(或框图)中,若激励节点上有反馈信号与输入信号叠加时,在信号流图中,应在激励节点与此“和点”之间增加一条传输函数为1的支路(见例6-17)。

(6) 在模拟图(或框图)中,若响应节点上有反馈信号流出时,在信号流图中,可从响应节点上增加引出一条传输函数为1的支路(也可以不增加,见例6-17)。

2.6信号流图与梅森公式

2.6信号流图与梅森公式

G2 ( s) H ( s) N ( s) N ( s) 1 G1 ( s)G2 ( s) H ( s)
N ( s)
7)系统的总输出 X o (s) i (s) X i (s) N (s) N (s)
8)系统的总偏差 (s) i ( s) X i ( s) N (s) N (s) 结论
练习 试化简下图所示系统的方框图,并求系 统传递函数。
可看出此题方框图化简较复杂,试用梅森公式化简.
• 两条前向通路 • 两条回路 • 主特征式
P G1G3G5 , P2 G2G4G5 1
L1 G3 H , L2 G4 H
1 ( L1 L2 ) 1 G3 H G4 H
【例1】根据微分方程绘制信号流图
i1 (t ) 1 R1 [ui (t ) u A (t )]
1 u A (t ) [i1 (t ) i2 (t )]dt C1
1 i2 (t ) [u A (t ) uo (t )] R2
uo (t) 1 C2
i (t )dt
2
一般闭环控制系统的结构如下图所示
1)闭环系统的开环传递函数 将闭环控制系统主反馈 通道的输出断开,即 H(s)的输出通道断开 时,前向通道传递函数与反馈通道传递函数的乘积 G1(s)G2(s)H(s)称为该闭环控制系统的开环传递函数 ,记为GK(s)。
闭环系统的开环传递函数也可定义为反馈信 号B(s)和偏差信号ε(s)之间的传递函数,即:
X o ( s) G( s) G1 ( s)G2 ( s) ( s)
B( s) H ( s) X o (s)
4)输入信号作用下的闭环传递函数
令n(t)=0,此时在输入xi(t)作用下系统的闭环传 递函数为:

控制工程(自动控制)第六课 梅逊公式及系统传递函数

控制工程(自动控制)第六课 梅逊公式及系统传递函数

梅逊公式:
P
P
k 1 k
n
k

式中:P—系统总传递函数; n —前向通路总数; Pk—第k条前向通路的传递函数(通路增 益); —流图特征式;
1 La Lb Lc Ld Le L f
L —所有不同回路的传递函数之和;
a
L L —每两个互不接触回路传递函数乘积之和; L L L —每三个互不接触回路传递函数乘积之和; k—与第k条前向通路对应的余因子式,等于流
b c
d e f
图特征式中去掉与第k条前向通路接触的所有回路 的回路增益后的余项式。
注意:
1. 结构图与信号流图的转换。 方块与增益; 信号引出点、相加点与节点; 信号线与通道。 2.信号流图的回路和前向通道。 回路支数和不接触回路 前向通道确定
3.
信号流图的节点的合并
五、 闭环系统的传递函数
(1)时域测定法:施加阶跃信号,绘制输出量的响 应曲线; (2)频域测定法:施加不同频率的正弦波,测出输 入信号和输出信号之间的幅值比和相位差; (3)统计相关法:施加某种随机信号,根据被控对 象各参数的变化,采用统计相关法确定动态特性。
要求:
掌握控制系统数学模型――传递函数的表示方法
习题:
简明教程 2-14 (第73页 2-20 )
名词术语:
(1)源节点(输入节点):只有输出没有输入,一 般代表系统的输入变量。 (2)阱节点(输出节点):只有输入没有输出,一 般代表系统的输出变量。
(3)混合节点:既有输入又有输出的节点。 (4)前向通路:信号从输入节点到输出节点的传递 中,每个节点只通过一次的通路。 前向通路总增益:前向通路上各支路增益的乘 积,一般用pk表示。 (5)回路:起点与终点在同一节点,且信号通过每 一节点不多于一次的闭合通路。 回路增益:回路中所有支路增益的乘积,用La 表示。 (6)不接触回路:回路之间没有公共节点。

梅森公式-信号流图

梅森公式-信号流图

L4 a23a34a45a52
x5 L5 a23a35a52
P
a12 a23a34 a45 (1 a44 )a12 a23a35
1 (a23a32 a23a34a42 a44 a23a34a52 a23a35a52 ) a23a32 a44 a23a35a52a44
G3(s)
梅逊公式求E(s)
R(s)
E(SG)GG3(33s(()ss))
RRR(s(()ss)) EEE(S((S)S))
P2= - G3G2H3
GGG1(11s(()ss))
△2= 1 P2△2=?
HHH1(11s(()ss))
G1(s)
NNN((s(ss)))
G2(s)
GGG2(22s(()ss))
CCC(s(()ss))
HHH2(22s(()ss)) H3(s)
HHH3(33s(()ss))
C(s)
R(s)
E(S) P1=H–P1G(s1)2=H13 △△1=11=+G1 2HH2 2(s)P1△1= ?
E(s)= R(s)[ (1+G2H2) +(- G3G2H3)] +(–G2H3)N(s)
1 G1H1 G2G7 H 2 G6G4G5 H 2 G2G3G4G5 H 2 G4G5G7 H1H 2
x1
x2
x3
x7 I(s) x4
x5
o在源节点上,只有信号输出 支路而没有信号输入的支路,
1/R1 1+R1C1s R2
它一般代表系统的输入变量。
-1
•阱节点(输出节点):
在阱节点上,只有信号输入的支路而没有信号输出的支路,它

第七节 信号流图与梅森公式

第七节 信号流图与梅森公式

23

例2:用梅森公式求如图所示系统的传递函数。
24

例3:用梅森公式求如图所示系统的传递函数。
25

例3:用梅森公式求如图所示系统的传递函数。
26

例3:用梅森公式求如图所示系统的传递函数。
27

例3:用梅森公式求如图所示系统的传递函数。
28

例3:用梅森公式求如图所示系统的传递函数。
X
3
BX
2
BX
2
ABX
1
4
2、说明
(1)节点变量(信号)等于所有流向该节点的信 号之代数和,与输出无关。从同一节点流出的信号均 等于该节点变量,与流入无关。同方向传递的信号不 能重复计算。
X
X
3
AX
CX
1
BX
2
4
3
X
5
DX
3
5
(2)信号在支路上沿箭头方向单向传递。 (3)支路相当于一个乘法器,信号流经支路时,被 乘以支路增益而变换为另一个信号。(支路增益为 “1”时,可不标出) (4)在混合节点上,增加一条具有单位增益的输出 支路,可以从信号流图中分离出系统变量。即变混合
29

例4:用梅森公式求如下2图所示系统的传递函数。
30
所 有 单 个 回 路 增 益 之 和
触取所 回其有 路中单 增不个 益同回 乘的路 积两中 之个, 和不每 。接次
20
2、有关定义
(1)前 向 通 路——信号从输入节点到输出节点传递时, 每个流经节点只通过一次的通路。 (2)回 路——起点与终点为同一节点,而中间混合 节点最多通过一次的闭合通路。

第2章 第4讲 信号流图及其梅逊公式

第2章 第4讲 信号流图及其梅逊公式
X
4
输入节点 输出节点 混合节点
混 合 节 点
X a X
输入节点 d 源点) (源点)
X
5
1
2
b
X
3
输入节点 源点) (源点)
c
输出节点 汇点) (汇点)
4
支路
连接两个节点的定向线段,用支路增益(传递函数)表示方 连接两个节点的定向线段,用支路增益(传递函数) 程式中两个变量的因果关系。支路相当于乘法器。信号在支 程式中两个变量的因果关系。支路相当于乘法器。 路上沿箭头单向传递。 路上沿箭头单向传递。
-1 Ui 1
1/R1
I1
1/sC1
UA
1
1/R2
I2 1/sC 2
1 Uo
-1
-1
23
(Mason)公式 6 梅逊 (Mason)公式
G —系统总传递函数或增益
1 n G ( s) = ∑ Pk k k =1
条前向通路的传递函数(通路增益) Pk—第k条前向通路的传递函数(通路增益) —特征式
自动控制原理
第4讲 信号流图及梅 逊公式
杨金显
yangjinxian@
河南理工大学电气工程与自动化学院
1
本节内容
信号流图及其术语 信号代数运算法则 根据微分方程绘制信号流图 根据结构图绘制信号流图 梅逊公式 根据梅逊闭环传递函数
2
1 信号流图概念 信号流图起源于梅逊( MASON) 信号流图起源于梅逊(S.J. MASON)利用图示法来 描述一个和一组线性代数方程, 描述一个和一组线性代数方程,是由节点和支路组成 的一种信号传递网络。 的一种信号传递网络。
步骤: 、画出前向通路(可能有多个 可能有多个); 步骤:1、画出前向通路 可能有多个 ; 2、确定节点(多画一个没有关系 ; 、确定节点 多画一个没有关系 多画一个没有关系); 3、连接各支路、回路 、连接各支路、

信号流图梅森公式

信号流图梅森公式

2/5/2020
14
梅逊公式||例2-13
[例2-13]:绘出两级串联RC电路的信号流图并用Mason公式计算 总传递函数。
ui (s) ue (s) 1 I1(s) -
1 u(s)
-
R1
I(s) C 1s
-
1
1 uo(s)
R 2 I2(s) C 2 s
[解]:先在结构图上标出节点,再根据逻辑关系画出信号流图如
18
梅逊公式||例2-15
例2-15:数数有几个回路和前向通道。
G6
R
G5
1
G2
1
G7
G3
G4
1
G1
1
H2
G8
H1
有四个回路,分别是:
1
C
G 2 H 2 , G 1 G 2 G 3 G 4 H 1 , G 1 G 2 G 7 G 4 H 1 , G 1 G 2 G 8 G 4 H 1
P7 G6G3G4 P8 G6G8G4
P 9G 6H 2G 2G 7G 4
2/5/2020
19
梅逊公式||例2-15
对应的结构图为:
G6 G5
R - G1
R 1
G6
G5
1
G1
+
-
G2
H2
H1
G7
G2 1
G3
1
Байду номын сангаас
H2
G8
H1
G7
G3
+
++
+
G4
C
G8
为节点
注意:①信号流
G4
1
图与结构图的对

§25闭环传递函数§26 梅逊公式

§25闭环传递函数§26 梅逊公式

P G GG 1 1 2 3
P G G 2 1 4
1 1
2 1
G G G G G 1 2 3 1 4 ( s ) G G H G G H G G G G H G G 1 2 1 2 3 2 1 2 3 4 2 1 4
Mason 公式(3)
例 3 求传递函数 C(s)/R(s)
例1
求C(s)/R(s)
( G G H )( G G H ) 1 [ G G H G3G4 H4 G G G G G G H G5 H ] 2 3 2 4 5 3 2 3 2 G 1 2 3 4 5 6 1 4 3
1 G G H G G H G G H G G G G G G H G G G G H H 2 3 2 4 5 3 3 4 4 1 2 3 4 5 6 1 2 3 4 5 2 3
§2.5 控制系统的传递函数
<2、扰动输入作用下的误差传递函数 令R(s) =0,可求出误差对扰动作用的闭环传递函数,简称扰动误差传递函数,即
N(s)
<3、控制输入和扰动同时作用下系统的总误差 利用叠加原理可求出系统在控制输入和扰动输入同时作用下系统的总误差为
不难发现,四种闭环传递函数 Φ(s)、Φn(s)、 Φe(s)、Φen(s) 具有相同的分母即 =1+ G(s)H(s)。这正是闭环控制系统的本质特征。通常把这 个分母多项式称为闭环系统的特征多项式。1+ G(s)H(s) 称为闭环系统的特征方 程。特征方程的根称为闭环系统的根或极点。
(1)结构图 信号流图
(2)结构图 信号流图
§2.6.2 梅逊(Mason)增益公式
G(s) PΔ Δ
k k 1

微格教学梅森增益公式

微格教学梅森增益公式

例 求如图所示系统的闭环传递函数: Gs X c
Xr
f3
xr 1 x1
a x2 b x3 c x4 d x5 1
e
-g 2
1 xc
解:⑴ 确定n及其增益: n=2 ;P1=abcd;P2=fd ⑵ 确定回环数:系统中有3个回环 G1 = be;G2 = -abcdg;G3 =-fdg (3) 确定Δ: ΣL1= be –abcdg-fdg;ΣL2= be(-fdg)=-befdg; ΣL3=0 Δ= 1-ΣL1+ ΣL2- ΣL3=1- be +abcdg+fdg -befdg (4) 确定Δ1、 Δ2 : Δ1=1; Δ2=1-be (5) 系统的总传输
Gs P11 P22 abcd fd (1 be)
1 be ( f abc bef )dg
总结:
1、熟记梅森增益公式表达式
G
s
Xc Xr
1
n k 1
Pk k
Hale Waihona Puke 2、理解公式中各字母的含义及意义
3、灵活运用公式求系统的闭环传递函数
不接触回环:各回环间无任何公共节点。 这个是回环
h
么?
xr 1 x1 a x2 b x3 c x4 d x5 1 xc
1e
2g
本节重点
梅森增益公式
在控制工程中一般需要确定信号流图的输入输出关系, 即系统的闭环传递函数。对于比较复杂的系统,即使是上 节学习的信号流图的简化也是很繁琐的,此时可以直接用 公式求出系统的传递函数,既方便又简单快捷,这个公式 就是梅森公式。
不必化简
梅森增益公式
利用公式直接求传递函数
梅逊增益公式: G s
Xc Xr

梅森定律-信号流图

梅森定律-信号流图
信号流图的绘制
由系统结构图绘制信号流图
1) 用小圆圈标出传递的信号,得到节点。 2) 用线段表示结构图中的方框,用传递函数代表支路增益。 ➢ 注意信号流图的节点只表示变量的相加。
R(s)
C(s)
G(s)
D(s)
R(s) E(s) (-) G1(s)
V(s)G2(s) C(s)
H(s)
(a) 结构图
a45 x5
X 5 (s) X1(s)
(b)
x1
a52
x2
x3
x4
P1 a12a23a34a45 x5
1 1
(c)
x1
x2
x3
x5 P1 a12a23a35
2 1 a44
(a) x1
a12 x2
a42
a44
a23 a32 x3
a34 x4
a35
a45 x5
a52 (d) x2
(e) x2 (f) x2 (g) x2
x3
互不接触
L1 a23a32
L12 a23a32a44
x4 x3
x4 x5
L2 a23a34a42
L3 a44 互不接触 L22 a23a35a52a44
L4 a23a34a45a52
x5 L5 a23a35a52
P
a12 a23a34 a45 (1 a44 )a12 a23a35
G3(s)
梅逊公式求E(s)
R(s)
E(SG)GG3(33s(()ss))
RRR(s(()ss)) EEE(S((S)S))
P2= - G3G2H3
GGG1(11s(()ss))
△2= 1 P2△2=?
HHH1(11s(()ss))

信号流图和梅森公式

信号流图和梅森公式

接触回路增益乘积之和)–(任意三个互不接触回路增
益乘积之和)+¨¨¨
17:59
21
1N
G
Δ
Σ
k 1
Gk
Δk
Gk ——N条前向通路中第k条前向通路的增益; Δk——第k条前向通路余因式,即与第k条前向 通路不接触部分的Δ值(特征式); 去掉第K条前向通路后剩余的流图的特征式。
N ——前向通路的总数。
b
x3
c
x4
d
g
e
回路:通路与任一节点相交不多于一次,但起点 和终点为同一节点的通路称为(单独)回路。
不接触回路:各回路间没有公共节点的回路。
回路增益:回路中所有支路增益的乘积。一般用La
表示。
17:59
8
x1
a x2
x5
f
b
x3
c
x4
d
g
e
前向通路:信号从输入节点到输出节点传递时,每 个节点只通过一次的通路。
a43
a44
(source) x1
1
a12 2
3
x2
a23 x3 a34 4 x4 a45
单独回路(7个)
a24 a25
1 Output node
5
x5
x6
x4 x4
x2 x3 x2
x3 x4 x3
不接触回路(2组) x2 x3 x2 和 x4 x4
x2 x4 x3 x2
x3 x4 x5 x3
17:59
22
例1 利用梅森公式,求:C(s)/R(s)。
17:59
23
G6
G7
R(s)
G1
G2
G3

2.4 系统信号流图及梅逊公式

2.4 系统信号流图及梅逊公式

Fc(s)
cs
例 :绘制如图所示系统的方块图
R1 i1(t) ui(t) C1
A
R2
i2(t)
uA(t)
u0(t)
C2
U i s - U A s = R1 I 1 s
拉氏变换后方程组
U A s - U 0 s = R2 I 2 s 1 I2 s = U0 s c2 s
Ө(t)
D
f(t)
P74 2-25 已知:f(t)为输入力,θ(t) 为轴的输出转角,弹簧刚度k,轴的 转动惯量J,阻尼系数D,轴的半径r, 求系统的传递函数。
解:该系统可以看作是一个质量、弹簧、 阻尼系统。
对于质量,这里用转动惯量J来代替。 对J、k、D分别列方程,有
J t f t r TK TD
1 I1 s - I 2 s = UA s c1 s
各环节的方块图如下所示。
Ui s -U A s = R1 I1 s
Ui(s)
+
1/R1
I1(s)
1 I1 s I 2 s UA s c1s
I1(s)
TK K t TD D t
J t f t r K t D t J t D t K t f t r
拉氏变换后,得 2 Js s Ds s K s F s r
X0(s)
H(S)
-H(s)
从图中可以我们可以定义: 通路:沿支路箭头方向穿过各相连支路的路径。 节点:用来表示变量或信号的点,像输 回路:起点与终点重合且与任何节点 前向通路:从输入节点到输出节点的通路上通 入节点、输出节点、比较点以及引出点, 支路:定向线段,箭头表明信号的流向, 相交不多于一次的通路。 过任何节点不多于一次的通路。 标明有传递函数。 用符号“。”表示。

自动控制原理03信号流图,梅逊公式

自动控制原理03信号流图,梅逊公式
1 1
2 1 P2 2

abcdefg
abhfg (1 d )
1 b d f bd df bf bdf
2.4.2 梅逊增益公式
例题2:已知系统的动态结构图,求系统的传递函数
C (s) R (s)

解:首先进行分析
G1
X2
X3
G2 H1
G3
X4
G4
C(s)
R
1
X1
G1
X2
G2 X3 -1 -H1
G3
X4
G4
C
2.4 信号流图与梅森公式
2.4.2 梅逊增益公式
P G (s) 1
n

k 1
Pk
--特征式
k
1

La

Lb Lc

Ld Le L f
{
例题1:已知系统的信号流图,求系统的传递函数
C (s) R (s)

h a b -1 c d -1 e f -1
g
R(s)
C(s)
解:首先对信号流图进行分析,找到梅逊公式中的相关信息 系统有:2条前向通道,3个闭合回路,3组两两互不接触回 路, 1组三三互不接触回路 然后写出各项的取值:
2.4.2 梅逊增益公式 例题1:P1
3 1
,找到梅逊公式中 的相关信息
G2
R(s)
G1 H
G3 G4
C(s)
系统有:3条前向通道,2个闭合回路,0组两两互不接触回路
P1 G 1 G 3
P2 G 2 G 3
P3 G 1 G 4
1 G1H G 2 H

信号流图及梅逊公式

信号流图及梅逊公式

R(s) 1 + G1 (s)G2 (s) H (s)
(2)扰动信号下的闭环 传函:R(s)=0
N(s)
1
R(s) 1
G1(s) G2(s) -H(s)
E(s)
N (s) = C (s) =
G2 (s)
N (s) 1 + G1 (s)G2 (s) H (s)
1
C(s)
所以当输入信号和扰动信号同时作用时, 系统输出为:
C (s) =(s) R(s) + N (s) N (s) = G1 (s)G2 (s) R(s) + G2 (s) N (s) 1 + G1 (s)G2 (s) H (s)
(3)闭环系统的误差传递函数(以E(s)为输
出的传递函数):
N(s)
1
R(s) 1
G1(s) G2(s) -H(s)
1
C(s)
+ [G1G2 + G1G3 + G2G3 + G1G2G3 ] [ G1G2G3 ]
例4:利用梅森公式求如图所示系统闭环传递函数
P = C (s)= p1 1 + p2 2 + p3 3 + p4 4 R(s)
=
G1G3 K (1 + G1 ) + G2G3 K (1 + G2 )
1 + G1 + G2 + G3 + 2G1G2 + G1G3 + G2G3 + 2G1G2G3
L(1) —— 所有单独回路增益之和; L(2) —— 两个互不接触回路增益乘积之和; L( m ) —— m个不接触回路增益乘积之和。
例3:利用梅森公式求如图所示系统闭环传递函数
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

R( s)
1
A
1 R1
1 C1s
1
C
1
D
1 R21 C2 s来自1C ( s)
B
E
1
1
单独回路有L1、L2和L3,互不接触回路有 L1L2,即 :
L1 1 R 1C1s
L2 1 R 2C 2s
L3 1 R 2C1s
L1L 2
1 R 1C1sR 2C 2s
1 (L 1 L 2 L 3 ) L 1L 2 1 1 1 1 1 R 1C1s R 2C 2s R 2C1s R 1C1 R 2C 2s
x4
a45
x5
x1 x2 x3 x4 x5
x1 x 2 x 4 x 5
x1 x 2 x 5
a25 a12a23a34a45 p1
a12 a 24 a 45 p 2
a12 a 25 p 3
回路?
a12 x2
a53 a32 a43 a44 x4 a25 a45 x5
Ur
Uc(s)
例2:绘制两级无源网络的信号流图
取Ui(s)、I1(s)、UA(s)、I2(s)、Uo (s)作为信号流图的节点 Ui(s)、Uo(s)分别为输入及输出节点
5.5.2 根据方块图绘制信号流图
方块图与信号流图的对应关系 比较点 方块图:输入端 引出点 信号线 信号流图:源节点 混合节点 支路 汇点 方框 输出端
互不接触的回路:有一个L1 L2。所以,特征式: Δ=1-(L1 + L2 + L3 + L4)+ L1 L2 前向通道有三个: P1= G1G2G3G4G5 P2= G1G6G4G5 P3= G1G2G7 Δ1=1 Δ2=1 Δ3=1-L1
G6
G7
G4 G5
R ( s ) G1
G2 G3
1 C ( s)
E(s) G(s)
C(s)
R( s)
1 E ( s)
G ( s)
C ( s)
H(s)
H (s)
N(s)
N(s)
R(s)
E(s)
G 1(s)
G2(s)
C(s)
R(s) 1 E ( s ) G 1(s)
1
G2(s) C ( s )
H(s)
H ( s)
N(s)
R(s)
E(s)
N(s)
R(s)
G(s)
H2
解:画出该系统的信号流程图
G6
G7
G4 G5
R ( s ) G1
G2 G3
1 C ( s)
H1
H 2
G6
G7
G4 G5
R ( s ) G1
G2 G3
1 C ( s)
H1
H2
独立的回路:四个 L1 = -G4H1 L3 = -G6G4G5H2
L2 = -G2G7H2 L4 = -G2G3G4G5H2
U r (s) U c (s) I1 ( s ) R1 I 2 ( s ) I 1 ( s ) sC R 1 i 2 ( 0 ) I (s) I (s) I (s) 1 2 U c ( s ) I ( s ) R 2
1 Ur-Uc -1 1/R1 I1 R1Cs i2(0) -1 1 I2 1 I R2 1
1
x1
a23
x3 a34 a24
x6
L1 a23a32 L2 a34 a43 L3 a44
L4 a34 a45 a53 L5 a24 a43a32 L6 a24 a45 a53a32
L7 a25 a53 a32
5.3 信流图的性质
1、每一个节点表示一个变量,并可以把所有输入 支路信号迭加再传送到每一个输出支路。 2、支路表示了一个信号对另一个信号的函数关 系。支路上的箭头方向表示信号的流向。 3、混合节点可以通过增加一个增益为1的支路变 成为输出节点,且两节点的变量相同。
H1
1 N G Σ pk Δk Δ k 1
H2
因此,系统的闭环系统传递函数C(s) / R(s)为
C(s) 1 G (p1Δ1 p2Δ2 p3Δ3 ) R(s) Δ G1G2G3G4G5 G1G6G4G3 G1G2G7 (1 G4H1 ) 1 G4H1 G2G7H2 G6G4G5H2 G2G3G4G5H2 G4H1G2G7H2
C2 ( s )
G22 (s )
例3:已知方块图如下,画出信号流图
R( S )
V3
C (S )
V1
V2
R
1
b

m
f
l
Ⅱ V3 k Ⅲ V2
h

C 1
V1
d Ⅴ e
g
例3:已知方块图如下,画出信号流图
R( S )
V1 V2
V3
C (S )
V4
R
1
V1
b

m
f
l
Ⅱ V3 k Ⅲ V4
h

V2
d Ⅴ e
主 要 内 容
信号流图
信号流图及其术语 绘制信号流图
梅逊公式
根据梅逊公式求传递函数
5.1 信号流图概念
信号流图起源于梅逊(S. J. MASON)利用图示法来 描述一个和一组线性代数方程,是由节点和支路组成 的一种信号传递网络。
设:一组线性方程式:
信号流图的表示形式:
x1
x5
f
a
x2
b
c
x3
g
1
C
例4 绘制所示系统方块图的信号流图
G2 A3 R A1 G1 A2 G3 G4 C
e1
e2
解:
H
①确定各变量对应的节点 R, A1 , A2 , A3 , C ②在比较点之后的引出点只需在比较点后设置一个节点便 可。也即可以与它前面的比较点共用一个节点。 ③在比较点之前的引出点 A1,需设置两个节点,分别表示 引出点和比较点,注意图中的 e1 , e2
回路
起点与终点重合且通过任何节点不多于一次的 闭合通路。
回路增益
回环中各支路传输的乘积称为回环增益,一 般用Lk表示
自回路
只与一个节点相交的回路称为自回路
不接触回路
相互间没有任何公共节点的回路
前向通路?
混合节点 a32 a43
3 4
a53 a44
5
输入节点 x1
1
a12 x2
2
1
x6
a23 x3 a34 a24
C(s)
1 E ( s)
G( s)
1 1 C ( s)
C (s)
H(s)
H (s)
R1( s )
G11 (s )
C1 ( s ) R1( s )
G11 (s )
C1 ( s )
G21( s )
G12 (s ) G12 (s )
R2 (s ) C2 ( s ) R2 (s )
G22 (s )
G21 (s )
C
R
1
G1 -1
G2 -1
1
C
1N G Σ pkΔk Δ k1
Δ1=1
该系统的前向通道有1个: P1= G1G2 该系统中有2个独立的回路: L1 = -G1 L2 = -G2 没有互不接触的回路。所以,特征式 Δ=1-(L1 + L2 )=1+ G1+ G2
C (s) 1 1 G1G2 P G1G2 1 11 R( s) 1 G1 G2 1 G1 G2
例7:采用方块图求传递函数
R(s) B(s)
E (s) C ( s)
G1 ( s )
G2 ( s )
1 / G2 (s)
R(s)
E (s)
B(s)
G1 ( s )
1 ) G2(s)
G2 ( s )
C (s)
例8 利用梅逊公式,求:C(s)/R(s)
G7 G6
R(s)
G1
G2
G3
G4 H1
G5
C (s)
G 2(s)
G 3(s )
G 4(s)
C(s)
H 3(s)
H 2(s)
H 1(s)
例10 试应用梅森公式求取下图所示方块图的传递函数
H 4(s )
A1
R(s )
A2
G1( s)
A3
G 2(s )
G 3( s)
A4
H 3( s )
A5
G 4(s )
C( s)
A6
A7
A8
H 2(s )
H 1(s )
解. 信号流图为
1 L (1) L( 2 ) L(3) ... (1) m L( m )
L —所有不同回路的传递函数之和
(1)
L —每两个互不接触回路传递函数乘积之和
( 2)
L
L
( 3)
—每三个互不接触回路传递函数乘积之和 —任何m个互不接触回路传递函数乘积之和
( m)
∆k —第k条前向通路特征式的余因子,即对于信号 流图的特征式∆,将与第k 条前向通路相接触的 回路传递函数代以零值,余下的∆即为∆k。
例7:采用信号流图求传递函数
R(s) B(s)
E (s) C ( s)
G1 ( s )
G2 ( s )
解:画出该系统的信号流程图
R
1
G1 -1
G2 -1
1
1 2 3 4
c 4 c
fx ex
相关文档
最新文档