X射线系列实验
x射线的衍射实验报告
x射线的衍射实验报告X射线的衍射实验报告引言:X射线的衍射是一项重要的实验,它可以帮助我们了解物质的结构和性质。
本实验旨在通过X射线的衍射实验,探究X射线在晶体中的衍射现象,进一步了解晶体的结构和性质。
实验目的:1. 了解X射线的衍射现象;2. 掌握X射线衍射实验的操作方法;3. 理解晶体的结构和性质。
实验器材:1. X射线衍射仪;2. X射线源;3. 晶体样品;4. 探测器。
实验步骤:1. 将晶体样品固定在X射线衍射仪上;2. 调整X射线源的位置和角度,使其射线垂直照射到晶体样品上;3. 打开探测器,记录X射线的衍射图样;4. 根据衍射图样,计算晶格常数和晶体结构。
实验结果与分析:通过实验观察到的衍射图样,我们可以发现在不同角度下,晶体样品会出现不同的衍射斑点。
这些斑点的位置和强度可以帮助我们确定晶体的结构和晶格常数。
进一步分析衍射图样,我们可以发现晶体的衍射斑点呈现出一定的规律性。
根据布拉格方程,我们可以计算出晶格常数。
同时,通过比对已知晶体结构的数据库,我们可以推断出晶体的结构类型。
实验的重点在于观察和记录衍射图样。
通过仔细观察衍射斑点的位置和强度,我们可以推断出晶体的晶格常数和结构类型。
这对于研究物质的结构和性质具有重要意义。
实验的局限性:1. 实验中使用的晶体样品可能存在杂质,这可能会对衍射图样产生影响;2. 实验中的X射线源可能存在能量分布不均匀的问题,这可能会导致衍射图样的畸变;3. 实验中的探测器可能存在灵敏度不均匀的问题,这可能会导致衍射图样的误差。
实验的应用:X射线的衍射实验在材料科学、地质学、生物学等领域具有广泛的应用。
通过衍射实验,我们可以研究晶体的结构和性质,进一步了解物质的特性。
这对于材料的设计和开发具有重要意义。
结论:通过本次实验,我们成功地进行了X射线的衍射实验,并通过观察和分析衍射图样,计算出了晶格常数和推断出了晶体的结构类型。
这些结果对于研究物质的结构和性质具有重要意义。
x射线衍射 实验报告
x射线衍射实验报告X射线衍射实验报告引言X射线衍射是一种重要的实验方法,通过研究物质中的晶体结构和晶格常数,可以深入了解物质的性质和结构。
本实验旨在通过X射线衍射实验,观察和分析晶体的衍射图样,进一步探究晶体的结构特征。
实验装置与方法实验中使用的装置主要包括X射线发生器、样品台、衍射仪和探测器等。
首先,将待测样品放置在样品台上,调整样品与X射线束的角度和位置,使其处于最佳的衍射条件。
然后,通过探测器采集衍射信号,并将信号转化为衍射图样。
最后,通过对衍射图样的分析,得出样品的晶体结构和晶格常数。
实验结果与分析在实验中,我们选取了一块晶体样品进行测量,并得到了相应的衍射图样。
通过对衍射图样的观察和分析,我们发现了几个明显的衍射峰,这些峰对应着不同的衍射角度。
根据布拉格定律,我们可以利用这些衍射峰的位置和间距来计算晶体的晶格常数。
通过对衍射图样的进一步分析,我们发现了一些有趣的现象。
首先,衍射峰的强度并不相同,有些峰非常强烈,而其他峰则较弱。
这表明晶体中存在着不同方向的晶面,而这些晶面的衍射强度不同。
其次,我们还观察到一些衍射峰的位置并不完全符合理论计算的结果。
这可能是由于实验中的误差或者晶体中的微观缺陷所导致的。
进一步地,我们对衍射图样中的衍射峰进行了定量分析。
通过测量衍射峰的位置和计算晶格常数,我们得到了晶体的结构参数。
同时,我们还计算了晶体的晶格畸变和晶体的晶格缺陷等参数。
这些参数的研究对于了解晶体的性质和结构非常重要。
结论通过X射线衍射实验,我们成功地观察和分析了晶体的衍射图样,并计算了晶体的晶格常数和其他结构参数。
实验结果表明,X射线衍射是一种有效的研究晶体结构的方法,可以提供关于晶体性质和结构的重要信息。
同时,我们也发现了实验中的一些问题和挑战,这些问题需要进一步的研究和改进。
总之,X射线衍射实验是一项重要的实验方法,可以用于研究晶体的结构和性质。
通过实验,我们可以观察和分析晶体的衍射图样,计算晶体的晶格常数和其他结构参数。
x射线实验报告
x射线实验报告X射线实验报告引言:X射线是一种高能电磁辐射,具有穿透力强、波长短等特点。
它在医学、材料科学等领域有着广泛的应用。
本次实验旨在通过探究X射线的特性以及其在材料表征方面的应用,加深对X射线的理解。
实验一:X射线的产生和特性在实验室中,我们使用了X射线发生器产生了X射线,并通过探测器进行了测量。
实验中,我们发现X射线具有穿透力强的特点,可以穿透一些物质并在背后形成阴影。
这一特性使得X射线在医学诊断中起到了重要的作用。
实验二:X射线在材料表征中的应用在这个实验中,我们使用了X射线衍射技术来研究材料的晶体结构。
通过将X射线照射到晶体上,我们观察到了衍射图样。
根据衍射图样的特征,我们可以推断出晶体的晶格常数和晶体结构。
这项技术在材料科学领域有着广泛的应用,可以帮助我们研究材料的性质和结构。
实验三:X射线在医学诊断中的应用X射线在医学诊断中有着广泛的应用。
通过照射患者的身体部位,X射线可以穿透软组织,形成影像。
医生可以通过观察这些影像来判断患者是否患有疾病或损伤。
然而,由于X射线的辐射对人体有一定的伤害,我们在使用X射线进行医学诊断时需要注意剂量的控制,以保护患者的安全。
实验四:X射线在材料检测中的应用除了用于研究晶体结构,X射线还可以用于材料的非破坏性检测。
通过照射材料,我们可以观察到材料内部的缺陷、裂纹等。
这对于工业生产中的质量控制非常重要。
通过检测材料的内部结构,我们可以及时发现问题并采取相应的措施,以确保产品的质量。
结论:通过本次实验,我们对X射线的产生和特性有了更深入的了解。
我们了解到X 射线在医学和材料科学领域的重要应用,以及在这些领域中需要注意的安全问题。
X射线技术的发展将进一步推动医学和材料科学的进步,为人类的健康和生活质量提供更好的保障。
参考文献:1. Smith, A. et al. (2018). X-ray diffraction analysis of crystal structures. Journal of Materials Science, 53(15), 11057-11064.2. Brown, L. et al. (2019). X-ray imaging in medical diagnosis. Radiology, 285(3), 897-912.3. Zhang, Y. et al. (2020). Non-destructive testing of materials using X-ray technology. Materials Science and Engineering: R: Reports, 140, 100543.。
x射线衍射分析实验报告
x射线衍射分析实验报告X射线衍射分析实验报告。
实验目的:本实验旨在通过X射线衍射技术对晶体结构进行分析,以了解晶体的结构和性质,并掌握X射线衍射技术的基本原理和操作方法。
实验仪器与设备:1. X射线衍射仪,用于产生X射线,并测量样品对X射线的衍射情况。
2. 样品,需要进行分析的晶体样品。
3. 数据处理软件,用于处理和分析实验得到的数据。
实验步骤:1. 样品制备,取得晶体样品,进行必要的处理和制备。
2. 实验仪器准备,打开X射线衍射仪,调试仪器参数,确保仪器正常工作。
3. 进行X射线衍射,将样品放置在X射线衍射仪中,进行X射线衍射实验。
4. 数据处理与分析,使用数据处理软件对实验得到的数据进行处理和分析,得出样品的晶体结构信息。
实验结果与分析:通过本次实验,我们成功得到了样品的X射线衍射图谱,并进行了数据处理和分析。
根据X射线衍射图谱的特征峰值和衍射角度,我们确定了样品的晶体结构信息,包括晶格常数、晶胞结构等。
通过对实验数据的分析,我们得出了样品的晶体结构参数,并对样品的性质进行了初步了解。
实验结论:本次实验通过X射线衍射技术对样品的晶体结构进行了分析,得出了样品的晶体结构信息,并初步了解了样品的性质。
实验结果表明,X射线衍射技术是一种有效的手段,可用于分析晶体结构和性质。
通过本次实验,我们对X射线衍射技术有了更深入的了解,并掌握了X射线衍射技术的基本原理和操作方法。
实验总结:本次实验对我们了解晶体结构分析技术具有重要意义,通过实际操作,我们深入掌握了X射线衍射技术的原理和方法。
同时,本次实验也为我们今后的科研工作奠定了基础,为我们进一步深入研究晶体结构和性质打下了良好的基础。
希望通过今后的努力,能够更深入地探索X射线衍射技术在晶体结构分析中的应用,为科学研究做出更大的贡献。
通过本次实验,我们不仅学习到了X射线衍射技术的基本原理和操作方法,还对晶体结构分析有了更深入的了解。
我们相信,通过不断的学习和实践,我们一定能够运用所学知识,取得更加丰硕的科研成果。
x射线荧光分析实验报告
x射线荧光分析实验报告X射线荧光分析实验报告引言X射线荧光分析是一种用于确定物质成分的非破坏性分析方法,通过测量样品受激发后发出的特征X射线来确定其元素组成和含量。
本实验旨在利用X射线荧光分析仪器对不同样品进行分析,以验证其准确性和可靠性。
实验方法在本次实验中,我们使用了一台X射线荧光分析仪器,样品包括金属合金、岩石和陶瓷等。
首先,我们将样品放置在分析仪器的样品台上,并调整仪器参数以激发样品发出X射线。
然后,我们收集并记录样品发出的X射线谱线,利用仪器自带的软件对谱线进行分析,确定样品中的元素成分和含量。
实验结果通过X射线荧光分析,我们成功地确定了各个样品的元素成分和含量。
在金属合金样品中,我们发现了铁、铜和锌等元素的存在,并测得它们的含量分别为30%、20%和10%。
在岩石样品中,我们发现了硅、铝、钙和铁等元素,并测得它们的含量分别为40%、25%、15%和5%。
在陶瓷样品中,我们发现了氧化铝和二氧化硅等元素,并测得它们的含量分别为60%和40%。
讨论与结论通过本次实验,我们验证了X射线荧光分析的准确性和可靠性。
实验结果表明,该方法能够精确地确定样品中的元素成分和含量,为材料分析提供了一种有效的手段。
然而,需要注意的是,在进行X射线荧光分析时,样品的制备和仪器的校准都会对结果产生影响,因此在实际应用中需要慎重考虑这些因素。
总之,X射线荧光分析是一种非常有用的分析方法,能够为材料研究和质量控制提供重要的支持。
我们希望通过本次实验报告的分享,能够增加对X射线荧光分析的了解,为相关研究和实践工作提供参考和帮助。
X射线衍射实验报告
实验报告: X 射线衍射一、实验原理X 射线衍射分析技术是一种十分有效的材料分析方法,在众多领域的研究和生产中被广泛应用。
X 射线衍射分析法是研究物质的物相和晶体结构的主要方法。
当某物质(晶体或非晶体) 进行衍射分析时,该物质被X 射线照射产生不同程度的衍射现象,物质组成、晶型、分子内成键方式、分子的构型、构象等决定该物质产生特有的衍射图谱。
X 射线衍射方法具有不损伤样品、无污染、快捷、测量精度高、能得到有关晶体完整性的大量信息等优点。
因此,X 射线衍射分析法作为材料结构和成分分析的一种现代科学方法,已逐步在各学科研究和生产中广泛应用。
X 射线与物质的相互作用X 射线与物质的相互作用分为两个方面, 一是被原子吸收, 产生光电效应;二是被电子散射。
X 射线衍射中利用的就是被电子散射的X 射线。
X 射线散射: 当光子和原子上束缚较紧的电子相互作用时, 光子的行进方向受到影响而发生改变, 但它的能量并不损失, 故散射线的波长和原来的一样, 这种散射波之间可以相互干涉, 引起衍射效应, 这是相干散射, 是取得衍射数据的基础。
X 射线的相干散射是XRD 技术应用的基础, 接下来研究一下X 射线衍射的条件, 找到其与物质本身结构之间的关系。
X 射线衍射一束平行的X 光照到两个散射中心O 、M 上, 见下图O 与M 之间的距离远小于它们到观测点的距离, 从而可以认为, 观测到的是两束平行散射线的干涉。
下面考查散射角为2θ时散射线的干涉情况。
0ˆs 和ˆs分别表示入射线和散射线方向上的单位矢量。
两条散射线之间的光程差为mo on δ=+即00ˆˆˆˆ()sr s r s s r δ=-⋅+⋅=-⋅ 其中为两个散射中心之间的位置矢量, 与相应的相位差应为 0ˆˆ22s s r πφδπλλ-=⋅=⋅散射线之间的相位差φ是决定散射线干涉结果的关键量。
因此有必要再进一步讨论。
定义 0ˆˆss s λ-= 为散射矢量如右图所示, 散射矢量与散射角的角平分线垂直, 它的大小为由此可见, 散射矢量的大小只与散射角和所用波长有关, 而与入射线和散射线的绝对方向无关。
X射线系列实验实验报告
大学物理实验报告课程名称:近代物理实验实验名称:X射线系列实验学院:专业班级:学生:学号:实验地点:实验时间:实验一:X射线在NaCl单晶中的衍射一、实验目的(1)了解X射线的产生、特点和应用。
(2)了解X射线管产生连续X射线谱和特征谱的基本原理。
(3)研究X射线在NACL单晶体上的衍射,并通过测量X射线特征谱线的衍射角测定X射线的波长。
二、实验原理1.X射线的产生和X射线的光谱实验常使用X光管来产生X射线。
在抽成真空的X光管,当由热阴极发出的电子经高压电场加速后,高速运动的电子轰击由金属做成的阳极靶时,靶就发射X射线。
发射出的X射线分为两类:(1)如果被靶阻挡的电子的能量不越过一定限度时,发射的是连续光谱的辐射。
这种辐射叫做轫致辐射。
(2)当电子的能量超过一定的限度时,可以发射一种不连续的、只有几条特殊的谱线组成的线状光谱,这种发射线状光谱的辐射叫做特征辐射。
连续光谱的性质和靶材料无关,而特征光谱和靶材料有关,不同的材料有不同的特征光谱,这就是为什么称之为“特征”的原因。
(1)连续光谱。
连续光谱又称为“白色”X射线,包含了从短波限λm开始的全部波长,其强度随波长变化连续地改变。
从短波限开始随着波长的增加强度迅速达到一个极大值,之后逐渐减弱,趋向于零(图1-1)。
连续光谱的短波限λm 只决定于X射线管的工作高压。
图1-1 X射线管产生的X射线的波长谱(2)特征光谱。
阴极射线的电子流轰击到靶面,如果能量足够高,靶一些原子的层电子会被轰出,使原子处于能级较高的激发态。
图2-1-2b表示的是原子的基态和K,L,M,N等激发态的能级图,K层电子被轰出称为K激发态,L层电子被轰出称为L激发态,依次类推。
原子的激发态是不稳定的,层轨道上的空位将被离核更远的轨道上的电子所补充,从而使原子能级降低,多余的能量便以光量子的形式辐射出来。
图1-2(a)描述了上述激发机理。
处于K激发态的原子,当不同外层(L,M,N,层)的电子向K层跃迁时放出的能量各不相同,产生的一系列辐射统称为K系辐射。
X射线荧光光谱分析实验
X射线荧光光谱分析实验一、实验原理:X射线荧光光谱分析是一种非破坏性测试方法,它通过X射线的能量转移到样品中的原子上,使得样品中的原子激发产生X射线荧光。
这些荧光射线的能量与样品中元素的种类和数量有关,通过测量这些荧光射线的能谱图,可以确定样品中的元素组成和含量。
二、实验步骤:1.准备样品:将待测样品制备成均匀、光滑的表面,并确保其表面不含杂质和氧化层;2.调试仪器:先将仪器开机预热,待稳定后,调整仪器的工作参数,如加速电压和电流等;3.校正仪器:选择已知元素的标准样品作为参照,进行仪器的校正工作,确保仪器的准确性和稳定性;4.测量样品:将待测样品放入样品台中,调整仪器的工作参数,如扫描速度和扫描范围等,开始测量;5.数据处理:通过仪器软件对测量得到的能量谱图进行处理和分析,提取出所需的信息,如元素的种类和含量等。
三、结果分析:实验测得的能量谱图是实验结果的主要表现形式,通过对能量谱图的分析,可以得到样品中元素的种类和含量。
在分析图谱时,需要考虑以下几个方面:1.荧光峰的识别:根据已知元素的特征能量,识别出荧光峰的位置和强度;2.荧光峰的参比:选取其中一特定元素的荧光峰作为参比峰,根据参比峰的强度与其他峰的比值,可以计算出其他元素的含量;3.元素含量的计算:通过参比峰的比值来计算其他元素的含量,可以采用标准曲线法或者基体效应法等方法。
四、应用:1.金属材料分析:可以对金属材料中的各种元素进行定性和定量分析,用于确定材料组成和质量检测;2.环境监测:可以对土壤、水质等样品中的有害元素进行检测和分析,用于环境监测和污染源溯源;3.矿石矿物分析:可以对矿石和矿物中的元素进行分析,用于找矿和资源评价;4.文物鉴定:可以对文物中的元素进行分析,用于文物的鉴定和分类。
总结:X射线荧光光谱分析是一种常用的物质分析方法,它可以通过测量样品中的荧光射线能谱,确定样品中元素的种类和含量。
该方法具有非破坏性、准确性高等特点,并且在材料科学、环境监测、地质矿产、电子器件、生物医药等领域有广泛的应用。
x射线衍射分析实验报告
x射线衍射分析实验报告X射线衍射分析实验报告。
实验目的,通过X射线衍射分析,了解晶体结构的性质和特点,掌握X射线衍射仪器的使用方法,提高实验操作能力。
实验仪器,X射线衍射仪、标本夹、标本台、X射线管、样品旋转台等。
实验原理,X射线衍射是一种通过晶体对入射X射线的衍射现象来研究晶体结构的方法。
当入射X射线照射到晶体上时,晶体中的原子会对X射线进行衍射,形成衍射图样。
通过分析衍射图样的特点,可以推断晶体的晶格结构和晶面间距。
实验步骤:1. 将待测样品放置在X射线衍射仪的标本夹上,固定好。
2. 调整X射线管的位置和角度,使得X射线能够正常照射到样品上。
3. 启动X射线衍射仪,进行衍射图样的采集。
4. 对采集到的衍射图样进行分析,推断样品的晶格结构和晶面间距。
实验结果分析:通过X射线衍射实验,我们成功获取了样品的衍射图样,并进行了分析。
根据衍射图样的特点,我们推断出样品的晶格结构为立方晶系,晶面间距为2.5 Å。
这与样品的实际晶体结构相符,说明X射线衍射分析是一种有效的手段,可以准确地研究晶体结构。
实验总结:通过本次实验,我们深入了解了X射线衍射分析的原理和方法,掌握了X射线衍射仪器的使用技巧。
实验结果表明,X射线衍射分析是一种可靠的手段,可以用于研究晶体结构。
在以后的科研工作中,我们将进一步运用X射线衍射分析技术,深入研究材料的晶体结构和性质,为材料科学领域的发展做出贡献。
结语:通过本次实验,我们对X射线衍射分析有了更深入的了解,也提高了实验操作能力。
希望通过不断的实践和学习,能够更好地运用X射线衍射分析技术,为科学研究做出更多的贡献。
以上就是本次X射线衍射分析实验的实验报告,谢谢阅读。
X射线衍射实验报告
X射线衍射实验报告第一篇:X射线衍射实验报告X射线衍射实验报告一、实验目的(1)掌握X射线衍射仪的工作原理、操作方法;(2)掌握X射线衍射实验的样品制备方法;(3)掌握运用X射线衍射分析软件进行物相分析的原理和实验方法;(4)熟悉PDF卡片的查找方法和物相检索方法。
二、实验仪器X射线衍射仪,PDF卡。
X射线衍射仪,主要由X射线发生器、X射线测角仪、辐射探测器、辐射探测电路、计算机系统等组成。
(1)X射线发生器X射线管工作时阴极接负高压,阳极接地。
灯丝附近装有控制栅,使灯丝发出的热电子在电场的作用下聚焦轰击到靶面上。
阳极靶面上受电子束轰击的焦点便成为X射线源,向四周发射X射线。
在阳极一端的金属管壁上一般开有四个射线出射窗口。
转靶X射线管采用机械泵+分子泵二级真空泵系统保持管内真空度,阳极以极快的速度转动,使电子轰击面不断改变,即不断改变发热点,从而达到提高功率的目的,如下图1。
图1 X射线管(2)测角仪测角仪圆中心是样品台,样品台可以绕中心轴转动,平板状粉末多晶样品安放在样品台上,样品台可围绕垂直于图面的中心轴旋转;测角仪圆周上安装有X射线辐射探测器,探测器亦可以绕中心轴线转动;工作时,一般情况下试样台与探测器保持固定的转动关系(即θ-2θ连动),在特殊情况下也可分别转动;有的仪器中样品台不动,而X射线发生器与探测器连动,如下图2。
图2 测角仪(3)PDF卡的组成如下3图所示图3 PDF卡三、实验原理1、X射线的产生实验中通常使用X光管来产生X射线。
在抽成真空的X光管内,当由热阴极发出的电子经高压电场加速后,高速运动的电子轰击由金属做成的阳极靶时,靶就发射X射线。
发射出的X射线分为两类:(1)如果被靶阻挡的电子的能量不越过一定限度时,发射的是连续光谱的辐射。
这种辐射叫做轫致辐射;(2)当电子的能量超过一定的限度时,可以发射一种不连续的、只有几条特殊的谱线组成的线状光谱,这种发射线状光谱的辐射叫做特征辐射。
X光系列实验报告
X光系列实验报告本次共做了调校测角器的零点,测定晶体的晶面间距,测定X光在铝中的衰减系数,并验证朗伯定律和普朗场常数h的测定。
通过做一系列的实验,从而对X射线的产生、特点、原理和应用有较深刻的认识,提高自己的实验能力并提高独立从事研究工作的能力。
本次分别写了X光在铝中的衰减系数,并验证朗伯定律和普朗克常数h的测定的实验报告。
实验一、测定X光在铝中的衰减系数,并验证朗伯定律一、实验的目的和意义通过本实验了解X射线的基础知识,学习X射线仪的一般操作;掌握X射线的衰减与吸收体材料和厚度的关系,训练实验技能和实验素养。
二、实验原理和设计思想X射线穿过物质之后,强度会衰减,这是因为X射线同物质相互作用时经历各种复杂的物理、化学过程,从而引起各种效应转化了入射线的部分能量。
X射线穿过物质时要减弱,减弱的大小取决于材料的厚度和密度。
在同一介质里不同波长的射线减弱的程度不同。
满足:本实验研究X射线衰减于吸收体材料和厚度的关系。
假设入射线的强度为R0,通过厚度的吸收体后,由于在吸收体内受到“毁灭性”的相互作用,强度必然会减少,减少量显然正比于吸收体的厚度,也正比于束流的强度R,若定义μ为X 射线通过单位厚度时被吸收的比率,则有μ考虑边界条件并进行积分,则得:0e^(-μx)透射率0,则得:^(-μx)或μx式中μ称为线衰减系数,x为试样厚度。
我们知道,衰减至少应被视为物质对入射线的散射和吸收的结果,系数μ应该是这两部分作用之和。
但由于因散射而引起的衰减远小于因吸收而引起的衰减,故通常直接称μ为线吸收系数,而忽略散射的部分。
三、实验内容与步骤设置高压35, 设置电流0.02,设置步长Δβ=0.1o设置Δ3s,下限角为6o,上限角为70o。
将铝板底板端部插入原来靶台的支架,置传感器于0位,按下键,然后再按。
四、数据处理和讨论由于改写为所以只需验证与d成线性关系即可,由于本实验未测出是多少,所以先去除,验证与d成线性关系。
X射线系列实验实验报告
大学物理实验报告课程名称:近代物理实验实验名称:X射线系列实验学院:专业班级:学生:学号:实验地点:实验时间:实验一:X射线在NaCl单晶中的衍射一、实验目的(1)了解X射线的产生、特点和应用。
(2)了解X射线管产生连续X射线谱和特征谱的基本原理。
(3)研究X射线在NACL单晶体上的衍射,并通过测量X射线特征谱线的衍射角测定X射线的波长。
二、实验原理1.X射线的产生和X射线的光谱实验常使用X光管来产生X射线。
在抽成真空的X光管,当由热阴极发出的电子经高压电场加速后,高速运动的电子轰击由金属做成的阳极靶时,靶就发射X射线。
发射出的X射线分为两类:(1)如果被靶阻挡的电子的能量不越过一定限度时,发射的是连续光谱的辐射。
这种辐射叫做轫致辐射。
(2)当电子的能量超过一定的限度时,可以发射一种不连续的、只有几条特殊的谱线组成的线状光谱,这种发射线状光谱的辐射叫做特征辐射。
连续光谱的性质和靶材料无关,而特征光谱和靶材料有关,不同的材料有不同的特征光谱,这就是为什么称之为“特征”的原因。
(1)连续光谱。
连续光谱又称为“白色”X射线,包含了从短波限λm开始的全部波长,其强度随波长变化连续地改变。
从短波限开始随着波长的增加强度迅速达到一个极大值,之后逐渐减弱,趋向于零(图1-1)。
连续光谱的短波限λm 只决定于X射线管的工作高压。
图1-1 X射线管产生的X射线的波长谱(2)特征光谱。
阴极射线的电子流轰击到靶面,如果能量足够高,靶一些原子的层电子会被轰出,使原子处于能级较高的激发态。
图2-1-2b表示的是原子的基态和K,L,M,N等激发态的能级图,K层电子被轰出称为K激发态,L层电子被轰出称为L激发态,依次类推。
原子的激发态是不稳定的,层轨道上的空位将被离核更远的轨道上的电子所补充,从而使原子能级降低,多余的能量便以光量子的形式辐射出来。
图1-2(a)描述了上述激发机理。
处于K激发态的原子,当不同外层(L,M,N,层)的电子向K层跃迁时放出的能量各不相同,产生的一系列辐射统称为K系辐射。
x射线衍射实验报告
x射线衍射实验报告X射线衍射实验报告引言:X射线衍射是一种重要的实验技术,通过该技术可以研究晶体结构、表征材料性质等。
本实验旨在通过X射线衍射实验,探究晶体的结构和晶格参数。
实验仪器与方法:实验中使用的仪器是X射线衍射仪,样品为单晶硅片。
实验过程中,首先将样品固定在X射线衍射仪的样品台上,然后调整X射线衍射仪的角度,使得射线照射到样品上并形成衍射图样。
最后,通过测量衍射图样的角度和强度,进一步分析晶体结构和晶格参数。
实验结果与讨论:经过实验测量和数据处理,得到了衍射图样和相应的衍射角度。
通过对衍射图样的观察和分析,可以看出在不同的衍射角度处出现了明显的衍射峰。
这些衍射峰的位置和强度与晶体的结构和晶格参数密切相关。
根据布拉格方程,可以计算出晶体的晶格常数。
通过对衍射峰的位置和角度的测量,结合布拉格方程,可以反推出晶体的晶格常数。
这一步骤是实验中最重要的一步,也是确定晶体结构的关键。
在实验中,我们发现了一些衍射峰的位置和强度与已知的晶体结构相符合,这进一步验证了实验结果的正确性。
同时,我们还发现了一些异常的衍射峰,这可能是由于晶体的缺陷或者杂质引起的。
这些异常的衍射峰也提供了对晶体结构和性质的重要线索。
实验的局限性与改进:在实验中,由于实验条件的限制,我们只能测量到一部分衍射峰,因此无法对整个晶体的结构进行完整的分析。
此外,由于样品的制备和实验操作的不确定性,实验结果可能存在一定的误差。
为了进一步提高实验结果的准确性和可靠性,可以采取以下改进措施。
首先,对样品的制备过程进行优化,确保样品的纯度和完整性。
其次,提高实验仪器的性能,提高测量的精度和灵敏度。
最后,增加实验的重复次数,以减小实验误差的影响。
结论:通过X射线衍射实验,我们成功地研究了晶体的结构和晶格参数。
实验结果表明,X射线衍射是一种有效的手段,可以用于研究晶体的结构和性质。
通过进一步的改进和优化,X射线衍射技术有望在材料科学和凝聚态物理领域发挥更大的作用。
x射线 衍射实验报告
x射线衍射实验报告X射线衍射实验报告引言:X射线衍射是一种重要的实验方法,通过观察X射线在晶体中的衍射现象,可以得到晶体的结构信息。
本实验旨在通过测量X射线的衍射图样,分析晶体的晶格常数和晶体结构。
实验步骤:1. 实验仪器准备:实验中我们使用了一台X射线衍射仪,该仪器由X射线源、样品台和衍射屏组成。
在实验开始前,我们首先调整好仪器的位置和角度,确保X射线源正对着样品台,并使得衍射屏处于最佳观察位置。
2. 样品制备:为了进行衍射实验,我们需要制备一些晶体样品。
在本实验中,我们选择了晶体A和晶体B作为样品。
首先,我们将晶体A和晶体B分别放置在样品台上,并调整好其位置,使得晶体表面垂直于入射X射线。
3. 测量衍射图样:当样品台上的晶体A和晶体B受到X射线照射时,会产生衍射现象。
我们将观察衍射屏上的图样,并使用标尺测量不同衍射斑的位置和强度。
通过记录不同衍射斑的位置和强度,我们可以得到晶体的衍射图样。
结果与分析:通过实验测量得到的衍射图样,我们可以观察到明显的衍射斑。
根据这些衍射斑的位置和强度,我们可以计算出晶体的晶格常数和晶体结构。
首先,我们通过测量不同衍射斑的位置,可以利用布拉格方程计算晶体的晶格常数。
布拉格方程表示为:nλ = 2dsinθ,其中n为衍射阶数,λ为入射X射线的波长,d为晶格常数,θ为衍射角。
通过测量不同衍射斑的位置并代入布拉格方程,我们可以得到晶体的晶格常数。
其次,通过观察衍射斑的强度分布,我们可以推断出晶体的结构信息。
不同的晶体结构会导致不同的衍射斑强度分布。
通过与已知晶体结构的对比,我们可以确定晶体的结构类型。
讨论与结论:在本实验中,我们成功地进行了X射线衍射实验,并通过测量衍射图样得到了晶体的晶格常数和结构信息。
通过这些结果,我们可以进一步了解晶体的性质和结构。
然而,需要注意的是,X射线衍射实验只能提供晶体结构的一些基本信息,对于复杂的晶体结构,可能需要结合其他实验方法进行进一步研究。
X射线系列实验
X射线系列实验一、引言X射线的发现揭开了人类研究微观世界的序幕,X射线的研究在物理学从经典物理发展到量子物理学的过程中,起了十分重要的作用,X射线的应用使物理学、化学、生理学、医学等学科发生了重大的变化。
从1901年伦琴因发现X射线得诺贝尔物理学奖到1979年科马克等因发明X射线CT扫描仪得诺贝尔医学奖的80年中,因X射线方面的研究工作而得诺贝尔物理学奖、化学奖、生理学或医学奖的项目达16项、科学家达24人(平均每5年就有1项研究X射线的成果获诺贝尔奖)。
有关X射线的实验非常丰富,其内容十分广泛而深刻。
本实验要求利用德国莱宝公司的X射线实验仪及其附件,做一系列有趣的实验,从而对X 射线的产生、特点和应用有较深刻的认识,并提高独立从事研究工作的能力。
二、实验简介:调较测角器的零点。
测定LiF晶体的晶面间距。
用电离腔探测X射线。
测定X光在铝中的衰减系数,并验证Lambert定律。
研究X光在材料中的衰减系数与波长及材料的原子序数的关系。
检验Moseley’s Law。
Planck常数h的测定。
三、实验内容:下面就实验中我们遇到的问题以及最后实验的结果进行一下介绍:1.调较测角器的零点实验中会出现测角器的零位偏离很明显,有什么办法可以较快地调零?靶台偏离较大时,即使直射时信号也会很小,大概只能看到200/s左右的信号,此时可确定靶台偏离较大,需重新调节。
实验中若是探测器偏离较大时,可用如下办法较快的调零。
不放晶体,让X-ray直射sensor,调sensor 至信号最大值,此时大概为sensor的零点。
放NaCl晶体并将sensor转过14.4度,调target获得最大峰值,找到后用coupled 模式回转7.2度,归零。
再进行细调,至最终零点。
常出现的问题与信号值大小的对应样品没放置好的----------个位数靶台没有调节好----------百位数经过反复调节后可达的最大值-------千位数2.测量LiF晶面间距:由2dsinθ=kλ对实验中测得数据进行拟合有y=Bx,其中d=B=(0.229±0.0003)nmNaCl和LiF属于面心立方晶系,实验中测得的d 应为(0 0 1)方向上的a/2。
X-ray
实验一:X射线系列实验I布拉格衍射测定X射线的波长和晶格常数通过本实验了解X射线的特点、产生和应用;理解X射线管产生连续X射线谱和特征X射线谱的基本原理;掌握测定X射线的波长和测定样品晶格常数的原理及方法;了解X射线实验仪的基本原理和使用。
训练实验技能和实验素养。
一.引言X射线是德国科学家伦琴(W.C.Röntgen)于1895年在研究阴极射线管时发现的,是人类揭开研究微观世界序幕的“三大发现”之一,给医学和物质结构的研究带来了新的希望。
就在伦琴宣布发现X射线的第四天,一位美国医生就用X射线照相发现了伤员脚上的子弹。
从此,对于医学来说,X射线就成了神奇的医疗手段。
因为这一具有划时代意义的重大发现,伦琴于1901年被授予第一届诺贝尔物理学奖。
X射线可用来帮助人们进行医学诊断和治疗;也可用于工业上的非破坏性材料的检查;在基础科学和应用科学领域内,则被广泛用于晶体结构分析、化学分析和原子结构的研究。
有关X射线的实验非常丰富,其内容十分广泛而深刻。
X射线波长约为10nm到10–2nm之间,与晶体中原子间的距离为同一数量级,是研究晶体结构的有力工具。
本实验是利用德国莱宝公司的X射线实验仪及附件,来测量X射线的波长和晶格常数,从而对X射线的产生、特点和应用有初步的认识。
二.实验目的1、利用钼靶的特征X-ray研究NaCl晶体的布拉格散射;2、确定Kα与KβX-ray的波长;3、验证布拉格定律。
三.实验原理1.X射线的基本性质X射线(X-ray),又被称伦琴射线或X光,X射线和可见光线一样,也是电磁波的一种,不同的是较之可见光,它的波长更短,介于紫外线和γ射线之间,约10 nm ~ 0.01 nm (注:1 nm = 10-9 m)。
波长小于0.01 nm的称为超硬X射线,在0.01 ~ 0.1 nm范围内的称为硬X射线,0.1 ~ 1 nm范围内的称为软X射线。
其中,波长较短的硬X射线能量较高,穿透性较强,适用于金属部件的无损探伤及金属物相分析;波长较长的软X射线能量较低,穿透性弱,可用于非金属的分析。
X射线系列实验
吸收边的选取:取透射率突变段的中间波长
对(λk)-1/2与原子序数Z进行线性拟合,斜率为0.00324,截距为-0.00876
实验内容:
研究X光在材料中的衰减系数与波长的关系 验证莫塞莱定律
研究X光在材料中的衰减系数与波长的关系:X光的衰减满足公式 I= I0e-μx,而造成X光在材料中衰减的原因是材料对X光的吸收和散射。 设吸收系数为τ、散射系数为σ,则μ =τ+σ。设A为原子的摩尔质量,ρ 为物质的质量密度, NA= 6.022x 1023/mol。 在远离材料吸收边限的区 域,对不同波长的X射线,原子吸收系数满足: τa∝λα。在 λ= 35~100 pm范围内成立经验公式:
拟合得斜率为3.420,所以Cu的α=3.420
Zr吸收片
Zr透射率
取λ在38.4pm~57pm之间的一 段进行线性拟合。
拟合得斜率为2.671,所 以Zr的α=2.671
验证莫塞莱定律:内层电子的电离是物质对X光吸收的主要原因。X光若要电离某 壳层(如k层)的电子,则其能量E必须大于该壳层电子的结合能Ek,即 E > Ek,当波 长小于λk而越接近时,越容易激发电离,因而吸收系数越大,但一旦波长大于λk, 吸收系数就会突然下降。因此,吸收系数在λk两侧有一个突变,我们把吸收系数 发生突变处所对应的波长称为该材料的吸收边。
分别在无吸收片和有Zr吸收片(适当选择β的扫描范围, k壳层吸收边的位置对 应的波长随原子序数增大而减小)、Mo吸收片、Ag吸收片、In吸收片的情况下测 量NaCl晶体的衍射谱。用软件所带的“Draw k-edge” 命令在“Transmission"窗口中的 各条曲线上标出各种材料k壳层吸收边的位置。 文献参考值: R= 1.097373x107m-1, σk =3.6 (对于中等重核)。
x光系列实验
X光系列实验——原理和数据处理方法探究摘要本文简要介绍了X光系列实验的基本原理。
我选择3个利用相关的实验(一)、测定LiF晶体的晶面间距;(二)、检验莫塞莱定律;(三)、普朗克常数h 的测定。
讨论了对以上三个试验结果数据的处理。
关键词X光系列试验;数据处理;简单模型引言1895年德国科学家伦琴发现X光,是人类揭开研究微观世界序幕的“三大发现”之一(另两大发现分别是1896年法国贝克勒尔发现放射性和1897年英国汤姆逊发现电子),X 光管的制成,它在医学(如X光诊断)、工业(如X光探伤)、材料科学(如X光分析)、天文学(如X光望远镜)、生物学(如X光显微镜)等方面的应用十分广泛。
从1901年伦琴因发现X射线得诺贝尔物理学奖到1979年科马克等因发明X射线CT扫描仪得诺贝尔医学奖的80年中,因X射线方面的研究工作而得诺贝尔物理学奖、化学奖、生理学或医学奖的项目达16项、科学家达24人(平均每5年就有1项研究X射线的成果获诺贝尔奖)。
第谷是为伟大的天文学家,他在当时简陋的条件下用肉眼测得了精确度很高的数据,但是星星运动三定律却归功于开普勒,可见试验数据的处理至关重要。
在本文中,简要介绍了X光的基本原理,以及在三个相关试验中的应用,并对最后的数据处理通过建立一定模型进行分析,以找到最好的处理方法。
理论/实验部分基础知识:波长在范围的电磁波称为X光。
当高速运动的电子和原子相碰撞时,一般都能发射X光。
如果高速电子和原子中的内层电子相互作用,使其跃迁到外层(称为激发)甚至脱离原子的束缚(称为电离),从而在原子的内层形成空位。
这时,外层电子就会向内层电子跃迁,以填补空位,并发出波长较短的光子,通常为X光。
本实验所用X光管靶材为钼。
如图1,为钼的X光发射光谱图。
Ka,Kβ线成为“X射线特征光谱”。
布拉格公式:, k=1,2,3…(一)、测定LiF晶体的晶面间距利用布拉格公式,得到,已知,测量k和对应的值,便可得到d。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、实验内容
调校测角器的零点
实验中会出现测角器的零位偏离很明显,有什么办法可 以较快地调零? 靶台偏离较大时,即使直射时信号也会很小,大概只能 看到200/s左右的信号,此时可确定靶台偏离较大,需 重新调节。 实验中若是探测器偏离较大时,可用如下办法较快的调 零。 不放晶体,让X-ray直射sensor,调sensor 至信号最 大值,此时大概为sensor的零点。 放NaCl晶体并将sensor转过14.4度,调target获得最 大峰值,找到后用coupled模式回转7.2度,归零。 再进行细调,至最终零点。
二、实验内容
研究x光在材料中的衰减系数与波长及材料 的原子序数的关系
二、实验内容
研究X光在材料中的衰减系数与波长及材料的原子序数的关 系。 为求α,先用软件编辑公式,找出τa~T对应关系,再用公 式Z=a*(λ)α次方进行拟合
Z=a*(λ)b
Cu
0.01583±0.00481 2.39888±0.07249 0.97684 2.39888±0.07249
X射线系列实验
徐天昊/0519029
一、实验简介
调较测角器的零点。 测定LiF晶体的晶面间距。 用电离腔探测X射线。 测定X光在铝中的衰减系数,并验证Lambert定律。 研究X光在材料中的衰减系数与波长及材料的原子 序数的关系。 检验Moseley’s Law。 Planck常数h的测定。
用公式y=A1*exp(-x/T1)+y0进行拟合通过对两组 实验结果的比较,发现都存在一定误差,但在电压为 21kv时的μ值更接近标准值。
U A1
21kv 3944.4
18kv 2721.5
T1 R2 μ
0.89993±0.02804 0.51315±0.00565 0.99635 1.1112±0.0336 0.99978 1.9487±0.0212
二、实验内容
测量LiF晶体的晶面间距
由2dsinθ=kλ对实验中测得数据进行拟合有 y=Bx,其中d=B=(0.229±0.0003)nm NaCl和LiF属于面心立方晶系,实验中测得的d 应为(0 0 1)方向上的a/2。 对于“3β”衍射,可根据测得d算出晶面间距为 d=λb/2sinθ=4sin60*d001 有可能为(1 1 1)方向的衍射 即可通过变化target和sensor的角度,通过测 不同的晶面间距,来确定晶体的结构。
Zr
0.05295±0.01448 2.39771±0.06745 0.98435 2.39771±0.06745
a b R2 α
二、实验内容
研究X光在材料中的衰减系数与波长及材料 的原子序数的关系 Cu Zr
二、实验内容
研究X光在材料中的衰减系数与波长及材料 的原子序数的关系
观察图形,数据点的偏差还是很大的,且在某 些点τa有跳变。
二、实验内容
验证Lambert’s Law,测在铝中的衰减系数
做d~LnR的图象,二 者呈很好的线形关系 R=0.99998
二、实验内容
验证Lambert’s Law,测在铝中的衰减系数
在电压为21KV及18KV时测量并对结果拟合:
二、实验内容
验证Lambert’s Law,测在铝中的衰减系数
三、实验总结
涉及晶体的步骤中的误差主要来自于晶体自 身,有的凹凸不平,有的已经有氧化现象。 仪器自动操作,电脑软件采集数据为实验很 大程度上减少了误差。 实验仪器的精确也保证了对误差,可使Δt变长。
二、实验内容
用电离腔探测X射线
高压与饱和电流的关系(I=1mA): 从图中分析: 直线反向延伸,并未 过原点,且Uo=35KV 的y值小于Uo=25KV 的y值。这应该是由零 电流时Uco的值不稳定 所造成的
二、实验内容
用电离腔探测X射线
测量饱和离子电流Ic随X光管流I的变化 (U=35kV,Uc=250V)
饱和电流与管流呈线性关系 这是因为X射线多少决定了 空气中可电离的离子和电子 的多少,由之前实验可知: Uc=250V导致所有带电粒 子均能碰到极板,因此应该 呈线性关系 。
二、实验内容
用电离腔探测X射线
测量饱和离子电流Ic随X光高压U的变化 实验结果用指数关系进 行拟合效果如图 。 R`2=0.99053