电磁场课件6镜像法、电轴法、电容

合集下载

电磁场镜像法

电磁场镜像法

§18 镜像法一、镜像法1. 定义:就是解静电场问题得一种间接方法,它巧妙地应用唯一性定理,使某些瞧来棘手得问题很容易地得到解决。

该方法就是把实际上分区均匀媒质瞧成就是均匀得,对于研究得场域用闭合边界处虚设得简单得电荷分布,代替实际边界上复杂得电荷分布来进行计算。

即镜像法处理问题时不直接去求解电位所满足得泊松方程,而就是在不改变求解区域电荷分布及边界条件得前提条件下,用假想得简单电荷分布(称为镜像电荷)来等效地取代导体面域(电介质分界面)上复杂得感应(半极化)电荷对电位得贡献,从而使问题得求解过程大为简化。

2. 应用镜像法应主意得问题应主意适用得区域,不要弄错。

在所求电场区域内:①不能引入镜像电荷;②不能改变它得边界条件;③不能改变电介质得分布情况; ④在研究区域外引入镜像电荷,与原给定得电荷一起产生得电荷满足所求解(讨论)得边界条件;⑤其求得得解只有在所确定得区域内正确且有意义。

3. 镜像法得求解范围应用于电场与电位得求解;也可应用于计算静电力;确定感应电荷得分布等。

二、镜像法应用解决得问题一般就是边界为平面与球面得情况1. 设与一个无限大导电平板(置于地面)相距远处有一点电荷,周围介质得介电常数为,求解其中得电场。

解:在电介质中得场,除点电荷所引起得场外,还应考虑无限大导电平板上得感应电荷得作用,但其分布不知(未知),因此无法直接求解。

用镜像法求解该问题。

对于区域,除所在点外,都有以无限远处为参考点在边界上有: 即边界条件未变。

由唯一性定理有对于大场不存在推广到线电荷得情况,对于无限长线电荷也适合上述方法求解。

例115 、P54求空气中一个点电荷在地面上引起得感应电荷分布情况。

解:用镜像法求解P点:感应电荷密度, (大地)点电荷例1-16 P55解:用镜像法,如图所示,边界条件2. 镜像法应用于求解两种不同介质中置于点电荷或电荷时得电场问题。

解:应用镜像法求解区域如图b,如图c 设中电位为,中电位为满足条件:在中除所在点外,有,在中在两种媒质分界面上应有, 由有与两个镜像电荷来代替边界得极化电荷若q 为得线电荷则有:3. 点电荷对金属面得镜像问题点电荷与接地金属球得问题①与得电场中,求电位为零得等位面。

镜像法和电轴法课件

镜像法和电轴法课件
拓展镜像法和电轴法的应用领域,将其理论应用于其他领域,如信号处理、图像处 理等。
建立更加完善的理论体系,为镜像法和电轴法的进一步发展提供坚实的理论基础。
技术手段的创新与升级
探索新的技术手段和方法,提高 镜像法和电轴法的测量精度和稳
定性。
结合人工智能、机器学习等先进 技术,实现自动化、智能化的数
据处理和分析。
它可用于改善信号质量,提高接收机的灵敏度和抗干扰能力 ,从而提高通信系统的可靠性和稳定性。
02 电轴法介绍
电轴法的定义
电轴法是一种测量和分析电子元件中电场分布的方法,通过测量电场在某一方向 上的分量,可以推断出电场在该方向上的分布情况。
电轴法通过将电场分解为相互垂直的分量,分别测量每个分量的大小和方向,从 而全面了解电场分布。
镜像法的原理
镜像法基于镜像反转的原理,将输入 信号复制并反转,然后将反转后的信 号与原始信号混合,以消除噪声和其 他干扰。
通过调整反转信号的幅度和相位,可 以精确地抵消原始信号中的干扰成分 ,从而获得更加纯净的输出信号。
镜像法的应用场景
镜像法在通信系统雷达、声呐、无线电导航等领域有广泛 应用。
根据分析结果,判断待测 物体的质量、性能等,并 应用于实际生产中。
05 镜像法和电轴法的实际应 用案例
镜像法在物理学中的应用案例
光学镜像
通过使用透镜或反射镜, 将光线进行反射或折射, 形成光线的镜像。
电磁波传播
在电磁波传播过程中,通 过使用介质或反射面,使 得电磁波发生反射或折射, 形成电磁波的镜像。
镜像法和电轴法课件
目录
CONTENTS
• 镜像法介绍 • 电轴法介绍 • 镜像法和电轴法的比较 • 镜像法和电轴法的实验操作 • 镜像法和电轴法的实际应用案例 • 镜像法和电轴法的未来发展与展望

电动力学镜像法课件

电动力学镜像法课件

03
理论框架完善
未来研究将进一步完善镜像法的理论框架,建立更严谨的数学和物理基
础,为解决复杂问题提供更有力的工具。
镜像法在其他领域的应用前景
光学领域
镜像法在光学领域有广泛的应用前景,如光子晶体、光子器件的 设计与模拟等。
生物医学工程
镜像法可用于模拟生物组织的电磁特性,为医学成像和诊断提供技 术支持。
镜像法在静电场中主要用于解决导体表面的电荷分布和电场分布问题。
详细描述
当一个带电体放置在导体附近时,导体表面的电荷分布会受到带电体的影响。通 过应用镜像法,可以计算出导体表面的电荷分布和电场分布,从而进一步分析带 电体与导体之间的相互作用。
镜像法在静磁场中的应用
总结词
镜像法在静磁场中主要用于解决磁力线和磁感应强度分布问题。
详细描述
电动力学在许多领域都有重要的应用。例如,无线通信依赖于电磁波在空间的传播,雷达通过发射电磁波并检测 其反射来探测目标,电子显微镜利用电磁场来控制电子束的传播和成像。此外,电动力学还在电力传输、电磁兼 容性、粒子加速器等领域有广泛应用。
03 镜像法在电动力学中的应用
镜像法在静电场中的应用
总结词
镜像法的计算步骤
确定原问题和镜像模型
根据实际问题,确定需要求解的原问 题和对应的镜像模型。
建立等效关系
根据镜像法的数学模型,建立镜像电 荷或镜像边界与原电荷或原边界之间 的等效关系。
求解等效问题
利用等效关系,求解等效的静电场或 静磁场问题。
计算结果分析
对计算结果进行分析,得出原问题的 解。
镜像法的计算实例
电动力学镜像法课件
目录
Contents
• 镜像法简介 • 电动力学基础 • 镜像法在电动力学中的应用 • 镜像法的计算方法 • 镜像法的优缺点分析 • 镜像法的发展前景

电动力学镜像法ppt课件

电动力学镜像法ppt课件

性,电势也应具有球对称性。当考虑较
r
远处场时,导体球可 视为点电荷。
2 0 (r a)
r 0
r3
(r 0) r , 0
B0 A
r
A
n r r 2
Q
0
r
dS
ra
0
A dS 0 A4 a 2
a2
a2
A Q
4 0
Q 4 0r
E
Q
(r a)
r Qr
2、导体内部电场为零;
3、导体表面上电场必沿法线方向,因此导体表面为 等势面,整个导体的电势相等。
设导体表面所带电荷面密度为σ,设它外面的介质电容率
为ε,导体表面的边界条件为
|s 常数
n s
Q dS dS
S
S n
En
三.静电场的能量
仅讨论均匀介质
1. 一般方程: 能量密度
本节主要内容
一、静电场的标势 二、静电势的微分方程和边值关系 三.静电场的能量
一、静电场的标势
在静止情况下,电场与磁场无关,
麦氏方程组的电场ห้องสมุดไป่ตู้分为
E 0
E
D 静电场的无旋性是它的一个重要特
性,由于无旋性,我们可以引入一
这两方程连同介质 的电磁 性质方程 D 是E 解决静
个标势来描述静电场,和力学中用 势函数描述保守力场的方法一样。
把单位正电荷由P1点移至 P2点,电场E对它所作的
功为
P2 E dl P1
这功定义为P1点和P2点的
电势差。若电场对
电荷做了正功,则电势
下降。由此
(P2 )
(P1 )
P2 P1
E
dl

镜像法与电轴法(静电场)

镜像法与电轴法(静电场)
置于电轴上的等效线电荷,来代替圆柱 导体面上分布电荷,从而求得电场的方法, 称为电轴法。
两根平行的带等值异号电荷的等半径输电线的电场
解:采用电轴法
建立坐标系,确定电轴位置
b h2 a2
圆柱导线间电场和电位
EP
2π0
(1
1
e1
1
2
e2
)
p
2π0
ln
2 1
两根平行的带等值异号电荷的等半径输电线的电场
c) 场中任一点电位为
P
U0 2lnb(ha)
ln
2 1
b(ha)
U0
20 2lnb(ha)
b(ha)
分裂导线
在高压电力传输中,为了降低电晕 损耗,减弱对通信的干扰,常采用分裂
导线的方法,即将每一根导线分成几股 排列成圆柱形表面,以减弱传输线周围 的电场。(原理P50)
镜像法(电轴法)小结
2d
d
2
)2
a
2 1
已知一对半径为a,相距为d的长直圆柱导体传输线 之间电压为U0,试求圆柱导体间电位的分布。
a)确定电轴的位置
b2h2a2
b
d2h
(d)2a2 2
b) 场中任一点电位为
ln 2 2π0 1
由 U0AB解出
b (h a ) b (h a ) U 02 π0ln b (h a ) 2 π0ln b (h a )
谢谢大家聆听!!!
35
镜像法(电轴法)的理论基础是静电场唯一 性定理;
镜像法(电轴法)的实质是用虚设的镜像电 荷(电轴)替代未知电荷的分布,使计算场域为 无限大均匀介质;
镜像法(电轴法)的关键是确定镜像电荷 (电轴)的个数(根数),大小及位置;

电磁场 镜像法与电轴法(完美解析)

电磁场 镜像法与电轴法(完美解析)


r

球面
0
设镜像电荷 q '如图,球面电位
q q' p 0 4 π 0 r1 4 π 0 r2
r1 d 2 R 2 2 Rd cos
2
图1.7.3 点电荷对接地导体球的镜像
r2 b 2 R 2 2 Rb cos
2
返 回
上 页
下 页
第 一 章
qh p=Dn 0 E 2 π(h 2 x 2 ) 3 / 2
地面上感应电荷的总量为 qh S p dS 0 2π(h2 x 2 )3/ 2 2πxdx
q
图1.7.2 地面电荷分布
返 回 上 页 下 页
第 一 章
静 电 场
2. 球面导体的镜像 点电荷位于接地导体球外的边值问题 (除q点外的空间) 2 0
q q' q' ' sin sin sin 2 2 2 4πr 4πr 4πr
2 2 1 2 q 解得 q ' q 和 q' ' 1 2 返 回 1 2
上 页
下 页
第 一 章
静 电 场
思考
1 中的电场由 q 与 q’ 共同产生,q’
等效替代极化电荷的影响。
球面电位
q = 4 π 0 d
图1.7.7 点电荷位于不接地导体 球附近的场图
返 回
上 页
下 页
第 一 章
静 电 场
3. 不同介质分界面的镜像
图1.7.9 点电荷对无限大介质分界面的镜像
根据惟一性定理
E1t E2 t
D1n D2n
q q' q' ' cos cos cos 2 2 2 4π1r 4π1r 4π 2 r

电磁场与电磁波课件之镜像法要点只是课件

电磁场与电磁波课件之镜像法要点只是课件

三. 导体圆柱面的镜像
1. 线电荷对导体圆柱面的镜像
一根线电荷密度为 l的无限长线电荷位于半径为 a的无限长接地 导体圆柱面外,且与圆柱轴线平行,线电荷到轴线的距离为 d。
a o

d
l
x
为使导体圆柱面成为电位为零的等位面,镜像电荷应是位于圆柱 面内部且与轴线平行的无限长线电荷。
设镜像线电荷密度为 l,由于对称性其必定位于线电荷 l 与圆柱
球面上的感应电荷面密度为
ρS
ε0
n
ra 4a(a2qd (d222a a2)dcoθ)s3/2
导体球面上的总感应电荷为 qin S ρSdSq
这种情况下,镜像电荷并不等于感应电荷。
2. 点电荷对不接地导体球面的镜像 设点电荷 q位于一个半径为 a的不
接地导体球外,与球心距离为 d。
注意到:①导体球面是一个电位不 为零的等位②面由;于导体球未接地,在点电 荷的作用下,球面上总的感应电荷为零。
E
eR
ρl 2πε0R
O
z l (0,0,3)
2π30 ε0 2 12 9 0 32(e x
222 32e z
3) O 2232 (0,0,3)
l
30109 2πε013(ex2ez3)
x
R y P(2,5,0)
R
x
E
eR
ρl 2πε0R
3 0 1 9 0 2 3
2π0ε2232(ex
四. 介质平面的镜像 含有无限大介质分界平面的问题,也可采用镜像法求解。
1. 点电荷对电介质分界平面的镜像
q q
在计算电介质1中的电位时,用
置于介质2中的镜像电荷 来q 代替
分界面上的极化电荷,并把整个

镜像法电轴法电容部分电容静电能量与力副本.pptx

镜像法电轴法电容部分电容静电能量与力副本.pptx

上页 下页
P
1
2
20
ln
2 1
C
以 y 轴为参考电位
P
20
ln
2 1
20
ln
( x b)2 y2 ( x b)2 y2
令:P 常 数,等位线方程
( x b)2 y2 K 2 ( x b)2 y2
( x K 2 1b)2 y2 ( 2bK )2
K2 1
K2 1
第26页/共83页
2 0
思路
边值问题
S U0
导体球外(除q点)空间:
S
D dS
Q
D dS q
S
S U0
+Q
Q
4R
Q 4πεRU0 Q q
第13页/共83页
上页 下页
讨论 4.点电荷q 在不带电的金属球壳内的镜像。
思路
边值问题
导体球内(除q点)空间:
2 0
C
S
S D dS q
q
-q
q S 4R
3. 部分(分布)电容(Distributed Capacitance)
对于多导体系统,每两个导体上的电压受到所有导体上 电荷的影响,这时系统中导体电荷与导体电压的关系不能 仅用一个电容来表示而需引入部分电容的概念。
三导体静电独立系统
第42页/共83页
上页 下页
讨论前提
多导体系统
电位系数
静电独立系统 线性系统
q
41r 2
cos
q'
41r 2
cosBiblioteka q''42r 2
cos
q
4r 2
sin
q'

电磁场 镜像法PPT课件

电磁场 镜像法PPT课件
面上,剩余传到无穷远。
Q 40
[
1
R2 a2 2Ra cos
(Ra
/
R0
)2
1 R02
2Ra
cos
]
(R
R0
)
0
(R R0)
② 球面感应电荷分布

0
RR R0Fra bibliotekQ4R0a
1
R02 a2
(1 2
R02 a2
)
3
R0 a
cos
2
Q 4R0
(a2 R02 )
a2
R02
2R0a cos
应用举例
P
1. 接地无限大平面导体板附近有一点电荷,
r′
求空间电势。
r
解:根据唯一性定理左半空间 0
Q
z
右半空间,Q在(0,0,a)点,
Q/
a
电势满足泊松方程。
边界上 0 z0
从物理问题的对称性和边界条件考虑,设想在导体板左与电荷Q对 称的位置上放一个假想电荷Q’ ,然后把板抽去。 这样,没有改变 所考虑空间的电荷分布(即没有改变电势服从的泊松方程)
看作原电荷与
r’
镜象电荷共同
激发的电场。
场点P的电势
Q’
P 1 Q Q
4 0 r r
可以看出,引入象电荷取代感应电荷,的确是
一种求解泊松方程的简洁方法。
镜像法所解决的问题中最常见的是导体表面作为边
界的情况,但也可用于绝缘介质分界面的场问题。
例2 设电容率分别为ε1和ε2的两种均匀介
质,以无限大平面为界。在介质1中
这里要注意几点:
a) 唯一性定理要求所求电势必须满足原有电荷分布所满足的 Poisson‘s equation or Laplace’s equation,即所研究空间的泊松方 程不能被改变(即自由点电荷位置、大小不能变)。因此,做替 代时,假想电荷必须放在所求区域之外。在唯一性定理保证下, 采用试探解,只要保证解满足泊松方程及边界条件即是正确解。

镜像法与电轴法

镜像法与电轴法

电工基础教研室金钊
21
二、电轴法
2. 电轴法 例4. 自由空间,相同半径的平行导体圆柱的情况。
导体圆柱外部
y
0
2
导体圆柱表面
R0

o
R0
0 l n dl
x
圆柱面 C
2016/10/29 电工基础教研室金钊
d
d
22
二、电轴法
2. 电轴法 例4. 自由空间,相同半径的平行导体圆柱的情况。
a b h
2 2
2
y
R0
b
d
R0
b
o
b
d
R0
x
R b d
2 0 2
2016/10/29
2
d
电工基础教研室金钊
23
二、电轴法
2. 电轴法 例5. 自由空间,不同半径的平行导体圆柱的情况。
a b h
2 2
2
y
R b h
2 1 2 2 2 2
2 1 2 2
P( x, y, z)
I 0 除点 (0,0, d ) 外 I r a 0
2
I r 0
球内(r <a):
a o
q
(0,0, d )
z
II 0
2
II r a 0
II r 0
2016/10/29 电工基础教研室金钊 6
一、镜像法
例2. 自由空间,接地导体球与点电荷。
r1 x 2 y 2 ( z d )2 r2 x y ( z d )
2 2 2
P( x, y, z)
1 12

镜像法与电轴法

镜像法与电轴法

r 0
p r2 +q' R
o
r r1 q
任一点电位及电场强度为:
接地球壳,点电荷在球壳 内部,如何布置镜像电荷
b -q' d


1 q q q ( ) 4π 0 r r1 r2 q 1 R R ( ) 4π 0 r dr1 dr2
E
q 1 R R ( er 2 er1 2 er2 ) 4π 0 r 2 dr1 dr2
s
0
dS q n
+q
Q1:若板厚度变化, 求解区域场的解答 是否发生变化?为 什么?
+q
vacuum
1. Where to put the image charges? 2. How? (location and amplitude)
conductor
+q
上半区域场边值问题
Q2:若板中存在空腔, 求解区域场解答是 否发生变化?为什 么?
5V
正电位区域
-3 V
负电位区域
Double check the BVP 1. Equation? 2. Boundary?
等位线与电力线分布图
已知两根不同半径,相互平行,轴线距离为d 的带 电长直圆柱导体。试决定电轴位置。
试确定图示偏心电缆的电轴位置
2 b 2 h12 a1 2 2 2 b h2 a 2 d h h 1 2 确定b, h1 , h2
两导线系统的等电 位线是圆心在x轴 上的一系列圆
对称轴 = 0
试求图示两带电长直平行圆柱导体传输线的电场及电位分布 建立坐标系,确定电轴位置 解:
b h2 a2
圆柱导线间电场和电位

镜像法电轴法电容部分电容静电能量与力副本

镜像法电轴法电容部分电容静电能量与力副本

P
1
2
20
ln
2 1
C
以 y 轴为参考电位
P
20
ln
2 1
20
ln
( x b)2 y2 ( x b)2 y2
令:P 常 数,等位线方程
( x b)2 y2 K 2 ( x b)2 y2
( x K 2 1b)2 y2 ( 2bK )2
S
S U0
+Q
Q
4R
Q 4πεRU0 Q q
上页 下页
讨论 4.点电荷q 在不带电的金属球壳内的镜像。
思路 边值问题
导体球内(除q点)空间:
2SC0
S D dS q
q
-q
q S 4R
b d
b
R2 d
q
R d
q
上页 下页
讨论 5.求图示问题的镜q 像电荷的位置和大小。
思路 边值问题
球外任一点P 的电位与电场为
球外的电场计算
p
q
4
球外的电场分布
EP
q
40r12
er1
qR
40dr22
er2
上页 下页
讨论 1.点电荷q 对不接地金属球的镜像。
思路 边值问题
导体球外(除q点)空间:
2 0
S C
D dS 0
球S
D dS q
S
上页 下页
导体球零电位
E E E
垂直地面的电场分量
E
2
q cos 40r 2
qh
20 (h2
x2 )3/2
地面电荷分布
p=Dn
0 E
2
qh (h2 x2 )3/2

镜像法(课堂PPT)

镜像法(课堂PPT)

第3章 静电场及其边值问题的解法
1
d1
q d2
2
电位函数
q (1111) 4π R R1 R2 R3
q1
d1
d2 R1
d1 q R d2
d2 R3 q3 d1
R2 d2
d1
q2
镜像电荷q1=-q,位于(-d1, d2 )
镜像电荷q2=-q,位于( d1, -d2 ) 镜像电荷q3 = q , 位于(-d1, -d2 )
q q 0 4 R0
得 q q
于 是 4 q R 1 , R 1 4 q x 2 y 2 1 ( z h ) 2x 2 y 2 1 ( z h ) 2
可见,引入镜像电荷 q q 后保证了边界条件不变;镜像点电荷位于z<0的空间,未改变所 求空间的电荷分布,因而在z>0的空间,电位仍然满足原有的方程。由惟一性定理知结果正确。
5. 确定镜像电荷的两条原则 镜像电荷必须位于所求解的场区域以外的空间中;
镜像电荷的个数、位置及电荷量的大小以满足所求解的场 区域 的边界条件来确定;
.
13
电磁场
第3章 静电场及其边值问题的解法
二、 接地导体平面的镜像
1. 点电荷对无限大接地导体平面的镜像 2. 线电荷对无限大接地导体平面的镜像 3. 点电荷对半无限大接地导体角域 (导体劈) 的镜像
域边界以外虚设的较简单的等效电荷来等效替代场域边界上
未知的较为复杂的电荷分布的作用,且保持原有边界上边界 条件不变,则根据惟一性定理,待求场域空间电场可由原来
的电荷和所有等效电荷产生的电场叠加得到。
从而将原含该边界的非均匀媒质空间变换成无限大单一均匀 媒质的空间,使分析计算过程得以明显简化;

电磁场 镜像法ppt课件

电磁场 镜像法ppt课件
这里要注意几点: a) 唯一性定理要求所求电势必须满足原有电荷分布所满足的
Poisson‘s equation or Laplace’s equation,即所研究空间的泊松方 程不能被改变(即自由点电荷位置、大小不能变)。因此,做替 代时,假想电荷必须放在所求区域之外。在唯一性定理保证下, 采用试探解,只要保证解满足泊松方程及边界条件即是正确解。
(b)
.
平面与圆柱形边界的组合作为边界
λ λ λ
(a)
(b)
(c)
导体上的感应电荷密度为:
n (1)镜像电荷与导体上的感应电荷不一定相等。
(2)由镜像法求出电势分布以后,由上式可求感应
电荷
Q dS
S
n .
电偶极子的镜像
p
p
(a)
(b)
p
(c)
p
op
o p
(d)
(e)
(f)
注意:镜像电荷的位置由边界形状决定,与电量 及界面性质无关。
.
应用举例
P
1. 接地无限大平面导体板附近有一点电荷, 求空间电势。
解:根据唯一性定理左半空间 0
r′
r
Q
z
右半空间,Q在(0,0,a)点,
Q/
a
电势满足泊松方程。
边界上 0 z0
从物理问题的对称性和边界条件考虑,设想在导体板左与电荷Q对 称的位置上放一个假想电荷Q’ ,然后把板抽去。 这样,没有改变 所考虑空间的电荷分布(即没有改变电势服从的泊松方程)
讨论:(a)导体面上感应电荷分布
0
z
z0
2 (x2
Qa y2 a2 )3/2
.
Q dS Qa 2rdr Q Q

电磁场 镜像法及电轴法

电磁场 镜像法及电轴法
2 2 2
思考:导体表面的电荷分布 密度 ? I I 0 0
n
z 0
z P( x, y, z )
(0,0, d ) q
z
z 0
qd 2 2 2 3/2 2( x y d )
2018/11/12 电工基础教研室金钊 5
一、镜像法
例2. 自由空间,接地导体球与点电荷。 球外(r >a):
P( x, y, z )
I 0 除点 (0,0, d ) 外 I r a 0
2
I r 0
球内(r <a):
a o
q
(0,0, d )
z
II 0
2
II r a 0
II r 0
2018/11/12 电工基础教研室金钊 6
一、镜像法
例2. 自由空间,接地导体球与点电荷。
z
I r a 0
2018/11/12
b a2 / d q ( a / d ) q
电工基础教研室金钊 7
一、镜像法
例3. 点电荷对无限大介质分界面。 区域I ( z 0) :
1 2
o
q (0,0, d )
1 0 除点 (0,0, d ) 外
2
1 r 0
电工基础教研室金钊
1 2 q q 1 2 2 2 q q 1 2
11
二、电轴法
2018/11/12
电工基础教研室金钊
12
二、电轴法
1. 两传输线的电场
y
P( x, y, z )
2

(b, 0, 0)
1

o
(b, 0, 0)

《电磁场镜像法》课件

《电磁场镜像法》课件

2 电场的定义
详细说明电场的定义和相关概念。
3 静电的产生与分布
分析静电的产生原因以及在空间中的分布规律。
镜像法的应用
1
镜像法在电势问题中的应用
探索镜像法在解决电势问题中的实际应用。

2
镜像法在电场问题中的应用
展示镜像法在解决电场问题中的应用案例。
平面、球面和柱体的镜像法
平面的镜像法
介绍平面镜像法的基本原理和 实际应用场景。
《电磁场镜像法》PPT课 件
欢迎来到《电磁场镜像法》PPT课件!本课程将深入探讨电磁场镜像法的应用, 带你领略这一令人惊叹的物理学原理。
引言
电磁场镜像法的概述
介绍电磁场镜像法的基本原理和应用领域。
直线电荷和平面的电场
探讨直线电荷和平面上电场的特性。
电场与电势
1 电势能
解释电势能在电磁场中的作用和意义。
总结
1 电磁场镜像法的优缺点
总结电磁场镜像法的优点和局限性。
2 电磁场镜像法的应用前景
展望电磁场镜像法在未来的科学研究和工程应用中的发展前景。
参考文献
在此提供了一些相关的参考文献,供进一步学习和了解电磁场镜像法的理论基础和实际应用。
球面的镜像法
探讨球面镜像法在电磁场问题 中的具体应用。
柱体的镜像法
解析柱体镜像法的原理及其工 程实践。
实例分析
平面直流电荷的电场问题
研究平面直流电荷的电场特性以 及相关问题解决方法。
球面电荷的电势问题
分析球面电荷的电势分布及其带 来的电场效应。
柱体电荷的电场问题
了解柱体电荷在电场中产生的特 殊现象和应用。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电磁场问题求解
• 电磁场问题可以分为电磁场分析(正问题)、逆问题 (含优化设计问题)和电磁场工程三个部分。
➢求解电磁场问题的方法,归纳起来可分为三大类,分别 是解析法、数值法和半解析数值法。
解析法包括积分法、分量变量法、镜像法、电轴法等 ; 数值计算方法包括有限元法(FEM)、时域有限差分法 (FDTD)、矩量法(MOM)和边界元法等 ; 半解析数值法是解析法和数值法的综合。
联立求解
q2 (b2 R2 ) q'2 (d 2 R2 ) 0 q'2 d q2b 0
得到
b R2 d
镜像电荷位置
q' b q R q 镜像电荷大小 dd
图1.7.4 球外的电场计算
球外任一点 P 的电位与电场为
p
q
4π 0r1
q'
4π 0r2
q
qR
EP 4π 0r12 er1 4π 0dr22 er2
1.7 镜像法与电轴法
1.7.1 镜像法
1.接地无限大导体平面上方点电荷的电场
2 0 0
s D dS q
(除 q 所在点外的区域) (导板及无穷远处)
(S 为包围 q 的闭合面)
2.正负点电荷在上半空间产生的电场
2 0
除 q 所在点外的区域
q q 0 4 0r 4 0r
中间对称面处
s D dS q
设镜像电荷 q'如图,球面电位
p
q
4π 0r1
q'
4π 0r2
0
图1.7.3 点电荷对接地导体球的镜像
r12 d 2 R2 2Rd cos r22 b2 R2 2Rb cos
将 r1, r2 代入方程 qr2 q 'r1 0,得
[q 2 (b2 R 2 ) q'2 (d 2 R 2 )] 2R(q'2 d q 2b) cos 0
(S 为包围q 的闭合面)
➢ 可以用电荷-q作为+q的镜像,代替平面导体的感应电荷作用。
镜像法:用虚设的电荷分布等效替代媒质分界面上复杂电荷分布, 虚设电荷的个数、大小与位置使场的解答满足唯一性定理。
例1.7.1 试求空气中点电荷 q 在地面引起的感应电荷分布。
解:设点镜像电荷为 -q
E E E (方向指向地面)
长直平行双传输线
S D dS , 电荷分布不均
1. 理想两根细导线产生的电位
1
Q 1
d 2π 0
2π 0
ln
1

C1
E0
2 0
2
2π 0
ln
2
C2
P
1
2
2π 0
ln
2 1
C
以 y 轴为参考电位, C=0, 则 理想两根带电细导线
P
ln 2 2π0 1
2π 0
ln
(x b)2 y2 (x b)2 y2
✓ 尝试寻找(b、a、h)数值之间的关系:
a2
b 2
(
2bK
K
2
) 1
2
b 2
(
K K
2 2
1 b)2 1
h2
➢ 等效线电荷的位置为:
b h2 a2
实际圆柱导体传输线
根据 E ,得到 Ex 和 Ey 分量
E 线方程
dy E y dx Ex
x2 ( y K1 )2 b2 K12
2
3. 不同介质分界面的镜像
根据惟一性定理可得电位边值问题,即边界条件:
E1t E2 t
q
4π1r 2
cos
q'
4π1r 2
cos
q''
4π 2r 2
cos
D1n D2n
q 4πr 2
sin
q' 4πr 2
sin
q'' 4πr 2
sin
解得 q' 1 2 q 和 q'' 2 2 q
1 2
镜像电荷放在当前求解的场域外。 镜像电荷等于负的感应电荷总量。
图1.7.5 球外的电场分布
思考:不接地金属球附近放置点电荷q的电场分布。
边值问题:
2 0(除q点外的空间)
const S
SD dS 0
思路:球面等位( q'位于球心)
通量为零( q', - q'大小相等)
不接地金属球的镜像
点电荷位于不接地导体 球附近的场图
4
平行传输线附近的电位和电场
电位云势图 电场云势图
已知平行传输线端压为U0, 试求空间电位分布。
解: 确定电轴的位置
b2 h2 a2 d 2h
b (d )2 a2 2
设电轴线电荷 ,任一点电位
ln 2 2π 0 1
U0
2π 0
ln
b b
(h (h
a) a)
ln
b b
1.4 静电场定解问题(边值问题)
微 环路定律 E 0
泊松方程

E

程 高斯定律 D
2
静 电

DE
外边界条件
(+
)
n S
f3(s)
场 定 解
界 条
1= 2
问 题

内分界条件
1
1
n
2
2
n
➢所有静电场问题的求解都可归结为在一定条件下寻求泊松方程
或拉普拉斯方程的解的过程。(解二阶偏微分方程)
1 2
1.7.2 电轴法(Electric Axis Method)
用置于电轴上的等效线电荷,来代替圆柱导体面上分布电荷, 从而求得电场的方法,称为电轴法。
分析实际长直平行双传输线附近的电场 ?
边值问题 2 0 (导线以外的空间)
导体A const
S D dS , 电荷分布不均匀
导体B const
(h (h
a)
a)
所以
2 ln
U0 b (h a)
ln
2 1
b (h a)
图1.7.19 电压为U0的传输线
例1.7.4 试决定图示不同半径平行长直导线的电轴位置。
图1.7.17 不同半径传输线的电轴位置
解:求得h1和h2 ,就可以确定等效电轴位置
b2
b
2
h12 h22
a12 a22
E
2
q cos 4π0r 2
qh
2π 0 (h2 x2 )3/ 2
p=Dn
0E
qh 2π(h2 x2)3/2
图1.7.2 地面电荷分布
地面上感应电荷的总量为
S
pdS
qh 2πxdx 0 2π(h2 x2 )3/2
q
2. 球面导体的镜像 点电荷位于接地导体球外的边值问题
2 0(除q点外的空间) r 球面 0
令: P
const,等位线方程
(x b)2 y2 (x b)2 y2
K2
整理后,等位线方程
(x
K K
2 2
1 1
b)2
y2
(
2bK K2
) 1
2
圆心坐标
h, 0
h
K K
2 2
1b 1
圆半径
a
2bK K 2 1
当K取不同值时,得到不同半径的偏心圆族。理想细导线的等位线
等位线圆族中,必能找到与实际圆柱导体表面重合的圆。
d h1 h2
h1
d
2
a12 2d
a22
h2
d2
a12 2d
a22
镜像法(电轴法)小结
1.镜像法(电轴法)的理论基础是: 静电场惟一性定理;
相关文档
最新文档