匹配滤波
匹配滤波——精选推荐
1.5.2. 匹配滤波器最佳接收机还可以有另外的一种结构,即匹配滤波器。
为了说明匹配滤波器的基本原理,我们从这样一个直观的分析入手。
我们知道,通信系统的误码率与输出的信噪比有关,接收端输出信噪比越大,则系统的误码率越小。
因此,如果在每次判决前,输出的信噪比都是最大的,则该系统一定是误码率最小的系统。
遵从这种考虑原则,我们可以得到匹配滤波器的概念。
接收机通过匹配滤波器使输出信噪比最大。
一、匹配滤波器原理假设线性滤波器的输入端是信号与噪声的叠加)()()(t n t x t s +=,且假设噪声)(t n 是白噪声,其功率谱密度2)(0N f P n =,信号的频谱为)(f X 。
问题:设计一个滤波器使输出端的信噪比在某时刻0t 达到最大。
假设该滤波器的系统响应函数为)(f H ,系统冲击响应为)(t h ,则 输出信号)()()(0t n t s t y O += 其中,⎰∞∞--=τττd t h x t s )()()(0,)()()(f H f X f S o =⎰∞∞-=df e f H f X t s ftj o π2)()()(所以在0t 时刻,信号的功率为200|)(|t s 输出噪声的功率谱密度20|)(|2)(f H N f P on =输出噪声平均功率为⎰∞∞-=df f H N Pn 20|)(|2所以0t 时刻输出的信噪比为:⎰⎰∞∞-∞∞-==dff H N df ef H f X Pnt s r ft j 20222000|)(|2|)()(||)(|0π根据Schwarts 不等式,⎰⎰⎰∞∞-∞∞-∞∞-≤df f Y dff X df f Y f X 222|)(||)(||)()(|02022|)(|N E N df f X r s =≤⎰∞∞-当02*)()(ft j e f KX f H π-=时等式成立。
因此,如果设计一个滤波器,它的系统响应函数为 02*)()(ft j ef KX f H π-=时,滤波器输出信噪比最大。
匹配滤波检测概率matlab仿真
匹配滤波检测概率matlab仿真
匹配滤波(Matched Filter)是一种常见的信号处理技术,用
于检测和定位特定信号在噪声背景中的存在。
在MATLAB中进行匹配
滤波检测概率的仿真可以通过以下步骤实现:
1. 生成信号和噪声模型,首先,你需要定义你要检测的信号模
型以及噪声模型。
这可能涉及到信号的波特性、频率特征等,以及
噪声的统计特性。
2. 生成匹配滤波器,根据你的信号模型,设计匹配滤波器。
在MATLAB中,你可以使用fir1函数设计滤波器,也可以使用
designfilt函数设计滤波器。
3. 生成接收信号,利用你的信号模型和噪声模型,生成接收信号。
这个接收信号是信号和噪声的叠加。
4. 进行匹配滤波处理,利用生成的匹配滤波器,对接收信号进
行滤波处理。
在MATLAB中,你可以使用filter函数进行滤波处理。
5. 计算检测概率,根据滤波后的信号,你可以利用统计方法计
算检测概率。
这可能涉及到信噪比的计算、阈值的选择等。
6. 仿真结果分析,最后,对仿真结果进行分析,包括检测概率的性能评估、信噪比对检测性能的影响等。
在进行MATLAB仿真时,需要注意信号模型、滤波器设计、信号生成和性能评估等多个方面。
通过综合考虑这些因素,你可以完成匹配滤波检测概率的仿真,并得到全面的结果。
希望这个回答能够帮助到你。
匹配滤波器的输出信号s0(t)
0
t
15
匹配滤波器的输出信号s0(t)
S(u) a
0
u
ca h(t-u)
t- 0 t
u
ca
0
t- cE t
u
0
2
tቤተ መጻሕፍቲ ባይዱ
16
二、单个射频脉冲的匹配滤波器
17
第五章 匹配滤波器
(1943年由伍德沃德提出)
主要内容: 1.最大信噪比准则 2.匹配滤波器 3.匹配滤波器的性质 4.应用举例
1
§5.1最大信噪比准则
设计一滤波器H( ), 使其输 出信号y(t)在某一时刻t0的功率 信噪比d达到最大。
X(t)= s(t)+n(t)
线性滤波 器H( )
Y(t)= s0(t)+n0(t)
一、单个视频脉冲的匹配滤波器
a s(t)
输入信号s(t)为:
0
t
输入信号的频谱为:
13
匹配滤波器的传输函数为(t0= ):
H(w)
1/ 0
W
14
匹配滤波器的组成如下:
S(t)
视放(ca)
积分器 S1(t)(1/j )
S2(t)
延时( )
S0(t) —
S3(t)
匹配滤波器的脉冲响应为:
h(t) ca
2
式中:s0(t0)为输出信号s0(t) 的最大值, n(t)为白噪声, 其功率 谱 Gn( )=N0/2 。
3
§5.2匹配滤波器的传输函数H( ) 根据帕塞瓦尔(Parseval)定理, 得
4
令: 得:
5
即:
式中: E为输入信号s(t)的能量,当 ….(1)
时, 等号成立, 滤波器的输出信噪比 d达到最大值2E/N0,(1)式称为匹配滤
16第十六讲匹配滤波
这种滤波器的传输函数除相乘因子Ke-jωt0外,与信号频谱 的复共轭相一致,所以称该滤波器为匹配滤波器。
从匹配滤波器传输函数H(ω)所满足的条件,我们也可以 得到匹配滤波器的单位冲激响应h(t):
h(t) 1 H ()e jt d 1 KS ()e jt0 e jtd
2
2
1
n(t)
H( )
y(t) t=t0
(
S N
)o
判决
输出
当选择的滤波器传输特性使输出信噪比达到最大值时,该滤 波器就称为输出信噪比最大的最佳线性滤波器。
设输出信噪比最大的最佳线性滤波器的传输函数为H(ω), 滤波 器输入信号与噪声的合成波为
r(t) s(t) n(t)
式中, s(t)为输入数字信号, 其频谱函数为S(ω)。 n(t)为高斯
比较器是在t=T时刻进行比较的。如果h1(t)支路的样 值大于h2(t)支路的样值,判为s1(t),否则判为s2(t)
S() s(t)e jtdt 1/ j 1 e jT /2
匹配滤波器的传输函数为
H (w) S (w)e jwt0
匹配滤波器的单位冲激响应为
1
j Tw
(e 2
jw
2
KS ()e d j(t0 t) K
2
s(
)e
j
d
e
j
(
t0
t
)
d
K
1
2
s(
)e
j d
e
d j (t0 t )
K
1
2
e
j
(
t0
t
)
d
s(
)d
K
s( ) (
t0
信号检测与估计 第二章 匹配滤波
代表一个雷达回波信号,α及τ 是未知的参量或随机变量
S 1 ( ) a S ( ) e
j ( t1 )
j
caS ( )e
aH ( )e
j t1 ( t0 )
t1与to在输入信号结束后可以任选,如果取t1 = to+τ
H 1 ( ) a H ( )
2 j ( t t0 )
j t
d d
j arg H ( ) arg S ( ) t
e
d
arg H ( )
补偿了输入信号的
arg S ( )
§2.3
匹配滤波器
滤波器内部和外部产生的随机噪声(可等效为系统输入端 的噪声), 其功率谱宽度往往大于系统的通频带。
H ( ) Gn ( ) d
2
S ( )
2
Gn ( )d来自A ( ) H ) G n ( ) e (
j t 0
cB ( ) c
*
S ( )
*
G n ( )
H ) c (
S ( )
*
G n ( )
e
j t 0
输出波形
最大输出信噪比
*
G n ( )
e
j t 0
arg H ( ) arg S ( ) t 0
第一项与信号相频特性反相 第二项与频率成线性关系
s0 (t ) 1 2 1 2 1 2
H )()e ( S H )() ( S e S ( ) Gn ( )
取t0=(L-1)T+τ,令
H 1 ) cS1 ( )e (
匹配滤波器的应用
匹配滤波器的应用匹配滤波器是一种用于信号处理和图像处理领域的重要工具,其原理是通过比较输入信号与预先存储的参考信号,从而实现信号的匹配和识别。
匹配滤波器广泛应用于目标检测、目标跟踪、通信系统、雷达系统以及生物医学图像处理等领域。
在目标检测方面,匹配滤波器被广泛应用于监控系统和安全领域。
通过存储目标的特征模板或特征样本,匹配滤波器可以快速准确地检测目标的存在并进行跟踪。
在视频监控系统中,匹配滤波器可以帮助系统准确识别特定目标,提高安全性和监控效率。
此外,在军事领域,匹配滤波器还可以用于目标识别和跟踪,为军事作战提供有力支持。
除了目标检测和跟踪,在通信系统中,匹配滤波器也起着至关重要的作用。
匹配滤波器可以帮助接收端对发送端发送的信号进行匹配,从而提高信号的接收质量和误码率性能。
在无线通信系统中,匹配滤波器可以通过匹配信号的波形和频谱特征,有效提高信号传输的稳定性和可靠性,确保数据传输的准确性和完整性。
在雷达系统中,匹配滤波器被广泛应用于目标检测和跟踪任务。
通过匹配雷达接收到的信号与目标的特征,可以准确确定目标的位置、速度和轨迹信息。
匹配滤波器可以有效地抑制噪声干扰,提高雷达系统的工作效率和目标识别准确性,广泛应用于军事、航空航天等领域。
此外,匹配滤波器还在生物医学图像处理中发挥着重要作用。
通过匹配滤波器可以对生物医学图像进行特征提取、边缘检测和目标识别,帮助医生进行疾病诊断和治疗。
匹配滤波器可以帮助提高医学图像的清晰度和对比度,辅助医生准确判断病变和异常情况,促进疾病的早期诊断和治疗。
综上所述,匹配滤波器作为一种重要的信号处理工具,在各个领域都发挥着重要作用。
它不仅可以帮助实现目标检测、通信传输等功能,还可以辅助生物医学图像处理,为人类社会的发展和进步提供有力支持。
随着技术的不断进步和发展,匹配滤波器在更多领域将有更广泛的应用前景。
1。
16第十六讲匹配滤波
N个开关函数S1(t)、S 2 (t)、 SN (t)轮流接通
每一开关重复频率0
2 T0
,
宽度 0
T0
/
N
开关S猝熄N个电容C所存储的能量
当输入中心频率s 0时为高Q窄带滤波器 即s的信号顺利通过, 噪声被有效抑制
第27页,共53页。
四、声表面波匹配滤波器:
第28页,共53页。
长度相同的n 1条叉指换能器频率等性H1()
10)中等号成立的条件为
H () KS ()e jt0
式中,K为常数,通常可选择为K=1。S*(ω)是输入信号频谱函数S(ω)
的复共轭。这就是我们所要求的最佳线性滤波器的传输函数,该滤波器在 给定时刻t0能获得最大输出信噪比。
第9页,共53页。
这种滤波器的传输函数除相乘因子Ke-jωt0外,与信号频谱的复共轭相 一致,所以称该滤波器为匹配滤波器。
第3页,共53页。
解调器中抽样判决以前各部分电路可以用一个线性滤波器来等效.
由数字信号的判决原理我们知道,抽样判决器输出数据正确与否, 与滤波器输出信号波形和发送信号波形之间的相似程度无关,也即与 滤波器输出信号波形的失真程度无关, 而只取决于抽样时刻信号的瞬时
功率与噪声平均功率之比, 即信噪比。信噪比越大,错误判决的概 率就越小;反之,信噪比越小,错误判决概率就越大。
从匹配滤波器传输函数H(ω)所满足的条件,我们也可以得到 匹配滤波器的单位冲激响应h(t):
h(t) 1 H ()e jtd 1 KS ()e jt0 e jtd
2
2
1
2
KS ()e j(t0 t)d K
2
s
(
)e
j
d
成形滤波与匹配滤波
性能差异
成形滤波
主要改善信号的信噪比和抗干扰能力,对信号进行预处理以降低噪声和干扰的影响。
匹配滤波
最大化输出信噪比,提高信号检测的灵敏度和可靠性,尤其是在低信噪比环境下效果显著。
应用场景差异
成形滤波
广泛应用于通信、雷达、声呐、图像 处理等领域,主要用于改善信号质量 和抗干扰。
匹配滤波
在雷达、声呐、通信、振动分析等领 域有广泛应用,主要用于信号检测和 识别,尤其是在低信噪比环境下。
02
匹配滤波器
定义
匹配滤波器是一种特殊的线性滤波器,其输出信号的功率谱密度与输入信 号的功率谱密度成正比。
匹配滤波器的输出信号是输入信号的自相关函数。
匹配滤波器在信号处理中有着广泛的应用,特别是在雷达、声呐、通信等 领域。
种类
线性匹配滤波器
线性匹配滤波器是最简单的匹配滤波器,其输出信号 是输入信号的线性变换。
成形滤波与匹配滤波的应用需要多领域的知识和 技术支持,需要加强跨学科合作与交流。
3
标准化与互操作性
为促进成形滤波与匹配滤波技术的推广和应用, 需要制定相关标准,提高算法的互操作性和兼容 性。
THANKS
感谢观看
多模态融合
将不同模态的信息融合到成形滤波与匹配滤波中,如图像、语音、 文本等,以实现更丰富的应用场景。
深度学习与人工智能
利用深度学习等人工智能技术,改进现有算法,提高滤波性能和 智能化水平。
应用领域拓展
智能驾驶
成形滤波与匹配滤波在智能驾驶 领域的应用将进一步拓展,如车 辆定位、障碍物检测等。
虚拟现实与增强现
成形滤波与匹配滤波的优缺点 成形滤波的优缺点
01
缺点
02
匹配滤波 (2)
匹配滤波
匹配滤波(Matched Filtering)是一种信号处理技术,用于检测和定位信号中的特定模式。
它通常用于雷达、通信和图像处理等领域。
匹配滤波的基本原理是将输入信号与一个预定义的模板进行相关运算,从而得到一个相似度度量,以判断该信号中是否存在模板所表示的特定模式。
匹配滤波的实现步骤如下:
1. 创建一个与模板相同长度的滤波器。
滤波器中的每个元素都是模板的逆序。
2. 将输入信号与滤波器进行卷积运算,得到相关输出。
3. 通过比较相关输出的峰值位置和幅度,判断输入信号中是否存在与模板相匹配的模式。
匹配滤波在雷达系统中常用于检测目标,因为目标通常具有独特的雷达返回信号模式。
在通信系统中,匹配滤波可
用于解决符号同步和信道估计等问题。
在图像处理中,匹配滤波可用于边缘检测、目标识别和跟踪等应用。
总的来说,匹配滤波利用模板与输入信号的相关运算来寻找特定的模式,它具有高度的灵敏度和抗干扰能力,因此被广泛应用于多种领域中的信号处理任务。
匹配滤波器算法有哪些
匹配滤波器算法有哪些匹配滤波器算法是一种在信号处理领域广泛应用的技术,用于从一个信号中提取出特定的目标信息。
利用匹配滤波器算法,可以实现信号的增强、滤波和特征提取等功能,被广泛应用于图像处理、语音识别、目标跟踪等领域。
下面将介绍几种常见的匹配滤波器算法。
首先,相关滤波器是匹配滤波器算法中的一种经典方法。
相关滤波器通过计算输入信号和参考信号之间的相关性来实现信号处理。
其基本原理是在输入信号中寻找与参考信号最相似的部分,并根据相关性大小进行滤波处理。
相关滤波器在目标检测、特征匹配等任务中有着广泛的应用,能够有效提取关键特征信息。
另外,最小均方滤波器(LMS)是另一种常见的匹配滤波器算法。
LMS算法通过不断调整滤波器的权重,使得滤波器的输出与期望输出之间的均方误差最小化。
LMS算法具有收敛速度快、计算简单等优点,在自适应滤波、降噪等领域有着重要的应用。
此外,卡尔曼滤波器也是一种常见的匹配滤波器算法。
卡尔曼滤波器是一种递归滤波算法,能够有效估计系统的状态并预测未来的状态。
卡尔曼滤波器广泛应用于导航系统、控制系统等领域,能够帮助系统实现状态估计和预测功能。
除此之外,小波变换也可以被看作一种匹配滤波器算法。
小波变换通过不同尺度和频率的小波基函数对信号进行分解和重建,能够实现信号的多尺度分析和特征提取。
小波变换在信号处理、数据压缩等领域有着广泛的应用,能够有效处理非平稳信号和局部特征。
总的来说,匹配滤波器算法涵盖了多种不同的方法和技术,每种方法都有着自身的特点和适用范围。
通过选择合适的匹配滤波器算法,可以实现对信号的有效处理和分析,为各种应用场景提供支持和帮助。
希望本文对匹配滤波器算法有所帮助,让读者对该领域有更深入的了解和认识。
1。
匹配滤波技术在雷达信号处理中的应用.
匹配滤波技术在雷达信号处理中的应用一、匹配滤波原理在输入为确知加白噪声的情况下,所得输出信噪比最大的线性滤波器就是匹配滤波器,设一线性滤波器的输入信号为:其中为确知信号,为均值为零的平稳白噪声,功率谱密度为。
设线性滤波器系统的冲击响应为,其频率响应为,其输出响应:输入信号能量:输入、输出信号频谱函数:输出噪声的平均功率:利用Schwarz不等式得:式取等号时,滤波器输出功率信噪比最大取等号条件:当滤波器输入功率谱密度是的白噪声时,MF 的系统函数为:为常数1,为输入函数频谱的复共轭,,也是滤波器的传输函数。
为输入信号的能量,白噪声的功率谱为只输入信号的能量和白噪声功率谱密度有关。
白噪声条件下,匹配滤波器的脉冲响应:如果输入信号为实函数,则与匹配的匹配滤波器的脉冲响应为:为滤波器的相对放大量,一般。
匹配滤波器的输出信号:匹配滤波器的输出波形是输入信号的自相关函数的倍,因此匹配滤波器可以看成是一个计算输入信号自相关函数的相关器,通常=1。
二、线性调频信号脉冲压缩雷达能同时提高雷达的作用距离和距离分辨率。
这种体制采用宽脉冲发射以提高发射的平均功率,保证足够大的作用距离;而接受时采用相应的脉冲压缩算法获得窄脉冲,以提高距离分辨率,较好的解决雷达作用距离与距离分辨率之间的矛盾。
脉冲压缩雷达最常见的调制信号是线性调频(Linear Frequency Modulation)信号,接收时采用匹配滤波器(Matched Filter)压缩脉冲。
LFM信号(也称Chirp 信号的数学表达式为:(2.1式中为载波频率,为矩形信号,(2.2),是调频斜率,于是信号的瞬时频率为,如图2.1图2.1 典型的chirp信号(a)up-chirp(K>0(b)down-chirp(K<0将2.1式中的up-chirp信号重写为:(2.3)式中,(2.4)是信号s(t的复包络。
由傅立叶变换性质,S(t与s(t 具有相同的幅频特性,只是中心频率不同而以,因此,Matlab仿真时,只需考虑S(t。
2011第9章匹配滤波与模糊函数
与信号波形紧密联系的雷达分辨力:距离分辨 力、速度分辨力。
设发射信号复包络为u(t),窄带信号s(t)可表示为: 目标在斜距R(t)上引起回波信号sr(t)相对于发射信
号延时τ(t),即有:
由: 定义: 点目标回波:
匹配滤波器的冲击响应 匹配滤波器输出 色噪声下广义的匹配滤波器
噪噪声声功功率率谱谱密密度度
结论
式
即是要获得滤波器最
大输出信噪比时,滤波器传递函数和输入信号
频谱间应满足的关系;
式
是滤波器的冲击响应与输入信
号时域波形之间应满足的关系;
除了常数和相位因子外,滤波器的频率特性 恰好是输入信号频谱的共轭,其冲击响应由 欲匹配的信号唯一确定。
例:求白噪声中单个矩形脉冲信号的匹配滤波 器。设脉冲信号f(t)为:
解: 由
f(t) h(t) a 0τ
f 0(t) a2τ
积分器
f(t)
a
(t)
延迟线 e-jωτ
第二节 模糊函数与雷达分辨力
模糊函数:由分辨问题引入,可描述雷达信号 的分辨特性和模糊度,亦可描述由雷达信号决 定的测量精度和杂波抑制特性。
第九章 匹配滤波 模糊函数
第一节 匹配滤波
最最佳佳处处理理
1
1
Rmax
=
⎛ ⎜ ⎝
PtG2λ 2σ (4π )3 Simin
⎞4 ⎟ ⎠
=
⎛ ⎜ ⎝
(4π
)3
Pt G 2λ kT0Bn Fn
2σ (S
⎞4
N )omin
⎟ ⎠
由雷达距离方程可知,为增加作用距离,应使信噪比最大。 匹配滤波的作用即是将接收机输出端噪声功率减至最小。
匹配滤波教学资料
的平均功率之比
d0Es[02n(02t(0t))]21
S()H()ejt0d2
Gn()H()2d
选择滤波器 H ( ) ,使 d 0 取得最大值
许瓦茨不等式
A ()B ()d2A ()2d B ()2d
等号条件 A()cB*()
令 A () H ()G n () B () S () e j t 0 /G n ()
k 0
k 0
二、匹配滤波器理论
匹配滤波器可表示为
H()=H1()H2()
H 1()cS1 *()ej
子脉冲匹配滤波器
H 2 () M 1 e j (M 1 k )T 1 e j T e j (M 1 )T k 0
相参积累器
输出的最大信噪比 dm2 N E 02M N E 01M 2 N E 01M d1
一、匹配滤波器的背景--具体应用
延迟估计的主要部件是匹配滤波器。匹配滤波器的功能是用 输入的数据和不同相位的本地码字进行相关,取得不同码字 相位的相关能量。当串行输入的采样数据和本地的扩频码和 扰码的相位一致时,其相关能力最大,在滤波器输出端有一 个最大值。根据相关能量,延迟估计器就可得到多径的到达 时间量。
S()2 Gn()
dcd0max
3) 幅频特性具有抑制噪声,增强信号的作用
H ()cS()/G n()
二、匹配滤波器理论
4) 相特性argH() :起到了抵消输入信号相角argS()的作用, 并且使输出信号s0(t)的全部频率分量的相位在t=t0时刻相同, 达a r g S ( ) t0
实例教学——匹配滤波器
三、在线性调频脉冲压缩雷达中的应用
在大时宽带宽积信号中,线性调频脉冲信号应用 最为广泛 能更有效地利用雷达发射机可提供的平均功率, 避免发射过高的峰值功率 可提高雷达的距离和速度分辨能力 可抗非相关干扰干扰
匹配滤波器指
匹配滤波器指
匹配滤波器是一种常见的信号处理技术,广泛应用于通信、雷达、图像处理等领域。
它是一种数字滤波器,其设计基于所需信号的特定特征。
通过匹配滤波器,可以有效地提取出信号中所需的信息,抑制无关信号的干扰,从而实现信号的精确识别和提取。
匹配滤波器的设计关键在于选择合适的滤波器系数。
这些系数通常由所需信号的特征决定,比如信号的频率、幅度、时域特性等。
通过精心设计滤波器系数,可以使匹配滤波器在特定信号下表现出最佳性能,从而提高信号识别的准确性和可靠性。
匹配滤波器的原理是利用滤波器与输入信号进行卷积运算,从而得到输出信号。
在匹配滤波器中,滤波器的系数需要与输入信号进行匹配,以实现最佳的信号提取效果。
匹配滤波器通常可以分为线性和非线性两种类型,具有不同的特性和适用场景。
在通信系统中,匹配滤波器被广泛应用于接收端信号处理。
通过匹配滤波器,可以提取出目标信号,抑制噪声和干扰,从而实现对信号的准确解调和识别。
在雷达系统中,匹配滤波器可以帮助提取出回波信号中的目标信息,实现目标跟踪和定位。
在图像处理领域,匹配滤波器也被应用于特征提取和模式识别。
通过设计合适的匹配滤波器,可以有效地提取图像中的特定特征,识别目标对象或实现图像匹配。
匹配滤波器在模式识别、目标检测等方面发挥着重要作用。
总的来说,匹配滤波器作为一种重要的信号处理技术,具有广泛的应用前景和重要的意义。
通过合理设计滤波器系数,可以实现针对性的信号处理,提高信号的识别和提取效果,为各种应用场景提供可靠的支持和保障。
1。
匹配滤波器原理
匹配滤波器原理
匹配滤波器是一种数字信号处理技术,它的作用是对信号进行过滤、优化和重建,以达到用户期望的输出信号。
匹配滤波器通过结合数学分析、实验测试等方法来提取信号中的特征,从而有效地进行噪声抑制、频率特性增强等滤波操作。
这些特性的改
变可以帮助信号重建,并且能够隔离来自不同来源的信号。
匹配滤波器的原理为:根据输入信号的特征和目标信号的特性,
把输入信号的特征和目标信号的特性进行对比,并把输入信号调整到
与目标信号相似,从而获得输出信号。
匹配滤波器有四类基本结构:线性滤波器、非线性滤波器、单极
性滤波器和双极性滤波器。
线性滤波器是指滤波的滤波器的响应函数
是线性的,如低通、高通、带通和带阻滤波器。
非线性滤波器是指滤
波器的响应函数是非线性的,如椭圆滤波器、中值滤波器、峰值滤波
器和梯形滤波器等。
单极性滤波器和双极性滤波器是将线性滤波器进
行改进后设计出来的,其特点是基线偏移小,延迟时间短,增益高,
适合于高速、高精度的在线应用。
匹配滤波器的优点在于可以从输入信号中提取出某种特征,并重
新建立信号的特征,使其达到用户期望的信号特性。
同时,它也有可
以抑制某一频率,将信号改变成具有更好特性的信号,进而有效抑制
噪声,保证信号的清晰度。
8.5 匹配滤波器
最大输出信噪比准则下的最佳线性滤波器即为 匹配滤波器。
1、匹配滤波器的原理 设线性滤波器输入信号:
x(t) = s(t) + n(t) s(t) — 信号, s(t) S(ω) n(t) — 白噪声, pn(ω) = n0/2 要求线性滤波器在某时刻 t0 有最大输出信噪比 的传输特性 H(ω)
s0 (t0 ) 2 N0
1
2
H ()S()e jtd
2
n0 H () 2 d
4
2020/4/14
海南大学 信息学院
Return Back Next
8.5 匹配滤波器
据许瓦尔兹不等式:
1
2
X
( )Y ( )d
2
1
2
X
( ) 2 d
12ຫໍສະໝຸດ Y ()2 d1
r0 2
S ()e jt0
2
d
1
2
n0 / 2
S ( )
2 d
2E
n0 / 2
n0
E
1
2
S ( ) 2 d
是s(t)的能量
2020/4/14
海南大学 信息学院
Return Back Next
8.5 匹配滤波器
滤波器的最大输出信噪比为:r 2E
0 max
n
0
此时 H ( ) kS * ( )e jt0
即最佳线性滤波器的传输特性。
作业: P277 思考题 8-2, 8-4
2020/4/14
海南大学 信息学院
Return Back
2020/4/14
海南大学 信息学院
Return Next
8.5 匹配滤波器
匹配滤波器
一.定义
匹配滤波器: 匹配滤波器: 指滤波器的性能与信号的特性取得某种一致, 指滤波器的性能与信号的特性取得某种一致,使 滤波器输出端的信号瞬时功率与噪声平均功率的 比值最大。即当信号与噪声同时进入滤波器时, 比值最大。即当信号与噪声同时进入滤波器时, 它使信号成分在某一瞬间出现尖峰值, 它使信号成分在某一瞬间出现尖峰值,而噪声成 分受到抑制。 分受到抑制。
−1
s(t)为输入 为输入 信号 ①匹 滤 器 冲 响 是 需 号(t)对 直 镜 并 配 波 的 激 应所 信 s 垂 轴 像 向
当 时 t) = 移 一 取 右 T。般 tm =T,则 k =1 h( s(T − t)
说明
如图(b)(c)(d) (e)分别示出 s(−t)及 (tm −t)的 种 况 如图 s 三 情 ,
t 在 =T时 , 得 相 函 R (t)的 值而 声 过 刻 取 自 关 数SS 峰 , 噪 通 滤 器 完 的 相 运相 于 用 号 到显 制 波 所 成 互 关算 对 有 信 受明 抑 。
配 波 输 信 的大 出 在 时 , 大 ③ 匹 滤 器 出 号 最 值 现 t =T 刻其 小 于 号 等 信 s(t)的 量 ,与 (t)的 形 关 能 E s 波 无 o
s(t) + n(t) H( jω ) so (t) + no (t)
二.匹配滤波器的约束关系
依据:滤波器使信号平方与噪声功率之比达到最大值。 依据:滤波器使信号平方与噪声功率之比达到最大值。 匹配滤波器的约束关系
H( jω) = kS(− jω)e−jωm
其冲激响应为
h(t) = F [H(jω)] = ks(tm −t)
t 当 = tm =T时 输 信 峰 为 , 出 号 值
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
H ( )
如果选择t1=+t0 H ( ) a H ( ) 1
二、匹配滤波器理论
注意:对频移不具有适应性
S 2 ( )= S ( d )
H 2 ( ) c S ( d )e
* j t 0
不同于H()
二、匹配滤波器理论
例:单个矩形脉冲的匹配滤波器
问题:测距分辨率与作用距离矛盾
提高测距分辨率要求脉冲宽度尽可能小
增大作用距离要求每个脉冲的能量最大 大的脉冲峰值功率易导致馈线打火击穿
思路:通过增加平均功率/利用脉冲压缩技术等效
增加脉冲的峰值功率
大时宽带宽积的波形 最典型的:线性调频脉冲压缩信号
一、匹配滤波器的背景--发展历史 发展历史: Woodward首先指出:测距分辨率和精度是雷达信 号带宽的函数而不是脉冲宽度的函数 1937 及1942 年,Kolmogorov 及Wiener 分别针 对可加性噪声信道提出最佳线性滤波器的设计方法 1943 年,North 首次针对高斯白噪声推导了最佳 接收机 H ( ) c S ( ) e , 极大地提高了雷达检测 能力,故匹配滤波器也称为North滤波器 1946 年,Vleck 及Middleton是以脉冲信号信噪比 最佳的角度采用名词“匹配滤波器”的第一批人, 同年科捷利尼柯夫提出了理想接收机理论 1950年,Lawson把匹配滤波理论系统地载入其专 著中
* j t0
一、匹配滤波器的背景--发展历史
1953年,乌尔柯维兹(Urkowitz)把匹配滤波器 理论推广到色噪声的场合,提出“白化滤波器”和 “逆滤波器”的概念,用于解决杂波中信号的检测 问题 1961年,曼那斯(Manasse)研究了白噪声和杂 波干扰同时存在条件下的最佳滤波器 1983年,Reed把匹配滤波器理论推广到三维图像 序列上,把运动点目标检测问题转化为三维变换器 中寻找匹配滤波器的问题 1986年,Verdu设计出的最大似然序列(MSL)检 测器结构上由匹配滤波器组+Viterbi译码器组成, 用于直扩码分多址系统中的最优多用户检测 1998年,Reed将三维匹配滤波器运动目标检测算
6、数字卫星电视接收机的数字解调电路 来自Internet
实例教学——匹配滤波器
二、匹配滤波器理论
准则:输出信噪比最大
1 最佳滤波器及其传输函数的一般形式
X (t ) s(t ) n(t )
H()
R n ( ) G n ( )
Y ( t ) s0 (t ) n0 (t )
一、匹配滤波器的背景--近期研究检索
一、匹配滤波器的背景--近期研究检索
一、匹配滤波器的背景--近期研究检索
一、匹配滤波器的背景--近期研究检索
一、匹配滤波器的背景--参考文献
1、库克,伯菲尔德 著,雷达信号理论与应用导论
2、林茂庸 著 雷达信号理论
3、张明友,吕明 著 信号检测与估计 4、胡捍英 等 CDMA通信中匹配滤波器的应用 电路与 系统学报 1999年第4期 5、RAKE接收机 来自Internet
2
S ( ) H ( )e
j t
d d
G n ( ) H ( )
2
2
1 2 1 2
S ( )
/ G n ( )d
H ( )
2
2
G n ( )d
G n ( ) H ( )
d
S ( )
2
G n ( )
d
而且对其他频率的信号进行抑制
匹配滤波器: ( ) c S ( ) e H
*
j t 0
接收信号的频谱
教学案例——匹配滤波器
背景
匹配滤波理论
实例分析与演示
教学案例——匹配滤波器
一、匹配滤波器的研究背景
一、匹配滤波器的背景--引言
雷达在二战中起到了非常重要的作用,引起了相关理 论的研究热潮 连续波 可判断目标存在与否并测速,要求收发天线分开 脉冲波 特点:收发天线共用,可测距
2
d
二、匹配滤波器理论
信噪比: 某个时刻t=t0时滤波器输出端信号的瞬时功率与噪声 的平均功率之比
d0 s0 ( t0 ) E [ n 0 ( t )]
2 2
1 2
2
S ( ) H ( ) e
j t 0
d d
G n ( ) H ( )
2
选择滤波器 H ( ) ,使 d 0 取得最大值 许瓦茨不等式
a s(t ) 0 0 t 其它
信号频谱
S ( )
s ( t )e
j t
dt
ae
0
j t
dt a j(1 源自 e j )取匹配滤波器的时间t0= 匹配滤波器为 H ( ) 冲激响应为
ca j (1 e
j
)e
*
输入信号的共轭镜像,当 c=1时,h(t)与s(t)关于 t0/2呈偶对称关系
s(t) h(t) s(-t)
s(t)
h(t)
t0
0
t0/2
t
二、匹配滤波器理论
匹配滤波器的性质
1 )输出的最大信噪比与输入信号的波形无关
dm 1 2
S ( ) N
0
2
d
2E N
0
/2
2) t0应该选在信号s(t)结束之后
h(t ) cs(t0 t )
最大信噪比只 与信号的能量 和噪声的强度 有关,与信号 的波形无关
如果要求系统是物理可实现的,则t0必须选在信号s(t)结束之后
二、匹配滤波器理论
3) 匹配滤波器对信号幅度和时延具有适应性 设
s1 ( t ) a s ( t )
S 1 ( ) a S ( )e
达到了幅度同相相加的目的。
a r g H ( ) a r g S ( ) t 0
1 2 1 2 1 2
j [a r g S ( ) a r g H ( ) t ]
s0 ( t )
S ( ) H ( ) e S ( ) H ( ) e S ( ) H ( ) e
延迟估计的主要部件是匹配滤波器。匹配滤波器的功能是用 输入的数据和不同相位的本地码字进行相关,取得不同码字 相位的相关能量。当串行输入的采样数据和本地的扩频码和 扰码的相位一致时,其相关能力最大,在滤波器输出端有一
个最大值。根据相关能量,延迟估计器就可得到多径的到达
时间量。
一、匹配滤波器的背景--近期研究检索
t 2
0
二、匹配滤波器理论
匹配滤波器的实现
H ( ) ca j (1 e
j
)
二、匹配滤波器理论
矩形脉冲串信号的匹配滤波器
M -1
s(t) =
k=0
s 1 (t- k T )
S 1 ( )e
jk T
M 1
信号的频谱
S ( )
k0
s(t)的匹配滤波器 取t0=(M-1)T+
*
j
H 1 ( ) c S 1 ( ) e
*
j t 1 j ( t 1 ) j t 0 j ( t 1 t 0 )
c a S ( )e a c S ( )e
*
e
a H ( )e
j ( t 1 t 0 )
d d
j [a r g S ( ) a r g S ( ) t0 t ]
j ( t t 0 )
d
二、匹配滤波器理论
2 匹配滤波器及其性质
当噪声为白噪声时,最佳滤波器为
H ( ) c S ( ) e
* j t 0
冲激响应
h(t ) cs (t0 t )
s ( t ) S ( )
1 2
或
E { n ( t )}
2
1 2
G n ( )d
s0 ( t )
S ( ) H ( ) e
j t
d
G n ( ) G n ( ) H ( )
0
2
E { n 0 ( t )}
2
1 2
G n ( ) H ( )
/ G n ( )d
S ( )
2
G n ( )
d c d 0 m ax
3) 幅频特性具有抑制噪声,增强信号的作用
H ( ) c S ( ) / G n ( )
二、匹配滤波器理论
4) 相特性argH() :起到了抵消输入信号相角argS()的作用,
并且使输出信号s0(t)的全部频率分量的相位在t=t0时刻相同,
k0
e
j ( M 1 k ) T
二、匹配滤波器理论
匹配滤波器可表示为 H()=H1()H2()
H 1 ( ) c S 1 ( )e
*
M 1
j
子脉冲匹配滤波器
H 2 ( )
k0
e
j ( M 1 k ) T
1 e
j T
e
2
A ( ) B ( ) d
A ( )
*
2
d
B ( )
2
d
等号条件 令
A ( ) H ( ) G n ( )
A ( ) c B ( )