华南理工大学有限元考试试题

合集下载

有限单元法考试题及答案

有限单元法考试题及答案

有限单元法考试题及答案一、单项选择题(每题2分,共10分)1. 有限元法中,单元刚度矩阵的计算是基于()。

A. 位移法B. 势能原理C. 能量守恒定律D. 牛顿第二定律答案:B2. 在有限元分析中,以下哪项不是网格划分时需要考虑的因素?()A. 网格数量B. 网格形状C. 材料属性D. 边界条件答案:C3. 有限元分析中,以下哪项不是结构分析的基本步骤?()A. 离散化B. 求解C. 后处理D. 优化设计答案:D4. 在有限元分析中,以下哪种类型的单元不适用于平面应力问题?()A. 三角形单元B. 四边形单元C. 六面体单元D. 楔形单元答案:C5. 有限元分析中,以下哪种边界条件不属于几何边界条件?()A. 固定支座B. 压力C. 温度D. 位移答案:C二、多项选择题(每题3分,共15分)6. 有限元法中,以下哪些因素会影响单元的精度?()A. 单元形状B. 单元数量C. 材料属性D. 网格划分答案:ABD7. 在有限元分析中,以下哪些是常见的数值积分方法?()A. 一阶积分B. 二阶积分C. 高斯积分D. 牛顿-莱布尼茨积分答案:ABC8. 有限元分析中,以下哪些是常见的单元类型?()A. 线性单元B. 二次单元C. 三次单元D. 非线性单元答案:ABCD9. 在有限元分析中,以下哪些是常见的后处理技术?()A. 应力云图B. 位移云图C. 模态分析D. 热分析答案:ABC10. 有限元分析中,以下哪些是常见的非线性问题?()A. 几何非线性B. 材料非线性C. 接触非线性D. 热应力问题答案:ABCD三、填空题(每题2分,共20分)11. 有限元法中,单元刚度矩阵的计算通常基于___________原理。

答案:势能12. 在有限元分析中,网格划分的目的是将连续的___________离散化为有限数量的单元。

答案:域13. 有限元分析中,___________是将实际问题转化为数学问题的关键步骤。

有限元基础考试试题

有限元基础考试试题

一、名词解释1、单元---任何连续体都可以假想的分割成有限个简单形状单元体的组合,将这些简单形状的单元体称为单元2、节点---把单元与单元之间设置的相互连接点称为节点3、静力等效原则----对于刚体来说,所谓静力等效原则就是单元上原有的外力系和将外力系向各节点移置所得的等效节点力,二者向同一点简化应具有相同的主矢和主矩;对于弹性体来说,所谓静力等效原则就是指单元上的外力系和将该力系向各节点移置后的等效节点力在单元上引起的变形能相等,在一定的位移模式下这种移置是唯一的。

4、虚功等效-----就一个单元来说,把作用在单元上的外力系移置到节点上后,应当与原来的实际外力所作虚功等效。

5、等参元-----如果子单元的位移函数插值节点数与其位置坐标变换节点数相等,其位移函数插值公式与位置坐标变换式都用相同的形函数与节点参数进行插值,则称其为等参元6、超参数单元-----如果单元坐标变换所用的形函数的阶次高于位移模式所用的形函数的阶次,即用于规定单元形状的节点数多于用于规定单元位移的节点数,这种单元就称为超参数单元。

7、低阶元-----把有线性位移函数的单元称为低阶元。

8、高阶元----把有非线性位移函数的单元称为高阶元。

二、填空1、等效节点移植方法基于(虚功原理)和(力系等效)。

2、处理位移有(代入法)和(乘大数法)。

3、三角形单元是一阶单元,四边形单元是二阶单元,四面体单元是一阶单元,六面体单元是二阶单元。

4、平面问题包括(平面应力)、(平面应变)和(轴对称)。

5、弹性问题解决方法有(位移法)和(应力法)。

三、简答1、圣维南原理 p9答:如果把物体的一小部分边界的面力,变换为分布不同但静力等效的面力,那么近处的应力分布将有显著地改变,但是远处所受的影响可以不计。

2、系统能量极值原理 p9答:在所有满足内部连续条件和运动学边界条件的位移中,满足平衡方程的位移使系统的总势能取驻值。

如果驻值是极小值,则平衡时稳定的。

华南理工大学有限元考试试题

华南理工大学有限元考试试题
准则2:协调性要求。如果出现在泛函中的最高阶导数是m阶,则试探函数在单元交界面上必须具有Cm-1连续性,即在相邻单元的交界面上函数应有直至m-1阶的连续导数。当单元的插值函数满足上述要求时,称这样的单元是完备的。
当选取的单元既完备又协调时,有限元解是收敛的,即当单元尺寸趋于零时,有限元解趋于精确解。
具体阐述内容(3分)
4、答:
计算精度(1)>(3)>(2)
计算速度(2)>(3)>(1)
四.计算题(共40分,每题20分)
1、如图1所示 等腰直角三角形单元,其厚度为 ,弹性模量为 ,泊松比 ;单元的边长及结点编号见图中所示。求
(1)形函数矩阵
(2)应变矩阵 和应力矩阵
(3)单元刚度矩阵
2、图2(a)所示为正方形薄板,其板厚度为 ,四边受到均匀荷载的作用,荷载集度为 ,同时在 方向相应的两顶点处分别承受大小为 且沿板厚度方向均匀分布的荷载作用。设薄板材料的弹性模量为 ,泊松比 。试求
(A)m-1次 (B)m次 (C)2m-1次
6 与高斯消去法相比,高斯约当消去法将系数矩阵化成了_________形式,因此,不用进行回代计算。
(A)上三角矩阵 (B)下三角矩阵 (C)对角矩阵
7 对称荷载在对称面上引起的___________ቤተ መጻሕፍቲ ባይዱ____分量为零。
(A)对称应力 (B)反对称应力 (C)对称位移 (D)反对称位移
4、网格布局
当结构外形对称时,其网格也应划分对称网格。
5、单元刚度矩阵每一列元素表示一组平衡力系,对于平面问题,每列元素之和为零。
6、单元刚度矩阵中对角线上的元素为正、单元刚度矩阵为对称矩阵、单元刚度矩阵为奇异矩阵
7、四结点四边形等参单元的位移插值函数是坐标x、y的一次函数。在三角形单元中,其面积坐标的值与三结点三角形单元的结点形函数值相等。

华工有限元10-11B答案

华工有限元10-11B答案

华工有限元10-11B答案一、选择题1.选C2.选A3.选D4.选B5.选C6.选D7.选C8.选B9.选A10.选D11.选B12.选B13.选A14.选C15.选A二、简答题1. 有限元分析的概念和作用有限元分析是一种计算机辅助工程分析方法,也是现代工程设计、仿真和优化的一个重要工具。

通过离散化、求解和分析,可以得出物体的应力、变形、热分布、流动、磁场等物理量的数值解,帮助设计师预测和评估结构的性能和行为。

2. 有限元分析的四个步骤有限元分析的四个步骤包括:1.确定问题的数学模型,即建立有限元模型,包括离散化和选择适当的元素类型。

2.各离散单元的应力-应变关系计算,包括内部能计算和刚度矩阵的求解。

3.通过应力-应变关系分析各单元上的边界条件,解出模型的位移场。

4.结果分析和后处理,包括应力、变形、温度等物理量的计算和图表化。

3. 有限元分析中常用的一些元素类型有限元分析中常用的元素类型包括:1.一维元素:一般用来描述线性结构的应力和应变,如棒材、梁等,包括线性三角形单元、直线单元等。

2.二维元素:一般用来描述板状结构的应力和应变,如平面、圆板等,包括三角形单元、四边形元等。

3.三维元素:一般用来描述体状结构的应力和应变,如立方体、球等,包括四面体元、六面体等。

4. 有限元法中的网格剖分为什么要细化?在有限元分析中,网格剖分的细化程度直接影响分析结果的准确度和可靠性。

因此,在进行网格剖分时要细化出长度、角度、半径等变化快速的区域,以充分反映结构的 behaviors,同时保证分析结果的精度。

三、计算题见附件。

有限元2010期末考试试卷b卷

有限元2010期末考试试卷b卷

诚实答卷,舞弊后果严重
华南理工大学机械与汽车工程学院 2010-2011年第 1 学期期末考试
《 汽车有限元法 》全日制本科 试卷(B 卷)
(.本试卷共有 三大题,满分 100 分,考试时间 120 分钟)
一.简答题(共24分)
1.弹性力学与材料力学在研究对象上的区别(2分)
2.弹性力学中的五点假设(5分)
3.列出应力-应变之间的物理方程(6分)
题号 一 二 三 总分 得分 评卷人
办学单位:机械与汽车工程学院 年级专业: 姓名: 学号: 成绩:
4.列出应力-外力之间的运动平衡方程(3分)
5.弹性力学的求解方法有哪几种?(2分)
6.有限元法分析工程问题的基本步骤(6分)
二.计算题(20分)
1.求解等截面直杆在自重作用下的拉伸,已知:单位杆长重量为q=60KN/m,
杆长为L=3m,截面面积为A=100mm2,弹性模数为E=200GPa,分别用材料力学和有限元法(3个单元)
三.推导题
1.推导三节点三角形平面单元的位移函数(16分)
2.推导三节点三角形平面单元的单元刚度矩阵(15分)
3.在上题基础上分析整体刚度矩阵并计算该平面应力问题。

P y1=100KN ,P y3=50KN ,a =1M ,P x2=100KN ,P x3=50KN ,E =210GPa ,t=0.1,u=0.3,求出各节点处的位移与应力。

(25分)
2
¢Û¢
Ü¢
Ù¢
Ú3
y P 3
x P 3
1
4
5
6
2
x P 1
y P a
a
a
a。

华工有限元10-11B答案

华工有限元10-11B答案

______________________________________________________________________________________________________________华南理工大学机械与汽车工程学院 2010-2011年第 2 学期期末考试《 汽车有限元法 》全日制本科 试卷(B 卷)答案(.本试卷共有 三大题,满分 100 分,考试时间 120 分钟)一.简答题(共24分)1.弹性力学与材料力学在研究对象上的区别(2分)弹性力学也是研究弹性体在外力作用下的平衡和运动,以及由此产生的应力和变形。

材料力学基本上只研究杆、梁、柱、轴等杆状构件,即长度远大于宽度和厚度的构件。

弹性力学虽然也研究杆状构件,但还研究材料力学无法研究的板与壳及其它实体结构,即两个尺寸远大于第三个尺寸,或三个尺寸相当的构件。

2.弹性力学中的五点假设(5分)(1) 物体是连续的,亦即物体整个体积内部被组成这种物体的介质填满,不留任何空隙。

这样,物体内的一些物理量,如应力、应变、位移等等才可以用座标的连续函数来表示。

(2) 物体是完全弹性的,亦即当使物体产生变形的外力被除去以后,物体能够完全恢复原形,而不留任何残余变形。

这样,当温度不变时,物体在任一瞬时的形状完全决定于它在这一瞬时所受的外力,与它过去的受力情况无关。

(3) 物体是均匀的,也就是说整个物体是由同一种材料组成的。

这样,整个物体的所有各部分才具有相同的物理性质,因而物体的弹性常数(弹性模量和波桑系数)才不随位置座标而变。

(4) 物体是各向同性的,也就是说物体内每一点各个不同方向的物理性质和机械性质都是相同的。

(5) 物体的变形是微小的,亦即当物体受力以后,整个物体所有各点的位移都远小于物体的原有尺寸,因而应变和转角都远小于1,这样,在考虑物体变形以后的平衡状态时,可以用变形前的尺寸来代替变形后的尺寸,而不致有显著的误差;并且,在考虑物体的变形时,应变和转角的平方项或乘积项都可以略去不计,这就使得弹性力学中的微分方程都成为线性方程.答题时仅需要答案的第一句的内容表达清楚就可以给分。

有限元期末考试试卷10A卷

有限元期末考试试卷10A卷

华南理工大学汽车工程学院2010-2011年第 1 学期期末考试《 车辆有限元法 》本科生 试卷(A 卷)(.本试卷共有 四 大题,满分 100 分,考试时间 120 分钟)一. 判断题(每题1分,共10分)1.有限元法是将连续体理想化为有限个单元集合而成,这些单元仅在每个节点上相连接,即用有限个单元的集合来代替原来具有无限个自由度的连续体。

2.弹性力学是研究不可变形固体在外力和边界约束变动等作用下的弹性变形与应力状态的科学。

它和理论力学材料力学一样是固体力学的重要组成部分。

3.位移函数只需要能反映单元的刚体位移。

4.单元刚度矩阵是奇异、对称矩阵。

5.用有限元法计算出计算结果需要进行整理的意义在于所计算出的应力是近似的,一般不保持连续性。

6. 对于弹性力学问题,单元分析,就是建立各个单元的单元位移和单元力之间的关系式。

7. 任一线素的长度的变化与原有长度的比值称为线应变(或称正应变),用符号ε 来表示。

8.对于在力的作用下处于平衡状态的任何物体,不用考虑它是否真正发生了位移,而假想它发生了位移,物体上所有的力在这个虚位移上的总功可能等于零,这就是虚功原理。

9.单元综合的目的就是要求出结点力,结点力求出后,可进一步求出各单元的位移。

10.连续弹性体离散为单元组合体时,为简化受力情况,需把弹性体承受的任意分布的载荷都向结点移置,而成为结点载荷。

如果弹性体受承受的载荷全都是集中力,则将所有集中力的作用点取为结点,就不存在移置的问题,集中力就是结点载荷。

二.填空题(每空1分,共计40分)1.弹性力学的五项基本假定是: , , ,, 。

2.汽车结构件计算模型的分类有: , ,, , . 。

3.在用有限元法分析实际工程问题中,常见的问题有: 分析, 分析, 分析, 分析, 分析, 技术等。

4.用商业有限元软件ANSYS 进行静力强度分析的基本步骤是: ,, 。

5.举例列出静力分析所使用的单元类型: , , , , 等。

[精选]有限元考试试题及答案——第一组资料

[精选]有限元考试试题及答案——第一组资料

有限元考试试题及答案一、简答题(5道,共计25 分)。

1. 有限单元位移法求解弹性力学问题的基本步骤有哪些?(5 分)答:(1)选择适当的单元类型将弹性体离散化;(2)建立单元体的位移插值函数;(3)推导单元刚度矩阵;(4)将单元刚度矩阵组装成整体刚度矩阵;(5)代入边界条件和求解。

2. 在划分网格数相同的情况下,为什么八节点四边形等参数单元精度大于四边形矩形单元?(5 分)答:在对于曲线边界的边界单元,其边界为曲边,八节点四边形等参数单元边上三个节点所确定的抛物线来代替原来的曲线,显然拟合效果比四边形矩形单元的直边好。

3. 轴对称单元与平面单元有哪些区别?(5 分)答:轴对称单元是三角形或四边形截面的空间的环形单元,平面单元是三角形或四边形平面单元;轴对称单元内任意一点有四个应变分量,平面单元内任意一点非零独立应变分量有三个。

4. 有限元空间问题有哪些特征?(5 分)答:(1)单元为块体形状。

常用单元:四面体单元、长方体单元、直边六面体单元、曲边六面体单元、轴对称单元。

(2)结点位移3 个分量。

(3)基本方程比平面问题多。

3 个平衡方程,6 个几何方程,6 个物理方程。

5. 简述四节点四边形等参数单元的平面问题分析过程。

(5)分)答:(1)通过整体坐标系和局部坐标系的映射关系得到四节点四边形等参单元的母单元,并选取单元的唯一模式;(2 )通过坐标变换和等参元确定平面四节点四边形等参数单元的几何形状和位移模式;(3 )将四节点四边形等参数单元的位移模式代入平面问题的几何方程,得到单元应变分量的计算式,再将单元应变代入平面问题的物理方程,得到平面四节点等参数单元的应力矩阵;(4)用虚功原理求得单元刚度矩阵,最后用高斯积分法计算完成。

二、论述题(3 道, 共计30 分)。

1. 简述四节点四边形等参数单元的平面问题分析过程。

(10 分)答:(1)通过整体坐标系和局部坐标系的映射关系得到四节点四边形等参单元的母单元,并选取单元的唯一模式;(2)通过坐标变换和等参元确定平面四节点四边形等参数单元的几何形状和位移模式;(3)将四节点四边形等参数单元的位移模式代入平面问题的几何方程,得到单元应变分量的计算式,再将单元应变代入平面问题的物理方程,得到平面四节点等参数单元的应力矩阵;(4)用虚功原理求得单元刚度矩阵,最后用高斯积分法计算完成。

有限元考试试题

有限元考试试题

有限元考试试题有限元考试试题在工程学领域中,有限元分析是一种常用的数值计算方法,用于解决结构力学、热传导、流体力学等问题。

有限元方法的应用广泛,因此在相关领域中的考试中,有限元试题是非常重要的一部分。

本文将探讨一些有限元考试试题,以帮助读者更好地理解和应用这一方法。

1. 问题描述:一根长度为L的杆件,两端固定,如何确定杆件上各个位置的位移?解答:这是一个典型的弹性力学问题,可以通过有限元方法进行求解。

首先,将杆件分割成若干个小单元,每个小单元内部的位移近似为线性。

然后,根据杆件的边界条件,建立相应的刚度矩阵和载荷向量。

最后,通过求解线性方程组,得到杆件上各个位置的位移。

2. 问题描述:如何确定一个结构的应力分布情况?解答:有限元分析可以用来计算结构的应力分布情况。

首先,将结构分割成若干个小单元,每个小单元内部的应力近似为线性。

然后,根据结构的边界条件和加载情况,建立相应的刚度矩阵和载荷向量。

最后,通过求解线性方程组,得到结构上各个位置的应力分布情况。

3. 问题描述:如何确定一个结构的固有频率?解答:固有频率是指结构在没有外界激励下自由振动的频率。

有限元分析可以用来计算结构的固有频率。

首先,将结构分割成若干个小单元,每个小单元内部的位移近似为线性。

然后,根据结构的边界条件,建立相应的刚度矩阵和质量矩阵。

最后,通过求解特征值问题,得到结构的固有频率和相应的振型。

4. 问题描述:如何考虑非线性材料的影响?解答:有限元分析可以考虑非线性材料的影响。

在材料的应力-应变关系中,通常存在非线性现象,如材料的屈服、硬化、蠕变等。

为了考虑这些非线性现象,可以采用增量形式的有限元分析方法。

在每个增量步骤中,根据当前应力状态和材料的非线性特性,更新刚度矩阵和载荷向量。

通过迭代求解,可以得到结构的非线性响应。

5. 问题描述:如何考虑流体结构耦合问题?解答:有限元分析可以考虑流体结构耦合问题。

在流体结构耦合问题中,结构的变形会影响流体的流动,而流体的流动又会对结构施加载荷。

(完整版)有限元考试试题及答案

(完整版)有限元考试试题及答案

e an dAl l t h i ng si nt he i rb ei n ga re go o2. 如图2所示,有一正方形薄板,沿对角承受压力作用,厚度t=1m ,载荷F=20KN/m ,设泊松比µ=0,材料的弹性模量为E ,试求它的应力分布。

(15分)图23. 图示结点三角形单元的124边作用有均布侧压力q ,单元厚度为t ,求单元的等效结点荷载。

图3图1一、简答题1. 答:1)合理安排单元网格的疏密分布2)为突出重要部位的单元二次划分3)划分单元的个数4)单元形状的合理性5)不同材料界面处及荷载突变点、支承点的单元划分6)曲线边界的处理,应尽可能减小几何误差7)充分利用结构及载荷的对称性,以减少计算量2. 答:形函数应满足的三个条件:a.必须能反映单元的刚体位移,就是位移模式应反映与本单元形变无关的由其它单元形变所引起的位移。

b.能反映单元的常量应变,所谓常量应变,就是与坐标位置无关,单元内所有点都具有相同的应变。

当单元尺寸取小时,则单元中各点的应变趋于相等,也就是单元的形变趋于均匀,因而常量应变就成为应变的主要部分。

c.尽可能反映位移连续性;尽可能反映单元之间位移的连续性,即相邻单元位移协调。

3. 答:含义:所谓的等参数单元,就是在确定单元形状的插值函数和确定单元位移场的插值函数中采用了完全相同的形函数。

意义:构造出一些曲边地高精度单元,以便在给定地精度下,用数目较少地单元,解决工程实际地具体问题。

4. 答:有限单元法是基于变分原理的里兹(Ritz)法的另一种形式,从而使里兹法分析的所有理论基础都适用子有限单元法,确认了有限单元法是处理连续介质问题的一种普遍方法.利用变分原理建立有限元方程和经典里兹法的主要区别是有限单元法假设的近似函数不是在全求解域而是在单元上规定的,面且事先不要求满足任何边界条件,因此它可以用来处理很复杂的连续介质问题。

有nl⎥⎦⎤⎢⎣⎡5.0025.025.011212---==E k k ⎥⎦⎤⎢⎣⎡5.0025.0011313-==E k k ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡5.125.025.05.125.0005.05.00025.075.025.025.075.032222212222E E E E k k k k +=++=⎥⎦⎤⎢⎣⎡----=⎥⎦⎤⎢⎣⎡---+⎥⎦⎤⎢⎣⎡---5.025.025.0125.025.005.025.0025.05.032312323E E E k k k =+=⎥⎦⎤⎢⎣⎡---5.0025.025.022424E k k ==⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡025.025.00025.0000025.0032522525E E E k k k =+=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡5.125.025.05.15.00025.075.025.025.075.025.0005.043333313333E E E E k k k k =++=⎥⎦⎤⎢⎣⎡----=⎥⎦⎤⎢⎣⎡---+⎥⎦⎤⎢⎣⎡---125.025.05.05.0025.025.05.025.0025.043533535E E E k k k =+=⎥⎦⎤⎢⎣⎡0025.0043636E k k ==⎥⎦⎤⎢⎣⎡75.025.025.075.024444E k k ==⎥⎦⎤⎢⎣⎡---25.0025.05.024545E k k == ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡5.125.025.05.175.025.025.075.05.00025.025.0005.045535525555E E E E k k k k =++=⎥⎦⎤⎢⎣⎡---25.0025.05.045656E k k ==⎥⎦⎤⎢⎣⎡25.0005.046666E k k ==把上面计算出的,…,对号入座放到总刚矩阵中去,于是得到11k 66k []K的具体表达式。

有限元考试试题及答案——第一组

有限元考试试题及答案——第一组

有限元考试试题及答案简答题(5道,共计25分)。

1.有限单元位移法求解弹性力学问题的基本步骤有哪些? (5分)答:(1)选择适当的单元类型将弹性体离散化;(2) (3) (4) (5)2.在划分网格数相同的情况下,为什么八节点四边形等参数单元精度大于四 边形矩形单元? ( 5分)答:在对于曲线边界的边界单元, 其边界为曲边,八节点四边形等参数单元边上三个节 点所确定的抛物线来代替原来的曲线,显然拟合效果比四边形矩形单元的直边好。

3.轴对称单元与平面单元有哪些区别?( 5分)答:轴对称单元是三角形或四边形截面的空间的环形单元,平面单元是三角形或四边形平面单元;轴对称单元内任意一点有四个应变分量, 平面单元内任意一点非零独立应变分量有三个。

4. 有限元空间问题有哪些特征? ( 5分)答:(1 )单元为块体形状。

常用单元:四面体单元、长方体单元、直边六面体单元、曲边六面体单元、轴对称单元。

(2)结点位移3个分量。

(3)基本方程比平面问题多。

3个 平衡方程,6个几何方程,6个物理方程。

5.简述四节点四边形等参数单元的平面问题分析过程。

(5)分)答:(1)通过整体坐标系和局部坐标系的映射关系得到四节点四边形等参单元的母单元, 并选取单元的唯一模式;(2)通过坐标变换和等参元确定平面四节点四边形等参数单元的几何形状和位移模式;(3)将四节点四边形等参数单元的位移模式代入平面问题的几何方程, 分量的计建立单元体的位移插值函数; 推导单元刚度矩阵; 将单元刚度矩阵组装成整体刚度矩阵; 代入边界条件和求解。

得到单元应算式,再将单元应变代入平面问题的物理方程,得到平面四节点等参数单元的应力矩阵;(4)用虚功原理求得单元刚度矩阵,最后用高斯积分法计算完成。

论述题(3道,共计30分)。

1.简述四节点四边形等参数单元的平面问题分析过程。

(10分)答:(1)通过整体坐标系和局部坐标系的映射关系得到四节点四边形等参单元的母单元, 并选取单元的唯一模式;(2) 通过坐标变换和等参元确定平面四节点四边形等参数单元的几何形状和位移模式;(3) 将四节点四边形等参数单元的位移模式代入平面问题的几何方程,分量的计算式,再将单元应变代入平面问题的物理方程,得到平面四节点等参 数单元的应力矩阵;(4) 用虚功原理求得单元刚度矩阵,最后用高斯积分法计算完成。

有限元试卷和答案

有限元试卷和答案
3 a 1
a
图1
1、解: 设图 1 所示的各点坐标为 点 1( a, 0) ,点 2(a,a) ,点 3(0,0) 于是,可得单元的面积为 (1) 形函数矩阵 N 为
1 (0 + ax − ay ) a2 1 N1 = 2 (0 + 0gx + ay ) a 1 N1 = 2 (a 2 − ax + 0gy ) a N1 =
判断正误 (×)1. 节点的位置依赖于形态,而并不依赖于载荷的位置 (√)2. 对于高压电线的铁塔那样的框架结构的模型化处理使用梁单元 (×)3. 不能把梁单元、壳单元和实体单元混合在一起作成模型 (√)4. 四边形的平面单元尽可能作成接近正方形形状的单元 (×)5. 平面应变单元也好,平面应力单元也好,如果以单位厚来作模型化 处理的话会得到一样的答案 (×)6. 用有限元法不可以对运动的物体的结构进行静力分析 (√)7. 一般应力变化大的地方单元尺寸要划的小才好 (×)8. 所谓全约束只要将位移自由度约束住,而不必约束转动自由度 (×)9. 线性应力分析也可以得到极大的变形 (√)10. 同一载荷作用下的结构,所给材料的弹性模量越大则变形值越小 (1)用加权余量法求解微分方程,其权函数 V 和场函数 u 的选择没有任何限 制。 ( × ) (2)四结点四边形等参单元的位移插值函数是坐标 x、y 的一次函数。 (√ ) (3)在三角形单元中,其面积坐标的值与三结点三角形单元的结点形函数值 相等。 续。 (√ ) (× ) (× ) (6)等参单元中 Jacobi 行列式的值不能等于零。 (√) (7)在位移型有限元中,单元交界面上的应力是严格满足平衡条件的。 (× ) (4)二维弹性力学问题的有限元法求解,其收敛准则要求试探位移函数 C1 连 (5)有限元位移法求得的应力结果通常比应变结果精度低。

有限元试题及答案

有限元试题及答案

有限元试题及答案(总4页) -本页仅作为预览文档封面,使用时请删除本页-一判断题(20分)(×)1. 节点的位置依赖于形态,而并不依赖于载荷的位置(√)2. 对于高压电线的铁塔那样的框架结构的模型化处理使用梁单元(×)3. 不能把梁单元、壳单元和实体单元混合在一起作成模型(√)4. 四边形的平面单元尽可能作成接近正方形形状的单元(×)5. 平面应变单元也好,平面应力单元也好,如果以单位厚来作模型化处理的话会得到一样的答案(×)6. 用有限元法不可以对运动的物体的结构进行静力分析(√)7. 一般应力变化大的地方单元尺寸要划的小才好(×)8. 所谓全约束只要将位移自由度约束住,而不必约束转动自由度(√)9. 同一载荷作用下的结构,所给材料的弹性模量越大则变形值越小(√)10一维变带宽存储通常比二维等带宽存储更节省存储量。

二、填空(20分)1.平面应力问题与薄板弯曲问题的弹性体几何形状都是薄板,但前者受力特点是:平行于板面且沿厚度均布载荷作用,变形发生在板面内;后者受力特点是:垂直于板面的力的作用,板将变成有弯有扭的曲面。

2.平面应力问题与平面应变问题都具有三个独立的应力分量:σx,σy,τxy ,三个独立的应变分量:εx,εy,γxy,但对应的弹性体几何形状前者为薄板,后者为长柱体。

3.位移模式需反映刚体位移,反映常变形,满足单元边界上位移连续。

4.单元刚度矩阵的特点有:对称性,奇异性,还可按节点分块。

5.轴对称问题单元形状为:三角形或四边形截面的空间环形单元,由于轴对称的特性,任意一点变形只发生在子午面上,因此可以作为二维问题处理。

6.等参数单元指的是:描述位移和描述坐标采用相同的形函数形式。

等参数单元优点是:可以采用高阶次位移模式,能够模拟复杂几何边界,方便单元刚度矩阵和等效节点载荷的积分运算。

7.有限单元法首先求出的解是节点位移,单元应力可由它求得,其计算公式为。

《有限元》期末考题

《有限元》期末考题

一、填空(共10个空,每空2分,共20分)11、有限元法是近似求解连续场问题的数值方法。

2、有限元法将连续的求解域离散,得到有限个单元,单元和单元之间用节点相连。

3、直梁在外力作用下,横截面上的内力有剪力和弯矩两个。

4、平面刚架结构在外力作用下,横截面上的内力有剪力、弯矩和轴力。

5、进行直梁的有限元分析,梁单元上每个节点的节点位移为挠度和转角。

、平面刚架结构中,已知单元e的坐标变换矩阵[T e]及局部坐标系x´O´y ´下的单元刚度矩阵[K´]e,则单元在整体坐标系xOy下的单元刚度矩阵为 P31 。

7、平面刚架结构中,已知单元e的坐标变换矩阵[T e]及整体坐标系xOy下的单元节点力矩阵{p}e,则单元在局部坐标系x´O´y´下的单元节点力矩阵为 P30 。

8、在弹性范围和小变形的前提下,节点力和节点位移之间是线性系。

9、弹性力学问题的方程个数有 15个,未知量个数有 15 个。

10、弹性力学平面问题的方程个数有个,未知量个数有个。

11、把经过物体内任意一点各个截面的应力状况叫做一点的应力状态。

12、形函数在单元节点上的值,具有本点为 1 、它点为零的性质,并且在三角形单元的任一节点上,三个形函数之和为 1 。

13、形函数是定义于元内部坐标连续函数。

14、在进行节点编号时,要尽量使同一单元的相邻节点的号码差尽可能小,以便最大限度地缩小刚度矩阵带宽,节省存储、提高计算效率。

15、三角形单元的位移模式为。

16、矩形单元的位移模式为。

17、在选择多项式位移模式的阶次时,要求所选的位移模式应该与局部坐标系的方位无关,这一性质称为几何各向同性。

18、单元刚度矩阵描述了节点力和节点位移之间的关系。

19、在选择多项式作为单元的位移模式时,多项式阶次的确定,要考虑解答的收敛性,即要满足单元的完备性和协调性的要求。

20、三节点三角形单元内的应力和应变是常数,四节点矩形单元内的应力和应变是线性变化的。

《弹性力学及有限元》测验试卷

《弹性力学及有限元》测验试卷

一、在建立弹性力学平衡微分方程、几何方程、物理方程时分别应用了哪些基本假定?
二、在什么条件下平面应力问题与平面应变问题的应力分量xy y x τσσ,,是相同的?
三、体力为零的单连体应力边界问题,设下列应力分量已满足边界条件。

试考察它们是否为
正确解答,并说明原因。

0,2,2)2(===xy y x y x τσσ
四、有限单元法中,位移模式应满足什么条件? 下列位移函数 2321x a y a x a u ++= 2321y b y b x b v ++=
能否作为三角形单元的位移模式? 简要说明理由。

)(,,)1(a
y
b x q b y q a x q
xy y x +-===τσσ
题六图
七、某结构的有限元计算网格如题七图(a )所示。

网格中两种类型单元按如题七图(b )所
示的局部编号,它们单元劲度矩阵均为
⎥⎥⎤⎢⎢⎡-----25.025.0025.025.0025.025.0025.025.0005.0000
5.0。

华南理工大学有限元分析题库

华南理工大学有限元分析题库

华南理工大学《汽车有限元分析》题库一.判断题(每题1分,共10分)1.有限元法是将连续体理想化为有限个单元集合而成,这些单元仅在每个节点上相连接,即用有限个单元的集合来代替原来具有无限个自由度的连续体。

2.弹性力学是研究不可变形固体在外力和边界约束变动等作用下的弹性变形与应力状态的科学。

它和理论力学材料力学一样是固体力学的重要组成部分。

3.位移函数只需要能反映单元的刚体位移。

4.单元刚度矩阵是奇异、对称矩阵。

5.用有限元法计算出计算结果需要进行整理的意义在于所计算出的应力是近似的,一般不保持连续性。

6. 对于弹性力学问题,单元分析,就是建立各个单元的单元位移和单元力之间的关系式。

7. 任一线素的长度的变化与原有长度的比值称为线应变(或称正应变),用符号ε来表示。

8.对于在力的作用下处于平衡状态的任何物体,不用考虑它是否真正发生了位移,而假想它发生了位移,物体上所有的力在这个虚位移上的总功可能等于零,这就是虚功原理。

9.单元综合的目的就是要求出结点力,结点力求出后,可进一步求出各单元的位移。

10.连续弹性体离散为单元组合体时,为简化受力情况,需把弹性体承受的任意分布的载荷都向结点移置,而成为结点载荷。

如果弹性体受承受的载荷全都是集中力,则将所有集中力的作用点取为结点,就不存在移置的问题,集中力就是结点载荷。

二.填空题(每空1分,共计40分)1.弹性力学的五项基本假定是:,,,,。

2.汽车结构件计算模型的分类有:,,,,.。

3.在用有限元法分析实际工程问题中,常见的问题有:分析,分析,分析,分析,分析,技术等。

4.用商业有限元软件ANSYS进行静力强度分析的基本步骤是:,,。

5.举例列出静力分析所使用的单元类型:,,,,等。

6.在用ANSYS软件分析考虑自重的结构静力问题时,材料参数中的,,和是必须输入的。

7.在进行有限元分析时,利用,在满足计算精度要求的前提下,可以减少计算工作量。

9.ANSYS的用户界面包括:(1)主窗口,由下列,,,,,等5个部分组成;(2)。

有限元考试精彩试题及问题详解——第一组

有限元考试精彩试题及问题详解——第一组

有限元考试试题及答案一、简答题(5道,共计25分)。

1.有限单元位移法求解弹性力学问题的基本步骤有哪些?(5分)答:(1)选择适当的单元类型将弹性体离散化;(2)建立单元体的位移插值函数;(3)推导单元刚度矩阵;(4)将单元刚度矩阵组装成整体刚度矩阵;(5)代入边界条件和求解。

2. 在划分网格数相同的情况下,为什么八节点四边形等参数单元精度大于四边形矩形单元?(5分)答:在对于曲线边界的边界单元,其边界为曲边,八节点四边形等参数单元边上三个节点所确定的抛物线来代替原来的曲线,显然拟合效果比四边形矩形单元的直边好。

3.轴对称单元与平面单元有哪些区别?(5分)答:轴对称单元是三角形或四边形截面的空间的环形单元,平面单元是三角形或四边形平面单元;轴对称单元任意一点有四个应变分量,平面单元任意一点非零独立应变分量有三个。

4.有限元空间问题有哪些特征?(5分)答:(1)单元为块体形状。

常用单元:四面体单元、长方体单元、直边六面体单元、曲边六面体单元、轴对称单元。

(2)结点位移3个分量。

(3)基本方程比平面问题多。

3个平衡方程,6个几何方程,6个物理方程。

5.简述四节点四边形等参数单元的平面问题分析过程。

(5)分)答:(1)通过整体坐标系和局部坐标系的映射关系得到四节点四边形等参单元的母单元,并选取单元的唯一模式;(2)通过坐标变换和等参元确定平面四节点四边形等参数单元的几何形状和位移模式;(3)将四节点四边形等参数单元的位移模式代入平面问题的几何方程,得到单元应变分量的计算式,再将单元应变代入平面问题的物理方程,得到平面四节点等参数单元的应力矩阵;(4)用虚功原理求得单元刚度矩阵,最后用高斯积分法计算完成。

二、论述题(3道,共计30分)。

1. 简述四节点四边形等参数单元的平面问题分析过程。

(10分)答:(1)通过整体坐标系和局部坐标系的映射关系得到四节点四边形等参单元的母单元,并选取单元的唯一模式;(2)通过坐标变换和等参元确定平面四节点四边形等参数单元的几何形状和位移模式;(3)将四节点四边形等参数单元的位移模式代入平面问题的几何方程,得到单元应变分量的计算式,再将单元应变代入平面问题的物理方程,得到平面四节点等参数单元的应力矩阵;(4)用虚功原理求得单元刚度矩阵,最后用高斯积分法计算完成。

有限元考试试题

有限元考试试题

有限元考试试题一、选择题(每题5分,共30分)1、在有限元分析中,我们通常使用什么方法来求解偏微分方程?A.积分法B.差分法C.有限差分法D.有限元法2、下列哪个不是有限元法的优点?A.可以处理复杂几何形状B.可以处理非线性问题C.可以处理大规模问题D.可以处理不稳定问题3、在有限元分析中,我们通常将连续的物理场离散化为一系列的什么?A.有限个点B.无限个小段C.有限个小段D.无限个点4、下列哪个不是有限元分析的基本步骤?A.划分网格B.建立模型C.执行计算D.编写代码5、在有限元分析中,我们通常使用什么来描述物理场的性质?A.偏微分方程B.泛函方程C.常微分方程D.边界条件6、下列哪个不是有限元分析的应用领域?A.结构分析B.流体动力学C.电磁学D.社会科学二、填空题(每题10分,共40分)7、______是一种将连续的物理场离散化为一系列有限个点的方法,是有限元分析的基础。

8、在有限元分析中,我们通常使用______来对物理场进行离散化处理。

9、______是一种求解偏微分方程的数值方法,广泛应用于有限元分析。

10、在有限元分析中,我们通常使用______来描述物理场的性质。

三、解答题(每题20分,共60分)11、请简述有限元分析的基本步骤,并解释其在结构分析中的应用。

12、请说明在有限元分析中,如何处理边界条件,并举例说明。

13、请简述有限元分析的优点和局限性。

有限空间培训考试试题及答案一、选择题1、在有限空间内,以下哪个行为是危险的?A.带压操作B.穿著宽松衣服C.使用电动工具D.所有上述答案:D.所有上述。

在有限空间内,带压操作、穿著宽松衣服和使用电动工具都是危险的。

2、当进入有限空间前,应该进行哪项操作?A.排放内部气体B.测试内部气体C.对内部进行冲洗D.所有上述答案:D.所有上述。

在进入有限空间前,应该进行排放内部气体、测试内部气体并对内部进行冲洗。

3、有限空间内的危险因素不包括以下哪个?A.缺氧B.有毒气体C.电击D.所有上述答案:C.电击。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8、等参单元中Jacobi行列式的值不能等于零。 利用高斯点的应力进行应力精度的改善时,可以采用与位移插值函数不同结点的形函数进行应力插值。
9、在用有限元法分析实际工程问题中,常见的问题有:分析, 分析, 分析,分析, 分析,技术等。
4.用商业有限元软件ANSYS进行静力强度分析的基本步骤是:,
, 。
4、网格布局
当结构外形对称时,其网格也应划分对称网格。
5、单元刚度矩阵每一列元素表示一组平衡力系,对于平面问题,每列元素之和为零。
6、单元刚度矩阵中对角线上的元素为正、单元刚度矩阵为对称矩阵、单元刚度矩阵为奇异矩阵
7、四结点四边形等参单元的位移插值函数是坐标x、y的一次函数。在三角形单元中,其面积坐标的值与三结点三角形单元的结点形函数值相等。
答:
(1)弹性力学平面问题8节点等参元,自由度16个,刚阵元素16×16=256;
(2)空间轴对称三角形3节点单元,单元自由度6个,单元刚度元素36个;
(3)空间问题20节点等参元,其单元自由度60个,单元刚度元素3600个;
准则2:协调性要求。如果出现在泛函中的最高阶导数是m阶,则试探函数在单元交界面上必须具有Cm-1连续性,即在相邻单元的交界面上函数应有直至m-1阶的连续导数。当单元的插值函数满足上述要求时,称这样的单元是完备的。
当选取的单元既完备又协调时,有限元解是收敛的,即当单元尺寸趋于零时,有限元解趋于精确解。
5、(13分)回答下列问题:
(1)弹性力学平面问题8节点等参元,其单元自由度是多少?单元刚阵元素是多少?
(2)弹性力学空间轴对称问题三角形3节点单元,其单元自由度是多少?单元刚阵元素是多少?
(3)弹性力学空间问题20节点等参元,其单元自由度是多少?单元刚阵元素是多少?
(4)平面刚架结构梁单元(考虑轴向和横向变形)的自由度是多少?单元刚阵元素是多少?
3 有限元位移模式中,广义坐标的个数应与___________相等。
(A)单元结点个数 (B)单元结点自由度数 (C)场变量个数
4 采用位移元计算得到应力近似解与精确解相比较,一般___________。
(A)近似解总小于精确解 (B)近似解总大于精确解(C)近似解在精确解上下震荡 (D)没有规律
5 如果出现在泛函中场函数的最高阶导数是m阶,单元的完备性是指试探函数必须至少是______完全多项式。
华南理工大学广州学院有限单元法期末试题大纲
1、选择题:
1 在加权余量法中,若简单地利用近似解的试探函数序列作为权函数,这类方法称为________________。
(A)配点法 (B)子域法 (____的结点和______的插值函数。
(A)不相同,不相同(B)相同,相同(C)相同,不相同(D)不相同,相同
(A)m-1次 (B)m次 (C)2m-1次
6 与高斯消去法相比,高斯约当消去法将系数矩阵化成了_________形式,因此,不用进行回代计算。
(A)上三角矩阵 (B)下三角矩阵 (C)对角矩阵
7 对称荷载在对称面上引起的________________分量为零。
(A)对称应力 (B)反对称应力 (C)对称位移 (D)反对称位移
2.有限单元法的单元刚度矩阵具有什么特征?
答:单元刚度矩阵的特性主要有:(1)对称性,即单元刚度矩阵是对称矩阵。(2)奇异性,即单元刚度矩阵的系数行列式的值等于零。(3)主元恒正,即单元刚度矩阵或者它的分块矩阵的主对角元素(主元)恒为正值。
3.保证有限单元法的解收敛有哪些准则?
答:准则1:完备性要求。如果出现在泛函中场函数的最高阶导数是m阶,则有限元解收敛的条件之一是单元内场函数的试探函数至少是m次完全多项式,或者说试探函数中必须包含本身和直至m阶导数为常数的项。当单元的插值函数满足上述要求时,称这样的单元是完备的。
10、举例列出静力分析所使用的单元类型:, , ,, 等。
11、在用ANSYS软件分析考虑自重的结构静力问题时,材料参数中的, ,和是必须输入的。
12、在进行有限元分析时,利用,在满足计算精度要求的前提下,可以减少计算工作量。
三、简答题:(1)
1.试说明弹性力学有限单元法解题的主要步骤。
答:应用有限元法解决具体问题的主要步骤有:(1)根据实际结构的工作情况,确定其计算简图,也即创建力学模型。其中包括:如何简化实际问题的几何形状、尺寸、边界上的约束条件、所承受的外载荷等。材料性质是否均匀,是否要考虑体力,要不要分区计算等。(2)将建立的力学模型进行离散化,即划分单元网格。根据问题的几何特点和精度要求等因素选择单元形式和插值函数,将物体划分为单元并形成网格,这样原来的连续体离散为在节点处相互联结的有限单元组合体。接着对所有节点和单元进行编号。(3)计算单元的刚度矩阵并组集形成总i刚度矩阵。(4)按静力等效原则,将作用在各单元上的载荷等效到各节点上,形成等效节点载荷列阵。(5)由总刚度矩阵和等效节点载荷列阵形成所有节点的力平衡方程组。(6)引入强制(给定位移)边界条件,修改步骤(5)得到的方程组,使之具有确定的解,然后选择合适的方法解这个方程组,得到各节点的位移。(6)得到各节点的位移后,根据有关计算公式就可以求出应变和应力。(7)进行其它必要的后处理。
(A)对称性 (B)稀疏性 (C)奇异性
C B B C B C D C C C
二、填空题:(课本···黑色字体)····仿题
1、有限元网格划分的过程中应注意:网格数目、网格疏密、单元阶次、网格质量
2、网格分界面和分界点
应使网格形式满足边界条件特点,而不应让边界条件来适应网格。
3、位移协调性
位移协调是指单元上的力和力矩能够通过节点传递相邻单元。为保证位移协调,一个单元的节点必须同时也是相邻单元的节点,而不应是内点或边界点。
8 对分析物体划分好单元后,__________会对刚度矩阵的半带宽产生影响。
(A)单元编号 (B)单元组集次序 (C)结点编号
9n个积分点的高斯积分的精度可达到______阶。
(A)n-1 (B)n(C)2n-1 (D)2n
10 引入位移边界条件是为了消除有限元整体刚度矩阵 的__________。
相关文档
最新文档